

Optimizing Scoped and Immortal Memory

Management in Real-Time Java

A Thesis submitted for the degree of Doctor of Philosophy

By

HAMZA HAMZA

Department of Information Systems and Computing,

Brunel University

October 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Brunel University Research Archive

https://core.ac.uk/display/20443905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

ABSTRACT

The Real-Time Specification for Java (RTSJ) introduces a new memory management

model which avoids interfering with the garbage collection process and achieves

better deterministic behaviour. In addition to the heap memory, two types of memory

areas are provided - immortal and scoped. The research presented in this Thesis aims

to optimize the use of the scoped and immortal memory model in RTSJ applications.

Firstly, it provides an empirical study of the impact of scoped memory on execution

time and memory consumption with different data objects allocated in scoped

memory areas. It highlights different characteristics for the scoped memory model

related to one of the RTSJ implementations (SUN RTS 2.2). Secondly, a new RTSJ

case study which integrates scoped and immortal memory techniques to apply

different memory models is presented. A simulation tool for a real-time Java

application is developed which is the first in the literature that shows scoped memory

and immortal memory consumption of an RTSJ application over a period of time. The

simulation tool helps developers to choose the most appropriate scoped memory

model by monitoring memory consumption and application execution time. The

simulation demonstrates that a developer is able to compare and choose the most

appropriate scoped memory design model that achieves the least memory footprint.

Results showed that the memory design model with a higher number of scopes

achieved the least memory footprint. However, the number of scopes per se does not

always indicate a satisfactory memory footprint; choosing the right objects/threads to

be allocated into scopes is an important factor to be considered. Recommendations

and guidelines for developing RTSJ applications which use a scoped memory model

are also provided. Finally, monitoring scoped and immortal memory at runtime may

help in catching possible memory leaks. The case study with the simulation tool

iii

developed showed a space overhead incurred by immortal memory. In this research,

dynamic code slicing is also employed as a debugging technique to explore constant

increases in immortal memory. Two programming design patterns are presented for

decreasing immortal memory overheads generated by specific data structures.

Experimental results showed a significant decrease in immortal memory consumption

at runtime.

iv

AKNOWLEDGMENTS

I would not have been able to provide and complete this Thesis without the sincere

support and help of many people. Foremost, I would like to thank my supervisor Dr.

Steve Counsell for his patience, motivation, advice, and continuous help and support.

He made my PhD journey an excellent experience with his knowledge, kindness,

thoughtfulness and encouragement. I would like to dedicate my deep thanks for my

mother, for the encouragement she provided, her unlimited patience, prayers and the

sacrifices she made to help me after my father passed away, which without, I would

not be able to achieve my goals and survive difficult times. I am greatly indebted to

my sincere wife Dalia and my daughter Julie, without their hopeful smiles, emotional

support, patience, understanding and infinite love I would not have been able to stand

during the difficult moments in my PhD. I would like to convey my sincerest

gratitude to my uncle Wahid Hamza who has been supportive through all my life

stages. His sympathy and understanding were enormous and significantly

appreciated. I am very grateful to all people in the Department of Information

Systems and Computing at Brunel University who helped me during my study and

provided such a friendly and comfortable environment. Last, but by no means least, I

would like to thank all my friends and colleagues who have been my other family in

the UK.

v

LIST OF PUBLICATIONS

Journal Papers:

H. Hamza, S. Counsell, Region-Based RTSJ Memory Management: State of the art,

Science of Computer Programming, Volume 77, Issue 5, 1 May 2012, Pages 644-

659, (http://www.sciencedirect.com/science/article/pii/S0167642312000032)

H. Hamza, S. Counsell, Simulation of safety-critical, real-time Java: A case study of

dynamic analysis of scoped memory consumption, Simulation Modelling Practice

and Theory, Volume 25, June 2012, Pages 172-189. Cited by: (Singh et al., 2012

) (Hamza, Counsell, 2013)

Conference Papers:

Hamza Hamza and Steve Counsell. 2013. Exploiting slicing and patterns for RTSJ

immortal memory optimization. In Proceedings of the 2013 International

Conference on Principles and Practices of Programming on the Java Platform:

Virtual Machines, Languages, and Tools (PPPJ '13). ACM, New York, NY,

USA, pp. 159-164

Hamza, H. and Counsell, S., Simulation of a Railway Control System: Dynamic Analysis

of Scoped Memory Consumption, the13th International Conference on

Modelling and Simulation, Cambridge, Cambridgeshire United Kingdom, 2011.

IEEE, pp. 287 - 292

Hamza, H. and Counsell, S., Using scoped memory in RTSJ applications: Dynamic

analysis of memory consumption, 37th EUROMICRO Conference on Software

Engineering and Advanced Applications, Proceedings of the 37th Euromicro

Conference on SEAA 2011. IEEE, pp. 221-225

Hamza, H. and Counsell, S., The impact of varying memory region numbers and nesting

on RTSJ execution time. Proceedings of the 3rd International Conference on

Computer and Electrical Engineering (ICCEE 2010). pp. p.90-96

H. Hamza, S. Counsell, Improving the performance of scoped memory in RTSJ

applications, work-in-progress session, in: SEAA Euromicro Lille,

France,September 2010.

http://www.sciencedirect.com/science/article/pii/S0167642312000032

vi

DECLARATION

This thesis is the result of my own investigations, except where otherwise stated.

Other sources are acknowledged by explicit references. Some of the material

presented in this thesis has previously been published as follows:

Chapter 2 is extension to the material previously published in Science of Computer

Programming Journal, 2012. The name of the article is Region-Based RTSJ Memory

Management: State of the art.

Chapter 3 is an extension on the work presented in 3rd International Conference on

Computer and Electrical Engineering (ICCEE 2010). The name of the article is “The

impact of varying memory region numbers and nesting on RTSJ execution time”.

Chapter 4 is based on the work published in the Simulation Modelling Practice and

Theory Journal, 2012. The name of the article is: “Simulation of safety-critical, real-

time Java: A case study of dynamic analysis of scoped memory consumption”.

Chapter 5 is based on the work published in proceedings of the 2013 International

Conference on Principles and Practices of Programming on the Java Platform: Virtual

Machines, Languages, and Tools (PPPJ '13). The name of the article is: “Exploiting

slicing and patterns for RTSJ immortal memory optimization”

I hereby give consent for my thesis, if accepted, to be made available for

photocopying and for inter-library loan, and for the title and summary to be made

available to outside organizations.

Signed ……. (candidate)

Date …….

vii

TABLE OF CONTENTS

TABLE OF FIGURES... ix

Chapter 1: Introduction ... 1

1.1 THESIS OVERVIEW ... 1

1.2 RESEARCH MOTIVATION .. 3

1.3 RESEARCH AIM AND OBJECTIVES .. 5

1.4 THESIS CONTRIBUTIONS ... 6

1.5 THESIS OUTLINE .. 7

Chapter 2: Literature Review .. 9

2.1 OVERVIEW ... 9

2.2 BACKGROUND .. 12

2.2.1 RTSJ SCOPE PRINCIPLES .. 14

2.2.2 RTSJ MEMORY MANAGEMENT APIS ... 16

2.2.3 SCOPED MEMORY REFERENCE SEMANTICS ... 18

2.2.4 SCOPED MEMORY IN NON-RTS JAVA VIRTUAL MACHINES 20

2.3 CURRENT PROBLEMS AND EXISTING SOLUTIONS 22

2.3.1 TIME OVERHEADS .. 22

2.3.2 SPACE OVERHEADS .. 24

2.3.3 DEVELOPMENT COMPLEXITY ... 27

2.3.3.1 ASSISTING TOOLS .. 27

2.3.3.2 SEPARATING MEMORY CONCERN FROM PROGRAM LOGIC 28

2.3.3.3 DESIGN PATTERNS AND COMPONENTS ... 31

2.3.3.4 ALLOCATION TIME ... 42

2.4 BENCHMARKS TO EVALUATE RTSJ SCOPED MEMORY 43

2.5 POTENTIAL RESEARCH DIRECTIONS ... 49

2.6 SUMMARY .. 52

Chapter 3: Empirical Data Using A Scoped Memory

Model .. 54

3.1 OVERVIEW ... 54

3.2 EMPIRICAL DATA FOR SCOPED MEMORY AREA ALLOCATION 56

viii

3.3 THE IMPACT OF CHANGING SCOPED MEMORY NUMBERS AND NESTING ON

EXECUTION TIME. ... 60

3.3.1 EXPERIMENTAL CODE DESIGN ... 63

3.3.2 UN-NESTED SCOPED MEMORY AREAS .. 66

3.3.3 NESTED SCOPED MEMORY AREAS .. 70

3.4 THE ENTERING/EXITING TIME OVERHEADS OF SCOPED MEMORY AREAS. 75

3.5 SUMMARY .. 79

Chapter 4: A Case Study of Scoped Memory

Consumption ... 81

4.1 OVERVIEW ... 81

4.2 SIMULATION MODEL .. 83

4.2.1 ASSUMPTIONS OF THE SIMULATOR .. 88

4.2.2 SCOPED MEMORY DESIGN MODELS .. 90

4.3 EXPERIMENTAL DESIGN ... 95

4.4 SIMULATION TOOL ... 98

4.5 SIMULATION ANALYSIS ... 104

4.6 GUIDELINES FOR USING SCOPED MEMORY IN RTSJ 112

4.7 CONCLUSIONS .. 114

Chapter 5: Slicing and Patterns for RTSJ Immortal

Memory Optimization .. 115

5.1 OVERVIEW ... 115

5.2 METHODOLOGY ... 116

5.3 IMMORTAL MEMORY PATTERNS .. 122

5.3.1 HASHTABLE READING PATTERN ... 122

5.3.2 HASHTABLE MODIFYING PATTERN ... 125

5.4 DISCUSSION ... 128

5.5 SUMMARY .. 131

Chapter 6: Conclusions and Future Work 133

6.1 RESEARCH SUMMARY .. 134

6.2 RESEARCH OBJECTIVES RE-VISITED... 137

6.3 SUMMARY OF RESEARCH CONTRIBUTIONS .. 138

ix

6.4 RESEARCH LIMITATIONS .. 139

6.5 FUTURE WORK ... 141

TABLE OF FIGURES

Figure 2.1: A RealTimeThread forms nesting scopes, scope stack is created. 17

Figure 2.2: Scope stack (Dawson, 2007) .. 36

Figure 3.1: Execution Times of 5/10 scoped memory areas application for

different data types (1000 objects example) ... 59

Figure 3.2: Scoped Memory Consumptions of different data types when 1000

objects are created in 5/10 scoped memory areas application 60

Figure 3.3 Creating objects in un-nested scoped memory areas sample................64

Figure 3.4: Execution time for un-nested scoped memory areas 66

Figure 3.5: 5 scoped memory area data (2500 objects) .. 67

Figure 3.6: 10 scoped memory area data (2500 objects) 68

Figure 3.7: 15 scoped memory area data (2500 objects) 68

Figure 3.8: 20 scoped memory area data (2500 objects) 69

Figure 3.9: 25 scoped memory area data (2500 objects) 69

Figure 3.10: Execution time for nested scoped memory areas 71

Figure 3.11: % in execution time increase (un-nested) scoped memory areas 73

Figure 3.12: % increase in execution time (nested scoped memory areas) 73

Figure 3.13: Differences in execution time (un-nested vs. nested) 74

Figure 3.14: Calculation of entering and exiting times in scoped memory area... 76

Figure 3.15: Entering Scoped Memory Execution Time 77

Figure 3.16: Exiting Scoped Memory Execution Time .. 78

Figure 4.1: Simulation Model for a Real-Time Java Scoped memory Model 84

Figure 4.2: The main objects and threads in the Simulator................................... 87

Figure 4.3: Simulation GUI element at 140 seconds (Design 1) 100

Figure 4.4: Simulation GUI element at 299 seconds (Design 1) 101

Figure 4.5: Simulation GUI element at 142 seconds (Design 2) 102

x

Figure 4.6: Simulation GUI element at 300 seconds (Design 2) 103

Figure 4.7: Simulation Console element (Design 1) ... 104

Figure 4.8: Immortal memory consumption in Designs 1, 2, 3, 4 and 5............. 105

Figure 4.9: Scoped memory consumption in Design 1 107

Figure 4.10: Scoped memory consumptions in Design 2 108

Figure 4.11: Scoped memory consumptions in Design 3 109

Figure 4.12: Scoped memory consumption in Design 4 110

Figure 4.13: Scoped memory consumption in Design 5 111

Figure 5.1: (a) An example program. (b) A slice of the program criterion (10,

product). .. 118

Figure 5.2: The Slicing Methodology. .. 120

Figure 5.3: Design Pattern 1 (Reading Hashtable Values) 125

Figure 5. 4: Design Pattern 2 (Modifying Hashtable Values) 128

Figure 5.5: Before/After Implementing Design Patterns 1 and 2 131

Figure 5. 6: Before/After Implementing Design Pattern 2 131

xi

LIST OF TABLES

Table 2.1: Assignment rules (Dibble, 2008, Bruno and Bollella, 2009) 19

Table 2.2: A list of common RTSJ-design patterns. ... 40

Table 2.3: Benchmarks to evaluate scoped memory in RTSJ applications 45

Table 3. 1: Execution Time and Memory Consumption for each scoped memory

area (Integer and Float) ... 58

Table 3. 2: Execution Time and Memory Consumption for each scoped memory

area (Hashtable and Vector) .. 58

Table 3. 3: Summary data for un-nested scoped memory areas 66

Table 3. 4: Summary data for nested scoped memory areas 71

Table 3. 5: Summary Data for Entering/exiting Scoped Memory 78

Table 4. 1: Initial and possible design memory models of the case study 94

Table 4. 2: The simulation platform .. 98

Table 4. 3: Summary Data for Immortal consumption 106

Table 4. 4: Summary Data for Scope consumption .. 111

Table 5.1:. Before/After Implementing Design Patterns 1 and 2. 130

Chapter 1: Introduction

1

Chapter 1: Introduction

1.1 Thesis Overview

Programming languages have different approaches to managing application memory.

For example, in Fortran, memory management is static where the location of a

variable is statically defined at compile time and fixed at runtime. Other

programming languages use dynamic memory management models where data

structures can be dynamically defined at runtime. Some of these dynamic memory

models are manual memory management models (e.g., C and Pascal) where

allocation/de-allocation of objects is handled by the developer. However, manual

approaches add more complexity to the application development (Robertz, 2003). The

other model of dynamic memory management is ‘automatic’ such as the garbage

collection technique employed by the Lisp and Java programming languages

(Henriksson, 1998).

Java uses a garbage collection technique to manage memory automatically. The

garbage collector interrupts the application on different occasions to reclaim objects

no longer in use by the application. However, garbage collection, when running,

delays the application and pauses its execution. This is not acceptable in real-time

applications that have deterministic behaviour and strict timing requirements (Brosgol

and Wellings, 2006). A “Real-time system is a system in which its correctness

depends not only on the logical result of the computations it performs but also on

time factors” (Stankovic and Ramamritham, 1989). A fault in these systems can cause

loss of human life or a significant financial setback (Baker et al., 2006, Dvorak et al.,

2004). These faults can occur because of a poor memory model that may cause a

system execution delay or a systems’ memory to overflow. A number of examples of

Chapter 1: Introduction

2

using Java in real-time systems is evident in industry such as the autonomous

navigation capabilities of the ScanEagle unmanned aerial vehicle developed by

Boeing and Purdue University (Armbruster et al., 2007), a motion control system

developed by Robertz et al., (Robertz et al., 2007), and IBM’s comprehensive

battleship computing environment and commercial real-time trading systems

described in Pizlo and Vitek (2008).

New real-time garbage collection algorithms in Java have been proposed and

implemented in commercial products for real-time systems (Dawson, 2008), but there

are still many research challenges in real-time garbage collection for decreasing pause

times and space overheads (Kalibera, 2009) (Plšek, 2009).

The Java Community Process (JCP), founded in 1998 and supported by IBM and Sun

Microsystems, proposed the first Java Specification Request as JSR-1 for the real-

time specification of Java (RTSJ). RTSJ introduced a new memory model a semi-

automatic memory management model, which includes scoped memory and immortal

memory. In addition to heap memory, there is only one immortal memory and one or

more scoped memory areas in real-time Java applications according to the RTSJ

model. Scoped and immortal memory areas are not subject to garbage collection and

therefore no delays or interruptions by garbage collection occur. However,

developing applications using a scoped and immortal memory management model is

a difficult task and has many drawbacks (Higuera-Toledano, 2006, Pizlo and Vitek,

2008). First, it requires additional classes for proper management and possibly

application of specific design patterns (Pizlo, 2004). Secondly, since the design of a

scoped memory model requires information about the object and thread lifetimes of

that application which, in turn, differ from one application to another, the memory

model in one application cannot be adapted to other applications. Thirdly, the model

Chapter 1: Introduction

3

needs precise knowledge of object lifetimes to determine how many scoped memory

areas are required and which objects reside in which scoped memory areas. Finally,

any scoped memory model needs to ensure safe references among objects allocated in

different memory areas; otherwise, the resulting model could introduce runtime errors

(Kwon and Wellings, 2004, Magato and Hauser, 2005, Borg et al., 2006, Fridtjof,

2006, Pizlo and Vitek, 2006, Chang, 2007, Bacon, 2007).

The aforementioned themes play an important role in the Thesis chapters and

contents. The next section summarizes the motivation for conducting this research

which leads to the set of stated contributions (Section 1.4).

1.2 Research Motivation

Reviewing the literature of the new memory model in RTSJ, a set of observations

motivating the research in this thesis can be made:

1. To evaluate the expressiveness of the new dynamic memory model presented in

RTSJ, case studies that include persistent dynamic allocation over period of

time are required. However, RTSJ case studies that include scoped and

immortal memory use are still very rare.

2. To verify the memory model exceptions at runtime (such as

OutOfMemoryError exception) and to monitor immortal memory consumption,

the availability of assisting development tools is essential (Kalibera et al.,

2010). Region memory profiling (the study of the program behaviour at

runtime based on set of inputs to optimize the program code more efficiently by

gathering information on the application at runtime (Gabbay and Mendelson,

1997) is promising method of locating and fixing space leaks (Tofte et al.,

Chapter 1: Introduction

4

2004). Since the developer decides on where the objects will be allocated in

scoped and immortal memory, there is a possibility of memory leaks occurring

according to misjudgment on the right allocation. Therefore, using dynamic

analysis tools which visualize object allocations into scoped memory and

measure the consumption over time may help in catching possible memory

leaks

3. For safety-critical real-time systems, since rigorous verification of their

functionalities, timings and memory consumption is required, simulating these

systems before putting them into their real environment is an important practice

for eliminating the cost of testing, reducing the risk of failure and ensuring high

quality results (Rosenkranz, 2004).

4. Deciding on the number of scoped memory areas, their sizes and which objects

to be allocated in these scoped memory areas are left to the developer to design.

Consequently, different scoped memory design models can be created

according to specific priorities such as a smaller execution time or memory

footprint. The optimum criteria to allocate objects/threads in scoped memory

areas in a way that leads to minimum consumption space and safe referencing

is an open research area. Therefore, providing developers with guidelines to use

this model may help to optimize the use and the design of the scope memory

model and simplify the development process.

5. The decision that a developer has to make on scoped memory area numbers can

have a significant impact on potential application efficiency and execution

time. On the other hand, nested scoped memory areas have potential advantages

of memory savings, since child memory areas have shorter lifetimes than their

parents; the impact this has on application execution time and the inherent

Chapter 1: Introduction

5

trade-off with those memory savings is an open research question. An empirical

study of this memory model that cover different characteristics is required to

provide more information about the usage and characteristics of this model;

eliminating space overhead is not currently discussed in the literature.

6. Immortal memory space may increase constantly at runtime which may end up

as an overflow error. Defining new techniques to debug and eliminate constant

increases in immortal memory is a critical task for developers.

All the above issues motivated this research to provide philosophical and practical

knowledge of this memory model and to provide solutions that help in developing

scoped and immortal memory applications in specific programming situations.

1.3 Research Aim and Objectives

Considering the research motivation discussed in Section 1.2, the aim of this research

is thus: To explore optimization in the context of the scoped and immortal memory of

real-time Java applications.

To fulfill this aim, a number of objectives are necessary:

Objective 1: to describe state of art issues in the use of scoped memory in real-time

Java and discuss the current solutions and challenges to generate a set of research

questions.

Objective 2: to provide an empirical study on some aspects of the scoped and

immortal memory model and its impact on memory space and execution time of the

application when different types of objects are allocated. This helps an understanding

of different overheads and considering appropriate design of the memory model.

Chapter 1: Introduction

6

Objective 3: To develop a real-time Java case study which uses a scoped and

immortal memory model in a multi-threaded environment where dynamic allocation

of objects takes place constantly. Implementing and comparing different scoped

memory models provides guideline for creating the appropriate scoped and immortal

memory model.

Objective 4: To provide debugging techniques which help in decreasing the

overheads of using a scoped and immortal memory model by implementing

programming design patterns and evaluating their outcomes.

1.4 Thesis Contributions

The main contributions of this thesis are:

1. A survey of state of art issues of the new memory model introduced by RTSJ;

this provided an overview of the problems, challenges, solutions, benchmarks

and potential research directions in the scoped and immortal memory model.

2. A detailed study of the impact of using scoped memory on the execution time

and memory space of the application when different data types are allocated

in scoped memory areas and when different scoped memory numbers and

nesting are used. A comparison between entering and exiting times of an

active and non-active scoped memory area.

3. Provision of an additional RTSJ case study which integrates scoped and

immortal memory techniques to apply different memory models.

4. Development of a simulation tool for a real-time Java application (the first

that we know of) which shows scoped memory and immortal memory

consumption of an RTSJ application over a period of time. The tool helps

Chapter 1: Introduction

7

developers to choose the most appropriate scoped memory model by

monitoring memory consumption and application execution time.

5. Implementation of a dynamic slicing technique to debug RTSJ code and to

define the objects that specifically affect immortal memory increases at

runtime.

6. Proposition and validation of two programming design patterns to decrease

immortal memory consumption when Hashtable data structures are

manipulated inside immortal memory.

1.5 Thesis Outline

The remainder of the Thesis is structured as follows.

Chapter 2 presents a state of art literature review of using scoped memory in real-

time Java (RTSJ). An overview of different issues related to the development of

applications using a scoped memory model is provided. The benchmarks used to

evaluate the implementation of RTSJ scoped memory are also presented and these

can help to identify current case studies and their benefits. The chapter emphasizes

the need for future benchmarks that verify and demonstrate the functionality of a

given scoped memory management model. An overview of all current solutions,

approaches and design patterns related to scoped memory applications are presented.

Chapter 3 enriches the empirical study on using a scoped memory model from

different aspects in an RTSJ implementation: the Sun Java RTS 2.2. It provides

empirical data on allocating different data types into scoped memory areas. Float,

Hashtable and Vector data types were tested to measure the execution time and

memory consumption for each when created inside scoped memory areas. It also

Chapter 1: Introduction

8

analyses the impact of changing scoped memory numbers and nesting on execution

time. A comparison of the entering and exiting times of an active and non-active

scoped memory area at runtime is also presented in this chapter.

Chapter 4 provides a new RTSJ case study, namely a railway control system

implemented as a multi-threading system in the SUN RTS 2.0 virtual machine. The

case study employs a scoped and immortal memory model to allocate different types

of objects. Five possible scoped memory models are discussed. A simulation tool is

developed to measure and show scoped and immortal memory consumption of the

case study for each memory design model over a period of time along with the

execution time of the case study. The tool enables developers to decide on the most

appropriate scoped memory model by monitoring memory consumption and

application execution time at runtime. Recommendations and guidelines for

developing RTSJ applications which use a scoped and immortal memory model are

also presented in this chapter.

Chapter 5 proposes a dynamic code slicing approach as a debugging technique to

explore constant increases in the immortal memory of the case study. Objects and

methods which cause immortal memory to increase constantly are defined. Two

programming design patterns are presented for decreasing immortal memory

overheads generated by specific data structures. Runtime data is also provided which

consolidates the validity and importance of the approach to decreasing immortal

memory consumption at runtime.

Chapter 6 summarizes the Thesis main contributions and findings. Finally, the

chapter describes the limitations of this study and opportunities for future work.

Chapter 2:Literature Review

9

Chapter 2: Literature Review

2.1 Overview

A real-time system is any system in which responding to external changes in a

specific period of time is as important as satisfying the system’s functionalities

(Burns and Wellings, 2001). Real-time systems can be divided into two main

categories: soft real-time systems and hard real-time systems. The former is tolerant

of missed deadlines without generating an error condition, while the latter cannot

afford to miss a deadline (Bruno and Bollella, 2009). A fault in either type of system

can cause catastrophic results or loss of human life and, at the very least, be a

significant financial setback (Dvorak et al., 2004, Baker et al., 2006). These faults can

be the result of many factors such as miscalculation of deadlines, unexpected power

failures, or an inadequately designed memory model which may delay the response

time and cause a system’s memory to overflow. Therefore, programming these

systems requires precise design and implementation.

Java, as an object oriented programming language introduced by Sun Microsystems

in 1995, is widely adopted in many sectors because of its code reliability, portability,

maintainability and automatic memory management. Recent studies have showed

how Java has increased in popularity against other programming languages such as C,

C++ and Ada. Although Java embraces a multi-threading environment, it lacks some

of the important characteristics that make it suitable for real-time systems such as

non-deterministic timing behaviour due to automatic memory management and an

unpredictable threads scheduling order. This has motivated the research since 1996

towards making Java suitable for real-time systems (Higuera-Toledano, 2012, Kelvin,

2012). The Java community Process (JCP), founded in 1998 and supported by IBM

Chapter 2:Literature Review

10

and Sun Microsystems, proposed the first Java Specification Request as JSR-1 for the

real-time specification of Java. The Real-Time Specification for Java (RTSJ) outlines

seven areas of enhancements for real-time applications. These are: thread scheduling

with priority based techniques, new memory management based on scope techniques

where garbage collection does not interfere, resource sharing management,

asynchronous event handling, asynchronous transfer of control, asynchronous thread

termination and physical memory access (when the system is connected to specialized

hardware) (Bruno and Bollella, 2009).

Memory management in real-time Java systems is still an open research area.

Developers have to ensure that the systems they design are predictable in terms of

memory behaviour and also that they meet real-time event deadlines without being

affected by memory reclamation techniques (Pizlo, 2004). The new RTSJ

programming model is based on semi-explicit memory management in which

allocation of objects into memory areas is undertaken by the developer. This new

memory model is not subject to garbage collection either through time pauses or the

collection of individual objects (Bollella et al., 2000, Dibble, 2008). The concept of

RTSJ memory areas is borrowed from the more general concept of memory regions

first introduced by Tofte et al., (Tofte and Talpin, 1997). The predictable behaviour of

the new RTSJ memory model makes it suitable for hard, real-time systems where

determinism is the first requirement needing to be satisfied (Nilsen, 2006).

Nevertheless, development of applications using a scoped memory management

model is a difficult task and has spawned research to help developers design their

application memory model (Higuera-Toledano, 2006, Pizlo and Vitek, 2008).

Research has found that scoped memory management has many drawbacks. First,

there is the increased development complexity; such a model needs many additional

Chapter 2:Literature Review

11

classes for proper management and possibly application of specific design patterns

(e.g., the multi-scoped object pattern and the handoff pattern (Pizlo, 2004)). Second,

since the design of a scoped memory model requires information about the object and

thread lifetimes of that application which, in turn, differs from one application to

another, the memory model in one application cannot be adapted to other

applications. Third, the model needs precise knowledge of object lifetimes to

determine how many scoped memory areas are required and which objects reside in

which scoped memory areas. Finally, any scoped memory model needs to ensure safe

references among objects allocated in different memory areas; otherwise, the

resulting model could introduce runtime errors (Kwon and Wellings, 2004, Magato

and Hauser, 2005, Borg et al., 2006, Fridtjof, 2006, Pizlo and Vitek, 2006, Bacon,

2007, Chang, 2007); this, in turn, produces a burden on the developer. It also

constrains the design of the application’s memory model to allocate application

objects that have different lifetimes into specific scoped memory areas.

The extent to which real-time and embedded Java-based systems are becoming more

prominent in real, industrial settings is evidenced by a number of examples. The

autonomous navigation capabilities of the ScanEagle unmanned aerial vehicle

developed by Boeing and Purdue University (Armbruster et al., 2007), a motion

control system developed by Robertz et al., (Robertz et al., 2007), IBM’s

comprehensive battleship computing environment and commercial real-time trading

systems described in (Pizlo and Vitek, 2008) are four such systems. The versatility of

real-time and embedded systems is generally accepted and, from that perspective

alone, we see their role as becoming increasingly important. However, ensuring the

robustness of the memory model used in these systems is one of the primary concerns

Chapter 2:Literature Review

12

of the verification process. Several issues in an RTSJ scoped memory model need to

be categorized to provide a full awareness of the challenges in this area.

This chapter presents a detailed description of the state-of-the-art in the RTSJ scoped

memory model. An overview is provided which gives a broad understanding of the

different issues and highlights existing problems that still need to be tackled. The

benchmarks used in the literature to evaluate the implementation of RTSJ scoped

memory are also presented. This overview of RTSJ benchmarks can help to identify

current case studies and their benefits and also shed light on the need for future

benchmarks that verify and demonstrate the functionality of a given scoped memory

management model.

The remainder of this chapter is structured as follows: Section 2.2 provides

background and introduces the scoped memory management of RTSJ. Current

problems using scoped memory in RTSJ and their existing solutions are then

introduced in Section 2.3. Section 2.4 describes a set of benchmarks with which to

evaluate the implementation of an RTSJ scoped memory model. New research

directions and possible solutions to use scoped memory in RTSJ are discussed in

Section 2.5. Finally, Section 2.6 concludes the chapter.

2.2 Background

Memory management in early programming languages such as Fortran was static. In

other words, the location of variables was statically defined at compile time and fixed

at runtime. Static memory management has many disadvantages. The most prominent

of these is that the developer has to define (in advance) the size of all variables

allocated in memory - a fixed size memory is reserved during execution of the

Chapter 2:Literature Review

13

application. Reclaiming memory is not permissible while the application is still

running and defining dynamic data structures at runtime is not possible in

programming languages which use only static memory management. This has

motivated research efforts to introduce dynamic memory management models where

data structures can be dynamically defined at runtime. Some of these dynamic

memory models are manual, for example in programming languages such as C and

Pascal. However, a manual dynamic memory management model is susceptible to

dangling pointers and memory leaks due to programming pitfalls (Robertz, 2003); a

‘memory leak’ is said to occur when unclaimed dead objects no longer reachable by

an application remain in memory for a relatively long time (Jump and McKinley,

2013). The alternative model of dynamic memory management is ‘automatic’ typified

by the garbage collection technique employed by the Lisp and Java programming

languages (Henriksson, 1998). However, applications may still suffer from

unexpected delays due to garbage collection interrupts during the memory

reclamation process. Such delays are unacceptable in real-time and critical systems

(Brosgol and Wellings, 2006). Consequently, new real-time garbage collection

algorithms in Java have been proposed and implemented in commercial products for

real-time systems, but there are still many research challenges in real-time garbage

collection for decreasing pause times and space overheads (Kalibera, 2009).

