
Int J Softw Tools Technol Transfer (2013) 15:475–495
DOI 10.1007/s10009-012-0249-7

SYNTHESIS

Program sketching

Armando Solar-Lezama

Published online: 2 August 2012
© Springer-Verlag 2012

Abstract Sketching is a synthesis methodology that aims
to bridge the gap between a programmer’s high-level insights
about a problem and the computer’s ability to manage
low-level details. In sketching, the programmer uses a par-
tial program, a sketch, to describe the desired implementation
strategy, and leaves the low-level details of the implementa-
tion to an automated synthesis procedure. In order to generate
an implementation from the programmer provided sketch, the
synthesizer uses counterexample-guided inductive synthesis
(CEGIS). Inductive synthesis refers to the process of gen-
erating candidate implementations from concrete examples
of correct or incorrect behavior. CEGIS combines a SAT-
based inductive synthesizer with an automated validation
procedure, a bounded model-checker, that checks whether
the candidate implementation produced by inductive synthe-
sis is indeed correct and to produce new counterexamples.
The result is a synthesis procedure that is able to handle com-
plex problems from a variety of domains including ciphers,
scientific programs, and even concurrent data-structures.

Keywords SAT/SMT applications · Constraint-based
synthesis · Sketching · Synthesis

1 Introduction

Sketching is a synthesis methodology that is designed to
help programmers with small but very complex routines,
the kind of routines one finds in low-level system’s code
or high-performance computational kernels. What distin-
guishes sketching from some of the other forms of synthe-
sis presented in this issue is that all the information that
flows from the programmer to the synthesizer is expressed as

A. Solar-Lezama (B)
Massachussets Institute of Technology, Cambridge, USA
e-mail: asolar@csail.mit.edu

code. This has important implications for usability, because
it means that programmers do not need to master additional
formalisms in order to use the synthesizer, giving it the feel
of a programming assistant as opposed to that of a formal
verification tool.

The starting point of sketching is the sketch itself—a par-
tial program where difficult expressions and statements are
left unspecified. In their place, the programmer uses gener-
ators to describe a space of possible code fragments which
the synthesizer can use to complete the missing code. The
hypothesis behind sketching is that programmers often have
an idea about the general form of a solution; a high-level
strategy that will solve the problem at hand. To turn the strat-
egy into a program, however, they have to orchestrate many
low-level details; a process that is difficult and error prone.
It therefore makes sense to focus the synthesizer on those
low-level details, leaving control of the high-level strategy in
the hands of the programmer. For many domains, partial pro-
grams offer a natural way to achieve this division of labor. The
programmer controls the implementation strategy by defin-
ing the space of solutions the synthesizer can consider, while
the synthesizer is responsible for discovering the low-level
details of individual expressions in the program. Partial pro-
grams allow programmers to interact with the synthesizer
without having to resort to separate formalisms, allowing
synthesis to be embedded directly into a standard program-
ming language.

In addition to providing the sketch, the user needs to define
the expected behavior of the program. In keeping with the
philosophy of Sketch, the programmer defines this behavior
through code, either in the form of a reference implementa-
tion, or as a set of parameterized unit tests that the synthe-
sized code must pass. The synthesizer must ensure that the
synthesized code passes its unit tests or matches the reference
implementation for all possible inputs, although in practice it

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/78071595?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

476 A. Solar-Lezama

can only guarantee that the specification will be satisfied for
all inputs up to a given bound. Writing unit tests and reference
implementations are both regarded as best practices in tradi-
tional software development, but with Sketch programmers
can leverage this effort to get parts of their code synthesized.

The basic strategy for resolving sketches is based on
search. The goal is to find the contents of all the unspecified
code in the sketch such that the resulting program will behave
correctly under all inputs. The space of possible code frag-
ments defined by the generators in the program is bounded,
as is the space of inputs that the synthesizer considers, so the
synthesis problem is decidable. However, a naïve search is
bound to fail given the astronomical sizes of both spaces. For
example, even simple sketches can have input spaces in the
range of 232, and even going up to 2128 elements. Similarly,
the solution spaces for some sketches easily reach beyond
2300. These scales can only be tackled by means of symbolic
search mechanisms inspired by those originally developed
for model checking in the early 1990s [10].

The sketch synthesizer uses counterexample-guided
inductive synthesis (cegis). The cegis algorithm relies on
an important empirical hypothesis; for most sketches, only a
small set of inputs is needed to fully constrain the solution.
In other words, it is possible to find a small set of inputs
covering all the corner cases in the sketch, such that only a
valid solution to the sketch can work correctly for all these
inputs. cegis uses an efficient SAT-based inductive synthesis
procedure to produce candidate solutions from small sets of
inputs. The crucial observation behind the cegis algorithms
is that the set of corner cases can be discovered automati-
cally by coupling the inductive synthesizer with a validation
procedure. Initially, the set of inputs contains only a random
input, but once the inductive synthesizer produces its first
candidate solution, the solution is checked by the validation
procedure. If the candidate is incorrect, the counterexample
produced by the validation procedure is fed to the inductive
synthesizer, so the next candidate it produces will be guar-
anteed to work correctly for this corner case. After only a
few iterations, the inductive synthesizer will have gathered a
representative set of counterexample inputs and will produce
a valid candidate which the validation procedure will accept
and deliver to the user.

It is possible to construct sketches that violate the empiri-
cal hypothesis, and where the algorithm will have to explore
every possible input in the worst case. In practice, however,
the counterexample-based approach works remarkably well
even for sketches with very large candidate and input spaces,
converging to a solution after only a handful of iterations—
and therefore a handful of calls to the validation procedure.
For example, in one sketch for the AES encryption cipher,
shown in Sect. 9, the synthesizer was able to derive the con-
tents of over 1,024 32-bit integer constants after analyzing
only 600 candidates. A second important property of cegis is

that it separates the synthesis and verification tasks, making it
possible to use off-the-shelf validation procedures, including
incomplete but highly scalable procedures such as automated
test generation [14].

The rest of the paper provides an overview of the sketch
language and a detailed description of the algorithms that
make it possible, and concludes with a discussion of our
experience with the system and some of its limitations.

2 The sketch language

Sketching extends a simple procedural language with the
ability to leave holes in place of code fragments that are to be
derived by the synthesizer. Each hole is marked by a genera-
tor which defines the set of code fragments that can be used
to fill a hole. Sketch offers a rich set of constructs to define
generators, but all of these constructs can be described as syn-
tactic sugar over a simple core language that contains only
one kind of generator: an unknown integer constant denoted
by the token ??.

From the point of view of the programmer, the integer
generator is a placeholder that the synthesizer must replace
with a suitable integer constant. The synthesizer ensures that
the resulting code will avoid any assertion failures under any
input in the input space under consideration. For example, the
following code snippet can be regarded as the ”Hello World”
of sketching.

harness void main(int x){
int y = x ∗ ??;
assert y == x + x;

}

This program illustrates the basic structure of a sketch. It
contains three elements you are likely to find in every sketch:
(a) a harness procedure, (b) holes marked by generators, and
(c) assertions.

The harness procedure is the entry point of the sketch, and
together with the assertion it serves as an operational specifi-
cation for the desired program. The goal of the synthesizer is
to derive an integer constant C such that when ?? is replaced
by C , the resulting program will satisfy the assertion for all
inputs in the input space of the harness.1 For the sketch above,
the synthesized code will look like this.

void main(int x){
int y = x ∗ 2;
assert y == x + x;

}

1 The synthesizer relies on bounded decision procedures, so for har-
nesses with integer inputs, the input space is the set of all integers
within a given bound determined by a command line flag.

123

Program sketching 477

The semantics of the sketch can also be framed in game
theoretic terms. The inputs to the test harness correspond to
non-deterministic choices available to a demonic adversary
who is trying to get the program to fail. The ?? operator corre-
sponds to a non-deterministic choice available to an angelic
player who is trying to keep the program from failing. The
job of the synthesizer is to find a memoryless strategy that
guarantees that the angelic player always wins the game.
Our restriction on the strategy is stronger than just being me-
moryless; the semantics of the sketch require that the value
produced by the strategy depend only on the current pro-
gram location (as opposed to the current state, which is what
a memoryless strategy guarantees). This strong requirement
means that the synthesizer can just replace the non-deter-
ministic choice with a constant value, resulting in a fully
deterministic program.

2.1 Sketching with integer generators

When combined with other language constructs, integer gen-
erators are remarkably expressive; they can even be used
to define arbitrary context-free grammars of program frag-
ments. Even by themselves, however, integer generators can
be useful in turning a high-level insight into an efficient
implementation.

As a small but realistic example of this, consider the prob-
lem of isolating the least significant 0-bit in a word x. For
example, for the word 01010011, the desired output is a word
containing a 1 in the position of the least significant 0; i.e.
00000100. There is a trick to do this using only three instruc-
tions. You may remember it: the trick takes advantage of the
fact that adding a 1 to a string of ones preceded by a zero turns
all the ones into zeros and turns the next zero into a one (i.e.
000111 + 1 = 001000). You may not remember the details, but
with sketching you do not have to; you can let the synthesizer
discover them. All you need to remember is the general form
of the solution to encode the problem as a sketch. Specifi-
cally, you need to remember that the solution involved the
addition of a constant to x, a negation, and a bitwise and. The
expression ∼(x + ??) & (x + ??) encodes most of the expres-
sions matching this criteria, and when given a suitable speci-
fication, the synthesizer can easily find the correct expression.

int W = 32;
bit[W] least_sig0(bit[W] x){

return ∼(x + ??) & (x + ??);
}

bit[W] simple_least_sig0(bit[W] x){
bit[W] ret = 0;
for (int i = 0; i < W; i++)

if (!x[i]) { ret[i] = 1; return ret; }
return ret;

}
harness void main(bit[W] x){

assert least_sig0(x) == simple_least_sig0(x);
}

In less than a second, the synthesizer is able to discover
that the correct expression is ∼(x+0) & (x + 1). If you think
this problem was too easy given the initial hint, consider this
question: can the same trick be used to find the least signif-
icant 1? Without thinking too hard about the problem, one
can ask the sketch synthesizer:

int W = 32;
bit[W] least_sig1(bit[W] x){

// same sketch as before
return ∼(x + ??) & (x + ??);

}

bit[W] simple_least_sig1(bit[W] x){
bit[W] ret = 0;
for (int i = 0; i < W; i++)

if (x[i]) { ret[i] = 1; return ret; }
return ret;

}
harness void main(bit[W] x){

assert least_sig1(x) == simple_least_sig1(x);
}

It again takes less than a second for the synthesizer to tell
us that yes, the same basic trick applies, but now the expres-
sion is ∼(x + 0xFFFFFFFF) & (x+0).

