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ABSTRIWT 

During the last few years, the introduction has taken place of 

mini—computers in substations for carrying out tasks related to the steady—

state monitoring of power systems. A natural development of the above 

would be to use such computer installations not only for the above purpose, 

but also for implementing and improving protection functions in power 

gystems,.functions that are currently catered for by analogue devices 

and methods. 

The research work contained in this thesis is concerned with 

developing a scheme for the digital implementation of one such protection 

function, that of transmission line protection by means of fast fault 

detection or relaying. The scheme is necessarily required to exhibit 

an improvement over the existing analogue methods as far as fault 

detection time is concerned. 

A fundamental approach to distance relaying by digital signal 

processing is based on the Fourier Transform. Indeed, this has been proposed 

from rather elementary considerations by Slemon et al DD , where a 
computation scheme resulting from numerical approximation of the Fourier 

Integral was suggested. However, modern digital signal processing tech-

niques involving the powerful and analytically exact relationships of 

the Discrete Fourier Transform (DFT) are more appropriate for this kind 

of analysis. The first part of this research work, therefore, presents 

a study of the DFT leading to the initial adoption of a digital—analogue 

filter combination that forms the core of the distance relaying scheme. 

Then, improvements of this scheme involving original designs yielding simpler 

digital filtering algorithms that explore inherent symmetries in the 

DFT are developed, and their performance. is critically assessed. 

Finally, a complete protection scheme is arrived at which 

meets the paramount requirement of improved fault detection times. 



To my mother and father 
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1. 
CHAPTER 1 

INTRODUCTION 

Power systems are continually growing in size and complexity, 

in line with the ever-rising demand for electrical power. This is 

necessitating the development and utilisation of larger power generating 

and transmitting plant that, in turn, are requiring higher performance 

from protection systems. 

In transmission systems, paramount importance is attached to 

highly reliable high speed protection. In the context of a high 

voltage grid system, elaborate and costly protective equipment is 

easily justified by the very high capital cost involved, and more so 

by the high costs incurred when line outages resulting from inadequate 

protection compel the running of low merit generating plant. 

Protection systems for transmission lines utilising conventional 

electromagnetic and static relays have a good record of reliability. 

However, the rapid advances in, and the decreasing computational costs 

of, modern digital computers have brought forward the question of the 

feasibility of using mini-computers for implementing relaying functions. 

Mini-computer installations are beginning to appear in substations for 

carrying out tasks related to steady-state monitoring and switching, 

and it is certainly worthwhile investigating the possibility of 

exploiting the flexibility they offer through readily altered relaying 

functions and characteristics by the development and use of digital 

protection algorithms implementable on such class of computers. 

The work presented in this thesis is an attempt at developing 

and analysing transmission line protection schemes viewed as digital 

signal processing methods. The schemes, based on digital filtering 
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through the Discrete Fourier Transform in a direct and a modified form, 

are to meet the requirements of faster fault detection and better fault 

discrimination than currently obtainable from analogue relays, and are 

also to be suitable for real-time implementation on a mini-computer. 

A brief summary of the material in each chapter of the thesis 

is given as follows: 

The remainder of this chapter gives an introduction to the 

problem of transmission line protection. Analogue relaying methods 

are outlined, and the particular practice of distance relaying, that is 

finding increasing application in long line protection, is reviewed. A 

short survey of previous work on computer methods for distance relaying 

is included. 

Chapter 2 is devoted to a theoretical study of the Discrete 

Fourier Transform aimed at deriving the conditions for its optimum use 

in analysing transmission line signals both off-line and in real-time. 

Chapter 3 firstly presents a simplified analytical study of high 

frequency signal generation on transmission lines during faults. The 

second part of the chapter deals with the off-line analysis of recorded 

real fault waveforms by the Discrete Fourier Transform. A comparison 

of the results of the theoretical study and the off-line analysis 

follows, through which the nature of the fault waveforms is established. 

Chapter 4 is concerned with the description and analysis of a 

protection scheme based on the Discrete Fourier Transform. The filtering 

performance of the scheme is assessed, and limits to the fault detection 

times possible are estimated. 
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Chapter 5 outlines the development of a second protection 

scheme based on predictive methods in waveform filtering, and aimed at 

achieving faster filtering and fault detection times than those of the 

basic scheme of Chapter 4. 

Chapter 6 deals with the analogue lowpass filter needed for band-

limiting transmission line signals before digitally processing them in 

either of the two protection schemes of Chapter 4 and 5. The chapter 

discusses the derivation of the filtering performance of the two schemes 

when combined with their optimum analogue lcwpass filters. 

Chapter 7 concerns choosing a simple digital highpass filter, 

based on the results of Chapter 6, and greatly improving the filtering 

- performance of the second proposed protection scheme of Chapter 5. 

Chapter 8 describes the off-line tests carried out for proving 

the suggested protection schemes. The chapter also examines the problem of 

defining the digital relaying characteristic, in.the impedanceplane, in the context 

of exploiting the flexibility of digital methods in allowing the use of 

some highly discriminative characteristics. 

The final conclusions are presented in Chapter 9, together 

with the original contributions of this work. The chapter gives also a 

few suggestions for possible future work in the development of further 

digital relaying algorithms based on signal processing methods. 

1.1 	ANALOGUE RELAYING OF TRANSMISSION LINES 

Power transmission systems are subjected to varying kinds of 

faults caused by a reduction in the basic insulation strength between 

conductors under abnormal conditions. This reduction in insulation 
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results in a decrease in the impedance between conductors, or between 

conductors and earth, to a value below that of the lowest load impedance 

normal to a particular circuit, and can in some cases cause a flashover 

across the insulator string, producing in turn excess current or other 

detectable abnormalities :21 . 

Causes of faults are diverse. They range from deposited 

pollution in the form of soot, cement dust and even salts carried by 

wind-borne sea spray, to extreme weather conditions such as fog, 

lightning and ice and snow loading :23 . In fact, peculiar causes like 

birds and aircraft hitting lines are not unknown, along with the more 

conventional failures of insulators through breakage, puncture, and 

abnormal system loading. 

Such diversity of causes serves to explain the relatively 

frequent occurrence of faults on overhead lines. The average rate of 

incidence of such faults on the Central Electricity Generating Board 

(CEG-B) high voltage transmission system is two faults per 100 circuit-

miles of lines per year :2] , amounting to a total of about 300 faults 

a year on average, and rising to over one thousand faults in years 

with extremely severe winters. 

The extreme severity of some faults owing to the tremendous 

amount of energy in a modern power system, necessitates prompt fault 

clearing if expensive damage is to be avoided. Clearance times 

currently obtained range from a low tenth of a second to one second or 

more, depending on the protective arrangements employed. However, with 

fault levels at the 400 kV highest supergrid transmission voltage 

Bracketed numbers are keyed to the References at the end of the 
thesis. 

** For the period 1960/65. 
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ranging up to 35000 NW_ with fault currents of the order of 60000 A 

for single-phase-to-earth faults, the need for lower fault clearance 

times arises. Very fast clearance will in fact be of paramount 

importance at the higher transmission voltages planned for the near 

future. 

1.1.1 	General Principles  

A protection system isolates the faulty section of a line by 

the operation of some strategically located disconnecting devices known 

as circuit-breakers. Each of these circuit-breakers is controlled by a 

relay that is able to recognise abnormal conditions and cause the 

appropriate disconnecting devices to operate or trip. 

Protection relays are of many diverse designs and are not 

exclusively electromagnetic in principle. Indeed, some are permadynamic, 

thermal or even solid-state devices. They all rely in their operation 

on line quantities that change during abnormalities, such as currents, 

voltages and impedances. Consequently, they are generally specified 

according to the duty they are required to perform: over-current 

relays for the measurement of excess current; impedance relays for 

the measurement of impedance and so on. A particular type of 

construction, based on a certain principle, can usually be used in 

relays with differing duties and applications. An attracted-armature 

relay, for example, is used for both over-current and over-voltage 

protection [3] . 

The change in the line's current and voltage during a fault 

can sometimes be accompanied by other abnormalities. The load current 

that under normal conditions follows a wholly metallic path with linear 



impedance, is diverted to a partly new path through a power arc and 

the ground when a ground fault occurs. This path presents a nonlinear 

impedance that gives rise to a fault current containing harmonics. 

Such harmonics are detectable by electronic relays [411 that sound an 

alarm for faults not detected by normal relays. 

The above principle, known as harmonic relaying, is not used 

for direct tripping because a reasonably accurate estimate of the 

magnitudes and frequencies of the harmonics likely to be encountered at 

a particular relaying point on a faulted line cannot be established 

beforehand. In fact, the line's transient response during a fault has 

been known to give rise to eigenfrequencies and an exponentially decaying 

dc component in the line's current. This phenomenon, which is treated 

in Chapter 3, impairs the accuracy of both harmonic and conventional 

relays and makes fast fault detection more difficult. 

The requirement of any protection system of picking out and 

isolating only the faulty elements is referred to as discrimination. 

Most of the relays used in line protection discriminate to the location 

of fault, giving protection schemes based on two differing arrangements, 

known as unit and nonunit protection. 

Unit protection systems detect and respond to abnormal 

conditions occurring only within the zones they are specifically 

intended to protect.Examples of such systems appear in the organisation 

tree-of Figure 1.1. They are all characterised by the use of an 

end-to-end signalling channel, as is illustrated in Figure 1.2 which 

depicts one particular such system known as current-balance protection 

[23 . In this system, the magnitudes and phases of the currents 

entering and leaving the line are transmitted over the signalling 

6. 
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channel and tested for a difference that would indicate a fault. 

The high cost and complexity of the necessary signalling channel, however, 

make the 	use of this and all other unit systems unattractive for 

applications involving long lines. 

Nonunit protection, on the other hand, employs no signalling 

channels. It can take the form of time-graded, current-graded or 

distance systems. In time-graded and current-graded systems, the 

circuit-breakers nearest to a fault are made to trip before all others 

by the respective use of time lag features and tapered relay current 

settings. Whilst such simple schemes are quite sufficient for the 

protection of radial feeders [2:land other simple transmission systems, 

more complicated and commonly encountered networks usually necessitate 

the application of the third form of nonunit protection, that of 

distance relaying. 

1.1.2 	Distance Relaying 

Technical and economic considerations, it has been stated, 

often limit the choice of protection of long overhead lines to some 

form of distance relaying [2J . In this, the operation of the circuit-

breakers is controlled by the distance from the relaying point to the 

fault. Such distance can be measured by making use of the fact that 

the length of a circuit for a given -conductor diameter and spacing 

determines its fundamental impedance when the circuit is shorted at 

its end, and the relay therefore only has to measure the impedance, 

at 50 Hz, between the circuit-breaker location and the fault. The 

proportionality of the impedance of the circuit to its length is 

proven in Chapter 8. 
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A practical distance protection scheme is shown in Figure 1.3. 

The figure illustrates the.  important feature of back-up protection that 

a nonunit system offers, whereby a protective relay for one element of 

the system covers other elements too. The relay at A, for example, is 

intended to detect a fault in the section A to B, but is set to have a 

nominally instantaneous response only up to a distance Z1  - about 80% 

of A to B - because of its limited predision. Faults occurring near or 

beyond the busbar at substation B, such as F2 
and :F

3
, would be cleared 

after a time lag of about 0.4'seconds and, in the case of F3, only when 

the relay at B fails to trip instantaneously. The relay at A, 

therefore. acts as a back-up for that at B. 

The current and voltage in a faulted line should not 

'necessarily be directly compared to find the impedance. In fact, a 

distance relay, according to the type of element and connections 

employed, can be arranged to measure impedance, reactance or admittance. 

The line current I
L 

and voltage VL 
are in general mixed in two measuring 

circuits, as in Figure 1.4, giving two phasor quantities S1  and S2  

defined as: 

S1 	ZR1IL 
	 (1.1a) 

and 	=IC
2
V
L 
 +Z 1 
	

(1.1b) 

where K1  and K2  are constants, and Z.R1  and ZR2  are replica impedances. 

The relay then compares S1  and S2  in either magnitude or phase. In 

magnitude comparison the relay, then an amplitude comparator, operates 

when the scalar magnitude of one of the quantities S1  or S2  is larger 

than that of the other. A phase comparator, on the other hand, 

depends for its operation on the phase difference between S1  and S
2' 

operating over a range of phase-angle differences and restraining over 
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the remaining portion of the full 2TC circular are. It has been shown 

El that there is no fundamental difference between these two principles 

of comparison, and it therefore suffices to consider phase comparators 

only. Tn these, the phase difference between Si  and S2  that causes 

operation of the relay is taken as anything between +11/2 through zero 

to -11/2. Thus, if the outputs of the measuring circuits are written as: 

S1  = a+ jb = 1S11 Lal 	 (1.2a) 

and 
	

S2  = c + jd = 1S21 2. a2 
	 (1.2b) 

then the ratio of S1  to S2 would be: 

S1 	a + jb 	ac + bd + j(bc - ad) 	1S11  
S2 	c + jd 	e2 + d2 

- 	(1.3) 

and the phase difference abetween S1  and S2  is: 

- a = al  - a2 = cos 
1  

  

ac bd (1.4) 

   

/(ac+bd) 2+ (bc-ad) 

which, with the criterion for operation taken as: 

-TL/2 < CC <:+ 11/2, 	i.e.: 	cosU > 0 	(1.5) 

gives the condition: 

ac + bd > 0 	 (1.6) 

The line quantities, with the line voltage Taken as the reference phasor, 

can be written as: 

VL = IVLI L 0 
	

(1.7a) 

= I ILI-0L - 
	 (1.7b) 

zrti = I ZR1I 	Al 
	 (1.7c) 

ZR2 = IZR21 	g 2 
	 (1.7d) 
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and when these are substituted into equations (1,1) that are then 

compared with equations (1.2), a,. b, c.and d are found and the 

inequality (1.6) becomes: 

KIK2IZLI 2 	IZLI. Dil.IZR21.cos(02-0L) + K2.1N11.cos(01-0L)] 

+ IZR11.17.1121.cos(Ai-g2) > 0 	(1.8) 

The above inequality is the general phase comparator charact-

eristic. According to the connections employed in a specific relay 

element, the various constants in the inequality are determined and the 

relaying characteristic derived. 

The three basic arrangements in distance relaying in use now 

are those measuring impedance, reactance and admittance. 

a) 	The Impedance Relay  

In this, the constants in the inequality (1.8) are chosen as: 

I R1 I = 	ZR2 	= I ZR I  

Al = 02 

and 
	

K
1 
 = -K2  = 

reducing the inequality to: 

12.1,12<kR12  
K
2 

which, on the X/R plane gives: 

2 	2 	I ZR I2  + XL  
K
2 (1.9) 

This is a circle with centre at origin and radius of 1Z
R
I/K, as shown 

in Figure 1.5(a). Operation of the relay occurs when the impedance 

locus traverses the circumference into the circle. 



b) 	The Reactance Relay 

The constants here are defined as: 

I ZR1 I= IzR21 = 

91 = °2 = TL/2, 
and 
	

Ki  = -K, - K2  = 0, 

giving the characteristic: 

or 

IZLI.sin OL< 
I 
 K  
ZR  I 

 

I ZRI 

XL<  K (1.10) 

I ZR I which is a line parallel to the R axis and distance K  away from it. 

Relay operation occurs in the unshaded region below the line in Figure 

1.5(b). 

c) 	The Admittance (mho) Relay 

This characteristic is derived by taking: 

IZR11 = °' 1zR21  = IZR1  
01 = 02 = 0, 

and 
	

Kl = -K2 = K, 

which yields: 

cos 
IN) 	IZRI 2 

. 	2  + 	2 
CRL - 2K 	_ 2K 'sin 	< 	

2 
4K 

IZRI or a circle of radius --mr  and passing through the origin, as in 
Figure 1.5(c). 

Another characteristic that is of some significance and 

considerable application is that of the Directional Relay, wherein 



operation occurs to the right of an inclined line in the X/R plane 

as shown in Figure 1.5(d). The inequality describing such operation is: 

-11/2 + 82  <OL  < TT/2 + 02 	(1.12) 

obtained from cos(02  - OL) >0 

which in itself is arrived at by subs+.ituting zeros for IZ_ I and K2 
 

in the general inequality of (1.8). Such directional feature is 

usually incorporated in impedance and reactance relaying of ring-mains 

and interconnected systems DJ , to guard against any relay operation 
that would otherwise be caused by faults occurring behind the relay 

protection zone and giving rise to fault currents flowing towards the 

busbar. 

The four relaying characteristics outlined above can be 

implemented by several electromagnetic elements, the induction-cup and 

induction-disc being the most commonly used [3] . Static relaying 

elements, based on the block-average principle, are also used [43 . 

The choice between reactance, impedance or admittance 

protection systems depends on such factors as the ratio of fault arc 

resistance to impedance to be measured, the operating time required, 

and the extent to which the protection system must be immune to power 

swings on the primary system. The simple impedance characteristic, 

and the reactance characteristic that is immune to the effect of fault 

resistance, are both liable to maloperation under power system swing 

conditions. Also, their operating times are relatively long because 

of the directional elements needed. Admittance relays are therefore 

normally specified where long lines are to be protected. Such relays 

have, in fact, largely superseded impedance and reactance relays on the 

Grid System in spite of their recent origin. 

12. 
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1.2 	DIGITAL DISTANCE RELAYING 

The principle underlying analogue distance relaying outlined 

above is equally applicable in relaying schemes employing digital 

processors. Samples of the voltage and current variations on a trans-

mission line can be used, for example, to determine the impedance of 

the line to a fault point, and the locution of this impedance on the 

Z plane can be taken as the key finding upon which a distance relaying 

program would base its decision. This is known as digital distance 

relaying, and is of prime interest here because of its potential in 

providing superior performance to that of conventional analogue 

electromagnetic, and even static, relaying. 

One distinct advantage that digital relaying can offer is in 

the marked increase in the flexibility of the relaying characteristics 

obtainable, since the direct impedance determination involved makes 

possible any such characteristic. This could thus be tailored to 

provide maximum immunity from power swings and heavy system loadings, 

eliminating the need for directional elements in ring-mains and inter-

connected power systems. 

A second advantage is the use of samples of the line's voltage 

and current in place of continuous quantities, thus making possible the 

application of digital signal processing techniques. Also, the VA 

requirements that the sampling circuits impose on the voltage and 

current transformers are negligible, compared to the burdens typically 

presented to these transformers by conventional relays' coils. These 

transducers are necessary for supplying the relays with the line 

quantities, and lower VA ratings make the design of more accurate types 

possible. Such types, in turn, will improve the performance of the 

protection system. 
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The most important advantage thaL digital relaying can 

probably offer, however, is that of faster fault detection. The 

possibility of this depends mainly on the powers and configurations of 

the processors used, and the impedance determination algorithms adopted. 

These two factors are next discussed. 

1.2.1 	Relay Implementation 

A digital protection scheme can rely for its relaying functions 

on either suitably programmed mini- and micro-processors, or purposely 

built hardware units. When these are devoted to relaying, and are not 

assigned other substation functions, they can conveniently be referred 

to as digital relays, since the integrated installations they form 

would uniquely replace analogue electromagnetic or static relays. 

Multi-task single computer installations were initially 

favoured for carrying out relaying functions and other requirements in 

a substation. Computer use in alarm monitoring, data logging, 

oscillography and supervisory control functions as well as relaying, it 

was argued, would help justify the expected high cost of the computer 

installation. Alas, it was soon realised that the reliability and 

integrity needs of the protection functions demended that back-up 

computers be available for certain prescribed modes of equipment failure. 

Also, a single minicomputer installation was later shown to be 

inadequate, - in speed, for carrying out all the relaying and switching 

typically required in a substation. 

A substation multi-computer system seemed the most obvious 

alternative. Such system, consisting of mini- and microprocessors 

connected in a network at the substation, would fulfil the security 



15. 

and reliability needs. The economic viewpoint favours small low—cost 

processors or hardware for the relaying of each transmission line, with 

a central processor checking and monitoring all such relays in the 

substation. A more defined role of the central processor in back—up 

protection and monitoring in such a scheme is not obvious, but one 

possibility has been presented by Cory et al [C. 

1.2.2 	Survey of Previous Work  

Methods and relaying algorithms that have been suggested and 

tested since interest in digital relaying began, are now outlined. 

Their claimed accuracies, when quoted, mostly apply to limited tests 

and are not to be taken as conclusive. 

Implementation was, in most cases, on a minicomputer. While 

this allowed the evaluation and the examination of the merits of the 

various methods, it was understood that the use of smaller processors 

for the most efficient algorithms was to be eventually contemplated. 

Some of the methods relied on the continual calculation of the 

line's fundamental impedance. Others initiated impedance calculation 

routines only after the detection of disturbances on the power system. The 

detectionwas often carried outby taking an integral number of samples 

of the voltages and current per cycle and comparing each sample as 

collected with the corresponding sample of the cycle before. When 

successive differences exceeded a specific tolerance, the algorithm 

would branch to begin an impedance calculation. 

The methods can be broadly classified into two types, in 

accordance with the equations they adopt for relating the voltage and 
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current in the faulted line. The first of these equations involves 

phasors of voltage and current: 

V = Z L 	L L (1.13) 

and the main effort in methods employing this is to determine the 

phasor representations of the voltage and current signals from sampled 

data of their instantaneous values. The second equation relates 

instantaneous values of the voltage and current: 

di = RL
.i 4-L dt — (1.14) 

and provides, by the appropriate substitutions of sampled data and its 

differences, simultaneous equations in R and L that yield the faulted 

line impedance upon solving. This equation assumes that the line is 

resistive and inductive under fault conditions, such an assumption being 

valid even for a capacitive transmission line, as will be shown in 

Chapter 8.. 

In one of the earliest contributions to digital relaying, 

Mann and Morrison [73 presented a method based on phasor determination. 

It involved the predictive calculation of the peak voltage and peak 

current, and has since been referred to as the peak-determination 

method. The approach was entirely different from that used earlier 

on by Mann [8] in his table look-up procedure. 

Mann and Morrison implemented their method without the use 

of analogue bypass filters that should have preceded the analogue-

to-digital conversion, or sampling. The relatively high sampling rate 

of 40 samples/cycle (s/c) helped dealing with high frequencies, but 

differentiation further accentuated those and was expected to result in 

gross errors. Arateof40 s/c was chosen to minimise numerical errors, 
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but later on Ranjbar [9] , in his study of the frequency response of 

the method, showed the optimum rate to be 4 s/c. 

The method's sensitivity to dc current offset was indirectly 

dealt with by suggesting the loading of the current transformer's 

secondary with specially chosen mimic impedances. This was based on 

the well known finding Dd.] that connecting an ideal current transformer's 
secondary circuit to a burden having the same X/R ratio as the primary 

circuit gives a purely sinusoidal voltage across the burden. It was 

recognised, however, that such compensation is limited because the 

primary system's quantities would differ from one fault to another, 

being dependent on the distance of the fault along the line. 

The method was merited for its potential of very fast fault 

detection, since it required only the present and immediately preceding 

samples, thereby making possible the calculation of the waveform before 

its occurrence. This was made more feasible by the simplification of 

the stringent computer requirements that the same authors proposed in 

a later paper [11] . The processing of faulted information only, it 

was argued, was necessary, and working with healthy data in continual 

impedance calculation schemes was to be avoided. 