Definition of application parameters is necessary to calibrate the real-time garbage

collector. One such example is the maximum allocation rate (bytes per clock cycle)

which specifies the intervals of time between which the garbage collection is invoked;

this can be problematic with respect to achieving low time and space overheads in an

application (Nakhli et al., 2006, Jones, 2007, Salagnac et al., 2007).

Chapter 2:Literature Review

14

2.2.1 RTSJ scope principles

In traditional Java, all objects are allocated from heap memory and are subject to

garbage collection. Heap memory is “a pool of memory available for the allocation

and de-allocation of arbitrary-sized blocks of memory in an arbitrary order” (Wilson

et al., 1995). Each block in the heap memory contains a number of bytes known as

single allocation unit to store the application objects (Kim and Hsu, 2000). In Java,

the heap is the area of memory where the garbage collector searches for objects to

free more space for future dynamic allocations. Failure to de-allocate dead objects

(i.e., objects that will never be used again by the application) may eventually result in

an out-of-memory space error for subsequent dynamic allocations.

The RTSJ provides, in addition to the heap memory, two other types of memory: a)

immortal memory which stores objects that remain alive until the application

terminates and, b) scoped memory which has a bounded lifetime and where objects of

similar lifetime should reside. There is only one immortal memory instance and it is

created when the real-time Java VM starts. Immortal memory and scoped memory

areas are only entered by schedulable objects (real-time threads or asynchronous

event handlers). Scoped memory can be assigned by parameters to specify the initial

and maximum size of the scoped memory areas in bytes and optionally by the

Runnable object that executes within the scope. Each scope can be entered by many

schedulable objects which will allocate objects inside the scope. Objects in the scope

cannot be reclaimed individually - the whole scope has to be freed at the same time,

giving the application predictable timing behaviour. Scoped memory uses a reference

counting technique to free its contents. For example, each time a schedulable object

enters a scoped memory passing a Runnable object to be executed in that scoped

Chapter 2:Literature Review

15

memory, the reference count increases by one. Conversely, when the Runnable object

finishes executing within the scope the reference count decreases by one. If the

reference count reaches zero, objects are freed and the scope is marked for reuse

(Bruno and Bollella, 2009).

The RTSJ also introduces new classes of real-time threads, RealtimeThread and

NoHeapRealtimeThread. A RealtimeThread class has a more precise set of

scheduling characteristics than a standard Thread class in Java. A

NoHeapRealtimeThread or RealtimeThread instance can pre-empt garbage collection.

For instance, the real-time garbage collector (RTGC) in Sun RTS 2.0 can be pre-

empted by NoHeapRealtimeThreads and RealtimeThreads with priorities higher than

the RTGC; however, the RTGC in Sun RTS 2.0 can boost its priority to a higher

configurable-programmer level by the VM when the amount of free memory falls

below a pre-defined threshold (Robertz et al., 2007). However, if the garbage

collector is running and the RealtimeThread starts, the latter has to wait for the

garbage collector to reach a safe pre-emption point (when all scanned objects in the

heap are marked as either alive or dead); at that point, the garbage collection process

can be pre-empted by the RealtimeThread without impacting the consistency of the

heap. The NoHeapRealtimeThread is similar to RealtimeThread but does not access

the heap and therefore does not interfere with the garbage collection process (Bruno

and Bollella, 2009). However, in some cases, the developer is advised to avoid

NoHeapRealtimeThread overwriting objects allocated in immortal memory to avoid

unexpected interaction with the garbage collector (Auerbach et al., 2007). This occurs

when object B (allocated in the heap) needs to be modified as a consequence of

overwriting object A (allocated in the immortal memory) by the

Chapter 2:Literature Review

16

NoHeapRealtimeThread. Subsequently, the NoHeapRealtimeThread may be forced to

wait for the garbage collection that runs in the heap to finish its cycle.

2.2.2 RTSJ Memory management APIs

The MemoryArea class is an abstract class from which different memory subclasses

are inherited. One of its subclasses, ScopedMemory also has two subclasses:

VTMemory and LTMemory. In LTMemory, allocation time is linear with respect to

object size if the space used within the scope is less than the initial size, while

allocation time varies in VTMemory depending on the memory allocation algorithm

used in an RTSJ implementation (Bruno and Bollella, 2009). Scopes can also be

nested in RTSJ. Nesting occurs when a schedulable object enters a scoped memory

area; while executing in that scoped memory, the schedulable object enters another

scoped memory area; the first scoped memory area becomes the parent of the second.

Figure 2.1 shows an example of a RealTimeThread forming nesting scoped memory

areas (A, B, and C). A stack of scoped memory areas is created for the thread to

maintain the sequence where scoped memory areas have been entered. So the scope

stack of each thread contains the list of all scoped memory areas entered by the thread

in order.

In other words, while executing code by a thread in the scope of memory ‘A’, an

enter method for the scope of memory ‘B’ might be called. Henceforward, we will

call ‘A’ the parent (outer scope) and ‘B’ the child (inner scope) since objects

allocated in A, by definition, have a longer life than objects allocated in B. Since a

scope can be entered by many threads at the same time, it can be a parent of many

other scoped memory areas.

Chapter 2:Literature Review

17

Figure 2.1: A RealTimeThread forms nesting scopes, scope stack is created.

The key advantage of using nested scoped memory areas is the potential advantage of

memory savings since the ‘child’ (inner scope) memory areas have shorter lifetimes

than their (outer scope) parent. As a technique, nesting can be used when a

schedulable object needs to allocate different objects that have different lifetimes into

memory; the developer then allocates these objects into different nested scoped

memory areas according to object lifetimes (Baker et al., 2006). Objects in the child

scoped memory areas are de-allocated as soon as the schedulable object has finished

executing in that child scope; dead objects in the child scope thus never wait for

objects in the parent scope to die before being de-allocated themselves. The following

is the list of the real-time thread and memory area class methods to obtain

information about a memory scope area:

 getCurrentMemoryArea(): static method which returns the current

allocation context.

 getMemoryArea(): non-static method which returns the initial memory

area used.

Scope A

Scope B

Scope C

public class Thread1 extends RealTimeThread {
............
 ScopeA.enter(new Runnable{

 ScopeB.enter(new Runnable{

 ScopeC.enter(new Runnable{

 }) //exist Scope C

 }) //exit Scope B

 }) //exit Scope A

};

Scope Stack

Chapter 2:Literature Review

18

 getMemoryAreaStackDepth(): returns the size of the current schedulable

object’s scope stack.

 getOuterMemoryArea(index) returns a reference to the memory area at the

stack at index given. Stack access is zero-based.

 enter(): to enter a memory scope where all new created objects in ‘run’

method of the Runnable object or the schedulable objects will be allocated

inside this scope.

 executeInArea(): if code is executed in the child scope and some part of it

needs to be executed in the parent code, the executeInArea method can be

used to change the current allocation context.

 getReferenceCount(): is used with ScopedMemory class and returns the

reference count of this scoped memory area.

 memoryConsumed(): returns the amount of memory consumed in bytes of

the current memory area.

 memoryRemaining(): returns the amount of remaining memory of the

current memory area.

2.2.3 Scoped Memory Reference Semantics

Since many memory areas (scoped memory, immortal memory, heap memory) may

exist in an application, there are limitations on how objects inside them may hold a

reference to objects in different memory areas. The RTSJ rule is that a memory scope

with a longer lifetime cannot hold a reference to an object allocated in a memory

scope with a shorter lifetime; otherwise dangling references could occur at runtime

(i.e., pointers to objects which are no longer considered alive). When an object holds

a reference to another object, it implies that the first object calls the other object’s

method or variables. For example, all objects, wherever they reside, can hold

references to objects in immortal memory; such memory will never be reclaimed

during the application’s execution time, so no dangling references can occur.

Similarly, objects in heap and immortal memory must never hold references to

objects in scoped memory areas as these may be freed at any time (de-allocating

Chapter 2:Literature Review

19

objects in a scoped memory area is not subject to the garbage collection process and

is technically independent of de-allocation of objects in other scoped memory areas).

A scoped memory area cannot hold a reference to an object allocated to an inner

scope. Since scoped memory areas can be shared by different schedulable objects, a

single parent rule should be applied to avoid scope cycling, which occurs when two

or more schedulable objects enter a different number of scoped memory areas at the

same time. For example, assume a real-time thread T1 enters scope A then B. If, at

the same time, a T2 real-time thread tries to enter scope B then A, this is prohibited

by the single parent rule which ensures each scoped memory has one parent scope. In

other words, each scope has one parent and all schedulable objects should follow the

same sequence of entering the scoped memory areas. Any wrong assignment by the

developer results in a runtime error; equally, exceptions such as

IllegalAssignmentError, ScopedCycleException are thrown on attempted violations

of the memory access rules and the single parent rule (Bruno and Bollella, 2009).

Table 2.1 summarizes the assignment rules between memory areas to avoid dangling

references at runtime. Local variables are collected automatically when methods exit.

Object Stored In Can Reference

Heap?

Can Reference

Immortal?

Can Reference

Scope?

Heap Yes Yes No

Immortal Yes Yes No

Scoped Yes Yes Only if objects

reside in the same

scoped memory

areas or in the

outer scoped

memory

Local variables Yes Yes Yes

Table 2.1: Assignment rules (Dibble, 2008, Bruno and Bollella, 2009)

Chapter 2:Literature Review

20

2.2.4 Scoped memory in non-RTS Java virtual

machines

Scoped memory management implemented in Java RTS virtual machines has some

distinct features that make it different from region-based memory management

implemented in non-RTS Java virtual machines. One of these features is that in RTSJ,

scoped memory areas are created explicitly and objects allocated into scoped memory

areas manually - de-allocation of the scoped memory areas and finalizing of objects is

undertaken automatically by the virtual machine. Finalizer methods are used to clean

up legacy code and temporary files. Object finalizer methods are discouraged in RTSJ

because of their unpredictability and their impact on schedulability analysis

(Bøgholm et al.). In other standard Java virtual machines that (potentially) can

include region-based memory management, both allocation and de-allocation are

achieved manually or explicitly. For instance, Cherem and Rugina (Cherem and

Rugina, 2004) transformed Java code into region annotation-based code which

included the creation, removal and passing of regions as parameters and allocating

objects into these regions. All regions were created in heap memory. Static analysis

was used to define region and object lifetimes; significant free space was saved in

some of the Java Olden benchmarks (such as power and tsp benchmarks). On the

other hand, for some benchmarks such as bh, health, and voronoi, the garbage

collection version was an improvement over the region-based version in terms of

memory saving which is an indication of static analysis drawbacks. Static analysis

gives only approximations of object lifetimes and may allocate all objects into only

one immortal region and consequently a memory leak occurs (Cherem and Rugina,

2004). Another approach to developing Java virtual machines using scoped memory

was that proposed by Garbervetsky et al., (Garbervetsky et al., (2005), where

Chapter 2:Literature Review

21

creation instructions are inserted at the beginning of each method, together with exit

statements for that scope at the end of the method, as the following example

illustrates:

// This code is not an RTSJ code, it is written for a non-RTSJ //

virtual machine

void m0(int k)

{

ScopedMemory.enter(new Region("m0"));

 // define new objects to be allocated in the scoped memory

 ScopedMemory.determineAllocationSite(RegisterExample.m0_2);

 ScopedMemory.exit();

 }

At the beginning of the method m0, a scoped memory is entered and all objects

allocated by the method m0 are stored in that scoped memory area; in the last line of

the method m0, an exit statement is inserted to exit the scoped memory area. To

decrease the impact of fragmentation in scoped memory (i.e., holes in memory

resulting from freeing blocks randomly (Wilson et al., 1995)), run time analysis was

undertaken in (Garbervetsky et al., 2005) to allocate objects into either the scoped

memory related to the current method they were created in, or to the parent scoped

memory belonging to the methods in the call stack of the current method. Their

approach eliminated runtime reference checks between scoped memory areas and

runtime analysis was used to minimize fragmentation. Objects were allocated into one

of the available candidate scoped memory areas according to a given performance

criteria (e.g., minimizing memory, fragmentation). The approach required the logging

of non-trivial amounts of runtime information about scoped memory areas’ remaining

sizes and non-fragmented spaces in them. A prototype of the tool to automate the

transformation of the application was developed, but it lacked the manipulation of

both multi-threading and recursion and, in our opinion, requires evaluation on

different real-time case studies.

Chapter 2:Literature Review

22

2.3 Current problems and existing solutions

Many problems with using scoped memory management have been described in the

literature. For example, Beebee and Rinard (Beebee and Rinard, 2001) claim that

real-time Java programs often need the help of other debugging tools and static code

analysis to avoid convoluted errors occurring; examples include reference check

errors and memory leaks. In this section, we categorize these problems to understand

the different obstacles in the use of scoped memory in RTSJ.

2.3.1 Time overheads

Time overheads result when the virtual machine checks for every assignment between

two objects obj1.v1=obj2.v2 allocated into two different scoped memory areas and

for every attempt to enter a memory area by a schedulable object to ensure the single

parent rule among scoped memory areas. Defoe et al., (2007) provided asymptotic

time-complexity analysis of abstract data types such as stack and queue when RTSJ

scoped-memory areas and NHRTs (No Heap Real-time Threads) were used . Results

concluded that a linear complexity is associated with a scoped memory model and

complexity will increase when a nesting scoped memory model is used. However, the

authors did not test any RTSJ implementation. In Hamza and Counsell (Hamza and

Counsell, 2010), the features of scoped memory in RTSJ implementation SUN RTS

2.0 were explored for large numbers of objects and investigated the effects of varying

numbers of allocated objects in the context of nested scoped memory areas when

compared with un-nested. Empirical results showed that more scoped memory areas

led to increases in execution time and when nested scoped memory areas were used,

execution times increased proportionately. This indicated that the SUN RTS 2.2

Chapter 2:Literature Review

23

virtual machine scans the scope stack, regardless of its depth, to perform memory

reference checks.

There are two aspects that need to be considered to overcome time overheads. The

first is to improve assignment rule implementation and reduce time checking at

runtime. The second is to eliminate the use of reference checks by using either static

analysis (Corsaro and Cytron, 2003) which statically allocates referenced objects in

the same scoped memory or by improving the performance of the application through

preloading of some classes at compile time (Bruno and Bollella, 2009). One of these

solutions was introduced by Corsaro et al., (Corsaro and Cytron, 2003) who improved

the implementation of the single parent rule algorithm (a scoped area has exactly zero

or one parent) and the reference checks algorithm by using different data structures

that make the necessary runtime checks in constant, rather than linear time. In their

proposed solution, checking the validity of references did not require the whole scope

stack to be scanned but rather to use an additional data structure to maintain ancestor

information for each scope; a parenthood tree was created representing the scoped

memory model of the application with depth value for each scoped memory. The

algorithm checks this information to help justify the legality of references. They

implemented their new approach in jRate (an open source RTSJ implementation) and

tested its performance by using RTJPerf benchmarks. Results showed that their

proposed algorithms gave a constant time overhead regardless of the depth of the

scope stack. A more compact and faster access check was introduced by (Palacz and

Vitek, 2003) through a subtype test algorithm to provide constant-time RTSJ memory

access checks; a write barrier was needed to modify the virtual machine to achieve

constant time checks.

Chapter 2:Literature Review

24

Another solution was presented by Higuera-Toledano (Higuera-Toledano, 2008b,

Higuera-Toledano, 2008a) who proposed changing the single parent assignment rule

logic. When scoped memory areas are created, their parents are specified at the time

of creation and not at the time they are ‘used’ by schedulable objects. They also

allowed (in their proposed algorithm) bi-directional references at the cost of longer

lifetimes for scoped memory areas. Their new algorithm still needs to be evaluated

after implementing it in the Java virtual machine. Higuera-Toledano (Higuera-

Toledano, 2008a) suggested a new algorithm to allow cyclic references among scoped

memory areas by replacing the single parent rule relationship with a bit-map table.

For each scope in the system, information about which scoped memory areas should

be collected is saved in a bit-map table. According to this information, a scoped

memory area will not be collected until two conditions are satisfied: first, the scope

reference count has fallen to zero and second, in the bit-map table for that scope there

is inner-reference (a reference from another scoped memory area). However, this

technique increases scoped memory area lifetimes and produces an overhead in terms

of the execution time provided by extra checks.

2.3.2 Space overheads

Objects created in scoped memory areas cannot be de-allocated individually - the

whole scope will be de-allocated when no active threads run inside that scope (Pizlo

and Vitek, 2008). Therefore, defining similar object lifetimes and assigning them into

associated scoped memory areas is important for saving memory space and reducing

the number of dead objects waiting for all objects in the same scope to die. That said,

allocating objects in different scoped memory areas manually according to their

lifetimes is a complex task for developers, since it requires knowledge of the lifetimes

Chapter 2:Literature Review

25

of all objects in the application; this becomes more difficult when the application has

a large number of different object types. Different approaches have been developed to

identify object lifetimes and their associated scoped memory areas in Java. All

current approaches in the literature have investigated scoped memory allocation in

sequential programs only and they do not cover multi-threaded applications and the

sharing of objects among many threads. For instance, Deters and Cytron (Deters and

Cytron, 2002) present an algorithm based on dynamic analysis and object referencing

behaviour that satisfies RTSJ referencing rules. One scope is assigned to each method

in the application - a method call stack is created when a method A calls method B

and method B calls method C. The call stack of the method A will follow from

bottom to top the following sequence: A, B and C. Objects created in a method A, for

instance, might become collectable when method C finishes executing its code - those

objects will be de-allocated when method C terminates. The algorithm was

implemented on Sun’s JVM version 1.1.8 and benchmarks from Java SPEC suite

were used to measure the lifetime of objects. Results showed that many objects do not

become collectable for a long time due to the reference rule constraints of the RTSJ.

These state that objects that reference other objects should reside in the same memory

area to avoid reference violations between memory areas. However, in general, using

dynamic traces fails to cover all program behaviours when there is a possibility of

applying different sets of inputs. Dynamic analysis results change according to the

data set inputs and therefore different behaviours of the application arise. Their

approach produced too many regions and needs to consider multi-threading behaviour

of real-time applications.

Kwon and Wellings (Kwon and Wellings, 2004) proposed an approach for building a

new memory model to map one memory area for each method. In their approach,

Chapter 2:Literature Review

26

memory areas cannot be multi-threaded. If each method has one scoped memory, the

application will have excessive numbers of scoped memory areas (when there are

many methods). Consequently, that increases the execution time of the application as

reported by Hamza and Counsell (Hamza and Counsell, 2010). Previous work on

garbage collection algorithms by Hirzel, et al., (2003) showed that there was a strong

correlation between connectivity and the lifetime characteristics of objects. They

introduced a new garbage collection process which allocated objects into partitions

based on their connectivity and de-allocated (at each collection) specific partitions

using their connectivity information. A semi-automated, static analysis tool was

developed by Salagnac et al., (2007) to allow a compiler to determine object lifetimes

based on the theory of connected objects correlations with their lifetimes. An

allocation policy was developed to automatically allocate objects into different

regions in memory at runtime. The static algorithm computed approximations to the

connectivity of heap objects. A static analysis tool gave feedback to the developer

about the areas of code where objects (or classes) leaked so that they could improve

or amend their code. The study did not use one of the RTSJ implementations, but ran

experiments on the JITS (Just In Time Scheduling) architecture providing a J2SE

compliant Java API and virtual machine. They evaluated their approach using JOlden

benchmarks and measured memory occupancy during two executions, one with GC

and the second with regions.

Results showed that most of the benchmark’s applications used less heap space when

using regions as opposed to garbage collection. On the other hand, some of the

applications suffered from memory leaks and showed that garbage collection out-

performed regions in terms of memory space since static analysis did not give precise

information about application behaviour in general. Borg and Wellings, (2006) also

Chapter 2:Literature Review

27

investigated how time and space overheads of the region-based memory model could

be reduced when information on region lifetimes was available to the application at

runtime. The conclusion was that the more information obtained about program

semantics and flow, the less time and space overhead occurred. They considered

region lifetimes to be expressed in the application instead of an object graph but this

was only possible if the information was implicitly observable in the application, e.g.,

task flow in a control system.

All current approaches that have tried to allocate objects into regions/scoped memory

areas still suffer from memory leaks since static analyses often give an over

approximation to object lifetimes. On the other hand, all current approaches in the

literature fail to consider object allocation in multi-threaded applications.

2.3.3 Development complexity

2.3.3.1 Assisting Tools

Using scoped memory management complicates the development of applications in

real-time Java (Magato and Hauser, 2005). The developer needs to be aware of

memory concepts and object allocation to ensure memory safety and avoid runtime

errors caused by illegal references between memory areas; specifying memory

requirements during the execution of the application is a non-trivial task

(Garbervetsky et al., 2009) and can be made simpler/less onerous through the use of

tools. Garbervetsky et al., (2009) proposed a prototype model consisting of many

tools for a) specifying required region sizes b) measuring the memory requirement of

the source code and c) transforming the Java code into region-based code. Static

Chapter 2:Literature Review

28

analysis was also used to capture information in object lifetimes. They evaluated their

prototype on two real-time benchmarks, namely CDx and a Banking case study to

show how this chain of tools helped developers in managing memory for different

Java virtual machines. For the CDx benchmarks, 5 regions were created and for the

Banking case study, 18 regions were created. The number of regions in the

transformed code was equal to the number of methods that included allocation sites

(program locations that create a new object (Singer et al., 2008)). Object lifetimes

were identified by using static analysis which defined both objects created in the

method and those that were either still alive or still be collected after the method had

finished execution. However, their approach still requires some development to

measure performance of the region-based code and comparison with the GC-based

code. Currently, their approach only works with simple data structures such as arrays

and integers and needs to be developed to handle more complex data structures and

specific programming aspects such as recursive methods and multi-threading

behaviour. Allocation made by native methods also needs to be considered in the

future (native methods are chunks of code written by other programming languages

such as C to be imported into Java programs (Liang, 1999)).

2.3.3.2 Separating Memory Concern From

Program Logic

Simplifying the development process through the separation of memory concerns

from program logic has been considered a new research direction in region-

based/scoped memory management (Borg and Wellings, 2006, Andreae et al., 2007).

Ideally, the onus of memory management should be devolved as far as possible to the

system rather than the developer. Andreae et al., (2007) introduced the ‘Scoped Types

Chapter 2:Literature Review

29

and Aspects for Real-Time Systems (STARS)’ model to reduce the burden on

developers through the use of scoped types and aspects. Scoped types are based on

simple Java concepts (packages, classes, and objects) and give programmers a clear

model of their program’s memory use by creating packages that group classes

allocated into one scope. Each package equates to one scope. The main package is the

immortal package that has sub-packages to model nested scoped memory areas.

Scoped types ensure that the allocation context of any object is obvious from the

program text. Developers have to decide on the packaging structure according to the

functionality of the application and class coupling. Aspect-oriented programming was

used to separate the real-time and memory behaviour of the application from its

functional aspects (the application logic). After the program had been statically

verified, aspects weaved necessary elements of the RTSJ API into the system to

define scoped entering using the declarative specification of scoped types. In their

approach, reference checks between scoped memory areas were avoided at runtime

due to checks on the scoped type system at compile time. These checks ensure that

allocating objects in scoped memory areas conforms to the hierarchical structure of

the application. They evaluated their prototype model by implementing the STARS in

the OVM framework, a tool that assists in creating real-time Java virtual machines

(Baker et al., 2006). They measured the performance of three versions of the CDx

benchmark: a) with an RTSJ version, b) with a real-time garbage collection version

and, c) with the STARS version. Results showed that STARS worked 28% faster than

programs run on RTSJ or Java with real-time garbage collection. However, the

approach required modification of the virtual machine to add functionality provided

by scoped types and aspects. On the other hand, scope types did not manipulate array

types and required involvement of the developer to decide on the package names and

Chapter 2:Literature Review

30

structures in the nesting of memory as well as definition of classes belonging to a

specific scope.

A more abstract level approach to STARS is the ownership types by Boyapati et al.,

(2003). Each object owns other objects and references to objects are only allowed

through their owners. Such an approach guarantees the safety of scoped memory area

references by implementing hierarchical regions in ownership types. The ownership

relationship between objects is defined by the developer and is used as criteria for

grouping objects into scoped memory areas instead of using object lifetimes. The

ownership types still needed some changes to the Java syntax and explicit type

annotations (Andreae et al., 2007). Moreover, their approach exposed programming

overheads as the evaluation results showed more lines of code were added to micro-

benchmarks used in the evaluation. Zhao et al., (2008), defined implicit ownership

rather than explicit ownership. The purpose was to decrease the burden on the

developer in assigning explicit parameters to classes to define ownership or region

information in the program. The allocation contexts of the classes in implicit

ownership are defined by their position in the nested class definition hierarchy which,

in turn, shapes their instances’ position in the dynamic nested scoped memory areas.

They presented ‘ScopeJ’, a simple multi-threaded object calculus with scoped

memory management, supported by a type system which ensured safety of object de-

allocation. They applied a ‘handoff’ pattern to transfer data between sibling scoped

memory areas without the need to use a copying objects mechanism. Temporary

references should be released at an appropriate time to avoid dangling references. The

goal of ScopeJ was to offer an alternative to the memory model of the RTSJ.

Chapter 2:Literature Review

31

2.3.3.3 Design Patterns and Components

Design patterns can be defined as solutions to commonly-encountered design

problems and have been introduced to simplify and solve programming issues related

to scoped memory management and real-time threads (Benowitz and Niessner, 2003,

Bollella et al., 2003, Otani et al., 2007, Alrahmawy and Wellings, 2009). In theory,

application of design patterns in any sphere of software development should result in

code that is efficient and highly maintainable. A patterns catalogue was introduced by

(Benowitz and Niessner, 2003) and included programming designs to solve scoped

memory management issues such as:

 Scoped Memory Entry per Real-Time Thread: in this pattern, each real-

time thread runs in one scoped memory to avoid interference with the

garbage collection that runs only in the heap. However, the pattern does

not allow sharing data between threads. If there is data that has a longer

lifetime than its specified thread, then this data should be copied from the

current scoped memory to either immortal memory or to the heap. If data

is copied onto the heap, it will be subject to garbage collection. On the

other hand, if data is copied into immortal memory it will remain there

indefinitely and consequently, immortal memory size will increase.

 Factory Pattern with Memory Area: A Factory pattern is used when there

is a need to create different objects implementing different interfaces,

without the need to reveal the implementation class. The Factory class

should be placed in immortal memory since it is a singleton (the

instantiation of a class is only to one object). When using a Factory pattern

with scoped memory areas, each object creation method within the Factory

http://en.wikipedia.org/wiki/Instantiation_%28computer_science%29
http://en.wikipedia.org/wiki/Object-oriented_programming

Chapter 2:Literature Review

32

has a memory area parameter which defines where to create the object. In

this case, the immortal memory area will be the parent of all created

scoped memory areas. The Factory pattern avoids violation of the single

parent rule.

 Memory Pools introduced by (Dibble, 2002) reduce the footprint of

immortal memory by using a pool of already created objects from a

specific class. When the application needs to create a new object it will ask

the pool to release an unused object. When the application finishes using

this object, it will be returned to the pool and made unusable for

subsequent use. Although this pattern is a way of recycling objects in

immortal memory, it has disadvantages. First, it is a manual de-allocation

approach where each pool of fixed number of objects can be created only

for a specific class. Second, it may cause a memory leak since it reserves

memory for a pre-allocated fixed number of objects which may not all be

used by the application.

Memory Blocks overcome the problem of having a pool of fixed number of objects of

a specific class. It uses a block of bytes as a unit to store an object that could be

instantiated from a different class. When the object is allocated into immortal

memory it is serialized in the block; when the object is no longer used it will be de-

serialized from it. When de-serializing finishes, the block will be available for further

allocation. However, this method is a low-level programming technique and it has

costs in terms of serializing, de-serializing and input/output operations.

Some of the introduced design patterns are already included in (Gamma et al., 1994)

but they have been updated to work with RTSJ rules. For example, Meersman et al.,

Chapter 2:Literature Review

33

(2004) gives guidelines for implementing Singleton, Factory, and Leader-Follow

patterns for RTSJ applications. The Singleton instance should be allocated in

immortal memory to make all threads access it. The Leader-Follow pattern is used to

manage concurrent requests to a server and give different threads different priorities

when they are activated; all threads are NoHeapRealtimeThreads and will be

allocated in one scoped memory. Moreover, each of these threads is associated with

another scoped memory to execute code that handles specific events. The Memory

Tunnel is a new pattern that enables different schedulable objects running in different

scoped memory areas to communicate with each other; the ‘tunnel’ is a temporary

memory queue that should be allocated into a non-scoped memory area. The Memory

Tunnel requires deep copying of objects; for example, if real-time thread A wants to

pass an object to another real-time thread B, then thread A copies the object into the

tunnel memory. The real-time thread B will retrieve that object from the tunnel

memory by copying it to its scoped memory. The tunnel queue must be allocated

either in the heap or in immortal memory and both have strict referencing rules in

RTSJ. The Handle Exceptions Locally pattern is a new pattern which ensures that

when exceptions are raised, they are executed in the same memory area where they

have been raised (or in one of current memory area’s ancestors to avoid reference

violation errors).

More design patterns are also introduced by (Pizlo, 2004):

 The Scoped Run Loop Pattern: frees memory space allocated for

temporary objects by the loop code and will not be used for the next

iteration of the loop. Hence this pattern will reclaim objects each time the

loop finishes its iteration. This pattern does not allow referencing from any

Chapter 2:Literature Review

34

code outside the loop and therefore a different pattern should be used (such

as the multi-scoped pattern).

 The Encapsulated Method Pattern; this pattern executes a method body in

a scoped memory area and this can be used for methods which include

newly created objects not to be used after the method finishes its

execution. An example is a computational method which uses temporary

allocation during its task of calculating a specific formula.

 The Multi-Scoped Object Pattern: is an instance of a class that can be

spanned over different scoped memory areas. This occurs when the class

creates different object lifetimes and it is important to allocate them into

different scoped memory areas according to their lifetimes.

