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Abstract
We present a new hierarchical approximation and scheduling approach for applications and tasks
with multiple modes on a single processor. Our model allows for a temporal and spatial distribu-
tion of the feasibility problem for a variable set of tasks with non-deterministic and fluctuating
costs at runtime. In case of overloads an optimal degradation strategy selects one of several
application modes or even temporarily deactivates applications. Hence, transient and permanent
bottlenecks can be overcome with an optimal system quality, which is dynamically decided. This
paper gives the first comprehensive and complete overview of all aspects of our research, includ-
ing a novel CBS concept to confine entire applications, an evaluation of our system by using a
video-on-demand application, an outline for adding further resource dimension, and aspects of
our prototype implementation based on RTSJ.
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1 Introduction

This work summarizes the scientific results of the ARTOS [5] project. Its objective was to
develop and integrate adaptive resource-management mechanisms in a generic framework
for soft real-time systems supporting a dynamic set of applications and tasks. As target
platforms general purpose systems as traditional x86, ARM and PPC based platforms were
supposed, which may range from small embedded and mobile devices, to desktop PCs and
large scale servers. The result is an open and dynamic execution environment for soft
real-time applications, which can be integrated on different system levels and used for a
variety of scenarios.
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7:2 A Hierarchical Scheduling Model for Dynamic Soft-Realtime Systems

The demand for such adaptive platforms is currently on the rise. A good example comes
from the automotive sector. The consolidation of functions with mixed criticality on single
powerful ECUs (electronic control units) is a prevailing requirement for manufacturers of
head-unit and entertainment systems [14, 35]. For example, the central console of various
brands already provides diverging functions concurrently, e.g. for telematics, connectivity,
navigation, display, etc. In the near future the functional scope shall be dynamically
extendable “over-the-air” without maintenance effort in a garage. Even passengers will be
able to download and activate new third-party apps on their backseat entertainment devices.
Many of them will be executed concurrently on single embedded devices and ECUs. The
required resource-management mechanisms could be provided by the OS, a middleware or
the application itself. Certainly, a working solution would fit a variety of further use-cases in
the fields of embedded systems, robotics and even complex applications in data centres, as
has been shown in [30].

Since applications and activities may freely arrive or depart during runtime, the system
has to adapt itself to a varying computational load, while sustaining a steady application
performance and best possible overall quality. Moreover, the exact resource requirements of
the applications are assumed to be unknown until runtime and also may fluctuate during their
execution. Reasons for such cost variations can be found not only in the non-deterministic
behavior of the executional hardware (e.g. effects of non-uniform memory access, caching,
virtual memory etc.). They are also caused by data dependencies and varying algorithmic
complexity of tasks, or even on a software compositional level where applications’ logical
control flow may be strongly distracted by dynamic service discovery, qualification and
execution. The latter particularly applies for dynamically composed apps in service-oriented
environments. Such a system requires not only mechanisms for cost monitoring and admission
control, but also adaptive resource reservation and degradation techniques for transient and
permanent overload management.

The main scientific contribution of ARTOS is its approximation and scheduling framework
which is subject of this paper. In ARTOS we primarily focused on CPU time management
for a single processor. Anyway, plenty of the provided mechanisms are applicable to other
resource types as well, e.g. network, memory or energy usage. We are currently working on
an extension of our model for distributed and parallel applications (i.e. a multi-processor
version) and multiple resource types.

However, the problem of optimal and adaptive resource distribution for a varying set of
unknown real-time applications is hard even for the uniprocessor case and a single resource
(i.e. CPU time). An appropriate cost approximation model for applications and tasks must
hold as a decision basis independently from the time resolution of their events. An execution
schedule has to be dynamically generated and updated on task arrival and departure, but
(and even more important) also in case of cost fluctuations. On the other side, costs for
(online) feasibility analysis have to be omitted and its occurrence clearly defined and planned.
Furthermore, cost reservations for tasks and applications are crucial for their prioritization
and isolation, especially in the case of overload and faults. On the other side, for optimal
system utilization and admission the reservations have to be adjustable as well. However,
unpredictable bottlenecks due to potential system over-provisioning are still possible and an
appropriate overload management strategy is necessary in order to keep the system and the
applications in a consistent state. Its reactiveness determines the probability of temporal
faults and thus the overall system quality of service.

According to Buttazzo et al. [10] there are three basic mechanisms to handle overload
situations, i.e. modify the periods of tasks (elastic scheduling [11]), omit certain jobs (job
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skipping [20]) and degrade tasks workload on the algorithmic level. We developed a new
generalized application model that supports different operational modes, and thus quality
levels, of applications. The actual modes are centrally decided and adjusted by the system
during runtime following priorities and their measured resource demands. Therefore, an
optimization approach was developed which allows for a trade-off between the best possible
system quality and its optimal utilization. This mechanism implements a sophisticated
overload management strategy in our system based on a controlled and directed application
degradation. The effective realization of the modes is finally up to the application developers,
and can be implemented with any or as a combination of the previously mentioned techniques.
In [28] we already presented a realization of multi-mode tasks with multiple versions.

The required monitoring, reservation and automatic degradation mechanisms for the
applications were integrated as parts of a hierarchical scheduling model. In contrast to our
previous publications on this topic (e.g. [31, 29, 27]), we present here the first comprehensive
and complete overview of our approach, including recent results and improvements as well as
several novel contributions. These will be explicitly accentuated in the paper. Our scheduler
was integrated into a component-based and service-oriented software framework, which offers
a generic platform for dynamic and open soft real-time systems [4]. Our framework was
implemented based on the Real-Time Specification for Java (RTSJ) on top of a Linux system,
a modified OSGi framework and Aicas’s JamaicaVM [19]. The JVM offered us basic support
for (a)periodic activities, deadlines, cost monitoring, events (e.g. overrun, deadline miss) and
a fixed-priority–based scheduling. Our close cooperation with Aicas helped us to extend RTSJ
1.0.2 and its implementation in JamaicaVM where necessary [28], in order to improve the
runtime support for our scheduler. However, our evaluation finally proves the functionality
and adaptational capabilities of our system to unpredictable and varying load [26].

This paper is structured as follows: Section 2 introduces our system model and Section 3
gives a basic overview of our scheduler’s functionality. Section 4 illustrates our cost approxim-
ation model and scheduling on the task-level. In Section 5 capacity reservation mechanisms
for the applications and their modes are explained. Section 6 describes the decision of the
optimal modes selection. Section 7 discusses our system implementation and in Section 8
different evaluation scenarios and results are presented. In Section 9 related work is assessed
and discussed. Finally, in Section 10 we draw conclusions and present future work directions.

2 System Model and Scheduling Problem

We assume a dynamic set of n concurrent applications A1, A2, ..., An, and for each Ai

there is a set of modes Mi,1,Mi,2, ...,Mi,mi
∈ Mi, which can be switched dynamically.

Each application further consists of a set of k tasks τi,k ∈ Ti also having different modes,
e.g. with different periods Ti,k, deadlines Di,k and estimated costs Ci,k with respect to each
application mode Mi,j . We primarily focused on periodic tasks1, which better suit our actual
audio/video processing use-cases. Thus, an application mode manifests as a preconfigured set
of particular task modes. In general, a higher application mode has a higher computational
demand Bi,j but delivers a better quality, e.g. a better video resolution. The quality is
formalized by application-specific utility functions ui(Mi,j) given by developers. Their values
are precomputed and normalized in the system as a relation of quality benefits between the
different application modes, i.e. Ui,j = ui(Mi,j)/ui(Mi,|Mi|). Each application Ai contains a

1 Aperiodic tasks require a special treatment in periodic systems, e.g. aperiodic server mechanisms like
Deferrable Servers [37].
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Figure 1 Scheduling Model Architecture.

mode Mi,0 with Bi,0 = ui(Mi,0) = 0 which corresponds to the application being temporarily
stopped2. Adding such a mode ensures the presence of an optimal resource distribution [31]
and implements a fine-grained and dynamic admission control. Applications can be weighted
by users or the system itself with importance factors ai. These factors affect most obviously
each applications prominence during the resource distribution process. For further discussion
on conceptual and technical mechanisms for the realization of that model, we refer to [28].

