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The SAT Competitions constitute a well-established series of yearly open international algo-
rithm implementation competitions, focusing on the Boolean satisfiability (or propositional 
satisfiability, SAT) problem. In this article, we provide a detailed account on the 2020 in-
stantiation of the SAT Competition, including the new competition tracks and benchmark 
selection procedures, overview of solving strategies implemented in top-performing solvers, 
and a detailed analysis of the empirical data obtained from running the competition.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

From what was once mainly the archetypal intractable (in particular NP-complete) problem, propositional satisfiability (or 
Boolean satisfiability, SAT) has flourished into a success story of modern computer science [1]. This is due to advances in SAT 
solvers, i.e., implementations of decision procedures for SAT, which today form a central computational tool for solving real-
world problem instances of various kinds of NP-hard search and optimization problems. With standardized input formats, 
readily-available APIs for incremental applications, and certified proof logging and checking capabilities, applications of SAT 
solver technology have branched from the first breakthrough applications in automated planning, test pattern generation 
and hardware verification to thousands of different application settings.

The success of SAT would not be possible without the persistent efforts of the SAT community to further improve 
the performance and robustness of SAT solvers. The SAT Competition series, with a history dating back to the early 90s, 
aims to support and provide further incentives for maintaining this progress. Organized yearly as an international open 
event, SAT Competitions (and their variants in the forms of SAT Races and a SAT Challenge) [2–8] have a consistent track 
record in receiving tens of solver submissions yearly, submitted by the community at large for obtaining a snapshot of the 
current state-of-the-art in practical SAT solving. Alongside participating solvers, the competition invites through open calls 
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submissions of benchmark instances representing, in particular, new interesting applications scenarios of SAT solvers. Indeed, 
in addition to evaluating recently developed solvers, an important aspect of the SAT competition series is to collect on a 
yearly basis new benchmark sets, consisting of instances from various different application settings, which together with 
benchmark sets from previous years constitute a standard dataset for use in research papers and SAT solver development.

This article focuses on the 2020 instantiation of the SAT Competitions. To this end, we provide a detailed account of SAT 
Competition 2020 in terms of organizational details, competition tracks, participating solvers, benchmarks, and the empirical 
results from the competition. In terms of competition tracks, two new tracks, namely the cloud track and an application-
specific track, were introduced in 2020, in addition to the already earlier established main, parallel, and incremental tracks; 
we provide motivation and the new organizational details for both of these new tracks. In terms of solvers, we provide an 
overview of solving strategies and other details implemented in the top-performing solvers from the competition, comple-
menting the individual solver descriptions available in the 2020 competition proceedings [9]. As for benchmarks, we describe 
how the 2020 benchmark sets were constructed for each of the competition tracks, with an overview of the benchmarks 
contributed to the 2020 competition. In terms of empirical results we provide further analysis on the competition results, 
going beyond the standard rankings provided on the SAT competition web pages.1 Finally, we also provide a discussion on 
lessons learned and ideas for future editions of SAT competitions.

This article is organized as follows. We start by providing an overview on the competition, including details on and 
motivations for the several competition tracks, the rules and other technical requirements of the competition, the ranking 
schemes used in evaluating the competing solvers, and the computing environments used for executing the competition 
(Section 2). We then provide an overview of the benchmark sets used in evaluating the solvers, including their origins and 
the selection process used for constructing the sets (Section 3). In Section 4 we provide an overview of the competition 
results followed by a survey on the solving strategies implemented distinctly in the top-ranking solvers in Section 5. Going 
considerably beyond the plain competition rankings, we provide in Section 6, an in-depth analysis of the competition data 
from different perspectives, including correlation analysis of runtime performance of solvers and marginal contributions of 
individual solvers to the “virtual best solver” and portfolios constructed from the competing solvers. The article is concluded 
with future prospects in Section 7.

2. Overview of SAT Competition 2020

In this section, we describe the individual 2020 SAT Competition tracks, explain the requirements for participation and 
the ranking criteria, as well as describe the computing infrastructure used for executing the competition.

2.1. Competition tracks

SAT Competition 2020 consisted of seven tracks: Main track, No-Limits track, Planning track, “Glucose hack” track, Incre-
mental Library track, Parallel track, and the Cloud Track for massively parallel SAT solvers.

2.1.1. The Main, No-Limits, Planning, and “Glucose hack” tracks
The focus of the traditional Main track is on sequential SAT solvers and their evaluation on structured, non-random 

benchmarks coming from various application areas.
To participate in the Main track, solvers needed to output certificates for both the satisfiable and the unsatisfiable 

instances. Moreover, the source code of the solver were required to be made publicly available. Solvers not complying with 
either of these two criteria were only evaluated in a so-called No-Limits track and were not eligible for the Main track 
awards. The No-Limits track thus enabled participation of closed-source solvers (not being able or willing to expose the 
source code for legal or other reasons) as well as portfolio solvers (combining two or more core SAT solvers developed by 
different groups of authors; cf. Sect. 2.2). Without limit, submissions could be solvers that use a lookup table or similar to 
determine solutions. Thus, the No-Limits track was only evaluated with respect to newly submitted benchmark instances, 
i.e., on instances which were submitted to SAT Competition 2020.

However, solvers in No-Limits still competed against all other solvers submitted to the Main Track. Thus, to deserve a 
mention, a No-Limits solver would need to rank among the best-performing solvers among the Main Track participants. In 
2020, the top ranked solvers in the No-Limits track were the same as in the Main track. This also indicates the stability of 
results under the exclusion of old benchmark instances.

Complementing the generality advocated by the standard SAT Competition tracks, in which solvers are evaluated on a 
set of benchmarks including instances from various types of different problem domains, for 2020 the organizers aimed 
to experiment with the potential of a more application-specific track, each year highlighting a different problem domain 
where the SAT solving technology helps to advance the state of the art. In 2020, the Planning track represented the first 
trial instantiation of this idea. The focus of this track was specifically on efficiently solving instances arising from the 
domain of SAT-based automated planning [10]. Automated planning was chosen as the target problem domain of this first 
instantiation of the domain-specific tracks due to its centrality as one of the first breakthrough applications of SAT solvers. 

1 https://satcompetition .github .io /2020/.
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To this end, solvers participating in the Planning track were evaluated on 200 benchmark instances encoding planning 
problems. The same rules for participation as in the Main track applied to the Planning track. Solvers submitted to the Main 
track automatically participated in the Planning track.

The traditional Hack track (established 2009 as Minisat Hack track) was organized as a sub-track of the Main track for 
hacks of Glucose 3 [11]. In the past, several advances in SAT solving required only small modifications of an established 
solver to achieve a considerable contribution. Hack tracks encourage participation of such small modifications. The limit for 
being considered a “hack” was—somewhat arbitrarily2—set to 1000 non-space character edit distance from the sources of
Glucose 3. Unfortunately, in 2020 there were not enough participants in this sub-track and so we do not report on it in 
the results section.

We evaluated all 64 solver submissions (including different configurations of specific solvers) to the Main track. Out of 
the 64 solvers, eight were explicitly submitted to the No-Limits track. Four solvers were demoted to the No-Limits track 
due to outputting invalid unsatisfiability proof certificates. Six solvers were disqualified due to outputting truth assignments 
which did not satisfy the corresponding benchmark instance. This left us with 46 configurations of 22 solvers, including one 
Glucose hack.

2.1.2. Incremental Library track
The Incremental Library track was first introduced in SAT Race 2015 [12] and also took place in SAT Competitions 2016 

and 2017. In the Incremental Library track the underlying idea is to mimic scenarios where a SAT solver is used as a 
back-end solver in a more complex tool (typically solving a harder problem than SAT) and is called multiple times before 
the enclosing tool reaches its final state. “Incremental” here refers to the idea that the individual calls to the SAT solver 
are not independent, but may share a common subset of the input clauses or differ in the presence of additional unit 
clause assumptions [13–15]. Examples for applications of incremental SAT solving are counterexample-guided abstraction 
refinement (CEGAR) based approaches, e.g., for Bounded Model Checking [16], SAT-based planning [17], multi-agent path 
finding [18], and satisfiability modulo theories (SMT) solvers [19].

Instead of using or extending the DIMACS input format, in the Incremental Library track a general incremental interface 
called IPASIR (Re-entrant Incremental Solver API) is employed [12]. The idea is that we actually run the enclosing tool on its 
own benchmark and communicate with the competing SAT solver through this interface. SAT solvers that are submitted for 
this track must hence implement the interface. Furthermore, it should be noted that the solutions output by a solver may, 
in general, influence the forthcoming invocations of the solver.

Six solvers were submitted to the Incremental Library track. Two of the six solvers were disqualified due to outputting 
wrong answers.

2.1.3. Parallel track
The Parallel track evaluates the runtime performance of SAT solvers making use of multiple processor cores in terms 

of wall-clock time. The benchmarks are the same as in the Main track. In contrast to the Main track, proof logging for 
unsatisfiable instances is not required in the Parallel track.3

A total of 14 solver configurations, based on 10 solvers, were submitted to the Parallel track. Three solver configurations 
were disqualified due to wrong answers.

2.1.4. Cloud track
The Cloud track was a new development in the SAT Competitions for 2020. The track focuses on evaluating distributed 

solvers running on multiple machines in a network. Communication between the machines is possible using MPI and SSH. 
We received six solver submissions to the Cloud track.