 Portal Object Idioms: portal object is an object created in the scoped

memory and can be shared by different threads that enter the scope. The

developer has to define the portal object. The downside of this pattern is

that threads have to access this scope to modify the portal object. Using

this pattern requires synchronization among threads sharing this object.

 The Wedge Thread Pattern: is a thread that enters a scope and does

nothing. It is used to make the scope live longer until the specific condition

is satisfied. This pattern can be used when a thread modifies a scoped

memory’s portal object and it needs to exit that scope before another

thread enters. It is then necessary to keep the scope alive until the other

thread enters and reads or modifies the portal object. This pattern is

therefore considered as a method to communicate and pass objects among

threads.

Chapter 2:Literature Review

35

 The Handoff Pattern: This pattern is used when two sibling scoped

memory areas need to pass objects between each other. One sibling will

store the object in the parent scope (the reference is allowed from the child

scope to the parent scope); the other sibling scope will then read that object

from the same parent scope.

Based on grouping similar lifetime objects perspective, The Lifecycle Memory

Managed Periodic Worker Threads pattern was introduced in Dawson (2007) to

simplify developing real-time applications using scoped memory, the rule for this

pattern is to group similar lifetime objects in one scoped memory. When periodic

threads run together to accomplish a specific task, four main categories of object

lifetimes can be defined as follows (see Figure 2.2):

 Retain Forever: Objects with this lifetime are alive until the application

terminates and are accessible to all threads.

 Retain Thread Group: Objects with this lifetime will not be reclaimed until

all the threads that share these objects have terminated. These objects are

accessible only by threads within the group of threads.

 Retain Thread: Objects with this lifetime will be created by a specific thread

and are not accessible by other threads.

 Retain Iteration: Objects with this lifetime are created during the iteration

and will not be used outside of the iteration.

The limitation of that approach is that it scarifies the granularity of the memory

management model and may consume more space than required; nevertheless, the

Chapter 2:Literature Review

36

developer has to decide in advance which objects will be allocated in which regions

according to the four categories mentioned before.

Figure 2.2: Scope stack (Dawson, 2007)

The Real-Time Specification for Java (RTSJ) is the first Community Process' Java

Specification Request (JSR-1). After finding some faults in the implementation and

according to improvements requested based on the experience of using RTSJ version

1.0.1 and 1.0.2 (developed in 2004 and 2006 sequentially), the Java Community

Process’ Java proposed the Java Specification Request (JSR 282) as a modified

version of RTSJ to introduce RTSJ 1.1 with new promising features. However, the

implementation is not yet complete and some alpha versions are available on

http://www.timesys.com/java/. One feature of RTSJ 1.1 related to scoped memory

usage is the concept of “scope pinning” which replaces the need for wedge-threads

and enables the scope to be alive even though there are no schedulable objects

running within it (Dibble and Wellings, 2009).

A component model has been introduced by many studies to be implemented in RTSJ

as a means of facilitating design, implementation and maintenance (Alrahmawy and

Wellings, 2009). A component is “a software entity interacting with its environment

via a well-defined interface, making it ready for composition and reuse” (Etienne et

al., 2006). Etienne et al., (2006) described the applicability of Component-Based

http://www.timesys.com/java/

Chapter 2:Literature Review

37

Software Engineering (CBSE). RTSJ was investigated to increase the abstract level

representation of real-time applications. Each component was allocated into one

scope to provide flexibility of component management and to ensure reference rules

were not violated; this increased execution time of the application, but, on the other

hand, did not express the real-time memory concerns separately from the business

architecture. RTSJ concerns should be specified at early stages of architectural design

to simplify the implementation process (Plsek et al., 2008). The component model

proposed in (Plsek et al., 2008) shows different steps of design: a business view of the

real functionalities of the application, a memory management view and a thread

management view. Assigning scoped memory areas to tasks is left for the developer

to decide.

RTZen is a Real-Time Java Object Request Broker (ORB) available on

http://doc.ece.uci.edu/rtzen/ (Potanin et al., 2005, Raman et al., 2005b) and is

considered as highly predictable, real-time Java middleware for distributed systems. It

is designed to hide the complexities of RTSJ for distributed systems. There is no heap

memory used in this architecture and the model consists of various components. Each

component is associated with a scoped memory and a hierarchy of scoped memory

areas is created to ensure safety of reference rules. Since the lifetimes of the

components are explicit in the application, nesting scoped memory areas were used to

allocate long-lived components into parent scoped memory areas and short- lived

components into child scoped memory areas. Scoped memory exists on the server and

client side and design patterns are implemented in middleware to increase the

efficiency of memory management. The design patterns used are:

 Separation of Creation and Initialization.

http://doc.ece.uci.edu/rtzen/

Chapter 2:Literature Review

38

 Cross-Scope Invocation: to traverse the scoped memory areas hierarchy in

order to pass data through a scoped memory that is a common ancestor of

both objects (allocated into different scoped memory areas).

 Immortal Exception Pattern: a schedulable object running inside a scoped

memory may raise an exception according to a runtime error and the

exception handler may need to access and allocate objects in a different

scoped memory area rather than the local scoped memory where it was

raised. Therefore, to avoid violating RTSJ referencing rules among scoped

memory areas, exception handler objects will be allocated in immortal

memory where all objects, wherever they reside, can hold references to

objects in immortal memory. Exception handler objects allocated in

immortal memory will be reused for possible allocation by later exception

handlers.

 Immortal Facade: is a pattern which hides the complexity of scoped

memory area hierarchies and simplifies the maintenance of large

applications by encapsulating the logic that handles cross-scope

invocation.

A runtime debugging tool IsoLeak was developed in (Raman et al., 2005a) to

visualize scoped hierarchies and find potential memory leaks by defining transient

scoped memory areas; however, how the tool defines leaks is not obvious. RTZen

was predictable compared to other Java applications that did not use RTSJ. That said,

memory consumption was not specified in their experiments. An Extended Portal

Pattern was proposed by (Pablo et al., 2006) to enable referencing portal objects from

outside its current scope. However, this approach needs to modify the virtual

Chapter 2:Literature Review

39

machine; it also adds extra overheads since it forces a thread that needs to reference

the portal object to enter the creation context of the portal object itself (which might

include nested scoped memory areas).

The three techniques discussed (i.e., software tools, separation of memory concerns

from program logic and patterns) are three research directions that show promise in

addressing the overheads and, more particularly, the complexity that arises when

considering the use of scoped memory management. While the benefits of scoped

memory management are relatively clear, the process of memory allocation in the

same context is far from trivial. A list of RTSJ-design patterns is summarized in

Table 2.2.

RTSJ-specific patterns Reference

Scoped Memory Entry per Real-Time Thread
(Benowitz and Niessner,

2003)

Factory Pattern with Memory Area
(Benowitz and Niessner,

2003)

Memory Pools

(Benowitz and Niessner,

2003)

(Dibble, 2002)

Memory Blocks
(Benowitz and Niessner,

2003)

Singleton, Factory, and Leader-Follow

Patterns
(Meersman et al., 2004)

Memory Tunnel (Meersman et al., 2004)

Handle Exceptions Locally (Meersman et al., 2004)

Scoped Run Loop Pattern (Pizlo, 2004)

Encapsulated Method Pattern (Pizlo, 2004)

Multi-Scoped Object Pattern (Pizlo, 2004)

Portal Object Idioms (Pizlo, 2004)

Wedge Thread Pattern (Pizlo, 2004)

Handoff Pattern (Pizlo, 2004)

Scope Pinning (Dibble and Wellings, 2009)

The JSR-302 Safety Critical Java

specification (SCJ)

(Henties et al., 2009)

(Bøgholm et al., 2009)

Component-Based Software Engineering

(CBSE)
(Etienne et al., 2006)

Component Model (Plsek et al., 2008)

Separation of Creation and Initialization (Potanin et al., 2005)

Chapter 2:Literature Review

40

Cross-Scope Invocation

Immortal Exception Pattern

Immortal Facade

(Raman et al., 2005b)

An Extended Portal Pattern (Pablo et al., 2006)

Table 2.2: A list of common RTSJ-design patterns.

(Kwon et al., 2002) have proposed a profile for real-time Java for high-integrity real-

time systems. The profile adopts architecture with an Initialization Phase and Mission

Phase and restricts automatic garbage collection to ensure the predictability of system

operation. For safer real-time systems, the JSR-302 Safety Critical Java specification

(SCJ) (Henties et al., 2009) is proposed which is based on the Real-Time

Specification for Java to provide a safer profile for safety-critical systems. Safety-

critical systems are those systems that cannot afford any incorrect or delayed response

and therefore need rigorous verification techniques. The SCJ has no heap memory

and the scoped memory has been further restricted. An SCJ compliant application

consists of one or more missions and a mission may consist of a limited set of

schedulable objects such as periodic event handlers and NoHeapRealtimeThread

instances. Each mission has its own memory area in which temporary objects created

in initialization mode will be allocated. When a mission’s initialization has

completed, mission mode is entered. When a schedulable object is started, its initial

memory area is a scoped memory area entered when the schedulable object is

released and exited when the release is terminated. This scoped memory area is not

shared with other schedulable objects and therefore a ScopedCycleException cannot

occur (Henties et al., 2009).

A safety critical profile developed in (Henties et al., 2009) and predictable profile

developed in (Bøgholm et al., 2009) (more generalized profile based on RTSJ) feature

a simplified scope based memory management structure where scoped memory is

Chapter 2:Literature Review

41

implicitly created for each periodic task and cleared after execution of the task while

it waits for the next periodic release. Design patterns were introduced to simplify the

development of SCJ applications (Rios et al., 2012) such as “Execute with Primitive

Return Value” pattern which is used when a piece of code needs to run in a scoped

memory but a primitive value will be returned once exiting from that scope, and

“Returning a Newly Allocated Object” pattern; the key point here is that objects

created while executing in an inner scope need to be created in an outer scope. The

authors suggested modifying some of the SCJ APIs to such as executeInArea() by

executeInOuter() and to modify some of Java library classes such as HashMap, Stack,

and Vector to be used safely in scoped memory areas and to reduce any possible

memory leak.

SCJ case studies are rare, the cardiac pacemaker case study (Singh et al., 2012) has no

dynamic load, it was proposed to evaluate the concurrency and timing models of two

programming language subsets that target safety-critical systems development:

Safety-Critical Java (SCJ), a subset of the Real-Time Specification for Java, and

Ravenscar Ada, a subset of the real-time features provided by (Ada 2005). The main

purpose of those profiles is to eliminate constructs with a high overhead or non-

deterministic behaviour while retaining those constructs which ensure safe real-time

systems. Results showed that extra timing procedures are required for the SCJ; on the

other hand, a redundant task is required for an Ada solution to prevent premature

termination of the system. A Desktop 3D Printer in Safety-Critical Java case study

was developed by (Strøm and Schoeberl, 2012) as the first real SCJ-based application

controlling a robot to evaluate the specification and its usability for developers of

safety-critical systems. Results showed the need for tools to analyse Worst Case

Execution Time (WCET) and maximum memory usage of the applications. A full

Chapter 2:Literature Review

42

knowledge of the library code is required to prevent creating objects in wrong scopes

and producing dangling references as a consequence.

2.3.3.4 Allocation time

Corsaro and Schmidt (2002) compared two RTSJ implementations of Timesys and

jRate. They used an open-source benchmarking suite called RTJPerf to apply their

tests. Their experimental results showed that scoped memory average allocation times

(the time needed to allocate an array of bytes that comprise the object) were linear

with allocated object sizes in TimeSys implementation, while in jRate the allocation

times were independent of the allocated object sizes. The same authors (Corsaro and

Schmidt, 2003) extended their work to measure the creation time, entering time and

exiting time of the scoped memory area with respect of scoped memory size. Again,

Timesys and jRate RTSJ implementations were studied. Results showed that creation

time relied on the scope size for both implementations. On the other hand, the

entering time of a scoped memory area in a TimeSys implementation varied slightly

with changing scoped memory size from 4Kbytes to 1Mbytes, while in a jRate

implementation the entering time of a scoped memory is more dependent on the size

of the scoped memory area. Exiting time however, did not show any correlation with

scoped memory size for both implementations. In another approach by Enery et al.,

(2007) two different implementations of the RTSJ were compared, namely Jamaica

VM from Aicas and Sun's RTSJ 1.0.0. Their study analyzed memory allocation,

thread management, synchronization and asynchronous event handling. Results

showed that the creation times for scoped memory (the time required for a scoped

memory object to be declared and initialized) were again linear with scoped memory

sizes. Object allocation times were also linear with object sizes. Recent work by

Chapter 2:Literature Review

43

Schommer et al., (2009) evaluated the Sun RTS2.1 from different perspectives; the

relationship between allocation time and object size allocated into memory areas was

explored - the relationship was again shown to be linear. They concluded that

allocation to immortal memory seemed, in general, to take longer than allocation to

both scoped memory types (LTMemory and VTMemory).

2.4 Benchmarks to evaluate RTSJ scoped memory

Table 2.3 shows a list of notable benchmarks used in evaluating real-time Java

implementations. In this section, we only discuss scoped memory features that the

benchmarks evaluated. For example, to measure the memory occupancy during

execution of different memory models, JOlden (Salagnac et al., 2007) was used to

compare heap space growth when regions are created using static analysis. JOlden

benchmarks are not real-time applications but they have typical Java programming

patterns such as (polymorphism, recursion and use of dynamic memory) which must

be supported in a Java real-time environment. Results in Salagnac et al., (2007)

showed that most of the benchmark applications used less heap space when using

regions than garbage collection. However, some of the benchmark’s applications such

as Voronoi showed that garbage collection out-performed regions in terms of memory

space. This, in turn, showed that static analysis did not always give precise

information about object lifetimes. Similar results were obtained in (Cherem and

Rugina, 2004) where significant free space was saved in some of the Java Olden

benchmarks (such as power and tsp benchmarks) when regions were used. However,

for bh, health and voronoi benchmarks, the GC system was better in terms of memory

savings and that in turn demonstrated that static analysis had drawbacks. JOlden

benchmarks are available on:

Chapter 2:Literature Review

44

www-ali.cs.umass.edu/DaCapo/benchmarks.html.

Notable benchmarks

used in evaluating

real-time Java

implementations.

Benchmark

Where used? Why used?

JOlden (Salagnac et al.,

2007)

(Cherem and Rugina,

2004, Salagnac et al.,

2007)

To compare memory occupancy

obtained during execution of

different memory models.

CDx

(Pizlo and Vitek, 2006,

Andreae et al., 2007,

Garbervetsky et al.,

2009, Kalibera et al.,

2009)

To compare the performance of

running in new RTGC to using

scoped memory areas.

RTJPerf
(Corsaro and Schmidt,

2002, Corsaro and

Cytron, 2003,)

 To compare different memory-

reference checking schemes.

 To measure the allocation time

regarding different size of

allocated objects.

 To measure the entering/exiting

times of scoped memory with

respect to its scoped memory

size.

JScoper (Ferrari et al., 2005)

To enable automatic and semi-

automatic tools to translate heap-

based Java programs into scope-

based ones, by leveraging GUI

features for navigation,

specification and debugging.

Chapter 2:Literature Review

45

Two micro benchmarks

(Array and Tree), two

scientific computations

(Water and Barnes),

several components of

an image recognition

pipeline (load, cross,

threshold, hysteresis,

and thinning), and

several simple servers

(http, game, and phone,

a database backed

information sever).

(Beebee and Rinard,

2001, Boyapati et al.,

2003)

To measure the execution times of

these programs both with and

without scoped memory dynamic

checks specified in the Real-Time

Specification for Java.

Java SPEC suite

(SPEC-Corporation,

1999)

(Deters and Cytron,

2002)
Allocate objects into scoped

memory areas.

Table 2.3: Benchmarks to evaluate scoped memory in RTSJ applications

RTJPerf (Corsaro and Schmidt, 2002, Corsaro and Cytron, 2003) is an open-source

benchmarking suite used to measure criteria of real-time Java systems and to apply

different tests such as Timer tests, Threads scheduling tests and Asynchronous Event

Handler Dispatch Delay tests. In Corsaro and Cytron (2003) RTJPerf was used to

evaluate the implementation of the single parent rule algorithm and the memory area

reference checks algorithm in jRate. Results showed that their proposed algorithms

provided constant time overheads regardless of the depth of the scope stack. In

Corsaro and Schmidt (2002) RTJPerf was used to evaluate two RTSJ

implementations of Timesys and jRate. Experimental results showed that scoped

memory average allocation times were different in both implementations, For

example, allocation times were linear with allocated object sizes in Timesys while in

jRate the allocation times did not show any relation to allocated object sizes. In

Corsaro and Schmidt (2003) the work was extended to measure creation time,

entering time and exiting time of the scoped memory area with respect to scoped

memory size for Timesys and jRate. The RTJPerf benchmark was used and results

showed that scoped memory creation time relied on the scope size for both

Chapter 2:Literature Review

46

implementations. On the other hand, the entering time of a scoped memory area

showed different behaviour with respect to different scoped memory sizes in both

implementations. For instance, in the TimeSys implementation there was a slight

impact on entering time when scoped memory size was changed, but there was a

more significant impact observed on jRate implementation. Exiting time however did

not show any relation to the scoped memory size for both implementations. RTJPerf

is a promising benchmark to test new, real-time Java virtual machines and measure

scoped memory performance.

The RTJPerf can be obtained freely at http://jrate.sourceforge.net/Download.php.

The CDx benchmark (Kalibera et al., 2009) is an open-source, real-time benchmark

and was used to evaluate the performance of applications that used scoped memory

compared with the same version of applications that used real-time garbage

collection. It included one periodic NoHeapRealtimeThread which implemented an

aircraft collision detection based on simulated radar frames. The input is a complex

simulation involving over 200 aircraft. In (Pizlo and Vitek, 2006) the latency of

processing one input frame was recorded when real-time garbage collection and a

scoped memory management model were used. Results showed that scoped memory

experienced better performance than real-time garbage collection. The OVM virtual

machine was used in their study. In Garbervetsky et al., (2009) CDx was used to

implement a transformation algorithm from plain Java code to a region-based Java

code and five regions were created. In Andreae et al., (2007) CDx was used to

evaluate a programming model known as STARS (the Scoped Types and Aspects for

Real-time Systems) implemented in an OVM virtual machine. Results showed that

STARS worked 28% faster than programs run on RTSJ or Java with real-time

Chapter 2:Literature Review

47

garbage collection since reference checks were achieved statically. The CDx can be

downloaded from http://adam.lille.inria.fr/soleil/rcd/.

The Java SPEC suite was used in Deters and Cytron (2002) to implement automated

discovery of scoped memory regions for real-time Java based on a dynamic, trace-

based analysis which observed object lifetimes and object referencing behaviour.

Each method was instrumented with a region memory creation statement. An

optimum scoped allocation algorithm was developed to allocate objects into the best

stack frame (stack of pushed scoped memory area). The Java SPEC suite applications

used were raytrace: renders an image, javac: the Java compiler from Sun's JDK 1.0.2,

mpegaudio: a computational benchmark that performs compression on sound files,

and jess: an expert-system shell application which solves a puzzle in logic. Results

showed that too many regions were created due to many creation sites (827 to 1239)

included in each benchmark. The benchmarks comprised a large number of objects

(raytrace has 559,287 objects) - a feature that makes it a reasonable example to study.

The Java SPEC suite can be obtained from www.spec.org/benchmarks.html.

In Boyapati et al., (2003) and Beebee and Rinard, (2001), a variety of benchmarks

were used to measure the overhead of heap checks and access checks after

implementing region creation algorithm. These benchmarks include Barnes, a

hierarchical N-body solver, and Water, which simulates water molecules in a liquid

state. These benchmarks allocated all objects in the heap. Two synthetic benchmarks

Tree and Array use object field assignment heavily. These benchmarks were designed

to obtain the maximum possible benefit from heap and access check elimination.

They implemented the real-time Java memory extensions in the MIT Flex compiler

infrastructure. Flex is an ahead-of-time compiler for Java which generates both native

code and C; it can use a variety of garbage collectors. Results show that reference

http://adam.lille.inria.fr/soleil/rcd/

Chapter 2:Literature Review

48

checks add significant overhead for all benchmarks. However, using scoped

memories rather than garbage collection improved the performance of Barnes and

Water benchmarks from an execution time perspective.

The JScoper tool, an Eclipse plug-in is presented in Ferrari et al., (2005) as a tool to

transform standard Java applications into RTSJ-like applications with scoped memory

management. The scoped memory areas creation approach is based on the same

approach as presented in Garbervetsky et al., (2005) where object lifetimes are

identified by using the call graph of available methods which include object creation

sites. The tool enables the developer to visualize the transformation process, to create

additional scoped memory areas and to delete or edit scoped memory areas. However,

JScoper needs to be compatible with RTSJ applications. Moreover, its debugging

approach for the memory model are highly recommended for future work (Ferrari et

al., 2005), such as visualization of both object lifetimes and active scoped memory

areas, scope rules violation and memory consumption of the scoped memory areas at

runtime.

JScoper can be downloaded from http://dependex.dc.uba.ar/jscoper/download.html

Kalibera et al., (2010) emphasize the shortage of real-world case studies and the need

for tools and benchmarks for real-time applications. To verify memory concerns of

the real-time application, tools and benchmarks should provide the following:

 Exception verifications: to ensure the absence of uncaught exceptions such

as OutOfMemoryError exception, StackOverflowError exception and

ScopeCycleException,

 Analysing memory requirements to define the maximum size each scope

requires when different threads are running at the same time - a maximum

Chapter 2:Literature Review

49

bound for immortal memory is needed to avoid out of memory runtime

errors.

A number of conclusions can be made from the preceding analysis of scope-based

benchmarks. First, there is no generally and widely accepted set of benchmarks for

evaluation of scopes, which is, in effect, an impediment to progress in the area. Until

a generally accepted set of benchmarks evolve, evaluating the efficacy of scoped

memory will continue to remain problematic. Second, in common with many

empirical evaluations and studies of software, only limited attempts have been made

to establish that set of benchmarks. Until a body of evidence has been compiled, that

will remain the case. Finally, it is difficult to compare studies if they use disjoint sets

of benchmarks; even if those benchmarks are similar, the value and effect of any

comparison process can be compromised by minor differences.

2.5 Potential Research Directions

Through analysis in this chapter, many important and open research questions on

using scoped memory management model in real-time Java emerge.

First, there is no precise way to find out the lifetimes of objects to help developers in

grouping objects into specific scoped memory areas. Research in this area can benefit

from the research undertaken into finding similar lifetimes of objects in non–RTSJ

implementations (Guyer and McKinley, 2004). For example, connected objects

(objects that directly or indirectly call other objects methods or modify the status of

each other) should reside in one scoped memory as there is a correlation between

connected objects and their lifetimes. On the other hand, unconnected objects should,

in theory, be allocated into one memory area (i.e., immortal memory) since the

Chapter 2:Literature Review

50

lifetime of objects is largely unknown (Salagnac, 2008). Allocating objects into

immortal memory keeps objects alive until the application terminates, even though

some objects in immortal memory die after a period of time with the consequent

memory leak. Therefore, finding an algorithm to optimize allocation of unconnected

objects is crucial to reducing memory leaks. New allocation algorithms should be

developed to accurately predict similar object lifetimes in RTSJ. Criteria should be

developed for grouping objects into regions/scoped memory areas to help the

developer allocate objects into different scoped memory areas and decrease the

impact of memory leaks caused by different lifetimes of objects.

Second, the shortage of real-time case studies limits research in finding optimized and

precise criteria for allocating objects. Consequently, new real-time benchmarks for

RTSJ applications should be provided. This emphasizes the necessity of having

scoped memory areas created within these benchmarks (with a non-trivial allocation

rate of objects over a period of time). Having these new benchmarks should enable

testing different implementation of RTSJ to measure memory consumption and

execution time overheads.

Third, tools to implement the object allocation criteria and to simplify the

development process are required. These tools could use static or dynamic analysis to

allocate objects into different scoped memory areas; at the same time, it could verify

memory requirements and measure the allocation overheads of scoped memory areas.

Real-time GUI tools which provide memory visualization and analyses of memory

consumption throughout the execution of the application as well as showing memory

leaks are also required. Tools should enable the implementation of different scoped

memory layouts according to different criteria. Moreover, the developer should be

Chapter 2:Literature Review

51

able to re-allocate objects according to memory consumption through comparison of

multiple scoped memory layouts. The memory leak in this case can be eliminated.

The preceding analysis and discussion has highlighted a number of open issues in the

field of scoped memory; it has also highlighted certain strengths and weaknesses in

current approaches to the same area. As a summary of analytical discussions

presented in this survey, a set of possible research questions is therefore proposed.

Each question may represent a research study in its own right:

 What are the optimum criteria to allocate objects/threads in scoped

memory areas in a way that leads to minimum consumption space and safe

referencing? This will help the developer decide on the number of scopes

and, equally relevant, which objects/threads to be allocated to these scopes

(c.f., Section 2.3.2, Section 2.3.3.2 and Section 2.3.3.3).

 How effective is using dynamic analysis tools that visualize object

allocations into the scoped memory and measure the consumption over

time in catching possible memory leaks? (c.f., Section 2.3.3.1).

 Can the application adapt different scoped memory models where one of

them will be relied on according to specific priorities such as shorter

execution time or smaller memory footprint? (c.f., Section 2.3.1 and

Section 2.3.2).

 How effective are the aforementioned design patterns in simplifying the

development process and avoiding both memory leaks and dangling

references (c.f., Section 2.3.3.3)?

Chapter 2:Literature Review

52

 How effective is scoped memory if it is applied to commercial real-time

Java applications? This needs a thorough evaluation of the scoped memory

model against a garbage collection model in these applications using

benchmarks (c.f., Section 2.4).

2.6 Summary

The state-of-the-art in RTSJ memory management highlights important issues in

scoped memory management for real-time Java. Research in this area has adopted

many approaches to develop safety critical/real-time systems. However, many

drawbacks using this model still exist such as time overheads related to reference

checks, space overheads due to allocating long lifetimes object in the same scoped

memory with short lived objects and complexity of development. This chapter

discussed current approaches and methods to enhance scoped memory management

in RTSJ. Most of the research in RTSJ scoped memory has focused on two important

issues. First, decreasing the impact of reference checks and second, converting the

application into a component-based application. A set of the most popular

benchmarks in the area was introduced and illustrated the shortage of tools and

benchmarks for evaluating different memory approaches.

New research directions were also proposed to guide the research towards different

directions such as a) finding the best allocation strategy for developing real-time Java

applications using scoped memory mode, b) variety of real-time benchmarks that

cover more aspects of scoped memory model, and c) tools to decrease the difficulty

of developing real-time Java applications using a scoped memory model. A list of

future research questions was also presented as a summary of analytical discussion

Chapter 2:Literature Review

53

through this chapter. Consequently, there is a necessity to develop real-time Java case

studies and benchmarks to help answer different research questions and provide

guidelines and solutions for building the appropriate design of the memory model.

Providing an empirical study for an RTSJ to understand different aspects and

overheads of the scoped and immortal memory model is essential.

Chapter 3: Empirical Data Using A Scoped Memory Model

54

Chapter 3: Empirical Data Using A Scoped

Memory Model

3.1 Overview

In order to propose guidelines and solutions for the scoped and immortal memory in

RTSJ applications, an empirical study of the different aspects of this memory model

when different types of objects are allocated is essential. This helps to specify the

impact of using a scoped and immortal memory model on memory consumption and

execution time of the application and consideration of an appropriate design of the

memory model.

Prior data analysis using a scoped memory model has been limited. Most of the work

has been done on measuring the allocation time of scoped memory at runtime (the

time needed to allocate an array of bytes that comprise the object). For example,

(Corsaro and Schmidt, 2002) showed that scoped memory allocation times were

linear with allocated object sizes in a Timesys implementation, while in jRate the

allocation times were independent of the allocated object sizes. In (Corsaro and

Schmidt, 2003), the creation time (the time required for a scoped memory object to be

declared and initialized), entering time and exiting time of the scoped memory area

were measured with respect to scoped memory size. Results showed that creation

time relied on the scope size for both implementations. On the other hand, the

entering time of a scoped memory area in the TimeSys implementation varied slightly

by changing scoped memory size (from 4Kbytes to 1Mbytes); in a jRate

implementation on the other hand, the entering time of a scoped memory is more

dependent on the size of the scoped memory area. Exiting time however did not show

any correlation with scoped memory size for both implementations. Enery at al., 2007

Chapter 3: Empirical Data Using A Scoped Memory Model

55

(Enery et al., 2007) compared two different implementations of the RTSJ, namely

Jamaica VM from Aicas and Sun's RTSJ 1.0.0. Results showed that the creation times

for scoped memory were again linear with scoped memory sizes. Object allocation

times were also linear with object sizes. Schommer et al., (Schommer et al., 2009)

evaluated the Sun RTS2.1 from different perspectives; the relationship between

allocation time and object size allocated into memory areas was explored – and the

relationship was again shown to be linear. It was concluded that allocation to

immortal memory seemed, in general, to take longer than allocation to both scoped

memory types (LTMemory and VTMemory).

The goal of this chapter is to enrich the empirical study of a scoped memory model

from different aspects in an RTSJ implementation: the Sun Java RTS 2.2. Different

data types in scoped memory may have different impact on the execution time and

memory space. Therefore, Float, Hashtable and Vectors were tested to measure the

execution time and memory consumption for each type when created inside scoped

memory areas. The impact of increasing scoped memory numbers on execution time

is investigated. Furthermore, an empirical study measuring the entering and exiting

times of an active and non-active scoped memory area at runtime is presented. (The

active scoped memory area is scoped memory that has one or more threads executing

inside. A non-active scoped memory area is the scoped memory that has no threads

running inside it.)

The contributions of this chapter are therefore:

1- Empirical data on allocating different data types into scoped memory areas.

2- Empirical analysis on the impact of changing scoped memory numbers and

nesting on execution time.

Chapter 3: Empirical Data Using A Scoped Memory Model

56

3- Comparing the entering and exiting times of an active and non-active scoped

memory area.

All code was run using the Sun Java RTS 2.2 implementation of RTSJ, the real-time

operating system - Solaris 10 and on a stand-alone computer with Intel Pentium Dual

Core Processor speed 2.8 GHZ, RAM, capacity 2GB and Hard disk size of 40GB. For

all experiments in this thesis and to get precise results, the experiments were repeated

50 times and average execution times calculated. To avoid jitter (i.e., fluctuation in

the execution time that may happen while loading and initializing classes at runtime),

initialization time compilation mode (ITC) was used to compile and initialize classes

at the virtual machine startup time and the real-time garbage collection disabled to

prevent any interference that may occur in the heap memory.