2.1 The Scheduling Problem
Based on the previous system definitions our scheduler has to (a) monitor the actual resource
requirements of the applications, (b) dynamically select an optimal modes configuration and
(c) ensure schedulability of all application tasks. Obviously, a straight-forward approach
would be to perform |M1| × |M2| × . . . × |Mn| feasibility tests for all application mode
combinations and to select a feasible configuration that gains the maximal overall quality and
optimally utilizes systems resources. However, since tasks may have deadlines not equal to
their periods (i.e. Di,k ≤ Ti,k)3 the complexity for solving the famously NP-hard feasibility
problem escalates even further. Even with a fast approximative algorithm (e.g. [3]) solving
the whole problem online may lead to inacceptable overhead. Also, it is not clear when and
how often the feasibility of the actual configuration should be checked. For example, on each
update of tasks (average) cost estimations? Without further precautions the latter may lead
to permanent mode switches and reconfigurations of the system. Indeed, we assume that
mode switches create additional reconfiguration costs for the apps, e.g. for data conversion,
task adaptation, etc., and therefore they should be omitted as far as possible. Hence, a
defensive reconfiguration strategy is needed, which tries to keep a stable system state as
long as possible, but also is reactive enough to quickly detect and adapt on substantial state
changes and errors.

3 General Scheduler Overview

Our hierarchical approximation and scheduling model is aimed to temporarily and spatially
distribute the complexity of schedulability tests [29], i.e. the tests are performed only when

2 Its tasks are blocked in a consistent state and temporarily removed from scheduler’s control.
3 Di,k ≥ Ti,k was not considered due to implementational issues.
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and where it is necessary in the system. Figure 1 depicts the general architecture of the
scheduler. It follows abstractions of tasks, applications and operational modes on different
levels. Application behaviour is monitored and statistically approximated on the lowest level.
These approximations are forwarded to the upper levels, similar to a cascaded control system.
Thereby, the information is further abstracted until on the uppermost level global decisions
about the optimal configuration of application modes can be made. The basic idea is to
assume schedulability as long as task approximations are valid and to postpone feasibility
tests as long as their behaviour does not change considerably. If a task approximation gets
invalid its cost estimate Ci,k is updated and a local feasibility test is performed only for the
concerned application Ai. This results in a new approximation of application’s computational
demand Bi,j for its actual mode Mi,j . In this case, finding the optimal configuration of
application modes on the system level is similar to filling a knapsack with items of different
weights Bi,j and values Ui,j .

On the lowest level, application-local schedulers control the execution of tasks and
approximate their current costs. These cost estimations take also the observed jitter into
account by allocating a dynamic resource buffer (cf. Section 4). As long as the approximations
are accurate, no state update is forwarded to the upper scheduler layers. Only if a task
bursts out of its current approximation bounds, a new cost estimation value Ci,k is computed
and notified on the application level.

On the next higher level apps are isolated and scheduled with the help of Constant
Bandwidth Servers (CBS) [1]. The CBS enforce resource reservations called bandwidths. We
extended the original CBS-algorithm for encapsulation of whole applications. This requires
a special methodology for dimensioning of the servers, which will be explained later in
Section 5. In this paper, we present the latest version of our resource allocation mechanism.
However, when a task cost estimation Ci,k is updated, a local feasibility analysis results in a
new bandwidth reservation Bi,j for its application Ai. Thus, Bi,j represents the required
amount of resources in order to meet the deadlines of Ai’s tasks. The new reservation is then
forwarded to the optimization on the system level.

The objective of the optimization is to allocate the available system resources optimally.
This is done by selecting and activating a set of app modes that maximize the system’s
overall utility constrained by its limited resource amount. For this purpose we developed a
knapsack-based algorithm which is solved online via dynamic programming (see Section 6).

4 Task Approximation and Scheduling

As already explained, application-local schedulers control the activation of tasks τi,k ∈ Ti

according to a particular scheduling discipline. In fact, any arbitrary policy could be used,
even different mechanisms for different applications at the same time. However, the task
schedulers are an intrinsic part of our custom CBS mechanism. They determine the feasibility
analysis mechanisms applied on the application level. In ARTOS we decided for EDF-based
task schedulers. EDF allows for exact schedulability analysis even in case of a high system
utilization. Since our framework was developed on top of a fixed priority scheduler (see
Section 7), we used a modified version of the priority shifting mechanism proposed by
Zerzelidis et al. [39, 41] in order to emulate EDF. Our current implementation with RTSJ is
briefly discussed in Section 7.2 and further presented and evaluated in [28, 26].

Task schedulers also implement the approximation directives of our model. We instrument
the thread-specific POSIX real-time clocks of the Linux kernel and sample the pure CPU
costs Ct of each task job, i.e. scheduling and blocking effects are not included in Ct. These

ECRTS 2017
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(a) Standard deviation confidence intervals (b) Safety Buffer with 2 · σ

Figure 2 Safety Buffers.

samples are then exponentially smoothed:

yt = α · Ct + (1− α) · yt−1 (1)

The exponential smoothing implements a low-pass filter with an infinite impulse response.
We chose a smoothing factor of α = 0.125 which implies a stronger emphasis on the history
(1− α) · yt−1 and therewith a relatively stable average value with respect to high-frequent
jitter. However, for our actual task-cost estimation we need a measure for the observed jitter
per task. The approximation is established with a dynamic safety buffer (SB) for guaranteed
resources, which is defined as:

SB+
− = [yt ± z · σn] (2)

where yt is an expectation value based on the smoothed average from Equation 1 and σn is
the standard deviation of the measured task costs Ct in a time window of n task periods.
The actual task costs estimation is equal to the upper bound of the safety buffer Ci,k = SB+,
while the lower bound SB− prevents a constant overprovisioning of the costs. With this
method fluctuations of the task costs can be algorithmically expressed and the factor z
determines the quality of their approximation. According to the confidence intervals of
normally distributed random variables a factor of for example z = 2 already covers ca. 95, 4%
of the measured task costs (see Figure 2a). Hence, the actual task behaviour is approximated
from the observed history of n periods with a quality of 95, 4%.

Normal distribution is based on the central limit theorem which proves that the overlap of
several independent stochastic processes is almost normally distributed [18]. Regarding the
non-deterministic factors influencing the particular execution time of each task job, e.g. cache
and TLB occupation, NUMA effects, potential blocking effects and spinning on OS-internal
locks during system calls, this approximation model seems to be suitable. Thus, even if task
costs are not normally distributed they are calibrated with the standard deviation leading to
a certain deviation value σn.

In our model the cost estimations Ci,k are not computed and updated on each task period.
This would be costly because of the computation of σn for the last n period samples. In fact,
only the exponentially smoothed values yt are updated and periodically checked against their
actual approximation bounds SB+

−. These checks are part of the rescheduling process at the
task level and have a low and constant complexity as well as memory demand. Consequently,
each task verifies its own approximation limits on every periodic release. An established
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SB is valid as long as the smoothed task costs yt remain within its bounds (see Figure 2b).
In case of yt ≥ SB+ or yt ≤ SB− violations of the 2 · σ SB-intervall must have occurred
with a higher rate than expected, i.e. the task behaviour has changed so far, that it is not
approximated correctly anymore. In this case a new deviation σn has to be computed and
the buffer limits SB+

− must be updated (according to Equation 2). This results in a new
cost estimation Ci,k = SB+ which is then notified to the application level. However, this
strategy works on task-period granularity and approximates cost fluctuations precisely at the
expense of a higher system reconfiguration probability. Other strategies may involve more
seldom checks in order to reduce reconfigurational overhead and costs, however, at a risk for
inaccurate task approximations and temporal faults.

5 CBS Extensions and Dimensioning

This chapter describes novel contributions of our work. As already explained, applications
are isolated with separate constant bandwidth servers. A CBS is defined by the ratio of a
reserved resource capacity Ri per server period Pi, i.e. a server bandwidth Bi = Ri/Pi. Since
the bandwidths are automatically enforced by the CBS scheduling, applications are protected
from overruns of other apps. Moreover, if an app needs more resources than actually reserved,
it will not affect other apps but suffer alone from its deficiency. Hence, a mechanism is
needed that 1) divides the available system bandwidth between the apps and 2) updates
their reservations according to their actual demands. The first mechanism is implemented by
the optimization, which decides the configuration of application modes on the system level.
The second mechanism is conditioned by the app-local feasibility analysis which is triggered
upon task cost updates (cf. Section 4).