An experimental system borrowing heavily from the mathematical 

and logical techniques of Mann and Morrison was tested and field-

evaluated by Gilcrest, Rockefeller and Urden [123 . The system, 

functioning as one terminal of a transmission line fault protection, 

employed analogue lowpass filters and a lower, though asynchronous, 

sampling rate of about 12 s/c. First and second derivatives were used, 

in place of the value and first derivatives originally suggested by 

Mann and Morrison, to minimise errors from subharmonics and dc. 
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However, later examination [93 showed higher differences to be 

disadvantageous, since in reality they failed to improve the frequency 

response of the method, and instead resulted in greater high frequency 

amplification and increased numerical errors. 

Slemon, Robertson and Ramamoorty [1] were the first to suggest 

using cosine and sine orthogonal functions, in a classical Fourier 

analysis form, for computing the fundamental frequency of the line's 

voltage and current from a set of samples over one full period of the 

system frequency. McLaren and Redfern D3] later implemented this 

method on a large off-line Computer, using a high sampling rate of 128 sic 

and no initial lowpass filters. The simulated waveforms employed were 

somewhat unrealistic in that they contained postfault constant 

amplitude noise signals, and the analysis of the method and derivation 

of its filtering characteristics were attempted in the continuous time 

domain, with no consideration given to the effect of sampling. 

A generalised approach based on orthogonal function consider-

ations was formalised by Hope and UmamaheswaranD4] . This included 

the Fourier series analysis, and a simplified alternative in which the 

cosine and sine functions were replaced with odd and even square waves. 

This gave a performance that was later investigated [93 and shown to 

be poorer than that of the Fourier series in dealing with the 

exponential dc offset and nonharmonics. 

Direct impedance determination from instantaneous quantities, 

as in Equation (1.14), was probably firSt suggested by McInnes and 

Morrison D5] . It was recognised, however, that the use of the basic 

difference equation for obtaining the simultaneous equations in R and L 

was bound to give large numerical errors because of the high frequency 



19. 

noise that the difference term would accentuate, as was observed in 

the Mann and Morrison method. Thus, McInnes and Morrison chose to 

integrate numerically the difference equation, making the creation of 

simultaneous equations possible through the substitution of sample 

values and numerical estimates of the integral over two intervals. 

The significance of the length of the integration interval 

was not fully appreciated by McInnes and Morrison. They chose one 

quarter cycle, and based this on the speed of fault detection they 

were aiming at. However, it was later shown [9] that high and low 

frequency noise is best attenuated with respect to the fundamental 

with the integration interval being an odd multiple of half a cycle. 

Also, the choice of a relatively high sampling rate, probably influenced 

by the Mann and Morrison [7] approach of numerical error minimisation, 

was not optimum. These factors, combined with the fact that no analogue 

lowpass filters were used prior to sampling, explain why the performance 

of the method, as reported by the authors, was not up to expectations. 

Ranjbar and Cory C163  presented another method based on the 

basic difference equation, Equation (1.14), and involving numerical 

integration. The suitable choice of the integration intervals and 

starting points, they argued, can eliminate any number of harmonics, 

and they consequently attempted the removal of the second, third and 

fifth harmonics, leaving only the seventh, eleventh and higher prima 

harmonics. The method involved more calculations than needed in the 

McInnes and Morrison method, but was thought to be superior from a 

filtering point of view. 

In the same paper [163 Ranjbar and Cory also presented a mean 

square error minimisation method. This started with the integration 



20. 

of the difference equation, assuming it to be an inequality because of 

the presence of an error. The mean of the square of this error over a 

second interval was minimised by equating its partial derivatives with 

respect to R and L to zero. This in turn gave two simultaneous 

equations for R and L. The method can be seen to be relatively 

complicated, and was later discarded despite its improved accuracy. 

Luckett, Munday and Murray [17] hal,. at about the same time 

as Ranjbar and Cory, suggested another method based on least squares. 

Curve fitting, through finding least square fits of samples to a sine 

wave containing harmonics and dc, led to the derivation of some complic-

ated weighting functions, the coefficients of which were calculated 

off-line. Best estimates for the voltage and current phasors were 

then obtained by the on-line substitution of samples in those weighting 

functions. The initial knowledge of the exponential dc time constant 

was assumed, though, and this constituted.a serious drawback, since 

such time constant is known to vary for differing faults and is 

indeterminate beforehand. 

Least square polynomial fits were adopted by Phadke, Hlibka 

and Ibrahim [18] for data smoothing applied before determining the 

voltage and current phasors. Polynomials, with orders less than the 

number of data samples employed, were chosen, and smoothed voltage 

and current sample values and their derivatives were obtained by direct 

substitution of samples in discrete weighting functions derived from 

the least square fitting. The smoothed values and derivatives were 

then used to find voltage and current phasors by the peak-determination 

method of Mann and Morrison CC . The technique was applied with a 

high sampling rate and a narrow data window, and the marked improvement 

it showed on the Mann and Morrison method was expected since the main 

source of error in the latter was the high frequencies that unsmoothed 

data contained. 



Some of the methods outlined above relied on the extraction 

of the fundamental waveforms through indirect and direct filtering. 

The rest attempted the direct determination of the fundamental 

impedance. A number of other, less consistent, approaches have also 

been reported in various literature. A team in the University of 

Missouri-Columbia 	, for example, attempted fault detection 

employing the high frequency components that faults generate. The 

first and largest such component in the fault transient, it was 

postulated, was dependent on the type and location of fault. A 

hardware fault detector unit capable of detecting the high frequency 

components was developed and was to be interfaced to a substation 

computer. The practicability of this method is questionable, since it 

is based on a somewhat simplified relation between the high frequency 

transients and fault type and location. In fact, the first systematic 

and solid investigation of the high frequency transients and their 

dependence on fault configuration in a section of an interconnected 

power system has only recently appeared E.0] , and its results suggest 
a more complicated correlation between the transients and the fault, 

because of the possible appearance of some significantly large line-

transducer resonance components that the method does not take into 

consideration. The method also requires the knowledge of circuit 

constants, which would impair the versatility of any relay adopting it. 

Laycock [213 presented a number of methods based on differing 

approaches. He started with the analogue, and then digital, filtering 

of the voltages and currents before using them in a block-average 

comparator. He then replaced the static comparator with a digital 

sampling comparator program that was to derive the impedance loci on 

the X/R plane in a digital manner. In another scheme, half cycles of 

21. 
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voltages and currents were digitally correlated with reference sinusoids 

with varying phases, and best matches that indicated the phase were 

found, leading to the determination of the line's impedance. The 

sinusoids were later replaced by square waves, making on-line implem-

, entation possible. A further simplification that led to polarity- 

- coincidence correlation was also introduced, and was later used by 

McLaren and Redfern D2.3 in their hybrid phase comparator that applied 
the correlation concept in phase determination involved in a 

comparator implementation. This technique was very interesting and 

showed favourable results, but it lacked the flexibility and ready 

compatabibility that only those schemes that directly determined the 

line's impedance offered. 

Many of the schemes described above did not exploit their 

underlying principles to the full. It.is felt that the careful choice 

of the relevant parameters, and the inclusion of modifications when 

necessary, will improve their performance in general. The basic 

principle of one of those schemes, that of the Fourier analysis, is 

thus next examined in the hope that the development of an optimum 

version of that scheme will become possible. 
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CHAPTER 2 

THE DISCRETE FOURIER TRANSFORM 

The Fourier transform has for long been known for providing 

exact quantitative spectral analysis of signals. A time signal f(t), 

defined over the entire time domain, gives, when transformed into the 

frequency domain, a spectral density defined by [0] : 

26. 

co 

FM = jf(t).exp(-j4t) dt 
	

(2.1a) 
-co 

with this density giving the same time function when mapped back 

into the time domain by the complementary inverse transform: 

co 

f(t)  = 2TZ SF(L)).exp(yi.Y9 
dU 
	

(2.1b) 

The pair of integrals appearing above is derived from the 

basic complex Fourier series identities(:23:1that define a periodic 

waveform in terms of complex exponential variations with complex 

coefficients: 

g (t) = 	gk. exp( jk Loot) 	 (2.2a) 

k=-co 

1 
where . gk 	7  S g( t ).exp(-jk Wot dt 

"' 0 
(2.2b) 

CI)o being the fundamental radian frequency of the waveformland Tthe 

period: 

2TC 	 (2.2c) 

and the coefficients gk  constitute the amplitude distribution of the 

line spectrum, corresponding to a spectral density given by E..24:3 : 

F(10) = 

 

gk.27.C.O ((.) - kW()) • 	(2.2d) 

   

--co 



While the applicability of the Fourier series is restricted 

to periodic signals only, it is still much more frequently used than 

the continuous transform, since the latter requires the evaluation of 

integrals between infinite limits in the time domain. Such evaluation 

is seldom possible in practice, and approximating signals to periodic 

variations that can be handled by the series is often adopted as a 

compromise. 

The desirability for_totally numerical procedures in spectral 

analysis led to the derivation of the Discrete Fourier Transform (DFT). 

This extension of the Fourier series maps a sequence of samples f(nT) 

of length N into another sequence of the same length [25] : 

N-1 

F(rQ) = 	f(nT).exp(-jrQnT), 	0 -.<-r <N 	(2.3a) 

n=0 

with an inverse (IDFT) that maps F(rQ) back into f(nT): 

N-1 

f(nT) =-  N 

 

F(rc-2).exp(jrc2nT) 	(2.3b) 

 

r=0 

 

F(rQ) constitutes a finite line spectrum, with the frequency increment 

Q defined in terms of the sampling interval T in the time domain as: 

21t 
NT 

(2.3c) 

thereby ensuring that the period NQ of the spectrum C26,27,28] equals 

217 
the sampling frequency 77. 

27. 
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2.1 	INTERPRETATION OF THE DFT 

The DFT will be shown to give a true description of a time 

signal only when such signal is periodic, bandlimited and correctly 

sampled. The interpretation of the DFT of signals in general is thus 

of interest, such interpretation not being obvious. 

There exists a well—formulated theory [29] that relates the 

DFT to the desired continuous spectrum of the time signal, However, 

this theory involves explanations that are far from straightforward. 

A simpler approach has therefore been developed, and is given below 

together with the classical theory referred to above. The new approach 

gives complete insight into the mechanism of the DFT, from which the 

appropriate choice of the relevant parameters (T, N and Q) readily 

follows. Also, the effects and benefits of employing windows for data 

in the time domain become apparent, making a decision on the use of 

such windows, based on sound criteria, possible. 

2.1.1 	The Classical Approach  

The problem, as stated above, is the determination of the 

continuous transform F( W) of a bandlimited time signal f(t) from the 

DFT of a finite sequence of samples f(nT) of the time signal. 

Classically, this is made possible through the complex Fourier series 

expansion of g (t), a periodic version of a function g(t) that is formed 

by the truncation of the initial waveform f(t) over a period covering 

the whole of the sequence of samples f(nT). 

As is well known [3O] , the continuous transform G(W) of 

g(t) is in fact specified at discrete frequencies by the complex Fourier 

series coefficients gk  of gp(t). This is evident in Figure 2.1(c) and (d), 
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and is easily proved by comparing the coefficients gk  to the transform 

G((0). For, expanding g(t) in a Fourier series in the interval (0,T ), 

as in Equations (2.2), yields: 

g (t) = 

 

gk.exp(JkCOot) 	 (2.4a) 

   

with the coefficients gk  given by: 

gk  = 1 	g(t).exp(-jk ()Jot) dt 
b  0 

and comparing this to the transform G(W) of g(t): 

G(10) = 	g(t).exp(-jC0t) dt 
0 

we have: 

(2.4b) 

(2.5) 

gk 

	G(k(J0) 	
— co  .4 lc ‹. co 	 (2.6) 

When the sequence f(nT) is used in place of the truncated 

function g(t) in Equation (2.413) above, the integralyeduces to a 

summation and the coefficients gk  become: 

N-1 
1 
N 

n=0 

giving a periodic line spectrum that repeats itself every N points. 

If g(t), and therefore gp(t), are bandlimited with: 

gk - f (nT). exp( jk WonT) 	(2.7) 

gk = 0 9 
1k 1>  N-1 

2 (2.8) 

then gk  and gk would be equal over a range of k [31] : 

N-1 
- 

gk  = gk = 	f(nT).expOktOonT), 0 t<k‹,. N21  

n=0 

(2.9) 
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Comparing the above expression for gk  to that for the DFT in Equation 

(2.3a), it can be seen that they are the same except for a factor N, 

and r and k both bounded: 

11E2/ — 
N 	gk' 

0 < r—k <N21 	(2.10) 

The coefficients gk, however, have been shown in Equation (2.6) to 

specify G( (1) ) , and we thus have: 

gk = 	N 	I 

	

F(k. 	G(k (.00)

' 

 
0 < k < N2

1  

from which it is seen that the DFT values are the same as the sampled 

values of the continuous transform, except for some scaling, and with 

Q = W
o, Examination of the definitions of Q 

 and Wo as in Equations 

(2.3c) and (2.2e) respectively shows that they are in fact equal. 

It was assumed in Equation (2.8) in the foregoing analysis 

that g(t) was bandlimited and that the sampling rate used in obtaining 

f(nT) was high enough to account for all the constituent frequencies 

of g(t). A truncated time function, however, can never be bandlimited 

[28] , and therefore in practice aliasing is invariably introduced. As 

a consequence, the DFT values will differ from the Fourier series 

coefficients, as is depicted in Figure 2.1(d) and (e), with the exact 

relation now given by D13 : 

co 
F(10) = 
	E gmN+k' 
	0 <k<N 	(2.12) 

1:1- 00 

It must also be remembered that, even with aliasing, the 

transform G(W) which the DFT values specify is in fact the convolution 

D2] of the desired continuous transform F((0) of the original signal 

f(t) with the transform of the rectangular truncation window, the 

(2.11) 
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latter being of the sin  xform: 
x 

	

oo 	sin [LO-0:S] 
G(10) = T. i'F(0).expE-9.1-0.1] . 	t 	. d9 

	

--m 	 (w-g) 
(2.13) 

G(UJ) will be a smeared version of F(03), as in Figure 2.1(a) and (c), 

and the degree of resemblance between the two cannot be perceived 

off-hand. It is obvious, however, that resemblance increases with the 

duration T of the window, with the sin x function becoming a delta 
x 

function in the limit as T--)co , and making G(60) and F((0) identical. 

The above suggests that the DFT of general composite wave-

forms may be difficult to relate to the continuous transform. For 

this reason, the analysis of the DFT performing as a digital harmonic 

analyser is now studied from a viewpoint that will shed more light on 

its mechanism. 

2.1.2 	A Novel Approach 

The finite sequence f(nT) has so far been obtained by 

truncating, repeating and sampling the continuous waveform f(t). The 

sequence could in fact be directly obtained by multiplying f(t) by the 

discrete rectangular window wR
(nT) as in Figure 2.2. 

Thus, in the frequency domain, F( (0) is convolved with the 

spectrum of the discrete window given by %33] : 

 - 
   

WNT 

ej ) exp[W(421)T].sin
( 

(2)  
sin(*) 

 

giving a spectrum the samples of which at discrete frequencies are 

specified by the DFT values, as in Figure 2.2(c) and (d). If a single 

cosinusoid is therefore to appear as one component only in the DFT, 

2TC 
its radian frequency must be a multiple of RT., as only then would the 
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continuous transform be sampled at the peak of the sin  Nxfunction, sin x 

giving— N , and sampled at the zeros located between the sidelobes 2 

elsewhere. 

This leads to the fundamental result that correct DFT applic- 

ation is only when the frequencies making up the waveform being analysed 

are all multiples of a fundamental the period of which is defined by the 

duration NT of the window. The highest frequency allowed would still be 

restricted by the sampling rate being employed. Such a waveform will be 

periodic, and is thus characterised by a harmonic spectrum [243 . 

To illustrate this for a simple waveform consisting of one 

frequency only, consider: 

f(t) = Am.cos(mWot) + Bm.sin(mWot) 	(2.15) 

When this waveform is expanded in a Fourier series over a period I, 

2T1 equalling 77—, the coefficients gk  of the series will all be zero, 

except for gm  and g-m, and these, being complex conjugates, combine to 

give the real cosine and sine coefficients of Figure 2.3(a). Sampling 

f(t) every T seconds, with T = 2T1' gives the sequence f(nT), and the 
NW 

DFT of this will consist of one component with a real and an 

imaginary part that are N/2 times the cosine and sine coefficients of 

the series respectively, as is shown in Figure 2.3(b). Thus: 

F(mQ) = Fo(mS?) + j.Fs(mg) 

= N.gm  

Nt = -ffkAm  - jBm) (2.16) 

and the cosine, rather than the sine, therefore appears as possessing no 

phase in the DFT. From this, it would be more logical to take the cosine 

as the reference waveform, and this will be the case in the rest of this 

thesis except when otherwise stated. 
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2.2 	DETERMINATION OF THE DIT PARAMETERS 

The rise of the DFT for the analysis of waveforms generated 

on faulted transmission lines is now examined. The 50 Hz fundamental 

that is predominant under both steady—state and fault conditions is 

taken as the frequency increment of the DFT, and as has been established, 

the analysis will be exact only when all other frequencies present 

stand in simple multiple proportion to one another and to the 

fundamental. The likely presence of nonharmonics and subharmonics of 

the fundamental, and of exponentially decaying dc offset, is for the 

moment ignored. 

2.2.1 	Off—Line Analysis  

The spectrum of the signal is to, be specified up to a high 

frequency in this analysis. This necessitates the calculation of a 

long DFT that is carried out on a large computer. 

The spectrum is assumed to be of interest up to the 100
th 

- harmonic, or 5000 Hz,with any frequency above that being too small to 

justify initial analogue filtering.. The corresponding sampling rate 

that would equal or exceed the Nyquist rate [26,27] would be anything 

above 10000 Hz, giving a sampling interval T that is equal to or less 

than 100 p.sec. With a frequency interval S2 of 21-C x 50 radians/second 

(rad/sec), the number of samples N needed is calculated from Equation 

(2.3c) to be 200, covering the 20 msec. duration of the 50 Hz fundamental 

as expected. However, the computationally efficient Fast Fourier 

Transform (ItT) algorithms [25,34] could be used for the fast 

calculation of DFTs with lengths that are powers of 2, and N is 

accordingly chosen as the next higher value above 200 that is a power 

of 2, i.e. 256, giving 78.125 L1 sec. for T, with Q still at 2TE x 50 rad/sec. 



34. 
When a record of the fault waveform is not available, for 

one 	or another, over the entire 20 msec. immediately succeeding 

the fault incidence, the pronlem of completing the time sequence 

arises. One solution is to take all the undefined samples as zeros, 

giving a DFT resembling the DFT that would be obtained with all the 

sequence defined. Examining Figure 2.4(a) and (b) shows that the 

alternative use of the uncompleted sequence as it is gives a less 

accurate frequency representation, as well as upsetting the agreed 

choice of parameters, since the number-of samples available now is less 

than N. 

Sequence completion by other methods has also been suggested. 

One method Ex] postulates the partial repetition of the defined portion 
of the sequence over the undefined portion. Another recommends 

switching to a higher sampling rate EM: . Both these methods, however, 

can be shown to be unsatisfactory for the application considered here. 

2.2.2 	Real-Time Schemes 

The calculation of one or more spectral components of the 

DFT is to be carried out in real-time, and on a small processor or a 

minicomputer, in these schemes. Low sampling rates, giving short 

sequences, are employed because of the limited power of the processors, 

with the duration of the data window kept at 20 msec. Consequently, 

low order harmonics only are allowed, and an analogue lowpass filter 

is to precede sampling. This and all other aspects of real-time 

schemes are discussed in more detail in Chapters 4, 5 and 6. 
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2.3 	DATA TAPERING IN THE TIME DOMAIN 

A continuous time function can only be observed over a finite 

length of time, or through a time window. Tn the frequency domain, the 

spectrum of the window convolves with the spectrum of the signal and 

smears it, or spreads it out. The phenomenon, known as leakage, is 

illustrated in Figure 2.1(a), (b) and (c) for the standard rectangular 

window. Other windows have been devised with spectra in which side—

lobes are suppressed at the expense of wider main lobes, and the use of 

such windows reduces leakage in the spectrum of the signal being 

observed. In the time domain, these windows aim at rounding off 

potential discontinuities at each end of the finite time function being 

analysed. 

With discrete time functions, the standard discrete rectangular 

window of Figure 2.2(b) is replaced by other discrete windows for 

leakage reduction in the DFT. This, however, involves some inter-

mediate changes in the interpretation approach described in subsection 

2.1.2, and it would be easier to introduce the desired window by 

finally multiplying the finite sequence of time samples of Figure 2.2(d) 

by the appropriate weighting coefficients, thereby retaining the 

rectangular window as an intermediate step. Such multiplication of 

time sequences corresponds to the convolution of the repeated DFTs of 

the original time sequence and the window, and this convolution in turn 

reduces to the periodic discrete convolution of the two DFTs. The 

mathematical proof of this result is of no particular interest here 

and can be found elsewhere D5,333 . The result itself can be restated 

to mean that the effect of employing a discrete window on a finite time 

sequence can be investigated by cyclically convolving the DFT of the 

sequence with that of the window. 
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A discrete hanning window, the coefficients of which are 

arrived at by sampling the well-known continuous hanning window [253 , 

will be used here. The DFT of this discrete window is readily obtained 

by expanding its continuous version in a Fourier series, and is in fact 

no more than a fundamental component and a dc component, the latter 

having a magnitude which is twice that of the former. 

The effects and merits of windowing will now be studied. The 

component of prime interest in the DFT is the fundamental, and the 

fidelity in its reproduction is to be used as a criterion. A 64-point 

DFT is employed, this being a compromise between the long 256-point 

DFT decided upon for the use in off-line analysis, and the short 8 or 

probably 16-point DFT expected to appear in real-time schemes. The 

relevant parameters are chosen in a manner similar to that outlined in 

Section 2.2. 

2.3.1 	Signals with Harmonic Spectra  

Figure 2.5 shows the DFT of a 150 Hz cosinusoid, together with 

a smaller 500 Hz component and a dc component. Both cosinusoids are 

faithfully reproduced in magnitude and phase, and it is expected that 

the fundamental itself and all its other permissible harmonics (50, 100, 

150, 200,...,1550 Hz) will also be correctly reproduced. The phases 

cover the full circular arc of 2TL, and the restriction imposed by the 

principal value of the tangent being -11/2 to TL/2 is corrected for by 

the examination of the real and imaginary parts of the transform and 

the subsequent addition of }TL  to the arctangent when necessary. 

The dc component always appears as real, with its magnitude 

being twice what is expected, since it is the only component with no 
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image in the spectrum. A cosinusoid of 1.0 amplitude and 180°  phase, 

for example, appears as a component with a magnitude of 32 ( = -g), and 

when its frequency tends to zero, transforming it into a negative dc 

of 1.0, the spectrum will show a dc component of magnitude 64. 

The effect of the application of the hanning window is seen 

in Figure 2.6. The wide main lobe in the spectrum of the window, 

manifesting itself in a fundamental component in its DFT, explains the 

relative distribution, though only local, of the spectrum now. The 

phases, however, remain correct at the component frequencies. 

• 

2.3.2 	Nonharmonics and the Exponential dc Offset 

The exponential dc offset encountered in voltage and current 

signals on transmission lines is known to have a time constant that 

covers several cycles of the 50 Hz fundamental [M] . Its DFT would 

thus be very much like that of a proper dc, and only differing in the 

small contributions that would now appear at low harmonics. 