The remainder of the chapter is organized as follows. Section 3.2 introduces empirical

data on allocating different object types in scoped memory areas. The empirical

analysis on the impact of changing scoped memory numbers and nesting on execution

time is presented in Section 3.3. Section 3.4 highlights the overhead of entering and

exiting active and non-active scoped memory areas. Finally, Section 3.5 concludes

the work.

3.2 Empirical data for scoped memory area

allocation

Before investigating the impact of increasing numbers of nested and un-nested scoped

memory areas on the execution time of the application, it is important to study the

impact of allocating different types of data objects in scoped memory areas. In this

section, Integer, Float, Vectors and Hashtable data types are studied. We note that

Chapter 3: Empirical Data Using A Scoped Memory Model

57

Vectors are dynamic arrays and the elements of Vectors in the experiments are

integer objects. Hashtables are data structures similar to arrays but are able to include

different object types. In this study, an element of the Hashtable object is also a

collection of integer objects. The execution time and memory consumption for each

scoped memory area were measured.

RTS 2.2 syntactic code was run multiple times on Solaris 10, each time with a

different object type and different number of objects (only one type is used in each

iteration); this was done for two versions of the code, one with 5 scoped memory

areas and the other one with 10 scoped memory areas. The two versions of code were

used to allocate different numbers of objects in scoped memory areas to obtain valid

and precise results. The number of objects was distributed equally across scoped

memory areas. For example, with 5 scoped memory areas and 1000 integer objects,

200 integer objects are allocated into each scoped memory area; when Hashtable

objects are used, each scoped memory area contains one Hashtable object which

creates 200 integer objects. The same is true for Vector and Float types. On the other

hand, in the case of 10 scoped memory areas and 1000 integer objects, 100 integer

objects are allocated into each scoped memory area. Finally, when Hashtable objects

are used, each scoped memory area contains one Hashtable object that creates 100

integer objects.

Table 3.1 and Table 3.2 show the results of these experiments for un-nested scoped

memory areas. Nesting will be studied in Section 3.2.2 to measure its impact on

execution time, regardless of what objects are allocated.

Chapter 3: Empirical Data Using A Scoped Memory Model

58

 Integer Float

 ObjectsNo

Time

(ms)

Memory

(bytes)

Time

(ms)

Memory

(bytes)

5

Scoped Memory

Areas

100 6 752 15 2192

500 9 2992 18 10192

1000 11 5792 24 20192

10

Scoped Memory

Areas

100 10 472 20 1192

500 14 1592 22 5192

1000 15 2992 28 10192

Table 3.1: Execution Time and Memory Consumption for each scoped memory

area (Integer and Float)

 HashTable Vector

 ObjectsNo

Time

(ms)

Memory

(bytes)

Time

(ms)

Memory

(bytes)

5

Scoped Memory

Areas

100 8 1720 7 848

500 13 7384 11 3960

1000 16 16264 13 7664

10

Scoped Memory

Areas

100 13 952 12 504

500 18 3800 16 2096

1000 19 7384 17 3960

Table 3.2: Execution Time and Memory Consumption for each scoped memory

area (Hashtable and Vector)

Results show that HashTable object type consumes more space in the scoped memory

area and requires more execution time than the Vector object type. Float objects

consume more space in the scoped memory area and impact the execution time more

than the remaining objects types. When the number of scoped memory areas

increases, the memory consumption for each scoped memory area decreases as the

Chapter 3: Empirical Data Using A Scoped Memory Model

59

number of objects allocated in each scoped memory area correspondingly decreases.

However, execution time increases when the number of scoped memory areas

increases. For example, with 5-scoped memory areas and 1000 integer objects,

execution time is 11ms and the memory consumption for each scoped memory area

5792 bytes. When 10-scoped memory areas and 1000 integer objects are used, the

execution time is 15ms and the memory consumption for each scoped memory area

2992 bytes. It is clear that Hashtable objects consume more memory than other object

types.

Figures 3.1 and Figure 3.2 show a sample of the execution time and scoped memory

area consumption, respectively for different data structures when 1000 objects are

created in two versions of the application (5 and 10 scoped memory areas).

Figure 3. 1: Execution Times of 5/10 scoped memory areas application for

different data types (1000 objects example)

Chapter 3: Empirical Data Using A Scoped Memory Model

60

Figure 3. 2: Scoped Memory Consumptions of different data types when 1000

objects are created in 5/10 scoped memory areas application

Using scoped memory with different data objects has different impact on execution

time and memory space; therefore, choosing the right data objects and the scoped

memory size is likely to increase the efficiency of the scoped memory model.

3.3 The impact of changing scoped memory

numbers and nesting on execution time.

The motivation for studying the impact of changing scoped memory numbers and

nesting on execution time stems from two sources. It is the first study which assesses

the relative merits of different numbers of scoped memory areas and the effect on

execution times. Yet, the decision that a developer has to make on scoped memory

area numbers can have a significant impact on potential application efficiency and

execution time. Second, nested scoped memory areas have potential advantages of

memory savings since child memory areas have shorter lifetimes than their parents;

0

5000

10000

15000

20000

25000

Integer Float HashTable Vector

5 Scoped
Memory

10 scoped
Memory

Sc
o

p
ed

 M
em

o
ry

 C
o

n
su

m
p

ti
o

n
(b

yt
es

)

Chapter 3: Empirical Data Using A Scoped Memory Model

61

the impact this has on application execution time and the inherent trade-off with those

memory savings is an open research question. Nesting can be used, for example,

when a thread needs to allocate different object lifetimes in memory; the thread then

distributes these objects into different nested scopes according to their lifetimes

(Andreae et al., 2007).

In this section, experiments were conducted to evaluate both un-nested and nested

scoped memory area techniques to measure the impact of increasing levels of nesting

over those scoped memory areas on execution times. In theory, higher numbers of

scoped memory areas should lead to increased execution times (Deters and Cytron,

2002) since the memory management burden is naturally higher.

In all experiments, LTMemory object was used which guarantees linear-time

allocation. Each memory scoped memory area is created by defining a new object

memory area:

mem = new LTMemory(16*1024);

This creates a new LTMemory area with fixed size of 16K. The new object ‘mem’

then points to that scoped memory area of memory. To start using the block of

memory referenced by ‘mem’, a ‘Runnable’ object should be used in the enter

method of the ‘mem’ object; the Runnable interface is implemented by any class

whose instances are intended to be executed by a thread. The same class must define

a method of zero arguments called ‘run’; all objects created inside the ‘run’ method of

the ‘Runnable’ object will be allocated into the memory area referenced by ‘mem’.

The ‘Runnable’ object itself will be allocated to a different memory area - the

memory area from which the ‘enter’ method of ‘mem’ object is called:

Chapter 3: Empirical Data Using A Scoped Memory Model

62

 mem.enter(new Runnable(){

 public void run(){

 // create new objects and run other tasks

 }

 });

Memory scoped memory areas can also be nested in RTSJ. In other words, while

executing code in the scope of memory ‘A’, an enter method for the scope of memory

‘B’ might be called. Henceforward, ‘A’ will be called the parent (outer scope) and ‘B’

the child (inner scope) since objects allocated in A by definition have a longer life

than objects allocated in B. For example, in the following code, there is one nesting

level, and two memory scoped memory areas are thus used:

memA.enter(new Runnable(){

 public void run(){

// create new objects and run other tasks

memB.enter(new Runnable(){

 public void run(){

 // create new objects and run other tasks

 }

});

 // create new objects and run other tasks

 }

 });

In RTSJ, the outer scope is not permitted to reference any object in the inner scope,

since the inner scope has shorter lifetime than the outer scope.

Chapter 3: Empirical Data Using A Scoped Memory Model

63

3.3.1 Experimental code design

Creating objects in the RTSJ code is facilitated through an array of objects (line 12 of

Figure 3.3). The code can be updated with larger numbers of objects (from 100 to

2500, stepped by 100 objects upon each execution). Figure 3.3 includes a class

definition for a simple, real-time thread (Example 1). In this thread, two new objects

‘mem1’ and ‘mem2’ are created to point to two scoped memory areas of memory

(each of size 16K). All objects created in the ‘run’ method of the ‘Runnable’ object

are allocated to that memory area. The array H of integer objects (50 objects) is

created in mem1 and the array L of integer objects (50 objects) created in mem2

(lines 13 and 22 in Figure 3.3, respectively). Example 1 shows only 2 un-nested

scoped memory areas allocating 100 objects in total. As an integral part of the

analysis, the code was updated to include 5, 10, 15, 20 and 25 scoped memory areas.

Example 1 was then updated to enable a re-run of the experiments using nested

scoped memory areas.

All scoped memory areas have the same size (16K) and the number of objects

distributed into each scoped memory area for each set of scoped memory area

experiments is approximately equal. For example, for 5 scoped memory areas and

allocation of 500 objects, each scoped memory area has 100 objects allocated to it.

These objects are de-allocated when ‘Runnable’ objects finish executing their ‘run’

methods. A ‘for’ loop is used to execute the re-activation of the scoped memory areas

multiple times according to the number of parameters entered. The type of parameter

is thus Integer, and the values of these parameters are the values of the Integer objects

allocated into the scoped memory areas. In the experiments presented, two Integer

Chapter 3: Empirical Data Using A Scoped Memory Model

64

parameters were used to execute the for-loop twice and execution time was measured

using the Java clock method:

Chapter 3: Empirical Data Using A Scoped Memory Model

65

clock.getTime().

Figure 3.3: Creating objects in un-nested scoped memory areas sample

1.public class Example1with2scoped memory areas100objects extends RealtimeThread {

2.---------------

3. public void run(){

4. mem1 = new LTMemory(16*1024);

5. mem2 = new LTMemory(16*1024);

6. for (int i = 0; i < this.args.length; ++i) {

7. mem1.enter(new Runnable(){ //50 objects will be allocated

8. public void run()

9. {

10. final int k = i;

11. Integer [] H= new Integer[50];

12. for(counter=0, counter<50, ++counter){

13. H[counter]= Integer.valueOf(args[k]);

14. }

15. }});

16. mem2.enter(new Runnable(){//50 objects will be allocated

17. public void run()

18. {

19. final int y = i;

20. Integer [] L= new Integer[50];

21. for(counter=0, counter<50, ++counter){

22. L[counter]= Integer.valueOf(args[y]);

23. }

24. }});

25. } //for loop

26. newTime= clock.getTime();

27. interval=newTime.subtract(oldTime);

28. System.out.println(interval);

29. }; // for the run method

30. static public void main(String [] args)

 { // main method of the class Example1with2scoped memory areas100objects

31. RealtimeThread rt = new Example1with2scoped memory areas100objects(args);

32. oldTime= clock.getTime();

33. rt.start();

34. try {

35. rt.join();

36. }

37. catch (Exception e) { };

38. }

39. }

Chapter 3: Empirical Data Using A Scoped Memory Model

66

3.3.2 Un-nested Scoped memory areas

Table 3.3 provides summary data (Mean, Median (Med.) and Standard Deviation

(SD)) values for each of the set of un-nested scoped memory area experiments when

allocating integer objects ranging from 100 to 2500 (integer objects). The widest

variation in execution times is for 5 scoped memory areas (with an SD of 1.68) and

the narrowest variation in execution time is for 25 scoped memory areas (SD of 1.41).

Number of Scoped

Memory Areas

Mean Med. SD

5 10.68 11.47 1.68

10 14.99 15.65 1.51

15 18.66 19.20 1.67

20 20.90 21.37 1.48

25 25.16 25.52 1.41

Table 3.3: Summary data for un-nested scoped memory areas

Figure 3.4: Execution time for un-nested scoped memory areas

Chapter 3: Empirical Data Using A Scoped Memory Model

67

Figure 3.4 shows how increasing the number of scoped memory areas increases

execution time when the same number of objects is used. For clarity, only variations

in time for 100, 500, 1500 and 2500 objects were shown. For instance, when 100

objects are distributed across 5, 10, 15, 20 and then 25 un-nested scoped memory

areas the execution time of the application ranges from 6ms to 21ms. On the other

hand, when 2500 objects are distributed across many scoped memory areas, the

execution times are higher, ranging from 12ms to 26ms. It is interesting that for a

period, the execution time for 2500 objects is close to the execution time of 1500

objects. Clearly, there are gains and losses to be made depending on the choice of

number of scoped memory areas the developer has to make.

Figures 3.5 and 3.6 show the impact of increasing the number of the allocated integer

objects on execution time for 5 and 10 un-nested scoped memory areas, respectively,

with 100-2500 objects, stepped by 100, giving 25 data points for each figure. The R2

(correlation coefficient) value for 5 scoped memory areas (Figure 3.5) is equal to that

for 10 scoped memory areas (Figure 3.6), with value 0.79 which means a strong

relationship between the number of objects allocated in the regions and the execution

time of the application.

Figure 3.5: 5 scoped memory area data (2500 objects)

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

1
0

0

3
0

0

5
0

0

7
0

0

9
0

0

1
1

0
0

1
3

0
0

1
5

0
0

1
7

0
0

1
9

0
0

2
1

0
0

2
3

0
0

2
5

0
0Ex

e
cu

ti
o

n

Ti
m

e
(m

s)

No.objects

Chapter 3: Empirical Data Using A Scoped Memory Model

68

Figure 3.6: 10 scoped memory area data (2500 objects)

Figure 3.7: 15 scoped memory area data (2500 objects)

It is also noteworthy that the steepness of the curve in Figure 3.5 is greater at lower

numbers of integer objects. One suggestion for this is that however many scoped

memory areas are defined, there is a lower limit on execution time due to the

overheads of actually creating the scoped memory areas and allocating the first n

objects. After that point, the system appears to ‘stabilize’. For 10 scoped memory

areas (Figure 3.6), the execution time is higher than that of 5 scoped memory areas

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00

1
0

0

3
0

0

5
0

0

7
0

0

9
0

0

1
1

0
0

1
3

0
0

1
5

0
0

1
7

0
0

1
9

0
0

2
1

0
0

2
3

0
0

2
5

0
0Ex

e
cu

ti
o

n

Ti
m

e
(m

s)

No.objects

0.00

5.00

10.00

15.00

20.00

25.00

1
0

0

3
0

0

5
0

0

7
0

0

9
0

0

1
1

0
0

1
3

0
0

1
5

0
0

1
7

0
0

1
9

0
0

2
1

0
0

2
3

0
0

2
5

0
0Ex

e
cu

ti
o

n

Ti
m

e
(m

s)

No.objects

Chapter 3: Empirical Data Using A Scoped Memory Model

69

(for the object configuration described). Figure 3.7 shows the effect on execution time

of 15 scoped memory areas and shows a flatter slope.

Figure 3.8 and Figure 3.9 show the execution times for 20 and 25 scoped memory

areas, respectively. The highest execution time amongst all configurations in fact

belongs to 25 scoped memory areas (at configuration 26.40ms for 2500 objects),

suggesting further that as the number of scoped memory areas increases, there is an

associated natural overhead in execution time. Generally, the rise in execution times

becomes flatter as the number of scoped memory areas increases.

Figure 3.8:. 20 scoped memory area data (2500 objects)

Figure 3.9: 25 scoped memory area data (2500 objects)

0.00

5.00

10.00

15.00

20.00

25.00

1
0

0

3
0

0

5
0

0

7
0

0

9
0

0

1
1

0
0

1
3

0
0

1
5

0
0

1
7

0
0

1
9

0
0

2
1

0
0

2
3

0
0

2
5

0
0Ex

e
cu

ti
o

n

Ti
m

e
(m

s)

No.objects

0.00

5.00

10.00

15.00

20.00

25.00

30.00

1
0

0

3
0

0

5
0

0

7
0

0

9
0

0

1
1

0
0

1
3

0
0

1
5

0
0

1
7

0
0

1
9

0
0

2
1

0
0

2
3

0
0

2
5

0
0Ex

e
cu

ti
o

n

Ti
m

e
(m

s)

No.objects

Chapter 3: Empirical Data Using A Scoped Memory Model

70

The general trend of the graphs in Figures 3.5, 3.6, 3.7, and 3.9 is upwards. However

there are small falls in execution times along the graphs in the experiments due to the

context switching jitter (Bruno and Bollella, 2009) of the multi-core machine upon

which the experiments were run.

3.3.3 Nested Scoped memory areas

A key focus of this study is to assess, compare and contrast un-nested scoped memory

areas with nested. To that end, experiments were repeated after updating the code to

employ nested scoped memory areas. Figure 3.10 shows how increasing the number

of nested scoped memory areas increases the execution time for four configurations

of objects. When 100 objects are distributed across 5, 10, 15, 20 and then 25 nested

scoped memory areas, execution time ranges from 6ms to 31ms. On the other hand,

when 2500 objects are distributed across many scoped memory areas, execution times

are higher, ranging from 12ms to 37ms. (For clarity, variations in time for 100, 500,

1500 and 2500 objects only are shown.) Again, as in un-nested scoped memory

areas, it is interesting that, for a brief period, the execution time for 2500 objects is

close to the execution time of 1500 objects, but this occurs at a lower number of

scoped memory areas than for its un-nested counterpart.

Chapter 3: Empirical Data Using A Scoped Memory Model

71

Figure 3.10: Execution time for nested scoped memory areas

Table 3.4 provides summary data (Mean, Median (Med.) and Standard Deviation

(SD)) values for each of the set of nested scoped memory areas when allocating

objects ranging from 100 to 2500 integer objects.

Number of Scoped

Memory Areas

Mean Med. SD

5 11.07 11.84 1.71

10 15.97 16.39 1.53

15 21.85 22.32 1.57

20 28.21 28.79 1.79

25 36.11 36.57 1.73

Table 3.4: Summary data for nested scoped memory areas

The widest variation in execution times is for 20 scoped memory areas (with an SD of

1.79); the narrowest time is for 10 scoped memory areas (SD of 1.53).

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

5 regions 10 regions 15 regions 20 regions 25regions

100

500

1500

2500

Ex
e

cu
ti

o
n

Ti

m
e

(m
s)

Chapter 3: Empirical Data Using A Scoped Memory Model

72

Figures 3.11 and 3.12 show the average percentage increase in execution time when

allocating the same number of objects into varying numbers of un-nested and nested

scoped memory areas (5, 10, 15, 20, and 25), respectively. The execution time

percentage increases between 5 and 10, 10 and 15, 15 and 20 and 20 and 25 scoped

memory areas was calculated and the average of these values for each set of objects

then calculated. For example, when 1000 integer objects were distributed across 5,

10, 15, 20, and 25 un-nested scoped memory areas, execution times were 11.58,

15.65, 19.23, 20.70 and 25.41 milliseconds, respectively (an average percentage

increase of 22% - see Figure 3.11).

On the other hand, when 1000 integer objects are distributed across 5, 10, 15, 20, and

25 nested scoped memory areas, execution times were 11.84, 16.25, 21.40, 27.83 and

36.69 milliseconds, respectively (an average percentage increase of 33% - see Figure

3.12). All the values for increases in execution time are in the range 21%-37% for un-

nested scoped memory areas and 30%-50% for nested scoped memory areas.

Figures 3.11 and 3.12 also exhibit a further interesting characteristic. The percentage

increase at the beginning of the curve is higher when the number of objects is smaller.

This implies that increasing the number of scoped memory areas for a small set of

integer objects has a more significant impact on execution time than larger sets of

integer objects. Clearly, the developer needs to choose the number of nested scoped

memory areas carefully with a view to the direct effect this might have on resulting

execution time.

Chapter 3: Empirical Data Using A Scoped Memory Model

73

Figure 3.11: % in execution time increase (un-nested) scoped memory areas

Figure 3.12: % increase in execution time (nested scoped memory areas)

There is a clear difference in execution times when using nested scoped memory

areas as opposed to un-nested scoped memory areas, especially when the level of

nesting increases (Figure 3.13). One interpretation of this cost is due to the reference

checks among nested scoped memory areas (to ensure that objects from outer scopes

do not reference objects from inner scopes) and the single parent checks of the nested

scopes (to ensure that each nested scope has only one parent scope). The more nesting

0%

5%

10%

15%

20%

25%

30%

35%

40%

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500

No.objects

Ex
e

cu
ti

o
n

Ti

m
e

(m
s)

0%

10%

20%

30%

40%

50%

60%

100 300 500 700 900 1100 1300 1500 1700 1900 2100 2300 2500

Ex
ec

u
ti

o
n

Ti

m
e

(m
s)

No.objects

Chapter 3: Empirical Data Using A Scoped Memory Model

74

there is, the more checks there are among scoped memory areas. On the other hand,

the ‘Runnable’ object of the child scope will be allocated into the parent scope; more

objects will therefore be allocated in nested scopes than in un-nested scopes.

Consequently, execution time will increase more in nested scoped memory areas than

in un-nested ones.

Figure 3.13 shows the difference in execution times. For example, with 5 nested

scoped memory areas, the execution time difference between it and its un-nested

counterpart is on average of 0.39ms. There is even more variation in execution time

for 10, 15, 20, and 25 nested scoped memory areas when compared to un-nested

scoped memory areas. For example, the execution time for the 10 nested scoped

memory areas code is approximately 1ms greater than that of the 10 un-nested scoped

memory areas code. Similarly, there are 3ms, 7ms and 10ms approximate variations

in execution time for 15, 20, and 25 nested scoped memory areas codes over 15, 20,

and 25 un-nested scoped memory areas code, respectively. (All the values in Figure

3.13 are calculated by taking an average of the data for all sets of objects.)

Figure 3.13: Differences in execution time (un-nested vs. nested)

0.39
0.98

3.19

7.30

10.94

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Ex
e

cu
ti

o
n

 t
im

e
(m

s)

No.Regions (5, 10, 15, 20, 25)

Chapter 3: Empirical Data Using A Scoped Memory Model

75

Although using nested scoped memory areas saves memory space, the observed

overhead on execution time is not trivial. Therefore, developing real-time applications

using nested scopes should consider the balance between reducing space overhead

and execution time overhead.

3.4 The entering/exiting time overheads of scoped

memory areas.

This section introduces an empirical study measuring the overhead of entering

/exiting active and non-active scoped memory areas at runtime. The motivation for

this part of the study stems from the fact that scoped memory area can be entered by

different threads at the same time. Investigating the difference between

entering/exiting active and non-active scopes helps developers estimate the execution

time overheads of different scoped memory design models. None of the studies in the

literature have focused on entering and exiting time of active and non-active scopes.

A syntactic real-time case study written in real-time Java that simulates a multi-

threaded railway control system was developed (a full explanation on this case study

is introduced in Chapter 4).

To compare the execution time overhead of entering/exiting scoped memory, two

scoped memory design models were implemented in the case study. One is used to

measure the entering and exiting time of an active scoped memory and the other one

is used to measure the entering and exiting of non-active scoped memory. In both

designs, to calculate the average of entering times and the average of exiting times of

a scoped memory, the scoped memory that allocates the Train Status Table is

considered since entering/exiting this scoped memory area occurs periodically

Chapter 3: Empirical Data Using A Scoped Memory Model

76

(frequent measurements are provided).

The first design model comprises one scoped memory area for each Train thread

(Scopes Ai, i=1..n), one scope scoped memory area for each Emergency thread

(Scopes Bj, j=1..m) and one scope for the Train Status Table (Scope C). The

execution time of entering and exiting (Scope C) for allocating the Trains Status

Table was measured. Scope C will be a non-active scope before being entered, to

allocate the Trains Status table.

The second design model comprises one scoped memory area (Scope A) for all Train

threads, the Train Status Table and one scoped memory area for each Emergency

thread (Scope Bj, j=1..m). The execution time of entering and exiting (Scope A) for

allocating and printing the Trains Status Table was measured; (Scope A) is an active

scope since it has been entered beforehand by Train threads. Figure 3.14 shows how

the entering and exiting times of a scoped memory area were calculated:

AbsoluteTime beforeEnterTime, enterTime, beforeExitTime,

exitTime;

RelativeTime enterOverhead, exitOverhead;

static Clock clock = Clock.getRealtimeClock();

beforeEnterTime=clock.getTime();

T_status_Mem.enter(new Runnable(){

 public void run(){

 enterTime=clock.getTime();

 enterOverhead=enterTime.subtract(beforeEnterTime);

 // Allocate new objects

 beforeExitTime=clock.getTime();

 }

 }

)

exitTime=clock.getTime();

exitOverhead= exitTime.subtract(beforeExitTime);

Figure 3.14: Calculation of entering and exiting times in scoped memory area

Chapter 3: Empirical Data Using A Scoped Memory Model

77

Figure 3.15 shows the entering time of the scoped memory for the two designs. The

first design (non-active scoped memory) has greater entering time than the second

design (the active scoped memory). The maximum value of entering a non- active

scope is 22546ns while the maximum value of entering active scoped memory is

20395ns.

On the other hand, Figure 3.16 shows the exiting time of the scoped memory for the

two designs. Apparently, a non-active scoped design model has a greater exiting time

overhead than active scoped memory design. The maximum value of exiting a non-

active scope is 13814ns while the maximum value of exiting active scoped memory is

7566ns.

Figure 3. 15: Entering Scoped Memory Execution Time

0

5000

10000

15000

20000

25000

Entering(nano) nonActive Entering(nano) Active

AVG

MAX

En
te

ri
n

g
ti

m
e

 o
ve

rh
e

ad
 (

n
an

o

se
co

n
d

s)

Chapter 3: Empirical Data Using A Scoped Memory Model

78

Figure 3. 16: Exiting Scoped Memory Execution Time

Summary data of the experiments for the two scoped memory design models is given

in Table 3.5. It shows that Design 1 has more entering/exiting scopes time overhead

than Design 2. Since the non-active scope needs to de-allocate objects after exiting

the scoped memory area, it takes a longer time to exit; however, entering a non-active

scoped memory should not show any differences when entering an active scope, since

the backing store is allocated when the memory object itself is created. A possible

explanation for this is that in this RTSJ implementation the work of clearing a scope

is deferred to the next time the scope becomes in use. However, finalization of objects

in the scope occurs as the last thread leaves.

Scoped memory design

model
Entering

(nano-Seconds)
Exiting Time

(nano-Seconds)
Avg Max Avg Max

Design 1,
Non Active scope

21096.8

22546

11537.4

13814

Design 2,

Active scope

17888.6

20395

7014.4

7566

Table 3. 5: Summary Data for Entering/exiting Scoped Memory

0

2000

4000

6000

8000

10000

12000

14000

16000

Exiting(nano) nonActive Exiting(nano) Active

AVG

MAX

Ex
it

in
g

ti
m

e
 o

ve
rh

ea
d

 (
n

an
o

 s
ec

o
n

d
s)

Chapter 3: Empirical Data Using A Scoped Memory Model

79

3.5 Summary

Developing RTSJ applications using a scoped memory model is a challenging task.

Different design scoped memory models may exist. Scoped memory design models

have different costs in terms of execution time and total memory consumption of the

application. This chapter presented an empirical study of using scoped memory in

Sun RTSJ Implementation. Allocating different data objects in scoped memory areas

has different impact on the execution time and memory space; therefore, choosing the

right data objects and scoped memory size has an effect on the efficiency of the

scoped memory model.

The impact of scoped memory areas on the execution time of RTSJ software was

investigated. Sample RTSJ code was executed with different numbers of un-nested

and nested scoped memory areas. Results showed that increasing the number of

scoped memory areas did lead to higher execution times. It is therefore important to

find the optimal number of scoped memory areas. Additionally, the developer has to

use nesting scope techniques carefully and maintain the trade-off between the pros

and cons of using nested scoped memory areas.

The overheads of entering and exiting active and non-active scoped memory areas

were also presented. Results showed that the entering/exiting active scoped memory

scoped memory area had lower execution time overheads than entering non-active

ones. The empirical data presented highlights a relevant issue for RTSJ development;

in order to decrease the impact of the number of scoped memory areas on application

execution time (and to save on memory footprint) an optimum number of scoped

memory areas should be an aspiration for RTSJ developers. Consequently, a research

question here would be: “what are the guidelines and rules that can help developers

Chapter 3: Empirical Data Using A Scoped Memory Model

80

decide on the right number of scoped memory areas and which threads/objects would

be allocated in each scoped memory area?”. Developing different real-time Java

applications can assist in providing these guidelines. Equally, implementing and

comparing different scoped memory models of the same real-time Java application

provides an understanding of the impact and efficiency of using the appropriate

scoped memory model.

Chapter 4: A Case Study of Scoped Memory Consumption

81

Chapter 4: A Case Study of Scoped Memory

Consumption

4.1 Overview

Specifying different overheads of using the new RTSJ memory model and developing

real time Java case studies which include persistent dynamic allocation over period of

time is required. This helps to evaluate the expressiveness of this memory model by

providing guidelines and solutions for building a robust memory design model. On

the other hand, to verify the memory model exceptions at runtime (such as

OutOfMemoryError exception) and to monitor immortal memory consumption, the

availability of assisting development tools is essential (Kalibera et al., 2010). RTSJ

Case studies and tools for scoped memory development are still very rare. The CDx

case study (Pizlo and Vitek, 2006, Kalibera et al., 2009) based on simulated radar

frames was used to evaluate the time efficiency of applications which used scoped

memory compared with the same version of applications that used real-time garbage

collection. Results showed that scoped memory out-performed real-time garbage

collection. The JScoper tool was presented in Ferrari et al., (2005) as a tool to

transform standard Java applications into RTSJ-like applications with scoped memory

management. The tool enables the developer to visualize the transformation process,

to create additional scoped memory areas and to delete or to edit scoped memory

areas. However, JScoper is not compatible with RTSJ applications.

In this chapter, an RTSJ case study is presented, namely a railway control system

which combines multi-threading and scoped memory model implementations. A

simulation tool is developed to measure and show scoped memory consumption of

the case study over a period of time. Simulation tends to mimic software process and

Chapter 4: A Case Study of Scoped Memory Consumption

82

give comprehensive feedback on the behaviour of that software before it is set up in

its physical environment (Kellner et al., 1999, Benjamin and Steve, 2008). For safety-

critical real-time systems, since rigorous verification of their functionalities, timings

and memory consumption is required, simulating these systems before putting them

into their real environment is an important practice for eliminating the cost of testing,

reducing the risk of failure and ensuring high quality results (Rosenkranz, 2004). The

simulation tool measures the scoped memory consumption of different scoped

memory design models and presents the status of trains during the simulation’s

running time. In theory, the best scoped memory design model should achieve the

least memory footprint. However, in some specific domains of real-time applications,

the memory footprint is not an issue as long as the deadlines of real-time events are

met.

The primary contributions of this chapter are as follows:

1. Provision of an additional RTSJ case study which integrates scoped and

immortal memory techniques to apply different memory models.