Traditionally, the CBS were not designed to serve whole applications with multiple tasks
and throughout literature they are mostly used for encapsulation of single tasks. Such a flat
model would exacerbate the resource distribution between the applications since it requires
additional application abstractions combining the reservations of their tasks. Moreover, it
would also create a higher scheduling overhead for a considerable higher amount of servers.
However, the original work of Abeni and Buttazzo [1] lists several clauses guiding the
definitions and scheduling of the CBS. Indeed, we could not identify any reason or limitation
why a CBS could not work well with multiple tasks in parallel. Consequently, we introduce
the following specializations and enhancements of the algorithm:

1. Internal Scheduling Discipline: The server provides an internal queue for incoming jobs
of different tasks. The ordering of the queue follows a particular scheduling strategy
which does not have to be non-preemptive. At any time instant there is only one job of
the same task in the queue – no interleaved job execution. The latter corresponds to the
typical realization of tasks as threads within a particular OS.

2. Server Dimensioning: Regarding its capacity Ri and period Pi, a server must be dimen-
sioned so that all internal tasks get enough computational time in order to meet their
own deadlines. The feasibility of the internal task set must be approved for the allocated
server bandwidth.

In ARTOS the first enhancement is fulfilled by the application local task schedulers. Each
task scheduler maintains its own run queue ordered by EDF and the system maintains an
absolute deadline for each task job. However, there are several points where the scheduling
on task-level is interlinked with the CBS on application-level, i.e. on:

ECRTS 2017
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Figure 3 EDF activation example.

Figure 4 Example for app-local feasibility analysis.

Server Deactivation: Each task scheduler tracks the termination of task jobs with no
further pending jobs and notifies a server suspension (cf. Clause 8 in [1]) to the application
level.
Server Activation: On each task-job activation, the task scheduler tracks if the CBS is
currently inactive and applies the wake-up rule if required (cf. Rule 7 in [1]).

Further details on the realization of the interconnection of task- and application-level
scheduling can be found in [28, 26].

The second requirement is more complex and therefore described in more detail here4.
It implies a relationship between the bandwidth of a server, i.e. its period Pi and capacity
Ri, and the feasibility of its internal tasks with respect to their own relative deadlines. This
relationship is established in our model based on tasks’ processor demand [6]. The basic idea
is to extract a required server capacity respecting tasks’ actual cost estimations Ci,k and
internal deadlines Di,k, which is then split over several server periods. Here we exploit the
property of EDF that as long as task costs (estimations) remain unchanged their activation
sequence remains identical within their hyperperiod Hi.

5.1 Dimensioning of the server capacity Ri

Figure 3 depicts an example of two tasks τi,k ∈ Ti = (Ti,k, Ci,k, Di,k) with τi,1 = (5, 2, 4)
and τi,2 = (3, 1, 2). Both tasks belong to the same application Ai and they are currently
executed in a particular application mode Mi,j ∈Mi. The partial processor utilization of
the task set is Ui =

∑
k Ci,k/Ti,k = 0, 73 and the hyperperiod Hi = 15 is the LCM of the

4 Again, we present here the latest version of our CBS dimensioning strategy.
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task periods. In Figure 4 the cumulative demand bound function (DBF) [6] of the tasks is
depicted as a step function. For simplicity we assume a synchronous task start, which is
generally known as the worst case [17]. According to Baruah et al. [6] feasibility tests must
be performed for all points of discontinuity of the DBF, i.e. the deadline points of the tasks,
until t′ = Ui/(1 − Ui) ·max(Ti,k − Di,k) = 2.75 which is the intersection point of DBF’s
approximation tangent CD(t) = t ·Ui +Ui ·max(Ti,k −Di,k) and the angle bisector h(t) = t.
The task set is feasible if for none of these points the according value of the DBF is greater
than h(t) = t. As a required capacity for both tasks we use CD(Hi), which is the value of
the approximation tangent in Hi. Hence, as long as the cost estimations of both tasks do
not change (cf. Section 4), they need at least a capacity of CD(Hi) = 11.73 in order to meet
their deadlines in Hi and in every further repetition of Hi. The value of CD(Hi) is then
normalized with the selected server period Pi and stored as Ri, i.e.:

Ri = Pi ·
CD(Hi)
Hi

. (3)

5.2 Dimensioning of the server period Pi

The choice of an appropriate server period is not as obvious as it might seem. In [26] we show
based on several experiments, that the server period has to be less or equal the smallest task
period within an application Ai, i.e. Pi = min(Ti,k). Only then enough server preemption
points are created, so that their internal tasks can be activated timely in order to meet their
internal deadlines. The normalization of the required capacity in Equation 3 can now be
interpreted as follows:

The system bandwidth is dissected over time in a capacity Ri per period Pi. The
remainder capacity Pi − Ri is available for all other apps in the system and their own
server capacities.
The capacity Ri = cg + cr consist of a base part cg for the task τi,min with the minimal
period and a residual fragment cr for all remaining tasks τi,k of Ai with greater periods.
The base part cg = Ci,min guarantees the completion of task τi,min within each server
period and, thus, within its own period and deadline.
The residual fragment cr consists of the sum of the partial costs of all remaining tasks of
Ai, with respect to their own periods and deadlines, relative to the chosen server period,
hence cr =

∑k
i=1

Pi · Ci,k

Ti,k
− Ci,min.

Depending on the application-internal task activations and server preemptions during runtime,
the actual job of τi,min or any other task of Ai may be split over multiple server periods.
However, since Ri is warranted for each Pi, meeting of all task deadlines in Ai is guaranteed
as long as its task costs do not change.

5.3 Interpretation of the Server Dimensioning
After setting Pi = min(Ti,k) the server capacity is computed and normalized according
to Equation 3. Here the task hyperperiod Hi is inserted in the linear equation of the
approximation tangent cD(t) of tasks DBF and normalized with the chosen period Pi. With
the following transformation of the formula:

Ri = Pi ·
cD(Hi)
Hi

⇒ Pi ·
(Hi · Ui + Ui ·max(Ti,k −Di,k))

Hi
⇒

Ri = Pi · Ui · (1 + max(Ti,k −Di,k)
Hi

) (4)

ECRTS 2017
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Figure 5 Visual interpretation of the server dimensioning.

it can be easily seen, that for tasks with deadlines equal to periods (Di,k = Ti,k) the
term max(Ti,k,l − Di,k,l)/Hi gets zero and the required capacity is determined by the
partial utilization Ui =

∑
k

Ci,k

Ti,k
= Bi of Ai. According to Baruah et al. [6] in case of

Di,k = Ti,k this necessary feasibility test is also sufficient. With Pi · Ui a base capacity for
the Di,k = Ti,k case is reserved, which would be sufficient for the tasks in each hyperperiod.
With Pi · Ui ·max(Ti,k,l −Di,k,l)/Hi a cumulative fraction of additional capacity per period
Pi is reserved which in case of Di,k ≤ Ti,k is necessary to meet the shorter task deadlines.

For our particular task example in Section 5.1 applying the defined server dimensioning
rules leads to a server period Pi = min(Ti,k) = 3 and a server capacity Ri = Pi · cD(Hi)

Hi
= 2.4

time units. Respectively, the allocated server bandwidth is Bi = Ri/Pi = 0.8. Figure 5
allows for a graphical interpretation of our reservation mechanism.