2.2. Mandatory participation requirements

The following requirements were imposed for participating in SAT Competition 2020.

Source code The source code of submitted SAT solvers had to be made available (licensed for research purposes) except for 
the solvers participating only in the No-Limits track.

Description A short system description was required for each solver submission, including a list of all authors involved 
in developing the solver, description of any non-standard algorithmic techniques and data structures implemented in the 
solver, as well as references to the relevant literature. These system descriptions have been collected and made available 
publicly in the non-refereed competition proceedings [9].

2 The specific threshold for edit distance is not central here; the idea is essentially to only allow relatively small changes to the Glucose code base, i.e., 
“quick hacks” to Glucose.

3 Although this would, of course, be desirable, for the same reasons as in the Main track, currently there are no good solutions known for efficient proof 
logging of parallel solvers.
3
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Benchmarks The authors of solvers participating in the Main track were required to submit 20 “new” benchmark instances. 
The exact details of this rule are further explained in Section 3.1. In short, this rule guaranteed that the competition could 
be run on instances mostly unseen to the solver developers prior to the competition. Moreover, by making these bench-
marks publicly available after the competition, the SAT community benefits by having an ever growing repository of diverse 
problems that next developments will target. The descriptions of the submitted benchmarks are also made available in the 
competition proceedings [9].

Input and output format No-limits The benchmark instances were presented to the solvers in the de facto standard DIMACS 
input format for propositional formulas in conjunctive normal form (CNF). A simple extension of this format was to be 
adhered to when printing the satisfying assignment (see, e.g., [8], Section 2.4).

Where required, proofs of unsatisfiability were to be output in the DRAT format [20], either in its textual version—which 
is also very similar to the DIMACS input format—or in a more compact binary version (for more details, see [21], Unsat 
Certificates). Details on certification are further discussed in Section 2.4.

Number of submissions Due to the shear number of participants in the SAT Competitions, in order to make it feasible to run 
the whole competition, specific limits were set on the number of submitted solvers. In particular, each solver author was 
allowed to be an author of at most four different sequential solvers, two different parallel solvers, and one “Glucose hack” 
sub-track solver. Two solvers were considered different as soon as their sources differed or the compilation options were 
different, or different command line options were used (with the exception of an option enabling or disabling the proof 
output).

Portfolio solvers Apart from the No-Limits track, participants were not allowed to submit a portfolio of solvers, i.e., a com-
bination of two or more core SAT solvers developed by different groups of authors.4 This rule is mainly meant to encourage 
the SAT community to invest more effort into developing new solver code bases. Moreover, while we acknowledge that 
research on solver selection tools that typically orchestrate portfolio solvers is interesting, it is not at present the focus of 
the SAT competitions.

Organizers The organizers of the competition were not allowed to participate.

2.3. Solver ranking and disqualification

Solvers were ranked using a PAR-2 score based on a 5000-second timeout. A PAR-2 system assigns as many points as 
the amount of time (in seconds) it took the solver to solve a particular instance and twice the time limit, i.e. 10 000 points, 
if the instance was not solved. In particular, this means that the lower the score a solver obtained, the better the solver 
performs.

A solver was disqualified if it produced a wrong answer: specifically, if a solver reported “unsatisfiable” on an instance 
that was proven to be satisfiable by some other solver, or reported “satisfiable” but provided a wrong certificate. Solvers 
disqualified from the competition were not eligible for awards.

2.4. Certificates

In all tracks, solvers were required to output a solution (a satisfying truth assignment, i.e., a model on the instance 
in question) to certify recognizing a satisfiable instance. On the other hand, certificates for unsatisfiable instances (proofs) 
were required only in the Main track (besides the No-Limits track). In some cases, a solver output the correct result, but 
the respective certificate was wrong. Such solvers were demoted to the No-Limits track of the competition.

Each unsatisfiability proof produced by each solver was validated in a two-step fashion. First, the tool DRAT-trim [20]
was used for initial checking and optimizing the proof, thereby obtaining a so-called LRAT proof file. An independent 
formally-verified checker cake_lpr [22] was then used for validating the LRAT proof as a correct proof of unsatisfiability.

In a few cases DRAT-trim ran into the verification timeout of 45,000 seconds. In the Main track, only those unsatisfiable 
benchmark instances for which the proof produced by a solver could be validated at least by DRAT-trim were considered 
solved by the solver. While there were several cases where cake_lpr ran out of resources, there was no case where
DRAT-trim would accept a proof and cake_lpr would not.

2.5. Computing environments

The Main, No-Limits, and Planning tracks were run on the StarExec cluster [23] with computing nodes equipped with 
Intel Xeon 2.4 GHz processors and 128 GB of memory. The time limit enforced on each solver for solving an instance was 

4 In other words, a submission of a combination of solvers was only possible if all the authors of all the parts were explicitly listed. This means that all 
the authors had to be notified if such participation was planned and had to consider it carefully, also taking into account the limited number of submissions 
per author as specified by the previous rule.
4
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Table 1
Families and amounts of newly submitted instances.

Family Author Submitted Selected

0/1 Integer Programming Riveros 6 2
Fermat 8 5
Schur Coloring 4 2
Sum Subset 5 2

Anti-Bandwidth Biere 187 14
Baseball Lineup Hickey 40 13
Bit-Vector Preiner 393 14
Cellular Automata Chowdhury 20 12
CNF Miter Manthey 38 7
Coloring Oostema 14 14
Core-based Generator Hartung 20 14
Cover Gacek 18 13
Cryptography Paxian 50

20
36

⎫⎬
⎭106

6
14
14

⎫⎬
⎭34Shaw

Soos
Discrete Logarithm Jingchao 20 7
Edge Matching Holten 58 7
Flood-It Puzzle Stiphout 40 0
HGen Guanfeng 20 13
Hypertree Decomposition Schidler 56 14
Influence Maximization Kochemazov 20 14
Lam Discrete Geometry Nejati 20 9
Polynomial Multiplication Maoluo 20 8
Station Repacking Newman 20 12
Stedman Triples Johnson 23 7
Tensors Savicky 20 14
Termination Analysis Yolcu 12 7
Timetable Djamegni 20 14
Tournament Heule 16 14
Vlsat Bouvier 36 14

� 1260 300

5,000 seconds. In the Main track, proof validation was limited to 45,000 seconds per proof.) The solvers were allowed to 
use the full 128 GB of RAM.5

The Incremental Library Track was run on computers with 2x Intel Xeon E5430 2.66 GHz (4-Core) processors and 24 
GB of RAM. The Parallel track was run on AWS m4.16xlarge machines with 64 virtual CPUs and 256 GB of memory, while 
the Cloud track was run on Amazon Web Services (AWS) m4.4xlarge machines with 16 virtual CPUs and 64 GB of memory. 
These tracks used wall-clock timeouts of 5,000 seconds and 1,000 seconds, respectively.

3. Benchmarks

For data-driven selection of benchmark instances, we used GBD Tools6 which facilitates querying for instances with 
desired properties, e.g., by instance author, family, result or solver runtime [24]. We also use GBD Tools for distributing 
benchmark instances and their attributes to the general public.7

3.1. Selection of instances

The “Bring Your Own Benchmarks” (BYOB) rule, first established in SAT Competition 2017 [25], was again followed in 
2020. By this rule, solver authors are required to submit 20 benchmark instances to accompany a solver submission in order 
to participate in the competition. These benchmarks have to be “new” in the sense that instances included in benchmark 
sets from previous SAT competitions are not allowed. Furthermore, at least ten of the required 20 instances are required to 
be “interesting”, interpreted in loose terms by the standard Minisat SAT solving needing at least one minute of runtime 
(on typical computing hardware) to solve an instance. It should be noted that new benchmarks could be submitted to the 
competition without needing to submit a solver. As a result, as detailed in Table 1, 27 authors contributed a set of 1,260 
new benchmark instances from a wide range of different instance families.

5 Unfortunately, the memory limit of 24 GB, that was used in the previous years, was by mistake advertised on the competition web page prior to solver 
submission. This could have resulted in some solvers not “daring” to use the full 128 GB in the competition. We do not, however, have concrete evidence 
to support this possibility.

6 See https://pypi .org /project /gbd -tools/.
7 See https://gbd .iti .kit .edu.
5
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Algorithm 1: Benchmark Instance Selection.
Data: I : Set of Instances, A : Set of Authors
Data: Functions α : I → A and σ : I → {sat, unsat, unknown}
Result: S : Set of Selected Instances

1 S ← ∅
2 for a ∈ A do
3 I+a ← random(7, {e ∈ I | α(e) = a ∧ σ(e) = sat})
4 I−a ← random(7, {e ∈ I | α(e) = a ∧ σ(e) = unsat})
5 if |I+a | + |I−a | < 14 then
6 l ← 14 − |I+a | − |I−a |
7 I?

a ← random(l, {e ∈ I | α(e) = a ∧ σ(e) = unknown})
8 S ← S ∪ I+a ∪ I−a ∪ I?

a

9 return S

Table 2
Amount of old and new instances by result.

SAT UNSAT UNKNOWN �

New Instances 114 78 108 300
Old Instances 21 57 22 100

� 135 135 130 400

We decided to include a total of 300 new benchmarks and a further 100 benchmarks from previous SAT Competitions 
to the main benchmark set of the 2020 competition. Key aims of benchmark selection are to ensure that (i) the benchmark 
set includes enough many relatively hard-to-solve instances in order to differentiate the overall runtime performances of 
the competing solvers (without actually running the competing solvers during benchmark selection); (ii) the number of 
benchmarks included in the benchmark set from different problem domains is balanced across the problem domains, and 
that (iii) the benchmark set is also balanced in terms of the number of unsatisfiable and satisfiable instances included in 
the set.