2. A simulation tool for a real-time Java application (the first in the literature

that we know of) that shows scoped memory and immortal memory

consumption of an RTSJ application over a period of time. The tool helps

developers to choose the most appropriate scoped memory model by

monitoring memory consumption and application execution time.

3. Recommendations and guidelines for developing RTSJ applications which

use a scoped memory model.

The remainder of the chapter is organized as follows. Section 4.2 introduces the

simulation model. The experimental design is presented in Section 4.3. Section 4.4

Chapter 4: A Case Study of Scoped Memory Consumption

83

explains the simulation tool. Simulation results are then discussed in Section 4.5.

Guidelines for using scoped memory in RTSJ are listed in Section 4.6. Finally,

Section 4.7 concludes the chapter.

4.2 Simulation Model

In order to analyze and monitor the memory consumption of an immortal and scoped

memory model in real-time multi-threading environments, a simulation model has

been implemented which can be adapted to different real-time systems using real-

time Java. A Model can be considered as a representation and abstraction of an

entity, a real system or a proposed system. Simulation is experimenting the model

for analysis purpose and problem solving objectives (Taylor et al., 2013). Figure 4.1

shows the proposed simulation model for the multi-threaded, real-time Java system.

The simulation model consists of the following components:

1. A Main thread which initializes system threads and starts the application.

2. A Monitor thread which checks the safety of the studied real-time system.

3. A Control thread which updates the status of the control components.

4. Real-time threads; components that build the core system and distinguish it

from other systems.

5. A live thread Monitor to re-activate real-time threads.

6. A GUI and Console tool to present the data obtained by running the

simulation.

Chapter 4: A Case Study of Scoped Memory Consumption

84

To measure the cost of the simulated system in terms of memory consumption and

execution time, three criteria are identified: scoped memory consumption, immortal

memory consumption and tuning of the parameters of the system. The parameters of

the system configure the deadlines of periodical threads and the maximum space

allocated for immortal and total scoped memory.

Figure 4.1: Simulation Model for a Real-Time Java Scoped memory Model

A railway control system is a safety critical, multi-threaded real-time system which

needs to respond to events under hard, real-time constraints. This system must be

aware of any emergencies that might happen. For instance, if two trains are given

access to a specific track at the same time, a possible collision or delay may occur

and, in this case, the system should send signals to both trains to make them slow

down and/or to divert one of them onto an alternative track.

This case study has the following main objects and real-time threads (Figure 4.2).

Care was taken to ensure that the simulation provided a model of a sufficient number

of attributes of the system to promote realistic experiments. This simulation is an

Objects Status at runtime

Immortal memory

consumption

Scoped Memory

consumption

Parameters

 Main Real-time thread

 Monitor thread

 Control thread

 Live Thread Monitor

 Maximum scoped size

 Maximum immortal size

 Periodical parameters

Real-time

threads

Cost

GUI and Console

Tool

Chapter 4: A Case Study of Scoped Memory Consumption

85

event-based simulation since some events such as emergencies may arise and equally,

trains starting a new route after finishing their first route are considered as waiting

events. Since the railway control system runs in a multi-threaded environment and

contains periodic threads, the simulation is considered as process-oriented. Therefore,

this simulation is a mix of discrete-event and process-oriented simulation.

 The Main Thread is the main thread from which the railway control

system starts. This will create and initialize the Track object and create and

start the Train Threads, Monitor Thread and Control Thread.

 Track object is a Hashtable object which contains entries for the possible

tracks in the system. Hashtables are data structures similar to arrays but are

able to include different object types and may also have unlimited size.

Each entry in any Hashtable comprises a key and a value. In the case study

for example, each entry will comprise {TrackName - a key, TrackStatus -

the value}. In this study, it is assumed that the system has 10 tracks and

each has one sensor and two traffic lights on each side of the track. The

initial status of the tracks is (sensors - ‘OFF’, traffic lights - ‘GREEN’).

 Train Threads: each train in the system is simulated by a real-time thread

which has the following parameters in its constructor: route of the train,

name of train and the scoped memory area in which the thread will run.

The Train Threads send messages to the system when the train is waiting

for a specific track to be freed.

 Control Thread: this thread checks sensors on the tracks periodically and

updates the status of the traffic lights. If the sensors are ‘ON’, the traffic

lights on the related track will be ‘RED’ preventing any other train passing

http://en.wikipedia.org/wiki/Discrete_time

Chapter 4: A Case Study of Scoped Memory Consumption

86

through this track; otherwise, the traffic lights are ‘GREEN’, allowing a

waiting train to pass through. The sensors are set to ‘ON’ by a train that

starts moving on the related track and, as a result, the traffic light on the

other side of the track will be set to ‘RED’. When the train exits the track

and starts moving to the next track in its route, the Train Thread will set

the sensors ‘OFF’ and the traffic light will be set to ‘GREEN’ by the

Control thread.

 Monitor Thread: this thread runs periodically to update the status of trains

and check if there is any possibility of collision between trains. If there is a

possible collision according to a specific criteria then it will instantiate an

Emergency Thread. It is assumed that a collision occurs when, for

instance, the Control Thread delays updating of the status of the tracks due

to any failure in the system; as a consequence, two trains are set on the

same track, one at each end of the track. The Train Status Table object is

generated periodically by the Monitor Thread to show the status of all

trains (i.e., locations on their routes).

 Live Thread Monitor: this thread runs periodically every second to check

whether all trains have terminated their routes so as to reassign to them

new routes. This means creating new Train Threads with new routes; these

new objects will be allocated into the same memory area running in the

previous route.

 Emergency Thread: is a real-time thread with high priority that will

execute in a different memory area. It prevents a possible collision

between two trains by decreasing the speed of each and makes one of them

Chapter 4: A Case Study of Scoped Memory Consumption

87

divert to a temporary track while waiting for the other train to pass. It also

sends a message signal to both trains to notify them.

 Restriction Object: this object is created by the Emergency Thread to

slow down the speed of both trains that might potentially collide and

diverts one of them onto a temporary track until the other train has passed

through.

 Message Object: this object is created by the Emergency Thread in order

to pass a message to both trains’ screens.

Figure 4. 2: The main objects and threads in the Simulator

waitforNextPeriod()

Start()

waitforNextPeriod()

Stop() if all trains

terminate

Start() if there is an

emergency

Main Thread

Monitor Thread Control Thread Train Thread

Emergency Thread
Tracks

Train

status table

Start()

 Create ()

Start()
Start()

Update()

Create()

Check() & Update()

Message

Restriction

Object

Live Thread Monitor

Re-create trains

waitforNextPeriod()

Chapter 4: A Case Study of Scoped Memory Consumption

88

4.2.1 Assumptions of the Simulator

 In order to make the simulation more realistic and run for a long period,

trains were configured to run on 4 different routes; once a train finishes its

specified route, it will run on its next specified route. Consequently, the

simulation runs for approximately 6 minutes which is a reasonable time

period to cover all cases that might happen and collect the right data. For

the nature of the case study developed and for showing the salient aspects

of the tool, running the simulation for that period of time is also sufficient

to demonstrate the viability of the tool and for drawing appropriate

conclusions about the scoped memory model.

 The Train Thread starts after the Control Thread and Monitor Thread start.

The number of Train Threads in the experiments is 16 and this can be

increased for other experiments. The Train Threads have different routes

that are, a priori defined inside the Main Thread. The route is a ‘String’

array of track names such as route= {“T1”, “T2”, “T5”, “T8”}. When each

train terminates at the end of its first route, the train will start a new trip

immediately. Route objects in the experiments are defined randomly and

they share similar tracks; for example in the following code, routes 1, 2, 3

and 4 all share the track “T4”.

-

String[] route1={"T1","T4","T3"}; //Train1 route

String[] route2={"T4","T6","T7"}; //Train2 route

String[] route3={"T9","T8","T6","T5","T4"};//Train3 route

String[] route4={"T5","T4","T3","T2"}; //Train4 route

 -

Chapter 4: A Case Study of Scoped Memory Consumption

89

 As a simulation of how trains move across the routes, a ‘percentage of

progress’ variable for each Train Thread is defined. This variable increases

its value from 0 to 100, where 0 denotes that the train will move on the

current track and 100 denotes that the train finishes on the current track

and will move over to the next track with a new zero-value assigned to its

‘percentage of progress’ variable.

 An assumption is made about the emergency checking condition inside the

Monitor Thread. The condition checks whether any two trains in the

system are allocated onto the same track from both ends of the track and

that they are sufficiently far away from each other. Before they get close,

the system should respond in real-time. For instance, the Emergency

Thread could occur between Train 1 and Train 4 since both of them might

arrive at the same time onto Track “T4”- the second track in their assigned

routes in the case study routes: (route1={"T1","T4","T3"} and

route4={"T5","T4","T3","T2"}).

 The Control Thread and Monitor Thread are both periodic real-time

threads. Moreover, both have to meet strict timing deadlines for

completing their tasks every period to satisfy the real-time constraints of

the system. For example, the Monitor Thread should finish its checking of

the status of the trains within 50ms. The Control Thread should run more

frequently than the Monitor Thread since it needs to update the tracks’

traffic lights instantly according to the sensor status. Therefore, the

scheduling parameters for both Control Thread and Monitor Thread were

tuned to ensure that both of them accomplished their tasks within very

short periods. Through preliminary experiments of the case study, the

Chapter 4: A Case Study of Scoped Memory Consumption

90

Control Thread can accomplish its tasks within 120ms and Monitor Thread

within 300ms. Those two values of periodic parameters are fixed

throughout all the experiments and can be fine-tuned if there is a need to

increase or decrease the number of trains and/or tracks in the system.

4.2.2 Scoped Memory Design Models

Since the case study is a safety critical application, allocating objects and threads onto

heap memory was avoided to ensure that no interference by the garbage collection

process was encountered. Therefore, the first challenge was to know how many

scopes the application needed and which objects and threads should be allocated into

either these scopes or immortal memory. To decrease the memory footprint of the

case study, similar lifetime objects should be allocated into the same scope; short

lifetime objects should be allocated into different scopes to that where long lifetime

objects reside. The lifetimes of different threads and objects in the case study vary

and some are not specified at compile time. The Lifecycle Memory Managed Periodic

Worker Threads pattern introduced in Dawson (2007) is used as a fundamental

concept to design different scoped models for this case study; this pattern has four

categories of object lifetimes:

 Retain Forever: Objects with this lifetime are alive until the application

terminates and are accessible to all threads.

 Retain Thread Group: Objects with this lifetime will not be reclaimed

until all the threads that share these objects have terminated. These objects

are accessible only by threads within the group of threads.

Chapter 4: A Case Study of Scoped Memory Consumption

91

 Retain Thread: Objects with this lifetime will be created by a specific

thread and will not be accessible by other threads.

 Retain Iteration: Objects with this lifetime are created during the iteration

and will not be used outside of the iteration.

Table 4.1 shows the initial and possible design memory solutions of the case study

from a thread/object lifetime’s perspective. From the initial design, it is essential to

define which objects/threads should be allocated into either immortal memory or in

scoped memory regardless of how many scopes are required. Since the Track object

will be accessible from different threads during the application’s lifetime, it is

reasonable that it should be allocated into immortal memory (Retain Forever). As a

result, the Track object will be accessible by all threads that run in different scoped

memory areas, so the assignment rule of RTSJ is satisfied (i.e., references from

scoped memory to immortal memory are always allowed).

On the other hand, the Main Thread will also be active until the application

terminates; therefore, it is more appropriate to be allocated into immortal memory

(Retain Forever). Similarly, the Control Thread lasts throughout the application’s

execution time and it should be allocated into immortal memory (Retain Forever).

Finally, the Monitor Thread and Live Thread Monitor will be allocated into immortal

memory (Retain Forever), since they will last for the entire application’s lifetime.

The Trains Threads are real-time threads and so their lifetimes are not specified at

compile time; trains might wait for other trains to proceed and this is related to the

status of the tracks; exactly how long each train needs to finish is not known

beforehand. On the other hand, the Train Thread will create new temporary objects

while it is running such as a new temporary object to read the current track from the

Chapter 4: A Case Study of Scoped Memory Consumption

92

Hashtable entries and a string message issued when the train is in a waiting state.

These objects should be de-allocated when the train terminates its route (Retain

Thread). The Train Thread should therefore be allocated into a scoped memory area

where all objects created by the Train Thread will be de-allocated (and when no

threads run inside that scoped memory). The Train Status Table will be created by the

Monitor Thread to periodically show the status of all trains (Retain Iteration).

Allocation of the Train Status Table by the Monitor Thread to a scoped memory area

saves on memory footprint. Each periodic run of the Monitor Thread will create a

new Train Status Table de-allocated after the Monitor Thread finishes its current

period. Hence, no memory leak occurs.

An Emergency Thread will be instantiated by the Monitor Thread when an

emergency state occurs between two trains and it will last until the emergency is

handled; the Emergency Thread is therefore a temporary thread and will be allocated

in a scoped memory area (Retain Thread).

The Emergency Thread creates new objects such as the Message and Restriction

objects. The Message object sends messages to both trains to inform them of the

emergency state and the Restriction object handles the emergency by modifying the

trains’ parameters. The Emergency thread will communicate with two Train Threads

which run in scoped memory areas; however, their references are stored in immortal

memory, since the Main Thread that creates these references is allocated into

immortal memory. Therefore, the Emergency Thread can access immortal memory

and extract references to both Train Threads. If the Main Thread was not allocated

into the immortal memory, the Emergency and Train Threads would not be able to

communicate, since the reference between two separate scopes (not siblings) is not

permitted under RTSJ rules.

Chapter 4: A Case Study of Scoped Memory Consumption

93

Design Immortal Memory Scoped memory

Initial Design

Control Thread
Monitor Thread
Main Thread,
Tracks object
Live Thread Monitor

Train Threads
Emergency Thread
Train Status Table

Design 1

Control Thread
Monitor Thread
Main Thread,
Tracks object
Live Thread Monitor

 One scoped memory for
EACH Train Thread

 One scoped memory for
each Emergency Thread

 One scoped memory for
Train Status Table

Design 2

Control Thread
Monitor Thread
Main Thread,
Tracks object
Live Thread Monitor

 One scoped memory for
ALL Train Threads

 One scoped memory for
each Emergency Thread

 One scoped memory for
Train Status Table

Design 3

Control Thread
Monitor Thread
Main Thread,
Tracks object
Live Thread Monitor

 One scoped memory for
ALL Train Threads and
all Emergency Threads

 One scoped memory for
Train Status Table

Chapter 4: A Case Study of Scoped Memory Consumption

94

Table 4.1: initial and possible design memory models of the case study

All the objects/threads in this case study are logically related and allocating them into

many different scopes according to their lifetimes presents the possibility of obtaining

a better memory footprint (as stated in the Lifecycle Memory Managed Periodic

Worker Threads pattern). From the initial design, it was found that Train Threads, the

Emergency Thread and the Train Status Table are allocated into scoped memory

areas; deciding on the number of the scoped memory areas of the aforementioned

objects is left to the developer. Accordingly, for the sake of the tool experiments,

there are three different allocation scenarios as shown in Table 4.1 (Designs 1 to 6):

 All Train Threads, Emergency Threads and Train Status Table will be

allocated into the same scope (Design 6). It is trivial to implement Design

6 since all Train Threads, Emergency Threads and the Train Status Table

will be allocated into one scope; they are not de-allocated until all Trains

Threads finish their routes at the end of the application.

Design 4

Control Thread
Monitor Thread
Main Thread,
Tracks object
Live Thread Monitor

 One scoped memory for
ALL Train Threads and
Train Status Table

 One scoped memory for
each Emergency Thread

Design 5

Control Thread
Monitor Thread
Main Thread,
Tracks object
Live Thread Monitor

 One scoped memory for
ALL Train Threads

 One scoped memory for
Emergency Threads and
Train Status Table

Design 6

Control Thread
Monitor Thread
Main Thread,
Tracks object
Live Thread Monitor

One scoped memory for all
Train Threads, Emergency
Threads and Train Status
Table

Chapter 4: A Case Study of Scoped Memory Consumption

95

 Each two of the three (Train Threads, Emergency Threads and Train

Status Table) will be allocated into one scope and the third will be

allocated to a different scope (Designs 3, 4 and 5).

 Each of: Train Threads, Emergency Threads and Train Status Table will be

allocated into different scoped memory areas. On the other hand, since

trains share tracks with other trains, their behaviour cannot be predicted in

a control system of the type that has been defined and, accordingly, they

will have different lifetimes. Therefore, it may be prudent to allocate them

to different scopes. Here, two different designs can be implemented, since

Train Threads can either all be running in one scoped memory area or each

can be running in a different scoped memory area (Design 1 and Design

2).

4.3 Experimental Design

The experimental design of the simulation tool consists of:

 Implementing each scoped memory design model (Designs 1 to 5).

 Modeling the movement of trains: Each train has a variable named

‘percentage_of_progress’ which simulates the train’s run on a specific

track. This variable increases its value from 0 to 100, where 0 denotes that

the train starts moving on the current track and 100 denotes that the train

has completed its run on the current track. The following code illustrates

how train movement is modeled on a specific track:

-

 while (percentage_of_progress <=100) // train is still running on the current
 //track

Chapter 4: A Case Study of Scoped Memory Consumption

96

 {
 percentage_of_progress = percentage_of_progress +1;
 this.sleep(100);
 /* The Train Thread sleeps for 100 millisecondes and then it continues
 moving on the current track untill its percentage_of_progress
 variable reaches 100.
 */
 };// while loop
 // the train moves into the next track
-

 Measuring, modeling and visualizing memory consumption: Different

scoped design memory models of an RTSJ application might show

different memory footprints during execution of the application. To

capture the best scoped memory design model for the case study, it was

run with different versions, each one of which implemented one of the

scoped memory design models (Designs 1 to 5). As previously mentioned,

Design 6 comprises one scoped memory area for all Train Threads,

Emergency Threads and Train Status Table. There are therefore no

benefits in implementing it, since one scoped memory will still be alive

until all Threads terminate. Therefore, five different memory design

models were implemented. Immortal memory and total scoped memory

consumption for each design was then measured.

The following code shows an example of how scoped memory areas were assigned to

Train Threads and immortal memory areas to Control Thread and Monitor Thread in

the ‘run’ method of the Main Thread. New Scoped memory objects are created with

different sizes to match the experiment’s requirements. The Train Thread instances

are created and parameters are assigned to their constructors; those parameters are a)

route, b) name of the train and, c) the memory scoped area in which it will run. Both

Control Thread and Monitor Thread run inside the immortal memory instance.

 -

Chapter 4: A Case Study of Scoped Memory Consumption

97

 Train train1 =new Train(route1,"train1",ScopedMem1);

 Train train2 =new Train(route2,"train2",ScopedMem2);

 -

 ControlThread Control= new ControlThread(ImmortalMemory.instance());

 MonitorThread Monitor= new MonitorRTThread(ImmortalMemory.instance());

 Control.start();

 Monitor.start();

 train1.start();

 train2.start();

 -

The application will run until all Train Threads finish executing. The memory

consumption of immortal and total scoped memory areas are calculated using the

RTSJ memoryConsumed method of the MemoryArea object. Memory consumption is

calculated every time the periodic Monitor Thread is run. An example of how total

memory consumption of all scoped memory areas and how immortal memory is

measured is shown in the following code:

-

-

while (waitForNextPeriod())

 {

 // calculate immortal consumption

 Immo=(int) ImmortalMemory.instance().memoryConsumed() ;

 // calculate scopes consumption

 TotalScopesConsumption= Main.ScopedMem1.memoryConsumed()+

 Main.ScopedMem2.memoryConsumed()+

 Main.ScopedMem3.memoryConsumed()+

 Main.ScopedMem4.memoryConsumed();

-

 }//whileloop

-

The experiments were repeated 50 times for each data point and the average memory

consumption was calculated. To avoid jitter (i.e., fluctuation in execution time that

may occur while loading and initializing classes at runtime), initialization time

compilation mode (ITC) was used to compile and initialize classes at the virtual

machine start-up time. Since each design may have different scoped memory

consumption, the maximum size of scoped memory was tuned for each design. The

maximum size needed for immortal memory was tested through the experiments and

Chapter 4: A Case Study of Scoped Memory Consumption

98

it was equal to 12Mb. Those values were tuned before the virtual machine started

executing. Table 4.2 shows the platform of the experiments.

OS Solaris 10/x86

VM Sun RTS 2.2

CPU Intel Pentium Dual Core 2.8 GHZ

Immortal size 12Mb

Maximum size of scoped

region

1600KB

RAM capacity 2GB

Table 4.2: The simulation platform

4.4 Simulation Tool

The simulation consists of two parts: the GUI and the Console. The simulator was run

for approximately 6 minutes, after which all trains had finished their routes and the

application then terminated. The GUI presents the status of tracks and trains during

the simulation execution time and shows the total memory consumption of scoped

and immortal memory of the implemented design. The status of the trains can be

either one of the following:

-

 Train is on wait.
 Train has terminated at the end of its first route.
 Train has terminated at the end of its second route.
 Train has terminated at the end of its third route.
 Train has terminated at the end of its fourth route.
 Train has stopped waiting for train(x) to finish its current track.

-

The two rectangle elements at the top of the tool interface show the memory

consumption percentage of the maximum memory assigned at runtime for each

immortal memory and scoped memory areas. In the simulation, the maximum space

of memory allocated for immortal memory was assigned 12Mb and the maximum

space of memory allocated for scope areas 1600Kb for all designs. The white box at

Chapter 4: A Case Study of Scoped Memory Consumption

99

the right bottom corner of the tool presents the track status during the simulation

execution time. T0 to T9 represent the names of the tracks; the status of each is either

“Green” or “Red” which reflects the status of their traffic lights to allow or prevent

trains from running on that specific track. The emergency message at the bottom of

the GUI is displayed if there is an emergency between two trains in the system. The

time label shows the time at which the simulation runs.

Figure 4.3 shows a screenshot of the simulation’s GUI part at a period of 140 seconds

during Design 1. It also shows the status of all trains and current traffic lights of the

tracks. Track T3 for example, is Green at that moment which means that there are no

trains running on it. Train 1 status for example is ‘T7’.

There is a possibility of two trains being on the same track as seen in Figure 4.3

where Train11 and Train2 are in an emergency state but no collision result; in this

case, either both trains were running in the same direction but with acceptable speed

and there was no possibility of a collision or the trains were far enough from each

other and both safe. When they moved closer to each other, one of them was stopped

on an alternative track until the other train passed. Figure 4.3 shows that Train11 is on

wait state until Train2 finishes its run on track T8. Choosing which train to be stopped

to wait is defined randomly by the system which will send a message object to both

trains to give the appropriate instruction. An Emergency Thread created at that time

between Train11 and Train2 is shown at the bottom of the screenshot. The percentage

string shown on scoped memory component displays the current consumption

percentage of the maximum scoped memory allowed in the system. Similarly, the

percentage string shown on the immortal memory component displays the current

consumption percentage of the maximum immortal memory allowed in the system.

Chapter 4: A Case Study of Scoped Memory Consumption

100

Figure 4.4 shows the simulation at period of 299 seconds when most trains terminated

in Design 1. The scoped memory consumption is 7.39Kb and immortal memory

consumption is 9.77Mb.

Figure 4.3: Simulation GUI element at 140 seconds (Design 1)

Chapter 4: A Case Study of Scoped Memory Consumption

101

Figure 4.4: Simulation GUI element at 299 seconds (Design 1)

Figure 4.5 shows the simulation at period of 142 seconds where Design 2 was

implemented in that run. This screenshot shows more scoped memory consumption at

that time than the scoped memory consumption in Design 1.

Chapter 4: A Case Study of Scoped Memory Consumption

102

Figure 4.5: Simulation GUI element at 142 seconds (Design 2)

Figure 4.6 also shows the screenshot of the simulation at period of 300 seconds where

Design 2 was implemented. The scoped memory consumption in Design 2 at 300

seconds was (138.36Kbytes) compared with scoped memory consumption at similar

time in Design 1 was 7.39Kb as shown in Figure 4.4.

Chapter 4: A Case Study of Scoped Memory Consumption

103

Figure 4.6: Simulation GUI element at 300 seconds (Design 2)

The other part of the simulation tool is the console (shown in Figure 4.7). The console

shows more detail of the application at runtime and outputs this information into a

text file. For instance, the trains changing status over periods of time (lines 9, 10, and

11) and when emergency states occur between trains (line 8) are printed on the

console. Memory consumption over periods of time is also displayed. The

information provided by the console is recorded for the developer so that they can

review this information at a later point. The story-lines in Figure 4.7 maintain the data

that will be used by the developer for later analysis. This simulation simulates the

events that may occur in the real-world. As seen from Figure 4.7, trains may wait to

run on a specific track for other trains when the traffic light is red; for example

Train10 is “on wait” status (line 10). Train13 is stopped until Train16 finishes its

current track (line 9) since an emergency is created between Train13 and Train16

Chapter 4: A Case Study of Scoped Memory Consumption

104

(line 8); the simulation tool specifies randomly which train should stop and which one

should continue running in case of emergencies.

1. The current Time is 150 seconds
2. Immortal memory consumption is 5.97Mb
3. Scoped memory consumption is 17.3 Kb
4. ……..
5. The current Time is 198 seconds
6. Immortal memory consumption is 7.18 Mb
7. Scoped memory consumption is 13.9 Kb
8. Emergency is created between train13 and train16
9. Train13 has been stopped until train16 finishes its current Track
10. Train10 is waiting until the traffic light sets green
11. Train3 is waiting until the traffic light sets green
12. ………
13. The current Time is 347 seconds
14. Immortal memory consumption is 10.89 Mb
15. Scoped memory consumption is 2.94 Kb
16. Train9 Has finished its current route
17. Tain8 Has finished its current route

Figure 4.7: Simulation Console element (Design 1)

4.5 Simulation Analysis

The total memory consumption of all scoped memories created in each design was

measured over time. The simulation was run for 350 seconds (approximately 6

minutes) at which point all trains had finished their routes and the application had

terminated.

Figure 4.8 shows the immortal memory consumption of Designs 1, 2, 3, 4 and 5 from

1 second to 350 seconds after which the application terminated. Consumption

increased from 2.7Mb to 11.2Mb for Designs 1 to 5. The increases are almost

identical for all scoped memory design models except for Design 4, which ran for a

relatively longer time than the other designs. The difference in termination times for

all designs is small since the execution time of the simulation relies on the random

status of trains and tracks.

Chapter 4: A Case Study of Scoped Memory Consumption

105

The immortal memory consumption gradually increased while the application was

running. The increase in immortal memory was due to temporary objects allocated

periodically by the Monitor Thread and Control Thread which both run in immortal

memory. For instance, the Monitor Thread allocated string objects to print current

memory consumption; after 350 seconds, all trains had finished their routes and no

more temporary objects were then allocated by the Monitor Thread. The immortal

memory consumption started to flatten after 350 seconds.

Figure 4.8: Immortal memory consumption in Designs 1, 2, 3, 4 and 5

Table 4.3 presents the summary data for immortal memory consumption of all

designs. The Track object consumed non-trivial amounts of memory inside the

immortal memory area. The maximum value of the immortal memory reached over

time for Designs 1, 2 and 5 was 10.8Mb. It is relatively higher in Design 4 since its

execution time is longer than the execution times of remaining memory design

models. Since threads that run in immortal memory are the same in Designs 1 to 5,

immortal memory consumption for all of them is almost identical.

Chapter 4: A Case Study of Scoped Memory Consumption

106

 Minimum Maximum Mean Std. Deviation

Design1 2.70 10.80 6.84 2.64

Design2 2.70 10.80 6.86 2.67

Design3 2.70 10.60 6.86 2.64

Design4 2.70 11.20 7.00 2.75

Design5 2.70 10.80 6.86 2.66

Table 4. 3: Summary Data for Immortal consumption

Figure 4.9 shows the total amount of all scoped memory areas consumption during

Design 1 that assigns one scoped memory for each Train Thread, one scoped memory

for each Emergency Thread and one scoped memory for the Train Status Table. The

maximum value of consumption in Design 1 was 19Kb at 100 seconds. After that

point, total consumption starts to fall when the Train Threads start to terminate and

exit their specific scoped memory at different times; scoped memory areas will be

freed at different times and total consumption will degrade until reaching zero.

Memory consumption falls at a relatively slow rate after 100 seconds, a feature not

observable in any of the other four designs. There is a simple explanation for this

feature. In Figure 4.9, since each Train Thread runs in a different scoped memory

area (which will be freed immediately after that train itself terminates); there is a

staggered freeing up of memory dictated by when each train terminates.

Chapter 4: A Case Study of Scoped Memory Consumption

107

Figure 4.9: Scoped memory consumption in Design 1

Figure 4.10 shows the total amount of the scoped memory consumption for Design 2;

this is the same as for Design 1 except that in Design 2 there is just one scoped

memory for all Train Threads in addition to one scoped memory for each Emergency

Thread and one scoped memory for the Train Status Table. The maximum value of

consumption was 155.81Kb at 325s for this design. The memory consumption of

scopes over time was greater than that for Design 1 since, in Design 2, all Train

Threads were allocated into one scoped memory area which tended to create more

new objects that were not freed until all the trains had finished their routes; in Design

1, each train was assigned to one scope which was freed immediately after the

specific train finished. The sudden fall in the memory consumption occurs because

there is only one scoped memory for all Train Threads and this scoped memory is not

freed until all trains terminate; in this design, the last train terminates at

approximately 341 seconds.

Time (Seconds)

347325300275250225200175150125100755025

S
c
o

p
e
d

 M
e
m

o
ry

 C
o

n
s
u

m
p

ti
o

n
 (

K
b

y
te

s
)

20.00

15.00

10.00

5.00

0.00

Chapter 4: A Case Study of Scoped Memory Consumption

108

Figure 4.10: Scoped memory consumptions in Design 2

Figure 4.11 shows the total amount of scoped memory consumption for Design 3,

characterized by one scoped memory for all Train Threads and all Emergency

Threads; there is one scoped memory for the Train Status Table. Considerable growth

in memory consumption is evident in Design 3, since one scoped memory model is

allocated for all Train Threads and Emergency Threads in the application and scoped

memory will not therefore be freed until all Train/Emergency Threads finish

executing inside it. The maximum value of memory consumption reached 224Kb.

Time (Seconds)

341325300275250225200175150125100755025

S
c

o
p

e
d

 M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

K
b

y
te

s
)

200.00

150.00

100.00

50.00

0.00

Chapter 4: A Case Study of Scoped Memory Consumption

109

Figure 4.11: Scoped memory consumptions in Design 3

Figure 4.12 shows the total amount of scoped memory consumption over time for

Design 4. This design is characterized by one scoped memory for all Train Threads

and the Train Status Table; there is one scoped memory for each Emergency Thread.