Notice that both examples used as a specification a sim-
ple operational description for the task at hand, what one
would normally refer to as a reference implementation. All
the harness is doing is running the sketch and the reference
implementation side-by-side and comparing the result. Since
this is a common idiom, the sketch language provides syn-
tactic sugar for it. Instead of writing a harness, the user
simply states that least_sig1 implements the functionality of
sim−ple_least_sig1.

bit[W] least_sig1(bit[W] x) implements simple_least_sig1{
return ∼(x + ??) & (x + ??);

}

In the above example, it was relatively clear that the tricky
details in the implementation involved discovering a few con-
stants. In many cases, however, the details in question do not
involve any missing constants. For example, consider the
problem of swapping two bit-vectors x and y without using
a temporary register. The insight is that the numbers can
be swapped by assigning x xor y to x and y repeatedly in a
clever way. The challenge is to find the right sequence of

123

478 A. Solar-Lezama

assignments. The insight, therefore, involves no integer con-
stants, but the integer generator can still be used to encode it:

int W = 32;

void swap(ref bit[W] x, ref bit[W] y){
if(??){ x = x ^ y; }else{ y = x ^ y; }
if(??){ x = x ^ y; }else{ y = x ^ y; }
if(??){ x = x ^ y; }else{ y = x ^ y; }

}
harness void main(bit[W] x, bit[W] y){

bit[W] xold = x, yold = y;
swap(x,y);
assert y == xold && x == yold;

}

The sketch above uses the integer generator to encode
the choice between assigning x ^ y to x or to y. The synthe-
sizer uses the usual convention of using 0 to represent false

and 1 to represent true, and in less than a second, it is able
to discover that the three holes should evaluate to false, true

and false, respectively. After replacing the generators with
constants, the synthesizer will perform a small amount of
cleanup, eliminating the unnecessary conditionals to produce
the code shown below.

void swap(ref bit[W] x, ref bit[W] y){
y = x ^ y;
x = x ^ y;
y = x ^ y;

}

2.2 Higher level generators

The language provides some syntactic sugar that makes
sketches like the one above significantly easier to write. Two
of the most important constructs are repeat blocks and regular
expression generators.

The construct repeat(N) c allows programmers to define a
repeating algorithmic pattern. If N is a constant, the synthe-
sizer will create N copies of the statement c and solve for
the unknowns in each copy of c independently. Using this
construct, the swap sketch can be expressed concisely as

void swap(ref bit[W] x, ref bit[W] y){
repeat(3)

if(??){ x = x ^ y; }else{ y = x ^ y; }
}

The repeat construct also allows the number of copies to be
left unspecified by writing repeat(??), and if a minimal number
of steps is desired, one can use min−re−peat instead. As was
said before, all generators represent finite spaces of possible

code fragments, and repeat is no exception; even when using
repeat(??), the synthesizer will only consider up to a bounded
number of repetitions, where the bound is determined by a
command line flag.

Regular expression generators (Re-generators) are another
constructs that allows the choice of expressions to be
expressed more concisely without resorting to messy if state-
ments. The Re-generator construct has the form {|e|}, where e
is a regular expression literal. The semantics of the construct
are that the synthesizer substitutes the syntactic occurrence
of the construct with a string in the language L(e) such that
the substitution resolves the sketch. Using Re-generators, the
example can be written even more concisely as:

void swap(ref bit[W] x, ref bit[W] y){
minrepeat

{| x | y |} = x ^ y;
}

In designing the language we made a design decision
to support only two regular expression operators: choices
e1| e2 and optional expressions e?. Kleene closure is excluded
for two reasons: first, we never found a situation where
we needed to have an expression exhibiting the kind of
unbounded repetition that Kleene closures imply. Moreover,
since generators can only represent bounded sets of expres-
sions, the Kleene closure would still have to be bounded in
an arbitrary way. If the user needs to use Kleene closure,
it can always be expressed using the repeat construct, so
adding Kleene closure would have increased the number of
constructs involving artificial bounds, and it would not have
produced any significant programmability benefits.

2.3 Abstraction in Sketch

Procedures allow the programmer to hide the details of a
computation behind a simple interface, and are one of the
most commonly used forms of abstraction in production lan-
guages. Sketch supports procedures exactly as one would
expect: generators within them are syntactically replaced
with code fragments that ensure the correctness of the gen-
erated program.

int linexp(int x, int y){
return ??∗x + ??∗y + ??;

}
harness void main(int x, int y){

assert linexp(x,y) >= 2∗x + y;
assert linexp(x,y) <= 2∗x + y+2;

}

For example, for the routines above, there are many dif-
ferent solutions for the holes in lin−exp that will satisfy the

123

Program sketching 479

first assertion, and there are many that will satisfy the second
assertion, but the synthesizer will chose one of the candidates
that satisfies them both.

int linexp(int x, int y){
return 2∗x + y;

}

The procedure lin−exp originally had holes, and therefore
corresponded to a set of functions. However, the synthesizer
completed the holes to give the procedure a single concrete
meaning to be used across all calling sites. This gives proce-
dures the same power of abstraction that they would have in
the absence of sketching. But, as the following example illus-
trates, sketching creates the need for a mechanism to abstract
sets of functions.

int[N∗N] transpose(int N, int[N∗N] mat){
int[N∗N] out;
for(int i=0; i<N; ++i) for(int j=0; j<N; ++j){

out[{|??|N|}∗i + {|??|N|}∗j+{|??|N|}] =
mat[{|??|N|}∗i + {|??|N|}∗j+{|??|N|}];

}
return out;

}

harness void main(int N, int[N∗N] mat, int i, int j){
int[N∗N] out = transpose(N, mat);
assert !(i < N && j < N) || mat[i∗N + j] == out[j∗N + i];

}

In the above sketch, trans−pose is a procedure which
abstracts the matrix transpose function for N × N matri-
ces. However, within the transpose procedure, the expression
|??|N|*i + |??|N|*j+|??|N|! is repeated twice. This expression
is quite big, so one would like to abstract it into its own proce-
dure to avoid the repetition. However, one cannot abstract this
expression into a procedure because each use of the expres-
sion has to resolve to a different linear expression. Therefore,
an abstraction mechanism is needed to represent the entire
set of functions encoded by |??|N|*i + |??|N|*j+|??|N|!, rather
than a single one like the procedure does.

The Sketch language allows programmers to abstract
sets of functions into custom generators. For each use of
the generator, the synthesizer is free to choose a different
function. For the above example, the expression |??|N|*i +
|??|N|*j+|??|N|! can be abstracted into a generator that rep-
resents the set of linear expressions involving i and j with
either constants or N as coefficients.

generator int legen(int i, int j, int N){
return {|??|N|}∗i + {|??|N|}∗j+{|??|N|};

}

int[N∗N] transpose(int N, int[N∗N] mat){
int[N∗N] out;
for(int i=0; i<N; ++i) for(int j=0; j<N; ++j){

out[legen(i,j,N)] = mat[legen(i,j,N)];
}
return out;

}

Each call to the generator resolves to a different expres-
sion, resulting in a correct implementation for the N × N
transpose.

int[N∗N] transpose(int N, int[N∗N] mat){
int[N∗N] out;
for(int i=0; i<N; ++i) for(int j=0; j<N; ++j){

out[N∗i + j] = mat[i + N∗j];
}
return out;

}

Programmers are encouraged to think of generators as pro-
cedures which are inlined into their calling context before
the sketch is synthesized, so each call to the generator will
be resolved independently from other calls.

Generators derive much of their expressive power from
their ability to recursively define a space of expressions. For
example, consider again the least_sig1 example; as presented
earlier, the example assumed considerable knowledge about
the shape of the solution. If the user lacks that knowledge,
he can rely on a very general generator to leverage the syn-
thesizer more heavily as illustrated by the code below.

generator bit[W] gen(bit[W] x, int bnd){
assert bnd >= 0;
if(??) return x;
if(??) return ??;
if(??) return ∼gen(x, bnd−1);
if(??)

return {| gen(x, bnd−1) (+ | & | ^) gen(x, bnd−1) |};
}

bit[W] least_sig1(bit[W] x) implements simple_least_sig1{
return gen(x, 3);

}

The user-defined generator gen recursively defines the
space of all expressions involving x, bit-vector constants, and
the operators +, &, ^ and the bitwise negation ∼. The param-
eter bnd controls the depth of recursion, limiting the synthe-
sizer to expressions of a certain size. Without this bound,
a solver flag limiting the depth of recursion of generators
would determine the maximum size of expressions that the
synthesizer is allowed to consider.

123

480 A. Solar-Lezama

2.4 Putting it all together

To illustrate the use of sketching, consider the problem of
reversing a linked list. It is relatively easy to write a recursive
solution to this problem, but the performance of the simple
implementation is likely to be unacceptable. A more effi-
cient implementation must use a loop instead of recursion,
and must construct the new list backwards to avoid the linear
storage. Sketching allows the programmer to express these
insights as a partial program without having to think too much
about the details of the implementation.

The sketch for this problem is shown in Fig. 1. The body
of reverseEfficient encodes the basic structure of the solution:
allocate a new list, and perform a series of conditional pointer
assignments inside a while loop. In order to define the space
of possible conditionals and assignments, the sketch uses
regular expression notation to define sets of expressions in
lines 1–3. The sketch, in short, encodes everything that can
be easily said about the implementation, and constrains the
search space enough to make synthesis tractable.

Together with the sketch, the programmer must provide
a specification that describes the correct behavior of the
reversal routine. The Sketch synthesizer allows the user
to provide specifications in the form of parameterized or
non-deterministic test harnesses. Figure 1 shows the test
harness for the list reversal; the synthesizer will guaran-
tee that the harness succeeds for all values of n < N. Spe-
cifically, the synthesizer guarantees that none of the inputs
within the given bound will trigger any assertions or cause
any illegal memory accesses. Additionally, the system also
guarantees that the unbounded while loop whose condition
is left unspecified will terminate for all n < N. On a laptop,
the complete synthesis process takes less than a minute for
N = 4.

3 Semantic of sketches

A sketch can be understood as a set of programs, each cor-
responding to a different valuation of the holes. This sec-
tion defines the synthesis semantics of sketches in a way that
makes it easy to characterize the set of correct solutions to
the sketch and the relationship between the values of holes
and the state of the program at a given point in the execution.

To illustrate the key ideas behind the formalism, consider
the following example.

generator int linexp(int t){
return t∗??0 + ??1;

}
generator int linexp2(int t1, int t2){

return linexpg1(t1) + linexpg2 (t2);
}

harness void HelloWorldGen(int x, int z){
int y = linexp2g0(x, z);
assert y == x + x + z;

}

The example is a simple variation of the “Hello World”
program that uses generators. The holes and the call sites for
the generators have been labeled with identifiers to help us
to refer to them in the text.