Figure 2.7 shows one such exponential dc, with a time constant 

of 100 msec., superimposed on a 50 Hz cosinusoid. Both components 

appear accurately in the DFT, with the phase of the fundamental also 

correct. The error contributions to the fundamental from the 

exponential dc could subtract, through negative real and imaginary 

parts, from the fundamental component, which explains why this latter 

component now appears slightly smaller than 32. 

Windowing an exponential dc is not admissible, since the 

wide main lobe of the window's spectrum creates, when convolved with 

the dc component in the DFT, a fundamental that is in fact not present 



as in Figure 2.8. Such a fundamental also appears when the second 

harmonic is windowed. 

Nonharmonics, in the absence of a fundamental, result in a 

small apparent component at 50 Hz. This component becomes negligible 

when the nonharmonic giving rise to it is either close in frequency 

to a harmonic, or is considerably higher than the fundamental. The 

use of a window is thus not contemplated here, with the total absence 

of the fundamental being unlikely in the first place. 

2.3.3 	The Combined Presence of Harmonics and Nonharmonics 

When nonharmonics appear together with the fundamental and 

harmonics, the DFT gives a fairly good reproduction of the fundamental 

in both phase and magnitude, this being more so when the frequencies 

of the nonharmonics in question are considerably higher than 50 Hz. 

Figure 2.9 shows one such case. The use of a window here only slightly 

improves the amplitude distribution in the DFT, reducing leakage due to 

nonharmonics, but more significantly it also halves the magnitude of 

the fundamental, as can be seen by comparing Figures 2.9 and 2.10. 

2.4 	CONCLUSION 

The Discrete Fourier Transform can be used for the accurate 

spectral analysis of a periodic bandlimited signal, with its parameters 

depending on the period and bandwidth of such signal. 

The presence of nonharmonics introduces some errors in the 

analysis, and, although at first it may seem that such errors can be 

reduced by windowing data, further consideration shows that the 

38. 



advantages gained by using windows are in fact limited. A window 

would halve the magnitude of the fundamental component when such 

component is originally present. More importantly, a large apparent 

component would appear at the fundamental frequency by windowing a 

de or a second harmonic component, when the fundamental is in reality 

absent. It is thus decided against the use of data windows for all 

the applications of the DFT that are considered in this thesis. 
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CHAPTER 3  

TRANSMISSION LINE FAULT TRANSIENTS  

Transmission lines are linear networks, with parameters such 

as inductance and capacitance that can be regarded as frequency 

independent. However, the lossy nature of some lines introduces 

frequency and delay distortions [x] whereby different frequencies 
travelling along the line undergo varying attenuations and propogation 

delays. Thus, abrupt changes in voltage and current caused by faults 

or switching would travel distorted along lossy lines, giving rise to 

what is known as transient distortion. 

In the recently introduced domain of computer protection, 

the acceptance of proposed digital relays is governed by reliability 

considerations that are known to impose searching and stringent tests 

[2] on conventional relays. Such considerations necessitate the 

knowledge of the nature and composition of fault transients, that in 

turn makes possible the simulation of fault waveforms and their use 

for proving the algorithms employed in the digital relays. 

Power system switching and energisation transients [37] , that 

are in some aspects similar to fault transients, have recently been 

shown some increased interest. This is because the extremely high 

transmission voltage levels being used nowadays mean that the design of 

insulation which, in the past, was mainly determined by lightning 

discharge causing overvoltage phenomena [37,38] , is now more determined 

by the behaviour of the system under switching conditions. Thus, 

conditions under which transient voltages might develop had to be known 

for the reliable operation of power systems, and methods for the 

analysis of twitching transients were consequently developed. 



47. 

In this chapter we present a simplified analytical study of 

fault transients. employing a method that has been suggested elsewhere 

[37,39,40] for determining switching transients. Also presented are 

the results of off-line analysis, of some actual fault waveforms, 

obtained by the technique described in Section 2.2. We finally attempt 

to arrive at a basic description of fault transients based on the 

analytical study and the numerical analysis. 

3.1 	TAE TRANSMISSION LINE EQUATIONS  

The partial differential equations that give the variation of 

the voltage v and current i on a transmission line, with respect to both 

time and distance, are well known [X] . They are derived by considering 

voltages and currents in an incremental length Ox of a transmission 

line, accounting for the distributed character of the line, as in 

Figure 3.1. The use of a distributed-parameter model automatically 

takes into consideration the wavelike propogation of voltages and 

currents, giving rise to the finite travelling time On the line, which 

is necessary for the study of transients. 

The equations themselves are simultaneous partial differential 

equations: 

- 2- 	' 	L. 	'
v(x t) - R.i(x,t) + L 	i(x t) 

Ox  

and 
- i(x,t) = G.v(x,t) + C4Tv(x,t) 8x  (3.2a) 

where R, L, G and C are the line constants per unit length. The 

conductance G can be taken for most practical purposes to be zero, 

giving: 
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a 	,‘ t_ — a 4 ,,u, 	C . 8x 	at 
(3.2b) 

and Equations (3.1) and (3.2b) are the telegraph equations, which reduce 

to the lossless wave equations for R = 0. 

3.1.1 	Analytical and Numerical Solutions 

The analytical solution of the partial differential equations 

above is simple only in single mode propagation, and then only with 

simple initial and boundary conditions [39,40] . The mathematical 

complexity increases rapidly with the complexity of the network to be 

analysed. Recognising this in the study of switching and line-energis-

ation transients [39,40,41] , mathematical treatments which were based 

on iterative methods were adopted for the solution of the differential 

equations. 

The partial differential equations are reduced to ordinary 

differential equations by various methods. One such method [N] is based 

on a digital computer adaptation of the traditional transient analyser, 

which is used for setting up a scale model of the system being 

analysed. The ordinary differential equations resulting from 

replacing distributed-parameter elements, such as lines, by lumped 

IT or T sections, are then solved digitally on the digital computer 

by a Runge-gutta type of numerical integration routine. However, such 

use of lumped constants for representing lines introduces errors, 

since the representation behaves in the same way as the actual line 

for one particular frequency only, with an associated bandwidth. 

Wideband transients consequently have their high frequency components 

attenuated in the solution. This was demonstrated by Slemon et al D3 
in their investigation of the inaccuracies in the simulation of fault 

transients by models utilising lumped-parameter elements, together with 
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the effects of these inaccuracies on the performance of high speed 

static relays. From this, the use of several U sections for each line 

was suggested as an improvement, and this has formed the basis of the 

majority of fault waveform simulation programs that have appeared up 

to data. 

In another approach E403 , the partial differential equations 
-". 

are transformed into partial differential equations in only the space 

variable x, or ordinary differential equations, by the Laplace transform. 

Expressions for the voltage and current transforms are then obtained by 

digitally solving the ordinary differential equations through a trans-

formation of coordinates and the application of time delay functions. 

Finally, the inverse transforms of these expressions are formed, giving 

the voltage and current at any point on the line at any time. 

The Fourier transform also has been used 011.] for reducing 

partial differential equations to ordinary differential equations. In 

its usual form, however, this transform yields divergent integrals when 

applied to some functions that are normally encountered in transient 

studies, such as step and ramp functions, and consequently a modified 

Fourier transform was chosen which included an attenuation factor in 

the time domain. The voltage and current transforms were obtained, 

by solving the ordinary differential equations, in terms of hyperbolic 

distance variations and operational impedances. The inverse transforms 

were then formed by numerical integration, and gave the voltages and 

currents. 

Away from differential equations, another method E39:1 was 

proposed that required the calculation of the system response over a 

range of frequencies by the Fourier transform. This response was then 
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multiplied by the frequency description of a step input, giving the 

frequency response of the line to the step. The response in the time 

domain was then calculated by applying the inverse transform, solved 

numerically on a digital computer since analytical solutions could not 

be found in most cases. 

The Beitiley lattice diagrams also formed the basis of one 

method E393 , that was more accurate and more suited to the calculation 
of transmission line energisation transients. The line was specified 

by its surge impedance and surge travel times, and the reflected and 

refracted voltages and currents at junctions and terminations were 

calculated by the use of reflection and refraction coefficients as in 

a lattice diagram. 

The above numerical solution methods are each' applicable to 

one test condition at a time.-  None would give an indication of what 

transient compositions to be expected in general, and some assume 

simplified models that may not be accurate enough for transient studies. 

It was thus decided to try and develop analytical expressions for 

voltages and currents in simple networks in terms of line parameters, 

as these would provide a general description of transient compositions, 

and would enable computations of transients on different lines to be 

carried out. 

3.2 	A SIMPLIFIED ANALYTICAL STUDY OF FAULT TRANSIENTS 

An analytical solution to the fault problem sought is limited 

to very simple network configurations, as has already been discussed. 

The network chosen here is that of a single feeder connecting a 

generation node to an infinite bus, or the grid, as shown in Figure 5.2. 
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This choice is based on the fact that voltage magnitude, real power 

and limits to reactive power are usually all specified for a generation 

node in load flow problems E423. This makes possible the determination 

of current flowing from the node which, when used together with the 

node voltage as boundary conditions in the steady-state solution of 

the line equations, gives a simple solution, as will be seen in 

subsection 3.2.2 below. 

As a further simplification, only one phase is considered, 

narrowing the range of faults possible to open-conductor faults and 

conductor-to-earth faults. The former are of no appreciable 

significance in fast relaying, since the low currents, if any at all, 

associated with them can cause no damage to plant. Earth, or ground, 

faults, however, are of interest and will be investigated. Such 

faults will be treated as short-circuits or solid earth faultswhere the 

resistance between the conductor and ground drops to a very low value 

EC , usually a few ohms. 

The most common ground fault, however, is that in which a 

flashover occurs between a conductor and a tower D83 , with the 

resulting fault resistance comprising the arc resistance and the tower 

resistance, as well as the resistance between the tower footing and 

true earth. The tower resistance is negligible, but the arc resistance 

is appreciable, unless, of course, an arc does not form, as in the case 

of a fallen conductor [2] , for example. The tower footing resistance, 

too, is appreciable, and is known to range from a few ohms to a few 

hundred ohms, depending on the moisture content of the soil and on 

provisions taken for ensuring good earth footing E.38] . 

Fault resistance cannot therefore be neglected, as it can be 

comparable to the reactance of the line from the relaying point to the 
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fault. In what follows, however, the line equations are solved for 

a solid earth fault, and a fault resistance is not introduced until 

Chapter 8, where fault transients are simulated. 

3.2.1 	Fault Simulation: the Principle of Superposition [43] 

The Laplace transform technique is now to be used for solving 

Equations (3.1) and (3.2b) for the line voltage and current during a 

fault. The knowledge of these quantities at the sending end of the 

line is sought. 

A solid earth fault reduces the voltage at the fault point to 

zero, as in Figure 3.3(a). The complete transient solution of the line 

equations, with such voltage as a boundary condition, is intractable, 

and will, at any rate, involve the steady-state solution as a means of 

relating the voltage at the fault point to that at the generation node 

at the instant of fault incidence. The knowledge of such a relation is 

important because the performance of a relay is usually assessed in 

terms of the state of the voltage at the sending end of the line when 

the fault occurs. 

The inevitable need for the steady-state solution makes it 

more logical to combine this solution with a much simpler transient 

solution, for obtaining the complete transient solution. The linearity 

of the line allows such superpositioning, whereby the disturbance by 

the fault is viewed as the sudden application of a fictitious voltage 

source to the fault point while the system is at rest, and with the 

original voltage source e(s) removed, as in Figure 3.4. This 

fictitious voltage, together with the steady-state voltage, now gives 

the short-circuit condition as in Figures 3.3(b), (c) and (a). 
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The fictitious source must be equal in magnitude and 180°  

out of phase to the voltage at fault point. The steady-state solution 

of the original source, and the transient solution of this fictitious 

source, are now discussed. 

3.2.2 	The Steady-State Solution  

As mentioned earlier, the choice of a feeder for the network 

meant that the voltage and current at the generation node, or the 

sending end, are known and could be used as boundary conditions. With 

a sinusoidal excitation voltage e(t), they are simple harmonic functions 

of time: 

v(0,t) = Vs.sin(Wot) 
	

(3.3) 

and 	i(0,t) = Is.sin(600t - Ps) 	 (3.4) 

with VS  and I real constants. Now, the voltage and current along the 

line will also exhibit this harmonic variation, since the line is 

linear, and therefore a symbolic solution [36,44] of the equations that 

will employ time independent functions is: 

v(x,t) = Im Eyx(x).exp(icoot)] 	 (3.5) 

and 	i(x,t) = Im px(x).expOW00".] 
	

(3.6) 

X(x) and Ix(x) being both complex functions of x. Substituting 

Equations (3.5) and (3.6) in the line equations, Equations (3.1) and 

(3.2b), gives: 

and 

dV 
= OR 	L),I 	Z - dx 	o 	= - 	•I  x 

dI 
- cur 	o = 	c).vx  = Y.Vx 

(3.7) 

(3.R) 
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Z and Y being the series impedance and shunt admittance per unit length. 

Eliminating Ix  and Vx  respectively from the above equations gives: 

and 

d2VX 
= y 2.v  

dx2 

d
2
Ix = y 2., 

X 
dx
2 

and the general solution of the voltage function Vx(x) and the current 

function Ix(x) from either Equation (3.9) or Equation (3.10) above, 

together with Equation (3.7) or Equation (3.8), is: 

Vx(x) = A.exp(-Yx) + B.exp()/x) 	(3.11) 

Ix  (x) = 	exp(- 7x) - 	exp(Y ) 	(3.12) 
0 	 0 

and both Vx(x) and Ix(x) thus consist of wavelike disturbances moving 

in opposite directions, since 7, the propogation constant, is complex 

and is defined in terms of the attenuation constant 0(. and the 

wavelength constant Ras: 

y 	C( + JP = vIT 

= V1R + juo0L).joioc 	(3.13) 

where both a and pare functions of LO
o 
since the line is with losses 

E363. A and B are complex constants, and the surge impedance Z0 is 
defined as: 

1 
Zo 	Y = 	= 1%1.0 

0 	 0 

(3.9) 

(3.10) 

and 

(3.14) 
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Using the boundary conditions of Equations (3.3) and (3.1+) 

in Equations (3.11) and (3.12), together with Equations (3.5) and (3.6), 

determines the complex constants A and B, which, when substituted back 

into Equations (3.11) and (3.12), and in turn in Equations (3.5) and 

(3.6), give for the line current and voltage the well known hyperbolic 

functions solution: 

v(x,t) = 1m Eys.exP(jCOot).cosh  ()(x)-Zo.I  .exPW(Jot  -0s)). sinh()(x)] 

(3.15) 

and 
	

i(x,t) = ImEIs.exp(j(W ot-f5)). cosh()/x)-YoIrs.exp(jujot). sinh()(x): 

(3.16) 

The above equations can be rearranged to give the line quantities in 

terms of real sinusoidal variations as: 

v( x , t) = C exp( - ax) . sin( Wot- 13x+Oc )+D.exp(OC x). sin( to ot-r- px+gr,) 

(3.17) 

and 
	

i(x,t) = C.IY.01.exp(-0(x).sin((ijot-px+9c-Oz  ) - 
0 

D.IY01.exp(Ctx).sin(Ojot 3x 'OD  - Oz  ) 	(3.18a) 

with the real constants C and D, and angles AC  and 0D' defined by: 

c.expOod = 2 CVS + Izol.T.3 .0xp(gez  - ps )).] 	(3.J8 b) 
0 

D.exp(jOD) = 2 CVs - IzoOs .exp(goz  — 0s ))..] 	(3.1B) and 
0 

Equations (3.17) and (3.18) describe standing waves for the 

voltage and current. The variation of either quantity with time, on a 

particular point along the line, is thus sinusoidal. The difference 

between the amplitudes and phases of these sinusoidal oscillations at 

various points on the line is small, since, assuming a velocity of 

propogation equalling that of light, the distance that the corresponding 
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travelling waves cover in one cycle would be 3720 miles, which is much 

greater than the length of the transmission line, that seldom exceeds 

100 miles and only accommodates a small portion of the complete cycle 

of the standing wave pattern. However, the space variation cannot be 

neglected altogether, and Equation (3.17) will in fact be used to 

determine the fault point voltage for a particular sending end voltage. 

3.2.3 	The Transient Solution 

The Laplace transform is now used for reducing the partial 

differential equations, Equations (3.1) and (3.2b), to ordinary 

differential equations that are then solved for the voltage and 

current transforms in the transient solution of the initially quiescent 

line. The steady-state voltage at the fault point P at the moment of 

fault occurrence determines the fictitious source voltage, and its 

magnitude Vf and phase Of  are found for a particular sending end 

voltage Vs.sin((00t1 ) by the use of the fault inception angle (Dot', 

together with the fault distance xf, in Equation (3.17). 	The 

instant -0 corresponds to the time t = 0 in the transient solution, 

and we thus have: 

v(xf,t1 ) = Vf.sin(Of) 	 (3.19a) 

where 0f, 
which is the phase angle of the fault point voltage at the 

instant of fault occurrence, is now measured with the sine wave, rather 

than the cosine wave, as a reference. This is a convention that also 

applies to the fault inception angle, and is noted here because it 

contradicts the convention adopted in the Fourier transform studies, 

where the cosine wave was taken as the reference. 
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The fictitious source voltage is now given by: 

ef(t) = -Vf.sin(COot + Of) 	 (3.19b) 

and this forms one boundary condition, the other being: 

v(O,t) = -Rs.i(0,t) - 	 (3.20) 

where R and L are the resistance and inductance respectively of the 

source impedance Zs. 

Taking the Laplace transform 'of the line equations, Equations 

(3.1) and (3.2b), yields the time independent relations: 

a - a7 V(x,$) = R.I(x,$) + L [s.I(x,$) - i(x,0)] (3.21) 

and a - Tc-i(x,$) = Es.v(x,$) — v(x,o)] (3.22) 

which, with the initial' conditions i(x,0) = v(x,0) = 0 for an initially 

quiescent line, gave after the elimination of I(x,$) and V(x,$) 

respectively: 

2 
/ 

2 1.7\xsi
1 	1 + 	 (3.23) 

ax 

B2
2 I(x,$) = s.C.(R + sL),I(x,$) 	(3.24) 

and the solution of any of the above equations consists of a complementary 

function and no particular integral. For the voltage transform: 

V(x,$) = E(s).Pxp(-ysx) + F(s).exp(ysx) 	(3.25) 

where E and F are functions of s, and)(
s is defined by: 

2 s  = s (R. sL)  (3.26) 

The current transform is found from Equation (3.21) to be: 

ax 

and 
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-. 	t I(x,$) = P(s).exp\(  - Vs"11 
	Y(s).expk  A,  x,1 

os 	os 
(3.27) 

with Z
os 

 given by: 

   

Zos = 
 1  	IR + sL 

os sC 

 

(3.28) 

The use of the Laplace transforms of the boundary conditions 

of Equations (3.19b) and (3.20) makes it possible to determine the 

functions E(s) and F(s), which, when substituted back into Equations 

(3.25) and (3.27), give: 

	

0)0,cos(0f)+s.sin(0f) exp(+ )(s-x)- r(s).exp(2Ysx) 	(3.09)  
V(x,$) = 

s2 +W
2 	• exp(+)/sxf)-p(s).exp(=ysxf) 

and 

wo.cos(y+s.sin(Of) exp(+ ysx) + r(s).exp(2Y s x) 
I(x,s) = +V"f.Y 	s2 +W2 	

• exp(+ 	
(,.30) 

0 
lisxf)+ f7(s).expWsxf) ‘' 

where rl(s), the reflection coefficient at the sending end, is defined 

as: 

r(s) _ 
Z os  - Ss  
ZSs + Z os 

(3.31) 

with the direction of travel from the sending end to the fault taken as 

reference, and with Zss  given by: 

ZSs = RS  + sLs 
	 (3.32) 

Inversion of the transforms in Equations (3.29) and (3.30) 

is much simplified with the reflection coefficientr(s)taken as +1. 

The source e(t) is thus assumed ideal, with zero impedance. This 

gives for the current transform I(x,$): 

Loo 
 

.cos() 	
2 

 + s.sin(0f) 	
cosh(y

sx) 
I(x,$) = +11.f.Yos. 	 (3.33) 

sinh(Ysx) s +too  

The voltage transform, however, is now reduced to zero, and 

the sending end voltage is probably best estimated by the substitution 



wocos(Of) + s.sin(0f) 1 I(0,$) = +irf•Yos• 	2 	2 	 • (3.34 ) 
s + 	sinh( y sxf) 
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of the sending end current , in Equation (3.20). The sending end 

current itself is obtained by taking the inverse transform of Equation 

(3.33) with x = 0: 

which, with poles at s = ±jeoo, gives a sinusoidal component: 

4-171.11/01 
ii(0,t) - 	H, 	• sin((Oot + Of  - Az  - on) 

0 

where 	H.exp(jOH) = sin h()/xf) 	• 

(3.35a) 

(3.35b) 

and, with other poles given by the solution of Zos  . sinh(1(sxf) = 0, 

yields an exponentially decaying dc component for s = -L• R' 

 = 	

+Vf    .sin(AD-Of).exp(- 1-!.t) 	(3.36a) 

x .111.2+1A2  f V 	0 

wL 
where 	Az  = arctan(--Tr-) 	 (3.36b) 

d 

R + and an infinite number of high frequency components for s = -27 - 

i3(0,t) = 

where 	wn 

T 	x
f/EU 

RT 
= En 7M7n 

+2\rf.kin.  4.  
n 

k2n.T.4717 

0n =kln 
-

k2n 
arctan(=-21) En  

n.k. exp(- 	t) . sin( Wn/7E2. t + On) n 2L (3.37a) 

(3.37b) 

(3.37c) 

(3.37d) 

(3.37e) 

(3.370 
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kln'exP(jQkln 
) = wo.cos(0d- E n. Wri.sin(Od+p4f-7!.sin(Of ) (3.37g) 

(1 	2E 2) 	(1)02+ 2j. E co21; 	E  2 and k2n.exp( jOk ) = 2 W. n 2n 
(3.37h) 

The complete current solution is not obtained by adding the 

steady-state component i(0,t) of Equation (3.4), to the transient 

components i1, i2  and i3(0,t) of Equations (3.35a), (3.36a) and (3.37a). 

The fault inception angle 000t1  is introduced as a phase in the steady-

state current, transforming its time origin to the instant of fault 

incidence, as with the transient components. The steady-state current 

is thus written as: 

i(0,t) = Is.sin(Wot + Oss) 
	

(3.38a) 

where 
	

Pss = wov  Ps 
	

(3.38b) 

An estimate of the magnitudes of the steady-state and 

exponentially decaying dc currents of Equations (3.35a) and 

(3.36a), shows that these currents are comparable to the prefault steady-

state current in the network. The initial value of the dc offset 

depends on the fault point voltage phase Of, which combines with the 

impedance angle Az  of the line. The latter is nearly TL/2 for high 
d 

voltage lines, which means that a small fault inception angle, giving 

in turn a small 0f' would result in a large dc offset, while a fault 

inception angle of TC/2 would reduce the dc to zero. Such variation 

of the dc offset is substantiated by observations that have been 

reported elsewhere [3,9] . 

The damped high frequency current components of Equation 

(3.37a) are also influenced by the angle pf, but in the opposite manner. 