To compile the set of 300 new instances, we first applied a hardness criterion by filtering out all instances solved by
Minisat in less than ten minutes.8 From the resulting 1,012 instances, in order to obtain a balanced benchmark set, 
we randomly selected k instances per author using the value k which ensured that the resulting set contains at least 
300 instances. This rule-based randomization procedure is detailed as Algorithm 1. Specifically, we randomly selected seven 
satisfiable and seven unsatisfiable instances per author (Lines 3 and 4) and added instances of yet unknown result if this 
did not yield a total of 14 instances (Lines 5–7). Of the such obtained 308 instances, we randomly removed eight satisfiable 
instances, yielding a total of 114 satisfiable, 78 unsatisfiable and 108 instances of unknown satisfiability status.

We augmented the then obtained set of 300 new benchmarks with 100 instances from previous SAT competitions as 
follows. In order to further balance the number of satisfiable and unsatisfiable instances in the new benchmark set, we 
randomly selected 21 satisfiable, 57 unsatisfiable and 22 unknown instances. With additional constraints, we made sure not 
to select instances from benchmark families which are already represented in the set of 300 new instances (cf. Table 1). 
We also excluded random, agile and planning instances (due to the Planning track). The final main benchmark set contains 
135 satisfiable, 135 unsatisfiable, and 130 instances of “unknown” status (cf. Table 2).

3.2. Planning instances

Classical planning is the problem of finding a sequence of actions—a plan—that transforms the world from some initial 
state to a goal state. In 1992 Kautz and Selman [10] proposed to encode planning as satisfiability, constituting one of the 
hallmark early adoptions of SAT solving to solve real-world problems. In their encoding the problem of finding a plan of 
length i (i.e., the makespan) is translated into a Boolean formula Fi that is satisfiable if a plan of length i or less exists. Their 
encoding is called sequential, whereas parallel encodings allow the execution of multiple actions in one step [26–28]. Finding 
the smallest makespan i for which Fi is satisfiable is important for SAT-based planning in general and the generation of this 
benchmark set in particular. The hardest formulas that a SAT-based planner has to solve are usually the last unsatisfiable Fi
before the next higher makespan i + 1 is satisfiable [26].

8 Note that the limit of ten minutes is again somewhat arbitrary. This runtime hardness filter essentially aims to make sure that enough instances 
are included in the final benchmark set which allow for distinguishing in terms of relative performance between the best-performing competing solvers. 
Unfortunately this limit was much greater that the requirements imposed for “interesting” benchmark instances by the BYOB rule. It could be more sensible 
to impose the same ten minutes limit also for an instance being “interesting”. However, this would require more efforts at least in terms of computation 
times from the solver authors in order to construct a set of interesting new benchmarks required by the BYOB rule.
6
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Table 3
Number of planning instances generated per encoding.

Encoding SAT UNSAT

H Tree-REX 15 11
P Pasar 14 14
ME Madagascar ∃-step 5 10
MS Madagascar sequential 66 65

� 100 100

For the Planning track, the benchmark instances were generated using two SAT-based planners Madagascar [29] and 
Pasar [30]. We used Madagascar both in its default configuration to generate a parallel encoding based on ∃-step plans and 
to generate a sequential encoding. Pasar uses the grounding routine deployed by the well-known planner Fast Downward [31]
to translate planning tasks into a different formalism and then encodes it to SAT using a parallel encoding. The classical 
planning benchmarks were selected from the Satisfying and Optimal tracks of the International Planning Competitions 20149

and 2018.10 We only selected planning domains with unit cost and eliminated those that take more than 100 GB of memory 
to encode into SAT. We ran both Pasar and Madagascars ∃-configuration with a timeout of three hours on the remaining 
instances to find the minimal makespans. For each planning task where this process did not timeout, we generated a pair of 
satisfiable and unsatisfiable SAT instances. A significant number of instances from this set were not used as Minisat could 
solve them in under ten minutes. We augmented the remaining domains with the last unsatisfiable formulas generated for 
planning tasks where the minimal makespan could not be found. To generate the missing benchmarks, we use a sequential
encoding together with bounds11 on the optimal plan length.

In addition to the classical planning problems, we also included SAT instances generated by Tree-REX [32], a planner 
for Hierarchical Task-networks (HTN). In HTN planning, additional domain knowledge besides the problem description is 
provided. The HTN benchmarks were provided by the author of Tree-REX.

The instances of the Planning track are large in size compared to the Main track instances. Using the number of clauses 
as a metric, out of the 100 largest instances across both tracks, 86 belong to the Planning track benchmark set. The large 
size of Planning track instances can mainly be attributed to large numbers of binary clauses that SAT encodings of planning 
problems naturally produce. On average, more than 98% of the clauses are binary for planning instances. The average for 
the Main track instances is below 60%.

Table 3 shows the number of benchmarks generated by each encoding. For a complete list of the encoded planning 
tasks we refer to the generation script.12 The benchmarks of the Planning track adhere to the following naming convention: 
〈SAT/UNSAT〉_〈encoding〉_〈name〉_〈makespan〉.cnf.

3.3. Incremental Library track benchmarks

Benchmarks for the Incremental Library track consist of benchmark applications which implement and use the incremental 
SAT solver in their back-end as well as benchmark instances which serve as input to these applications. For evaluating solvers 
participating in the Incremental Library track, we used six available IPASIR applications. For each of the six applications, we 
individually selected 50 application instances as follows.

Backbone computation Backbone variables [33,34] are variables which take the same value in all models of a given SAT 
instance. The application genipabones incrementally determines backbone variables in a given satisfiable SAT instances using 
the so-called dual rail encoding [12]. We selected 50 of the smallest and easiest satisfiable instances from previous SAT 
competitions to evaluate solver performance with this application.

Essential variables Variables which have to be assigned in all partial models of a formula as essential (as opposed to don’t 
care-values) [35]. The application genipaessentials incrementally determines essential variables in a given satisfiable for-
mula [12]. For this application, we used the same 50 satisfiable instances as for backbone computation.

Longest Simple Paths (LSP) The application genipalsp determines longest simple paths in a graph [36]. We selected 50 LSP 
instances for our evaluation.13

Maximum satisfiability (MaxSAT) The application genipamax solves partial MaxSAT problems by augmenting soft clauses 
with relaxation (or blocking) variables which are input to a cardinality constraint [37]. The MaxSAT problem is then solved 

9 https://helios .hud .ac .uk /scommv /IPC -14 /repository /benchmarksV1.1.zip.
10 https://bitbucket .org /ipc2018 -classical /domains.
11 Upper and lower bounds on plan length are available for some planning tasks from the Optimal track that have unit cost actions.
12 https://satcompetition .github .io /2020 /downloads /planning _generator.tar.xz.
13 http://algo2 .iti .kit .edu /kalp/.
7
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Fig. 1. Performance of the top 10-solvers and the VBS on all Main track benchmarks.

by incrementally minimizing the bound of the cardinality constraint. For this application, we selected 50 instances from
MaxSAT Evaluation 2019.14

Quantified Boolean formulas Ijtihad is a QBF solver which uses counterexample-guided expansion to incrementally solve a 
given QBF instance with a SAT solver [38]. Here we used 50 instances from QBF Evaluation 2019.15

Planning (SAS+) We selected 50 planning instances to evaluate incremental SAT solvers with Pasar, a planner which uses 
counterexample-guided abstraction refinement (CEGAR) [30].

4. Competition results

In this section, we provide a high-level overview of the results of SAT Competition 2020. Later on, we will provide an 
overview of some of the key and new solving techniques implemented in best-performing solvers (Section 5) as well as a 
more in-depth analysis of the competition results (Section 6). An overview of the top-10 solvers in each of the competition 
tracks discussed in the following is provided in Table 4.

4.1. Main track

Starting with the Main track, Fig. 1 shows the cumulative solved instances plot of the best-performing solver of the 
strongest ten teams (in short, the top-10 solvers) together with the Virtual Best Solver (VBS—see also 6.1). The best-
performing solver overall on the combination of satisfiable and unsatisfiable instances is Kissat-sat and the runner-up 
is Relaxed-newTech. Notice that Relaxed-newTech solved more instances within the 2000-second limit. Third place, 
based on the PAR-2 score, went to CMS-ccnr-lsids. It solved two instances less than CaDiCaL-alluip-trail, but 
on the other hand solved various formulas more quickly. Similar observations have been made also in earlier recent SAT 
competitions where solvers were ranked based on the PAR-2 score. Furthermore, we observe more differences in overall 
runtime performance among the top solvers than what has been observed in the recent past competitions.

The four solvers Kissat-sat, Relaxed-newTech, CaDiCaL-alluip-trail, and CMS-ccnr-lsids performed 
significantly better that all other solvers submitted to the Main track (cf. Table 4). A very interesting observation is that 
these four top solvers all have a different code base. This has not been observed for many years; more typically many of 
the best-performing solvers have been based on same code bases.

