4,180 research outputs found

    Reversible color video watermarking scheme based on hybrid of integer-to-integer wavelet transform and Arnold transform

    Get PDF
    Unauthorized redistribution and illegal copying of digital contents are serious issues which have affected numerous types of digital contents such as digital video. One of the methods, which have been suggested to support copyright protection, is to hide digital watermark within the digital video. This paper introduces a new video watermarking system which based on a combination of Arnold transform and integer wavelet transforms (IWT). IWT is employed to decompose the cover video frames whereby Arnold transform is used to scramble the watermark which is a grey scale image. Scrambling the watermark before the concealment makes the transmission more secure by disordering the information. The system performance was benchmarked against related video watermarking schemes, in which the evaluation processes consist of testing against several video operations and attacks. Consequently, the scheme has been demonstrated to be perfectly robust

    Adopt an optimal location using a genetic algorithm for audio steganography

    Get PDF
    With the development of technologies, most of the users utilizing the Internet for transmitting information from one place to another place. The transmitted data may be affected because of the intermediate user. Therefore, the steganography approach is applied for managing the secret information. Here audio steganography is utilized to maintain the secret information by hiding the image into the audio files. In this work, discrete cosine transforms, and discrete wavelet transform is applied to perform the Steganalysis process. The optimal hiding location has been identified by using the optimization technique called a genetic algorithm. The method utilizes the selection, crossover and mutation operators for selecting the best location. The chosen locations are difficult to predict by unauthorized users because the embedded location is varied from information to information. Then the efficiency of the system ensures the high PSNR, structural similarity index (SSIM), minimum mean square error value and Jaccard, which is evaluated on the audio Steganalysis dataset

    Advanced Algorithms for Satellite Communication Signal Processing

    Get PDF
    Dizertační práce je zaměřena na softwarově definované přijímače určené k úzkopásmové družicové komunikaci. Komunikační kanály družicových spojů zahrnujících komunikaci s hlubokým vesmírem jsou zatíženy vysokými úrovněmi šumu, typicky modelovaného AWGN, a silným Dopplerovým posuvem signálu způsobeným mimořádnou rychlostí pohybu objektu. Dizertační práce představuje možné postupy řešení výpočetně efektivní digitální downkonverze úzkopásmových signálů a systému odhadu kmitočtu nosné úzkopásmových signálů zatížených Dopplerovým posuvem v řádu násobků šířky pásma signálu. Popis navrhovaných algoritmů zahrnuje analytický postup jejich vývoje a tam, kde je to možné, i analytické hodnocení jejich chování. Algoritmy jsou modelovány v prostředí MATLAB Simulink a tyto modely jsou využity pro ověření vlastností simulacemi. Modely byly také využity k experimentálním testům na reálném signálu přijatém z družice PSAT v laboratoři experimentálních družic na ústavu radioelektroniky.The dissertation is focused on software defined receivers intended for narrowband satellite communication. The satellite communication channel including deep space communication suffers from a high level of noise, typically modeled by AWGN, and from a strong Doppler shift of a signal caused by the unprecedented speed of an object in motion. The dissertation shows possible approaches to the issues of computationally efficient digital downconversion of narrowband signals and the carrier frequency estimation of narrowband signals distorted by the Doppler shift in the order of multiples of the signal bandwidth. The description of the proposed algorithms includes an analytical approach of its development and, if possible, the analytical performance assessment. The algorithms are modeled in MATLAB Simulink and the models are used for validating the performance by the simulation. The models were also used for experimental tests on the real signal received from the PSAT satellite at the laboratory of experimental satellites at the department of radio electronics.

    Generalized discrete Fourier transform with non-linear phase : theory and design

    Get PDF
    Constant modulus transforms like discrete Fourier transform (DFT), Walsh transform, and Gold codes have been successfully used over several decades in various engineering applications, including discrete multi-tone (DMT), orthogonal frequency division multiplexing (OFDM) and code division multiple access (CDMA) communications systems. Among these popular transforms, DFT is a linear phase transform and widely used in multicarrier communications due to its performance and fast algorithms. In this thesis, a theoretical framework for Generalized DFT (GDFT) with nonlinear phase exploiting the phase space is developed. It is shown that GDFT offers sizable correlation improvements over DFT, Walsh, and Gold codes. Brute force search algorithm is employed to obtain orthogonal GDFT code sets with improved correlations. Design examples and simulation results on several channel types presented in the thesis show that the proposed GDFT codes, with better auto and cross-correlation properties than DFT, lead to better bit-error-rate performance in all multi-carrier and multi-user communications scenarios investigated. It is also highlighted how known constant modulus code families such as Walsh, Walsh-like and other codes are special solutions of the GDFT framework. In addition to theoretical framework, practical design methods with computationally efficient implementations of GDFT as enhancements to DFT are presented in the thesis. The main advantage of the proposed method is its ability to design a wide selection of constant modulus orthogonal code sets based on the desired performance metrics mimicking the engineering .specs of interest. Orthogonal Frequency Division Multiplexing (OFDM) is a leading candidate to be adopted for high speed 4G wireless communications standards due to its high spectral efficiency, strong resistance to multipath fading and ease of implementation with Fast Fourier Transform (FFT) algorithms. However, the main disadvantage of an OFDM based communications technique is of its high PAPR at the RF stage of a transmitter. PAPR dominates the power (battery) efficiency of the radio transceiver. Among the PAPR reduction methods proposed in the literature, Selected Mapping (SLM) method has been successfully used in OFDM communications. In this thesis, an SLM method employing GDFT with closed form phase functions rather than fixed DFT for PAPR reduction is introduced. The performance improvements of GDFT based SLM PAPR reduction for various OFDM communications scenarios including the WiMAX standard based system are evaluated by simulations. Moreover, an efficient implementation of GDFT based SLM method reducing computational cost of multiple transform operations is forwarded. Performance simulation results show that power efficiency of non-linear RF amplifier in an OFDM system employing proposed method significantly improved