The coefficient kn can be seen to be roughly proportional to sin(Of), 



61. 

meaning that a zero fault inception angle gives no high frequency 

components. The significance of these high frequency currents, even 

with 0f equalling Tt/2,  is, however, questionable. This is.because of 

the presence of the relatively large surge impedance term in the 

denominator of the expression of Equation (3.37e) for the coefficient kn. 

The complete solution of the voltage, obtained by adding the 

steady-state solution to the transient solution that is found from the 

transient current solution and the source impedance, will also contain 

a steady-state component, an exponential dc offset and an infinite 

number of high frequencies. The exponential dc, however, is now much 

smaller than the steady-state value, mainly because the sourcets 

inductance, as obtained from the subtransient reactance of the 

generator, is usually not large enough to produce an appreciable 

voltage from the exponential current of Equation (3,'36a). 

The high frequency components, on the other hand, are 

expected to be more significant in the voltage, and mainly because their 

frequencies, being much higher than the fundamental, would result in a 

larger source reactance than for the steady-state component. The 

frequency of the lowest of these frequencies is roughly inversely 

proportional to the distance of the fault from the sending end, 

Equation (3.37b), and is about 900 Hz for a 400 kV line and a fault 

distance of 100 miles. For a closer fault, say 10 miles, the frequency 

goes up to 9000 Hz. Such dependence on the travel time T along the 

line justifies referring to these 	high frequency components as the 

eigen frequencies of the network. 

The generation of the high frequency transients on a faulted 

line is attributed to the discharge of capacitive energy through the 
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line's inductance D] . It has been recognised for some time, and has 

in fact formed the basis of some protection schemes. The team at the 

University of Missouri-Columbia [0] , that attempted the detection of 

these frequencies, arrived at a relation describing their dependence 

on the fault distance, to which the relation envisaged above is similar. 

The time constant of the dc nurrent offset is governed by the 

series impedance of the line, and is typically over 50 msec. This 

explains using time constants of 100 msec for the dc offset analysed 

by the DFP in Chapter 2. The high frequencies considered then were, 

however, only a few hundred Hz, such being significantly lower than 

the eigen frequencies predicted by the analytical study. This is 

because the eigen freqiencies, together with some even higher frequencies 

generated by scattered switching operations, are all expected to be 

removed by the analogue lowpass filter that is to precede the 

analogue to digital convertor (ADC) of any digital processor. The 

relatively low frequencies chosen were, on the other hand, used 

because it is known that such frequencies can sometimes appear as 

ringing, or resonance, between the line capacitance and the leakage 

reactance of the transducers [4] , that are used for voltage measure-

ments, and that the model line employed so far does not consider. 

The capacitor voltage transformer (c.v.t.) is one such transducer 

that is most commonly used, and is shown schematically in Figure 

3.5. The existence of these resonance frequencies will now be 

demonstrated through the spectral analysis of a few actual fault 

transients. 
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3.3 	THE ANALYSIS OF REAL FAULT WAVEFORMS 

The complexity of the average interconnected power system 

makes simulation studies possible only when simplifications are 

introduced. As was seen in Section 3.2, the analytical study of a 

simple model of one transmission line still required further 

simplifications, simplifications that made the validity of the results 

of the study questionable. 

The composition of the fault-transients, as arrived at so 

far, has thus to be substantiated, or more probably complemented, by 

studies utilising actual fault waveforms. This is of importance at 

this stage because the design of the digital relay, that is to be next 

considered, would largely depend on the frequency contents of the 

waveforms that the relay will be expected to process. 

3.3.1 	Data Acquisition: Test Conditions  

The waveforms used were obtained from magnetic tape 

recordings of fault voltages and currents on the Sundon end of the 

Sundon-Cowley 400 kV three-phase circuit, which forms a part of the 

CEGB Supergrid. The first fault, fault A, was a phase-to-earth 

fault, obtained by fixing a fine steel wire between the blue phase 

conductor and earth at a point 33.5 miles from Sundon, as in Figure 

3.5, with the circuit-breaker CB1 open. The oscillograms of 

Figures 3.6(a) and (b) show the blue phase current and the yellow 

phase voltage after the circuit-breaker CB1 was closed. The yellow 

phase voltage is used in the analysis because the blue phase voltage 

was almost zero. 
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Fault B was a blue phase short-circuit close to the Sundon 

end of the circuit, and immediately following the c.v.t., as shown 

in Figure 3.5. An earthing lead was now used in place of the steel 

fuse-wire, and the circuit-breakers switching sequence adopted was 

the same as that for fault A. Oscillograms of the blue phase current 

and yellow phase voltage are shown in Figures 3.6(c) and (d). 

High fidelity recordings of the fault currents and voltages, 

produced on a precision tape recorder with a 10 kHz bandwidth, were 

made available to us. It was decided to sample these at a rate of 

12.8 kHz, and feed the samples into a large computer (CDC 6400) for 

carrying out off-line analysis. 256 samples, covering the cycle of 

the 50 Hz that immediately followed fault incidence, were analysed, 

in accordance with the procedure developed in subsection 2.2.1. The 

analysis results are shown in Figure 3.7. 

3.3.2 	Results of Spectral Analysis 

The fault inception angle was zero in both faults. Large 

exponentially decaying currents are thus expected, and they do in fact 

clearly manifest themselves in the spectra of Figures 3.7(a) and (c). 

The absence of the eigen frequencies from the voltages is also 

consistent with the one-phase model studied, where a zero fault 

inception angle gave no eigen frequencies. 

However, the spectrum of the voltage of fault B, Figure 3.7(d), 

also shows a significant component at and around 250 Hz. This is also 

evident in the oscillogram of Figure 3.6(d), and is presumably the 

resonance components that the analytical study does not predict, and 

that is accounted for by the presence of the c.v.t:s. As well as this 
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resonance, c.v.t!s have been shown L45.] to introduce enough errors in 

transient voltages to degrade the performance of conventional relays 

in speed and stability. Further considerations of the effects of the 

c.v.t.'s are, however, outside the scope of this thesis. 

The dominance of the resonance components has recently been 

pointed out by Thorp et al F203 , in their attempt at establishing the 
dependence of these components on the prevailing structure of the power 

system. From a systematic study that involved a very large number of 

faults simulated on a laboratory model of a line, and covering various 

system configurations and types and locations of faults, Thorp et al 

observed that both voltage and current waveforms contained significant 

components of frequencies ranging between 250 Hz and 550 Hz. The 

composition of the postfault waveforms was reported to be mostly 

dependent on the system.configuration, and almost independent of the 

fault type and location. 

Fault resistance, that the analytical model took as zero, 

can come about in a few forms. In test A, which looked like a short-

circuit, the fuse-wire started an arc that must have had a relatively 

high resistance, assuming that no metallic vapour was emitted. Arc 

resistance is known to be nonlinear, and this explains the 

distortion in the voltage during the first few milliseconds after 

the incidence of fault A, as in Figure 3.6(b). In fact, initial 

waveform distortion is to be expected even in faults involving 

conductors falling to the ground, as then numerous small arcs between 

conducting particles in the ground would contribute to an overall 

nonlinear fault resistance DO . 



The likelihood of an appreciable fault resistance in all 

phase-to-earth faults reduces the possibility of the appearance of 

the eigen frequencies with significant amplitudes. The damping that 

these frequencies undergo is increased by a fault resistance, and they 

are thus expected to appear for only a few milliseconds, if at all. 

3.4 	CONCLUSION 

The results of a simplified analytical study of a fault, 

combined with the analysis results of actual fault transients, and a 

number of other considerations and observations reported in various 

literature, suggest a composition of fault transients. 

Fault currents, it is concluded, can have some appreciable 

exponentially decaying dc offsets, as proved by the analytical study 

presented. Fault voltages, on the other hand, can contain some very 

high eigen frequencies of the faulted line and, more predominantly, 

resonance components of a few hundred Hz, caused by resonance between 

the lines and the capacitor voltage transformers. The possible 

existence of these resonance components was demonstrated by the DFT 

analysis carried out. 

Consideration of a few possible fault configurations showed 

that the fault resistance is not to be neglected. It is expected to 

result in high attenuation rates for the eigen frequencies, and its 

nonlinearity is expected to produce distortion in voltages and 

currents immediately following fault incidence. 
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Fig.3.1 Incremental length of a.  transmission line. 
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Fig. 3.7 Amplitude distributions of spectra of test waveforms. 
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CHAPTER 4  

THE FULL CYCLE METHOD: PROTECTION SCHEME I 

In Chapter 1 it was shown that most of the known digital 

• relaying methods were based on distance relaying, whereby the line 

impedance, and hence distance, to the fault was employed. One of the 

two categories of the protection schemes discussed had as its main 

effort the determination of the phasor representations of voltage and 

current signals from sampled data of their instantaneous values, with 

the line impedance then obtained from the ratio of such phasors. 

The Discrete Fourier Transform is one algorithm that is capable 

of determining a phasor representation from data samples. Its frequency 

selectivity properties were demonstrated in Chapter 2, and this chapter 

presents a study of a scheme based on its real-time adaptation. The 

scheme is referred to as the full cycle method because it requires data 

that cover one full cycle of the fundamental 50 Hz. Here, the 

filtering performance of the scheme is examined, and its suitability 

assessed in relation to the frequency description of fault transients 

as obtained in Chapter 3. Estimation of some typical fault detection 

times are finally given. 

4.1 	PHASOR REPRESENTATION 

The phasor representation desired is that of the fundamental 

50 Hz.component, and consequently the duration of data required is 20 msec, 

as justified in Chapter 2. A real-time scheme is concerned with the 

continuous determination of the voltage and current phasors, using 

data incorporating the latest samples of these quantities. For one 

quantity, then, N samples covering one cycle are stored in a shift 
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register, as in Fig. 4.1. Every sampling interval, a new sample is 

loaded in the left-most location of the shift register, and all previous 

samples are shifted one place to the right, with the originally right-

most sample discarded. 

The fundamental component is calculated from the stored 

samples as: 

N-1 

F(Q) 
	

f(nT).exp(-jQnT) 	(4.1) 

n=u  

which can be rewritten in a non-recursive digital filter form E46] as: 

N-1 

Fm(c?) = E f((m-N+1+n)T).exp(-jg(n+q)T) 	(4.2a) 

n=0 

The current output Fm  is now calculated from the current input f(mT) 

and (N-1) past inputs: f((m-1)T) to f((m-N+1)T), while the phase QqT 

is introduced to change the reference point of the orthogonal cosine 

and sine waveforms that make up the complex exponential. The original 

reference point corresponding to the oldest input sample f(0), as in 

Equation (4.1), is to be shifted by Q(N-1)T to the current instant in 

time mT. Such negative shift can be replaced by a complementary 

positive shift of QT, since QNT = 21T. We thus take q as 1, and the 

change of variable p = (N-l)-n in Equation (4.2a) now gives: 

N-1 

Fm(Q) = 

 

f((m-p)T).exp0Q(p+OT) 	(4.2b) 

 

r=o 

 

where the phase QLT is added for a possible improvement in the 

filtering performance of the scheme. 
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Equation (4.2b) can be implemented as two transversal digital 

filters [463 utilising one common delay line, as shown in Figure 4.2. 
The two filters, non-recursive, are defined by: 

N-1 

A(mT) = 	f((m-p)T).cos(g(p+ )T) 

p=0 

N-1 

B(mT) = 	f((m -p)T).sin(Q(p+ )T) 

p=0 

(4.3) 

(4.4) 

This digital filter representation lends itself easily to the concept of 

the filtering performance,_ or frequency response, of the scheme. However, 

the processor-algorithm implementation of Figure 4.1 is the one 

contemplated and will consequently be used for the study of all other 

aspects of the scheme, notably the fault detection times. 

In the processor-algorithm implementation, the line resistance 

and reactance are determined directly from the components of the voltage 

and current phasors, without the need for forming their quotient. In 

terms of V
L and IL' given by: 

VL  = Av  + j.B 	 (4.5a) 

and 
	

IL 	1 = A. + j.B. 	 (4.5b) 

the impedance, ZL, can be written as: 

VL 
+ j.X ZL  = 	= RI 	L  

A.A.+ B .B. 	A..B - A .B. v1 v  1 1 V V 1  

A.2 +13.24- j. A.2 + B.
2 

1 	1 	1 	1 

(4.6) 

and this form presents savings in the computations it requires since it 

avoids phasor division which involves square roots and trigonometric 

functions. 
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4.1.1 	The Sampling Rate 

The lowest permissible sampling rate D6,27,28] for a 50 Hz 

phasor representation must be greater than 100 Hz. Starting at 150 Hz, 

the rate must go up in steps of 50 Hz to ensure synchronous sampling. 

The corresponding number of samples per cycle, N, would start at 3 and 

increase in steps of 1. 

The time needed for calculating the DFT coefficient is deter-

mined by the number of multiplications involved, this in itself being 

a function of the length, N, of the data sequence. Interestingly, the 

rotating phasor exp(jc4T) exhibits some symmetry that makes it possible 

to replace some of the required multiplications by additions. In 

Figure 4.5, with N = 5, symmetry about the axis AB is apparent. This 

results in a reduction in the number of multiplications needed for 

calculating the real, or imaginary, part of the coefficient from N to 

(-1) 
 A further reduction is possible with even values of N, where 2 

additional symmetry would exist about CD, and likewise about EF when 

N is a multiple of 4. The total coefficient calculation time therefore 

increases in an irregular manner with N, since additions require 

typically only one—tenth as much time as multiplications. 

The variation of the coefficient calculation time, normalised 

at N = 4, is shown in Figure 4.4. It is evident from the figure that 

values of N that are multiples of 4 offer the distinct advantage of 

minimal total time to sequence length ratio. The calculation of the 

coefficient with N = 8, for example, would require a time shorter than, 

or as long as, that needed for N = 5, 6 or 7. We opt for N = 8, since 

this allows higher order harmonics in the time waveform, thereby 

reducing the stringent requirements on the initial analogue lowpass 
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filtering, the need for which is explained in Chapter 6. The choice 

will also be justified by the study of Section 4.2 of the frequency 

response of the method, which will reveal that non-harmonic suppression 

slightly improves in general as N increases. 

Of all the multiples of 4, those that are also powers of 2 

are preferred: 4, 8, 16 and 32. This is because the corresponding 

sampling rates stand in geometric progression, and would consequently 

give spectra, or frequency responses, of the scheme that are 

consecutively expanded by factors of 2. Spectrum expansion by any 

smaller factor is considered too small for a significant change to 

emerge in the response. Finally, values of N that are larger than 32 

are not considered because the real-time calculation of the DFT 

coefficients that they involve is not feasible. 

4.1.2 	The Processing Cycle  

The protection algorithm is to continually .determine the 

voltage and current phasors and line impedance, and decide on the 

presence of a fault. A processing cycle that comprises all these 

duties will require about 0.5 msec. for impedance determination, as 

from Equation (4.6), and another 0.5 msec. for executing the logic 

involved in relaying criteria that utilise digital relaying characteristics. 

The total duration of a processing cycle, however, will depend 

on N since it must include the time taken for the phasor determination, 

or DFT coefficient calculation. On a pdp-15 minicomputer with a 

multiplication time of 25 ptsec, this total amounts to 1.01 msec. for 

4 sic, 1.15 msec. for 8 sic, 1.43 msec. for 16 sic and 1.99 msec. for 

32 sic. 
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4.1.3 	Continuous and Fault-initiated Processing 

The sampling interval with 4 and 8 sic is longer than the 

duration of a processing cycle. This makes possible continuous 

processing, whereby a processing cycle is initiated immediately after 

the arrival of each new sample. However, with 16 and 32 sic, the 

cycle duration exceeds the sampling interval, making it necessary to 

employ an additional shift register for storing incoming samples as a 

processing cycle is being executed. The stored samples are then loaded 

into the main shift register, and another processing cycle initiated. 

Complications arising from the introduction of the additional 

shift register. with 16 and 32 s/c, can be avoided by employing an 

alternative sequence whereby the line impedance is calculated only when 

a disturbance is detected in the voltage or current. This fault-

initiated processing relies for the initial disturbance detection on 

comparing voltage samples to corresponding samples in the preceding 

cycle, and searching for cases when successive comparisons reveal 

differences that are in excess of a tolerance D1,12] . 

The high degree of stability needed in the disturbance 

detection logic, together with the lack of continuous impedance 

monitoring, render fault-initiated processing more suitable for fault 

classification and location algorithms [43] . Its adaptation in 

digital hardware or small processor relays, totally devoted to 

relaying one end of a line, offers no overall advantage over 

continuous processing, even at 16 and 32 sic when the latter form of 

processing requires an additional shift register. 
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4.2 	Ita, DISCRETE FOURIER. TR' NSFORM FILTER 

The frequency response of the scheme is now examined by the 

study of the digital filter implementation. In Figure 4.2, the 

outputs of the two non-recursive structures with orthogonal impulse 

responses are combined to form the phasor representation of the 50 Hz 

component. The analysis of each structure on its own can present no 

difficulty, and is easily obtained by employing the Z-transform [25,34] . 

However, the combined structure cannot be described in an equally 

simple manner, and will require extending the Z-transform approach. 

4.2.1 	The Cosine and Sine Filters 

The first of the two filters defined by Equations (4.3) and 

(4.4) has coefficients that are equal to the samples of a cosinusoid 

covering one cycle of its variation, with its frequency being that of 

the 50 Hz fundamental. This filter is thus referred to as the cosine 

filter. Similarly, the structure of Equation (4.4) with its 

coefficients given by samples of a sinusoid of the same fundamental 

frequency, is referred to as the sine filter. 

The frequency responses of the linear time-invariant cosine 

and sine filters are found through the formation of their transfer 

functions, such functions being identical to the Z-transforms of the 

impulse responses [463 . For the cosine filter, thus, taking the 

Z-transform of both sides of Equation (4.3) gives: 

m N-1 

EA(mT) 1-1  .E  f ( (m_pm.cos(s(p+ 9 )T)).z -1  
m=0 	n=0 

 

 p=0 

N-1 

Ecos(Q(p+ 2 )T). f((m-p)T).z-m  

0 p=0 
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N-1 

or 	A( z) = 	 c2 Lcos( (II+ )T).F(z).z-9 
	

(4.7) 
p=0 

which, when expressed as the ratio of the transform of the output to 

that of the input, becomes: 

N-1 

Hc(z)  = cos( Q (p+ P )10.z-9  

 

 

(1-z-N)(cosY - 	- x))  

1 - 2.z-1  .cos x + z-2 
(4.8a) 

(1-z-N) ( 	 4. 	exp(-j)() 	.. 
= 	 A4.8b) 

2 	-1 1-z .exp(jx) 	1-z-1  .exp(-jx) 

where 	x = QT 	 (4.8c) 

and 	'Y = Slur 	 (4.8d) 

Similarly, the transfer function of the sine filter is: 

(1-z 11)(siW(- z-l.sin()/-x))  Es(z) -  
1 - 2z-1  .cos x + z-2 

(4.9a) 

exPN)  (  O 	exp(-jY)  )(4.9b)  

2j 1-z-i.exp(jx) 1-z-i.exp(-jx) 

The substitution exp(-jUUT) for z-1  is now used in the transfer 

functions. For the cosine filter, this gives: 

,OONTsi !sin( 	1 	 2 
IB.c(eiLliT)1 - Icos(WT) -cos xl V(cos)/-cos(U)T).cosc(-x))2+(sinWT).cosN-x)) 

(4.10a) 

and A((i) = -COT(IT - 1) +li + arctan(cos,_ 
sin(0)T).cos()(-x) 	(4.10b) c  y 	 -x )  

where 	Hc(eitliT) = ± IB[c(ejLUT)1.exp(j.0c(03)) 	(4.10c) 
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and, for the sine filter: 

isin(44 
eiWTA - 	 (sin)/  -cos(U) T).sin()( -x))2+(sin(LOT).sin()/  -x))2  Icos(LOT)-cos xl 

and 

sin(COT).sin()/-x)  Os(W) = 	- 1) +II + arctan(
sin
y-cos((1) T).sin()1 -x)) 2 	2 

(4.11b) 

Inspection of Equations (4.1101ft&and (4.11a) above reveals that 

both frequency responses contain a cosCt-2  
K term. This is accounted for 

by the presence, in the transfer functions, of a comb filter (1-z-N  ) and 

two conjugate complex digital resonators exp(j )() 	exp(j)L1__ and 	. 
1-z-1.exp(jx) 	1-z-1.exp(-jx) 

These resonators combine to form a real cosine or sine resonator, which, 

• together with the comb filter, produce the cosine and sine filters that 

are in fact no more than an elemental frequency sampling filter D63 . 

Recursive realisations of the cosine and sine filters are 

therefore possible. A cosine resonator, for example, can either be 

realised as two parallel recursive conjugate first order complex resona-

tors E343 , or as two cascaded sections as in Figure 4.5. This 
recursive realisation may seem advantageous in the reduction it offers 

in the number of multipliers that would otherwise be needed for the 

non-recursive realisation of Figure 4.2. However, this is achieved at 

the expense of a few extra delays, and will only be of significant 

importance for very large values of N, where a large number of 

multiplications would still be needed in the algorithm even after the 

symmetry of the impulse response is exploited along the lines explored 

in Section 4.1. 

It is also known that stability considerations in resonators 

impose the use of damping constants [46] , in the resonator loops, to 

(4.11a) 
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prevent errors of various constants from giving rise to instability. 

This brings to light the significant fact that a stray pulse in the 

resonator input can give rise to an infinitely long cosinusoidal or 

sinusoidal error component. This component can only be made to decay, 

and relatively slowly, by critical damping. These factors combined 

make recursive realisation unattractive. 

A sketch of the frequency responses of the cosine and sine 

filters is shown in Figure 4.6(b). The comb filter has N zeros that 

are uniformly spaced along the unit circle in the z-plane, as in Figure 

4.6(a). Two of these zeros are coincident with the poles of the real 

resonator, and are thus cancelled. This gives a non-zero magnitude of 

N/2 for the frequency response at these points. 

The effect of Y, the additional phase in the impulse responses, 

is now examined. The filters should ideally transmit 50 Hz signals 

only, and have zero gains at all other frequencies. Differentiation of 

the magnitudes of the frequency responses shows that there exists a 

value of Y, for each filter, that minimises the magnitude of its 

response for all frequencies below 50 Hz. This value would seem 

optimum, since it results in the highest possible suppression of the 

dc and subharmonics, except that it also simultaneously maximises the 

response below 50 Hz for the other filter, and the response above 50 Hz 

for the filter itself. As for the areas under the responses, the value 

of Y that minimises such area for one filter maximises it for the other. 

Thus, no optimum value of Y  emerges, and it is taken as zero. 

The magnitudes of the frequency responses, 1Hc(ejtjUT)1 and 

IB (e3(1)71)1, are now plotted with 4, 8, 16 and 32 sic. Figures 4.7 

to 4.10 depict these responses, normalised at 50 Hz, and with a 5 Hz 
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frequency increment. They are all characterised by total dc and 

harmonic suppression up to their respective folding frequencies, and 

they all exhibit suppression of non-harmonics to an extent that 

increases with the sampling rate. 

4.2.2 	The Combined Filter 

The linearity and time-invariance that characterised the 

cosine and sine filters no longer apply when these two filters are 

combined to form the DFT filter. The magnitude and phase of the 

fundamental component are now directly outputted, as shown in the 

model system of Figure 4.11. This model will be used to examine the 

filtering operation that each signal, voltage and current, undergoes. 