The majority of the overall performance differences between the top-4 solvers and the other solvers is due to perfor-
mance differences on satisfiable instances; see Fig. 2. Indeed, in recent years, several techniques have been added to SAT 
solvers to improve their performance on satisfiable instance. Examples of such techniques are the integration of a local 
search solver and alternating between a SAT mode (infrequent restarts) and an UNSAT mode (frequent restarts and variable-
move-to-front [39]). The best-performing solver in the Main SAT track on satisfiable instances is Relaxed-newTech, 
followed by Kissat-sat and CMS-ccnr-lsids.

14 https://maxsat -evaluations .github .io /2019/.
15 http://www.qbflib .org /qbfeval19 .php.
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Table 4
Top 10 Solvers in Main, Planning, Parallel and Cloud Tracks: Place (Pl.), Score (PAR-2) and Number of Solved Instances (#) per Solver. Three awardees per 
track underlined.

Main Track

Pl. PAR-2 # Solver

1 3926.2 264 Kissat-sat
(1) 4083.1 260 Kissat
2 4179.3 253 Relaxed-newTech
3 4266.7 248 CMS-ccnr-lsids
(3) 4278.0 250 CMS-ccnr

4428.1 250 CaDiCaL-alluip-trail
4429.6 250 CaDiCaL-alluip
4436.5 245 Relaxed
4501.2 243 CMS-walksat
4554.0 243 CaDiCaL-trail

Parallel Track

Pl. PAR-2 # Solver

1 3316.6 283 Painless-MCOMSPS-str32
(1) 3714.7 271 Painless-MCOMSPS-str64
2 3743.4 269 Plingeling
3 3985.3 260 ManyGlucose-32

4022.7 262 Painless-Maple-v1
4036.3 258 ManyGlucose-64
4103.3 260 Painless-Maple-v2
4433.3 243 Syrup-Scavel
4903.4 225 Treengeling
5240.1 213 abcdsat-p20

Main Track, Satisfiable Instances

Pl. PAR-2 # Solver

1 2997.4 150 Relaxed-newTech
2 3127.6 146 Kissat-sat
3 3263.0 144 CMS-ccnr-lsids
(3) 3317.4 145 CMS-ccnr

3355.5 143 Relaxed
3721.2 139 CMS-walksat
3830.5 134 Kissat
3908.5 135 CaDiCaL-alluip-trail
3909.6 135 CaDiCaL-alluip
4265.6 126 CaDiCaL-trail

Parallel Track, Satisfiable Instances

Pl. PAR-2 # Solver

1 2853.7 153 Painless-MCOMSPS-str32
2 2913.6 154 Painless-Maple-v1
(2) 3082.7 151 Painless-Maple-v2
– 3196.9 148 Painless-MCOMSPS-str64
3 3805.9 133 Plingeling

4048.3 130 ManyGlucose-64
4076.2 130 ManyGlucose-32
4675.4 119 Syrup-Scavel
4907.1 114 Treengeling
6337.5 85 abcdsat-p20

Main Track, Unsatisfiable Instances

Pl. PAR-2 # Solver

1 4315.1 124 Kissat-unsat
(1) 4335.6 126 Kissat
(1) 4724.8 118 Kissat-sat
2 4842.5 117 CaDiCaL-trail
– 4846.7 116 CaDiCaL-sc2020
(2) 4947.8 115 CaDiCaL-alluip-trail
(2) 4949.6 115 CaDiCaL-alluip
3 4991.4 110 f2trc-s
(3) 5051.4 109 f2trc
(3) 5054.3 110 f2trc-DL

Parallel Track, Unsatisfiable Instances

Pl. PAR-2 # Solver

1 3680.8 136 Plingeling
2 3779.5 130 Painless-MCOMSPS-str32
3 3894.3 130 ManyGlucose-32
(3) 4024.2 128 ManyGlucose-64

4142.8 128 abcdsat-p20
4191.1 124 Syrup-Scavel
4232.5 123 Painless-MCOMSPS-str64
4899.8 111 Treengeling
5123.9 109 Painless-Maple-v2
5131.9 108 Painless-Maple-v1

Planning Track

Pl. PAR-2 # Solver

1 6406.9 80 CaDiCaL-alluip-trail
(1) 6409.3 80 CaDiCaL-alluip
2 6466.9 79 CMS-ccnr-lsids
(2) 6471.9 79 CMS-ccnr
(2) 6472.9 79 CMS-walksat
3 6596.4 75 Kissat-unsat

6650.1 79 CaDiCaL-trail
6713.0 75 Maple-Mix
6746.5 75 MapleCOMSPS-init
6754.3 73 Maple-Simp

Cloud Track

Pl. PAR-2 # Solver

1 2603.8 299 Mallob-Mono
2 3146.8 278 TopoSAT 2
3 4797.6 213 Slime

6800.8 132 Paracooba
7299.0 110 CTsat
8468.3 62 Paracooba-March

Overall, solvers performed much more similarly on unsatisfiable instances than on satisfiable instances; see Fig. 3 for 
the runtime performance on unsatisfiable instances. Only Kissat-unsat, the winner of the Main UNSAT track, performed 
significantly better than all other participating solvers. It is therefore not surprising that the VBS is reasonably close to
Kissat-unsat. The solvers CaDiCaL-trail and f2trc-s placed, respectively, second and third in the Main UNSAT 
track.

4.2. Planning track

The competition in the Planning Track was more tight. The best solver CaDiCaL-alliup-trail solved only one 
instance more than the runner up CMS-ccnr-lsids. The PAR-2 scores of these two solvers were quite similar as well. 
The third ranked solver, Kissat, solved fewer instances, but its fast runtimes on several instances resulted in a strong PAR-2 
score. Notice that these three solvers were also strong in the Main track. It should be noted that, somewhat disappointingly, 
none of the participating solvers were actually optimized for planning instances.
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Fig. 2. Performance of the top-10 solvers and the VBS on Main track satisfiable benchmarks.

Fig. 3. Performance of the top 10 solvers + VBS on Main track unsatisfiable benchmarks.

4.3. Parallel track

Turning to the Parallel track, Fig. 4 shows the performance of all participating parallel solvers. The best solver here is
Painless-MCOMSPS-STR32. Interestingly, this solver used 32 threads on the 64 virtual cores that were available. In fact, 
it has been observed in already recent earlier SAT competitions that using fewer threads than the number of available virtual 
cores can be helpful; as threads compete for memory, using all virtual cores may be detrimental to overall performance. The 
runner up is Plingeling, while the third place goes to ManyGlucose-32. Interestingly, one can observe from Table 4
that only the Painless-MCOMSPS-STR* solvers and Plingeling had a lower PAR-2 score than the winner of the Main 
Track (Kissat-sat). It appears still to be challenging to beat the best-performing sequential solvers with a parallel solver. 
(In fact, as we will show later on, sequential portfolios including only a few Main track solvers show better performance 
than all of the parallel solvers.)

4.4. Cloud track

The clear winner of the Cloud track is Mallob-Mono and the runner-up is TopoSAT2 (see Fig. 5). Mallob-Mono
was able to solve more instances in 1000 seconds than the winner of the Parallel Track in 5000 seconds, which shows the 
potential of distributed SAT solving. The other four participants performed significantly worse. The massive parallelism in 
distributed SAT solving imposes additional challenges on scalable information sharing and search diversification. Since 2020 
was the first year of this track, we expect a tighter competition in the future.
10
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Fig. 4. Performance of the solvers in the Parallel track.

Fig. 5. Performance of the solvers in the Cloud track.

5. Winning solvers

In this section we will provide an overview of the participating teams and solvers, and summarize new strategies imple-
mented in the best-performing solvers of the 2020 competition. We start with a few remarks on the evolution of code-bases 
of well-known SAT solvers.

5.1. Evolution of SAT solver code-bases: “On the shoulders of giants”

Progress in SAT solvers is often based on successful modifications of existing and openly available solver code-bases. One 
well-known tree of code-base evaluation is rooted in the code-base of Minisat by Eén and Sörensson [40]. A well-known 
fork of Minisat is Glucose by Audemard and Simon [11]. In particular, Glucose introduced the influential literal block 
distance (LBD) heuristics for deciding which learned clauses to keep and which ones to forget during search [41]. The SAT 
solver RISS by Manthey is a further fork of Glucose, combining Glucose with the Coprocessor [42] preprocessor.

A further, more recent line of evolution in SAT solvers is rooted in the CoMinisatPS by Oh, which is itself a again 
a fork of Minisat, and which introduced three-tier clause-management [43]. Building on CoMinisatPS, the SAT solver
Maple appeared as a series of forks presenting innovative branching heuristics at SAT Competition 2016 [44]. The at-the-
time award-winning variant MapleCOMSPS by Liang et al. implements a hybrid branching heuristic of classic variable-state 
independent decaying sum (VSIDS) [45] and the newer learning rate based branching (LRB) [46].

For SAT Competition 2017, Luo et al. integrated learned clause minimization based on unit propagation (LCM) in their 
award-winning Maple_LCM_Dist [47] which also uses the new branching heuristic Distance (Dist) in an initial solv-
11
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ing period [48]. In SAT Competition 2018, Ryvchin and Nadel successfully integrated conditional chronological backtracking 
(ChronoBT) [49] in their award-winning solver Maple_LCM_Dist_ChronoBT [50].

Kochemazov et al. improved three-tier clause-management by persisting additional clauses through hash-based detection 
of repeatedly learned clauses and presented their award-winning MapleLCMDistChronoBT-DL in SAT Race 2019 [51]. As 
can be seen in Table 5, numerous submissions to SAT Competition 2020 are forks of some recent award-winning descendants 
of a Maple-based solver.