The time scale is subdivided in server periods of 3 time units. At each period an increase
of 2.4 units of processor demand can be served. Figure 5 shows the relation between the
cumulative processor demand increase DBF and the overall provided capacity

∑
Ri at the

end of each server period. As a feasibility condition DBF (t)∑
t

Ri
≤ 1 must hold at the end of

all server periods throughout H. For example, at the end of the second server period the
task set demands for DBF = 4 time units, while the server guarantees so far

∑
Ri = 4.8

TUs. Because of the capacity limitation of Ri = 2.4 per Pi = 3 the execution of some task
jobs may be intercepted and postponed until the next server period. Since for all existing
servers in the system the condition

∑
Bi ≤ 1 must hold true, the remainder capacity of

Rrmd = (1− Bs) · Pi = 0.6 time units defines the longest possible preemption time of the
server and its tasks in our scenario. For example, in Figure 5 in the first period a chunk
of 0.6 time units of task costs is shifted to the second period, where afterwards a chunk
of 0.2 is moved to the third, a.s.o. These costs are automatically reflected by the increase
of tasks’ processor demand at the respective server period. The actual preemption phases
depend on the activation sequence of all servers and their internal tasks within the system.
However, since the CBS scheduling (cf. [1]) automatically enforces the reserved bandwidths,
meeting tasks’ deadlines depends merely on the coverage of their DBF with sufficient capacity
for each server period, independent of their actual activation and preemption sequence.
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Our reservation mechanism automatically ensures that coverage by applying the presented
processor demand approximation mechanism. However, other approximations such as the
presented one by Albers et al. [3] and Chakraborty et al. [13] are possible and part of our
future investigations.

6 Mode Decisions and Optimization

Mode decisions are reduced to a knapsack-based optimization problem, which is solved online
and produces one of many exact solutions. Although the knapsack problem is NP-hard it
can be solved via dynamic programming with pseudo-polynomial complexity. Our solution is
described in detail in [31, 29, 26]. It computes an optimal mode selection in one pass and
tends to distribute the resources uniformly, i.e. it prefers solutions with a higher admission
rate and lower app modes instead of fewer active apps in higher modes gaining the same
overall quality. The optimization is triggered when app’s priorities or resource estimations
Bi,j change, or when new apps are activated or depart from the system. Our evaluation in [31]
and [26] shows a linear increase of the computation time, when the amount of apps, modes,
or system’s resource resolution R increase. Thus, the overall computational complexity of
the problem is O(n · |R|) · O(|Mi,j |), where O(n · |R|) denotes the amount of computed table
entries and O(|Mi,j |) is the computational overhead per entry.

In the remainder of this chapter, as a novel contribution, we want to particularly focus
a potential extension of our algorithm for further resource types with a multi-dimensional
knapsack problem (MKP). Assuming one further dimension for application-specific network
traffic5 and demands, for example represented as mode specific bandwidths Ni,j , the problem
could be defined as:

Find a selection J = {M1,j1 ,M2,j2 , ...,Mn,jn},

maximizing
∑n

i=1 ai · ui(Mi,ji),

subject to
∑n

i=1 Bi,ji
≤ R

and
∑n

i=1 Ni,ji
≤ N.

Since we work with bandwidth values, the numerical ranges of both resource dimensions R
and N as also their knapsack size is assumed to be equal to 0..1 (i.e., 0 to 100 %). For the
solution two matrices d ∈ Z3 and J ∈ Z3, are used for the computation. While d stores the
values of partial iteration steps for all three dimensions, i.e. n-applications, R CPU resources
and N network resources, J holds the optimal mode selection for each iteration step. For
i ∈ {1, 2, ..., n}, r ∈ {0, 1, ..., R}, k ∈ {0, 1, ..., N} and Mi,j ∈Mi let

d(i, r, k) =
∑

i ai · ui(Mi,ji
) (5)

denote the maximum utility such that
∑

i Bi,ji
≤ r and

∑
i Ni,ji

≤ k. Let further

J(i, r, k) = {M1,j1 ,M2,j2 , ...,Mi,ji} (6)

be an optimal selection satisfying the given constraints. At each step the matrix d(i, r, k)
holds the maximum possible utility for the first i applications and the resource boundaries of
r and k, while J(i, r) stores the selection which led to the gained maximal utility.

5 In practice, up- and down-link should be approximated separately, but we omit this here.
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The matrices are initialized with d(0, r, k) = 0 and J(0, r, k) = ∅ for all r = 0, 1, ..., R and
k = 0, 1, ..., N . Then for i ∈ {1, 2, ..., n}, r ∈ {0, 1, ..., R} and k ∈ {0, 1, ..., N} the following
recursion applies:

d(i, r, k) = max
Mi,j∈Mi

{d(i− 1, r −Bi,j , k −Ni,j) + ai · ui(Mi,j)} (7)

while with

J(i, r, k) = J(i− 1, r −Bi,ji , k −Ni,ji) ∪ {Mi,ji} (8)

an optimum realizing selection is given. Checking if r −Bi,j and k −Ni,j still reside within the
matrix d(i, r, k) ensures observation of the constraints

∑n
i=1 Bi,ji

≤ R and
∑n

i=1 Ni,ji
≤ N .

In the following the pseudo code of the algorithm which was presented in [31, 29, 26] is
extended with the new definitions:

Algorithm 1 Optimization Algorithm Pseudo Code
1: for r = 0→ R and k = 0→ N do
2: d[0][r][k]← 0, J [0][r][k]← ∅
3: end for
4: for i = 1→ n do
5: d[i][0][0]← 0
6: for r = 1→ R do
7: for k = 1→ N do
8: max← 0
9: for Mi,j ∈Mi do

10: b← u[i− 1][r −Ri,j ][k −Ni,j ] + ai ·Ui(Mi,j)
11: if b > max then
12: max← b

13: J [i][r][k]]← J [i− 1][r −Rk,j ][k −Ni,j ] ∪ {Mi,j}
14: end if
15: end for
16: u[i][r][k]← max

17: end for
18: end for
19: end for
20: return J [n][R][N ]

As can be seen, we basically extended our previous algorithm with another dimension
N . That leads to a further nested iteration loop over its value range (Line 7) and respective
resource probing (Line 10). Consequently, with each new resource X the complexity of the
algorithm is extended by a factor |X|, i.e. the numerical resolution of that resource. I.e.,
for our network resource based extension the computational complexity of our algorithm
is O(n · |R| · |N |) · O(|Mi,j |), where O(n · |R| · |N |) denotes the amount of computed table
entries and O(|Mi,j |) is the computational overhead per entry. MKPs generally suffer from
the so called “curse of dimensionality”, i.e. a substantial effort added with each further
dimension. For that reason approximative dynamic programming approaches (like [33])
might help to solve the problem faster but at a risk of a suboptimal solution. However, such
an approximative approach is part of our future work.
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Figure 6 ARTOS Software Stack.

7 Implementation

We implemented our scheduling and application model and integrated them within a Java-
based application framework and runtime system. In this Section, we describe the general
hard- and software configuration, which was used also during our evaluation and experiments.
We will then accentuate on some particular peculiarities of our implementation.

7.1 System Configuration

Figure 6 outlines the general software stack of our system. Our application and scheduling
model were implemented with RTSJ 1.0.2 [8], which offers basic mechanisms for real-time
application programming, i.e. periodic/aperiodic realtime threads, a FIFO priority-based
scheduler, priority inheritance and ceiling monitor protocols, a bounded garbage collection
interference, asynchronous events with controlled handler execution, cost monitoring and
optional enforcement, server-like mechanisms and processing groups, etc. In order to support
a dynamic provisioning and execution of applications and code, we decided for OSGi as a
middleware. Its lightweightness, compositional abilities and service support allow for an easy
integration of executable components (bundles) and Java-based code during runtime, without
the necessity for a system restart. However, the ARTOS application API and scheduling code
can be exported as bundles and, thus, integrated as an abstraction layer into any particular
OSGi framework. In our experiments we used Concierge [15] which is a performance-optimized
OSGi-R3-compliant framework for small and embedded devices. Applications which make
use of our application and scheduling API (ARTOS Apps) are deployed as bundles within a
running system and automatically registered within our scheduling primitives when activated.

JamaicaVM [19], which is developed by Aicas GmbH, is one of many RTSJ-compliant
real-time JVMs. We chose this particular JVM for our experiments because it implements
the full scope of the RTSJ spec, i.e. also its optional features like cost monitoring for threads
and thread groups. These mechanisms were necessary for our custom CBS implementation on
the application level of our scheduler. Beyond traditional interpreted execution JamaicaVM
provides an ahead-of-time native compiler, which allows for better integration and runtime
performance of Java programs and code especially on embedded devices. The compiled
native binary of ARTOS contains a stripped version of the required RTSJ environment and
runs as a root process on a particular OS and hardware platform. Thereby, RTSJ threads are
mapped 1:1 to processes and threads of the underlying OS. Furthermore, the priority space
of RTSJ can be mapped directly to a particular scheduling policy and respective priority
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range6 in a user-defined way. On this way, interference of other system and user processes
can be avoided and controlled. On the other side, priority modifications of RTSJ real-time
threads directly affect their native priorities and scheduling order within the underlying OS.
JamaicaVM supports in general x86, ARM, and PPC platforms and a variety of operating
systems, like Linux, VxWorks, QNX, etc. These configuration variants underline the broad
range of applications supported alone by our system prototype. For our experiments we used
a traditional Desktop PC with an Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz processor
and 16 GB RAM. As an OS, we used a Linux 3.10.65 kernel, which was extended with the
CONFIG_PREEMPT_RT [34] patch. Similar x86- and Linux-based configurations are applicable
for a variety of embedded devices and they neatly integrate with JamaicaVM.

