We tackle the problem of planning in nondeterministic domains, by presenting
a new approach to conformant planning. Conformant planning is the problem of
finding a sequence of actions that is guaranteed to achieve the goal despite
the nondeterminism of the domain. Our approach is based on the representation
of the planning domain as a finite state automaton. We use Symbolic Model
Checking techniques, in particular Binary Decision Diagrams, to compactly
represent and efficiently search the automaton. In this paper we make the
following contributions. First, we present a general planning algorithm for
conformant planning, which applies to fully nondeterministic domains, with
uncertainty in the initial condition and in action effects. The algorithm is
based on a breadth-first, backward search, and returns conformant plans of
minimal length, if a solution to the planning problem exists, otherwise it
terminates concluding that the problem admits no conformant solution. Second,
we provide a symbolic representation of the search space based on Binary
Decision Diagrams (BDDs), which is the basis for search techniques derived from
symbolic model checking. The symbolic representation makes it possible to
analyze potentially large sets of states and transitions in a single
computation step, thus providing for an efficient implementation. Third, we
present CMBP (Conformant Model Based Planner), an efficient implementation of
the data structures and algorithm described above, directly based on BDD
manipulations, which allows for a compact representation of the search layers
and an efficient implementation of the search steps. Finally, we present an
experimental comparison of our approach with the state-of-the-art conformant
planners CGP, QBFPLAN and GPT. Our analysis includes all the planning problems
from the distribution packages of these systems, plus other problems defined to
stress a number of specific factors. Our approach appears to be the most
effective: CMBP is strictly more expressive than QBFPLAN and CGP and, in all
the problems where a comparison is possible, CMBP outperforms its competitors,
sometimes by orders of magnitude