Also starting as a fork of Minisat with the integration of special treatment for XOR constraints [52], CryptoMinisat
by Soos continues to be a state-of-the-art and feature-rich SAT solver. One highlight of CryptoMinisat are its advanced 
data-logging capabilities for statistical analysis of SAT solver behavior [53].

Many independent and award-winning code-bases can be found among the SAT solvers written by Biere. The sequential 
SAT solver Lingeling has been award-winning since SAT Competition 2011 and is still competitive in its parallel version
Plingeling [54]. As of SAT Competition 2017, CaDiCaL by Biere is another independent representative of state-of-the-art 
SAT solvers and its improved re-implementation Kissat [55] was successful in the 2020 competition.

5.2. Sequential SAT solvers

Sequential SAT solvers have been evaluated in the Main, Planning and Incremental Library track of SAT Competition 2020. 
18 teams submitted a total of 48 solvers and configurations to the Main track and the Planning track of the competition, and 
four solvers participated the Incremental Library track. Table 5 displays an overview of the participating teams, base solvers 
and their variants. In the following, we provide a short overview of the best-performing solvers of 2020, based mainly on 
the solver descriptions submitted to the 2020 competition proceedings by the authors of the individual solvers.

5.2.1. Kissat
Three configurations of Kissat were submitted to the 2020 competition, including one default configuration and 

two specialized configurations which are specifically tailored towards satisfiable and unsatisfiable instances, respectively.
Kissat received four awards, achieving the first place in the Main track, the best score on unsatisfiable instances, the 
second-best score on satisfiable instances and the third place in the Planning track.

Kissat is a low-level re-implementation of CaDiCaL with new sophisticated lazy data-structures for clause state 
monitoring, e.g., through binary clause inlining, sentinel values and bit stuffing [56,55]. Moreover, forward subsumption 
for learned clauses is mostly replaced by vivification algorithms [57]. Since conflict number has been observed to be too 
unstable for measuring the length of two alternating restart modes, Kissat uses the new unit “ticks” which approximates 
the number of cache-line accesses in unit-propagation [55]. Kissat also exploits autarkies to account for saved phases. In 
order to keep valuable information of saved phases, before each rephasing step Kissat computes the largest autarky for 
the assignment implied by the current saved phases [58]. As such an autarky might contain satisfying assignments which 
imply disconnected components, those variables are subject to subsequent variable elimination.

5.2.2. CryptoMiniSat
CryptoMiniSat received four awards, achieving the first place in the Incremental Library track, the second place in the 

Planning track, the third place in the Main track, and the third-best score on satisfiable instances. Two submitted variants,
default and LSIDS, scored mostly adjacent ranks in the individual competition tracks.

The LSIDS variant of CryptoMiniSat comes with a new hybrid phase selection approach [59,60]. CryptoMin-
iSat comes with an independent implementation of state-of-the-art hybrid branching heuristics which alternate between 
classic phase saving and target phase selection [56]. CryptoMiniSat-CCAnr regularly schedules short periods of local 
search and imports the best assignment for phase selection—a procedure which is known as “rephasing” from CaDiCaL [56]. 
In addition, CryptoMiniSat-CCAnr bumps the VSIDS scores of the first 100 variables in those clauses which the SLS 
solver weighs most hard to satisfy [60]. Inprocessing has been extended to include ternary resolution and more vivifica-
tion [57]. CryptoMinisat alternates decay factors of its branching heuristics, thus avoiding the restriction to a “single 
best” configuration [60]. The submitted version of CryptoMinisat entails a new optimized implementation of Gauss-
Jordan Elimination [61]. CryptoMinisat periodically executes the BreakId algorithm to calculate symmetry breaking 
clauses [62].

5.2.3. CaDiCaL AllUip
Based on CaDiCaL, its variants Trail and AllUip present implementations of a new Trail Saving approach [63] and 

the improved clause-learning heuristic Stable AllUIP [64]. Submitted were the three variants Trail, AllUip and Al-
lUip+Trail. The variants including Stable AllUIP were the most successful in the 2020 competition, achieving in particular 
the first place in the Planning track.

Stable AllUip resolves additional clauses beyond the First Unit Implication Point (1-UIP) and keeps them whenever they 
are of smaller size and their LBD not greater than that of the 1-UIP clause. By monitoring the frequency of clauses which 
successfully pass that filter, the solver dynamically limits the amount of such extended learning attempts [45,64]. The Trail 
Saving variant caches backtracked portions of the trail and uses them to restore decision levels during search if possible [63].
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Table 5
Teams and Solvers in the Main, Planning and Incremental Library Track. Column Base Solver highlights solver genealogy, and Variant Name displays names of 
configurations and forks. Distinctive names are underlined. The rightmost columns indicate the awards given in the Main (M) track, for performance on 
unsatisfiable (U) and satisfiable (S) instances, and in the Planning (P) and Incremental Library (I) track.

Team Base Solver Variant Name M U S P I

Biere Kissat – 1 1 – – –
sat 1 1 2 – –
unsat – 1 – 3 –

Biere, Fleury Cadical SC2020 – – – – –

Zhang, Cai MapleLCMDistCBT-DL Relaxed – – – – –
Rel. newTech 2 – 1 – –

Soos, Cai, Devriendt, 
Gocht, Shaw, Meel

CryptoMiniSat-CCAnr – 3 – 3 2 1
lsids 3 – 3 2 –

Soos, Selman, Kautz, 
Devriendt, Gocht

CryptoMiniSat-WalkSAT – – – – – –

Hickey, Feng, Bacchus CaDiCaL trail – 2 – – –
alluip – 2 – 1 –
alluip-trail – 2 – 1 –

MapleLCMDist alluip-trail – – – – –

Kochemazov MapleLCMDistCBT f2trc – 3 – – –
f2trc-s – 3 – – –

MapleLCMDistCBT-DL f2trc – 3 – – –

Kochemazov, Zaikin, 
Kondratiev, Semenov

MapleLCMDistCBT-DL-v3 – – – – – –

Lonlac, Nguifo MapleLCMDistCBT-DL-v3 Undominated – – – – –
Undom. Top16 – – – – –
Undom. Top24 – – – – –
Undom. Top36 – – – – –

Tchinda, Djamegni ExMapleLCMDistCBT padc_dl – – – – –
padc_dl_ovau_lin – – – – –
padc_dl_ovau_exp – – – – –
psids_dl – – – – –

Shaw, Meel MapleLCMDistCBT-DL-v3 DurianSat – – – – –

Chen MapleLCMDistCBT-DL Maple_Mix – – – – –
Maple_Simp – – – – –

Riveros MapleLCMDistCBT SLIME – – – – –

Li, Wu, Xu, Chen MapleLCMDistCBT-DL Scavel – – – – –
Scavel01 – – – – –
Scavel02 – – – – –

Liang, Oh, Nejati, 
Poupart, Ganesh

MapleCOMSPS_LRB_VSIDS_2 – – – – – –
init – – – – –

Chowdhury, Müller, You MapleLCMDistCBT-DL-v2.2 exp-V-LGB – – – – –
exp-V-L – – – – –
exp-L – – – – –
exp-V – – – – –

Li, Luo, Xiao, Li, Manyà, Lü MapleCM +dist – – – – –
+dist+sat2s – – – – –
+dist+simp2 – – – – –
used+dist – – – – –

Kaiser, Hartung MapleLCMDist PauSat – – – – –

Osama, Wijs ParaFROST – – – – – –
CBT – – – – –

5.2.4. Relaxed newTech
The Relaxed fork of MapleLCMDistCBT-DL was first presented in SAT Race 2019 [65]. In SAT Competition 2020, its 

variant newTech showed a good performance especially on satisfiable instances. The solver received two awards, achieving 
the second place in the Main track and the best score on satisfiable instances.

Relaxed integrates short runs of the local search solver CCAnr through periodic export and import of assignments [65]
and uses a probabilistic schedule for switching between ten phase selection modes. The Relaxed newTech variant uses 
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occurrence counts of variables in unsatisfied clauses during stochastic local search runs to recalculate variable priorities for 
their modified branching heuristic [66].

5.2.5. Maple F2TRC
The F2TRC fork of MapleLCMDistCBT achieved the third best score on unsatisfiable instances. F2TRC comes with 

deterministic re-implementations of former winning strategies in Maple, e.g., by replacing time-based intervals through 
conflict-based intervals [67].

F2TRC introduces improved management of learned clauses in the tree tiers core, tier2 and local, which are inherited 
from CoMinisatPS [43]. A dynamic size limit for the core tier triggers the reassignment of inactive clauses from core to 
tier2. To counter-act an observed starving of tier2, the conflict-based heuristic that controls demotion of clauses from tier2
to local was replaced by a size-based heuristic [67].

5.3. Parallel SAT solvers

Six teams submitted a total of ten solvers and configurations to the Parallel track. In the following, we outline the 
best-performing parallel solver implementations.

5.3.1. Painless MapleCOMSPS STR
Painless-MCOMSPS-STR integrates the solver MapleCOMSPS in the Painless parallelization framework [68,69]. 

The authors submitted a 32 and a 64 threaded variant, which altogether won three awards, achieving the first place overall, 
the best score on satisfiable and the second-best score on unsatisfiable instances. Interestingly, the 32 threaded variant 
performed better than the 64 threaded variant.

