203,684 research outputs found

    Understanding tissue morphology: model repurposing using the CoSMoS process

    Get PDF
    We present CoSMoS as a way of structuring thinking on how to reuse parts of an existing model and simulation in a new model and its implementation. CoSMoS provides a lens through which to consider, post-implementation, the assumptions made during the design and implementation of a software simulation of physical interactions in the formation of vascular structures from endothelial cells. We show how the abstract physical model and its software implementation can be adapted for a different problem: the growth of cancer cells under varying environmental perturbations. We identify the changes that must be made to adapt the model to its new context, along with the gaps in our knowledge of the domain that must be filled by wet-lab experimentation when recalibrating the model. Through parameter exploration, we identify the parameters that are critical to the dynamic physical structure of the modelled tissue, and we calibrate these parameters using a series of in vitro experiments. Drawing inspiration from the CoSMoS project structure, we maintain confidence in the repurposed model, and achieve a satisfactory degree of model reuse within our in silico experimental system

    Traffic monitoring using image processing : a thesis presented in partial fulfillment of the requirements for the degree of Master of Engineering in Information and Telecommunications Engineering at Massey University, Palmerston North, New Zealand

    Get PDF
    Traffic monitoring involves the collection of data describing the characteristics of vehicles and their movements. Such data may be used for automatic tolls, congestion and incident detection, law enforcement, and road capacity planning etc. With the recent advances in Computer Vision technology, videos can be analysed automatically and relevant information can be extracted for particular applications. Automatic surveillance using video cameras with image processing technique is becoming a powerful and useful technology for traffic monitoring. In this research project, a video image processing system that has the potential to be developed for real-time application is developed for traffic monitoring including vehicle tracking, counting, and classification. A heuristic approach is applied in developing this system. The system is divided into several parts, and several different functional components have been built and tested using some traffic video sequences. Evaluations are carried out to show that this system is robust and can be developed towards real-time applications

    Water and energy-based optimisation of a “MiniCity”: A system dynamics approach

    Get PDF

    A comparison of the UK Standard Assessment Procedure and detailed simulation of solar energy systems for dwellings

    Get PDF
    The drive to reduce worldwide Carbon Emissions directly associated with dwellings and to achieve a zero carbon home dictates that Renewable Energy Technologies will have an increasingly large role in the built environment. Created by the Building Research Establishment (BRE), the Standard Assessment Procedure (SAP) is the UK Government's approved methodology for assessing the energy ratings of dwellings. This paper presents an evaluation of the advantage given to SAP ratings by the domestic installation of typical Photovoltaic (PV) and Solar Domestic Hot Water (SDHW) systems in the UK. Comparable PV and SDHW systems will also be simulated with more detailed modelling packages. Results suggest that calculation variances can exist between the SAP methodology and detailed simulation methods, especially for higher performance systems that deviate from the default efficiency parameters

    Modelling fungal colonies and communities:challenges and opportunities

    Get PDF
    This contribution, based on a Special Interest Group session held during IMC9, focuses on physiological based models of filamentous fungal colony growth and interactions. Fungi are known to be an important component of ecosystems, in terms of colony dynamics and interactions within and between trophic levels. We outline some of the essential components necessary to develop a fungal ecology: a mechanistic model of fungal colony growth and interactions, where observed behaviour can be linked to underlying function; a model of how fungi can cooperate at larger scales; and novel techniques for both exploring quantitatively the scales at which fungi operate; and addressing the computational challenges arising from this highly detailed quantification. We also propose a novel application area for fungi which may provide alternate routes for supporting scientific study of colony behaviour. This synthesis offers new potential to explore fungal community dynamics and the impact on ecosystem functioning
    corecore