The resulting memory consumption reaches a maximum value of 1487.40Kb. It

would seem, at face value that the poorest design memory model is Design 4 where

all Trains Threads are running in one scoped memory area and the Train Status Table

will also be allocated into the same scope every time the Monitor Thread executes.

This is why a consistent increase in memory consumption is observed. A sudden fall

in total scoped memory consumption occurs at 351 seconds, since this scoped

memory area will be freed immediately after all Train Threads terminate and no more

memory will be allocated to store the Train Status Table.

Time (Seconds)

337325300275250225200175150125100755025

S
c

o
p

e
d

 M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

K
b

y
te

s
)

250.00

200.00

150.00

100.00

50.00

0.00

Chapter 4: A Case Study of Scoped Memory Consumption

110

Figure 4.12: Scoped memory consumption in Design 4

Figure 4.13 shows the total amount of the scoped memory area consumption over

time for Design 5. For this design, there is one scoped memory for all Train Threads

and one scoped memory for Emergency Threads and the Train Status Table. The

maximum value of memory consumption for this design is 153Kbytes. This design is

similar to Design 2 in memory consumption since both designs have one scoped

memory for all Trains Threads.

Time (Seconds)

351325300275250225200175150125100755025

S
c

o
p

e
d

 M
e

m
o

ry
 C

o
n

s
u

m
p

ti
o

n
 (

K
b

y
te

s
)

1400.00

1200.00

1000.00

800.00

600.00

400.00

200.00

0.00

Chapter 4: A Case Study of Scoped Memory Consumption

111

Figure 4.13: Scoped memory consumption in Design 5

Table 4.4 presents summary data (maximum, minimum, median, mean and standard

deviation (SD)) values for the five designs for the total scoped memories

consumption of all designs. As indicated by Figure 4.12, Design 4 is clearly the most

expensive in terms of its memory consumption. Designs 1, 2, 3 and 5 are comparable

in terms of their memory consumption.

 Minimum Maximum Mean Std. Deviation

Design 1 .00 19.01 13.2417 4.87027

Design 2 .00 155.81 82.4560 53.76607

Design 3 .00 224.01 123.6646 75.76341

Design 4 .00 1487.40 747.3886 482.96625

Design 5 .00 153.01 80.8146 54.22990

Table 4.4: Summary Data for Scope consumption

The preferred design scoped memory model and that showing the best performance is

Design 1 where one scoped memory area is assigned for each Train Thread and freed

when the related thread finishes its execution. The maximum value of the memory

Time (Seconds)

350325300275250225200175150125100755025

S
c
o

p
e
d

 M
e
m

o
ry

 C
o

n
s
u

m
p

ti
o

n
 (

K
b

y
te

s
)

200.00

150.00

100.00

50.00

0.00

Chapter 4: A Case Study of Scoped Memory Consumption

112

consumption of Design 1 reaches 19Kb. Running periodical threads in immortal

memory needs to be taken into consideration, since temporary objects that might be

created by these periodic threads have to be allocated in immortal memory.

As a recommendation, developers should use scopes to allocate temporary objects

that will not be used in the next iteration of the thread. Developers should also be

aware when choosing the number of scopes in their memory model, the higher the

number of scopes, the less the footprint. However, increasing the number of scopes

impacts throughput. Execution time of the application will generally increase and

does not always bring better a memory footprint as noted in the differences between

Designs 3, 4, and 5. There, the number of scopes was the same (two scopes in each);

however, Design 3 was superior in terms of its memory footprint. Allocating the

right objects/threads into the right scopes is therefore important for achieving an

efficient memory design model.

4.6 Guidelines for Using Scoped Memory in RTSJ

Through the development of the railway case study using RTSJ and its memory

model, it has been demonstrated that scoped memory is not a trivial approach to

implement since reference rules complicate that process. It is mandatory to place

some objects in immortal memory to enable communication between scopes. If

scopes are not siblings, references between them are not allowed; to reference a

shared object by objects created in these scopes, the shared object should be allocated

into immortal memory where all scopes can reference it. Guidelines for using scoped

memory in RTSJ are summarized as follows:

Chapter 4: A Case Study of Scoped Memory Consumption

113

1. Developers should avoid allocating string objects into immortal memory,

especially if those string objects change their current states over time, since

this leads to a constant increase in immortal memory consumption. We note

that through experimentation when updating the status of the GUI objects, the

GUI component is allocated in immortal memory since this will be alive until

the application terminates. Finding design patterns to decrease for immortal

memory consumption is a necessity.

2. Developers should use nested scopes to allocate short lifetime objects (such as

a scoped memory for the Train Status Table).

3. Developers should allocate code that runs periodically in a real-time thread in

scoped memory (such as the Train Status Table).

4. Developers should allocate real-time threads that have relatively short

lifetimes into scoped memory areas (such as Train Threads).

5. Developers should bear in mind that the default memory context of any real-

time thread is immortal memory.

6. Developers should recycle Runnable objects rather than creating them every

time a thread enters a scoped memory area.

7. Threads that run until the application terminates should be allocated into

immortal memory; however, if threads have to run some code periodically,

then the code that runs periodically should be allocated into a scoped memory

area.

Chapter 4: A Case Study of Scoped Memory Consumption

114

4.7 Conclusions

Simulating safety-critical real-time systems enables the testing of the behaviour of

systems before installing them in the real-world. This chapter introduced a railway

case study for RTSJ run on the RTS2.2 virtual machine which combines multi-

threading and scoped memory model implementations. It is the first empirical study

using RTSJ in the analysis of scopes and exploration of criteria for object allocation

therein. A simulation tool for a real-time Java application was presented which can be

abstracted further in future to a wide spectrum of real-time applications. The focus

was on testing the memory consumption of a specific case study of a railway control

system. Different scoped memory design models were implemented to measure

memory consumption for each over time. The simulation provided runtime

information about memory consumption of different scoped memory models which

can assist in selecting the most appropriate scoped memory design model for

achieving a minimal memory footprint.

Memory consumption of five possible designs for scoped memory models was

measured. Results showed that the memory design model that had the greater number

of scopes achieved the best memory footprint. However, number of scopes did not

always indicate a ‘good’ memory footprint; choosing the right objects/threads to be

allocated into scopes is an important factor to be considered. Recommendations and

guidelines for developing RTSJ applications that use a scoped memory model were

presented in this chapter. Finally, the next chapter introduces and discusses a solution

to stop immortal memory increasing while the application runs.

Chapter 5: Slicing and Patterns for RTSJ Immortal Memory Optimization

115

Chapter 5: Slicing and Patterns for RTSJ

Immortal Memory Optimization

5.1 Overview

In the previous chapter, the railway control case study showed the complexity of

using the new RTSJ memory model and the space overhead occurred in immortal

memory. The case study illustrated how simulation of critical safety real-time

applications in Java can be used to investigate the implementation of possible scoped

memory design models and their memory consumption in multi-threaded

environments. Results showed that a memory design model with a higher number of

scopes achieved the least memory footprint. However, the number of scopes per se

did not always indicate a satisfactory memory footprint; choosing the right

objects/threads to be allocated into scopes was an important factor to be considered.

The case study showed a constant increase in immortal memory at runtime in all of

the memory design models implemented in the case study.

This phenomenon motivated the work presented to define objects which cause

immortal memory space overheads and eliminate constant increases in immortal

memory. In this chapter, dynamic code slicing is employed as a debugging technique

to explore constant increases in immortal memory. Two programming design patterns

are presented for decreasing immortal memory overheads generated by specific data

structures. Experimental results showed a significant decrease in immortal memory

consumption at runtime. This chapter thus makes two contributions:

Chapter 5: Slicing and Patterns for RTSJ Immortal Memory Optimization

116

1. It motivates the use of a dynamic slicing technique to debug RTSJ code and

to define the objects that specifically affect immortal memory constant

increase at runtime.

2. It introduces two programming design patterns to decrease immortal memory

consumption when Hashtable data structures are manipulated inside immortal

memory.

The remainder of this chapter is organized as follows: The methodology of this work

is proposed in Section 2. The new programming design patterns are then explained in

Section 3. Section 4 discusses the experimental results and the outcomes of the

applied methodology and design patterns. Finally, Section 5 concludes the chapter.

5.2 Methodology

As seen in Chapter 4, the Main thread, Control thread and Monitor thread are

allocated in immortal memory as they all run until the application terminates. Since

the Track object is a fixed size object and is accessible by all threads that run in

different scoped memory area, it is allocated in immortal memory and no reference

violation at runtime occurs. All remaining threads and objects (Train Threads,

Emergency Thread and the Train Status Table) are allocated into scoped memory

areas since they have different lifetimes and a better footprint is achieved.

To uncover the reasons behind constant increases in immortal memory, verification

and debugging techniques are required. Since some of the objects might have been

generated through native methods, it is difficult to determine statically from the code

the new objects allocated into immortal memory at runtime. Therefore, program

Chapter 5: Slicing and Patterns for RTSJ Immortal Memory Optimization

117

slicing could potentially be used as one of the techniques to debug and eliminate the

problem and to simplify the testing approach (Harman and Danicic, 1995).

Program slicing is “a reverse engineering technique consisting of decomposing a

program into slices according to certain criteria (e.g., fragments of source code that

use a specific program variable)” (Pérez-Castillo et al., 2012). It is one of the

techniques used in software engineering for maintenance purposes such as debugging,

program understanding, testing, tuning compilers, program analysis and reverse

engineering (Gallagher and Lyle, 1991, Tip, 1995). Literally speaking, a program

slice (Weiser, 1979) is a set of all program statements and predicates that might affect

value of a variable (v) at a program point (p). Figure 5.1 shows an example of slicing

on variable (product) at line 10 of the program (Tip, 1995). In Figure 5.1 part (a), the

original code is presented. To analyze how the variable product can be affected in the

program, a sliced code (part (b) of Figure 5) is created which includes all the

statements and predicates that might affect value of the variable product. All other

statements at lines such as (3, 6, and 90) are removed from the slice since the

computations at those code lines are not relevant to the final value of the variable

product.

Chapter 5: Slicing and Patterns for RTSJ Immortal Memory Optimization

118

(1) read(n);

(2) i := 1;

(3) sum := 0;

(4) product := 1;

(5) while i<=n do

 begin

(6) sum := sum + i;

(7) product := product * i;

(8) i:=i+1

 end;

(9) write(sum);

(10) write(product)

(a)

(1) read(n);

(2) i:=1;

(3)

(4) product := 1;

(5) while i<=n do

 begin

(6)

(7) product := product * i;

(8) i:=i+1

 end;

(9)

(10) write(product)

(b)

Figure 5.1: (a) An example program. (b) A slice of the program criterion (10,

product).

A slicing technique was first introduced by (Weiser, 1979) as static slicing based on

data flow and dependence graphs. There are two types of slicing – ‘static’ and

‘dynamic’. Static slicing can be produced by collecting information about the

program statically such as the structure of the application, number of threads, types of

objects, connection between objects, etc (Harman and Hierons, 2001). Dynamic

slicing collects information about application behaviour at runtime in relation to a

specific user input in addition to the static data of the application (Harman and

Hierons, 2001). The notion of dynamic slicing was introduced by (Korel and Laski,

1988) stating that it was impossible to identify dynamic objects through static

analysis. Dynamic slicing identifies a subset of executed statements expected to

contain faulty code (Zhang et al., 2005). It is more useful in OO programs which

consist of different types of objects, methods and in multi-threaded programming. In

Chapter 5: Slicing and Patterns for RTSJ Immortal Memory Optimization

119

OO programs, statements in the methods of a particular object that might affect the

slicing criterion are identified (object slicing) (Liang and Harrold., 1998). An

overview of slicing techniques for OO programs can be found in (Mohapatra et al.,

2006).

The case study explained in Chapter 5 is multi-threaded application. Its behaviour at

runtime may generate new objects through native methods in immortal memory.

Therefore, static analysis is not enough to debug immortal memory consumption at

runtime; using dynamic slicing is more suitable to trace the objects/methods that

cause an instant increase in the immortal memory. Pan and Spafford, (1992) found

that experienced programmers debugged code through four debugging tasks: (1)

determining statements involved in program failures, (2) selecting suspicious

statements that might contain faults, (3) making hypotheses about suspicious faults

(variables and locations), and (4) restoring the program state to a specific statement

for verification. In this work, the approach to dynamic slicing is similar to that of Pan

and Spafford (1992) which used heuristics for fault localization by defining

suspicious statements that caused the software to fail. Two heuristic are used in this

work; heuristic 1 (cover all statements in all available dynamic slices) and heuristic 7

(indicate statements with high influence frequency which appear or is executed many

times in one dynamic slice) (Pan and Spafford, 1992). Accordingly, to find the

statements which impact immortal memory increase, the main focus is on statements

that are executed in the immortal memory within periodic threads such as a Control

thread and/or within loop structures. Next, code slices are generated to measure the

impact of each statement on immortal memory increase.

Code slices are initially allocated in a scoped memory area to monitor any decrease in

the immortal memory consumption or to find out whether a reference violation occurs

Chapter 5: Slicing and Patterns for RTSJ Immortal Memory Optimization

120

by new objects created inside that slice. The approach is divided into 5 circular steps

which can be repeated to capture the places where immortal memory constant

increases occur. Figure 5.2 summarizes the methodology approach. Since two

periodic threads run in immortal memory in the case study (the Control and Monitor

threads), the debugging techniques were applied on only those two. In the Control

thread, the code that most likely generates new objects was sliced; then the slice was

placed inside a scoped memory area. Next, the application was executed to measure

immortal memory consumption; if an error occurred at runtime inside the sliced code,

a reference violation occurred meaning a new object was generated; the code that

produced reference errors was removed from scoped memory. Design patterns were

created to solve the problem of reference violations and to eliminate the space

overhead generated by the newly created objects. If there was no error and the

immortal memory decreased, the code was kept inside a scoped memory area.

Figure 5.2: The Slicing Methodology.

1- Slice the code
that most likely
generates new
objects

2- Place the slice
in a scoped
memory area

3- Remove the
code that
produces
reference errors
from the scoped
memory

4- Create a
pattern to solve
the reference
errors.

5- Measure
memory
consumption

6- Repeat until
immortal
increase size is
fixed.

Chapter 5: Slicing and Patterns for RTSJ Immortal Memory Optimization

121

The steps were repeated until it was no longer possible to either decrease immortal

memory or until the size of the immortal memory at runtime was fixed. Through this

methodology, the objects that caused immortal memory to increase were identified,

namely: a) the String object of the print statement inside the Control and Monitor

threads and b) the Hashtable reading and modifying operations inside a loop in the

Control thread.

All String objects of the print statements were eliminated by allocating them inside

scoped memory areas to be de-allocated immediately after printing string messages.

Hence, immortal memory consumption at runtime in the case study decreased by

25%. When using different data objects in Java such as Arraylist, Hashtable, Vector

and String, it is important to monitor memory consumption where objects of these

data types reside. In the case study, a Hashtable was used to represent the tracks’

status at runtime; some of the case study entities need to locate a specific track to

update its status according to the emergency state or according to the train threads

that run on different tracks. The Hashtable is created in the case study inside immortal

memory to be accessible by all objects and threads. A Hashtable is used because it is

thread-safe and can be shared between multiple threads; on the other hand, the order

of the values in Hashtable is not important. As stated in Strøm and Schoeberl (2012) a

full knowledge of the library code is required to prevent the creation of objects in

wrong scopes and producing dangling references as a consequence.

In Chapter 3, the impact of scoped memory on execution time and the footprint of an

application were explored when different types of objects (Vector, Float, Hashtable,

and Integer) and numbers of regions were used. Float objects consumed more

Chapter 5: Slicing and Patterns for RTSJ Immortal Memory Optimization

122

memory and affected the execution time more than other objects. Hashtable was the

second worst in terms of both memory footprint and application execution time.

5.3 Immortal Memory Patterns

5.3.1 Hashtable Reading Pattern

To read a value associated with a specific key in the Hashtable, the get(Object key)

method can be used. This method returns null if the key does not exist or returns the

value of the key if it does. Interestingly, through the slicing approach of the case

study, the ‘get’ method of the Hashtable was tested and, as a result, it was noticed that

it generated temporary objects at runtime which, in turn, increased immortal memory

consumption. Significant impact on immortal memory consumption occurred when

the reading operations took place inside a loop of a periodic thread. This motivated a

new design pattern to allocate the slice of code which reads values from the Hashtable

in a scoped memory area. Any temporary object generated during the reading

operations will be allocated inside scoped memory area and de-allocated once exiting

the scoped memory area. However, according to the value read in the Hashtable, the

flow of the application outside the scoped memory will change as a result.

Communication between the inside of scoped memory area and its outside is via a

static primitive variable with an ‘if’-statement. The if-statement will change the value

of the primitive variable according to the value that has been read in the Hashtable. A

y object is used as a reference to the value returned by the ‘get’ method. After that,

the same object is not required and will be de-allocated once exiting the scoped

memory. To pass the value outside the scoped memory area, another ‘if’-statement

outside the scoped memory is used to define the application flow. The new design

Chapter 5: Slicing and Patterns for RTSJ Immortal Memory Optimization

123

used is similar to the “execute with primitive return value” design pattern in Rios et

al., (2012); however, in this work, new object parameters were not created and

instead static primitive types were used; although the variable is allocated in immortal

memory, it is smaller than creating a new object that might not be de-allocated until

the application terminates. The new design pattern communicates with the outside of

the scoped memory area and decreases immortal memory consumption caused by

reading operations of the Hashtable. The template of this design pattern is illustrated

below:

1. Pattern name: Hashtable Immortal/Scoped-Safe Reading Pattern

2. General context: This pattern is used to allocate the slice of code which reads

values from the Hashtable in a scoped memory area. Any temporary object

generated during the reading operations will be allocated inside a scoped

memory and de-allocated once exiting that scoped memory. If the flow of the

application changes according to the value read in the Hashtable, then a

primitive static variable will be used to communicate between the scoped

memory and its outer allocation context.

3. Motivation for use: to reduce the immortal memory consumption resulting

from reading values of the Hashtable keys.

4. Diagram or source code to illustrate general application of pattern

Chapter 5: Slicing and Patterns for RTSJ Immortal Memory Optimization

124

5. Constraints: It is used only when the Hashtable is allocated in immortal

memory or in a parent memory of the scoped memory area.

6. Related patterns or anti-patterns: This pattern is derived from "Execute with

Primitive Return Value” Design Pattern in Rios et al., (2012); the main aim of

that pattern is to communicate between scoped memory and its outer context

using input and output objects to pass the information In this work, input and

output objects are not created and, instead, a static primitive variable is used;

although the variable is allocated in immortal memory, it is smaller than

creating a new object that might not be de-allocated until the application

terminates. On the other hand, the new design pattern proposed in this work

achieves two aims; it communicates with the outside of the scoped memory

area and decreases immortal memory consumption caused by the reading

operations of the Hashtable.

1. Key=IntergerVar;// it can be any data type

2. Runnable HashTableRead=new Runnable()

3. {

4. public void run()

5. {

6. String[] y=MyHashTable.get(Key);

7. if (y[0].equals(Str1))

8. PrimitiveVariable=1;

9. else
10. PrimitiveVariable=2;

11. }

12. };
13.
14. ------
15.
16. ScopedMemory1.enter(HashTableRead);

17. if (PrimitiveVariable==1)

18. {

19. //statemnts(A)

20. }

21. Else

22. {

23. //statemnts(B)

24. }

Chapter 5: Slicing and Patterns for RTSJ Immortal Memory Optimization

125

Figure 5.3 shows the implementation of the design pattern which reads the Hashtable

value of a key T and passes the result in a primitive variable to the outside of the

scoped memory area. In line 5, a temporary string array y is used to refer to the

returned value of a specific key T through the ‘get’ method. The key here represents

the track name in the case study. The y object is checked in line 6 and a new value is

assigned to the primitive variable in lines 7 and 8 to be checked outside of the scoped

memory area (line 13).

1. Runnable DesignPatternToRead=new Runnable()

2. {

3. public void run()

4. {

5. String[] y=Main.Tracks.get(T);

6. if (y[0].equals("OFF")) Main.PrimitiveVariable=1;

7. else if (y[0].equals("ON")) Main.PrimitiveVariable=2;

8. else if (y[0].equals("")) Main.PrimitiveVariable=0;

9. }

10. };
11. -------
12. ScopedMemory1.enter(DesignPatternToRead);

13. if (Main.PrimitiveVariable==1)

14. {

15. // Update the Track status

16. }

17. -------

Figure 5.3: Design Pattern 1 (Reading Hashtable Values)

5.3.2 Hashtable Modifying Pattern

In the Control thread, modifying the values of existing keys of the Hashtable (the

Track object which is allocated in immortal memory) frequently at runtime is

required. However, the new value objects used to modify the Hashtable keys are

previously created in immortal memory. One method of modifying the value of a

Hashtable’s key is to use the ‘put’ method. The put(K key, V value) method is used to

map the specified key to the specified value in the Hashtable. The ‘put’ method

returns the old value of the key if the key exists, or null if a new key is used.

Chapter 5: Slicing and Patterns for RTSJ Immortal Memory Optimization

126

When the code was sliced and executed inside a scoped memory area to decrease

immortal memory consumption, a ‘put' method statement was included in that slice.

Subsequently, a throw-boundary error caused by the ‘put’ method was received even

though no new keys were passed - the Hashtable size was not increased; only existing

keys with previously created value objects were passed to the ‘put’ method of the

Hashtable periodically. In other words, no new key or value objects were created

when the ‘put’ method was used to modify key values. (A throw-boundary error

occurs when a violation of reference rules takes place such as reference from

immortal memory to a scoped memory.)

The ‘put’ method appears to generate unknown objects even though no new keys or

values are added to the Hashtable; consequently, there will be a reference violation as

the Track object (Hashtable) allocated in immortal memory will reference unknown

objects allocated in a scoped memory area. One important question here is how to

modify the Hashtable values allocated in immortal memory without increasing

immortal memory consumption?

The template of the proposed new design pattern is explained below:

1. Pattern name: Hashtable Scoped-Safe Modifying Pattern

2. General context: To periodically modify the Hashtable values allocated in

immortal memory using previously created objects in immortal memory

without increasing immortal memory consumption.

3. Motivation for use: The ‘put’ method appears to generate unknown objects

even though no new keys or values are added to the Hashtable. The aim is to

reduce immortal memory consumption resulting from the modification of the

Hashtable key values using previously created objects in immortal memory.

Chapter 5: Slicing and Patterns for RTSJ Immortal Memory Optimization

127

4. Diagram or source code to illustrate general application of pattern:

5. Constraints: The limitation of this design pattern is that it modifies values of

existing keys of Hashtable with only previously allocated object values in

immortal memory.

6. Related patterns or anti-patterns: N/A

Figure 5.4 shows the implementation of the design pattern which uses a set of entry

objects to modify a Hashtable’s value of an existing key T without using the ‘put’

method. The new value is passed by a parameter R which is previously allocated into

immortal memory. The set interface in Java is a collection which contains no

duplicate elements. The entry object is a map entry (key-value pair) which links to

one key in the Hashtable. The Hashtable.entrySet method returns a collection-view of

the map so that any changes to the set are reflected in the Hashtable and vice versa.

Iterating over the elements of the set generates new temporary entry objects;

however, by using the design pattern entry, objects will only be allocated inside

scoped memory and will be de-allocated once exiting that scoped memory. This, in

1. R = value_of_any_data_type

2. Key=IntergerVar;// it can be any data type

3. Set<Entry<String, String[]>> entries =Main.

MyHashTable.entrySet();

4. Runnable DesignPatternToModify=new Runnable()

5. {

6. public void run()

7. {

8. for(Entry<String, String[]> ent: entries)

9. if (ent.getKey().equals(key))

10. {

11. ent.setValue(R);

12. break;

13. }

14. }

15. };

16. ------------------

17. ScopedMemory2.enter(DesignPatternToModify);

18. ------------------

Chapter 5: Slicing and Patterns for RTSJ Immortal Memory Optimization

128

turn, has no effect on immortal memory and, as a result, memory consumption of the

immortal memory decreases. Testing this design pattern inside a scoped memory area

did not throw a boundary error as it occurred when the ‘put’ method was used earlier.

1. Set<Entry<String, String[]>> entries =Main.Tracks.entrySet();

2. Runnable DesignPatternToModify=new Runnable()

3. {

4. public void run()

5. {

6. for(Entry<String, String[]> ent: entries)

7. if (ent.getKey().equals(T))

8. {

9. ent.setValue(R);

10. break;

11. }

12. }

13. };

14. ------------------

15. ScopedMemory2.enter(DesignPatternToModify);

16. ------------------

Figure 5. 4: Design Pattern 2 (Modifying Hashtable Values)

The limitation of this design pattern is that it modifies values of existing keys of

Hashtable with previously allocated object values in immortal memory. Appendix B

shows the original code, two slices that have been indentified according to dynamic

(and static) slicing and the modified code after implementing the two design patters

5.4 Discussion

The experiments ran on the same platform used in Chapter 4 (see Table 4.2). Since

the case study is a multi-threaded application and there are 16 train threads running at

the same time on different tracks, the execution time and memory consumption at

runtime may differ slightly from one run to another. Repeating the experiments is

needed where most non-determinism occurs in the experiment (Kalibera and Jones,

2013). Since compilation is not random in the case study (it is deterministic and

performance does not depend on code layout) there is thus no need to repeat it to get

reliable results. However, the start-up of a VM execution includes some random

Chapter 5: Slicing and Patterns for RTSJ Immortal Memory Optimization

129

variation due to input/output bound and scheduling order, in which case VM

executions must be repeated. Consequently, and in order to obtain reliable results, the

case study was executed many times until insignificant variation in memory

consumption data (0.007Mbytes) was reached. The execution time is not the main

focus in this work and it only considers variation in the memory consumption. To

avoid jitter (i.e., fluctuation in execution times which may occur while loading and

initializing classes at runtime), the initialization time compilation mode (ITC) was

used to compile and initialize classes at the virtual machine start-up time. After

implementing Design Pattern 1 (reading from Hashtable) and Design Pattern 2 in the

case study and running the code in scoped memory, immortal memory consumption

decreased by 50%.

Table 5.1 shows the results of the experiment when three versions of the case study

were implemented and compared. The first version is when Design Patterns 1 and 2

were not used; the second version is when only Design Pattern 1 was implemented

and the third version is when Design Patterns 1 and 2 were implemented. The

execution times of the case study fluctuate over runs; however, on average, the

version that implemented Design Patterns 1 and 2 out-performed the old version in

terms of immortal memory consumption. This is despite execution time slightly

increasing according to the overhead occurred by entering the scoped memory area

through Design Patterns 1 and 2, periodically. Results show a decrease in immortal

memory consumption after implementing Design Pattern 2. The decrease is not

significant (0.091Mb) and in different situations where more frequent modifications

of the Hashtable’s values occur inside immortal memory it may well be worth

exploring Design Pattern 2 further. It is noticeable that Design Pattern 1 has

decreased immortal memory significantly, in other words, Hashtable reading

Chapter 5: Slicing and Patterns for RTSJ Immortal Memory Optimization

130

operations consumed greater amounts of immortal memory at runtime than Hashtable

modification operations. As a suggestion from this work, the enter method should be

improved to return a value e.g., a Boolean value to pass the result of the code

generated in a scoped memory without the need to create a primitive variable outside

of the scoped memory area

Figure 5.5 shows the immortal memory consumption over 10 runs before and after

implementing both Design Patterns 1 and 2. Figure 5.6 shows the impact of

implementing Design Pattern 2 on the immortal memory consumption over 10 runs.

Before

Implementing

Design Patterns 1

and 2

After

Implementing

Design Pattern 1

After

Implementing

Design Patterns 1

and 2

Immortal

Memory

(Mb)

7.9 4.205 4.114

Execution

Time (sec)
340.5 347.5 348.4

Table 5.1:. Before/After Implementing Design Patterns 1 and 2.

Chapter 5: Slicing and Patterns for RTSJ Immortal Memory Optimization

131

Figure 5.5: Before/After Implementing Design Patterns 1 and 2

Figure 5. 6: Before/After Implementing Design Pattern 2

5.5 Summary

In this chapter, the focus was to decrease immortal memory consumption at runtime.

Code slicing was used as a debugging technique to find the reasons behind immortal

memory constant increases in an RTSJ case study. Two main causes were identified:

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10

After

Before

Im
m

o
rt

a
l C

o
n
s
u
m

p
ti
o

n
 (

M
B

)

3.9

3.95

4

4.05

4.1

4.15

4.2

4.25

4.3

4.35

4.4

1 2 3 4 5 6 7 8 9 10

After

Before

Im
m

o
rt

a
l C

o
n
s
u
m

p
ti
o

n
 (

M
B

)

Chapter 5: Slicing and Patterns for RTSJ Immortal Memory Optimization

132

the String object of the print message and Hashtable read/modify operations. Print

message statements were executed inside a scoped memory area which reduced

immortal memory consumption. Two design patterns were proposed to decrease

immortal memory overheads generated by Hashtable reading /modifying operations.

Experiments showed new aspects of dealing with Hashtable and by using new design

patterns a significant decrease in immortal memory consumption at runtime was

achieved. Although the new design patterns are specific to Hashtable, they provide an

insight into how to solve allocation problems with other data structures such as

Vector and ArrayList when using an immortal and scoped memory model. In terms of

future work, different data structures will be studied to analyze their behaviour at

runtime when immortal memory and a scoped memory model are used.

Chapter 6: Conclusions and Future Work

133

Chapter 6: Conclusions and Future Work

Programming languages use different memory management models. A Static memory

management model allocates variables at specific memory locations; there is

therefore no change in the memory footprint at application runtime. However, a

dynamic memory model allocates and de-allocates objects at application runtime, so

the memory footprint is changed constantly.

Java uses garbage collection techniques to manage the memory dynamically and

automatically. Hence, developers are not involved in the allocation and de-allocation

process. Garbage collection interrupts the application several times to reclaim objects

that are not in use by the application to free memory space. However, in real-time

systems this approach is not recommended as it may delay the application and cause

real-time events to miss their deadlines. The Java Community Process (JCP) proposed

the real-time specification of Java (RTSJ) introducing a new semi-automatic memory

management model which includes scoped and immortal memory. In addition to the

heap memory, there is only one immortal memory and one or more scoped memory

areas in real-time Java applications. Scoped and immortal memory areas are not

subject to garbage collection and therefore no delays or interruptions by the garbage

collection process occur. Developing RTSJ applications using scoped and immortal

memory model needs significant effort by the developers and case studies of the use

of this memory model are not widely available in the literature. On the other hand,

developing real-time Java case studies helps developers to understand the different

variables of this memory model. Some design patterns and guidelines are necessary

for developers to simplify the process of real-time applications that use scoped

memory approach.