A traditional Linux kernel allows a process to preempt another process only at certain
circumstances, i.e. (a) when the CPU executes user-mode code, (b) while leaving kernel-space,
after a system call or interrupt has been handled, (c) when the kernel code blocks on a mutex
or (d) explicitly yields control to another process. Thus, a long running low-priority process
within the kernel may delay a request of a high-priority thread for hundreds of milliseconds,
which would compromise the performance of any real-time system. With the CONFIG_PREEMPT
option Linux allows kernel code to be entirely preemptable, except of particular spin-lock–
protected regions and during interrupt handling. However, this lowers preemption latencies
to a couple of milliseconds. For even lower latencies the CONFIG_PREEMPT_RT patch makes
the kernel fully preemptable. For this, interrupt handlers are wrapped in kernel threads
and processed with own fixed priorities next to user processes. Furthermore, the patch
transforms particular kernel-intern locks to preemptive rtmutexes [36], which are enriched
with priority-inversion avoidance protocols, like priority inheritance. JamaicaVM again
builds on these mechanisms for its object monitors, threading system and internal scheduling.

7.2 Implementation Peculiarities
The implementation of our model based on RTSJ is presented more detailed in [28, 26].
However, for periodic tasks we used RealtimeThreads bound to special PeriodicParameters
containing start, period, costs7 and a relative deadline (Di,k ≤ Ti,k) definitions for each task.
Task modes were realized with an RTSJ technique called Asynchronous Transfer of Control
(ATC). ATC allows the definition of dynamically selectable and asynchronously interruptible
code instances. Thus, multiple versions of the same task (i.e. modes) can be provided in
parallel and are decided on each job activation. In case of a deadline miss or mode switch,
the actual task job can be immediately interrupted. Beside basic task and mode abstractions
our API provides semantics for applications consisting of several independent tasks with
multiple modes. These apps are integrated with OSGi’s module and lifecycle management
mechanisms.

However, although RTSJ syntactically provides abstractions for custom thread scheduling,
the implementation of such mechanisms is restricted [40]. As a consequence, we emulate
EDF on top of RTSJ’s fixed priority scheduler with a modified version of the priority shifting
mechanism in [39, 41]. Thereby, the tasks perform a cooperative scheduling by shifting
their own priorities and the priorities of their neighbours between three virtual priorities
preempted, active and scheduling. First, an absolute deadline is maintained for each task
and updated on each periodic release. For each application the tasks are ordered into a

6 E.g. in Linux SCHED_FIFO [38] supports 100 fixed priorities whereas RTSJ prescribes at least 28 priorities.
7 Since we did not rely on RTSJ’s cost enforcement, the task costs are only informative.
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separate run queue relative to their current absolute deadlines. On each suspension and
activation a task τi,k is allowed to reassign the virtual priorities of all tasks in the same
application Ai according to their current absolute deadlines, i.e. to select one active and
to preempt all other tasks. For this, all tasks suspend at the end of each period and, thus,
release again with a scheduling priority, capable to shortly preempt their neighbours and
to re-schedule. The virtual application priorities are dynamically mapped and shifted by the
system between certain regions within the fixed priority space, according to an application
scheduling discipline. The latter is defined by the application level of our scheduler, i.e. the
CBS scheduling mechanism.

RTSJ provides basic support for custom server mechanisms through (implicit) processing
groups. Each group is assigned a budget and a reservation period. The real-time JVM
monitors the costs of each group and will suspend all threads if their budget is depleted.
However, the budget is automatically replenished at the beginning of the next reservation
period and the threads are then resumed. Consequently, this mechanism is not appropriate
for a CBS, but for example for a Deferrable Server [37]. We extended the processing groups
specification with custom budget replenishment and retrieval techniques for user-defined
server mechanisms. The extensions were included in the latest RTSJ 2.0 version. With the
help of Aicas, a modified version of the JamaicaVM supporting the suggested mechanisms was
developed and used as a prototype for our evaluation. Our particular CBS implementation
and scheduling are explained in detail in [28]. For scheduling we used a similar priority
shifting mechanism like on the task-level, but now whole applications are moved between
two priority bands (ACTIVE and PREEMPTED). As described in Section 5 our CBS scheduling
is interlinked with the dispatching on task level where server activation and deactivation are
traced per task and notified to the application scheduler for intervention. Budget depletion
in turn is automatically tracked by the JVM for each processing group and notified via an
asynchronous event. During runtime the CBS scheduling applies according to [1] and the
extensions in Section 5 while the tasks perform their application-local cooperative scheduling.

8 Evaluation And Results

For our evaluation scenarios we developed special artificial apps which follow predefined load
profiles, e.g. emulate certain costs, burst and jitter behaviour. Our experiments involved
several tests with focus on (a) correct scheduling, i.e. the interplay between CBS and internal
task scheduling, (b) systems adaptational capabilities and reactiveness, (c) suppression of
cyclic task bursts and (d) the overall quality benefit of our model. The full spectrum of our
experiments can be examined in [26], here we accentuate our latest results for (a) and (d).

8.1 Scheduling

We compared the theoretical schedules of different scenarios with the activation trace
generated by our scheduler during runtime. For that we instrumented a TraceMonitor app
provided by JamaicaVM. An example of its output can be seen in Figure 8. Our experiments
involved: a single app with multiple tasks (task-level scheduling), multiple apps with single
tasks (CBS scheduling) and multiple apps with multiple tasks (task and CBS scheduling).
Here we show an example only for the last case, which involves scheduling on both task and
application level. Two apps were involved: A1 with two tasks τi,k ∈ Ti = (Ti,k, Ci,k, Di,k):
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(a) Theoretical schedule (all values in 102 ms) (b) Comments on the execution

Figure 7 Artificial test scenario.

Figure 8 TraceMonitor output.

τ1 = (5, 1, 4) and τ2 = (3, 1, 2), and A2 with one task τ3 = (5, 1, 5)8. The respective CBS
configuration for both apps is shown in Table 1.

Figure 7a shows the theoretical execution plan of the applications and their tasks for a
synchronous start, according to the original CBS rules in [1] and our hierarchical extensions in
Sect. 5. On the bottom, the CBS state of A1 is shown, the CBS of A2 is of less interest, since
it encapsulates only one task. Figure 7b shows a legend for certain time events and decisions.
Several events occur in that example, e.g. server deadline postponements because of capacity
depletion (e.g. t = 1.7, 5.4, 10.7) and server deactivations (e.g. t = 4.0, 7.0, 11.0, 13.0), as
well as server activations with (e.g. t = 0, 9, 15) and without (e.g. t = 5.0, 12.0) capacity
replenishment. The latter occur especially when the CBS wake-up rule applies. Even an
application preemption can be seen at t = 1.7 because of a server deadline postponement in
A1. However, the schedule is valid and all tasks meet their own deadlines.

Figure 8 shows the real behaviour of our system (after some execution time). The task
execution phases are outlined as red lines on the time line, and we also marked indices to the
original time line of the theoretical schedule. The results show almost identical theoretical and
runtime traces with slight deviations due to RTSJ’s event handling procedure. Nevertheless,
the dynamic resource budgeting for the apps assured a fault-free execution of their tasks in
all experiments.

8 All values are given in hundreds of milliseconds.
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Table 1 CBS configuration for A1 and A2.