While it was pointed out in Section 4.1 that the outputs of the 

individual cosine and sine filters could directly determine the 

impedance, analysis along these lines is avoided because of the complexity 

involved. 

The DFT filter is linear insofar as the principle of super-

position is applicable. The cosine and sine filters' outputs, resulting 

from various frequencies in the input, would in fact be the sums of 

the individual outputs for one of the input frequencies at a time. 

When one frequency is present at the input, an increase in its amplitude 

will give a proportional increase in the magnitude output of the filter. 

The presence of a non-harmonic, however, gives a contribution 

at the output that is interpreted as a fundamental component. In this 

respect, nonlinearity comes into being. More importantly, the 

magnitude output for a non-harmonic input depends on both the amplitude 

and phase of such input, and the filter is thus time varying. This is 



illustrated in Figure 4.12, where the normalised magnitude of the 

fundamental component in an 8-point DFT is seen to vary with the phase 

of the 70 Hz signal used. 

A conventional frequency description of the DFT filter cannot 

therefore be formulated. However, since all inputs are interpreted as 

fundamental components in the magnitude output, and since the 

faithful reproduction of the 50 Hz in a composite input would be ideal, 

then the error associated with such reproduction, and introduced by the 

non-harmonics in the input, could be used as a criterion. We therefore 

aim at a frequency plot that would display the levels of attenuation 

that non-harmonics undergo before appearing as contributions to the 

fundamental component in the magnitude output. 

The time-varying nature of the filter means that for each 

non-harmonic input there will exist a phase shift giving rise to the 

worst case of least attenuation, or highest transmission. Such phase 

and transmission could be found through the direct differentiation of 

the magnitude of the DFT fundamental component for a particular non-

harmonic, as obtained from Equations (4.3) and (4.4). However, an 

alternative approach based on the cosine and sine filters frequency 

responses, as already obtained, is opted for. 

Remembering that the cosine and sine filters are both linear, 

and time-invariant, their individual outputs for a cosinusoidal input 

with a phase, A.cos(WonT + 0), would in fact be cosinusoids of the 

same frequency W0  and with additional phase shift: 

ji0 T 
Oc(nT) = A.IHc(e 	° )1.cos(CO0nT + 0 + Oc(CO)) 	(4.12) 

82. 

and t Os(nT) = A.I 	)1.cosklOcnT + 0 + Os(C00)) (4.13) 
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which, when combined for a magnitude, yield: 

jalo(nT): 2  + Ds(nT)".] 2  = 

o( ej 	)12. co s2  (LtionT+0+0o  (Coo) )+IHs  ( ejW°T)1 2.cos2(WonT+041(.00)) 

(4.14) 

This magnitude is now divided by the amplitude A, of the input signal, 

to give the transmission: 

jW T 

I rics(e 	° )1  = 

JU)T.2 2' 	I f T%(2 2 =1/111o(e ° )1 .cos PonT+0+g0.00)+1Hske ° )1 .cos CoonT+04-0o(L00)) 

(4.15) 

The first derivative with respect to (COonT + 0) of the 

transmission of Equation (4.15) above can now be formed and equated to 

zero. One of the two resulting total phases gives the maximum trans- 

mission when substituted back into Equation (4.15). The procedure is 

identical to that when an input signal of the form A.cos(U00t) is chosen, 

but the argument (WonT + 0) is used to illustrate the fact that the 

phase corresponding to maximum transmission should not necessarily be 

an integer multiple of WoT simply because a sampled data system is 

at hand. 

Maximum transmissions, calculated at frequency intervals of 

5 Hz, are shown labelled as 'worst combined responses' in Figures 4.7 

to 4.10 for 4, 8, 16 and 32 sic respectively. They are seen to be 

quite similar to the cosine and sine responses, except in the immediate 

vicinities of 50 Hz, where their normalised magnitudes are greater than 

unity as a result of non-linearity. 

At the fundamental and all the harmonics the DIT filter 

exhibits linearity and time-invariance. This is explained by the phases 
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and magnitudes of the frequency responses of the cosine and sine filters 

at these frequencies. For the fundamental, for example, we have from 

Equations (4.10) and (4.11): 

..(eic2T) 	 (4.16a) 

and 
	iis(eic2T) 	 (4.16b) 

giving a transmission: 

iies(eiQT) I = AN/2)2 . c0s2( QnT4-0)+ (N/2)2. co s2(c2 	TL/2) 

= N/2 	 (4.17) 

which is independent of the input phase. Also, transmission at all the 

harmonics can be proved to be zero, and this is all in accordance with 

the properties of the DFT as discussed in Chapter 2. 

Formulation of the frequency response of the DFT filter 

through the conventional Z-transform approach would not be valid. It 

may be argued that the system of Figure 4.11 could be represented by a 

complex Z-transform with its real and imaginary parts defined by the 

transfer functions of the cosine and sine filters respectively, and 

with the frequency response then obtained by substituting exp(-jibT) 

for z-1. However, it is to be remembered that an imaginary transfer 

function can only describe an imaginary system with an imaginary 

impulse response, and that such impulse response is employed in the 

calculation of the output of the DFT filter, as in Equation (4.2h), 

merely because this calculation is simplified when complex arithmetics 

are used. In the real Fourier series, for example, both the cosine 

and sine components are real, and the appearance of the operator j in 

the time domain in the DFT is not to he confused with j that describes 

quadrature in the frequency domain. 
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The worst combined responses for different sampling rates 

all seem to have zero transmission at dc. This is significant in view 

of the likelihood of the presence of dc components in fault transients, 

as discussed in Chapter 3. However, the attenuation of the non-

harmonics is unacceptably low, at least with 4 and 8 s/c. This cannot 

be further discussed at this stage, as the introduction of an initial 

analogue lowpass filter is expected to modify the frequency responses 

in a manner that will warrant a separate study, and this is left to 

Chapter 6, 

4.3 	TIME DOMAIN PEaF011MANCE 

The abrupt change in the line impedance that accompanies a 

fault takes some time to manifest itself as changes in the voltage and 

current phasor repr2sentatious obtained from the filters. Fault 

detection times therefore depend on the speed at which these changes 

are transmitted through the filters, and the time performance of the 

protection scheme is now roughly assessed with such concept as a 

criterion. 

4.3.1 	Transient Delay 

A transient change in the input of a non-recursive digital 
filter, with (N-1) delays, is not fully felt in its output until NT 

seconds later, after the first post-transient sample has travelled 

Along the whole of the transversal structure. Some effect, however, 

would be transmitted to the output immediately after the transient 

change occurs, and would increase with time as more post-transient data 

appear in the delay line, as in Figure 4.13. 
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It is thus taken that the transient delay of the filter be 

defined as NT/2 seconds, this being the time that elapses before the 

midpoint of the output charge is reached. This approach, which only 

applies to non-recursive filters, borrows from passive analogue filter 

theory, where the step delay is defined as the time required for the 

output to reach half its steady-state value, with a unit step input [47] . 

4.3.2 	Estimation of Fault Detection Times 

The time that elapses between fault incidence and its 

detection is equal to the transient delay of the filters which the 

protection scheme employs, plus a processing cycle. To.  this can also be 

added one sampling interval, to account for the case when a sampling 

instant falls immediately before the occurrence of the fault. The total 

is therefore slightly over the transient delay value of 10 msec., since 

the processing cycle and sampling interval amount to no more than a few 

milliseconds, at least with 8, 16 and 32 s/c. 

For faults near the receiving end of the line, however, the 

impedance trajectory, as calculated from the voltage and current 

phasors, will not cross the relaying characteristic until probably all 

the contents of the shift register are postfault. The exact time 

required will in fact depend on both the position of the fault on the 

line and on the prefault load impedance ZR, this being very nearly the 

impedance that the relay initially sees, as will be proved in Chapter 8. 

A practical case, where the load impedance ZR  is three times 

as large as the series impedance Zd  of the full length of the line, is 

shown in Figure 4.14. With the impedance trajectory assumed to be 

travelling at a constant rate from ZR  to ZL, crossing the relaying 
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characteristic on, or in the vicinity of, its top boundary, the fault 

detection time can range from 13 to 20 msec., depending on the position 

of the fault on the line. 

4.4 	CONCLUSION  

A protection scheme based on a real-time adaptation of the 

DFT was described. The scheme involved the separate filtering of the 

line voltage and current signals, and this filtering action was 

analysed and shown to be favourable in view of the frequency composition 

of the signals it is intended to handle. 

Estimations of fault detection times revealed, however, that 

such times could run into the fundamental cycle duration mark, thereby 

reducing the competitiveness of the scheme against the very fast 

relaying target aimed at. 
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Fig. 4.7 

COSINE RESPONSE 

SINE RESPONSE 

WORST COMBINED RESPONSE 

Fig. 4.8 

FULL CYCLE METHOD 

8 SAMPLES PER CYCLE 

AMPLITUDES OF FREQUENCY RESPONSES 

COSINE RESPONSE 

SINE RESPONSE 

WORST COMBINED RESPONSE 



q0 
,I." • 

FULL CYCLE METHOO 

16 SAMPLES PER CYCLE 

RMPLI TUDES OF FREOUENCY RESPONSES 

COS I NE RESPONSE 

Fig. 4·9 

HORST COMBINED RESPONSE 

FULL CYCLE METHOD 

32 SAMPLES PER CYCLE 

AMPLITUDES OF FREOUENCY RESPDNSES 

COS I NE RESPONSE 

Fig. 4·10 

HORST COMBI NED RESPONSE 



93. 

magnitude output 

(fundamental) 

phase output 
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CHAPTER 5 

PREDICTIVE METHODS: PROTECTION SCHEME II 
.11••••• 

A real—time protection scheme based or the Discrete Fourier 

Transform was described in Chapter 4. The scheme was shown to be 

capable of satisfactorily filtering the 50 Hz component from the 

transmission line fault voltages and currents by utilising samples of 

these quantities covering 20 msec. However, this meant that faults 

near the receiving end of the line would probably not be detected by 

the scheme until about 20 msec. after fault incidence, since detection 

in such cases required wholly postfault data. 

A search for a phasor determination algorithm that requires 

less postfault data was therefore instigated. This led to the 

development of a few methods that are described in here and that 

require shorter data sequences than those needed in the full cycle method. 

The methods all involve the prediction of the full cycle data sequence 

from the knowledge of only a few of its samples, and they consequently 

result in modifications in the DFT. 

This chapter first presents a simple study of some intrinsic 

geometric properties of the sampled cosinusoidal oscillation. The 

study reveals that the complete definition of the oscillation over its 

entire period can be formed from a number of its samples covering only 

a fraction of the period. This is then followed by the design of the 

predictive methods, and the derivation of their modified DMs. The 

method most suitable for a protection scheme is then determined, and 

its frequency response and fault detection times are finally obtained 

and assessed. 
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5.1 	BATA SEQUENCES WITH REDUNCANCIES  

Phasor determination in the full cycle method of Chapter 4 

involved N data samples that covered one fundamental cycle duration. 

With healthy voltages and currents, containing no other frequency 

than the 50 Hz, some of this data can be shown to be redundant, • 

This involves sequence completion operations that must 

first be defined. 

5.1.1 	Repetition and Replication 

The data sequence lengths that correspond to the sampling 

rates adopted in the protection scheme of Chapter 4 are 4, 8, 16 and 

32. In the definitions that follow, therefore, N is assumed even, 

yith the discrete variable n that specifies the samples f(nT) 

ranging from 0 to (N-1). 

A sequence of length N defined over its first half, or its 

first N/2 samples only, can be completed by positively repeating this 

first half, thereby giving a second half defined by: 

f(nT) = f((n - t)T), a<n<N-1 
2 

(5.1) 

or, alternatively, it can be compleyed by negatively repeating the 

first.half according to: 

f(nT) = -f((n - DT), (5.2) 

When the2 1)
th  

sample of the incomplete sequence is also 

known, there become possible two other completion procedures. The 

/N 
defined portion of the sequence is of length kl+ 1) now, and it can 
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be positively replicated, or mirror-imaged, to form an even completed 

/N 
sequence of length N with its last q. - 1) samples given by: 

f(nT) = f((N-n)T), 	< n N-1 
	

(5.3) 

or, it can be negatively replicated forming an odd sequence 

according to: 

f(nT) = -f((N-n)T), 
	2< 	N-1 

	
(5.4a) 

The point about which the sequence is replicated thus 

	

/N 	. corresponds to the k7+ 1)th  sample, this sample being the first in the 

second half of the sequence. This leaves the first sample f(0) 

unreplicated, and the infinite repetition of the completed sequence is 

therefore non-overlapping, as is required in the sample representation 

of a periodic signal. 

A set of conditions emerges for odd sequences from the 

definition of Equation (5.4a), since for n = we have: 

f(2T) = -f() 2 

and consequently, 

	

= 0 
	

(5.4b) 

Similarly, fer. n = 0, and with the requirement of the periodic 

repetition of the completed sequence being odd about the first sample 

in the sequence, we have: 

f(0) = 0 	 (5.4c) 

Examples of repeated and replicated sequences are shown in 

Figure 5.1. The given first half of the sequence of Figure 5.1(a) is 
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negatively repeated after its last sample Se, while the completed 

sequence of Figure 5.1(b).is formed by positively replicating the 

first half about the sample Sh. The first half itself is seen to be 

the result of negatively replicating the first quarter about the 

sample S , with the first and fifth samples consequently taken to be 
q 

zero as required by Equations (5.413) and (5.4c). This illustrates 

that more than one replication operation is possible for each sequence 

completion, with the whole completed sequence being even or odd 

depending on the sign of the replication that is carried out about the 

flfl‘th 
sample. 

12 / 

5.1.2 	Defining the Fundamental Cosinusoid  

A cosinusoid can in theory be defined over one full cycle 

from the knowledge of its variation over the first quarter of the 

cycle only. This quarter can then be negatively replicated to form 

the first half, which in turn produces the full cycle when either 

positively replicated or negatively repeated. With a sampled 

cosinusoid, the validity of such completion requires that sampling be 

synchronised in the peaks and zeros of the variation. 

The set of the first few samples of a cosinusoid that is 

shifted in phase, however, will only contain all the samples of the 

desired quarter-cycle variation if the samples of this set cover a 

time interval that is longer, by a specific amount, than quarter of 

the period of the cosinusoid. This time interval, referred to as the 

width of the. minimum defining window, will depend on the initial phase 

shift 0cv  of the cosinusoid, as is illustrated in Figure 5.2. The 

dependence is in fact cyclic, and is shown in Figure 5.3 for the full 

2TI phase range. 



The limits of the minimum defining window widths are thus 

quarter of and half the period. These limits forth the bases of the 

data completion procedures that will now be employed in a number of 

phasor determination algorithms. 

5.2 	THE MODIFIED DISCRETE FOURIER TRANSFORMS  

The sequence completion procedures discussed in Section 5.1 

are now used, in a manner suggested by the observations of the 

cosinusoid recorded above, to obtain completed sequences for the input 

of the DFT. The use of such sequences will in fact result in a number 

of modified DFT calculation algorithms. 

A few phasor determination methods are discussed below, each 

corresponding to a particular sequence completion philosophy. It will 

be shown that there exist some limitations as to the validity of each 

method, mainly because the data sequences to be studied must be assumed 

to contain dc and harmonics, as well as the 50 Hz, if they are to 

resemble real fault data sequences. 

5.2.1 	The Half-C cle Repetition Method 

In this method the first N/2 samples of the sequence, 

covering half a cycle duration of the fundamental 50 Hz, are assumed 

known, and are repeated to form the last N/2. In Figure 5.4, it is 

seen that negative repetition correctly reproduces the second half of 

the sequence when the fundamental and odd harmonics only are present, 

with the dc and even harmonics requiring positive repetition in turn. 

In both cases, synchronised sampling is not necessary. 
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Negative repetition is to be employed, since the fundamental 

is of prime interest. The second half of the sequence is thus defined 

by Equation (5.2) as: 

f(nT) = -f((n - 
	

z
‹n < N-1 

and remembering that the fundamental component in the DFT was given by 

Equation (4.1) as: 

N-1 

F(Q) = 

 

f(nT).-exP(-jc2nT) 

 

n= 

 

this component becomes: 
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N_ 
	 N-1 

f(nT).exp(-jc2nT) + 	 -f((n- IPT).exp(-jQnT) 

• 
hrn(Q)  - 

n=0 
n=- 

which, by the change of variable .2, = n - N/2 and the substitution 

c2NT 
in the second summation, reduces to: 

Fhrn(c2) = f(nT).exp(-jc?nT) (5.5) 

 

n=0 

  

It can readily be proved that negative repetition gives a 

DFT that is zero at the dc and all even harmonics. Similarly, positive 

repetition gives no spectral components at the fundamental and odd 

harmonics. Negative repetition thus forms a discontinuous completed 

sequence if dc and even harmonics are present, translating their 

presence to contributions to the fundamental and odd harmonics and 

thereby rendering the component of Equation (5.5) incorrect. However, 

what matters here is to recognise that negative repetition makes it 

See List of Abbreviations at the beginning of the thesis 
for explanation of the subscript notation. 



possible to obtain a fundamental component from a data sequence that 

covers only half a cycle duration, with no specific need for 

synchronised sampling. 

5.2.2 	The Half-Cycle Replication Method 

The knowledge of the (-,2  + 1] 
A,th  sample of the sequence, as 

well as the first N/2 samples, makes its completion by replication 

possible. The rest of the sequence is now defined, as in Equations 

(5.3) and (5.4a), by: 

f(nT) = f((N-n)T), 2— <n <-N -1 2 

so that the fundamental component, as given by the DFT, becomes: 

N/2 N-1 

  

Fht(Q) = 

 

(nT).exp(-jc?nT) ± 	f((q-n)T).exp(-jgnT) 

N 
2 

 

11=0 

and the change of variable t = N-n in the second summation above 

simplifies this component to: 

N12 

Fht(Q)  = f(nT).exp(-jc)nT f(nT).exp(jc?nT) 

n=0 	n=1 

f 

= If(nT).exp(-jc?n1 + 	f(nT).exp(-jQnT) 
n=0 n1 

N 
T4 

4-If(nT).exp(-jQn1 N± Ef(nT).exp(-jQnT) 

2 n=1 

101. 

= D(0) -f 1.'11)] 2, f(nT). Eexp(- QnT)-texp(jQnT)3 
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which, for positive replication, is all real: 

N.4  
2 

Fhtp
(c?) =Ef(0)-4T):1+ 2. f(nT).cos(QnT) 	(5.6) 

  

n=1 

and, for negative replication, is complex: 

Fhtn(Q) = Ef(0)--f (tIr 	-2j. 
	f(nT). sin(Q nT ) 	(5.7a) 

=1 

Positive replication thus gives a real fundamental component. 

This is expected, since the completed data sequence is now even, giving 

an all real transform as is known from basic DFT theory [x] . However, 

with negative replication, the completed sequence is odd only when the 

first and k-§. 1)
th samples are taken as zeros, as explained in /N 

Section 5.1. The fundamental component of Equation (5.7a) of-the 

negatively replicated sequence then reduces to the imaginary value: 

Fhtn(g  ) = -2j. 	f(nT).sin(c?nT) 	(5.7b) 

n=1 

While repetition was shown to correctly complete data 

sequences that contained one group of frequencies only: dc and even 

harmonics or the fundamental and odd harmonics, different restrictions 

apply to replication. As can be seen in Figure 5.5, replication forms 

a correct completed sequence that contains both the fundamental and 

dc, and this in fact applies to all odd and even harmonics too. 

However, each frequency present must have a phase that is either zero 

or an integer multiple of TL/2, and this necessitates synchronised 

sampling in turn. 

Positive replication should therefore be used for frequencies 

with a zero or TL phase shift, while negative replication would 
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similarly cater for the fundamental and all harmonics when their 

phases are equal to TI/2 or 5T1/2. However, it will not correctly 

complete a sequence containing dc, since the phase of the latter can 

only be taken as zero, when it is positive, or TI when it is negative. 

This explains the use of the second harmonic in place of the dc for 

illustrating the cases of the 1T/2 phase in Figure 5.5. 

5.2.3 	The Quarter-Cycle Method 

The sequence in this method is constructed from the knowledge 

Ag of its first v-1-4 
 1) samples. These samples are replicated to form the 

second quarter of the sequence, since, for the fundamental and all 

harmonic cosinusoids with a phase of.zero or a multiple of Tt/2, the 

(4 
first half of the sequence will either be even or odd about the 

.4 1)th 
 

sample. The first half is then replicated to form the second half, 

and this replication could be replaced by repetition because of the 

nature of construction of this first hall itself. 

The two replication signs that are now needed: s1 in 

completing the first half; and s2  in obtaining the whole sequence, 

yield four different sign combinations. These combinations are used 

in the four completion cases that are illustrated in Figure 5.6, where 

it is seen that all cases require synchronised sampling and phase 

synchronisation as with half-cycle replication. Also, each case 

allows the presence of one group of frequencies only: the fundamental 

and odd harmonics or the dc and even harmonics. Every case, in fact, 

imposes the combined requirements of half-cycle repetition, with a 

sign that is the product of sl  and s2, and half-cycle replication with 

a sign s2. When such requirements are not met, the completed sequence 
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is incorrect, az is shown in Figure 5.7, which illustrates the use 

of all the sign combinations for completing a quarter-sequence that 

satisfies only case (a) of Figure 5.6. 

As with half-cycle replication, the use of the first (2+1) 

samples of the sequence for completely defining it simplifies the DFT 

fundamental coefficient to: 

111!--1 

qtt(Q) D(0)-f(Tg+ 	(nT) Eexp(-jQnT)+s2. exp( jc? TIT): 2 
n=i 

But since replication is also applied in forming the first half, the 

N th first and (21) samples are thus related_ by: 

N = s1  .f(0) • 2  

while 	f(nT) = si,f((2 - n)T), 1 4  

making it possible to write the summation above as: 

N  1 

If(nT). Lexp(-jS?nT)4-s2.exp(jc?nT)] = 

n=1 N 1 

=21(nT).(=exp(-jc2nT)-4-s2.exp(j.ghT)J 

n=1 

1▪ f(nT). Eexp(-jE2nT)4.s2.expOS2nT1]l N. 
117 f 

▪ sl.  f((; - n)T). Eexp(-jg2nT)+s2.expOS2nTi.] 

n=-+1 

and this, when simplified by the change of variable 2. = 	n in its 

second summation term, and substituted back into the expression for 

the fundamental component, gives for that component: 
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I IC\ 	/Sty, iN 
F
qtt

(Q) = f(0)-s1.f(0)+ Eexpk-j-2-1+92.expkyvi .f(4T) 

 

 

714 

f(nT). [exp( -jr2nT)+s2.exp(jQnT) - 

 

 

11=1 

  

 

si.exp(jc2nT)-si.s2.exp(-jQnT)] ( 5 8  ) 

The DIT coefficient -  at the fundamental frequency, as given 

by Equation (5.8) above, is now evaluated for the four possible sign 

combinations. 

(a) s
1 
-ve, s2  +ve: 

This combination is suitable for correctly completing a 

sequence that contains the fundamental frequency and its odd harmonics, 

each with a phase shift that is either zero or TC. The fundamental 

component is: 

/7 1, 

F
qtt

(Q) = 2.f(0) + 4. 	f(nT).cos(c2nT) (5.9a) 

 

11=1 

  

(b) si  +ve, s
2 
-ve: 

Correctly completes sequences that contain the fundamental 

and odd harmonics again, but having phases that are TE/2 or 311/2. 