Now, recall that the goal of synthesis is to assign a value
to every hole. Moreover, in the case of generators, the syn-
thesizer needs to assign different values to the same hole
depending on the calling context. In order to model these
value assignments, we use a control functionφ : H ×T → Z

that assigns a value to each hole in the program at a given
calling context τ . In the example above, there are two holes

Fig. 1 Complete sketch and specification for the linked list reversal problem

123

Program sketching 481

and two different valid calling contexts for these holes:
τ1 = g0 · g1 and τ2 = g0 · g2. Therefore, any φ for this
sketch must define a value for each of the following four pairs
of holes and calling contexts: (??0, τ1), (??0, τ2), (??1, τ1),
(??1, τ2).

In the synthesis semantics, every value in the program
is modeled as a function of the control. We call these
functions parameterized values, and we use the Greek let-
ter Ψ to designate the set of all such values. For exam-
ple, in sketch above, y has the parameterized value λφ.x ∗
φ(??0, τ1)+φ(??1, τ1)+z∗φ(??0, τ2)+φ(??1, τ2). The state
of the program is modeled with an environment σ that maps
variable names to parameterized values, as summarized in
Fig. 2.

The formalism is very different from that used in auto-
mata-based synthesis. The main motivation for choosing
this formalism in place of a more traditional one is to sim-
plify reasoning about some of the higher level features in
the language. For example, in this formalism it is relatively
easy to describe the difference between a user-defined gen-
erator and a function, or to reason about the semantics of
high-order functions, or even high-order functions that take
generators as parameters. It also makes it relatively easy to
prove the correctness of program transformations, such as the
partial evaluation mechanism used to produce code from a
sketch [16].

3.1 Basic rules

The synthesis semantics are described formally through a
very simple model language described by the abstract syntax

Fig. 2 Notation for the synthesis semantics of Sketch

Fig. 3 Abstract syntax for a simplified subset of the Sketch language

in Fig. 3. The language has been simplified in a few cos-
metic ways to make the presentation simpler. For example,
the operator � is used to denote an arbitrary binary opera-
tor. Expressions are assumed to have no side effects; expres-
sions that might lead to an error, such as out of bounds array
accesses or division by zero, are assumed to be preceded
by an appropriate assertion so the expressions themselves
can be modeled as being side effect free. Procedure calls are
assumed to be statements rather than expressions; they return
values by writing to a special variable @, and they have no
other side effects besides writing to this variable and possibly
causing assertion failures.

Parameterized values allow us to define the synthesis
semantics following many of the formalisms of standard
denotational semantics. As in denotational semantics, the
meaning of an expression is defined recursively through a
denotation function.

A[[◦]]τ : Aexp → (Σ → Ψ). (3.1)

The denotation function defines the meaning of any
expression as a function from a state to a parameterized value.
The state σ : L → Ψ of the program is a mapping from the
set of variable names L to parameterized values. The τ in
the denotation function indicates the calling context under
which the interpretation is taking place.

The denotation function is defined recursively for various
types of expressions, quite similar to the way these functions
are defined in denotational semantics. The only new rule is
the rule for evaluating a hole, which produces a function that
takes in a control φ, and produces the value of the hole on
that control under the current calling context τ .

A[[x]]τ σ = σ(x)

A[[??i]]τ σ = λφ.φ(??i , τ)

A[[e1 � e2]]τ σ = λφ. A[[e1]]τ σφ � A[[e2]]τ σφ.
Unlike expressions, commands have side effects. To

model these, the denotation function defines the meaning of a
command as a transformation on a state and a set of candidate
controls. From the initial state and control set, the command
produces an updated state and a subset of the original con-
trol set containing only those controls which are valid for
that command, i.e. those that do not cause assertion failures.
Expressions do not need to track these sets because, as was

123

482 A. Solar-Lezama

said earlier, we have assumed that evaluation of expressions
will never lead to errors.

C[[◦]]τ : Command → (〈Σ , P(Φ)〉 → 〈Σ , P(Φ)〉)
(3.2)

The two most basic rules are those for assertions and
assignments.

C[[x := e]]τ 〈σ , Φ〉 = 〈σ [x �→ A[[e]]τ σ] , Φ〉
C[[assert e]]τ 〈σ , Φ〉 = 〈σ , {φ ∈ Φ : A[[e]]τ σφ = 1}〉.
Assignments modify only the state while leaving the set

of candidate controls unmodified. Assertions, on the other
hand, narrow the set of valid controls, to include only those
that will cause the assertion to succeed.

Sequencing of commands is easy to define; it is just a
composition of two functions.

C[[c1; c2]]τ 〈σ , Φ〉 = C[[c2]]τ (C[[c1]]τ 〈σ , Φ〉)

Example To illustrate how these rules operate, consider the
denotation function for the body of the Hello−World example
in the previous section.

int y = x ∗ ??;
assert y == x + x;

For this example, the initial state will just map the input
variable x to a symbolic input value x .

C[[y = x ∗ ??0; assert y == x + x;]]τ 〈[x �→ x] , Φ〉
= C[[assert y == x + x]]τ C[[y = x ∗ ??0]]τ 〈[x �→ x] , Φ〉
In that equation, C[[y = x ∗ ??0]]τ 〈[x �→ x] , Φ〉 evaluates

to the following pair.

C[[y = x ∗ ??0]]τ 〈[x �→ x] , Φ〉
= 〈[x �→ x, y �→ (A[[x ∗ ??0]]τ [x �→ x])] , Φ〉
= 〈[x �→ x, y �→ λφ.x ∗ φ(??0, τ∅)] , Φ〉
Therefore,

C[[assert y == x + x]]τ C[[y = x ∗ ??0]]τ 〈[x �→ x] , Φ〉
= C[[assert y == x + x]]τ 〈[x �→ x,

y �→ λφ.x ∗ φ(??0, τ∅)] , Φ〉
= 〈[x �→ x, y �→ λφ.x ∗ φ(??0, τ∅)],

{φ ∈ Φ : x ∗ φ(??0, τ∅) == x + x}〉
The resulting pair tells us what we needed to know about

the semantics of the Hello−World program. On the one hand, it
shows the exact relationship between the state and the choice
of value for the hole. On the other hand, it constrains the set
of valid control functions to those satisfying the relationship
x ∗ φ(??0, τ∅) == x + x .

The rules for control statements are somewhat more com-
plicated due to the handling of Φ. In an if statement, each
branch is evaluated under the subset of Φ that would cause
the program to take that branch, and the resulting sets of con-
trols are combined through set union. In the rules below we
use the notational shortcut a?b:c to represent the function
that returns b if a is true and c otherwise.

C[[if e then c1 else c2]]τ 〈σ , Φ〉 = 〈σ ′ , Φ ′〉,
where σ ′ andΦ ′ are defined through the following equations:

Φt = {φ ∈ Φ : A[[e]]τ σφ = true}
Φ f = {φ ∈ Φ : A[[e]]τ σφ = f alse}
〈σ1 , Φ1〉 = C[[c1]]τ 〈σ , Φt 〉
〈σ2 , Φ2〉 = C[[c2]]τ 〈σ , Φ f 〉
Φ ′ = (Φ1) ∪ (Φ2)

σ ′ = λx .λφ. A[[e]]τ σφ ? σ1xφ : σ2xφ.

while loops are handled in a similar way as they are handled
in regular denotational semantics, by defining their denota-
tion function recursively.

W (〈σ , Φ〉) = C[[while e do c]]τ 〈σ , Φ〉 = 〈σ ′ , Φ ′〉
Φt = {φ ∈ Φ : A[[e]]τ σφ = true}
Φ f = {φ ∈ Φ : A[[e]]τ σφ = f alse}

〈σ1 , Φ1〉 = W (C[[c]]τ 〈σ , Φt 〉)
Φ ′ = (Φ1) ∪ (Φ f)

σ ′ = λx .λφ. A[[e]]τ σφ ? σ1xφ : σ xφ

For some loops, it is possible to solve the equation above
to derive a closed form expression for W . For example, con-
sider the loop below.

wihile i < N do
assert ??0 > i
i = i+1

For this loop, the closed form solution for W (σ,Φ) is
{
σ(i) < N 〈σ [i �→ N] , Φ ∩ {φ : φ(??0) > N − 1)}〉

else 〈σ , Φ〉
One can check that this function satisfies the recursive

constraints for W . Unfortunately, the problem of finding a
closed form for the W function of a loop is undecidable in
general. In our synthesizer, we will get around this problem
by bounding the number of iterations of loops. For states σ
that cause the loop to iterate more than the allowed number
of times, we define W (σ,Φ) = (σ ′,∅). In practice, this will
mean that our synthesizer may fail to find a solution to a
sketch when one actually exists, or more commonly, that the
user will have to make sure that the bounds in the number of

123

Program sketching 483

iterations are enough to handle all the inputs that the synthe-
sizer may consider.

There are still some semantics left to describe, namely
the semantics of procedures and generators, and the cur-
rent limited support for language features such as arrays and
heap allocated objects. However, this covers the major ideas
behind the synthesis semantics, which will allow us to define
the set of valid solutions to a sketch and subsequently to rea-
son formally about our novel counterexample guide inductive
synthesis algorithm.

3.2 Procedures and generators

Procedure calls behave as we would expect from standard
denotational semantics. For a function defined as def f(x) c,
the semantics of a call to f(e) are defined by evaluating the
body of the function under the empty calling context τ∅ , and
the initial state σ⊥[x �→ A[[e]]τ σ], where σ⊥ is the empty
state.

〈σ ′ , Φ ′〉 = C[[c]]τ∅〈σ⊥[x �→ A[[e]]τ σ] , Φ〉
C[[f (e)]]τ 〈σ , Φ〉 = 〈σ [@ �→ σ ′(@)] , Φ ′〉

In the definition, the return value of f is stored in the special
variable @ as explained before.

The evaluation of generators is only slightly different.
Instead of evaluating the body under the empty calling con-
text, the body is evaluated under the calling context τ · gi ,
where gi identifies the current call site for the generator.
Therefore, the semantics for a call to a generator defined as
defgen g(x) c from a call site gi are defined by the formulas
below.

〈σ ′ , Φ ′〉 = C[[c]]τ ·gi 〈σ⊥[x �→ A[[e]]τ σ] , Φ〉
C[[g(e)]]τ 〈σ , Φ〉 = 〈σ [@ �→ σ ′(@)] , Φ ′〉

An interesting observation is that procedure calls have the
effect of forgetting the calling context, so generators called
from a procedure will behave the same regardless of the call-
ing context of the procedure.

3.3 Bounded semantics for generators

As we saw in Sect. 2.3, a generator represents a set of func-
tions, and the synthesizer is free to select any of these func-
tions to replace a call to the generator. However, there is a
problem with the way we defined the synthesis semantics for
generators: they make generators too powerful. So powerful,
in fact, that they can represent sets which include functions
that are not even computable, a clear problem if we expect
to synthesize code from them.