    Physically Informed Subtraction of a String's Resonances from Monophonic, Discretely Attacked Tones : a Phase Vocoder Approach

    Get PDF
    A method for the subtraction of a string's oscillations from monophonic, plucked- or hit-string tones is presented. The remainder of the subtraction is the response of the instrument's body to the excitation, and potentially other sources, such as faint vibrations of other strings, background noises or recording artifacts. In some respects, this method is similar to a stochastic-deterministic decomposition based on Sinusoidal Modeling Synthesis [MQ86, IS87]. However, our method targets string partials expressly, according to a physical model of the string's vibrations described in this thesis. Also, the method sits on a Phase Vocoder scheme. This approach has the essential advantage that the subtraction of the partials can take place \instantly", on a frame-by-frame basis, avoiding the necessity of tracking the partials and therefore availing of the possibility of a real-time implementation. The subtraction takes place in the frequency domain, and a method is presented whereby the computational cost of this process can be reduced through the reduction of a partial's frequency-domain data to its main lobe. In each frame of the Phase Vocoder, the string is encoded as a set of partials, completely described by four constants of frequency, phase, magnitude and exponential decay. These parameters are obtained with a novel method, the Complex Exponential Phase Magnitude Evolution (CSPME), which is a generalisation of the CSPE [SG06] to signals with exponential envelopes and which surpasses the nite resolution of the Discrete Fourier Transform. The encoding obtained is an intuitive representation of the string, suitable to musical processing

    WAVELET BASED DATA HIDING OF DEM IN THE CONTEXT OF REALTIME 3D VISUALIZATION (Visualisation 3D Temps-Réel à Distance de MNT par Insertion de Données Cachées Basée Ondelettes)

    No full text
    The use of aerial photographs, satellite images, scanned maps and digital elevation models necessitates the setting up of strategies for the storage and visualization of these data. In order to obtain a three dimensional visualization it is necessary to drape the images, called textures, onto the terrain geometry, called Digital Elevation Model (DEM). Practically, all these information are stored in three different files: DEM, texture and position/projection of the data in a geo-referential system. In this paper we propose to stock all these information in a single file for the purpose of synchronization. For this we have developed a wavelet-based embedding method for hiding the data in a colored image. The texture images containing hidden DEM data can then be sent from the server to a client in order to effect 3D visualization of terrains. The embedding method is integrable with the JPEG2000 coder to accommodate compression and multi-resolution visualization. Résumé L'utilisation de photographies aériennes, d'images satellites, de cartes scannées et de modèles numériques de terrains amène à mettre en place des stratégies de stockage et de visualisation de ces données. Afin d'obtenir une visualisation en trois dimensions, il est nécessaire de lier ces images appelées textures avec la géométrie du terrain nommée Modèle Numérique de Terrain (MNT). Ces informations sont en pratiques stockées dans trois fichiers différents : MNT, texture, position et projection des données dans un système géo-référencé. Dans cet article, nous proposons de stocker toutes ces informations dans un seul fichier afin de les synchroniser. Nous avons développé pour cela une méthode d'insertion de données cachées basée ondelettes dans une image couleur. Les images de texture contenant les données MNT cachées peuvent ensuite être envoyées du serveur au client afin d'effectuer une visualisation 3D de terrains. Afin de combiner une visualisation en multirésolution et une compression, l'insertion des données cachées est intégrable dans le codeur JPEG 2000

    Adaptive Blind Watermarking Using Psychovisual Image Features

    Full text link
    With the growth of editing and sharing images through the internet, the importance of protecting the images' authorship has increased. Robust watermarking is a known approach to maintaining copyright protection. Robustness and imperceptibility are two factors that are tried to be maximized through watermarking. Usually, there is a trade-off between these two parameters. Increasing the robustness would lessen the imperceptibility of the watermarking. This paper proposes an adaptive method that determines the strength of the watermark embedding in different parts of the cover image regarding its texture and brightness. Adaptive embedding increases the robustness while preserving the quality of the watermarked image. Experimental results also show that the proposed method can effectively reconstruct the embedded payload in different kinds of common watermarking attacks. Our proposed method has shown good performance compared to a recent technique.Comment: 5 pages, 3 figure

    Discrete Fourier transform techniques for power transmission line protection

    Get PDF
    Imperial Users onl

    Digital watermarking : applicability for developing trust in medical imaging workflows state of the art review

    Get PDF
    Medical images can be intentionally or unintentionally manipulated both within the secure medical system environment and outside, as images are viewed, extracted and transmitted. Many organisations have invested heavily in Picture Archiving and Communication Systems (PACS), which are intended to facilitate data security. However, it is common for images, and records, to be extracted from these for a wide range of accepted practices, such as external second opinion, transmission to another care provider, patient data request, etc. Therefore, confirming trust within medical imaging workflows has become essential. Digital watermarking has been recognised as a promising approach for ensuring the authenticity and integrity of medical images. Authenticity refers to the ability to identify the information origin and prove that the data relates to the right patient. Integrity means the capacity to ensure that the information has not been altered without authorisation. This paper presents a survey of medical images watermarking and offers an evident scene for concerned researchers by analysing the robustness and limitations of various existing approaches. This includes studying the security levels of medical images within PACS system, clarifying the requirements of medical images watermarking and defining the purposes of watermarking approaches when applied to medical images
    corecore