The fundamental component now is: 

Fqtt
(S2) = -2j.f(4r) - 4j. 	f(nT).sin(QnT) 

	

(5.9b ) 
n=1 

	2-- 

To be used with positive and negative dc, and with even 

harmonics having phases that are zero or TL. It gives a fundamental 



component of: 

Fqtt (c2) = 0 	 (5.9c) 

(d) 	sl  -ve, s2  -ve: 

Suitable for use with even harmonics with phases of TU/2 and 

31t/2. The fundamental component is again given by: 

tt(Q) = 0 
	

(5.9d ) 

The negative replication applied to the first quarter in 

AC case (d) above compelled taking f(4T) to be zero in obtaining Equation 

(5.9d). This is in accordance with Equation (5.4b) which is also 

applicable to the negative replication that is applied to the firM 

half, making f(2T) zero, which in turn sets f(0) to zero. This last 

condition was also used in obtaining Equation (5.9d). 

Of the four quarter-cycle completion cases discussed above, 

cases (a) and (b) only are useful since (c) and (d) do not cater for 

the fundamental and give zero DIT fundamental coefficients. However, 

the presence of dc and even harmonics would still be undesirable in 

cases (a) and (b), since it would then introduce errors in the 

fundamental component as given by Equations (5.9a) and (5.9b). 

5.2.4 	Implementation and Data Interpretation Considerations  

The different phasor determination methods are now assessed 

in view of the restrictions they place on data, and by their 

interpretation of some data that would not lie within such 

restrictions. This will help in eliminating the unsuitable methods, 
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thereby making possible the determination of the method that is most 

compatible with the data sequences expected to be encountered. 

A scheme that employs replication would require synchronised 

sampling of waveforms with specific phases, and it would give 

magnitude information only of the voltage and current signals. Such 

scheme would offer very little versatility, since synchronised sampling 

of both the voltage and current may be impossible. This is because 

the initial phase difference between the two signals is determined by 

the load impedance and line constants, and will not necessarily be an 

integer multiple of the phase increment between successive samples at 

the particular sampling rate being employed. 

Assuming, however, that sampling and phase requirements could 

initially be met, then abrupt changes in the voltage and current 

phases that could be brought about by a fault would cause loss of 

synchronisation and would thus render the initial requirements 

unsatisfied. Replication would then give wrong magnitude information 

and no phase information at a time -when this is vitally important for 

correct relaying. 

It may be argued that the phase of a signal could always be 

obtained by employing both positive and negative replication 

simultaneously in the half-cycle method, for example. This would 

yield two components, one real and the other imaginary, that, 

according to Equations (5.6) and (5.7b), are given by: 
N 1  
IT 

Fhti)( Q) = Er (0)-1(2T )=1 2. 	f(nT).cos(c2nT) 

n=1 

and 

F
htn
(

C-2
) = -2j. 	f(nT).sin(nT) 
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However, these components are in fact almost identical to those which 

would be obtained from half-cycle negative repetition which, 

according to Equation (5.5), gives: 

2 

Phrn(C2)  = 	f(nT).exp(-jQnT) 

0 

4 

2.f(0)+2. f(nT).cos(c2nT)-2j.21f(nT).sin(QnT) 

-1 	 n=0 

This similarity is accounted for by the fact that the 

sequences formed by negative and positive replication add up to a 

sequence with samples that are twice those of the initial incomplete 

sequence over the defined first half, and that are zero over the 

second half, as is illustrated in Figure 5.8. The combined negative 

and positive replication components would therefore equal the 

fundamental component of the doubled first half of the sequence, which 

is mathematically identical to the fundamental component of the sequence 

when the latter is completed by negative repetition as is apparent 

from Equation (5.5). It appears, therefore, that the simultaneous 

use of both positive and negative replication is equivalent to 

negative repetition in the half-cycle methods. 

The same requirements of synchronised sampling and phase 

apply to the quarter-cycle method also. Some phase information, 

after synchronisation is lost, could now be obtained by calculating 

both the real components of case (a) and the imaginary component of 

case (b) of the quarter-cycle method. Adding the sequence completed 

in accordance with the replication sign combinations of the two 

cases, however, would now give a negatively repeated discontinuous 
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sequence that is interspaced with intervals of zeros, as shown in 

Figure 5.9. Th3 fundamental component of this can thus be found from 

its first half, in fact first quarter, and it can readily be proved to 

be equal to the fundamental component of the defined first quarter 

when this i8 quadrupled. 

The above observation is consistent with the expressions that 

were obtained for the fundamental components of sequences that are 

completed by the quarter-cycle method. We have, from Equations (5.9a) 

and (5.9b), for cases (a) and (b): 

N 
IT- 

Fqtt(g) 	2.f(0) + 	f(nT).cos(c2 nT) 

11=1 

N 71 

and Fqtt(g) = -2j.f() - 4j. 	f(nT).sin(c?nT) 4 
nr-=1 

while the fundamental component of the quadrupledfirst quarter is 

almost identical, being: 

7-1 -1 

4.21..f(nT).exp(-jgnT) = 4.f(0) 	4.Ef(nT).cos(QnT) 

n=0 	 n=1 

-4-1 

- 4j. 	f(nT).sin(c7nT) (5.10) 

n1 

However, the sequence completion procedure that yields this component 

cannot correctly complete a sequence representing any frequency with 

any phase, and the use of the quarter-cycle method is thus ruled out. 
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5.3 	PERFORMANCE OF PREDICTIVE SCHEME  

The half-cycle negative repetition method emerged as the 

most easily implementable and meaningful of all the predictive methods 

presented. It is now adopted as the basis of a protection scheme that 

is basically the same as that described in Chapter 4, the main 

difference being in the use of N/2 samples only, rather than N samples, 

for the phasor determinations. 

In the full cycle method of Chapter 4, the fundamental 

component-calculating equation, Equation (4.2a), was written in a 

non-recursive digital filter form as: 

N=1 

Fm(c?) = 	f((m-p)T).exP(jc?pT) 

p=0 

and the application of negative repetition now makes it possible to 

define the latest half of the data sequence from the earliest N/2 

samples. 

The underlying requirements of incorporating as much post-

fault data as possible in the sequence, and as soon after fault 

incidence as possible, however, compel the use of the latest N/2 

samples for defining the earlier half of the sequence. This gives a 

completed sequence that makes the fault appear older, and it results 

in a more accurate phasor estimation. Such switching in the 

completion procedure can be proved to be causing no change in the 

filtering performance of the method, as it simply results in a reduced 

transient delay of the corresponding digital filter. 

Thus, defining the older half of the sequence by negatively 

repeating the latest half modifies the fundamental component to: 



  

N-1 

f((m-p)T).exp(cMpT)- 

 

rh  (r" 

 

f((m-p41/)T).exp(jc2nT) 2 

n=-- 	• n 
which, by the change of variable 9- = p - N/2 in the second summation, 
reduces to: 

_. • 

N 
Ti:" 

rh(Q) = 2.21!((m-p)T).exp(jS2nT) (5.11) 

and this can be implemented as two transversal digital filters [46] 

defined by: 

Ah(mT) = 2. f((m-p)T).cos(QnT) 	(5.12) 

1;0 

;"1-j 

and 	Bh(mT) = 2.Ef((m-p)T).sin(c2pT) 	(5.13) 

13=0 

These filters are similar to the cosine and sine filters of Equations 

(4.3) and (4.4) of the full cycle method, and are therefore to be 

referred to by the same nomenclature. 

The sampling rates to be adopted in the predictive scheme 

are 4, 8, 16 and 32 sic. as with the full cycle scheme, since 

considerations that determined these rates there also apply here. 

The corresponding processing cycle durations are now 1.01 msec., 1.13 

msec., 1.37 msec. and 1.85 msec., and they thus differ very slightly 

from the processing cycle durations of the full cycle scheme. This is 

because simplifications in coefficient calculation resulting from 

phasor symmetry were explored to the full in the full cycle scheme, 

with the half-cycle data symmetry allowing relatively little further 

simplification. 
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5.3.1 	Frequency  Response 

The frequency response of the scheme is found by forming 

the transfer functions of the linear time-invariant cosine and sine 

filters, and combining the respective responses'in a manner similar 

to that used for the full cycle method. For the cosine filter, the 

transfer function is: 

,e 

c(z) 	
2(1 + z  2)0 - z-l.cos x)  

1- 2.z-1.cos x+ z 2  
(5.14a) 

-  
= (1 +-Z 

N/2 	1 
).( 	

1 	
t ) -1 	f 	-1 1-z .expkjx) 	1 - z .exp(-jx) 

(5.14b) 

where 	= Q T 
	

(5.14c) 

while for the sine filter it is: 

2(1+z-N/2)(z-1.sin x)  
Hhs(z)  1 - 2.z-1.cos x + z-2 

(5.15a) 

(1+z-N/2), 	1 	1 
-1 	 -1 1-z .exp(jx) 1-z .exp(-jx) 

(5.15b) 

and the frequency responses are thus: 

2.1cos(L1441 

JI 	Icos(WT)-cos xl •V1-2.cos(()T).cos x+cos2x (5.16a) 

sin(WT).cos x A 0
he 	4 (CO) = -WT(— - 1)+arctan(1 - cos((yr).cos x (5.16b) 

(5.17a) 

(5.17b) 

and 

2.1cos(L441 
While 	Illhs(eiWT)1 	IcoS“JUT ) - cos xl .Isin xl 

and 
	

ohs( co) = CONT 
4 



As with the full cycle methods, both transfer functions 

contain real resonators, but the comb filter (1-z ) of the full cycle 

method is now replaced by another filter (14-z
-N/2). This has N/2 

zeros uniformly spaced along the unit circle in the z-plane, but none 

of these is real. Two of them are again cancelled by the poles of 

the real resonator, giving nonzero magnitudes at the corresponding 

frequencies. 

The magnitudes of the frequency responses, normalised at 

50 Hz, are shown in Figures 5.10 to 5.13 for the different sampling 

rates. The worst combined responses are obtained as in the full cycle 

method, and the combined filter involved is again time varying. 

However, at the fundamental and odd harmonics, the time-invariance 

disappears and the structure becomes linear. At the fundamental, for 

example, the frequency responses as from Equations (5.16) and (5.17) 

would be: 
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and 

H 	N 
hc‘

( e 
	/ = 

2  . exp(j.0) 

Trhs(eiwT) = 2 .exp(-j!i) 

giving a transmission of: 

1 H 	(ejOJT)1 _'N 
1 hcs‘ 	- (5.19) 

and these are the same responses as those obtained in-Equations (4.16) 

and (4.17) for the full cycle method at the fundamental. 

The time running outputs of the cosine and sine filters of 

the full cycle method, and for a 50 Hz input, are thus identical to 

the corresponding outputs of the half-cycle negative repetition method. 
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Such outputs are shown in Figure 5.14, and they serve to demonstrate 

the limitations, relating to phase, that are imposed on half—cycle 

replication. Half—cycle positive and negative replications were 

associated with the cosine and sine filters respectively of the half—

cycle negative repetition method. This means that positive replication, 

when used on its own, yields a fundamental component magnitude that 

is correct only when the input phase is zero or TC, or at instants 

t
1 
 and t

3 
in Figure 5.14. Equally, negative replication gives the 

correct fundamental magnitude only when the sine filter output is at 

a peak: instants t
2 
and t4, which now correspond to a IC/2 or 311/2 

phase of the input 50 Hz. 

The worst combined responses depicted in Figures 5.10 to 

5.13 all show appreciable transmissions at even harmonics. However, 

the analogue lowpass filter to be used.will significantly suppress 

these frequencies, as well as nonharmonics, and this will be proved 

in Chapter 6. Alas, an analogue lowpass filter can offer no 

improvement in the undesirable dc transmission that characterises the 

cosine and sine responses and the combined responses. In the latter, 

this transmission is calculated to be 1.414, 1.305, 1.281 and 1.275 

of the transmission at 50 Hz for 4, 8, 16 and 32 s/c respectively. 

It appears therefore that dc transmission approaches a value of 1.2 

as the sampling rate increases, with sampling rates above 8 s/c 

offering no significant improvements in reducing such transmission. 

5.3.2 	Fault Detection Times 

The detection time in the scheme of Chapter 4 was governed 

mainly by the transient delay of the digital filter. The same concept 
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is applicable here, since the same sampling rates are being employed, 

and since the processing cycle durations in the predictive method 

differ very little from those in the full cycle method. 

The transient delay of the half-cycle method is a mere 5 msec., 

and fault detection times would therefore probably average just over 

this. For faults near the end of the line, however, detection times 

-could be as long as 10 msec., with the presence of dc in the line 

voltage and current giving rise to inaccurate phasor estimates that 

could delay fault detection even further. 

The capacity of the half-cycle method for increasing the 

proportion of postfault information in data sequences, during the 

20 msec. that immediately follow fault incidence, is demonstrated in 

Figure 5.15. The figure illustrates how the method 'extrapolates/ 

the little available postfault data for redefining some earlier data. 

5.4 	CONCLUSION  

Predictive techniques for the completion of partly defined 

data sequences were devised. One such technique was then used in 

modifying the full cycle phasor determination method, and a protection 

scheme giving fault detection times not exceeding 10 msec. consequently 

evolved. 

Investigations of the filtering performance of the scheme 

revealed, however, that it was characterised by large dc transmission, 

thereby severely restricting the scope of faults that it could 

successfully handle. 
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CHAPTER 6 

ANALOGUE FILTER CONSIDERATIONS  

One interpretation of the Sampling Theorem [26,27,283 is that 

an analogue signal can only be correctly and retrievably represented by 

its samples if the sampling rate employed in obtaining these samples is 

at least twice the highest frequency present in the signal. The low 

sampling rates, proposed for the protection schemes described in 

Chapters 4 and 5, are therefore only possible if all high frequencies 

are first eliminated from the analogue signals by analogue lowpass 

filters, with each of the -suggested rates dictating the use of a 

different filter. 

The lowest of the sampling rates of interest may seem the 

most logical to adopt, since it involves the least computation time 

for the phasor determination, and is yet capable of correctly 

reproducing the 50 Hz component. However, the delay of the respective 

analogue filter must also be considered, and this modifies the optimum 

sampling rate, for a particular protection scheme, to that giving the 

least total time, which includes both the computations and the analogue 

filter delay. The delay of the digital filters, accounting for their 

transient behaviour as discussed in Chapter 4, is not to be included, 

since it is a constant in each of the two protection schemes with any 

sampling rate. 

This chapter describes how a number of different analogue 

filters are initially chosen to match each of the sampling rates of 

4, 8, 16 and 32 s/c. The chapter then gives a review of various 

definitions of analogue filter delay, and outlines the development of 

a theory for the simple estimation of this delay. Values obtained by 
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this theory are next used to reduce the choice of analogue filters 

to one filter per sampling rate, making the determination of an optimum 

sampling rate for each protection scheme possible. The frequency 

responses of the schemes at their optimum rates, and with the analogue 

filters, are finally derived. 

6.1 	nib ANALOGUE FILTER PARAMETERS: ALIASING CONSIDERATIONS 

The analogue signal, it was stated above, should only be 

sampled after it has been band—limited by a lowpass analogue filter, as 

in the arrangement of Figure 6.1. However, practical realisable 

analogue filters can only approximate the ideal lowpass filters since 

they only attenuate, rather than eliminate, the high frequencies. 

Consequently, the least acceptable degree of suppression of the high 

frequencies must be specified, this depending in general upon the 

frequency composition of the analogue input signal. 

A wideband input signal, having the most high frequency 

content possible, represents the worst case. The corresponding output 

of the analogue filter will have a frequency spectrum that is identical 

to the frequency response of the filter [47] , as shown in Figure 6.2(a). 

When this output is sampled, an infinite number of shifted versions of its 

spectrum are introduced and superimposed, forming the periodic 

spectrum depicted in Figure 6.2(b). The magnitude of this spectrum 

at half the sampling frequency serves as an indication of the extent 

of aliasing. It must be limited to an arbitrary fraction of the gain 

at dc if a certain degree of fidelity in the samples representation 

of the signal is to be guaranteed. Constantinides r./i] treated a 

similar problem in his lowpass digital filter design from analogue 
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filter characteristics, and here we present a theory developed on the 

same lines. 

Remembering that the .sampling frequency is defined in terms 

of the sampling interval as: 

211 
Qs = . T radians/sec. (6.1) 

then, from the sampling Theorem 026,27,283 , the magnitude of the 

frequency response of the sampled filtered wideband signal will be: 

co 

I v,- n  'AWN< 1 tpke 	T- 

  

r»I 
gp 	T • (6.2) 

    

--co 

where, in the above, Hn  (jW) is the frequency response of the analogue 
r„p 

filter, and the inequality sign is used because of phase considerations. 

The magnitude of the response of Equation (6.2) at the folding 

C2s 
frequency ---2— is: 

p T 0 T1(1 + 20)1 

r=– Go 

ao 

(A(1+2r* 	(–Al+ 1111 0)14- I El H2,  (Al+ 20 )1 
p T 	tp T 	T 4 T 	T.  	T 

r1 

\

which, because H 
2.1)
(jC0) is even, reduces to: 

H 	)1c4; gP(e3 WT 

2 

co 

1:114
2p
( T(1 20)1 	(6.3) 

r=0 

Ranjbar DJ finds that any analogue lowpass filter that is 

more complicated than the maximally flat response (Butterworth) filter 

can have no distinct advantage in protection schemes. We therefore 

I
ll (ejWT)I

c2 	
• 

tp 	s  T 
W– 2 



S _ 2m 	4 

Tem. am 

126. 

choose the simple Butterworth filter, the frequency response of which 

is given by [49] 

TIB(JW) = (0)
n  for 	W >>Wc 
	 (6.4) 

where W
e 
is the cutoff frequency and n thc: order. Using this response 

in Equation (6.3) gives: 

L ITB(e jWT)Is_f_; 

UJ—  2s  r=0 

co 
2 7  2W  ) n A < 
 + 2r 
r=0 

(.1) 	T. W e where 	W = = 2 s/s 	TL 

(6.5) 

(6.6) 

The ratio of the magnitude A to the gain at dc is now found as: 

A G 	= AT 
ao 

2.(2W)n. 	1  
1Z0  (1+2r)n  

2. (2W)11.Sn  (6.7) 

and the sum, S
n
, of the series is, for even values of n [503 : 

(6.8) 

where tabulated values of am  are as follows: 

m 
	1 	2 	3 	 5 ... 

CC m 	1 	1 	3 	17 	155 ... 

TE
2 

so that 	S2  = 	8  Tz' 1.23, 

S = 1.01, 

S6 '--- 1.00, 	and so on. 



It follows from the above that Sn 
may be approximated to 1 for ti2--;?. 2, 

reducing the expression for G in Equation (6.7) to: 

GE 2.(210n 

and consequently limiting the order of the filter to: 

n  > lag  G — log 2  
log 2 + log W 

Negative values of n, corresponding to unrealisable filters, are 

(6.9) 

(6.10) 

therefore avoided only when W is less than 0.5. This means that the 

cutoff frequency We  of the filter must be less than the folding 

frequency C) —s of the spectrum, as is expected from considerations 
2 

relating to the Sampling Theorem. 

Evaluating W for different cutoff frequencies We  and different 

sampling frequencies Qs, and restricting the ratio G to 0.1, yields the 

least allowed orders, n, of the filter that are given in Table (6.1) 

below. The sampling rates in samples per cycle are used in place of the 

sampling frequencies Q
. 

Cutoff 
Frequency 

f
c 
Hz 

Least Integer Order, n 

4 sic 8 16 1 	32 

5o 5 3 2 2 

60 6 3 2 2 

70 9 3 2 2 

80 14 4 2 2 

90 29 4 3 ' 	2 

100 00 5 3 2 

TABLE (6.1): 	Least allowed orders of the analogue filter. 
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It becomes apparent that a number of analogue filters, which 

guard against aliasing, are possible for each sampling rate. However, 

filter delay is now used as a criterion to narrow down the choice to 

one optimum filter per sampling rate. 

6.2 	FILTER DELAY 

The elemental pure delay filter defined by the system 

function :473 : 

HPd (s) = exp(—sT) 

• 

(6.11) 

constitutes the core around which the various recognised definitions of 

delay are formulated. It has a frequency response given by: 

Hpd (JW) = exp(—jWT) 
	

(6.12) 

while its impulse response is: 

h
pd 

(t) = .5(t - T) 
	 (6.13) 

There exist, therefore, two domains, frequency and time, from 

which delay parameters could be obtained. These two domains are now 

separately examined, and the delay that is most meaningful in relation 

to the performance of the protection schemes is adopted. 

6.2.1 	The Frequency Domain Considerations  

The phase of the transfer function Hpd(jW) of the pure delay, 

together with its derivative with respect to W, are shown in Figure 

6.3. Two delay parameters, first the phase delay: 

= _ W 	 (6.14) 
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and secondly the group delay: 

Tg  = — dWL-A 	• 
	

(6.15) 

could be defined Di] . Both happen to be T, but have different 

physical interpretations. Phase delay is the shift in the phase of a 

particular frequency as apparent from the difference between the 

phases of an input and the output cosinusoidal signals. Group delay 

is an indication of the distortion effect of the filter on an envelope 

comprising a band of frequencies. 

Group delay is usually adopted as a measure of performance 

in network theory D17,513 . But as Kuo °CC points out, it is 

meaningless when the phase does not go through the origin, as then the 

shift component that appears in addition to the delay is 

hard to account for ill 4ku Coke. frf 	4%-yvaSZA 

The above definitions of delay give no direct indication of 

its interpretation in the time domain. They both happen to be equal 

to the actual delay, T, in the case of the pure delay, but will not 

necessarily be so for other realisable filters. In fact, linear phase, 

constant group delay analogue filters are non—existent in practice. 

What is required here is a measure of how long a change at the input 

takes to manifest itself as a corresponding change at the output, since 

the transmission through the filter of transients in the input is 

desired in as short a time as possible. 

6.2.2 	The Time Domain Considerations 

The impulse and step responses of the pure delay filter are 

shown in Figure 6.4. From these, the familiar definitions D23 of 
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the impulse and step dPlays, T
i 
and Ts respectively, are derived. 

Input signals, however, appear distorted at the outputs of lowpass 

filters in general, with impulses appearing smeared out, and steps 

becoming gradual rises to the steady-state values. In such cases, 

the positions of the peaks of the smeared out impulses, and the midpoints 

of the slowly rising steps, determine the delays. 

The impulse response, however, is the time derivative of the 

step response. Its peak value, therefore, occurs at the instant of 

maximum rate of rise of the step response. This is roughly when the 

step response is transcribing the midpoint of its steady-state value, 

and the two delays are thus approximately equal. Bence the study of the 

step delay only will suffice. 

The step response of an analogue filter is found by 

forming the inverse Laplace transform of the quotient of its system 

function and the transform variable s [47] : 

elp(t) 	ot —l(H21)(s)  s ) 

from which the step delay Ts  is defined as: 

etp (T S  ) = 0.5.1e
o P(01 
- t--4 00 

(6.16) 

(6.17) 

The evaluation of Ts 
will thus involve numerical methods, as the step 

response of a Butterworth lowpass filter will contain exponentially 

decaying cosinusoids £52D . In the interest of avoiding elaborate 

solutions, a considerably simpler method is used for calculating the 

step delays. It is due to Elmore and Sands [m] , who define the delay 
as the first moment or centroid of the impulse response% 

00 

Ts 
= Jr t.h 	dt 

0 
(6.18) 



and prove that it is given by: 

Ts = bl 
- al 
	 (6.19) 

where hi  and a
1 
are coefficients appearing in the expansion of H2p

(s) 

in the form: 

1 + a
1
s 	+ a

n
s
n 

H
1.4)
(s) = 	 n 	(6.20) 

1 + b s+ 	+ b
n
s 

 

Delay times obtained by the Elmore and Sands method 

reportedly differ very little from those obtained by conventional 

definitions [53] , for filters with monotonic step responses. This 

last condition is assumed satisfied by the low order Butterworth filters 

under consideration, since their transient responses contain only small 

overshoots [52] . 