The problem is that the semantics defined so far allow pro-
grammers to write sketches which can only be resolved with

an infinite φ. A trivial example of this would be the universal
generator:

generator int univ(int x){
if(abs(x) > 0){ return univ(abs(x)−1); }
else { return ??; }

}

According to the synthesis semantics, the generator above
can be made to represent any function in the set N → Z, even
though we know some functions in this set are not comput-
able.

To address this problem, we provide a slight modification
to the semantics which we call bounded generator seman-
tics. Bounded generator semantics bounds the recursion of
generators by specifying a bounded set of call stacks τ̄ . Thus,
for a generator defined as defgen g(x) c, the semantics of a
call to g at call site gi now involve a check of whether τ ∈ τ̄ .

〈σ ′, Φ ′〉 = C[[c]]τ ·gi 〈σ⊥[x �→ A[[e]]τ σ], Φ〉

C[[g(e)]]τ 〈σ,Φ〉 =
{

〈σ [@ �→ σ ′(@)], Φ ′〉 if τ ∈ τ̄

〈σ,∅〉
One can see from the formulas that trying to evaluate a

generator when the current stack does not belong to τ̄ has
the same effect as an assertion failure.

4 The sketch resolution equation

In Sketch, it is required that all sketches have at least one
harness procedure h. The semantics of a program P are thus
defined in terms of the effect of calling the harness procedure.

C[[P]]τ 〈σ , Φ〉 = C[[h(in)]]τ∅〈σ , Φ〉.
From this definition, we can define a set of valid controls

Φ to be one which satisfies the sketch resolution equation.

Equation 1 (Sketch Resolution) The set of controlsΦ is said
to be valid if it is invariant under C[[P]]τ∅ for any initial state,
as expressed in the equation below.

∀ σ C[[P]]τ∅〈σ , Φ〉 = 〈σ ′, Φ〉.
Now, let Φ∗ denote the maximal set of valid controls, or

maximal solution to the sketch.

The sections that follow will explain how to use the syn-
thesis semantics to symbolically approximate Φ∗.

5 Solving sketches with CEGIS

The synthesis semantics from the previous section allow the
search for a valid control to be framed as a constraint satis-
faction problem. Specifically, the synthesis semantics define

123

484 A. Solar-Lezama

the meaning of a program P through a denotation function
C[[P]]τ∅〈σin , Φ〉 → 〈σout , Φ

′〉. The function describes how
an initial setΦ of candidate solutions is constrained down to
a subset Φ ′ containing only those solutions which are cor-
rect for input σin . Therefore, a valid candidate φ ∈ Φ∗ is one
that satisfies the constraints imposed by each of the possible
inputs.

The synthesis semantics allow us to derive a set of con-
straints on φ in terms of the input state σ . If we use the
predicate Q(φ, σ) to represent these constraints, the synthe-
sis problem becomes a doubly quantified constraint system.

∃φ ∀σ Q(φ, σ). (5.1)

Solving constraint systems involving such universally
quantified variables is difficult, and many existing approaches
do not scale to the size and complexity of the sketches we
want to solve. Fortunately, sketches are not arbitrary con-
straint systems; they are partial programs written to con-
vey the high level structure of a solution while leaving
the details unspecified. Therefore, a decision procedure that
takes advantage of the structure embodied in sketches can
succeed where the general solution strategies fail.

5.1 Solving sketches with inductive synthesis

The crucial observation that makes sketch synthesis possible
is that for many sketches, an implementation that works cor-
rectly for the common case and for all the different corner
cases is likely to work correctly for all inputs. For example,
consider the sketch of a remove method for a doubly linked
list. The sketch may have a large number of possible solu-
tions, and a very large space of inputs; however, in addition
to the common case where an element is removed from the
middle of the list, there are only a handful of corner cases that
can cause problems, such as the cases involving removal of
the head, the tail, and removal from a list of size one. There-
fore, the synthesis problem can be simplified enormously by
focusing only on a handful of inputs that are representative
of the common case and of the problematic corner cases.
This insight can be made more formal through the following
empirical hypothesis.

Hypothesis 1 (Bounded Observation Hypothesis) For a
given sketch P , it is possible to find a small set of inputs
E that fully represents the entire domain of inputs Σ such
that any set of controls Φ satisfying

∀ σ ∈ E C[[P]]τ∅〈σ , Φ〉 = 〈σ ′ , Φ〉 (5.2)

will also be a solution to the sketch resolution equation of
Sect. 4.

The hypothesis implies that we can frame the sketch syn-
thesis problem as an inductive synthesis problem. Induc-

Fig. 4 Counterexample driven synthesis algorithm

tive synthesis is the process of generating a program from
concrete observations of its behavior, where an observation
describes the expected behavior of the program on a specific
input [3]. The inductive synthesizer uses each new observa-
tion to refine its hypothesis about what the correct program
should be until it converges to a solution. Inductive synthesis
had its origin in the work by Gold [8] on language learning,
and the pioneering work by Shapiro [15] on inductive syn-
thesis and its application to algorithmic debugging among
others (e.g. [21]).

Three important problems must be resolved in order to
apply inductive synthesis to the problem of sketch resolu-
tion. First, it is necessary to have a mechanism to generate
observations to drive the inductive synthesis. This mecha-
nism should be able to generate inputs that exercise the cor-
ner cases in the implementation so the inductive synthesis
quickly converges to a correct candidate. Second, the system
needs a mechanism to determine convergence, i.e. to decide
when the candidate derived from the set of observations actu-
ally generalizes to work correctly for all inputs. And finally,
the system needs an inductive synthesis procedure capable
of efficiently solving Eq. (5.2) for realistic sketches.

To address the first two problems, we designed a counter-
example-guided inductive synthesis algorithm (cegis). This
algorithm handles convergence checking and observation
generation by coupling the inductive synthesizer with a val-
idation procedure as illustrated in Fig. 4. In the algorithm,
a validation procedure checks the candidate implementation
produced by the inductive synthesizer. If the validation suc-
ceeds, the candidate is considered correct, and is returned
to the user. If validation fails, then the validation procedure
is expected to produce a bounded and concrete input which
exhibits the bug in the candidate program. The witness to
the bug can then be used as an observation for the inductive
synthesizer.

The cegis algorithm owes an intellectual debt to the idea
of counterexample-guided abstraction refinement (cegar)
introduced by Clarke et al.CEGARClarke03 to cope with the
state explosion problem in model checking. cegar exploits
the observation that a counterexample is much easier to find
in an abstract model, but abstract models can produce spu-
rious counterexamples which are infeasible in the concrete
model. This drawback can be alleviated by combining the

123

Program sketching 485

abstract model checker with a validation procedure that can
check whether a counterexample is indeed feasible for the
original model. If it is not, the validation procedure can refine
the abstraction to disallow the spurious counterexample, and
the cycle can be repeated. If we view the input set E as an
abstraction of the original input domain, the cegis algorithm
can be seen as an application of the cegar idea to the problem
of program synthesis.

5.2 Formalization of algorithm

The algorithm illustrated in Fig. 4 can be succinctly expressed
in terms of the synthesis semantics. In the algorithm below,
Φi is the set of all controls which satisfy the specification
for the input states E = {σ0, . . . , σi−1}. The control φi is
a candidate selected non-deterministically from Φi , and it
constitutes the result of the inductive synthesis, as it is guar-
anteed to work correctly for all inputs in E . The state σi is
an input which exposes an error in the candidate program
represented by φi . The initial control set Φ0 is initialized to
Φ, the set of all controls, while σ0 is initialized to a random
initial state.

Each iteration of the cegis loop starts with the inductive
synthesis phase. In this phase, a new set Φi is computed by
removing from Φi−1 those controls which cause the specifi-
cation to be violated for the inputσi−1.Φi is represented sym-
bolically as a set of constraints, and it is derived by applying
C[[P]]τ∅ to σi−1 and to the symbolic representation ofΦi−1.

The symbolic representation is then queried for an element
φi ∈ Φi which is the result of the inductive synthesis phase.
It is important to note that while the set represented by Φi is
shrinking after every iteration, the representation is actually
growing, since every iteration of the cegis loop is adding
more constraints.

Algorithm 1 (CEGIS Algorithm) .
σ0 := σrandom

Φ0 = Φ

i := 0
do

i = i + 1

(σ ′, Φi) := C[[P]]τ∅(σi−1, Φi−1)

if Φi = ∅ then return UNSAT_SKETCH

def φi ∈ Φi

⎫⎬
⎭

Inductive

Synthesis

def σi s.t . C[[P]]τ∅(σi , {φi }) = (σ ′,∅) }
Validation

while σi �= null
return P E(P, φi)

The validation phase of the algorithm checks whether the
candidate solution associated with φi satisfies the specifica-

tion for all possible inputs. If it does, then the candidate gen-
erated from control φi is the solution that the algorithm was
looking for; if it does not, then the process is repeated until
either a solution is found or Φi becomes empty. In the latter
case, we can assert that the sketch has no valid solutions.

The setsΦi generated by the cegis algorithm form a series
that approachesΦ∗, the maximal solution of the sketch equa-
tion, in strictly monotonic fashion. This means that if Φ is
bounded, then the procedure above is guaranteed to termi-
nate, and Φi will converge towards Φ∗. In fact, because the
algorithm is only looking for a single φ ∈ Φ∗, it can actually
terminate before Φi has converged to Φ∗ if the φi selected
from Φi also happens to be in Φ∗.

5.3 Convergence

The theoretical convergence properties of the algorithm are
not great. The number of iterations is bounded by the max-
imum of the size of the control space and the size of the
input space. Even for bounded sketches, these sizes can be
astronomical. Moreover, if we do not bound Φ, the cegis
algorithm can easily iterate forever. A curious example of
this is the sketch below, which requires that the i th bit of ??0

be equal to i mod 2.

void main(int i){

int z = (??0 / pow(2, i)) % 2;

assert z == i % 2;
}

If we did not bound the set of possible values for ??0, then
the CEGIS algorithm would iterate forever on this sketch
which actually has no solution according to the synthesis
semantics.

However, the cegis algorithm was design to exploit our
intuition that a few inputs covering all the relevant cor-
ner cases should allow us to infer the correct solution to
the sketch. As Fig. 5 shows the convergence properties
for sketches representing more useful functions are surpris-
ingly good. The largest number of iterations was for the
tableBasedAddition benchmark, which implements an addition
of two 4-bit numbers as a single table lookup, where all the
entries in the table are left empty for the synthesizer to dis-
cover. For this benchmark, the number of iterations was, as
we would expect, equal to the size of the input space, since
each input provides information about only one entry in the
table. For less contrived benchmarks, however, the cegis
algorithm was very good at abstracting the entire input space
into a few representative inputs.