Painless uses a generic interface to integrate a solver and abstracts away the implementation details of parallelism 
and concurrent data-structures. Due to this, implementations in Painless boil down to implementing parallelization and 
clause sharing strategies [68]. Painless-MCOMSPS-STR diversifies mainly via hard-coded configurations of the branch-
ing strategies LRB and VSIDS, and via sparse random initialization of variable polarities [70]. Two special solver instances 
perform concurrent clause strengthening [71] and Gaussian elimination, respectively. Regarding sharing, Painless-
MCOMSPS-STR uses an all-to-all strategy with a fixed-size clause buffer and a dynamic LBD filter [9].

5.3.2. Plingeling
The parallel solver Plingeling achieved the best score on unsatisfiable instances, the second place in the overall 

evaluation, and the third-best score on satisfiable instances. Plingeling is built around the well-known Lingeling and 
did not change since 2016. In a global master queue, Plingeling shares unit clauses, equivalences and short clauses with 
a size limit of 40 and an LBD limit of eight. Plingeling uses random seeds for diversification via variable polarities [55,
54].

5.3.3. ManyGlucose
ManyGlucose was submitted in 32 and 64 threaded variants. The 32 threaded variant won two awards in this com-

petition, achieving the overall third place as well as the third-best score on unsatisfiable instances. ManyGlucose is a fork 
of GlucoseSyrup that uses strategies known from ManySat to achieve deterministic solver behavior [72–74].

5.3.4. Painless Maple
Painless Maple received the award for second-best performance on satisfiable instances. Interestingly, Painless 

Maple at the same time exhibits worst performance on unsatisfiable instances. Painless Maple integrates the solver
ExMapleLCMDistChronoBT into the Painless parallelization framework [68]. It uses a sharing strategy in which the 
solvers are divided into those which only export clauses and others which import and export clauses and was submitted 
with two diversification variants v1 and v2. Painless Maple v1 diversifies via hand-crafted heuristic configurations 
and Painless Maple v2 diversifies via randomized initialization of branching heuristics [9].

5.4. Massively parallel SAT solvers in the Cloud track

Five teams submitted a total of six solvers and configurations in the Cloud track. In the following, we outline the best-
performing massively parallel solver implementations.

5.4.1. Mallob Mono
Mallob is a fork of the massively parallel SAT solver HordeSAT [70]. Mallob performs dynamic load balancing 

through malleable job scheduling in case the input contains several SAT instances of varying priority. This functionality is dis-
abled in the submitted variant Mallob Mono. Mallob uses Lingeling-bcj and as every 14th solver Mallob spawns 
the stochastic local search solver YalSAT [75]. Diversification is done via randomized sparse initialization of branching 
scores. Mallob shares clauses by organizing solvers in a binary tree in which clauses are asynchronously aggregated in a 
buffer which is passed along this tree from its leafs to the root. Each node performs a three-way merge of its local export 
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buffer and the two incoming buffers. The aggregate that approaches the root of the binary tree is then broadcast to all 
solvers [76]. Mallob uses a global clause size limit and a dynamic size limit for the sharing buffer, which depends on its 
position in the binary tree and is larger the closer we get to the root. Clauses are sorted by their size during aggregation, 
such that smaller clauses are preferred over longer clauses. Duplicates are avoided by using a Bloom filter which is cleared 
periodically [77].

5.4.2. TopoSAT 2
TopoSAT 2 [78] is a massively parallel SAT solver using Glucose 3 [11]. The solver uses lock-free clause-exchange for 

solvers on the same machine and the message passing interface (MPI) to share clauses between machines [74]. TopoSAT 2
strengthens clauses before export and delays clause import until the trail-size reaches a local minimum. TopoSAT 2 diver-
sifies via strategies used for branching, restarting, and clause forgetting [79].

5.4.3. Slime
Slime is built from MapleLCMDistChronoBT and was first submitted as a sequential solver to SAT Race 2019 with 

a new phase selection heuristic [80]. The new version of Slime submitted to the 2020 competition came with periodic 
randomization in geometrically increasing intervals [81]. Even thought its sequential version was unsuccessful in the Main 
track, the MPI-based cloud version of Slime achieved the third place in the Cloud track.

6. Differentiated analysis of Main track results

In this section, we provide an additional analysis of the Main track results, going beyond the rankings. In particular, we 
focus on metrics complementing the PAR-2 score used for ranking the solvers in the actual competition.

6.1. Contributions to the Virtual Best Solver

The Virtual Best Solver (VBS) is a fictitious solver consisting of all solvers that actually participated in the competition 
(or a specific track) and an oracle which, when given an input instance, invokes the solver which performed the best on 
that instance. This way, the performance of the VBS highlights a certain upper bound on the performance achievable in 
principle by the participating solvers (cf. the figures in Section 4).

One can see that the VBS solves all instances that were solved by at least one solver and solves each instance in the 
best observed time. By quantifying how much each participating solver contributes to the performance of the VBS, we may 
attempt to establish which technology (as represented by the solvers) is the most important (and to what degree) in the 
observed state of the art in SAT solving. We consider here the following three related metrics conceptually derived from the 
notion of VBS.

VBS-1 “The fastest takes it all”: For each solver, we count the number of times the solver was the fastest to solve an 
instance.

VBS-2 “Time aware, but proportional”: A solver S solving an instance I in time T S
I accrues the following fraction of a point 

for solving I: T VBS
I /T S

I , where T VBS
I is the runtime of the best solver on I .

VBS-3 “Split the point for solving”: We award each solver S solving an instance I the fraction 1/|SI | of points, where SI is 
the set of solvers solving I .

We remark that the sum of VBS-1 points as well as the sum of VBS-3 points computed across all solvers is equal to 
the number of instances solved by at least one solver (later denoted total). This is obvious for VBS-1, as exactly one solver 
scores a point for solving an instance. In the case of VBS-3, where we discard the information about the solution times, 
we evenly split the one-point reward for solving an instance among those solvers which succeeded in solving the instance. 
In contrast, VBS-2 does not have this property as it in general distributes more than one point per instance. Similarly as 
VBS-1, it takes the solution time into account. Similarly as VBS-3, it does not award just the best solver on an instance. For 
example, a solver that uses twice as much runtime as the fastest solver on an instance receives a half a point. Furthermore, 
if all solvers solve an instance equally fast, each solver receives a whole point for the instance.

Table 6 provides the result of applying the just-described three metrics to the full results of the Main track. We can see 
that the respective leaderboards are generally dominated by Kissat in at least one of its configurations. VBS-1 tells us that
Kissat-unsat was most often the fastest solver, in particular on 11.5% of the solved instances.

The metric VBS-2 identifies Kissat-sat as the best solver. Its leading score of 32.9% of the total is more difficult to 
interpret, though: a solver can score 32.9% of VBS-2 total by solving 32.9% of the solved instances in the best observed time 
and no others. However, we see from its VBS-1 score that Kissat-sat solved 9.8% of the solved instances in the best 
observed time (and some others). A solver can also score 32.9% of VBS-2 total by solving all solved instances, but always 
being roughly three times slower than the VBS. The performance of Kissat-sat lies (clearly) somewhere between these 
two extremes.

Finally, according to VBS-3, the best solver is Kissat with 13.0 points, which amounts to 3.3% of the distributed total 
score. The VBS-3 metric is generally the most evenly distributed one, at least among the first 10 solvers. (The last solver 
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Table 6
VBS metrics for the results of the Main track, all instances. The total number of solved problems was 
316. There were 48 (non-disqualified) solvers (and their configurations). Each table shows the first ten 
solvers sorted according to the respective metric.

VBS-1 % Solver

46 11.5 Kissat-unsat
39 9.8 Kissat-sat
26 6.5 Kissat
18 4.5 CMS-ccnr-lsids
14 3.5 MapleCM+dist+sat2s
13 3.2 Relaxed
13 3.2 Maple-alluip-tr.
12 3.0 upGlucose3.0-PADC
10 2.5 CMS-ccnr
10 2.5 CaDiCaL-sc2020

VBS-2 % Solver

131.5 32.9 Kissat-sat
122.6 30.6 Kissat
115.4 28.9 Kissat-unsat

92.3 23.1 CMS-ccnr-lsids
88.8 22.2 CMS-ccnr
84.1 21.0 CaDiCaL-alluip-tr.
84.0 21.0 CaDiCaL-alluip
83.0 20.7 CaDiCaL-sc2020
82.3 20.6 Relaxed-newTech
81.5 20.4 Relaxed

VBS-3 % Solver

13.0 3.3 Kissat
11.9 3.0 Kissat-unsat
11.7 2.9 Relaxed-newTech
11.4 2.8 Kissat-sat
10.8 2.7 CaDiCaL-alluip-tr.
10.8 2.7 CaDiCaL-alluip
10.5 2.6 Relaxed
10.4 2.6 CaDiCaL-sc2020
10.3 2.6 CMS-walksat

9.6 2.4 CaDiCaL-trail

Table 7
A greedy set cover of the solved instances by solvers of the Main track.