Thus, step delays of Butterworth filters of orders 1 to 6 are 

calculated from Equation (6.19) using the well-tabulated m coeff-
icients of the normalised polynomials that appear in Equation (6.20). 

Each of these normalised delay values is then divided by the cutoff 

frequencies We  to give the delays of a particular filter order at 

those frequencies. Final delays are given in Table (6.2) below. 

Cutoff 
Frequency 

fc Hz 

Step Delay, Ts
, msec. 

1st order 2 3 4 5 6 

50 3.18 4.50 6.37 8.32 10.30 12.30 

6o 2.65 3.75 5.30 6.93 8.58 10.25 

7o 2.27 3.21 4.55 5.94 7.36 8.78 

80 1.99 2.81 3.98 5.20 6.44 7.69 

go 1.77 2.5o 3.54 4.62 5.72 6.83 

loo 1.59 2.25 3.18 4.16 5.15 6.15 

131. 

TABLE (6.2): 	Delays of Butterworth filters. 
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It was earlier postulated that step delays, as opposed to 

the phase and group delays, represent the transient behaviour. A 

comparison of the various delays is given in Table (6.3) for filters 

with cutoff frequencies at 50 Hz and 100 Hz, and with the phase and 

group delays computed at 50 Hz. Group delays for both cutoff frequencies 

are seen to vary most with the order, while step delays vary least. In 

fact, the differences are appreciable, and the initial reservations 

about using the readily obtainable group and phase delays were thus 

justified. 

Cutoff 
Frequency 

fc  
Order 1st 2nd 3rd 4th 5th 6th 

Step Delay 	Ts  msec. 3.18 4.50 6.37 8.32 10.30 12.30 

50 Hz Phase Delay Tp  msec. 2.50 5.00 7.50 10.00 12.50 15.00 

Group Delay T
g 
 msec. 1.59 4.50 7.96 11.76 15.83 20.10 

Step Delay 	Ts  msec. 1.59 2.25 3.18 4.16 5.15 6.15 

100 Hz Phase Delay Tp  msec. 1.48 2.41 3.35 4.33 5.34 6.36 

Group Delay T
g 
 msec. 1.27 2.65 3.72 4.74 5.79 6.85 

TABLE (6.3): 	Comparison of step, phase and group delays. 

6.3 	THE OPTIMUM FILTERS 

The aliasing requirements at each sampling rate were shown to 

be met by a number of analogue filters with different cutoff frequencies 

and orders. Of these filters, the one giving least delay is now chosen. 

At the sampling rate of 4 s/c, the least order filters allowed, 

as from Table (6.1), are a 5th order with a cutoff at 50 Hz and a 6th 

order with a cutoff at 60 Hz. The delay of the second of these, 

obtained from Table (6.2) as 10.25 msec., is less than the delay of the 



first, this being 10.30 msec. The other possible higher order filters 

with higher cutoffs, that appear in Table (6.1), are not considered as 

their corresponding delays, which are not tabulated here, are in fact 

too large. The 6th order, 50 Hz cutoff frequency, filter is thus 

chosen as optimum for the sampling rate of 4 sic. 

The above procedure is repeated for 8, 16 and 32 sic, and the 

resulting optimum filters for these sampling rates are defined in Table 

(6.4) below. 

Sampling 
Rate sic 

Optimum Filter 
- 	

- 

Order 
Cutoff 

Frequency, Hz 
Delay 
msec. 

4 

8 

16 
32 

6th 

3
rd 

2nd  
2nd 

60 

70 
80 

100 

10.25 

4.55 
2.81 

2.25 

TABLE (6.4): 	Optimum filters for the different sampling rates. 

6.4 	THE OPTIMUM SAMPLING RATE 

The initial problem of finding the optimum sampling rate, 

as discussed at the beginning of this chapter, is now examined. We 

require the sampling rate which gives the least total time due to 

both the analogue filter delay and the time for computations. For the 

latter, we use the processing cycle concept as introduced and defined 

in Chapter 4, that being the time required for the multiplications and 

additions involved in the phasor determinations plus a margin for 

impedance calculation and other logical operations needed in the 

protection algorithm. The total times so obtained for the full cycle 

method are given in Table (6.5) following. 
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Sampling 
Rate s/c 

Optimum Filter 
Delay msec. 

L 
Processing Cycle 
Duration msec. 

Total Time 
msec. 

4 10.25 1.01 11.26 

8 4.55 1.15 5.70 

16 2.81 1.43 4.24 

32 2.25 1.99 4.24 

TABLE (6.5):  Total times for the different sampling rates for the 
full cycle method. 

While the sampling rate of 16 s/c seems to be giving the least 

total time, 8 s/c is chosen as the optimum rate. This makes continuous 

processing possible, thereby avoiding the complexity of fault-initiated 

processing that is needed with 16 s/c. The difference between the total 

times for the two rates amounts to just over one millisecond, and may 

conceivably be compensated for by possible savings in the 0.5 msec. 

estimate that was allocated to the relaying logic in the processing 

cycle. 

The half=-cycle method requires optimum analogue filters that 

are identical to those of the full cycle method at their respective 

sampling rates. Thus, 8 sic is taken as the optimum rate for the 

half-cycle method, too, since its processing cycle durations differ 

very slightly from those of the full cycle method, being 1.01 msec., 

1.13 msec., 1.37 msec. and 1.85 msec. for 4, 8, 16 and 32 s/c 

respectively. 

The total times obtained for the full cycle and half-cycle 

methods, though almost equal, are not to be interpreted as indicating 

that the fault detection times of the two methods are nearly the same. 

As was pointed out in Chapter 5, the digital filter transient delay 

associated with the half-cycle method is considerably less than that of 



the full cycle method. However, this delay is a constant for each 

method at all sampling rates, and it therefore has no influence on the 

choice of the optimum rate. 

6.5 	FREQUENCY-RESPONSE OF THE ANALOGUE-DIGITAL FILTER 
COMBINATION 

The frequency responses of the full cycle and half-cycle 

methods, at their optimum sampling rate and with the corresponding 

optimum analogue filter, are now derived. Spectral descriptions 

without the analogue filter were obtained in Chapters 4 and 5, and 

were termed worst combined responses. However, the introduction of the 

analogue filter now forms a hybrid system that is considerably more 

complicated to analyse. 

Conventionally, the frequency response of a hybrid system is 

taken as the periodic response of the digital filter defined over its 

baseband only. This assumes the analogue filter to be an ideal 

lowpass, with brickwall frequency characteristics, and is thus hardly 

applicable for realisable filters. Recognising such fact, direct 

multiplication of the analogue and digital filter responses over the 

entire frequency range was proposed as an alternative [9] . 

Both of the above procedures lacked sound justification. The 

second, in fact, is fundamentally incorrect since it implies a linear 

overall model for the hybrid system, which is obviously inconsistent 

with the non-linearity introduced by the sampling of a non-bandlimited 

signal. Also, its account of the attenuated high frequencies is 

arbitrary. These high frequencies appear as low frequencies in the 

baseband because of sampling, and although this may be overlooked as 

135. 



the digital filters are giving amplitude information only, and for no 

other frequency than the 50 Hz, it would still be desirable to arrive 

at some simpler frequency description. 

An approach that employs the spectral considerations criteria 

of standard speech processing is here adopted. Frequencies higher than 

half the sampling rate are assumed negligible in speech processing if 

guardbands are employed, and when a 40 db loss is specified for these 

frequencies E.0.: . This is comparable to the approximate 30 db loss 

which corresponds to the 0.1 foldover gain used in specifying the 

analogue filters, and it thus suffices to multiply the response of the 

analogue with that of the digital filter over the baseband of the 

latter, taking the response of the hybrid system over the rest of the 

frequency range to be zero. The resulting response should now be 

interpreted in the same manner as that used for the worst combined 

response of Chapters 4 and 5. 

Figures 6.5 and 6.6 show the multiplied responses defined over 

the baseband for the full cycle and half—cycle methods respectively, 

and with 8 sic. The very small magnitudes in the immediate vicinity 

of the 200 Hz folding frequency illustrate that aliasing is, in fact, 

small enough to be neglected. 

In an attempt at examining the feasibility of employing the 

lowest sampling rate of 4 sic, the responses of the methods at this 

rate are obtained. However, because of the prohibitive delay of 10.25 

msec. that the optimum filter for this rate incurs, the optimum filter 

for 8 sic is used instead. This results in appreciable aliasing 

distortion in the vicinity of the folding frequency of 100 Hz, as is 

apparent from the sudden truncation there of the plots of Figures 6.7 

136. 



137. 

and 6.8. The rate of 4 s/c is thus ruled nut, while the significance 

of the correct choice of the analogue filter to match a sampling rate 

is emphasised. 

It is to be noted that a comparison of the frequency responses 

of any of the two methods at different sampling rates could not have 

been used as an alternative criterion for determining the optimum 

sampling rate. The only visible difference between the frequency 

responses of any one method without the analogue filter was in the 

slightly different levels of non-harmonic suppression that the different 

sampling rates gave rise to. It was considered that such difference 

would be further reduced by the analogue filters, thus making all 

responses almost identical for each method. 

6.6 	CONCLUSION 

The use of analogue lowpass filters for bandlimiting signals 

before sampling them is mandatory. Designs of such filters that 

matched the sampling rates being investigated were drawn, and the rate 

of 8 s/c consequently emerged as optimum in that it gave the least 

filter delay plus processing time that were consistent with simple 

implementation. 

The frequency responses of the full cycle and half-cycle 

methods at 8 s/c, and with the analogue filter, were finally obtained. 

Both responses were favourably characterised by appreciable non-

harmonic suppression, and low aliasing distortion, but the 

unacceptably large dc transmission in the response of the half-cycle 

method still remained. 
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Fig. 6.3 Frequency domain characterisation of the pure delay. 
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CHAPTER 7 
	 142. 

PREDICTIVE SCHEME MODIFICATION 

The predictive scheme developed in Chapter 5 was shown to 

offer satisfactory nonharmonic suppression when used with the analogue 

lowpass filter, and it is thus comparable with the full cycle method 

in this respect. However, it is also characterised by large dc 

_transmission, and this renders it unacceptable. 

This chapter discusses the reduction of the dc transmission 

by employing additional filters. The chapter first justifies opting 

for digital filters for this task, and then suggests a number of high-

pass filters that could be used. The resulting frequency responses 

of the scheme are then obtained, and a few criteria devised and 

applied to these responses to assist in the determination of the most 

suitable highpass filter. Finally, some refinements on this filter 

are briefly investigated. 

7.1 	USING AN ANALOGUE BANDPASS FILTER: DELAY CONSIDERATIONS  

The dc signal can be attenuated by an analogue highpass 

filter immediately following the analogue lowpass filter that precedes 

the ADC. Such highpass filter must have a cutoff frequency of about 

50 Hz if it is not to accentuate high frequencies, as it would other-

wise disturb the aliasing specifications that were discussed in 

Chapter 6. It must also be of a second, or preferably third, order 

for it to appreciably attenuate subharmonics too. 

The above suggests that the analogue highpass filter being 

sought could be incorporated in a bandpass filter that will both 

reduce the level of dc signals, and meet the high frequency attenuation 
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requirements designed to ensure against aliasing. The frequency 

response of an elemental bandpass filter [49] , with the roll—off rate 

of 6 db/octave, is sketched in Figure 7.1. 

However, aliasing considerations require attenuation at the 

foldover frequency, which is 200 Hz for a sampling rate of 8 s/c, to 

be 30 db or more. Therefore, with the bandpass filter centre 

-frequency being 50 Hz, an attenuation rate of 15 db/octave is needed. 

This can only be met with three cascaded elemental filters at least,-  

giving a sixth order filter. The delay of such filter, judging from 

the analogue filter delays calculated in Chapter 6, will be prohibitive: 

possibly as large as 10 msec. An analogue bandpass filter is thus ruled 

out, and the optimum analogue lowpass filter that is also compatible 

with the full cycle method is left unchanged. 

7.2 	THE DIGITAL HIGHPASS FILTER 

The elimination of dc signals could be carried out by a 

simple digital highpass filter. This is now investigated in the hope 

that any resulting improvements in the frequency response of the 

predictive scheme will not be at the expense of excessive extra delay. 

No complications are expected in the implementation of a digital 

highpass filter, since it can readily be incorporated in the main 

phasor determination algorithm of the scheme. 

A number of factors influence the adoption of a digital 

filter in a protection scheme. As was discussed in Chapter 4, 

recursive structures are generally undesirable because of their 

infinite impulse responses. The impulse response associated with a 

non—recursive structure, on the other hand, is finite. In the case 
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of the DFT filter, such response manifests itself in the output as a 

component that is much smaller than the output to a sampled 

cosinusoidal input having the same magnitude as the impulse. 

The transient delay of a digital filter should be kept as 

low as possible, if long detection times are to be avoided. Also, the 

possibility of the protection scheme supplying information for steady-

state monitoring makes it desirable to have the digital filter phase 

delay at 50 Hz kept to a minimum, but this is by no means critical for 

fast protection since the same filter operates on both the voltage and 

current signals, yielding correct impedance angles. 

7.2.1 	Possible Digital Highpass Filters  

The simplest three possible choices of the digital highpass 

filters are given below. Orders are restricted to first or second because 

transient delays exceeding 5 msec. are unacceptable. 

Prototype I: 	This is described by the transfer function: 

hpl
(z) = 1 - a .z 

-1 
1 

which, when a
1 

= 1, gives the frequency response: 

Hh pl(Wi"
) = 2j.ex-‘ 

	
1\ -* '4-1)T\  

(7.1a) 

(7.1b) 

with amplitude and phase variations that are sketched in Figure 7.2. 

A value of a
1 

that is less than 1 is initially considered because it 

results in a reduction in the phase delay at 50 Hz. However, such 

reduction will be relatively small, and will also be accompanied by 

the flattening of the amplitude spectrum and the loss -of total dc 

elimination, as shown in Figure 7.2. The multiplication factor a
1 
is 
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thus taken as 1, with the impulse response reducing to an anti-

symmetric sequence of length 2 which gives a linear phase with constant 

group delay [233 . 

Prototype II: This has a transfer function that is given by: 

Hhp2
(z) = (1 - 

a2.z  -1)2 	 (7.2a) 

Its impulse response becomes symmetric when a2 
is taken to be equal to 

1, giving a linear phase with constant phase delay for the frequency 

response which is now given by: 

Hhp2(e3L°T
) = 2.exp(-jWT).(cos(WT) - 1) 

	
(7.2b) 

and is shown in Figure 7.3. The filter is thus a special case of the 

general form 1-2cos(C0T).z-1 2  , with W
o = 0. 

Prototype HI: This is a second order filter defined by: 

hp3
(z) = 1 - a

3
.z 
-2 	 (7.3a) 

Investigations of the frequency response reveal that any choice of a
3 

other than 1 offers no overall advantage. We therefore take a3  as 1, 

and this gives a frequency response of: 

Hhp3 	
= 2j.exp(-j(JOT).sin(OJT) 
	(7.3b) 

which has an amplitude response that varies twice as fast with 

frequency as the response of the first prototype. Examination of the 

response shown in Figure 7.4 over its baseband reveals that this 

prototype is in fact a bandpass filter. 

The third prototype above would probably be the most 

suitable because its gain decreases for frequencies above 100 Hz, 



reaching zero at the folding frequency. It therefore seems to be 

least upsetting the aliasing considerations of the analogue lowpass 

filter. A final decision on its adoption , however, gust be based 

on some more definite criteria. 

7.2.2 	The Frequency Response Criteria  

The frequency responses of the half—cycle negative repetition 

method at 8 s/c, and with the prototype digital highpass filters, are 

now obtained. The digital highpass filter is to immediately precede 

the DFT filter, and the frequency responses of both the cosine and 

sine filters of the latter must therefore be multiplied by the highpass 

filter frequency response. The multiplied cosine and sine responses 

are shown in Figure 7.6 when the first prototype is used, and the worst 

combined response is formed from these in a manner identical to that 

adopted in Chapters 4 and 5. This combined response is then multiplied 

over its baseband by the analogue filter response, giving the scheme 

response shown in Figure 7.7. The responses with the second and third 

prototypes are shown in Figures 7.8 and 7.9 respectively. 

All of the scheme responses are seen to have zero dc 

transmission. hlowever, they differ in their suppression of nonharmonics 

and the second harmonic in relation to their transmission of the 50 Hz. 

We therefore devise a few criteria for determining the most 

satisfactory scheme response. 

a) 	The Relative Energy Index 

This is a measure of the fraction of the energy of the output 

contained in the 50 Hz when the intput is a wideband signal. It should 
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relative difference defined by: 

— I 	f 0  ) I 
M3 — 	11 (7.6 ) 

. 147. 

be as large as possible, and is in fact determinable from the frequency 

response of the scheme since the energy in a time signal is known to 

be equal to the integral of the square of its amplitude spectrum [23] . 

The index can thl)s be defined as: 

Ml = 

 

f i(f 0  ) 12  
(7.4) 

  

  

8f . I H(k. f ) I 2  

    

where the frequency increment nf can be arbitrarily chosen, with the 

summation carried out over the whole of the baseband. In the 

computations that will follow, 8f is taken equal to 5 Hz, this being 

the interval used in the frequency plots. 

b) The 50 to 100 Ratio 

This ratio of the gain at 50 Hz to that at 100 Hz should be 

as large as possible. It is an indication of the Q factor of the 

scheme, and is given by: 

I H(f0)1  
M2 = 717771-  (7.5) 

c) The Peak Difference Criterion 

This applies to the responses being considered because their 

peak gains do not occur at 50 Hz as desired. The peak gain should 

be as near to the gain at 50 Hz in value as possible, so that the 

is to be kept to a minimum. 



The above criteria are illustrated in the sketch of the 

scheme frequency response shown in Figure 7.5. They were computed 

for each of the responses of Figure 7.7 to 7.9, and are given in 

Table (7.1) below. 

Digital Frequency Response Criteria 

Highpass 
MI M2 M3 

Prototype I 0.064 1.696 0.151 

Prototype II 0.039 0.918 0.368 

Prototype 111 0.072 2.216 0.107 

TABLE 7.1 	Scheme frequency response criteria with the three 
highpass filter prototypes. 

The third prototype clearly emerges as the best highpass 

filter, since it offers the largest relative energy index M1 and 

largest gain ratio M2, as well as the smallest peak difference M3. 

In fact, it is evident from the plots of Figures 7.7 to 7.9 that this 

prototype is the only one that will not give rise to aliasing 

distortion, as the first, and more so the second, prototypes both 

give scheme responses with appreciable magnitudes in the vicinity of 

the 200 Hz folding frequency. 

The only shortcoming of the scheme response with the 

third prototype, however, is the occurrence of the peak at around 

70 Hz instead of at 50 Hz. It is now attempted to rectify this by 

employing a peak shifting network. 
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Hhp3(z) - 1 - z -1 1 + b.z  

-2 
(7.8a) 

12i9. 

7.2.3 	Peak Shifting  

The peak in the magnitude response of the third prototype 

highpass filter was shown to be occurring at 100 Hz. To shift this 

to a lower frequency, the peak shifting network defined by Equation 

(7.7) below is examined. 

H (z) = 	
1  

ps 	-1 
1 + b.z 

(7.7) 

This network, when cascaded with the third prorotype highpass 

filter, gives the transfer function: 

so that the magnitude of the frequency response becomes: 

tH 	tejOJT)i 	2. Isin(W T)I  
hp3` 

+ 2b. co s(LO T) + b2  

(7.8b) 

1 . (-b) and this has a maximum of 2 that occurs at UJ- co
s 	for lb I< 1. 

Values of b outside this range are not considered since they result 

in a pole lying outside the unit circle in the z-plane, which gives 

rise to instability. 

Negative values of b will thus shift the peak towards 50 Hz, 

as is shown in Figure 7.10(a). The peak will actually occur at 50 Hz 

with b set to - 1 — . 

However)  the infinite impulse response of the recursive 

Peak shifting network is also to be considered. The time needed for 

this impulse response to reach 10 per cent of its initial value is 

an unacceptably high 15 msec. The network is thus not to be used 

after all, and the system is left with the third prototype highpass 

filter as the only modification, as shown in Figure 7.11. 
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7.3 	CONCLUSION 

The reduction of the dc transmission that characterised the 

frequency response of the predictive scheme was attempted. A few 

simple non—recursive digital highpass filters were therefore suggested 

as possible additions to the scheme, and the most suitable of these 

was determined. 

The predictive scheme was thus made immume to dc noise 

signals, and at the expense of the little extra transient delay of 

the highpass filter. 
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Fig. 7.3 Frequency response of the second digital highpass filter 

200 400 f(Hz) 

I Hhp3(ej2'T) 
I  

Fig. 7.4 Frequency response of the third digital highpass filter 

A 

M1 

H 

M2 = 

—K.& (Hz) 

(fo)12  

EI1-1(k.A012  
k 

IH(f0)1  
IH (2.f0)1 

Pi -11A(fo )1 

K 

fo= 50 

Fig 75 ,Criteria for the frequency response 



0 0 2 
3 0E0 03 .30' 

Fig. 7.6 

HALF CYCLE NEGATIVE REPETITION METHOD 

8 SAMPLES PER CYCLE 

AMPLITUDES OF FREQUENCY RESPONSES 	DIGITAL HIGH-PASS I 

COSINE RESPONSE 

SINE RESPONSE 

HORST COMBINED RESPONSE 

153. 

HALF CYCLE NEGATIVE REPETITION METHOD 	8 SAMPLES PER CYCLE 

WORST COMBINED RESPONSE WITH OPTIMUM ANALOGUE FILTER 

DIGITAL HIGH-PASS PROTOTYPE I 

5 no 	3.0.00 	ibo.00 	jS0.00 	200.00 	730.00 	1170.00.  250.00F RE  VAof 	710.00 	300.00 	310.00 	310.00 	3'3,0o 	700.0 	710.00 373.00 

Fig. 7.7 



1511. 

HALF CYCLE NEGATIVE REPETITION METHOD 	8 SAMPLES PER CYCLE 

WORST COMBINED RESPONSE WITH OPTIMUM ANALOGUE FILTER 

DIGITAL HIGH-PASS PROTOTYPE 2 

.boo 4. 1. J o.ro toe® r 	mo 44. 4o. 4e. 	ir. me. Am.m  

Fig. 7.8 

	

HALF CYCLE NEGATIVE REPETITION METHOD 	8 SAMPLES PER CYCLE 

WORST COMBINED RESPONSE WITH OPTIMUM ANALOGUE FILTER 

DIGITAL HIGH-PASS PROTOTYPE 3 

an so. ..ao m. m.00 obo.00 m. fso. 	4A. moo ao. soo. Go. 100.00 +50.00 elo. 
MO./ 

 

Fig. 7.9 

 



- 	eps(t) 
(b.) 