Figure 5 also shows error bars of one standard deviation for
each benchmark. The variability in the number of iterations

123

486 A. Solar-Lezama

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

ta
ble

Bas
ed

Add
itio

n

log
2V

ar
Lo

op log
2

log
co

un
t1

6

re
ve

rs
e.

sk
.tm

p

m
or

to
n

m
or

to
n_

ea
sie

st

log
co

un
t1

6_
ea

sy

log
co

un
t8

pa
rit

y

m
or

to
n_

ea
sie

r

log
co

un
t8

_e
as

y

xp
os

eB
it

co
m

pr
es

s_
ha

rd

xp
os

e.
sk

lis
tR

ev
ers

eH
ar

de
r

po
lyn

om
ial

co
m

pr
es

s_
ea

sy

lis
tR

ev
ers

eE
as

y

do
ub

lyL
ink

edL
ist

lss
_h

ar
de

st

Set
Tes

t

lss
_h

ar
de

r

tu
to

ria
l3

Poll
ar

d

tu
to

ria
l2

m
er

ge
_s

or
t

en
qu

eu
e

lss
_e

as
y lss

Benchmarks

C
E

G
IS

 It
er

at
io

n
s

240

Fig. 5 Iterations per benchmark

y = 0.0655x + 2.2067

R2 = 0.6682

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0.00 100.00 200.00 300.00 400.00 500.00 600.00

log2(| space of completions |)

It
er

at
io

n
s

Fig. 6 Iterations versus distinct candidates

for a given benchmark comes from the non-deterministic
choice the cegis algorithm makes in selecting a φi ∈ Φi , and
from the choice of the σi that the validation phase decides to
produce. However, you may notice that the number of iter-
ations was fairly stable for each of the benchmarks. Of the
30 problems we tested, only 5 had a standard deviation of
more than 2 iterations, and only 3 had a standard deviation
larger than 4 iterations. This consistency suggests that there
is something intrinsic to each benchmark that determines
the number of observations needed for inductive synthesis to
converge, irrespective of the non-deterministic choices made
by the synthesizer.

We hypothesize that the number of iterations in the cegis
loop is related to the number of candidates solutions to the
sketch. Figure 6 shows the relationship between the number
of cegis iterations and the logarithm of the size of the candi-
date space of the benchmark. The correlation is fairly strong,
with an R2 slightly over 0.66. The log of the size of the can-
didate space is not the same as the number of bits of holes,
because some sketches exhibit a lot of redundancy: there are
many combinations of hole values that after partial evalua-
tion produce the same program. For example, the benchmark
tuto−rial3, had a single generator which represented a family
of 4×1014 ≈ 249 syntactically distinct expressions, but used
259 integer holes, each represented with 5-bits. The fact that
the number of iterations is better predicted by the number of
unique candidates than the number of holes points to one of

the strengths of the cegis approach: the ability to eliminate
large classes of equivalent candidates with a single represen-
tative input.

These experiments support the bounded observation
hypothesis; specifically, they demonstrate that for many
interesting problems, the number of observations needed to
find a valid control is quite small. Moreover, they show that
the each new iteration is able to eliminate a fraction of the
remaining candidate space, including huge numbers of equiv-
alent solutions. Having shown this, it remains to be shown
how effectively the inductive synthesis procedure is able to
generate candidate solutions from sets of observations.

6 SAT-based inductive synthesis

The cegis procedure depends on an inductive synthesizer
to generate candidate implementations from a small set of
inputs, and a validation procedure to produce counterexam-
ple inputs exposing problems in invalid candidates. The pre-
vious section showed how the inductive synthesizer and the
validator could be expressed in terms of the synthesis seman-
tics through the following two equations.

C[[P]]τ∅(σi−1, Φi−1) = (σ ′, Φi) (6.1)

C[[P]]τ∅(σi , {φi }) = (σ ′,∅) (6.2)

Inductive synthesis is defined using Eq. (6.1), which
describes how a set of candidate controlsΦi−1 is constrained
to a setΦi by removing from it those controls that are invalid
for input σi−1. The inductive synthesizer must then select a
controlφi ∈ Φi which represents the solution to the inductive
synthesis problem. Validation is defined through Eq. (6.2);
it requires the synthesizer to select an input σi that shows
that control φi cannot be in the set of solutions to the sketch
synthesis equation, i.e. input σi causes an assertion failure
on the candidate represented by control φi .

These two equations describe inductive synthesis and val-
idation, respectively, but they are not algorithmic; the seman-
tic rules describe manipulations on sets and functions in the
abstract, but they do not tell us how these objects should
be represented, or how the manipulations should be imple-
mented. This section describes an implementation of the
synthesis semantics that turns the inductive synthesis and
validation problems into constraint satisfaction problems.
The implementation is based on the well-known idea of rep-
resenting sets symbolically as constraints; specifically, a set
Φ of controls is represented as constraints that must be sat-
isfied by all the controls in Φ. For example, the constraint
(φ(??0) = 5 ∧ φ(??1) < 3) represents the set of all controls
that assign 5 to the hole ??0 and a value less than 3 to hole
??1. By representing sets of controls symbolically, we are
able to derive systems of constraints for Φi by manipulating
the constraints representing Φi−1 according to the rules of

123

Program sketching 487

Table 1 Intermediate language used to represent parameterized values

Base e ::= c | hi,τ | ini

Arithmetic e ::= +(e1, e2) | − (e) | ∗
(e1, e2) | div(e1, e2) | mod(e1, e2)

Comparison e ::=< (e1, e2) | > (e1, e2) |
≥ (e1, e2) | ≤ (e1, e2) | = (e1, e2)

Boolean e ::= ∨(e1, e2) | ∧ (e1, e2) | ⊕ (e1, e2) | ¬(e)
Selection e ::= muxn(eidx , e1, . . . , en) := eeidx

i fc(eind , e �=, e=) := (eind = c) ? e= : e �=

the synthesis semantics. Extracting a control φ ∈ Φi then
becomes a constraint satisfaction problem.

To show how the constraint systems are constructed, we
begin by describing the representations of controls. The num-
ber of holes in the program is bounded, and because we are
restricting ourselves to bounded semantics, so is the number
of calling contexts. Therefore, if we assume there are k dis-
tinct pairs of holes and calling contexts, we can represent φ
as a control vector, 〈h0, . . . , hk〉, where each control value
hi corresponds to the value of a specific hole under a specific
calling context. The notation hi,τ will sometimes be used to
make explicit the exact hole and calling context for a given
control value.

Now, recall that the values of expressions and variables are
represented in the semantics as parameterized values, which
are functions mapping controls to concrete values ψ : Φ →
Z. The synthesizer represents parameterized values symbol-
ically as expressions in the language described in Table 1.
These expressions are represented in the synthesizer as dags,
rather than trees, to allow sharing of common subexpressions.
The base expressions in this language can be of three types:

– Controls hi,τ indicating a specific component in the con-
trol vector.

– Integer constants.
– Input nodes ini , which serve as place holders for concrete

inputs.

The state σ is a mapping of variable names to parameter-
ized values. Through the derivation process, the state is read
and updated according to the synthesis semantics. For exam-
ple, consider the various rules for evaluating expressions.
Those rules are easily adapted to construct expressions in
the intermediate language of Table 1.

A[[x]]τ σ = σ(x)

A[[??i]]τ σ = hi,τ

A[[e1 + e2]]τ σ = +(A[[e1]]τ σ, A[[e2]]τ σ)
For example, the expression t ∗ ??0+ ??1 is translated into

an expression in the intermediate language through the fol-
lowing syntax directed translation.

A[[t ∗ ??0 + ??1]]τ σ = +(A[[t ∗ ??0]]τ σ, A[[??1]]τ σ)
= +(∗(A[[t]]τ σ, A[[??0]]τ σ), h1,τ)

= +(∗(σ (t), h0,τ), h1,τ).

The final expression is a function of the control values
h0,τ and h1,τ , and the input value of variable t.

Sets of controls are represented as constraints on the con-
trol values. To represent and manipulate these constraints, we
exploit the intermediate language used to represent parame-
terized values by associating with each setΦ a characteristic
function ψΦ related to Φ through the following equation.

Φ = {φ : ψΦ(φ) �= 0}.

In other words, a control φ belongs to Φ if and only if
it satisfies the constraint ψΦ(φ) �= 0. For example, if Φ is
the set of controls satisfying φ(??0) = 5 and φ(??1) < 3,
this set will be represented with the characteristic function
∧(= (h0, 5),< (h1, 3)), shown graphically below.

Most standard set operations are easy to perform on the
symbolic representation. For example, ifψΦ1 andψΦ2 are the
characteristic functions for the sets Φ1 and Φ2, respectively,
then the characteristic functions for the complement, inter-
section, and union of these sets are easy to construct from
ψΦ1 and ψΦ2 as illustrated below.

Complement ¬Φ1 = ¬(ψΦ1)

Intersection Φ1 ∩Φ2 = ∧(ψΦ1 , ψΦ2)

Union Φ1 ∪Φ2 = ∨(ψΦ1 , ψΦ2)

The rules of the synthesis semantics are used to construct
the characteristic functions through syntax-directed transla-
tion. For example, the basic statements of assignment and
assertion manipulate the state and the set of valid controls
according to the following rules.

C[[x := e]]τ 〈σ , ψΦ〉 = 〈σ [x �→ A[[e]]τ σ] , ψΦ〉
C[[assert e]]τ∅〈σ , ψΦ〉 = 〈σ , ∧(A[[σ]]e, ψΦ)〉

The same is true of the if statement; for the statement
if e then c1 else c2, we can follow the synthesis semantics to
evaluate the two branches of the conditional.

123

488 A. Solar-Lezama

ψe = A[[e]]τ σ
ψΦt = ∧(ψΦ,ψe)

ψΦ f = ∧(ψΦ,¬(ψe))

〈σ1 , ψΦ1〉 = C[[c1]]τ 〈σ , ψΦt 〉
〈σ2 , ψΦ2〉 = C[[c2]]τ 〈σ , ψΦ f 〉.

Then, the rule for the if statement becomes

C[[if e then c1 else c2]]τ 〈σ , ψΦ〉
= 〈λx .mux2(ψe, σ2(x), σ1(x)), ∨(ψΦ1 , ψΦ2)〉

The rules for loops and procedure calls follow the same
logic; the symbolic representations are manipulated accord-
ing to the synthesis semantics, replacing set operations with
operations on the characteristic functions. Because we are
using bounded semantics, we do not have to worry about
termination of loops or recursion.

An important advantage of representing sets as a constraint
on the value of a characteristic function is that it is possible to
query for a control in the set through a constraint satisfaction
procedure. Any solution φ to the constraint ψΦ(φ) �= 0 is
guaranteed to belong toΦ; if the constraints are unsatisfiable,
then it means that Φ is empty.

This property allows us to implement inductive synthesis
by a straightforward application of the semantics; the syn-
thesizer can simply evaluate C[[P]]τ (σi−1, Φi−1) from its
symbolic representation of Φi−1, and then query the repre-
sentation for a control φi ∈ Φi .