Iteration Selected Solver Solved Contributes

1 Kissat-sat 264 264
2 CaDiCaL-alluip 250 22
3 f2trc-s 214 10
4 Relaxed-newTech 253 6
5 Kissat-unsat 238 4
6 Relaxed 245 3
7 CMS-walksat 243 3
8 CMS-ccnr-lsids 248 1
9 MapleCBT-DL-v3 211 1

10 DurianSat 210 1
11 exp-V-LGB-MLD-CBT-DL 194 1

Total – 316

receives 0.9 points, which is 0.221% of the total.) One can conclude from this that most of the benchmarks are solved by 
most of the well-performing solvers.

6.2. Greedy set cover

Another perspective on how much each solver contributes to the state of the art can be obtained by attempting to 
construct a sequential schedule of solvers (rather than relying on an oracle to pick one solver for each instance, as with 
VBS) and observing how big role each solver plays in such a schedule. Since constructing an optimal schedule tends to be 
computationally hard, we start here by presenting a computationally more efficient alternative—a greedy set cover approach.

With greedy set cover, we start with an empty schedule and iteratively consider each solver for the addition to the 
schedule obtained so far, picking the one with the highest “marginal contribution” in terms of the number of problems 
the new schedule will be able to solve. We demonstrate this on the actual data from the competition, again focusing in 
particular on the Main track results.

A greedy set cover of the solved instances by solvers of the Main track is presented in Table 7. In the first iteration, 
the solver which solved the highest number of instances is selected; in our case it was Kissat-sat with 264 instances 
as we know already from Table 4. With these 264 instances already covered, CaDiCaL-alluip is the best in further 
contributing to the set by additional 22 instances in the second iteration. We can see that the further iterations tend to add 
very little, with the final four iterations adding one instance each. Note that each solver that managed to solve an instance 
uniquely (i.e., being the only solver that solved a particular instance) shows up in the greedy set cover. Indeed, the greedy 
set cover metric highlights solvers which are able to uniquely solve specific benchmark instances and thereby contribute to 
the current state of the art.
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Table 8
Schedules that maximize the number of solved Main track instances for k ∈ {1, . . . , 5} solvers among which 5000 seconds are split uniformly.

k Time (s) Solved Best Schedule

1 5000 264 { Kissat-sat }
2 2500 278 { Kissat-unsat, Relaxed-newTech }
3 1666 272 { Kissat-unsat, Kissat-sat, CMS-ccnr-lsids }
4 1250 262 { Kissat-unsat, Kissat-sat, CMS-ccnr-lsids, Maple-alluip-trail }
5 1000 253 { Kissat-unsat, Kissat-sat, CMS-ccnr-lsids, Maple-alluip-trail, CaDiCaL-alluip }

Table 9
An optimal 5000 s schedule for the Main track constructed using Z3.

Solver Time (s) Solved Contributes

Kissat-unsat 2523 219 219
Relaxed-newTech 2180 234 59
Kissat-sat 103 72 2
f2trc-DL 76 15 0
CaDiCaL-alluip 58 26 2
Maple-alluip-trail 34 12 1
MapleCM+dist+sat2s 18 18 1
CaDiCaL-sc2020 8 10 2

Total 5000 – 286

6.3. Time-limited schedules

The greedy set cover disregards the time it would take to execute the obtained “schedule” (of running the solvers that 
jointly cover all solved instances). However, we can also look at schedules that would fit in a prescribed time budget. A 
natural choice of the budget seems to be the original time limit of 5000 s.

To this end, by employing a brute-force approach, we first construct a sequence of schedules where the i-th schedule 
splits the available time of 5000 s uniformly among i solvers and solves the highest number of instances under these 
constraints. The results are presented in Table 8. We can see that the initial increase from 264 to 278 of “covered” instances 
when using two solvers instead of one (although allowing each to only use half of the time) does not continue further 
with additional solvers allowed, although it is still better to use three solvers in a fair time split (and cover 272 instances) 
than just one. Based on this observation, it is plausible that the really hard instances that were solved actually may require 
quite large runtime to get “cracked” by any solver and thus the advantage of adding more solvers to the schedule quickly 
diminishes.

We complement this “uniform time split” schedule by formulating the schedule construction problem as a MaxSMT 
formula and using the Z3 SMT solver [82] in its optimization mode [83] to solve it. For each solver (and its configuration) 
S we introduce an integer variable R S denoting the number of seconds S runs in the new schedule. We then construct a 
formula with hard constraints 0 ≤ R S for every S and 

∑
S∈S R S ≤ 5000 and with one soft constraint for every instance I of 

the form

∨
S∈SI

T S
I ≤ R S ,

where SI is the set of solvers which solved the instance I and T S
I is the time it took solver S to solve I here rounded up to 

the nearest integer. (Note that while R S are variables, i.e., unknowns, the T S
I are known constants in the formula.)

Finding a solution which satisfies all hard constraints and as many soft constraints as possible, Z3 provided the schedule 
shown in Table 9 (in under two hours on a single core of a 2.30 GHz CPU). The table is sorted by R S , the time the schedule 
allocates to individual solvers, with zero entries ignored. It is not clear to what degree is the obtained schedule unique and 
how much it relies on each solver being present and for how long. Nevertheless, it is interesting to observe the total number 
of problems covered, here 286, and compare it to the 278 achieved in Table 8 with the uniform split and two solvers.

As can be seen from the “contributes” column, the presence of f2trc-DL in the schedule is not necessary. The 15 
instances this solver solves under 76 seconds were already covered by the preceding three solvers. This result is due to 
the fact that Z3 was not asked to produce a schedule with a minimal number of participating solvers. Indeed, allowing any 
other solver to run for the 76 “wasted” seconds would not increase the overall total.

6.4. Small portfolios

The PAR-2 score of the VBS of all 48 submitted solvers in the Main track is 2431.4, which is close to 40% better than 
the PAR-2 score of 3926.2 of the single best solver Kissat-sat. Given the set of solvers S , the set of tuples of size k is 
17



N. Froleyks, M. Heule, M. Iser et al. Artificial Intelligence 301 (2021) 103572
Table 10
Best performing k-tuples in terms of their VBS’s PAR-2 score.

k Best k-Tuple Score

1 { Kissat-sat } 3926.2

2 { Kissat-unsat, Relaxed-newTech } 3160.5
3 { Kissat-unsat, Relaxed-newTech, CaDiCaL-2020 } 2986.4
4 { Kissat, Relaxed-newTech, CaDiCaL-2020, Scavel01 } 2842.6
5 { Kissat-unsat, Relaxed-newTech, CaDiCaL-2020, Scavel01, CMS-Walksat } 2757.3
6 { Kissat-sat, Kissat-unsat, Relaxed, Relaxed-newTech, CaDiCaL-alluip-trail, f2trc-s } 2687.0
7 { Kissat-sat, Kissat-unsat, Relaxed, Relaxed-newTech, CaDiCaL-alluip-trail, f2trc-s, CMS-Walksat} 2616.9

48 Set of all Solvers 2431.4

Table 11
Place and PAR-2 of Winning Solvers in the Main Track per Instance Family.

Family Kissat-sat Relaxed-newTech CMS-ccnr-lsids

Pl. PAR-2 Pl. PAR-2 Pl. PAR-2

Anti-Bandwidth 26 7435.6 2 5863.2 1 4958.7
Bit-Vector 7 8310.2 22 8772.4 42 9005.9
Coloring 2 5357.1 11 7589.3 13 7910.1
Core-Based Generator 3 1217.0 29 3170.7 4 1253.3
Cryptography 4 3451.4 6 3526.9 10 4124.2
Hypertree Decomposition 21 1173.3 8 1016.0 38 3188.0
Influence Maximization 22 2350.4 3 1838.9 11 2035.8
Tensors 2 1412.4 7 4411.2 11 7414.2
Timetable 41 7889.0 21 5103.8 19 5092.4
Tournament 4 10000.0 2 8715.0 4 10000.0
Vlsat 27 7149.7 5 5307.5 1 5026.4

defined as follows Pk := {T | T ∈ 2S ∧ |T | = k}. We calculate the PAR-2 score for each VBS created from solver tuples in Pk . 
In Table 10, we report on the single best performing k-tuple Tk ∈ Pk (1 ≤ k ≤ 7).

Interestingly, each of the first five tuples Tk≤5 contains exactly one of the three Kissat variants. The set T2 is composed 
of the two winners of the Main SAT and Main UNSAT tracks. For i < 5 the relation Ti ⊂ Ti+1 holds only under projection to 
base solvers due to the fluctuating variants of Kissat.

The composition changes more strongly in T6. Interestingly, we now have both variants {Kissat-sat,

Kissat-unsat} ⊂ T6, and moreover it holds that T6 ⊂ T7. All solvers in Tk≤7 are among the top-performing solvers 
which received awards in the Main track, with the only exception of Scavel01 ∈ T4 ∩ T5 (cf. Table 4).

6.5. Score per instance family

Contributions to the VBS can be captured by clustering the instances by their family. We evaluate the runtimes of the 
three winning solvers of the Main track on those new families which are represented by at least 14 instances (cf. Table 1) 
and report their places and scores in Table 11. Interestingly, the overall best solver Kissat-sat is outperformed by the 
second and third ranked solvers Relaxed-newTech and CMS-ccnr-lsids on the Anti-Bandwidth, Vlsat, and Influence 
Maximization families by a large margin.