(in ms) Period (Pi) Capacity (Ri) Bandwidth (Bi)

CBS1 300 170 57 %

CBS2 500 100 20 %

8.2 Adaptation

We emulated a sudden bottleneck caused by a burst or arrival of an artificial task. The
reactiveness of our system is determined by the burst intensity and the smoothing factor α
in Equation 1. A small factor requires a higher burst amplitude and a longer duration for its
detection, but induces less reconfigurations. The actual adaptation duration is determined
by the costs for 1) feasibility analysis, 2) optimization and 3) mode switches of the affected
applications. The costs for feasibility analysis are non-deterministic and depend on the test
limit t′ (cf. Section 5.1), which in turn depends on the partial utilization Ui of the respective
app and the maximal gap between tasks’ periods and deadlines. The mode switch costs are
application specific and non-deterministic as well.

8.3 Cyclic Bursts

Depending on the size of the history window for the standard deviation σn (cf. Equation 2)
bursts may be considered as jitter within tasks’ cost approximations. In this case the size of
the approximation buffer SB+

− increases. As a consequence, cyclic bursts are automatically
approximated and recurring system reconfigurations suppressed [27]. The size of the σn

window controls the frequency of the burst that can be balanced. Low frequent bursts
need a bigger window but possibly lead to a stronger overprovisioning. Small windows in
turn approximate more precisely, but lead to more frequent reconfigurations. An automatic
adaptation of the window size according to the most prominent burst frequency after spectral
analysis of tasks costs is currently in work. However, spare capacities caused by task
costs overprovisioning can be instantly shared with other CBS based on a mechanism like
CASH [12].

8.4 Overall quality benefit

We developed a real video-on-demand (VoD) streaming application based on our system
model [26]. The VoD client was integrated within our framework and supported various
modes with different video quality, e.g. different frame rate, resolution and frame quality.
During runtime a bottleneck was created via an artificial app forcing the client to request a
lower quality from the sender. The latter in turn immediately changes its video encoding
format and adapts its sending rate to the requested frame rate. The experiments were done
with and without the degradational mechanisms of our system. We supposed that a schedule
that causes fewer deadline misses for the cost of lower video quality generally produces a
better user experience (i.e. a higher utility), than one with the best video quality in presence
of many temporal faults. For such a trade-off we compared frame-wise the peak signal to
noise ratio (PSNR) of the received and decoded streams with their originals on the sender
side. Our expectation was that, without degradation client’s tasks will suffer more frequently
from deadline misses leading to a higher signal corruption and thus lower PSNR value. With
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Table 2 VoD application mode configurations.

Mode Resolution Framerate CPU Bandwidth

1 480x270 10 10 %

2 1280x720 20 18 %

3 1920x1080 30 42 %

Table 3 PSNR results

Average PSNR 81.28

Maximum PSNR 99.00

Minimum PSNR 4.0

Average of Values < 99 dB 7.6

(a) without degradation

Average PSNR 72.08

Maximum PSNR 99.00

Minimum PSNR 7.06

Average of Values < 99 dB 44.66

(b) with degradation

degradation a lower overall quality is requested but there are no missing or corrupted parts
in the received video, leading to a higher PSNR value.

In order to omit transmission errors and delay the experiments were performed within an
isolated network. Table 2 shows the configuration of the quality levels of the VoD application
and their estimated resource demands during runtime. According to the frame rate of
each mode, clients tasks synchronize with periods equal to 100, 50 and 33 milliseconds
and deadlines equal to periods (Di,k = Ti,k). A miss may be caused merely by a deficit of
execution time for the tasks. In such cases the client was instrumented to display and store a
black frame for the respective video position, i.e. to mark a quality loss. In our experiments
the VoD app was first started in its highest mode 3. A bottleneck was then caused with
an artificial app which was activated at a certain time and led to a system overbooking of
ca. 110 %. While without degradation the rest of the playback caused around 200 deadline
misses within the VoD app, with degradation the app was immediately switched to mode 2
without further occurrence of temporal faults. Table II shows the results of the PSNR tests
for the transmitted videos.

A bigger PSNR value shows a higher equivalence of the video signals, while a value of 99
dB in our example indicates almost identical parts. The results show that in both scenarios
there were identical (max. PSNR) and completely different parts (min. PSNR). Obviously,
the occurrence of deadline misses in our scenario without degradation was not frequent
enough in order to drastically reduce the overall average video quality (avg. PSNR). Also,
a lot of misses came at the expense of the artificial app itself which caused the bottleneck.
With respect to that, the requested lower quality level in the degradation scenario reduced
the PSNR to an even lower average value. However, for the parts where misses have occurred
(avg. < 99 dB) the average quality was improved by ca. 36 %. This value clearly depends
on the applications’ quality level definitions, the choice of one particular level as also the
strength and the length of the bottleneck. Nevertheless, the results confirm that during
transient bottlenecks our system preserves a better average quality than without its mode
adaptation mechanisms.
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9 Related Work

One of the first well-founded approaches for tasks with multiple modes and a quality driven
scheduling are the imprecise computations (IC) [24]. A base-task quality is guaranteed by
assuring mandatory parts of the tasks. This accords to an admission test which requires
knowledge about their (worst-case) execution times. However, residual capacity is divided
between optional task parts with the use of several heuristic approaches. Some for example
tend to minimize the generated divergence from the best possible quality while others
ascertain a particular probability for particular optional parts. The IC approach is easily
reproducible with our model. However, what IC does not consider is a guideline when a real
system must react and spend the effort for decisions and reconfigurations. Here we have a
clear definition based on our approximation model. The consequence is that an IC-based
system has to re-check its actual service quality periodically leading to a conflict between
too frequent reconfigurations and a risk of suboptimality. Several system models base their
mode-decision phase on IC. FCS [25] for example implements a feedback control loop, which
periodically adjusts the overall system utilization and task quality levels.

Several related works have emerged out of the IRMOS and FRESCOR projects. In [2]
and [32] a flat model of one task per CBS is presented with a control based approach for
dynamically calibrating tasks’ allocated bandwidths. A feedback loop per task is used to
control its local scheduling error, i.e. the difference between its virtual finishing time and its
job deadline. The objective of the controller is to keep the scheduling error per task with a
certain probability within an acceptable range. For this, it uses a predictor to estimate tasks
costs evolution and stepwise increases or reduces its allocated bandwidth. This includes
also a recovery strategy with a finite error regeneration period for the case of a violation. A
second loop with a supervisor is used to restrict an overbooking of systems overall available
bandwidth. In case of an overload, the supervisor greedily resets reservations to at least
minimal bandwidths for different classes of tasks. In [16] a version of the dual loop scheduler
even supporting different task modes is presented. A global QoS controller periodically
decides quality levels for the whole task set for different resource dimensions – even zero
modes for the tasks are supported. Herefore, a greedy approach based on heuristics with a
multipath search through the solution space is proposed.

The previous works ([2, 32, 16]) generally target at similar objectives as our model.
However, our basic application abstraction provides a practical solution for tasks that have to
be configured differently and synchronized accordingly for each particular application mode.
This is not supported by the cited works where modes are effectively decided periodically on a
per-task basis. However, consolidating tasks’ requirements to common application bandwidths
allows for a simple knapsack-based algorithm for the selection of optimal application modes
(see Section 6). Since hereby the size of the problem domain is considerably reduced, this
promises a lower complexity and a faster solution of the optimization problem. Instead of
convergence to an acceptable result using a multipath search through solution space, our
optimization directly computes an exact configuration, even in the multi-dimensional case.
However, how the presented control mechanisms in [2, 32, 16] would apply for a set of tasks
being concurrently served by the same CBS remains open for discussion. Since the tasks
now interfere within the same server activation period, their scheduling errors have to be
convoluted leading to a common server budget. For that, our approach proposes a simple
mechanism based on tasks’ processor demand and an application-local feasibility test, while
the actual budget calibration steps are minimized. In fact, the algorithm in [16] penalizes
applications frequently switching modes in order to minimize re-configuration costs and
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attain a steady QoS. This may obstruct the quality of a potential optimal solution. Our
model in turn provides an adaptive cost overprovisioning mechanism on task level in order to
suppress frequent re-configurations, which is even capable to smooth periodic task bursts, as
shown in Section 8. Thus, mode switches occur with the probability of tasks to unexpectedly
burst out of their approximations or in case of recurring burst with a variable rate.