The idea of representing sets as systems of constraints is
not new. In fact, it was one of the major advances behind
symbolic model checking [10]. However, Sketch was the
first system to represent the set of candidate solution to a
synthesis problem as a SAT problem.

6.1 Validation

One of the advantages of separating inductive synthesis from
validation is that any validation procedure that produces a
counterexample input can be plugged into the algorithm.
However, the Sketch synthesizer exploits the symbolic
machinery of inductive synthesis to perform bounded sym-
bolic model-checking on the candidate solution.

The validation problem can be framed directly in terms of
the synthesis semantics as the problem of finding an input σi

that shows that the control φi is not a solution to the sketch
equation, so

C[[P]]τ∅(σi , {φi }) = (σ ′,∅). (6.3)

The Sketch synthesizer uses symbolic reasoning to
search for an input state σi satisfying the equation above
using the exact same satisfiability procedure used for induc-
tive synthesis.

Interestingly, the validation procedure that results from
this symbolic manipulation is equivalent to the SAT-based
bounded model checker developed by Clarke et al. [6]. Their
tool, called CBMC, also translates a program into a set of
Boolean constraints and uses SAT to solve the system for a
counterexample. Some of their low-level encodings to SAT
are different from outs, but the high-level ideas are the same.

Saturn [23] is another SAT-based validation tool that oper-
ates through similar principles. One of the key features of Sat-
urn is that it is able to abstract procedures into summaries,
allowing for modular verification, which our system does
not support. What is most interesting about the similarity
between our procedure with Saturn and CBMC is that the
same techniques that proved successful for bug finding can
be effective for inductive synthesis.

7 Experience

This section provides an overview of some of the problems
that can be solved with sketch and gives some idea of the
overall performance of the synthesizer. All the experiments
described were performed on a very modest ThinkPad laptop
with a single core Intel T1300 at 1.66GHz with 2MB of L2
cache and 1GB of memory. All the performance numbers
in this section are averages from 4 to 7 different executions
using different random seeds for the initial counterexample
and the random restart in the SAT solver.

Figure 7 shows the solution times for several variations
of 18 representative benchmarks. The exact quantities in the
chart should be taken with a grain of salt, because they vary
quite a bit from machine to machine, and with different ver-
sions of the solvers. However, they give a good idea of the
relative complexity of solving different problems and of the
scale of problems that can be solved at interactive speeds.
The benchmarks were chosen to be representative of real
programming problems which the synthesizer can solve in
less than 15 min. Many of these benchmarks were written
by our group, but nine of them were developed by students
from a graduate introductory programming languages class
held at UC Berkeley in the fall of 2007. The benchmarks can
be roughly categorized into three groups: bit manipulations,
integer manipulations and linked data structures.

Bit manipulations What characterizes these benchmarks is
that they treat machine words as bit-vectors. All these bench-
marks use the imple−ments directive to provide specifications
in the form of reference implementations that manipulate
each bit individually. The sketches contain the necessary
insight to take advantage of bit-level parallelism. These
benchmarks were our first application of sketching because
the low-level details almost always involve discovering bit-
masks and precise shift amounts, so we could write sketches

123

Program sketching 489

0

5

10

15

20

25

30

35

40

tu
to

ria
l2

po
lyn

om
ial

lss
_e

as
ies

t

lss
_e

as
y

lss
_h

ar
de

st

Poll
ard

tu
to

ria
l3

co
m

pr
es

s_
ea

sy

co
m

pr
es

s_
ha

rd

m
or

to
n_

ea
sie

st

m
or

to
n_

ea
sie

r

m
or

to
n

ta
ble

Bas
ed

Add
itio

n

log
co

un
t8

_e
as

y

log
co

un
t8

re
ve

rs
e.

sk
.tm

p
log

2

do
ub

lyL
ink

ed
Lis

t

Set
Te

st

Easier Benchmarks

S
ec

o
n

d
s

0

50

100

150

200

250

M
eg

a
B

yt
es

Validation

 Ind. Synthesis

Memory Consumption

0

100

200

300

400

500

600

700

800

900

m
er

ge
_s

or
t

xp
os

e

xp
os

eB
it

pa
rit

y

log
co

un
t1

6

log
co

un
t1

6_
ea

sy

log
2V

ar
Lo

op
.sk

.tm
p

lis
tR

ev
er

se
Hard

er

en
qu

eu
e

Harder Benchmarks

S
ec

o
n

d
s

0

50

100

150

200

250

M
eg

a
B

yt
es

Validation

Ind.
Synthesis
Memory

Fig. 7 Solution time and memory consumption for selected benchmarks

for them using only the integer holes, even before we had
any of the higher level sketching constructs.

Example A typical benchmark of this category is the morton

benchmark, written by graduate student Jacob Burnim. A
32-bit morton number is computed by interleaving the bits
of two 16 bit integers x and y, so that bit r2∗i of the result
equals bit xi of x , and bit r2∗i+1 corresponds to bit yi of
y. According to Anderson, “Morton numbers are useful for
linearizing 2D integer coordinates, so x and y are combined
into a single number that can be compared easily and has the
property that a number is usually close to another if their x
and y values are close” [2].

It is easy to interleave the bits of two 16-bit integers by
selecting the bits one by one, but it is possible to do it more
efficiently by taking advantage of the ability to shift all the
bits in a word with a single instruction; while the bit-by-bit
approach takes O(W) operations for a word of size W , the
task can be achieved with O(log(W)) operations using bit-
vector parallelism. The high-level insight can be stated as
follows.

First, scatter the 16 bits of each of the two inputs across
the even bits of a 32 bit word. Then, or together the
resulting two words, shifting one of the words by one to
align its bits with the gaps in the other word. The scatter
can be done with log-shifting, a technique for efficiently
scattering or gathering bits by shifting many bits at a
time as illustrated in Fig. 8. A logshifter can be imple-
mented by repeatedly shifting some bits, oring them
with the original word, and then masking the result.

The insight can be expressed succinctly in a sketch. The
log−shift generator encapsulates the basics of logshifting, but
leaves unspecified the tricky details of exactly what bits to
mask and how much to shift on each step; this means that
the generator could actually be reused to implement other
scattering patterns different from the one required for this

Fig. 8 Examples of log-shifting for scattering and gathering bits

problem. The sketch also leaves unspecified the number of
steps required for the logshifter; this is a potential problem
because it gives the synthesizer the freedom to include more
steps than necessary. The student produced a second version
of this benchmark (morton_easiest) that specifies that on each
iteration the shift amount should be reduced by half. This ver-
sion of the benchmark is guaranteed to produce the desired
answer, and resolves much faster because of the added infor-
mation.

int W = 16;
generator bit[2∗W] logshift(bit[2∗W] in){

int pt = 4∗W;
repeat(??){

// Shift some of the bits, and mask
// their original positions.
in = (in | (in << ??)) & ??;

}
}
bit[2∗W] morton(bit[W] x, bit[W] y)

implements mortonSpec{
bit[2∗W] x2 = logshift(x);
bit[2∗W] y2 = logshift(y);
return x2 | (y2 << 1);

}

��
All the benchmarks in the second group in Fig. 7 are bit

manipulation benchmarks. These benchmarks are difficult to

123

490 A. Solar-Lezama

solve despite their relatively small size (compress is the larg-
est one of these sketches and it is only 47 lines of code). There
are two reasons for this. First, their candidate spaces are often
huge; a single 32-bit mask will have billions of possible solu-
tions. Moreover, the holes are often very tightly coupled, in
the sense that every bit in the output potentially depends on
the value of every single hole, as was the case in the morton

example. This makes these benchmarks very challenging for
the solver. On the other hand, they are a great domain for
sketching because it is very challenging to program by hand,
and there is often a very good match between the insight and
the sketch. Moreover, because these benchmarks are inher-
ently bounded, the SAT-based validation procedure can pro-
vide absolute correctness guarantees.

Integer manipulations These benchmarks manipulate inte-
gers or arrays of integers; with the manipulations typically
involving some arithmetic. Their specifications also consist
of reference implementations, while the sketches often must
take advantage of some mathematical principle to achieve
better performance at the expense of clarity. All the bench-
marks in the first group in Fig. 7 are integer manipulation
benchmarks.

Example A great example from this domain is the Karat-
suba multiplication algorithm for large integers (karatsuba).
The algorithm is a building block of many public key cipher
implementations. It uses a divide and conquer approach to
multiply integers with N digits in O(N 1.585), as opposed
to the standard O(N 2) from the grade school multiplication
algorithm.

The algorithm starts by decomposing two N -digit num-
bers x and y into two halfs: x = x1bN/2 + x0, y = y1bN/2 +
y0, where b is the base. The standard multiplication can be
defined recursively in terms of the two halfs.

x ∗ y = bN x1 ∗ y1 + bN/2(x1 ∗ y0 + x0 ∗ y1)+ x0 ∗ y0

The expensive (big-integer) multiplication is denoted with
the ∗ operator. The multiplication with the base terms is
implemented with shifts, so it is not an expensive operation.

Let us illustrate how Karatsuba might have been able to
invent (and implement) his algorithm with the assistance of
sketching. He would first observe that it may be possible to
replace the four expensive multiplications with three expen-
sive multiplications. He would guess that one cannot avoid
computing terms x0 ∗ y0 and x1 ∗ y1, so he would focus on
replacing the term x1 ∗ y0 + x0 ∗ y1 with a one-multiplication
term. This optimization would be performed at the expense of
adding big-integer additions or subtractions, a good trade-off
since their complexity is linear rather than quadratic. In math-
ematical notation, the idea can be expressed in the following
sketch, where the generator poly(n, x1, . . . , xk) produces a
polynomial in k variables of degree n.

x ∗ y = poly(??, b) ∗ (x1 ∗ y1)

+ poly(??, b)∗
(poly(1, x1, x0, y1, y0) ∗ poly(1, x1, x0, y1, y0))

+ poly(??, b) ∗ (x0 ∗ y0)

It turns out that the idea for this optimization is correct
and the correct formula is shown below.

x ∗ y = (b2 + b) ∗ (x1 ∗ y1)

+ b ∗ ((x1 − x0) ∗ (y1 − y0))

+ (b + 1) ∗ (x0 ∗ y0)

Creating an implementation using the Sketch system
is just as simple. The sketch in Fig. 9 contains the same
insight expressed above, but it also addresses the representa-
tion issues for the integers and their operations. Integers are
represented as N element arrays of ints; addition, comple-
ment and shifting are all provided through separate routines.
The half ranges are read from the original input array using
special array notation available in the language, where A[a::b]

Fig. 9 Sketch for Karatsuba’s multiplication

123

Program sketching 491

correspond to a range of b elements in A starting with the
element at position a. Multiplications by the base term are
encoded through a shift operation.

