7,436 research outputs found

    Multiple light source detection.

    Get PDF
    Published versio

    Probeless Illumination Estimation for Outdoor Augmented Reality

    Get PDF

    Generating Light Estimation for Mixed-reality Devices through Collaborative Visual Sensing

    Get PDF
    abstract: Mixed reality mobile platforms co-locate virtual objects with physical spaces, creating immersive user experiences. To create visual harmony between virtual and physical spaces, the virtual scene must be accurately illuminated with realistic physical lighting. To this end, a system was designed that Generates Light Estimation Across Mixed-reality (GLEAM) devices to continually sense realistic lighting of a physical scene in all directions. GLEAM optionally operate across multiple mobile mixed-reality devices to leverage collaborative multi-viewpoint sensing for improved estimation. The system implements policies that prioritize resolution, coverage, or update interval of the illumination estimation depending on the situational needs of the virtual scene and physical environment. To evaluate the runtime performance and perceptual efficacy of the system, GLEAM was implemented on the Unity 3D Game Engine. The implementation was deployed on Android and iOS devices. On these implementations, GLEAM can prioritize dynamic estimation with update intervals as low as 15 ms or prioritize high spatial quality with update intervals of 200 ms. User studies across 99 participants and 26 scene comparisons reported a preference towards GLEAM over other lighting techniques in 66.67% of the presented augmented scenes and indifference in 12.57% of the scenes. A controlled lighting user study on 18 participants revealed a general preference for policies that strike a balance between resolution and update rate.Dissertation/ThesisMasters Thesis Computer Science 201

    A Light Source Calibration Technique for Multi-camera Inspection Devices

    Get PDF
    Industrial manufacturing processes often involve a visual control system to detect possible product defects during production. Such inspection devices usually include one or more cameras and several light sources designed to highlight surface imperfections under different illumination conditions (e.g. bumps, scratches, holes). In such scenarios, a preliminary calibration procedure of each component is a mandatory step to recover the system’s geometrical configuration and thus ensure a good process accuracy. In this paper we propose a procedure to estimate the position of each light source with respect to a camera network using an inexpensive Lambertian spherical target. For each light source, the target is acquired at different positions from different cameras, and an initial guess of the corresponding light vector is recovered from the analysis of the collected intensity isocurves. Then, an energy minimization process based on the Lambertian shading model refines the result for a pr ecise 3D localization. We tested our approach in an industrial setup, performing extensive experiments on synthetic and real-world data to demonstrate the accuracy of the proposed approach

    Roadmap on 3D integral imaging: Sensing, processing, and display

    Get PDF
    This Roadmap article on three-dimensional integral imaging provides an overview of some of the research activities in the field of integral imaging. The article discusses various aspects of the field including sensing of 3D scenes, processing of captured information, and 3D display and visualization of information. The paper consists of a series of 15 sections from the experts presenting various aspects of the field on sensing, processing, displays, augmented reality, microscopy, object recognition, and other applications. Each section represents the vision of its author to describe the progress, potential, vision, and challenging issues in this field

    Static scene illumination estimation from video with applications

    Get PDF
    We present a system that automatically recovers scene geometry and illumination from a video, providing a basis for various applications. Previous image based illumination estimation methods require either user interaction or external information in the form of a database. We adopt structure-from-motion and multi-view stereo for initial scene reconstruction, and then estimate an environment map represented by spherical harmonics (as these perform better than other bases). We also demonstrate several video editing applications that exploit the recovered geometry and illumination, including object insertion (e.g., for augmented reality), shadow detection, and video relighting
    • …
    corecore