Recently, the SCHED_DEADLINE [21] scheduler in Linux was extended with a herarchical
group scheduling mechanism based on the Linux CGroups. The originally flat model of this
scheduler, which encapsulates each task in its own CBS, was extended with a second-level
scheduler per CBS, i.e. while globally scheduled with EDF the servers allow for an internal
fixed-priority–based task scheduling. However, while ongoing works focus on appropriate
group scheduling in the presence of multiple processors, SCHED_DEADLINE still does not
support dynamic reservations for the groups according to actual task demands. Consequently,
server bandwidths are configured and allocated statically in advance, guided by respective
CGroup definitions, while applications are admitted within the system. Thereby, a simple
admission test based on partial task utilizations assures that the system is not overloaded.

In [23] a hierarchical CBS approach (H-CBS) is presented which guarantees temporal
isolation between subsets of tasks (i.e. applications). The original CBS mechanism is extended
by a virtual time and a scheduling deadline per task, and an excess capacity per task subset.
Partial task utilizations are known and used for initial capacity setup, while the virtual times
control the observance of task-specific reservations. However, all tasks are scheduled globally
by EDF according to their scheduling deadlines, and when a task executes it uses the excess
capacity of its subset (application). Meanwhile, H-CBS maintains different execution states
for the tasks and according rules for updating their virtual time and deadline, as well as the
excess capacity of the whole set. The algorithm ensures temporal isolation on task level as
well as between different task subsets. However, the H-CBS algorithm seems still to support
a flat task execution model, while the group relationship is encoded within the virtual time
and excess capacity update rules for each task. In our approach we have one CBS per app
instead with an internal scheduling discipline and run queue. However, it is not clear how the
H-CBS mechanism would have to be extended in order to respect arbitrary task deadlines
(e.g. Di,k ≤ Ti,k), since now temporal correctness on task level would be compromised. On
the other side, no effort has been spent on re-calibrating the excess capacity according to
actual task demands (initial task utilizations are still used for all updates). The partial
utilization of a subset is assumed to be a static portion of the shared processor resource.

There is a magnificent number of works on optimal CBS dimensioning, for example such
minimizing the amount of task preemptions [9] or avoiding the so called deadline aging
problem [7]. What can be remarked here is that due to the optimal and dynamic adjustment
of application capacities we observed a much lesser amount of CBS deadline postponements,
which antagonizes the deadline aging problem.

10 Conclusion

In this paper we presented latest improvements of our hierarchical approximation and
scheduling model for open soft real-time systems with a dynamic set of applications and
tasks supporting multiple execution modes. These enhancements particularly apply to
the dynamic server dimensioning and hence resource reservation strategy for applications.
Moreover, we exemplified how our optimization mechanism, which is used for selection
of an optimal application mode configuration, can be extended for further resource types,
e.g. network bandwidth. We also explained the particular configuration and peculiarities
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of our current implementation, which neatly integrates as a component-based real-time
application framework on various OS and hardware architectures. Besides, latest evaluation
results and experiments were discussed in particular proving the correctness of our scheduler
and the adaptivity of our system on different load and jitter conditions. A concrete VoD
application scenario was used to examine the overall quality benefit of our system especially
in overload conditions. We are currently extending our model for distributed compute
clusters and real-time HPC applications with multiple parallel tasks based on RT-DLT [22].
Our approach promises to enable a higher overall cluster utilization and throughput while
retaining the best possible application quality and performance.

References
1 L. Abeni and G. Buttazzo. Integrating multimedia applications in hard real-time systems.

In Proceedings 19th IEEE Real-Time Systems Symposium, RTSS’98, pages 4–13. IEEE
Computer Society, 1998. doi:10.1109/REAL.1998.739726.

2 L. Abeni, T. Cucinotta, G. Lipari, L. Marzario, and L. Palopoli. Qos management
through adaptive reservations. Real-Time Syst., 29(2-3):131–155, March 2005. doi:
10.1007/s11241-005-6882-0.

3 K. Albers and F. Slomka. Efficient Feasibility Analysis for Real-Time Systems with EDF
Scheduling. In Proceedings of the Conference on Design, Automation and Test in Europe
– Volume 1, DATE’05, pages 492–497. IEEE Computer Society, 2005. doi:10.1109/DATE.
2005.128.

4 AREMA – Adaptive Runtime Environment for Multimode Applications.
https://sourceforge.net/projects/arema/, September 2016.

5 ARTOS. https://www.uni-ulm.de/en/in/vs/res/projects/artos/, April 2017.
6 S.K. Baruah, A.K. Mok, and L. E. Rosier. Preemptively scheduling hard-real-time sporadic

tasks on one processor. In Proceedings 11th Real-Time Systems Symposium, pages 182–190,
Dec 1990. doi:10.1109/REAL.1990.128746.

7 A. Biondi, A. Melani, and M. Bertogna. Hard Constant Bandwidth Server: Comprehensive
formulation and critical scenarios. In Proceedings of the 9th IEEE International Symposium
on Industrial Embedded Systems (SIES 2014), pages 29–37, June 2014. doi:10.1109/SIES.
2014.6871182.

8 G. Bolella, B. Brosgol, P. Dibble, S. Furr, J. Gosling, D. Hardin, and M. Turnbull. The
Real-Time Specification for Java. Addison-Wesley Longman Publishing Co., Inc., 2000.

9 G. Buttazzo and E. Bini. Optimal dimensioning of a constant bandwidth server. In 2006
27th IEEE International Real-Time Systems Symposium (RTSS’06), pages 169–177, Dec
2006. doi:10.1109/RTSS.2006.31.

10 G. Buttazzo, G. Lipari, L. Abeni, and M. Caccamo. Soft Real-Time Systems: Predictability
vs. Efficiency. Springer US, 2005. doi:10.1007/0-387-28147-9.

11 G.C. Buttazzo, G. Lipari, M. Caccamo, and L. Abeni. Elastic scheduling for flexible
workload management. IEEE Trans. Comput., 51(3):289–302, March 2002. doi:10.1109/
12.990127.

12 M. Caccamo, G. Buttazzo, and L. Sha. Capacity sharing for overrun control. In Proceedings
of the 21st IEEE Conference on Real-time Systems Symposium, RTSS’10, pages 295–304.
IEEE Computer Society, 2000.

13 S. Chakraborty, S. Kunzli, and L. Thiele. Approximate schedulability analysis. In 23rd
IEEE Real-Time Systems Symposium, 2002. RTSS 2002., pages 159–168, 2002. doi:10.
1109/REAL.2002.1181571.

14 S. Chakraborty, M. Lukasiewycz, C. Buckl, S. Fahmy, N. Chang, S. Park, Y. Kim, P. Letein-
turier, and H. Adlkofer. Embedded systems and software challenges in electric vehicles. In

ECRTS 2017

http://dx.doi.org/10.1109/REAL.1998.739726
http://dx.doi.org/10.1007/s11241-005-6882-0
http://dx.doi.org/10.1007/s11241-005-6882-0
http://dx.doi.org/10.1109/DATE.2005.128
http://dx.doi.org/10.1109/DATE.2005.128
https://sourceforge.net/projects/arema/
https://www.uni-ulm.de/en/in/vs/res/projects/artos/
http://dx.doi.org/10.1109/REAL.1990.128746
http://dx.doi.org/10.1109/SIES.2014.6871182
http://dx.doi.org/10.1109/SIES.2014.6871182
http://dx.doi.org/10.1109/RTSS.2006.31
http://dx.doi.org/10.1007/0-387-28147-9
http://dx.doi.org/10.1109/12.990127
http://dx.doi.org/10.1109/12.990127
http://dx.doi.org/10.1109/REAL.2002.1181571
http://dx.doi.org/10.1109/REAL.2002.1181571


7:22 A Hierarchical Scheduling Model for Dynamic Soft-Realtime Systems

Proceedings of the Conference on Design, Automation and Test in Europe, DATE’12, pages
424–429. EDA Consortium, 2012.

15 Concierge OSGi. http://concierge.sourceforge.net/, April 2009.
16 T. Cucinotta, L. Palopoli, L. Abeni, D. Faggioli, and G. Lipari. On the integration of ap-

plication level and resource level qos control for real-time applications. IEEE Transactions
on Industrial Informatics, 6(4):479–491, Nov 2010. doi:10.1109/TII.2010.2072962.