6.6. Similarity of solvers

To investigate the similarity of solvers from the Main track, we define a similarity metric based on the measured run-
times. We start by removing 84 benchmarks that have not been solved by any solver. For the rest, a PAR-2 score is assigned 
to each instance for every solver, i.e., we set a score of 10,000 for unsolved instances. Each solver S is thus associated with 
the PAR-2 scores S1, . . . , S316. The similarity of two solvers S and S ′ , normalized to the interval [0, 1] is defined as:

similarity(S, S ′) = 1 −
∑ |Si − S ′

i|
316 · 10 000

We calculate the similarity of the 30 solvers with the best average PAR-2 score in the Main track. The results are shown in 
Fig. 6 as a heat map, similar to the visualization in [12]. Additionally, the result of hierarchically clustering the solvers based 
on their similarity is illustrated as a dendrogram. The height at which two solvers or clusters are joined reflects how similar 
they are. For example, enabling trail saving in CaDiCaL-alluip has no impact on the runtime, resulting in a similarity 
above 0.999. Therefore, the two solvers are joined low in the dendrogram.

Interestingly, one identifiable large cluster consists of the Maple-descendants, all of which are modifications of the 
winners in the SAT Competition 2018 and the SAT Race 2019. The similarity within the cluster is high, except for Scavel
18
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Fig. 6. Heat-map and dendrogram (top) based on the runtime similarity of the solvers participating in the Main track. Darker regions mean that the solvers 
are more similar. A more precise relation between color and similarity-value together with a histogram of the values that appear is given at the bottom. 
(For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

and exp_V_MLD_CBT_DL. They form a subcluster with a lower similarity compared to the rest, but a high similarity 
within. In fact, the highest measured similarity, besides the aforementioned CaDiCaL-alluip, is observed between them. 
The two solvers are both based on MapleLCMDistChronoBT-dl-v2.2, but have different authors. This high similarity 
suggests that the changes they made either result in a very similar behavior or do not have a significant impact on the 
runtime performance.

The two configurations of Relaxed by Zhang and Cai use the same codebase as a lot of solvers in the Maple-cluster. 
However, the overall performance of the solver is better and closer to the CMS-cluster. The three CMS configurations differ in 
their implementation of stochastic local search (SLS) and have similar performance. The 2020 version of CaDiCaL exhibits 
weaker performance than the modifications based on the 2019 version and does not quite fit into any cluster.
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Fig. 7. Mean and standard deviation of rank correlation under removal of random instances over 50 samples for each size.

The leftmost cluster in the heat map is comprised of other solvers originally written by Biere. What is interesting to note 
is that the Kissat configuration specialized for unsatisfiable instances joins the others configurations in the cluster high in 
the dendrogram. In fact, Kissat-unsat has the lowest average similarity to all other solvers in the top 30. This suggests 
its importance for an optimal portfolio.

6.7. Influence of benchmark selection on solver ranking

To evaluate the impact of benchmark selection on the solver ranking, we follow the experiments described in the tool 
suite benchfeature [84]. In particular, we first use random sampling to select subsets of the benchmarks used in the 
Main track. We start with 316 benchmarks that have been solved by at least one solver in the Main track and remove a 
number of benchmarks randomly. For each possible subset size (1–316) we generate 50 random samples. The solvers are 
assigned a new rank in ascending order of their PAR-2 score on each random sample. Note that we never encounter a tie. 
This ranking can be seen as an estimate of the original ranking. If even relatively small random samples result in a good 
estimate, we draw a positive conclusion about the robustness of the ranking.

To determine how similar an estimate is to the original ranking, we calculate the Spearman’s rank correlation coefficient of 
the two rankings. Spearman’s rank correlation coefficient for two rankings r1 and r2 is defined by the following equation:

ρ = 1 − 6 · ∑S (r1(S) − r2(S))2

n(n2 − 1)
,

where n is the number of solvers in the Main track (48), and the rankings r{1,2}(S) map a solver S to its rank, i.e., 1 for the 
best performing solver, whereas 48 is assigned to the solver with the highest average PAR-2 score.

The coefficient ρ is in the interval [−1, 1], where a rank correlation of 1 means that the two rankings are equal and 
−1 means that one ranking is the reverse of the other. To give a better intuition for ρ , we list a few modifications to the 
original ranking together with the resulting rank correlation coefficient. The smallest change we can make is to switch the 
rank of two adjacent solvers, resulting in a high rank correlation ρ = 0.9999. Several small changes also result in a high 
rank correlation; repeating the same modification as before n/2 times to switch all pairs of adjacent solvers in rank still 
gives a value of ρ = 0.9974. On the other hand, switching the highest ranked solver (Kissat-sat) with the lowest results 
in a rank correlation of ρ = 0.7602. Moving Kissat-sat to the bottom of the ranking while moving every other solver 
up one rank gives a higher ρ = 0.8776. Doing the same to all three Kissat configurations (with ranks 1, 2 and 11, now 
46, 47 and 48) results in ρ = 0.6839.

The mean and standard deviation of the computed correlation coefficients are depicted in Fig. 7. The rank correlation 
is high even for relatively small samples. The average rank correlation drops below 0.99 only after randomly removing at 
least 95 benchmarks, which is 30% of the considered benchmark set. Accordingly, removing fewer benchmarks randomly 
has almost no effect on the ranking of the solvers. Furthermore, removing fewer than 200 (63%) benchmarks still results in 
an average rank correlation above 0.96. This suggests that the impact of the random selection in Algorithm 1 on the solver 
ranking is limited. The collected data cannot show whether all of the benchmarks originally submitted by the solver authors 
have a systematic bias. However, since each newly submitted benchmark family originates from a different domain and is 
often the result of current research, we can assume that the submitted families together are representative.
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Fig. 8. Change of rank correlation under removal of individual benchmark families.

Fig. 8 shows the rank correlation coefficient resulting from removing a complete benchmark family. As expected, remov-
ing a nonrandom subset can have a higher impact on the ranking even if it is small. Removing the 13 hgen benchmarks 
results in a (still high) rank correlation of 0.9895. Additionally, the ranking of the top five solvers stays the same. The 
individual removal of all other benchmark families results in a rank correlation above 0.99.

7. Conclusion and prospects

The 2020 SAT Competition successfully continues the tradition of the SAT Competition series. In 2020, significant ad-
vances in SAT solvers compared to previous years were observed. Some of the more interesting observations on the winning 
solving strategies include the following. All winning solvers of the Main track periodically schedule runs of a stochastic 
local search (SLS) solver and import statistical information generated in unsuccessful SLS runs to reconfigure weights in 
their branching heuristics. As observed from the results of the Parallel track, it appears difficult to make proper use of more 
than 32 threads for SAT solving, as in some occasions the 32-threaded version of the same solver outperformed its 64-
threaded counterpart. However, from the winner in the massively parallel Cloud track, we can learn that classical all-to-all 
clause-sharing can be outperformed by a more sophisticated clause-sharing architecture. It appears challenging to integrate 
and test sophisticated state-of-the-art methods in an incremental SAT solver and thus solvers usually disable parts of their 
features in the incremental use case. The winner of the Incremental Library track shows that it is worth integrating a full 
solver functionality in the incremental use case.

7.1. Prospects

In the instance selection, the author-wise balancing of satisfiable and unsatisfiable instances turned out often counter-
productive as it did not lead to a more balanced overall selection of new instances. Moreover, this practice discriminated 
against authors who submitted solely satisfiable or unsatisfiable instances. The hardness criterion of 10 Minisat minutes 
was set higher than the hardness criterion of 1 Minisat minute of the “bring your own benchmarks” rule, which can be 
viewed as problematic. As lessons learned, in future competitions we will not aim to balance the benchmarks by satisfiabil-
ity status on author level, will aim to be more consistent with the imposed hardness criteria for benchmark selection, and 
will also make sure to clearly communicate what it means for an instance to be counted as unknown.

The IPASIR interface facilitates the integration of SAT solvers into incremental applications. In contrast to benchmarking 
with instances given in the DIMACS CNF format, there are only a few benchmark applications available for the Incremental 
track. This calls for more community-level efforts for constructing a more diverse and well-organized repository of appli-
cations for incremental SAT solvers. Proper benchmarking and new tools for testing incremental SAT solvers may also help 
solver authors to deal with more complex use cases.16

16 https://github .com /fkutzner /IncrementalMonkey.
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This year, the Hack track was organized for hacks of Glucose 3. In the next competition, we plan on moving to the 
well-structured and documented state-of-the-art SAT solver CaDiCaL. The CaDiCaL-alluip solver—which is a modified
CaDiCaL—has shown competitive performance in this competition.

The first instantiation of an Application track was the Planning track organized as a one-time track in 2020. The results 
show that different solvers take the lead when we only evaluate for a single application, when compared to the overall Main 
track results. We intend to run further instantiations of the Application track. While none of the solvers that participated in 
the Planning track seemed particularly optimized for planning instances, we hope that in future iterations the community 
will pick up on the challenge of optimizing SAT solvers towards different focus applications, as a complementary challenge 
when compared to the generality of the Main track. In the next competition, the planned focus of Application track will be 
on SAT solver applications in cryptography.

The portfolio rule has been established to prohibit the participation of pure solver portfolios to stimulate the develop-
ment of new codebases and to ensure fair competition among sequential solvers. The rule was challenged in this competition 
as it can be hurtful to cooperation in the community when solver authors use the work of other researchers as fully in-
tegrated subsystems in their own codebase. We aim to revisit and refine the portfolio rule in future instantiations of the 
competition to ensure that the rule does not unnecessarily hinder interesting algorithmic developments in SAT solving.
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