112 research outputs found

    ASlib: A Benchmark Library for Algorithm Selection

    Full text link
    The task of algorithm selection involves choosing an algorithm from a set of algorithms on a per-instance basis in order to exploit the varying performance of algorithms over a set of instances. The algorithm selection problem is attracting increasing attention from researchers and practitioners in AI. Years of fruitful applications in a number of domains have resulted in a large amount of data, but the community lacks a standard format or repository for this data. This situation makes it difficult to share and compare different approaches effectively, as is done in other, more established fields. It also unnecessarily hinders new researchers who want to work in this area. To address this problem, we introduce a standardized format for representing algorithm selection scenarios and a repository that contains a growing number of data sets from the literature. Our format has been designed to be able to express a wide variety of different scenarios. Demonstrating the breadth and power of our platform, we describe a set of example experiments that build and evaluate algorithm selection models through a common interface. The results display the potential of algorithm selection to achieve significant performance improvements across a broad range of problems and algorithms.Comment: Accepted to be published in Artificial Intelligence Journa

    Symbolic reactive synthesis

    Get PDF
    In this thesis, we develop symbolic algorithms for the synthesis of reactive systems. Synthesis, that is the task of deriving correct-by-construction implementations from formal specifications, has the potential to eliminate the need for the manual—and error-prone—programming task. The synthesis problem can be formulated as an infinite two-player game, where the system player has the objective to satisfy the specification against all possible actions of the environment player. The standard synthesis algorithms represent the underlying synthesis game explicitly and, thus, they scale poorly with respect to the size of the specification. We provide an algorithmic framework to solve the synthesis problem symbolically. In contrast to the standard approaches, we use a succinct representation of the synthesis game which leads to improved scalability in terms of the symbolically represented parameters. Our algorithm reduces the synthesis game to the satisfiability problem of quantified Boolean formulas (QBF) and dependency quantified Boolean formulas (DQBF). In the encodings, we use propositional quantification to succinctly represent different parts of the implementation, such as the state space and the transition function. We develop highly optimized satisfiability algorithms for QBF and DQBF. Based on a counterexample-guided abstraction refinement (CEGAR) loop, our algorithms avoid an exponential blow-up by using the structure of the underlying symbolic encodings. Further, we extend the solving algorithms to extract certificates in the form of Boolean functions, from which we construct implementations for the synthesis problem. Our empirical evaluation shows that our symbolic approach significantly outperforms previous explicit synthesis algorithms with respect to scalability and solution quality.In dieser Dissertation werden symbolische Algorithmen für die Synthese von reaktiven Systemen entwickelt. Synthese, d.h. die Aufgabe, aus formalen Spezifikationen korrekte Implementierungen abzuleiten, hat das Potenzial, die manuelle und fehleranfällige Programmierung überflüssig zu machen. Das Syntheseproblem kann als unendliches Zweispielerspiel verstanden werden, bei dem der Systemspieler das Ziel hat, die Spezifikation gegen alle möglichen Handlungen des Umgebungsspielers zu erfüllen. Die Standardsynthesealgorithmen stellen das zugrunde liegende Synthesespiel explizit dar und skalieren daher schlecht in Bezug auf die Größe der Spezifikation. Diese Arbeit präsentiert einen algorithmischen Ansatz, der das Syntheseproblem symbolisch löst. Im Gegensatz zu den Standardansätzen wird eine kompakte Darstellung des Synthesespiels verwendet, die zu einer verbesserten Skalierbarkeit der symbolisch dargestellten Parameter führt. Der Algorithmus reduziert das Synthesespiel auf das Erfüllbarkeitsproblem von quantifizierten booleschen Formeln (QBF) und abhängigkeitsquantifizierten booleschen Formeln (DQBF). In den Kodierungen verwenden wir propositionale Quantifizierung, um verschiedene Teile der Implementierung, wie den Zustandsraum und die Übergangsfunktion, kompakt darzustellen. Wir entwickeln hochoptimierte Erfüllbarkeitsalgorithmen für QBF und DQBF. Basierend auf einer gegenbeispielgeführten Abstraktionsverfeinerungsschleife (CEGAR) vermeiden diese Algorithmen ein exponentielles Blow-up, indem sie die Struktur der zugrunde liegenden symbolischen Kodierungen verwenden. Weiterhin werden die Lösungsalgorithmen um Zertifikate in Form von booleschen Funktionen erweitert, aus denen Implementierungen für das Syntheseproblem abgeleitet werden. Unsere empirische Auswertung zeigt, dass unser symbolischer Ansatz die bisherigen expliziten Synthesealgorithmen in Bezug auf Skalierbarkeit und Lösungsqualität deutlich übertrifft