17 L. George, N. Rivierre, and M. Spuri. Preemptive and Non-Preemptive Real-Time Uni-
Processor Scheduling. Research Report RR-2966, INRIA, 1996. Projet REFLECS.

18 N. Henze. Stochastik für Einsteiger. Springer Fachmedien, Wiesbaden, 10 edition, 2013.
doi:10.1007/978-3-658-03077-3.

19 JamaicaVM. https://www.aicas.com/cms/en/JamaicaVM, February 2017.
20 G. Koren and D. Shasha. Skip-over: algorithms and complexity for overloaded systems

that allow skips. In Proceedings 16th IEEE Real-Time Systems Symposium, pages 110–117,
Dec 1995. doi:10.1109/REAL.1995.495201.

21 J. Lelli, C. Scordino, L. Abeni, and D. Faggioli. Deadline scheduling in the linux kernel.
Software: Practice and Experience, 46(6):821–839, 2016. doi:10.1002/spe.2335.

22 X. Lin, A. Mamat, Y. Lu, J. Deogun, and S. Goddard. Real-time scheduling of divisible
loads in cluster computing environments. Journal of Parallel and Distributed Computing,
70(3):296–308, March 2010. doi:10.1016/j.jpdc.2009.11.009.

23 G. Lipari and S. Baruah. A hierarchical extension to the constant bandwidth server frame-
work. In Proceedings Seventh IEEE Real-Time Technology and Applications Symposium,
RTAS’01, pages 26–35. IEEE Computer Society, 2001. doi:10.1109/RTTAS.2001.929863.

24 J.W. S. Liu, W.K. Shih, K.-J. Lin, R. Bettati, and J.-Y. Chung. Imprecise computations.
Proceedings of the IEEE, 82(1):83–94, Jan 1994. doi:10.1109/5.259428.

25 C. Lu, J.A. Stankovic, S.H. Son, and G. Tao. Feedback control real-time scheduling:
Framework, modeling, and algorithms*. Real-Time Syst., 23(1/2):85–126, July 2002. doi:
10.1023/A:1015398403337.

26 V. Nikolov. Ein hierarchisches Scheduling Modell für unbekannte Anwendungen mit
schwankenden Ressourcenanforderungen. PhD thesis, Ulm University, 2016. doi:10.18725/
OPARU-4099.

27 V. Nikolov, F. J. Hauck, and L. Schubert. Ein hierarchisches Scheduling-Modell für un-
bekannte Anwendungen mit schwankenden Ressourcenanforderungen. In Betriebssysteme
und Echtzeit, Informatik aktuell, pages 49–58. Springer Berlin Heidelberg, 2015. doi:
10.1007/978-3-662-48611-5_6.

28 V. Nikolov, F. J. Hauck, and S. Wesner. Assembling a framework for unknown real-time
applications with rtsj. In Proceedings of the 13th International Workshop on Java Tech-
nologies for Real-time and Embedded Systems, JTRES’15, pages 12:1–12:10. ACM, 2015.
doi:10.1145/2822304.2822318.

29 V. Nikolov, K. Kempf, F. J. Hauck, and D. Rautenbach. Distributing the Complexity of
Schedulability Tests. In 21st IEEE Real-Time and Emb. Techn. and Appl. Symp., RTAS
2015, page 2. IEEE, 2015.

30 V. Nikolov, S. Kächele, F. J. Hauck, and D. Rautenbach. Cloudfarm: An elastic cloud
platform with flexible and adaptive resource management. In Proceedings of the 2014
IEEE/ACM 7th International Conference on Utility and Cloud Computing, UCC’14, pages
547–553. IEEE Computer Society, 2014. doi:10.1109/UCC.2014.84.

31 V. Nikolov, M. Matousek, D. Rautenbach, L.D. Penso, and F. J. Hauck. ARTOS: system
model and optimization algorithm. Technical Report VS-R08-2012, Inst. of Dist. Sys.,
University of Ulm, 2012.

32 L. Palopoli, T. Cucinotta, L. Marzario, and G. Lipari. Aquosa – adaptive quality of service
architecture. Softw. Pract. Exper., 39(1):1–31, January 2009. doi:10.1002/spe.v39:1.

http://concierge.sourceforge.net/
http://dx.doi.org/10.1109/TII.2010.2072962
http://dx.doi.org/10.1007/978-3-658-03077-3
https://www.aicas.com/cms/en/JamaicaVM
http://dx.doi.org/10.1109/REAL.1995.495201
http://dx.doi.org/10.1002/spe.2335
http://dx.doi.org/10.1016/j.jpdc.2009.11.009
http://dx.doi.org/10.1109/RTTAS.2001.929863
http://dx.doi.org/10.1109/5.259428
http://dx.doi.org/10.1023/A:1015398403337
http://dx.doi.org/10.1023/A:1015398403337
http://dx.doi.org/10.18725/OPARU-4099
http://dx.doi.org/10.18725/OPARU-4099
http://dx.doi.org/10.1007/978-3-662-48611-5_6
http://dx.doi.org/10.1007/978-3-662-48611-5_6
http://dx.doi.org/10.1145/2822304.2822318
http://dx.doi.org/10.1109/UCC.2014.84
http://dx.doi.org/10.1002/spe.v39:1


V. Nikolov, S. Wesner, E. Frasch, and F. J. Hauck 7:23

33 W.B. Powell. What you should know about approximate dynamic programming. Naval
Research Logistics (NRL), 56(3):239–249, 2009. doi:10.1002/nav.20347.

34 PREEMPT_RT. https://rt.wiki.kernel.org, January 2016.
35 Wind River. A Smart Way To Drive ECU Consolidation. https://www.windriver.com/

whitepapers/automotive/a-smart-way-to-drive-ecu-consolidation/, January 2017.
36 RT-mutex implementation design. https://www.kernel.org/doc/Documentation/

locking/rt-mutex-design.txt, January 2017.
37 J.K. Strosnider, J. P. Lehoczky, and L. Sha. The deferrable server algorithm for enhanced

aperiodic responsiveness in hard real-time environments. IEEE Transactions on Comp.,
44(1):73–91, January 1995. doi:10.1109/12.368008.

38 The Open Group and IEEE. IEEE Std 1003.1. The Open Group technical standard
base specification, Issue 6, Base Definitions. http://www.opengroup.org/onlinepubs/
009695399/mindex.html, 2004.

39 A. Zerzelidis and A. J. Wellings. Getting more flexible scheduling in the RTSJ. In Ninth
IEEE International Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC’06), pages 8 pp.–, April 2006. doi:10.1109/ISORC.2006.38.

40 A. Zerzelidis and A. J. Wellings. Getting more flexible scheduling in the RTSJ. In Proc.
of the 9th IEEE Symp. on Obj.-Oriented Real-Time Distrib. Comp.—ISORC, pages 3–10,
2006.

41 A. Zerzelidis and A. J. Wellings. A framework for flexible scheduling in the rtsj. ACM Trans.
Embed. Comput. Syst., 10(1):3:1–3:44, August 2010. doi:10.1145/1814539.1814542.

ECRTS 2017

http://dx.doi.org/10.1002/nav.20347
https://rt.wiki.kernel.org
https://www.windriver.com/whitepapers/automotive/a-smart-way-to-drive-ecu-consolidation/
https://www.windriver.com/whitepapers/automotive/a-smart-way-to-drive-ecu-consolidation/
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.txt
https://www.kernel.org/doc/Documentation/locking/rt-mutex-design.txt
http://dx.doi.org/10.1109/12.368008
http://www.opengroup.org/onlinepubs/009695399/mindex.html
http://www.opengroup.org/onlinepubs/009695399/mindex.html
http://dx.doi.org/10.1109/ISORC.2006.38
http://dx.doi.org/10.1145/1814539.1814542

	Introduction
	System Model and Scheduling Problem
	The Scheduling Problem

	General Scheduler Overview
	Task Approximation and Scheduling
	CBS Extensions and Dimensioning
	Dimensioning of the server capacity R-i
	Dimensioning of the server period P-i
	Interpretation of the Server Dimensioning

	Mode Decisions and Optimization
	Implementation
	System Configuration
	Implementation Peculiarities

	Evaluation And Results
	Scheduling
	Adaptation
	Cyclic Bursts
	Overall quality benefit

	Related Work
	Conclusion