Ideally, we would like for the routine to be parametrized
by N , and the solver to guarantee the result for all N . Unfor-
tunately, the Sketch solver cannot reason about unbounded
operations, so the correct answer was derived by setting N
to 4, and limiting the range of integer values to two bits. �

The karatsuba benchmark illustrates many relevant aspects
of integer benchmarks. First, because we use bounded model
checking as our correctness criteria, we cannot provide strong
correctness guarantees. For most of these benchmarks, vali-
dation was performed for all integer inputs in the range [0, 8].
Only the tutorial benchmarks were validated for inputs in the
range [0, 32]. For these benchmarks these ranges happened
to be sufficient in the sense that the programs that were cor-
rect for all inputs between 0 and 8 turned out to be correct
programs, but this could only be ascertained through hand
examination of the result.

The ranges of inputs are fairly small even by the stan-
dards of bounded model checking. This is partly a conse-
quence of the use of the unary representation of integers
used internally by the solver. This representation is very effi-
cient when representing integers ranging over a small set
of values, but it grows very quickly, making it impracti-
cal to validate sketches over a wide range of input values.
It is very likely that the growing power and availability of
SMT solvers capable of reasoning about integers will have
a big impact on these benchmarks. In spite of this, the syn-
thesizer is able to quickly produce correct implementations
from sketches with a lot of freedom for many interesting
kernels.

Linked data structures These benchmarks involve manipu-
lation of data structures in the heap. The linked list reversal
from the introduction is an example of this class of bench-
mark.

Example Another interesting benchmark in this category is
the Set−Test benchmark. This benchmark implements a tree-
based set using a hash table as a reference implementation.
One of the problems that make tree manipulation tricky is
symmetry: the code for the different cases is very similar
except some cases have to use the left child and some have
to use the right child, and it is easy to get confused about
which child should be used where. Sketching allowed us to
eliminate this redundancy using generators. The fragment of
the Set−Test sketch shown below uses a generator to produce
the code that decides whether to add a new node as a child
of the current node or to continue traversing. The generator
will produce the correct code both for the case when n.val is
less than v and when it is not.

generator bit choice(ref TreeNode n, int v){
if({| n(.left | .right) |} == null){

{| n(.left | .right) |} = newTreeNode(v);
return ??;

}else{
n = {| n(.left | .right) |} ;
return ??;

}
}

bit add(Tree t, int v){
TreeNode n =t.root;
if(n == null){

t.root = newTreeNode(v);
return ??;

}
while(n != null){

if(n.val == v){ return ??; }
if(n.val < v){

if(choice(n, v)){
return ??;

}
}else{

if(choice(n, v)){
return ??;

}
}

}
return ??;

}

��

Like the integer manipulation benchmarks, data-structure
benchmarks also have to cope with the limitations of the vali-
dation procedure. Our validation procedure cannot guarantee
the absolute correctness of the synthesized implementation,
only its correctness against a bounded test harness. For exam-
ple, the test harness for the enqueue benchmark checks the
equivalence of the sketched queue with an array implemen-
tation on an input-directed sequence of operations.

This type of test harness is often referred to in the verifica-
tion literature as a “most general client” [1] because it verifies
that the data-structure works correctly for all sequences of up
to N operations, which is a very good, but it is not the same
as verifying that the queue is correct.

Another interesting feature of the data-structure bench-
marks, especially when compared with the bit manipulations,
is that one can leave a great amount of code unspecified while
keeping the search space relatively small. For example, in
the listReverseHard benchmark, the assignments in the body of
the loop specified remarkably little, leaving a lot of freedom
to the synthesizer, but the synthesizer only had 60 different

123

492 A. Solar-Lezama

possibilities to search through for each assignment. By con-
trast, a single bit-mask in the morton benchmark can have 232

different possible values. This means that sketches can be
allowed to have a lot of freedom without overwhelming the
synthesizer. At the same time, we can see that the solution
times for these benchmarks can be quite large given their
small input and candidate spaces, which seem to suggest that
our very naïve representation of the heap may have a lot of
room for improvement.

Overall, these benchmarks are not such a good match for
sketching, in the sense that there is a lot of boilerplate that pro-
grammers have to write before the synthesizer is able to syn-
thesize an implementation. At the same time, programmers
often have strong intuitions about how these data-structure
manipulations work, which are not reflected in the sketch.
Nevertheless, these benchmarks provide a good stress test of
the capabilities of the sketch synthesizer.

8 Comparison with QBF

One of the original motivations for the cegis algorithm
was the difficulty of solving constraint systems with mul-
tiple quantifiers. Specifically, we have seen that the synthe-
sis problem reduces to a 2QBF problem of the form shown
below.

∃φ ∀σ Q(φ, σ). (8.1)

The predicate Q is a boolean formula, so the equation
above is a satisfiability problem on a quantified boolean for-
mula (QBF). Over the last few years, there has been a lot of
interest in QBF solvers. Every year, there is even a QBF com-
petition held side by side with the annual SAT competition
at the International Conference on Theory and Applications
of Satisfiability Testing. Therefore, an important question is:
How does the cegis algorithm compare with general QBF
solvers?

To answer this question, we generated QBF problems for
four representative benchmarks of varying degrees of dif-
ficulty: polynomial, doublyLinkedList, lss_hardest and parity. The
QBF problems were generated from the optimized constraint
system, so the QBF solver could benefit from all the high-
level optimizations available to the Sketch synthesizer. It is
worth noting that even though there are only two quantifiers in
Eq. (8.1), this is actually a 3-QBF problem, because convert-
ing Q to conjunctive normal form requires the introduction
of temporary variables which are existentially quantified.

∃φ ∀σ ∃t Qcn f (φ, σ, t) (8.2)

The QBF formulas from the four benchmarks were fed
to 2clsQ, the winner of the 2006 QBF competition [13],
and quantor version 3.0, the winner of the 2008 competi-

tion [4]. In both cases the results support the cegis approach
to resolving sketches.

In the case of 2clsQ, the performance difference was
overwhelming. Of the four benchmarks, 2clsQ was only
able to resolve polynomial, the easiest one. For this bench-
mark, 2clsQ took 94 s to find a solution, compared to 0.1 s
it took Sketch with MiniSat. 2clsQ was unable to solve
any of the other three benchmarks in the 20 min of allotted
time, while Sketch was able to solve par−ity, the hardest of
these benchmarks, in 257 s using MiniSat, and in only 11 s
using ABC.

Benchmark Sketch
time (s)

cegis
Iters.

2clsQ
time

polynomial 0.1 5.3 94 s
doublyLinkedList 2.6 4 >20 min
lss_hardest 25 4.3 Out of

memory
parity 257 15 >20 min

quantor did much better on the easier benchmarks, but
it was still unable to compete with cegis on the harder prob-
lems. For polynomial and doublyLinkedList, quantor finished
in about the same time as Sketch. For both parity and lss_hard,
however,quantor exhausted all available memory after the
first 2 min of execution. After this, the system started thrash-
ing and became unresponsive, so the execution had to be
stopped. By contrast, Sketch was able to solve both of these
benchmarks using less than 150MB of memory.

Benchmark Sketch
(s)

Sketch
Mem.
(MB)

Quantor
time

polynomial 0.1 7 0.15 s
doublyLinkedList 2.6 16 3.4 s
lss_harder 25 136 Out of

memory
parity 257 89 Out of

memory

There is an alternative encoding into a QBF problem with
avoids the third quantifier; the idea is to negate Eq. (8.1)
before converting the predicate into CNF.

∀φ ∃σ Q̄(φ, σ). (8.3)

Then, Q̄, the negation of Q, can be converted to CNF
without introducing an additional quantifier alternation.

∀φ ∃σ ∃t Q̄cn f (φ, σ, t). (8.4)

Now, the QBF solver must find a φ that falsifies the equa-
tion above. However, this encoding proved to be even worse
than the previous one; with this encoding, quantor was
unable to solve even the polynomial problem without running
out of memory.

123

Program sketching 493

8.1 2QBF solvers and quantifier elimination in SMT

Ranjan et al. [12] have shown that for 2QBF problems, spe-
cialized algorithms can be more efficient than the algorithms
used by general QBF solvers. In [12], they present two
algorithms that are also based on two interacting solvers
where one produces candidate solutions and the other one
checks them. However, the interaction between the two algo-
rithms is more limited than in our approach. In particular,
every iteration of both algorithms adds a single clause to
the solver in charge of producing candidate solutions. This
clause is computed by taking the failed solution and com-
puting a cover set for it, i.e. a partial assignment that is
computed by eliminating those variables whose values were
not used in determining that the solution had failed. The
new clause rules out this partial assignment from appear-
ing again in a candidate solution. By contrast, our approach
does not require us to compute a cover set, and the clauses
added after each iteration of our approach are a strictly stron-
ger than the single clause added by these algorithms, so
we can expect our algorithm to converge in fewer itera-
tions.

Very recently, Wintersteiger et al. [22] have worked on
adding support for quantifiers to their SMT solver. Their
approach combines a basic counterexample-guided refine-
ment approach similar to cegis with other techniques such
as substitution and term rewriting. Their approach is more
recent than our original cegis algorithm [19] and is targeted
towards a more general use of quantifiers in SMT problems.
Their approach was actually inspired by the work of Jha
et al. [9] and Srivastava et al. [20], both of whom were influ-
enced by our earlier work.

The cegis approach is unlikely to beat the QBF solvers
on arbitrary QBF problems. However, on sketching prob-
lems, the cegis algorithm is able to exploit the bounded
observation hypothesis and efficiently synthesize a cor-
rect candidate from only a small set of inputs. Moreover,
the cegis approach has the useful property of separat-
ing synthesis and validation, allowing the best techniques
to be used for each of these two functions. For exam-
ple, in another paper [18] we used cegis to do synthesis
in the context of concurrent algorithms. For that domain,
we were able to get significant scalability benefits from
using an explicit state model-checker (SPIN) in place of
SAT for the verification phase. This important flexibility
is lost if we see the problem as a monolithic 2QBF prob-
lem.

9 Case study: sketching AES

As a case study [19], we used the Sketch synthesizer to
create a full implementation of the AES cipher [7] by syn-

thesizing its most difficult fragments. For this experiment,
we created a reference implementation by directly transcrib-
ing the NIST standard into code. The NIST standard defines
the cipher in terms of 14 rounds which take a 128-bit input
block and a round key and processes it, followed by a final
round.

bit[W] round(bit[W] in, bit[W] rkey){
bit [W] t1 = ByteSub(in);
bit [W] t2 = ShiftRows(t1);
bit [W] t3 = MixColumns(t2);
return t3 ^ rkey;

}

The NIST standard determines that every round starts with
a ByteSub transformation that performs a set of table look-
ups to do a substitution on each byte; ShiftRows permutes the
bytes in the block; and MixColumns transforms each word by
treating it as a 4 element vector in the Galois field G F(28),
then multiplying it with a matrix whose elements are also in
G F(28). The final round is like the other rounds but without
the MixColumns transformation.