    Conformant Planning via Symbolic Model Checking

    Full text link
    We tackle the problem of planning in nondeterministic domains, by presenting a new approach to conformant planning. Conformant planning is the problem of finding a sequence of actions that is guaranteed to achieve the goal despite the nondeterminism of the domain. Our approach is based on the representation of the planning domain as a finite state automaton. We use Symbolic Model Checking techniques, in particular Binary Decision Diagrams, to compactly represent and efficiently search the automaton. In this paper we make the following contributions. First, we present a general planning algorithm for conformant planning, which applies to fully nondeterministic domains, with uncertainty in the initial condition and in action effects. The algorithm is based on a breadth-first, backward search, and returns conformant plans of minimal length, if a solution to the planning problem exists, otherwise it terminates concluding that the problem admits no conformant solution. Second, we provide a symbolic representation of the search space based on Binary Decision Diagrams (BDDs), which is the basis for search techniques derived from symbolic model checking. The symbolic representation makes it possible to analyze potentially large sets of states and transitions in a single computation step, thus providing for an efficient implementation. Third, we present CMBP (Conformant Model Based Planner), an efficient implementation of the data structures and algorithm described above, directly based on BDD manipulations, which allows for a compact representation of the search layers and an efficient implementation of the search steps. Finally, we present an experimental comparison of our approach with the state-of-the-art conformant planners CGP, QBFPLAN and GPT. Our analysis includes all the planning problems from the distribution packages of these systems, plus other problems defined to stress a number of specific factors. Our approach appears to be the most effective: CMBP is strictly more expressive than QBFPLAN and CGP and, in all the problems where a comparison is possible, CMBP outperforms its competitors, sometimes by orders of magnitude

    SAT Competition 2020

    Get PDF
    The SAT Competitions constitute a well-established series of yearly open international algorithm implementation competitions, focusing on the Boolean satisfiability (or propositional satisfiability, SAT) problem. In this article, we provide a detailed account on the 2020 instantiation of the SAT Competition, including the new competition tracks and benchmark selection procedures, overview of solving strategies implemented in top-performing solvers, and a detailed analysis of the empirical data obtained from running the competition

    SAT Competition 2020

    Get PDF
    The SAT Competitions constitute a well-established series of yearly open international algorithm implementation competitions, focusing on the Boolean satisfiability (or propositional satisfiability, SAT) problem. In this article, we provide a detailed account on the 2020 instantiation of the SAT Competition, including the new competition tracks and benchmark selection procedures, overview of solving strategies implemented in top-performing solvers, and a detailed analysis of the empirical data obtained from running the competition. (C) 2021 The Authors. Published by Elsevier B.V.Peer reviewe

    Program sketching

    Get PDF
    Sketching is a synthesis methodology that aims to bridge the gap between a programmer’s high-level insights about a problem and the computer’s ability to manage low-level details. In sketching, the programmer uses a partial program, a sketch, to describe the desired implementation strategy, and leaves the low-level details of the implementation to an automated synthesis procedure. In order to generate an implementation from the programmer provided sketch, the synthesizer uses counterexample-guided inductive synthesis (CEGIS). Inductive synthesis refers to the process of generating candidate implementations from concrete examples of correct or incorrect behavior. CEGIS combines a SAT-based inductive synthesizer with an automated validation procedure, a bounded model-checker, that checks whether the candidate implementation produced by inductive synthesis is indeed correct and to produce new counterexamples. The result is a synthesis procedure that is able to handle complex problems from a variety of domains including ciphers, scientific programs, and even concurrent data-structures

    Efficient local search for Pseudo Boolean Optimization

    Get PDF
    Algorithms and the Foundations of Software technolog

    Algorithm Portfolios for Noisy Optimization

    Get PDF
    Noisy optimization is the optimization of objective functions corrupted by noise. A portfolio of solvers is a set of solvers equipped with an algorithm selection tool for distributing the computational power among them. Portfolios are widely and successfully used in combinatorial optimization. In this work, we study portfolios of noisy optimization solvers. We obtain mathematically proved performance (in the sense that the portfolio performs nearly as well as the best of its solvers) by an ad hoc portfolio algorithm dedicated to noisy optimization. A somehow surprising result is that it is better to compare solvers with some lag, i.e., propose the current recommendation of best solver based on their performance earlier in the run. An additional finding is a principled method for distributing the computational power among solvers in the portfolio.Comment: in Annals of Mathematics and Artificial Intelligence, Springer Verlag, 201
    • …
    corecore