Chapter 6: Conclusions and Future Work

134

This chapter discusses the Thesis conclusions and presents contributions and future

research areas. Section 6.2 summarizes the findings of each chapter of this thesis.

Section 6.3 explains how the research conducted in this thesis meets its objectives. A

summary of the Thesis contributions is then presented in Section 6.4. Section 6.5

identifies the research limitations and, finally, Section 6.6 points to future research

ideas.

6.1 Research Summary

The research presented in this Thesis aimed to simplify and improve scoped and

immortal memory development in real-time Java applications.

Chapter 1 gave an overview of the Thesis research topic and highlighted the

motivation of this research. A set of research objectives were identified to fulfill the

research aim. The Thesis main contributions were introduced.

Chapter 2 reviewed previous research and state of art issues related to the scoped and

immortal memory area in RTSJ implementations. The scoped and immortal memory

model was explained in detail. Problems and solutions along with the benchmarks

used to evaluate this model were also provided. Most of the research in RTSJ scoped

memory has focused on two important issues. First, decreasing the impact of

reference checks and secondly, converting the application into a component-based

application. A set of the most popular benchmarks in the area was introduced and

illustrated the shortage of tools and benchmarks for evaluating different memory

approaches. New research directions were also proposed to guide the research

towards different directions, such as a) finding the best allocation strategy for

developing real-time Java applications using scoped memory mode, b) the variety of

Chapter 6: Conclusions and Future Work

135

real-time benchmarks that cover more aspects of scoped memory model, c) tools to

decrease the difficulty of developing real-time Java applications using a scoped

memory model, and d) design patterns to simplify the development process and

decrease the impact of using scoped and immortal memory on application execution

time and space overheads.

Chapter 3 presented an empirical study scoped memory in Sun RTSJ

Implementation. The impact of scoped memory areas on execution time of RTSJ

software was investigated. Sample RTSJ code was executed with different numbers

of un-nested and nested scoped memory areas. Results showed that increasing the

number of scoped memory areas did lead to higher execution times. It was therefore

important to find the optimal number of scoped memory areas. Additionally, the

developer has to use nesting scope techniques carefully and maintain the trade-off

between the pros and cons of using nested scoped memory areas. The overheads of

entering and exiting active and non-active scoped memory areas were also presented.

Results showed that entering/exiting active scoped memory scoped memory areas had

lower execution time overheads than entering non-active ones. Allocating different

data objects in scoped memory areas had different impacts on execution time and

memory space; therefore, choosing the right data objects and scoped memory size had

an effect on the efficiency of the scoped memory model.

Chapter 4 presented a simulation of a railway control system executed on the Sun

RTS2.2 virtual machine. It illustrated how simulation of critical safety real-time

applications in Java could be used to investigate the implementation of possible

scoped memory design models and their memory consumption in multi-threaded

environments. The simulation would help a developer to compare and choose the

most appropriate scoped memory design model that achieves the least memory

Chapter 6: Conclusions and Future Work

136

footprint. Results showed that the memory design model with a higher number of

scopes achieved the least memory footprint. However, the number of scopes per se

does not always indicate a satisfactory memory footprint; choosing the right

objects/threads to be allocated into scopes is an important factor to be considered.

Recommendations and guidelines for developing RTSJ applications which use a

scoped and immortal memory model were also presented in this chapter. Developers

should avoid allocating string objects into immortal memory especially if those string

objects change their current states over time. Using nested scopes is necessary to

allocate short lifetime objects. Allocating code that runs periodically in a real-time

thread in scoped memory would decrease the impact of memory space overhead.

Developers should allocate real-time threads that have relatively short lifetimes into

scoped memory areas to ensure any unexpected allocations would be reclaimed

automatically after the thread finished its execution. Developers should bear in mind

that the default memory context of any real-time thread is immortal memory.

Developers should recycle Runnable objects rather than creating them every time a

thread enters a scoped memory area. Threads that run until the application terminates

should be allocated into immortal memory; however, if threads have to run

periodically, the code that runs periodically should be allocated into a scoped memory

area.

Chapter 5 provided a new approach for assisting developers in debugging and

optimizing scoped and immortal memory implementation. This was motivated by the

immortal memory increase encountered in the case study. A dynamic code slicing

approach was proposed as a debugging technique to explore constant increases in

immortal memory in the case study. The main causes of immortal memory increase

were identified. Two programming design patterns were presented for decreasing

Chapter 6: Conclusions and Future Work

137

immortal memory overheads generated by using Hashtable data structures.

Experimental results showed a significant decrease in immortal memory consumption

at runtime.

6.2 Research Objectives Re-visited

The main aim of the Thesis was to optimize the use of scoped and immortal memory

in real-time Java applications. This section shows how this research successfully

achieved its objectives.

Objective 1: ‘to provide state of art issues on the use of scoped memory in real-time

Java and discuss the current solutions and challenges to generate a set of research

questions’. The first objective was achieved in Chapter 2 by reviewing the literature

on using scoped and immortal memory.

Objective 2: ‘to provide an empirical study on the use of the scoped and immortal

memory model and its impact on the memory space and execution time of the

application’. This objective was achieved in Chapter 3 by experimenting with the

impact of using scoped memory on execution time and space overheads of the

application. Different data types, allocation sizes, number of scoped memory areas,

level of nesting and entering/exiting active/non-active scoped memory area’s features

were tested.

Objective 3: ‘To develop a real-time Java case study which uses scoped and

immortal memory model in a multi-threading environment where dynamic allocations

of objects takes place constantly’. This objective was achieved in Chapter 4 by

developing a railway case study and experimenting with different scoped memory

models. The simulation tool developed measured the memory consumption and the

Chapter 6: Conclusions and Future Work

138

execution time of the application. The case study showed possible development

pitfalls which may lead to memory leaks.

Objective 4: ‘To provide debugging techniques which help in decreasing the

overheads of using the scoped and immortal memory model by implementing

programming design patterns and evaluating their outcomes’. This objective was

achieved in Chapter 5 by proposing a dynamic slicing approach to identify objects

that cause the immortal memory increase and providing two design patterns to help

decrease the immortal memory footprint.

6.3 Summary of Research Contributions

The main research contributions are summarized as follows:

1. A survey of state of art issues of the new memory model introduced by RTSJ

highlighting the issues (time overheads, space overhead, development

complexity) and the current solutions (assisting tools, separation memory

concerns from program logic, design patterns and components). It also

categorized the benchmarks, where they have been used and why they have

been used in the research. The survey ended with potential research directions

that help to simplify and optimize the use of a scoped and immortal memory

model in RTSJ applications.

2. Studying the impact of using scoped memory on execution time and memory

space of the application when different data types are allocated into scoped

memory areas and when different scoped memory numbers and nesting are

used. A comparison between entering and exiting times of active and non-

active scoped memory area was introduced.

Chapter 6: Conclusions and Future Work

139

3. Introducing an additional RTSJ case study which integrates scoped and

immortal memory techniques to apply different memory models.

4. Development of a simulation tool of a real-time Java application which is the

first in the literature that shows scoped memory and immortal memory

consumption of an RTSJ application over a period of time.

5. An implementation of dynamic slicing technique to debug RTSJ code and to

define the objects that specifically affect immortal memory constant increases

at runtime.

6. Proposition and validation of two programming design patterns to decrease

immortal memory consumption when Hashtable data structures are

manipulated inside immortal memory.

6.4 Research Limitations

This section identifies a set of research limitations encountered and suggests a set of

complementary future work to address them.

 The use of only one implementation of RTSJ (RTS 2.2 by Sun Microsystems

which provided a free version for academic research) is one of the limitations

of this research. Each RTSJ implementation (such as TimeSys

www.timesys.com, and Websphere http://www-

03.ibm.com/software/products/us/en/real-time/) can be applied only on

specific platforms (Solaris and Linux). Since the main aim of this Thesis is to

optimize the use of RTSJ scoped memory in general and not specific to one

implementation, this study only considered one implementation. However,

implementing the case study in different platforms may give an overview of

http://www.timesys.com/
http://www-03.ibm.com/software/products/us/en/real-time/
http://www-03.ibm.com/software/products/us/en/real-time/

Chapter 6: Conclusions and Future Work

140

the common problems of all implementations. On the other hand, each

implementation may have different execution time and space allocation

features for scoped and immortal memory.

 The lack of case studies that use scoped and immortal memory. Having

different case studies would enable better understanding of the memory

model; studying developer experience of using a scoped memory model

through different case studies would help in defining more issues and

common designing criteria for application of the scoped memory model.

 The research in this Thesis mainly focused on the space overhead even

though it would not appear an issue for vast memory storage in railway

systems; however, through the experiments, it was discovered that some

objects and their methods may generate unexpected objects in scoped and

immortal memory which may overflow the memory system over the time. On

the other hand, some real-time systems are embedded in small devices which

have limited resources and which require careful design and implementation

of memory management strategies. The case study did not discuss worst case

memory consumption to find the optimal size of scoped memory. The worst

case execution time also was not investigated in this study due to time

constraints. That would help scheduling analyses to determine (in a formal

way) whether all tasks met their deadlines (Puffitsch et al., 2010). In this

study, through random experimenting, the scheduling attributes of threads

were configured to ensure all threads met their deadlines; however, rigid

scheduling analysis is required in the future to help adjust the case study to

run on different platforms

Chapter 6: Conclusions and Future Work

141

6.5 Future Work

The provided limitations offer significant opportunities for future research. Firstly,

design patterns proposed in Chapter 5 discussed only problems with the HashTable

data structure. In future work, different data structures will be considered such as

Vector and ArrayList and their allocation overheads could be analyzed on different

platforms and different RTSJ implementations. Secondly, running the case study

using the garbage collection process helps in comparing the development complexity,

efficiency and space overhead of two versions of the case study. That requires

implementing scheduling analysis to configure the garbage collection correctly.

Thirdly, developing the tool described in this Thesis to enable a developer to choose

from the GUI a number of scopes for each run would be a further avenue of future

work; currently, this can only be achieved manually by a developer by updating the

simulation code. Further studies in this area to find new methods for improving the

performance of scoped memory management are firmly encouraged; implementing

software metrics such the ones recommended in (Singer et al., 2008) to help in

identifying similar lifetime objects is a future work of the research conducted in this

thesis to allocate similar lifetime objects into specific scoped memory areas. To that

end, all datasets and simulation tool source code used in this research are included in

Appendix A and available to other researchers. Electronic copies can be made

available on request of the author.

Lastly, but not least, the research has reflected positively on my personal and

professional development. I have learnt how to plan effectively, manage my time

appreciating the effort required for the PhD. Effective searching for the most relevant

information, seeking help from different people who are knowledgeable in the area,

Chapter 6: Conclusions and Future Work

142

thinking critically about the problem, decomposing it into smaller parts and finding

solutions in step-by-step patterns were the main outputs of my research experience. I

have learnt to be patient in order to achieve my aim. I have understood that anything

can be in a right or wrong context depending on where it has been used. I have learnt

that successes come by hard work, desire, intent, motivation and even from failure.

Recovering from failure is the most important factors that lead to success.

References

143

References

ALRAHMAWY, M. & WELLINGS, A. (2009) Design patterns for supporting RTSJ

component models. Proceedings of the 7th International Workshop on Java

Technologies for Real-Time and Embedded Systems, Madrid, Spain: ACM, pp.

11-20.

ANDREAE, C., COADY, Y., GIBBS, C., NOBLE, J., VITEK, J. & ZHAO, T. (2007)

Scoped types and aspects for real-time Java memory management. Real-Time

Systems, 37(1), pp. 1-44.

ARMBRUSTER, A., BAKER, J., CUNEI, A., FLACK, C., HOLMES, D., PIZLO, F.,

PLA, E., PROCHAZKA, M. & VITEK, J. (2007) A real-time Java virtual

machine with applications in avionics. ACM Trans. Embed. Comput. Syst., 7(1),

pp. 1-49.

AUERBACH, J., BACON, D. F., BLAINEY, B., CHENG, P., DAWSON, M., FULTON,

M., GROVE, D., HART, D. & STOODLEY, M. (2007) Design and

implementation of a comprehensive real-time java virtual machine. Proceedings

of the 7th ACM & IEEE international conference on Embedded software,

Salzburg, Austria: ACM, pp. 249 - 258.

BACON, D. F. (2007) Realtime Garbage Collection. Queue, 5(1), pp. 40-49.

BAKER, J., CUNEI, A., FLACK, C., PIZLO, F., PROCHAZKA, M., VITEK, J.,

ARMBRUSTER, A., PLA, E. & HOLMES, D. (2006) A Real-time Java Virtual

Machine for Avionics - An Experience Report. Proceedings of the 12th IEEE

Real-Time and Embedded Technology and Applications Symposium, IEEE

Computer Society, pp. 384-396.

BEEBEE, W. & RINARD, M. (2001) An Implementation of Scoped Memory for Real-

Time Java. Embedded Software, Lecture Notes in Computer Science. Springer

Berlin / Heidelberg, Volume 2211, pp. 289-305.

BENJAMIN, S. & STEVE, C. (2008) A framework for the simulation of structural

software evolution. ACM Trans. Model. Comput. Simul., 18(4), pp.1-36.

References

144

BENOWITZ, E. & NIESSNER, A. (2003) A Patterns Catalog for RTSJ Software

Designs. On The Move to Meaningful Internet Systems 2003: OTM

2003Workshops. pp 497-507.

BØGHOLM, T., HANSEN, R. R., RAVN, A. P., THOMSEN, B. & SØNDERGAARD,

H. (2009) A predictable Java profile: rationale and implementations. Proceedings

of the 7th International Workshop on Java Technologies for Real-Time and

Embedded Systems, Madrid, Spain: ACM, pp. 150-159.

BØGHOLM, T., HANSEN, R. R., RAVN, A. P., THOMSEN, B. & SØNDERGAARD,

H. (2010) Schedulability analysis for Java finalizers. Proceedings of the 8th

International Workshop on Java Technologies for Real-Time and Embedded

Systems, Prague, Czech Republic: ACM, pp 1-7.

BOLLELLA, G., BROSGOL, B., GOSLING, J., DIBBLE, P., FURR, S. & TURNBULL,

M. (2000) The Real-Time Specification for Java Addison Wesley Longman

BOLLELLA, G., CANHAM, T., CARSON, V., CHAMPLIN, V., DVORAK, D.,

GIOVANNONI, B., INDICTOR, M., MEYER, K., MURRAY, A. &

REINHOLTZ, K. (2003) Programming with non-heap memory in the real time

specification for Java. Companion of the 18th annual ACM SIGPLAN conference

on Object-oriented programming, systems, languages, and applications,

Anaheim, CA, USA: ACM, pp. 361-369.

BORG, A. & WELLINGS, A. (2006) Scoped, coarse-grain memory management and the

RTSJ scoped memory model in the development of real-time applications.

International Journal of Embedded Systems, 2(3/4), pp. 166 - 183.

BORG, A., WELLINGS, A., GILL, C. & CYTRON, R. K. (2006) Real-Time Memory

Management: Life and Times. Proceedings of the 18th Euromicro Conference on

Real-Time Systems, Dresden, Germany: IEEE Computer Society, pp. 237 - 250

BOYAPATI, C., SALCIANU, A., BEEBEE, W. & RINARD, M. (2003) Ownership

types for safe region-based memory management in real-time Java. Proceedings

of the ACM SIGPLAN 2003 conference on Programming language design and

implementation, San Diego, California, USA: ACM, pp. 324 - 337.

BROSGOL, B. & WELLINGS, A. (2006) A Comparison of Ada and Real-Time JavaTM

for Safety-Critical Applications. Reliable Software Technologies – Ada-Europe.

Lecture Notes in Computer Science, Volume 4006, Springer Berlin, pp. 13-26.

http://link.springer.com/bookseries/558

References

145

BRUNO, E. J. & BOLLELLA, G. (2009) Real-Time Java Programming: with Java RTS,

Prentice Hall.

BURNS, A. & WELLINGS, A. (2001) Real Time Systems and Programming Languages:

Ada 95, Real-Time Java and Real-Time C/POSIX, Addison Wesley.

CHANG, Y. (2007) Garbage Collection for Flexible Hard Real-Time Systems. PhD

Thesis, York University, York.

CHEREM, S. & RUGINA, R. (2004) Region analysis and transformation for Java

programs. Proceedings of the 4th international symposium on Memory

management, Vancouver, BC, Canada: ACM, pp. 85 – 96.

CORSARO, A. & CYTRON, R. K. (2003) Efficient memory-reference checks for real-

time java. Proceedings of the 2003 ACM SIGPLAN conference on Language,

compiler, and tool for embedded systems, San Diego, California, USA: ACM, pp.

51 - 58.

CORSARO, A. & SCHMIDT, D. C. (2002) Evaluating real-time Java features and

performance for real-time embedded systems. Real-Time and Embedded

Technology and Applications Symposium, 2002. Proceedings. Eighth IEEE. CA,

USA. pp. 90-100

CORSARO, A. & SCHMIDT, D. C. (2003) The Design and Performance of Real-Time

Java Middleware. IEEE Transactions on Parallel and Distributed Systems,

14(11), pp.1155-1167.

DAWSON, M. (2007) Real-time Java, Part 6: Simplifying real-time Java development.

http://www.ibm.com/developerworks/java/library/j-rtj6/. Last accessed on July 6,

2012.

DAWSON, M. H. (2008) Challenges in Implementing the Real-Time Specification for

Java (RTSJ) in a Commercial Real-Time Java Virtual Machine. 11th IEEE

International Symposium on Object Oriented Real-Time Distributed Computing

(ISORC) Orlando, Florida, USA: IEEE Computer Society, pp.241-247.

DEFOE, D., LEGRAND, R. & CYTRON, R. K. (2007) Cost analysis for real-time java

scoped-memory areas. Journal of Systemics, Cybernetics and Informatics, 5(4),

pp. 70-77.

http://www.ibm.com/developerworks/java/library/j-rtj6/

References

146

DETERS, M. & CYTRON, R. K. (2002) Automated discovery of scoped memory

regions for real-time Java. Proceedings of the 3rd international symposium on

Memory management, Berlin, Germany: ACM, pp. 132 - 142

DIBBLE, P. & WELLINGS, A. (2009) JSR-282 status report. Proceedings of the 7th

International Workshop on Java Technologies for Real-Time and Embedded

Systems, Madrid, Spain: ACM, pp. 179-182

DIBBLE, P. C. (2002) Real-Time Java Platform Programming, Prentice Hall PTR; 1st

edition.

DIBBLE, P. C. (2008) Real-Time Java Platform Programming, BookSurge.

DVORAK, D., BOLLELLA, G., CANHAM, T., CARSON, V., CHAMPLIN, V.,

GIOVANNONI, B., INDICTOR, M., MEYER, K., MURRAY, A. &

REINHOLTZ, K. (2004) Project Golden Gate: Towards Real-Time Java in Space

Missions. the 7th IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing (ISORC 2004), Vienna, Austria: pp. 15-22.

ENERY, J. M., HICKEY, D. & BOUBEKEUR, M. (2007) Empirical evaluation of two

main-stream RTSJ implementations. Proceedings of the 5th international

workshop on Java technologies for real-time and embedded systems, Vienna,

Austria: ACM, pp. 47-54.

ETIENNE, J.-P., CORDRY, J. & BOUZEFRANE, S. (2006) Applying the CBSE

paradigm in the real time specification for Java. Proceedings of the 4th

international workshop on Java technologies for real-time and embedded

systems, Paris, France: ACM, pp. 218 - 226

FERRARI, A., GARBERVETSKY, D., BRABERMAN, V., LISTINGART, P. &

YOVINE, S. (2005) JScoper: Eclipse support for research on scoping and

instrumentation for real time Java applications. Proceedings of the 2005 OOPSLA

workshop on Eclipse technology eXchange, San Diego, California: ACM, pp. 50

- 54.

FRIDTJOF, S. (2006) Proving the absence of RTSJ related runtime errors through data

flow analysis. Proceedings of the 4th international workshop on Java

technologies for real-time and embedded systems, Paris, France: ACM, pp. 152 -

161.

References

147

GABBAY, F. & MENDELSON, A. (1997) Can program profiling support value

prediction? Proceedings of Thirtieth Annual IEEE/ACM International Symposium

on Microarchitecture, Research Triangle Park, North Carolina: pp. 270-280.

GALLAGHER, K. B. & LYLE, J. R. (1991) Using program slicing in software

maintenance. IEEE Transactions on Software Engineering, 17(8), pp. 751–761

GAMMA, E., HELM, R., JOHNSON, R. & VLISSIDES, J. M. (1994) Design Patterns:

Elements of Reusable Object-Oriented Software, Addison-Wesley Professional.

GARBERVETSKY, D., NAKHLI, C., YOVINE, S. & ZORGATI, H. (2005) Program

Instrumentation and Run-Time Analysis of Scoped Memory in Java. Electronic

Notes in Theoretical Computer Science, pp.105-121.

GARBERVETSKY, D., YOVINE, S., BRABERMAN, V., ROUAUX, M. &

TABOADA, A. (2009) On transforming Java-like programs into memory-

predictable code. Proceedings of the 7th International Workshop on Java

Technologies for Real-Time and Embedded Systems, Madrid, Spain: ACM, pp.

140-149.

GUYER, S. Z. & MCKINLEY, K. S. (2004) Finding your cronies: static analysis for

dynamic object colocation. Proceedings of the 19th annual ACM SIGPLAN

conference on Object-oriented programming, systems, languages, and

applications, Vancouver, BC, Canada: ACM, pp. 237 – 250.

HAMZA, H. & COUNSELL, S. (2010) The Impact of Varying Memory Region Numbers

and Nesting on RTSJ Execution. Proceedings of the 3rd International

Conference on Computer and Electrical Engineering (ICCEE 2010) Chengdu,

China, pp. 90-96.

HAMZA, H. & COUNSELL, S. (2012) Simulation of safety-critical, real-time Java: A

case study of dynamic analysis of scoped memory consumption. Simulation

Modeling Practice and Theory, 25, pp 172-189.

HARMAN, M. & DANICIC, S. (1995) Using Program Slicing to Simplify Testing.

Journal of Software Testing, Verification and Reliability, 5(3), pp 143-162.

HARMAN, M. & HIERONS, R. (2001) An overview of program slicing. Software

Focus, 2(3), pp. 85-92.

References

148

HENRIKSSON, R. (1998) Scheduling Garbage Collection in Embedded Systems. PhD

Thesis, Lund University, Sweden.

HENTIES, T., HUNT, J. J., LOCKE, D., NILSEN, K., SCHOEBERL, M. & VITEK, J.

(2009) Java for Safety-Critical Applications. 2nd InternationalWorkshop on the

Certification of Safety-Critical Software Controlled Systems, York, United

Kingdom:

HIGUERA-TOLEDANO, M. T. (2006) Analyzing the Memory Management Semantic

and Requirements of the Real-time Specification of Java JSR-0000001.

Proceedings of the Ninth IEEE International Symposium on Object and

Component-Oriented Real-Time Distributed Computing, Gyeongju, Korea IEEE

Computer Society, pp. 419 - 423.

HIGUERA-TOLEDANO, M. T. (2008a) Allowing Cycle References by Introducing

Controlled Violations of the Assignment Rules in Real-Time Java. Proceedings

of the 11
th
 IEEE International Symposium on Object Oriented Real-Time

Distributed Computing (ISORC), pp. 463-467.

HIGUERA-TOLEDANO, M. T. (2008b) Making stronger and flexible the single parent

rule in the real-time specification of Java. Proceedings of the 6th international

workshop on Java technologies for real-time and embedded systems, Santa Clara,

California: ACM, pp. 19-28.

HIGUERA-TOLEDANO, M. T. (2012) About 15 years of real-time Java. Proceedings of

the 10th International Workshop on Java Technologies for Real-time and

Embedded Systems, Copenhagen, Denmark: ACM, pp. 34-43.

Hirzel, M., Diwan, A., Hertz, M., (2003). Connectivity-based garbage collection. In

Proceedings of the 18th annual ACM SIGPLAN conference on Object-oriented

programing, systems, languages, and applications (OOPSLA '03). New York,

NY, USA: ACM, pp. 359-373.

JONES, R. (2007) Dynamic Memory Management: Challenges for Today and Tomorrow.

International Lisp Conference, Cambridge, England, pp. 115–124.

JUMP, M. & MCKINLEY, K. S. (2010) Detecting memory leaks in managed languages

with Cork. Software—Practice & Experience, 40(1), pp. 1 - 22.

References

149

KALIBERA, T. (2009) Scheduling Hard Real-Time Garbage Collection. Proceedings of

the 30th IEEE Real-Time Systems Symposium, pp. 81-92

KALIBERA, T., HAGELBERG, J., PIZLO, F., PLSEK, A., TITZER, B. & VITEK, J.

(2009) CDx: a family of real-time Java benchmarks. Proceedings of the 7th

International Workshop on Java Technologies for Real-Time and Embedded

Systems, Madrid, Spain: ACM, pp. 41-50.

KALIBERA, T. & JONES, R. (2013) Rigorous benchmarking in reasonable time.

Proceedings of the 2013 international symposium on International symposium on

memory management (ISMM '13), Seattle, Washington, USA: ACM, pp. 63-74.

KALIBERA, T., PARIZEK, P., HADDAD, G., LEAVENS, G. T. & VITEK, J. (2010)

Challenge benchmarks for verification of real-time programs. Proceedings of the

4th ACM SIGPLAN workshop on Programming languages meets program

verification, Madrid, Spain: ACM, pp. 57-62.

KELLNER, M. I., MADACHY, R. J. & RAFFO, D. M. (1999) Software process

simulation modeling: Why? What? How? Journal of Systems and Software, 46(2-

3), pp. 91-105.

KELVIN, N. (2012) Revisiting the "perc real-time API". Proceedings of the 10th

International Workshop on Java Technologies for Real-time and Embedded

Systems, Copenhagen, Denmark: ACM, pp. 165-174.

KIM, J.-S. & HSU, Y. (2000) Memory system behavior of Java programs: methodology

and analysis. Proceedings of the 2000 ACM SIGMETRICS international

conference on Measurement and modeling of computer systems, Santa Clara,

California, United States: ACM, pp. 264 - 274.

KOREL, B. & LASKI, J. (1988) Dynamic Program Slicing. Information. Processing

Letter, 29(3), pp.155 -163.

KRZYSZTOF PALACZ & VITEK, J. (2003) Java Subtype Tests in Real-Time.

Proceedings of the European Conference on Object Oriented Programming

(ECOOP03), Darmstadt, Germany: Springer, pp. 378-404.

References

150

KWON, J. & WELLINGS, A. (2004) Memory Management Based on Method Invocation

in RTSJ. On the Move to Meaningful Internet Systems 2004: OTM 2004

Workshops. Cyprus, Lecture Notes in Computer Science, Volume 3292, pp

333-345.

KWON, J., WELLINGS, A. & KING, S. (2002) Ravenscar-Java: a high integrity profile

for real-time Java. Proceedings of the 2002 joint ACM-ISCOPE conference on

Java Grande, Seattle, Washington, USA: ACM, pp. 681 - 713.

LIANG, D. & HARROLD., M. J. (1998) Slicing Objects Using System Dependence

Graphs. Proceedings of the International Conference on Software Maintenance

(ICSM '98), Washington, DC, USA: IEEE Computer Society, pp. 358 - 367.

LIANG, S. (1999) Java(TM) Native Interface: Programmer's Guide and Specification,

Addison-Wesley Longman.

MAGATO, W. & HAUSER, J. (2005) Real-time memory management and the Java

specification. 48th Midwest Symposium on Circuits and Systems. Cincinnati,

Ohio, pp. 1767-1769

MEERSMAN, R., TARI, Z., CORSARO, A. & SANTORO, C. (2004) Design Patterns

for RTSJ Application Development. On the Move to Meaningful Internet Systems

2004: OTM 2004 Workshops. Springer Berlin / Heidelberg..

MOHAPATRA, D. P., MALL, R. & KUMAR, R. (2006) An Overview of Slicing

Techniques for Object-Oriented Programs. Informatica, 30(2), pp. 253-277.

NAKHLI, C., RIPPERT, C., SALAGNAC, G. & YOVINE, S. (2006) Efficient Region-

Based Memory Management for Resource-limited Real-Time Embedded

Systems. Implementation, compilation, optimization of object-oriented

languages, programs and systems (ICOOOLPS), Nantes, France: O. Zendra, pp.

1-8.

NILSEN, K. (2006) A type system to assure scope safety within safety-critical Java

modules. Proceedings of the 4th international workshop on Java technologies for

real-time and embedded systems, Paris, France: ACM, pp. 97 - 106.

http://link.springer.com/bookseries/558

References

151

OTANI, T. W., AUGUSTON, M., COOK, T. S., DRUSINSKY, D., MICHAEL, J. B. &

SHING, M. (2007) A design pattern for using non-developmental items in real-

time Java. Proceedings of the 5th international workshop on Java technologies

for real-time and embedded systems, Vienna, Austria: ACM, pp. 135 - 143.

PABLO, B.-V., MARISOL, G., A, V., IRIA, E.-A. & CARLOS, D.-K. (2006) Extended

portal: violating the assignment rule and enforcing the single parent rule.

Proceedings of the 4th international workshop on Java technologies for real-time

and embedded systems, Paris, France: ACM, pp. 30 - 37.

PAN, H. & SPAFFORD, E. H. (1992) Heuristics for automatic localization of software

faults. Technical Report SERC-TR-116-P, Purdue University.

PÉREZ-CASTILLO, R., CRUZ-LEMUS, J. A., GUZMÁN, I. G.-R. D. & PIATTINI, M.

(2012) A family of case studies on business process mining using MARBLE.

Journal of Systems and Software, 85(6), pp. 1370-1385.

PIZLO, F. (2004) Real-Time Java Scoped Memory: Design Patterns and Semantics.

Seventh IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing, Vienna, Austria, pp.101-110

PIZLO, F. & VITEK, J. (2006) An Empirical Evaluation of Memory Management

Alternatives for Real-Time Java. Proceedings of the 27th IEEE International

Real-Time Systems Symposium, Rio de Janeiro, Brazil, pp. 35-46.

PIZLO, F. & VITEK, J. (2008) Memory Management for Real-Time Java: State of the

Art. Proceedings of the 2008 11th IEEE Symposium on Object Oriented Real-

Time Distributed Computing, Orlando, Florida, pp. 248-254.

PLŠEK, A. (2009) SOLEIL : An Integrated Approach for Designing and Developing

Component-based Real-time Java Systems. PhD Thesis, INRIA Lille,Lille,

France.