2 

b+ve b=0 b-ve 

f(Hz) 
I 	a. 	 200 	400 

400 f(Hz) 200 

155. 

b-ve b=0 b+ve 

Fig. 7.10 Effect of the peak shifting network 
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CHAPTER 8 
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OFF-LINE TESTS 

Initial theoretical assessment of the full cycle and half-cycle 

protection schemes discussed in Chapters 4 to 7 was favourable. 

The schemes were shown capable of satisfactorily filtering signals 

having the compositions of fault transients. However, further tests 

-that would approximate real operating conditions remain necessary 

for an indication of the fault detection speeds of the schemes. 

This chapter describes some off-line tests that were 

designed to explore various aspects of the performance of the schemes 

in general, and to highlight a few of the more interesting of these 

aspects in particular. The tests were kept as thorough as is 

consistent with simplifications that resulted 	from the adoption 

of a one-phase model for the line, since such model could not 

accommodate a few factors and phenomena that are usually encountered 

with three-phase lines. 

The chapter begins by describing the system chosen for the 

tests, and by outlining a procedure for tailoring a relaying 

characteristic that best suits such system. Simulated fault voltages 

and currents are then discussed, and modifications to these to account 

for factors that were not considered in the study of Chapter 3 are 

derived. The protection schemes are finally tested with various fault 

locations and resistances, and for differing system loading conditions. 

8.1 	TEST SYSTEM 

The system used was similar to the radial feeder studied 

in Chapter 3. It consists of four 500 MVA turbo-alternators 



Z
L 	

z
o • Zo ZR.tanh(yt ) 

Zit 	Zo' tanb (-Y .2, 
(8.1) 

connected in parallel, and supplying 300 NW through one phase of a 

400 kV line that is 100 miles long. The line was operating at 

about its natural load rating, and its parameters were those of a 

typical 400 kV line D23 . A line diagram of the system is shown 

in Figure 8.1. 

The steady-state voltage and current at the relaying point, 

which immediately follows the step-up transformer, were calculated 

from the equivalent circuit of Figure 8.2. The phase voltage was 

399 kV peak, and the phase current 2296 A peak at 48°  lag. 

8.2 	RELAYING CHARACTERISTIC 

When assessing protection performance, it is necessary to 

consider the impedance presented to the measuring unit together with 

the operating characteristic of that unit. The impedance as seen by 

the relay under steady-state conditions is given in terms of the line 

surge impedance Zo  and the load impedance ZR  by the impedance trans-

formation formula: 
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which, because of the very small values of the propagation constant 

Y, reduces for a line that is only 100 miles long to: 

Z  L it 
	 (8.2) 

After a short-circuit, which is equivalent to the applic-

ation of a load with zero impedance at the end of a fraction of the 

line, the apparent impedance becomes: 

Z1,  = Zo
. tanh()(L) 
	

(8.3a) 
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which can be approximated to: 

Zt  = (R + RooL).2. = Z.L 	 (8.3b) 

for small values of the argument Y.  Thus the relay now sees the 

series impedance of the fraction of the line up to the fault point, 

which is inductive. 

The presence of a fault resistance Rf modifies the 

apparent impedance to: 

ZL  = Z.E + kr.Rf 
	

(8.3c) 

where the factor kr
, which depends, among other things, on the load to 

line impedance ratio [x] , is approximately equal to 1 for the system 

under consideration. 

The relaying characteristic should both include apparent 

faulted line impedances and provide wide discriminating margins for 

the extremes of circuit loading and power swing conditions. The 

mho type characteristic is the most widely used in present relaying 

practice, but it is known EX] that, in terms of its discriminative 

properties, the characteristic having the widest application 

potential is the quadrilateral. This is because such characteristic 

can be made to possess a restricted reach along the real axis, which 

in turn permits high load transfers, while retaining in its 

measurement the ability to accommodate increased fault resistance values. 

Conveniently, the quadrilateral characteristic lends itself 

more easily to implementation in a digital relay than does the mho 

characteristic 	, since computations involved in the definition of 

straight lines in the X/R plane are simpler than those necessary for 



defining a circle. Thus, the quadrilateral characteristic offers 

the additional advantage of simplicity of implementation that is not 

achieved at the expense of a degradation in the speed of operation 

of the protection scheme. 

A quadrilateral characteristic suitable for the test system 

of Figure 8.1 is defined in Figure 8.3. The tripping area is chosen 

to include fault conditions within 85% of the feeder length as in 

normal practice because protection is expected to be unable to 

discriminate for faults adjacent to the remote busbar. The 85% setting 

also allows for errors in transformation that may occur in current 

transformers as a consequence of dc offset and remanent flux, and that 

would otherwise cause overreaching. 

A fault resistance that is one—third of the series impedance 

of the full length of the line is allowed for faults at any point on 

the line. Overall, the zone 1 reach setting [23 only is considered, 
since it is this setting that controls the instantaneous tripping that 

is of interest here. 

The relaying characteristic of Figure 8.3 provides a wide 

margin for normal circuit loading conditions. The apparent impedance 

of the load considered in Section 8.1, for example, has resistive and 

reactive components that are both larger than 100 ohms. Even with 

the highest load current, which corresponds to the largest load 

transfer that the line is capable of, these components drop to just 

under 100 ohms, thereby still leaving a comfortable margin since 

encroachments into the maximum load impedance area will then only occur 

when the forward reach setting of the characteristic approaches 

200 miles. 
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It may be argued that the wide margins that the relaying 

characteristic offers should allow the inclusion of a considerably 

larger fault resistance in the tripping area. This would make the 

detection of faults with larger resistances possible, as well as 

speed up the detection of faults that the tripping area already covers. 

However, encroachments upon the protection characteristic due to 

power swing conditions are not to be overlooked. It has been established 

[X] that considerations relating to these are important for 400 kV 

circuits. Thus, operations for sudden load changes, and particularly 

for sudden load additions from no load at an initiation angle of 0°  

, must first be consiaered, and the relay must be guarded against 

tripping on swings from which the system would be likely to recover. 

Elaboration on such factors is, however, outside the scope of this 

thesis, and the maximum allowed fault resistance is thus left at just 

under 15 ohms. 

8.3 	FAULT SIMULATION 

The solution of the transmission line equations for fault 

conditions, as was treated in detail in Chapter 3, gave a description 

of fault transients. Figures 8.4 and 8.5 depict the line voltage and 

current formed according to that description for two faults, each at a 

different point on the line. The high frequency component, or 

eigenfrequency, is seen in the voltage of fault I, where the fault 

inception angle (f.i.a.) is 90°, while in fault II the current is 

characterised by a large exponentially decaying dc component because 

of the 0°  fault inception angle. A damped 235 Hz component was added 

to the voltage of both faults, as the possible existence of such 

component became apparent from the waveform analysis carried out in 

Chapter 3. 
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Figures 8.4 and 8.5 also show the filtered voltages and 

currents. These are obtained by using a third order Butterworth 

digital lowpass filter having a frequency response similar to that of 

the optimum analogue filter specified in Chapter 6. The digital 

filter, described by the difference equation: 

0.0000018(uni + 3.um_1  + 3.um-2  + u 

+ 2.9511520.vm_l  - 2.9034507.vm_2 + 0.9523046.v m_3  (8.4) 

where vm and um 
are its current output and input respectively, in fact 

has a cutoff frequency at justunder70 Hz, while its gain at the 200 Az 

foldover frequency is low enough to satisfy the aliasing requirements. 

It was designed by the bilinear transformation method, and details of 

this are of no particular significance here and can be found elsewhere 

D5,34063 . 

8.3.1 	Fault Resistance and Source Reactance Compensation  

It is to be recalled that the transient solution of the 

transmission line equations, obtained in Chapter 3, assumed both the 

fault resistance and source reactance to be zero. In the fault wave-

forms shown in Figures 8.4 and 8.5, therefore, no indication of the 

fault resistance is to be expected. In fact, the fault resistance was 

only used for modifying the time constants of the exponentially 

decaying high frequency components in the voltage, and the dc offset 

in the current. This is obviously not sufficient, since the resulting 

steady-state component in the transient current solution is now too 

large, giving a total postfault current that is wrong in both magnitude 

and phase. This effect is more marked in faults that are close to the 

source, as fault II is, since then the short length of the faulted line 

gives some very high postfault currents. 



162. 

The reactance and resistance as obtained from the line 

voltage and current for fault II are shown in Figure 8.6, with the 

voltage and current phasors determined by the full cycle method. It 

is seen that both components level off to values that are smaller 

than their apparent postfault values as calculated from Equation (8.3c), 

and that they eventually become negative. This is because the large 

postfault current now induces a voltage in the source reactance that 

almost cancels the prefault voltage, giving a small overall voltage 

VL having the wrong phase, as shown in the phasor diagram of 

Figure 8.7(a). 

Compensation for the fault resistance and source reactance 

is thus included by reducing the steady-state transient current 

component. This is consistent with introducing the fault resistance 

and source reactance as series components in the faulted circuit, and 

it results in a larger overall postfault voltage, as is shown in 

Figure 8.7(b). The total postfault current IL  is additionally 

forwarded in phase to account for the small power factor that now 

results from the inclusion of the fault resistance in the faulted 

circuit. 

The compensation described above is independent of the fault 

inception angle. The corrected voltage and current waveforms it 

results in, for fault II, give a resistance and a reactance variation 

that are shown in Figure 8.8. It can be seen that these quantities 

now closely follow their actual values after fault incidence. Tn fact, 

the postfault current was slightly undercompensated to leave it at 

slightly larger than its true value, thereby simulating a similar 

effect that is introduced by current transformers in practice, and 

that results in smaller apps•rent impedances. 
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Corrected voltage and current waveforms for faults I and II 

are shown in Figure 8.9. Differences from Figures 8.4 and 8.5 are 

more obvious for fault II, where the postfault current is now reduced, 

which in turn lessens the drop in the postfault voltage. The sudden 

change in the current at fault incidence will have no serious effects, 

as it would be smoothed out by the lowpass filter. More importantly, 

the correct phases of the voltage and current are now obtained, and 

positive values for the resistance and reactance thus result. 

The compensation discussed here will be applied to all the 

tests that are to follow. Further waveform modifications to account 

for nonlinear and time-varying fault resistances, and capacitor 

voltage transformers and current transforms distortion effects, are 

not considered. 

8.4 	EVALUATION OF SCHEMES 

The full cycle and half-cycle protection schemes are now 

tested. The digital highpass filter of Chapter 7 is used with the 

half-cycle scheme. 

The fault detection times reported below were those needed 

for the impedance trajectory to enter the relaying characteristic. The 

transient delay of the digital lowpass filter used was measured to be 

about 1 msec. longer than that of the recommended analogue lowpass 

filter, and this difference, together with the processing cycle 

duration, was allowed for in the detection times. 

Plots of the impedance trajectories for faults I and II, 

obtained by the full cycle and half-cycle methods, are given in 
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Figure 8.10. If•  is seen that for both faults the half-cycle trajectories 

describe shorter paths to the postfault impedance points, giving 

faster fault detection as a result. 

Fault I was detected by both schemes although the 15 ohms 

fault resistance lay just outside the relaying characteristic resistive 

reach setting. This was because the current compensation described in 

Section 8.3 above meant that the fault resistance appeared slightly 

smaller than its actual value. 

	

8.4.1 	Accuracy of Methods  

Three faults with different resistances, and at different 

points on the line, were simulated. The first had a 5 ohms resistance 

90 miles along the line, and the second had a 2 ohms resistance and was 

20 miles away from the relaying point, while the third, which was at 

the midpoint of the line, had a 15 ohms resistance. 

The reactance and resistance, as obtained from the full 

cycle and half-cycle methods, are plotted against time after fault 

incidence in Figures 8.11 to 8.13. It is seen that about 15 msec. 

after fault incidence both methods give almost correct resistances and 

reactances, and that in general values obtained by the half-cycle 

method converge faster. 

	

8.4.2 	Effect of the Sampling Angle  

It was stated in Section 4.3 that fault detection can be 

delayed by as much as a sampling interval if the fault occurs 

immediately after a sampling instant. To investigate this, a 5 ohms 



fault 40 miles along the line was considered. Detection times for 

such fault were obtained for different sampling angles, and with 

fault inception angles of 0°  and 90°. 

The detection times are plotted in Figure 8.14(a) and (b), 

where it is seen that over the 45°  range of variation of the sampling 

angle, corresponding to the sampling interval of 2.5 msec., these 

times vary by a maximum of about 3 msec. It is therefore to be under-

stood that in some of the tests that follow, and where the sampling 

angle is taken as zero, the obtained detection times could vary by 

1 or 2 msec. for different sampling angles. 

8.4.3 	Fault Distance 

The variation of the fault detection time with the position 

of the fault on the line is shown in Figures 8.15 and 8.16 for two 

faults, one with a 1 ohm resistance and the other with a 3 ohms 

resistance. 

Detection times by both the full cycle and half-cycle 

methods generally increase with the distance to fault, since the 

impedance trajectories for faults near the relaying point on the line 

would enter the relaying characteristic sooner than trajectories of 

faults near the far end of the line. This in itself is explained by 

the fact that it takes all trajectories roughly the same length of 

time to arrive at their final destinations in the X/R plane for a 

particular type of fault, irrespective of the fault position. 

Figure 8.15 also shows a typical time characteristic of an 

analogue relay. It is well known [23 that there exists a minimum to 
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the length of a line that an analogue distance relay can effectively 

protect. This is determined by the limit of relaying signal below 

which the comparator will no longer measure accurately, and is in fact 

dependent on both the distance to fault and on the ratio of the source 

impedance to the line series impedance. Such limitation is much less 

obvious in a digital relay, where a typical dynamic range of the 

signals allowed makes the detection of faults that are very close to 

the relaying point possible. 

Detection times of analogue relays are also characterised by 

large increases before the reach point of the relay, as zone 2 is 

approached. This again poses no problems in digital relays, where 

detection times are fairly consistent for all faults up to the reach 

point. The detection of faults occurring beyond this point, as is 

indicated in Figures 8.15 and 8.16, is a result of the fault current 

compensation that was expected to cause overreaching. 

8.4.4 	General Tests 

Fault detection times for various faults covering differing 

conditions are given in Table (8.1) overleaf. In all cases, the 

sampling angle was adjusted to give a sampling instant immediately 

after fault incidence, thereby producing detection times that do not 

include the effects of the sampling angles. 

Detection by the half—cycle method, it appears from Table 

(8.1), is on average about 2.5 msec. faster than by the full cycle 

method. The speed of both methods deteriorates for larger fault 

resistances and for increases in the distances to the faults, while, 

for faults with a 10 ohms resistance at least, detection times 
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xf 

miles 
---- 

R
I 

ohms 

f.i.a. 

degrees 

Fault Detection Times, msec. 

full cycle half-cycle 

0 12.20 9.68 

0 45 12:20 9.68 

90 12.20 17.18 
25 0 22.20 19.68 

10 45 19.70 14.68 

90 17.20 12.18 

0 17.20 14.68 

0 45 14.70 12.18 

90 19.70 17.18 
75 0 24.70 22.18 

10 45 22.20 17.18 

90 19.70 17.18 

TABLE 8.1 	Fault detection times. for the full cycle and half-cycle 
methods. 

improve for large fault inception angles. This is significant in view 

of the fact that in practice over 95% of faults occur within 40°  of a 

voltage maximum [4] , since insulation breakage is more likely when 

the voltage is at about its peak value. Detection of zero resistance 

faults, however, is slower for 90°  fault inception angles, and this is 

probably because the measured resistance in such cases momentarily 

becomes negative. This warrants no further consideration here, since 

it is known that true short-circuit conditions seldom arise in practice. 

Detection times given in Table (8.1) above can be taken 

as an indication of the performance of the protection schemes for 

single-shunt faults. Extensions to other fault conditions involving 

more than one phase are not obvious. It was reported E:55.3 that 

flashover faults to earth, cross-country earth faults and open-conductor 

plus earth faults on double-circuit lines II] are not always correctly 



cleared by phase—fault measuring elements employing  the polarised mho 

characteristic. While it remains true that such faults can be catered 

e 	tits-4 
for by . 	other than fault location discriminative protection, they 

are nonetheless expected to create some confusing conditions for 

digital distance protection that, under cross—country earth faults at 

least, could lead to tripping of a healthy phase. 

8.5 	BEAVY SYSTEM LOADING 

The performance of the full cycle and half—cycle schemes with 

almost maximum load transfer conditions was next investigated. A one—

phase load of 500 NW at 0.8 p.f. was used, requiring  a total power of 

nearly 90% of the maximum cold weather thermal rating  of 2200 MVA 

E42..] for the three—phase line. 

x
f
) 

miles 

R
f 

ohms 

f.i.a. 

degrees 

Fault Detection Times, msec. 

full cycle half—cycle 

0 12.20. 9.68 

0 45 12.20 9.68 
90 9.70 7.18 

25 
U 22.20 19.68 

10 45 19.70 14.68 

90 17.20 7.18 

0 17.20 12.18 

0 45 14.70 12.18 

90 17.20 17.18 
75 0 24.70 19.68 

10 45 22.20 14.68 

90 19.70 14.68 

TABLE 8.2 	Fault detection times with line operated almost at 
maximum rating. 
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Table (8.2) gives the detection times for the same faults 

as those considered in the general tests of Section 8.4. Thus, 

comparing these detection times to those given in Table (8.1), it is 

seen that the half-cycle method is now faster by a sampling interval 

for nearly all the faults. This is explained by the location in the 

X/R plane of the prefault impedance, which is now closer to the 

relaying characteristic than it was in the case of the natural load. 

However, as has already been discussed in Section 8.2, this condition 

of maximum load transfer still leaves an adequate margin between the 

tripping area and the impedance location, and stability for power swings 

is thus not significantly degraded. 

8.6 	nib HALF-CYCLE METHOD WITHOUT THE BIGHPASS FILTER 

The effect of the highpass filter on the half-cycle method 

was next studied. A 4 ohms fault 60 miles along the line and a 1 ohm 

fault 20 miles along the line were simulated. Different fault 

inception angles were used, and in each case the sampling angle was 

chosen so as to allow fault occurrence to immediately precede a 

sampling instant, as was done in the general tests of Sections 8.4 

and 8.5. 

Table (8.3) gives the detection times obtained for the two 

faults with the different fault inception angles, and with and 

without the inclusion of the digital highpass filter in the half-cycle 

algoi.ithm. The current for the 4 ohms fault was not very large, and 

its dc offset was expected to be insignificant. Consequently, fault 

detection times were equal for small fault inception angles, 

decreasing for the algorithm without the highpass filter as the fault 
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Fault Detection Times, msec. 

Fault Inception 4 ohms, 60 miles 1 ohm, 20 miles 

Angle, 	degrees Highpass No Highpass Highpass No Highpass 

0 14.68 14.68 9.68 14.68 

10 14.68 12.18 9.68 12.18 

20 12.18 12.18 9.68 12.18 

30 12.18 12.18 9.68 12.18 

40 12.18 12.18 9.68 9.68 

50 9.68 12.18 9.68 9.68 

60 9.68 12.18 7.18 9.68 

70 14.68 12.18 7.18 9.68 

80 14.68 " 	12.18 7.18 9.68 

90 14.68 9.68 7.18 9.68 

TABLE 8.3 	Detection times of faults by the half-cycle method 
with and without the digital highpass filter. 

inception angle approached 90°  and the dc offset diminished. The 

improvement is in fact .attributed to the disappearance of the transient 

delay that the highpass filter introduced. 

Detection speeds for the 1 ohm fault, and by the algorithm 

employing no highpass filter, again improved as the fault inception 

angle increased. However, the relatively large current in this fault 

resulted in an overall deterioration of the detection speed by this 

algorithm in relation to the algorithm with the highpass filter, as 

the effect of the dc current offset was now more marked. 

The above suggests that the exclusion of the highpass filter 

from the half-cycle algorithm can result in some improved performance 

for large fault inception angles. However, a degradation in 

performance is to be expected for faults with large currents and with 

small inception angles, where errors due to the do offset in the current 



would probably be giving rise to large oscillations in the impedance 

trajectory. It is therefore concluded that the highpass filter is, 

after all, necessary. 

8.7 	CONCLUSION 

The full cycle and half-cycle algorithms both proved to he 

-offering satisfactory detection of faults of varying types and 

locations. In particular, faults close to the relaying point, and 

faults near the remote busbar, were all successfully detected under 

differing conditions. The digital relaying algorithms therefore 

appear to be giving excellent fault location discrimination. 

Fault detection times by the half-cycle method were better 

throughout, being less than 10 msec. for many faults. Furthermore, 

the methodvs sensitivity to dc offset was successfully dealt with by 

the use of a highpass filter. 
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CHAPTER 9  

CONCLUSIONS 

The aim of the work presented in this thesis was to develop 

a digital relaying algorithm capable of providing more reliable and 

faster line protection than is currently obtainable from analogue 

relays. Consequently, digital harmonic filtering was fundamentally 

examined, and a new filtering method was devised and used for the 

phasor determination involved in impedance relaying. The method was 

then supplemented by appropriate analogue lowpass and digital highpass 

filters, thereby forming a complete digital distance relaying scheme 

that gave both fast detection and improved discrimination. The 

initial aim of the study was thus achieved. 

The original contributions that have emerged through the 

course of this work in the field of transmission line protection are 

as follows: 

1. The formulation of a description of the composition of 

fault transients that systematically accounted for both the line 

natural frequencies and the parasitic ringing components. 

2. The complete analysis of the nonlinear time-varying 

filter that resulted from the amalgamation of the orthogonal 

filters appearing in the Discrete Fourier Transform. 

3. The derivation of a number of modified Discrete 

Fourier Transforms that are applicable to signals with specific 

compositions. 

4. The adoption of one such modified transform as the 

basis of a distance protection scheme, and the further 



modification of its algorithm for acquiring immunity against dc 

offset. 

5. 	The application of sigital signal processing criteria 

for the determination of suitable analogue lowpass filters, and 

through an optimisation procedure that was set to take protection 

requirements into consideration. 

Few possibilities can be suggested for future work. It is 

thought that the adoption of the quarter-cycle method could result in 

slight further improvements in fault detection speed. This was not 

examined in detail during the course of this work because preliminary 

investigations of the frequency response of the quarter-cycle method 

revealed the need for some appreciable modifications to this response, 

and it was felt that the extra complexity that this involved would 

make the scheme unsuitable. However, increased complexity can be 

justified if significantly improved performance were to result. 

The performance of digital distance relaying schemes, it 

appears, is approaching its limits. Over the past decade, numerous 

computer methods for the determination of the line impedance have been 

suggested, and some of these, as with the improved method introduced 

in this thesis, do provide excellent discrimination and fast detection. 

The algorithm's simplicity, and the low sampling rate used, make 

real-time implementation on a small processor possible. This, in turn, 

is lending itself conveniently to the trend of contemplating modular 

digital electronic relaying units for the replacement of conventional 

analogue relays. 
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However, attention has been drawn recently to a new class of 

relaying methods based on a different phenomenon. It has been suggested 

[54] that the limitation of the response time, that is fundamental to 

all the impedance determination methods, can be bypassed by employing 

fault discriminants derived from the analysis of travelling wave 

transients. This principle has so far been implemented in a form that 

.requires a signalling channel linking both ends of the line, and the 

development of a nonunit system employing a low sampling rate thus 

remains to be seen. 
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