In the optimized version, all the operations in the round
are folded into a set of table lookups. A programmer imple-
menting AES by traditional means would have to derive
the formula for generating the table entries; this may be
difficult if one is not familiar with the algebra involved.
The programmer would then have to write an ad hoc
code generator to produce the table from the specifica-
tion through some algebraic manipulation, and then would
have to incorporate the generated table into the code and
check the correctness of the cipher using known input/out-
put pairs.

By contrast, Sketch is able to synthesize the tables auto-
matically and verify their correctness against the reference
implementation. Figure 10 shows the sketch for the regular
round. The sketch for the final round is similar, except that it
uses only one table instead of four, and it combines outputs
from the tables using masks—which are left unspecified—
instead of xors.

The roundSK sketch places a lot of stress on the solver
since there are 32,768 bits in the table that have to be gener-
ated. Furthermore, each input considered by the solver helps
complete only a small number of table entries, so the syn-
thesize/verify loop has to iterate 655 times. Nonetheless, the
solver is able to complete the sketch in about an hour. Table 2
shows the exact times spent by the two SAT solvers involved.
All instances of synthesis were solved using MiniSat. For ver-
ification, we used MiniSat for the first 645 iterations. For the
last 10 iterations we switched our SAT solver to ABC [11]
because it provides much better performance for hard SAT
problems.

123

494 A. Solar-Lezama

Fig. 10 Sketch for one round of AES

Table 2 Solution time for roundSK in AES benchmark

Total Synth: 791 s =13.183 min

Total Verify: 3,942 s =65.7 min

Synth easy: 1.17 s Avg time per SAT problem

Synth hard: 3.4 s Avg time per SAT problem

Verify easy: 5.33 s Avg time per SAT problem

Verify hard: 50 s Avg time per SAT problem

The times for Synth and Verify hard correspond to the times for the last
10 iterations

Performance of generated code. The resulting code was
run against a hand optimized AES implementation from open
SSL. The runtime for 50,000 encryptions was as follows:

OpenSSL AES 19.652 ms
Sketch 21.307 ms
Spec 19936.100 ms

The difference between the hand coded AES and the
sketched version is less than 10 %, the difference due to the
fact that the hand optimized code was written in a way that
caused the compiler to do a better job at register allocation.
We can also see that the original specification, which is very
close to the specification of AES [7], is over 1,000 times
slower.

10 Conclusions

The paper has explored the power of the Sketch system to
synthesize the low-level details for small but complex pro-
grams in a variety of domains. In addition to that, it has
shown some potential avenues for significant improvement
in the synthesizer’s performance.

There are a number of other strategies that could signif-
icantly improve the performance of the solver. For exam-
ple, using constraint solvers that can reason about integers
could make a big difference for integer problems. Simi-
larly, improved search strategies that take advantage of more
semantic information about the sketch could make the search
more efficient. Additionally, there is great room for improve-
ment in the encoding of higher-level sketching constructs and
advanced language features; the current encoding is very sim-
ple and naïve.

Beyond performance, however, it is important to keep in
mind that a synthesizer is a productivity tool. The ultimate
test for any optimization is the extent to which it is able
to improve programmer productivity. A detailed analysis of
how improvements in performance affect programmer pro-
ductivity is one of the great omissions in this work. Quan-
tifying this impact requires user studies and analysis of the
use of sketching in the field. Overall, some of the bigger open
issues in sketching involve the following areas:

Improving programmability While the sketch language pro-
vides a handful of high-level constructs to help program-
mers express their insight without having to reason about
the low-level details, the language is still too low-level for
many domains. For example, for the body of the loop in the
sketch from Fig. 1, the programmer had to go through the
very mechanical process of describing the set of memory
locations that could be reached from the lists l and nl. We
have found this process to be error prone, as it is easy for
programmers to forget choices which turn out to be neces-
sary to construct the solution; for example, many program-
mers might forget to include null in the set LOC. Moreover,
when programmers make mistakes and their sketches cannot
be solved, it can be difficult for them to find the problems,
since debugging a partial program can be more difficult than
debugging a concrete one.

A solution to these challenges will have to involve multi-
ple facets, including higher level mechanisms for expressing
insights so programmers make fewer errors, language con-
structs that allow for more interactive exploration of the space
of solutions, and diagnostic mechanisms that can pinpoint
errors in a sketch.

Exploiting higher level insight Another big challenge is
improving the performance of synthesis by harnessing high-
level insights, either about a specific program or about an
entire domain. In the case of individual programs, we want
to exploit high-level invariants that the programmer might
know, in order to reduce the search space and make the syn-
thesis more tractable.

In our PLDI 07 paper [17], we showed how synthesis
could be made much more effective for programs in a par-
ticular domain by incorporating domain-specific insight into
the synthesizer. We believe such domain-specific insight can

123

Program sketching 495

make an enormous difference. This will be particularly true
in the case of parallelism. For parallel programs, reasoning
about concurrency, and about the effect of all possible in-
terleavings is extremely expensive. However, large classes
of parallel programs are written in a very disciplined man-
ner that prevents threads from non-deterministically modify-
ing shared memory. Exploiting this discipline should allow
for dramatic performance improvements in the synthesis of
many concurrent programs.

Moving beyond semantic equivalence and safety In many sit-
uations, programmers care about many other factors that go
beyond functional correctness. Performance, for example, is
a central consideration in many domains. Another closely
related property involves statistical properties of an imple-
mentation. For example, a hash table will be correct regard-
less of the implementation of the hash function, but we would
like the synthesizer to find an implementation that leads to a
good distribution of keys. In some cases, some implementa-
tions may be preferred on purely aesthetic grounds; they are
easier to read, or contain simpler control flow. The challenge
is to develop synthesis strategies that can optimize on these
non-functional criteria while still remaining tractable.

References

1. Amit, D., Rinetzky, N., Sagiv, M., Yahav, E.: Comparison under
abstraction for verifying linearizability. In: In 19th International
Conference on Computer Aided Verification (CAV) (2007)

2. Anderson, S.E.: Bit twiddling hacks (1997–2005). http://
www-graphics.stanford.edu/~seander/bithacks.html

3. Angluin, D., Smith, C.H.: Inductive inference: theory and meth-
ods. ACM Comput. Surv. 15(3), 237–269 (1983)

4. Biere, A.: Resolve and expand. In: Proceedings of the 7th Inter-
national Conference on Theory and Applications of Satisfiability
Testing, SAT’04, pp. 59–70. Springer, Berlin (2005)

5. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexam-
ple-guided abstraction refinement for symbolic model checking.
J. ACM 50(5), 752–794 (2003)

6. Clarke, E., Kroening, D.,Yorav, K.: Behavioral consistency of c
and verilog programs using bounded model checking. In: Proceed-
ings of the 40th Annual Design Automation Conference, DAC ’03,
pp. 368–371. ACM, New York (2003)

7. Advanced Encryption Standard (AES): U.S. DEPARTMENT OF
COMMERCE/National Institute of Standards and Technology,
November (2001). http://csrc.nist.gov/publications/fips/fips197/
fips-197.pdf

8. Gold, E.M.: Language identification in the limit. Inf. Con-
trol 10(5), 447–474 (1967)

9. Jha, S., Gulwani, S., Seshia, S.A., Tiwari, A.: Oracle-guided com-
ponent-based program synthesis. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering,
ICSE ’10, vol. 1, pp. 215–224. ACM, New York (2010)

10. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic
Publishers (1993)

11. Mishchenko, A., Chatterjee, S., Brayton, R.: Dag-aware AIG
rewriting: a fresh look at combinational logic synthesis. In: DAC
’06: Proceedings of the 43rd Annual Conference on Design Auto-
mation, pp. 532–535. ACM Press, New York (2006)

12. Ranjan, D.P., Tang, D., Malik, S.: A comparative study of 2qbf
algorithms. In: The Seventh International Conference on Theory
and Applications of Satisfiability Testing (SAT 2004), May (2004)

13. Samulowitz, H., Bacchus, F.: Binary clause reasoning in qbf.
In: Proceedings of the 9th International Conference on Theory
and Applications of Satisfiability Testing, SAT’06, pp. 353–367.
Springer, Berlin (2006)

14. Sen, K., Marinov, D., Agha, G.: Cute: a concolic unit testing engine
for c. In: ESEC/SIGSOFT FSE, pp. 263–272 (2005)

15. Shapiro, E.Y.: Algorithmic Program Debugging. MIT Press,
Cambridge (1983)

16. Solar-Lezama A.: Program Synthesis By Sketching. PhD thesis,
EECS, UC Berkeley (2008)

17. Solar-Lezama, A., Arnold, G., Tancau, L., Bodík, R., Saraswat,
V., Seshia, S.: Sketching stencils. In: PLDI ’07: Proceedings of
the 2007 ACM SIGPLAN Conference on Programming Language
Design and Implementation, vol. 42, pp. 167–178. ACM, New York
(2007)

18. Solar-Lezama, A., Jones, C., Arnold, G., Bodík, R.: Sketching con-
current datastructures. In: Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementa-
tion. Tucson, June 7–13 (2008)

19. Solar-Lezama, A., Tancau, L., Bodík, R., Saraswat, V., Seshia,
S.: Combinatorial sketching for finite programs. In: ASPLOS’06.
ACM Press, San Jose (2006)

20. Srivastava, S., Gulwani, S., Foster, J.: From program verification
to program synthesis. POPL, Madrid (2010)

21. Summers, P.D.: A methodology for lisp program construction from
examples. J. ACM 24(1), 161–175 (1977)

22. Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: Efficiently solv-
ing quantified bit-vector formulas. In: Bloem, R., Sharygina, N.
(eds.) FMCAD, pp. 239–246. IEEE (2010)

23. Xie, Y., Aiken, A.: Scalable error detection using boolean satis-
fiability. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL),
pp. 351–363 (2005)

123

http://www-graphics.stanford.edu/~seander/bithacks.html
http://www-graphics.stanford.edu/~seander/bithacks.html
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

	Program sketching
	Abstract
	1 Introduction
	2 The sketch language
	2.1 Sketching with integer generators
	2.2 Higher level generators
	2.3 Abstraction in Sketch
	2.4 Putting it all together

	3 Semantic of sketches
	3.1 Basic rules
	3.2 Procedures and generators
	3.3 Bounded semantics for generators

	4 The sketch resolution equation
	5 Solving sketches with CEGIS
	5.1 Solving sketches with inductive synthesis
	5.2 Formalization of algorithm
	5.3 Convergence

	6 SAT-based inductive synthesis
	6.1 Validation

	7 Experience
	8 Comparison with QBF
	8.1 2QBF solvers and quantifier elimination in SMT

	9 Case study: sketching AES
	10 Conclusions
	References