PLSEK, A., MERLE, P. & SEINTURIER, L. (2008) A Real-Time Java Component

Model. Proceedings of the 2008 11th IEEE Symposium on Object Oriented Real-

Time Distributed Computing, Orlando, FL, pp. 281 – 288.

POTANIN, A., NOBLE, J., ZHAO, T. & VITEK, J. (2005) A High Integrity Profile for

Memory Safe Programming in Real-time Java. The 3rd workshop on Java

Technologies for Real-time and Embedded Systems. San Diego, CA, USA,

References

152

PUFFITSCH, W., HUBER, B. & SCHOEBERL, M. (2010) Worst-Case Analysis of

Heap Allocations. Leveraging Applications of Formal Methods, Verification, and

Validation. Lecture Notes in Computer Science, Volume 6416, Springer

Berlin Heidelberg, pp. 464-478.

R.WILSON, P., JOHNSTONE, M. S., NEELY, M. & BOLES, D. (1995) Dynamic

Storage Allocation: A Survey and Critical Review. Lecture Notes in Computer

Science, Springer Berlin / Heidelberg, Volume 986, pp. 1-116.

RAMAN, K., ZHANG, Y., PANAHI, M., COLMENARES, J. A. & KLEFSTAD, R.

(2005a) Patterns and Tools for Achieving Predictability and Performance with

Real-Time Java. Proceedings of the 11th IEEE International Conference on

Embedded and Real-Time Computing Systems and Applications, Hong Kong, pp.

247 - 253.

RAMAN, K., ZHANG, Y., PANAHI, M., COLMENARES, J. A., KLEFSTAD, R. &

HARMON, T. (2005b) RTZen: highly predictable, real-time java middleware for

distributed and embedded systems. Proceedings of the ACM/IFIP/USENIX 2005

International Conference on Middleware, Grenoble, France: Springer-Verlag

New York, Inc., pp. 225- 248.

RIOS, J. R., NILSEN, K. & SCHOEBERL, M. (2012) Patterns for safety-critical Java

memory usage. Proceedings of the 10th International Workshop on Java

Technologies for Real-time and Embedded Systems, Copenhagen, Denmark:

ACM, pp. 1-8.

ROBERTZ, S. G. (2003) Flexible automatic memory management for real-time and

embedded systems. Licenciate thesis, Lund University, Sweden.

ROBERTZ, S. G., HENRIKSSON, R., NILSSON, K., BLOMDELL, A. & TARASOV, I.

(2007) Using real-time Java for industrial robot control. Proceedings of the 5th

international workshop on Java technologies for real-time and embedded

systems, Vienna, Austria: ACM, pp. 104-110.

ROSENKRANZ, J. (2004) Rtjsim: A Simulator for Real-Time Java. Diploma Thesis,

Salzburg University, Salzburg, Austria.

SALAGNAC, G. (2008) Synthèse de gestionnaires mémoire pour applications Java

temps-réel embarquées.PhD, Joseph Fourier University, PhD Thesis, Grenoble,

France.

http://link.springer.com/bookseries/558

References

153

SALAGNAC, G., RIPPERT, C. & YOVINE, S. (2007) Semi-Automatic Region-Based

Memory Management for Real-Time Java Embedded Systems. Proceedings of

the 13th IEEE International Conference on Embedded and Real-Time Computing

Systems and Applications, Daegu, Korea, pp. 73-80.

SCHOMMER, J. F., FRANKE, D., KOWALEWSKI, S. & WEISE, C. (2009) Evaluation

of the real-time Java runtime environment for deployment in time-critical

systems. Proceedings of the 7th International Workshop on Java Technologies

for Real-Time and Embedded Systems, Madrid, Spain: ACM, pp. 51-60.

SINGH, N. K., WELLINGS, A. & CAVALCANTI, A. (2012) The cardiac pacemaker

case study and its implementation in safety-critical Java and Ravenscar Ada.

Proceedings of the 10th International Workshop on Java Technologies for Real-

time and Embedded Systems, Copenhagen, Denmark: ACM, pp. 62-71.

Singer, J., Marion, S., Brown, G., Jones, R., Lujan, M., Ryder, C., Watson, I., (2008) An

Information Theoretic Evaluation of Software Metrics for Object Lifetime

Prediction. In: 2nd Workshop on Statistical and Machine learning approaches to

Architectures and compilation (SMART'08), Page 15.

SPEC-CORPORATION (1999) Java SPEC benchmarks, Technical report. SPEC,

Available by purchase from SPEC.

STANKOVIC, J. A. & RAMAMRITHAM, K. (Eds.) (1989) Tutorial: hard real-time

systems, IEEE Computer Society Press.

STRØM, T. B. & SCHOEBERL, M. (2012) A desktop 3D printer in safety-critical Java.

Proceedings of the 10th International Workshop on Java Technologies for Real-

time and Embedded Systems, Copenhagen, Denmark: ACM, pp. 72-79.

Taylor, S.J.E., Balci, O., Cai, W., Loper, M.L., Nicol, D.N., and Riley, G. (2013)

Grand challenges in modeling and simulation: expanding our horizons. In

Proceedings of the 2013 ACM SIGSIM conference on Principles of

advanced discrete simulation (SIGSIM-PADS '13). ACM, New York, NY,

USA, pp. 403-408.

TIP, F. (1995) A survey of program slicing techniques. Journal of Programming

Languages, 3(3), pp. 121-189.

References

154

TOFTE, M., BIRKEDAL, L., ELSMAN, M. & HALLENBERG, N. (2004) A

Retrospective on Region-Based Memory Management. Higher Order Symbol.

Comput., 17(3), pp. 245-265.

TOFTE, M. & TALPIN, J.-P. (1997) Region-Based Memory Management. Information

and Computation, 132(2), pp. 109-176.

WEISER, M. D. (1979) Program slices: formal, psychological, and practical

investigations of an automatic program abstraction method. PhD Thesis,

University of Michigan, Ann Arbor, MI., USA.

ZHANG, X., HE, H., GUPTA, N. & GUPTA, R. (2005) Experimental evaluation of

using dynamic slices for fault location. Proceedings of the sixth international

symposium on Automated analysis-driven debugging (AADEBUG'05), Monterey,

California, USA: ACM, pp. 33-42.

ZHAO, T., BAKER, J., HUNT, J., NOBLE, J. & VITEK, J. (2008) Implicit ownership

types for memory management. Sci. Comput. Program., 71(3), pp. 213-241.

Appendix A

155

Appendix A Simulation RTSJ Code

Control Thread

public class ControlRTThread extends RealtimeThread {

 final static String[] TrafficR={"","RED"};

 final static String[] TrafficG={"","GREEN"};

 final static String[] SensorsOn={"ON",""};

 final static String[] SensorsOff={"OFF",""};

 final static String T="T";

 final static String testSTR="TEST";

 public ControlRTThread(SchedulingParameters sched, ReleaseParameters rel,MemoryArea mem1)

 {

 super(sched,rel,null,mem1,null,null);

 }

 public void run()

 { String[] y =new String[2];

 for (int i=0;i<10;i++)Main.z.list1.add(testSTR,i);

 while(waitForNextPeriod()){

 try {

 if (Main.Tracks.isEmpty())

 {Main.z.list1.removeAll();

 for (int i=0;i<10;i++)Main.z.list1.add("T"+i+" "+ "GREEN",i);

 break;

 };

 for (int i = 0; i < 10; ++i) {

 y=(String[]) Main.Tracks.get(T+i);

 if (y[0].equals("OFF"))

 {

 Main.z.list1.remove(i);

 Main.z.list1.add(T+i+" "+ TrafficG[1],i);

 Main.Tracks.remove("T"+i);

 Main.Tracks.put(T+i,TrafficG);

Appendix A

156

 }//initilaize

 else { if (y[0].equals("ON")){

 Main.z.list1.remove(i);

 Main.z.list1.add(T+i+" "+ TrafficR[1],i);

 Main.Tracks.remove("T"+i);

 Main.Tracks.put(T+i,TrafficR);

 }}

 }

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

 System.out.println("control exit");

 }

}

EmergencyThread.java

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package traincontrolproject;

import javax.realtime.*;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.util.*;

/**

 *

 * @author root

 */

public class EmergencyThread extends NoHeapRealtimeThread {

 static int MAX_PRI = PriorityScheduler.instance().getMaxPriority();

Appendix A

157

 static RelativeTime TWO_MSEC = new RelativeTime(2, 0);

 PriorityParameters sched = new PriorityParameters(MAX_PRI - 1);

 PeriodicParameters period = new PeriodicParameters(TWO_MSEC);

 Train train1;

 Train train2;

 public EmergencyThread(PriorityParameters priority,

 PeriodicParameters period, MemoryArea area, Train trainA,

 Train trainB) throws Exception {

 super(priority, period, null, area, null, null);

 this.train1 = trainA;

 this.train2 = trainB;

 System.out.println("Emergency created between " + train1.name

 + " and " + train2.name);

 }

 public void run() {

 try {

 // delay the trains and show message

 String screen = "OOOOOOOOOOOPPPPPPPPPPPPPPPPPSSSSSSSSSSSS";

 Message mes1 = new Message(train1, train2, screen);

 RestrictionObject Res1 = new RestrictionObject(train1, train2);

 Res1.Decrease();

 System.out.println("--------EmeregencyThread1 scope-------------- "

 + this.getMemoryArea().memoryConsumed());

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Appendix A

158

LiveThreadControl.java

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package traincontrolproject;

import javax.realtime.*;

import java.awt.*;

/**

 *

 * @author root

 */

public class LiveThreadMonitor extends RealtimeThread {

 public LiveThreadMonitor(SchedulingParameters sched, ReleaseParameters rel,

 MemoryArea mem1) {

 super(sched, rel, null, mem1, null, null);

 }

 public void check(Train train, String[] Reverserout1, LTMemory mem) {

 if (train.isAlive() == false) {

 if (train.finish != true) {

 System.out.println("not alive" + train.name);

 train = new Train(Reverserout1, 0, train.name, mem, 2);

 train.start();

 }

 ;

 }

 }

 public void run() { /*

 String[] rout1 = { "T7", "T6", "T0", "T3" };

 String[] rout2 = { "T8", "T4", "T2", "T8", "T3" };

 String[] rout3 = { "T2", "T3", "T5", "T2", "T8" };

Appendix A

159

 String[] rout4 = { "T6", "T1", "T3", "T9", "T8" };

 String[] rout5 = { "T4", "T5", "T2", "T4", "T7" };

 String[] rout6 = { "T2", "T5", "T4" };

 String[] rout7 = { "T3", "T4", "T1", "T6" };

 String[] rout8 = { "T8", "T2", "T5", "T8", "T0" };

 String[] rout9 = { "T2", "T5", "T1", "T3", "T7" };

 String[] rout10 = { "T3", "T4", "T5", "T4" };

 String[] rout11 = { "T6", "T7", "T1", "T8" };

 String[] rout12 = { "T9", "T8", "T3", "T2" };

 String[] rout13 = { "T2", "T1", "T6", "T2" };

 String[] rout14 = { "T9", "T7", "T8", "T4" };

 String[] rout15 = { "T0", "T3", "T5", "T6" };

 String[] rout16 = { "T2", "T8", "T3", "T1" };

 int[] journeysNO = new int[17];

 for (int i = 0; i < 17; i++) {

 journeysNO[i] = 1;

 }

 while (waitForNextPeriod()) {

 // just to simplify the proces we omit the function check

 try {

 for(int i=0; i<NoOfTrains;i++)

 {

 if (Main.TrainSet[i].isAlive() == false) {

 if (Main.TrainSet[i].finish != true) {

 System.out.println("not alive" + Main.TrainSet[i].name);

 journeysNO[i] = journeysNO[i] + 1;

 Main.TrainSet[i] = new Train(rout[i], 0,Main.TrainSet[i].name, Main.trains_mem[i],

 journeysNO[i]);

 Main.TrainSet[i].start();

 } ;

 }

 };

 } catch (Exception e) {

 e.printStackTrace();

 }

 try {

Appendix A

160

 this.sleep(100);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 System.out.println("LiveThreadExit");

 }

}

MonitorThread.java

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package traincontrolproject;

import com.sun.org.apache.bcel.internal.generic.BREAKPOINT;

import javax.realtime.*;

import java.io.BufferedReader;

Appendix A

161

import java.io.InputStreamReader;

import java.util.*;

import javax.swing.JApplet;

import java.awt.*;

import javax.swing.JFrame;

import java.awt.event.*;

/**

 *

 * @author root

 */

public class MonitorRTThread extends RealtimeThread {

 double x, zs, zn, Immo;

 int y, ImmoInt, zt;

 static String EmgString = "Emergency created between ";

 static AbsoluteTime oldTime, newTime;

 static RelativeTime interval;

 static Clock clock = Clock.getRealtimeClock();

 LTMemory T_status_Mem = new LTMemory(1024 * 10);

 public MonitorRTThread(SchedulingParameters sched, ReleaseParameters rel,

 MemoryArea mem1) {

 super(sched, rel, null, mem1, null, null);

 }

 public void check(Train train1, Train train2) {

 try {

 if (train1.finish != true && train2.finish != true) {

 if (train1.pos == train2.pos && train1.pos != "On Wait") {

 if (train1.emg != true && train2.emg != true) {

 if ((train1.speed + train2.speed) < 80) {// do

 //

emeergency

 // thread

 train1.emg = true;

 train2.emg = true;

 PriorityParameters sched = new PriorityParameters(

 PriorityScheduler.instance()

 .getMaxPriority());

 PeriodicParameters period = new PeriodicParameters(

Appendix A

162

 new RelativeTime(10, 0));

 LTMemory EmgMem = new LTMemory(1024 * 16);

 EmergencyThread EmeregencyThread1 = new EmergencyThread(

 sched, period, EmgMem, train1, train2);

 EmeregencyThread1.start();

 Main.z.EmgLabel.setText(EmgString + train1.name

 + " and " + train2.name);

 }

 else { // crash happened}

 System.out.println(" there is a crash between"

 + train1.name + " and " + train2.name);

 }

 }

 }

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

 public void run() {

 int i = 1;

 int k = 0;

 oldTime = clock.getTime();

 Runnable Runnable2 = new Runnable() {

 public void run() {

 Timetable Table1 = new Timetable();

 for (int i=0;i<NoOfTrains;i++)

 {

 Table1.add(i, Main.TrainSet[i].name, Main.TrainSet[i].pos, Main.TrainSet[i].rout);

 }

 System.out.println("--------Timetable scope inside--------"

 + T_status_Mem.memoryConsumed());

 // www.setVisible(true);

 }

 };

 while (waitForNextPeriod()) {

Appendix A

163

 try {

 newTime = clock.getTime();

 // calculate immortal consumption

 Immo = (this.getMemoryArea().memoryConsumed());

 ImmoInt = (int) Immo;

 // calculate scopes consumption

 for (int i=0; i<NoOfTrains; i++)

 {

 x = x+ Main.trains_mem[i].memoryConsumed();

 };

 y = (int) x;

 Main.z.ScopeLabel.setText(String.valueOf(x / 1000) + "Kbytes");

 Main.z.ImmLabel.setText(String.valueOf(Immo / 1000000)

 + "Mbytes");

 int currenttime = (int) newTime.subtract(oldTime)

 .getMilliseconds();

 System.out.println("******** The current Time is "

 + currenttime + " ******** ");

 Main.z.TimeLabel.setText(String.valueOf(currenttime / 1000)

 + " Seconds");

 Main.z.ststustableProgressBare.setMaximum(2000);

 Main.z.ststustableProgressBare.setValue(y / 1000);

 Main.z.jProgressBar2.setMaximum(20);

 Main.z.jProgressBar2.setValue(ImmoInt / 1000000);

 System.out.println("--------Immortal memory consumed is "

 + Immo / 1000000 + " MB");

 System.out.println("-------- Scopes memory consumed is " + x

 / 1000 + " KB");

 for (int i=0; i<NoOfTrains;i++)

 {

 for(int j=i+1; j<=NoOfTrains; j++)

 {

 check(Main.TrainSet[i], Main.TrainSet[j]);

 }

 }

Appendix A

164

 T_status_Mem.enter(Runnable2);

 } catch (Exception e) {

 e.printStackTrace();

 }

 int counter=0;

 for (int i=1;i<=NoOfTrains;i++)

 {

 if (Main.TrainSet[i].finish == true) counter=counter+1;

 }

 if (counter ==NoOfTrains) Main.Tracks.clear();

 try {

 this.sleep(100);

 } catch (Exception e) {

 e.printStackTrace();

 }

 Main.trains_mem1.enter(new Runnable() {

 public void run() {

 System.out

 .println("Immortal Memory after all thread finish is "

 + ImmortalMemory.instance()

 .memoryConsumed());

 }

 });

 newTime = clock.getTime();

 interval = newTime.subtract(oldTime);

 System.out.println("interval time:"

 + interval.getMilliseconds() / 1000);

 JFrame f = new JFrame("Line");

 f.addWindowListener(new WindowAdapter() {

 public void windowClosing(WindowEvent e) {

 System.exit(0);

 }

 });

Appendix A

165

 break;

 }

 ;

 }

 System.out.println("monitor exit");

 }

}

Train.java

package traincontrolproject;

import javax.realtime.*;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.util.*;

/**

 *

 * @author root

 */

public class Train extends RealtimeThread {

 String[] rout;

 int speed;

 String pos;

 boolean finish;

 String name;

 String screen;

 boolean emg;

 int routNO;

 public Train(String[] rout1, int speed, String name, LTMemory mem1,

 int routNO) {

 super(null, null, null, mem1, null, null);

 this.speed = speed;

 this.rout = rout1;

 this.name = name;

Appendix A

166

 this.routNO = routNO;

 }

 public Train(String[] rout1, int speed, String name, LTMemory mem1) {

 super(null, null, null, mem1, null, null);

 this.speed = speed;

 this.rout = rout1;

 this.name = name;

 this.routNO = 0;

 this.emg = false;

 }

 public String[] getRout() {

 return this.rout;

 };

 public int getSpeed() {

 return this.speed;

 };

 public void setScreen(String screen) {

 this.screen = screen;

 System.out.println(screen);

 };

 public void run() {

 try {

 this.finish = false;

 String[] z = new String[2];

 for (int i = 0; i < this.rout.length; ++i) {

 z = (String[]) Main.Tracks.get(this.rout[i]);

 if (z[1].equals("RED")) {

 System.out.println(this.name

 + " is waiting until the traffic light sets green");

 this.pos = "On Wait";

 }

 while (z[1].equals("RED")) {

 z = (String[]) Main.Tracks.get(this.rout[i]);

 }

Appendix A

167

 synchronized (this) {

 Main.Tracks.put(this.rout[i], ControlRTThread.SensorsOn);

 this.pos = this.rout[i];

 while (this.speed <= 100 && this.speed != -100)// moving on

 // the first

 // track

 {

 this.speed = speed + 1;

 this.sleep(125);

 }

 ;

 if (this.speed == -100) {

 i = i - 1;

 if (i < 0) {

 i = 0;

 }

 this.pos = "On Wait";

 this.speed = 0;

 this.emg = false;

 } else {

 this.speed = 0;

 Main.Tracks.put(this.rout[i],

 ControlRTThread.SensorsOff);

 }

 }

 }

 ;

 if (this.routNO == 1) {

 this.pos = "Terminated at end of its route 1 ";

 }

 else if (this.routNO == 2) {

 this.pos = "Terminated at end of its route 2 ";

 } else if (this.routNO == 3) {

 this.pos = "Terminated at end of its route 3 ";

 } else

Appendix A

168

 {

 this.pos = "Terminated at end of its route 4 ";

 this.finish = true;

 }

 Clock Clock1 = Clock.getRealtimeClock();

 AbsoluteTime finishtime = Clock1.getTime();

 RelativeTime period = finishtime.subtract(Main.start);

 System.out.println(this.name

 + " Has finished its current route at " + period);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Main.java

package traincontrolproject;

import javax.realtime.*;

import java.util.*;

/**

 *

 * @author Hamza Hamza

 */

public class Main {

 static int MAX_PRI = PriorityScheduler.instance().getMaxPriority();

 public static Hashtable Tracks;

 static RealtimeThread rt;

 public static final NoOfTrains=16

 public static LTMemory[] trains_mem = new LTMemory[NoOfTrains];

 public static Train[] TrainSet;

 public static LTMemory test_mem4 = new LTMemory(1024 * 120);

 static Clock clock = Clock.getRealtimeClock();

 static AbsoluteTime start;

Appendix A

169

 public static NewJFrame z = new NewJFrame();

 static {

 rt = new RealtimeThread(new PriorityParameters(MAX_PRI - 1), null, // new

 // PeriodicParameters(new

 // RelativeTime(20,0)),

 null, ImmortalMemory.instance(), null, null) {

 public void run() {

 TrainSet = new Train[17];

 Tracks = new Hashtable();

 String[] y = new String[2];

 y[0] = "OFF";

 y[1] = "GREEN";

 for (int i = 0; i < 10; ++i) {

 Tracks.put("T" + Integer.toString(i), y);// initilaize

 }

 // initialize the routs

 String[] rout1 = { "T1", "T4", "T3" };

 String[] rout2 = { "T4", "T6", "T7" };

 String[] rout3 = { "T9", "T8", "T6", "T5", "T4" };

 String[] rout4 = { "T5", "T4", "T3", "T2", "T1" };

 String[] rout5 = { "T6", "T3", "T2", "T1" };

 String[] rout6 = { "T3", "T8", "T2" };

 String[] rout7 = { "T2", "T1", "T7", "T9" };

 String[] rout8 = { "T8", "T9", "T5", "T9", "T8" };

 String[] rout9 = { "T6", "T3", "T1", "T8", "T0" };

 String[] rout10 = { "T0", "T1", "T2" };

 String[] rout11 = { "T3", "T4", "T8", "T9" };

 String[] rout12 = { "T2", "T5", "T4", "T1" };

 String[] rout13 = { "T3", "T1", "T7", "T8", "T4" };

 String[] rout14 = { "T7", "T1", "T3" };

 String[] rout15 = { "T9", "T6", "T4", "T0" };

 String[] rout16 = { "T6", "T3", "T2", "T1" };

 // assign routs to trains with the initial speeds

 trains_mem[0] = new LTMemory(1024 * 2000);

 for (int i=1 i<NoOfTrains; i++)

 {

 trains_mem[i] = new LTMemory(1024 * 32);;

 };

 PriorityParameters schedControl = new PriorityParameters(

 MAX_PRI);

Appendix A

170

 PriorityParameters schedMonitor = new PriorityParameters(

 MAX_PRI - 1);

 PriorityParameters schedLiveThreads = new PriorityParameters(

 MAX_PRI - 5);

 ReleaseParameters relLiveThreads = new PeriodicParameters(

 new RelativeTime(1000, 0));

 ReleaseParameters relControl = new PeriodicParameters(

 new RelativeTime(120, 0));

 ReleaseParameters relMonitor = new PeriodicParameters(

 new RelativeTime(300, 0));

 ControlRTThread MyControlRTThread = new ControlRTThread(

 schedControl, relControl, ImmortalMemory.instance());

 MyControlRTThread.start();

 for(int i=1;i<=NoOfTrains;i++)

 {

 TrainSet[i] = new Train(Araaylist.get(i), 0, "train+”i, trains_mem[i], 1);

 TrainSet[i].start();

 };

 MonitorRTThread myMonitorRTThread = new MonitorRTThread(

 schedMonitor, relMonitor, ImmortalMemory.instance());

 myMonitorRTThread.start();

 System.out.println("******** trains start moving ********");

 LiveThreadMonitor MyLiveThreadMonitor = new LiveThreadMonitor(

 schedLiveThreads, relLiveThreads,

 ImmortalMemory.instance());

 MyLiveThreadMonitor.start();

 };

 };

 };

 public static void main(String[] args) {

 // initialize the traks-hashtable we have 5 tracks with 5 sensors and 5

 // switches

 start = clock.getTime();

 rt.start();

 z.setLocation(300, 300);

 z.setVisible(true);

 z.ststustableProgressBare.setStringPainted(true);

 z.jProgressBar2.setStringPainted(true);

 // TODO code application logic here

Appendix A

171

 }

}

Restricted object.java

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package traincontrolproject;

/**

 *

 * @author root

 */

public class RestrictionObject {

 // int speed;

 public RestrictionObject(Train train1, Train train2) {

 train1.speed = -100;// stop the train for a while

 System.out.println(train1.name + " has been stopped untill "

 + train2.name + " finishes its current Track ");

 train2.speed = train2.speed - 20;

 // divertthe rout;

 }

 public void Decrease() {

 // speed=speed-1;

 }

}

Message

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package traincontrolproject;

Appendix A

172

/**

 *

 * @author root

 */

public class Message {

 public Message(Train train1, Train train2, String screen)

 {

 train1.setScreen(screen);

 train2.setScreen(screen);

 };

}

Trainstatus

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

package traincontrolproject;

/**

 *

 * @author root

 */

public class trainstatus {

String train_name; String train_pos; String[] train_rout;

}

Timetable

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

Appendix A

173

package traincontrolproject;

/**

 *

 * @author root

 */

public class Timetable {

 trainstatus[] arrayOftrainStatus;

 public Timetable() {

 arrayOftrainStatus = new trainstatus[18];

 }

 public void add(int x, String train_name, String train_pos,

 String[] train_rout) {// need to be modified later..

 this.arrayOftrainStatus[x - 1] = new trainstatus();

 this.arrayOftrainStatus[x - 1].train_name = train_name;

 this.arrayOftrainStatus[x - 1].train_pos = train_pos;

 this.arrayOftrainStatus[x - 1].train_rout = train_rout;

 };

}

Appendix B

174

Appendix B Control Thread Slicing

Original code

public class ControlRTThread extends RealtimeThread {

 final static String[] TrafficR={"","RED"};

 final static String[] TrafficG={"","GREEN"};

 final static String[] SensorsOn={"ON",""};

 final static String[] SensorsOff={"OFF",""};

final static String T="T";

 public ControlRTThread(SchedulingParameters sched, ReleaseParameters

 rel,MemoryArea mem1)

 {

 super(sched,rel,null,mem1,null,null);

 }

 public void run()

 { String[] y =new String[2];

 for (int i=0;i<10;i++)Main.z.list1.add(testSTR,i);

 while(waitForNextPeriod()){

 try {

 if (Main.Tracks.isEmpty())

 {Main.z.list1.removeAll();

 for (int i=0;i<10;i++)Main.z.list1.add("T"+i+" "+

 "GREEN",i);

 break;

 };

 for (int i = 0; i < 10; ++i) {

 y=(String[]) Main.Tracks.get(T+i);

 if (y[0].equals("OFF"))

 {

 Main.z.list1.remove(i);

 Main.z.list1.add(T+i+" "+ TrafficG[1],i);

 Main.Tracks.remove("T"+i);

 Main.Tracks.put(T+i,TrafficG);

 }//initilaize

 else { if (y[0].equals("ON")){

 Main.z.list1.remove(i);

 Main.z.list1.add(T+i+" "+ TrafficR[1],i);

 Main.Tracks.remove("T"+i);

 Main.Tracks.put(T+i,TrafficR);

 }}

 }

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

 System.out.println("control exit");

 }

}

Appendix B

175

Slice 1

public class ControlRTThread extends RealtimeThread {

 final static String[] TrafficR={"","RED"};

 final static String[] TrafficG={"","GREEN"};

 final static String[] SensorsOn={"ON",""};

 final static String[] SensorsOff={"OFF",""};

public ControlRTThread(SchedulingParameters sched, ReleaseParameters

 rel,MemoryArea mem1)

 {

 super(sched,rel,null,mem1,null,null);

 }

 public void run()

 {

 String[] y =new String[2];

 while(waitForNextPeriod())

 {

 for (int i = 0; i < 10; ++i)

 {

 y= Main.Tracks.get(T+i);

 }//end_for

 } //end_while

 }

 }

}

Slice 2

public class ControlRTThread extends RealtimeThread {

 final static String[] TrafficR={"","RED"};

 final static String[] TrafficG={"","GREEN"};

 final static String[] SensorsOn={"ON",""};

 final static String[] SensorsOff={"OFF",""};

public ControlRTThread(SchedulingParameters sched, ReleaseParameters

 rel,MemoryArea mem1)

 {

 super(sched,rel,null,mem1,null,null);

 }

 public void run()

 {

 String[] y =new String[2];

 while(waitForNextPeriod())

 {

 for (int i = 0; i < 10; ++i)

 {

 Main.Tracks.put(T+i,TrafficG);

 }//end_for

 } //end_while

 }

 }

Appendix B

176

Control Thread Updated code

public class ControlRTThread extends RealtimeThread {

 final static String[] TrafficR={"","RED"};

 final static String[] TrafficG={"","GREEN"};

 final static String[] SensorsOn={"ON",""};

 final static String[] SensorsOff={"OFF",""};

Set<Entry<String, String[]>> entries =Main.Tracks.entrySet();

 Runnable DesignPatternToModify1 =new Runnable(){public void run(){

 for(Entry<String, String[]> ent: entries){

 if (ent.getKey().equals(T+Main.counter)){

 ent.setValue(TrafficR);

 break;}

 };

 }};

 Runnable DesignPatternToModify2=new Runnable(){public void run(){

 for(Entry<String, String[]> ent: entries){

 if (ent.getKey().equals(T+Main.counter)){

 ent.setValue(TrafficG);

 break;}

 };

 }};

 Runnable DesignPatternToRead =new Runnable(){public void run(){

 String[] y=(String[]) Main.Tracks.get(T+Main.counter);

 if (y[0].equals("OFF")){

 Main.ref=1;

 }

 else if (y[0].equals("ON")) Main.ref=2;

 else if (y[0].equals("")) Main.ref=0;

 }};

 static Runnable Runnable2= new Runnable(){public void run(){

 System.out.println(ImmortalMemory.instance().memoryConsumed());

 }

 };

 public ControlRTThread(SchedulingParameters sched, ReleaseParameters

 rel,MemoryArea mem1)

 {

 super(sched,rel,null,mem1,null,null);

 }

 public void run()

 {

 while(waitForNextPeriod()){

 if (Main.Tracks.isEmpty())

 {

 Main.z.list1.removeAll();

 for (int i=0;i<10;i++)Main.z.list1.add("T"+i+" "+ "GREEN",i);

 break;

 };

 for (int i = 0; i < 10; ++i)

 {

 Main.counter=i;

 Main.test_mem4.enter(DesignPatternToRead);

 if (Main.ref==1) Main.test_mem4.enter(DesignPatternToModify2) ;

 else

 { if (Main.ref==2) Main.test_mem4.enter(DesignPatternToModify1)

;

 }

 };

 }

 }

}

Appendix B

177

