17,421 research outputs found

    On Engineering Support for Business Process Modelling and Redesign

    Get PDF
    Currently, there is an enormous (research) interest in business process redesign (BPR). Several management-oriented approaches have been proposed showing how to make BPR work. However, detailed descriptions of empirical experience are few. Consistent engineering methodologies to aid and guide a BPR-practitioner are currently emerging. Often, these methodologies are claimed to be developed for business process modelling, but stem directly from information system design cultures. We consider an engineering methodology for BPR to consist of modelling concepts, their representation, computerized tools and methods, and pragmatic skills and guidelines for off-line modelling, communicating, analyzing, (re)designing\ud business processes. The modelling concepts form the architectural basis of such an engineering methodology. Therefore, the choice, understanding and precise definition of these concepts determine the productivity and effectiveness of modelling tasks within a BPR project. The\ud current paper contributes to engineering support for BPR. We work out general issues that play a role in the development of engineering support for BPR. Furthermore, we introduce an architectural framework for business process modelling and redesign. This framework consists of a coherent set of modelling concepts and techniques on how to use them. The framework enables the modelling of both the structural and dynamic characteristics of business processes. We illustrate its applicability by modelling a case from service industry. Moreover, the architectural framework supports abstraction and refinement techniques. The use of these techniques for a BPR trajectory are discussed

    A Flexible and Secure Deployment Framework for Distributed Applications

    Get PDF
    This paper describes an implemented system which is designed to support the deployment of applications offering distributed services, comprising a number of distributed components. This is achieved by creating high level placement and topology descriptions which drive tools that deploy applications consisting of components running on multiple hosts. The system addresses issues of heterogeneity by providing abstractions over host-specific attributes yielding a homogeneous run-time environment into which components may be deployed. The run-time environments provide secure binding mechanisms that permit deployed components to bind to stored data and services on the hosts on which they are running.Comment: 2nd International Working Conference on Component Deployment (CD 2004), Edinburgh, Scotlan

    A robust semantics hides fewer errors

    Get PDF
    In this paper we explore how formal models are interpreted and to what degree meaning is captured in the formal semantics and to what degree it remains in the informal interpretation of the semantics. By applying a robust approach to the definition of refinement and semantics, favoured by the event-based community, to state-based theory we are able to move some aspects from the informal interpretation into the formal semantics

    Flexible refinement

    Get PDF
    To help make refinement more usable in practice we introduce a general, flexible model of refinement. This is defined in terms of what contexts an entity can appear in, and what observations can be made of it in those contexts. Our general model is expressed in terms of an operational semantics, and by exploiting the well-known isomorphism between state-based relational semantics and event-based labelled transition semantics we were able to take particular models from both the state- and event-based literature, reflect on them and gradually evolve our general model. We are also able to view our general model both as a testing semantics and as a logical theory with refinement as implication. Our general model can used as a bridge between different particular special models and using this bridge we compare the definition of determinism found in different special models. We do this because the reduction of nondeterminism underpins many definitions of refinement found in a variety of special models. To our surprise we find that the definition of determinism commonly used in the process algebra literature to be at odds with determinism as defined in other special models. In order to rectify this situation we return to the intuitions expressed by Milner in CCS and by formalising these intuitions we are able to define determinism in process algebra in such a way that it no longer at odds with the definitions we have taken from other special models. Using our abstract definition of determinism we are able to construct a new model, interactive branching programs, that is an implementable subset of process algebra. Later in the chapter we show explicitly how five special models, taken from the literature, are instances of our general model. This is done simply by fixing the sets of contexts and observations involved. Next we define vertical refinement on our general model. Vertical refinement can be seen both as a generalisation of what, in the literature, has been called action refinement or non-atomic refinement. Alternatively, by viewing a layer as a logical theory, vertical refinement is a theory morphism, formalised as a Galois connection. By constructing a vertical refinement between broadcast processes and interactive branching programs we can see how interactive branching programs can be implemented on a platform providing broadcast communication. But we have been unable to extend this theory morphism to implement all of process algebra using broadcast communication. Upon investigation we show the problem arises with the examples that caused the problem with the definition of determinism on process algebra. Finally we illustrate the usefulness of our flexible general model by formally developing a single entity that contains events that use handshake communication and events that use broadcast communication

    ISML: an interface specification meta-language

    Get PDF
    In this paper we present an abstract metaphor model situated within a model-based user interface framework. The inclusion of metaphors in graphical user interfaces is a well established, but mostly craft-based strategy to design. A substantial body of notations and tools can be found within the model-based user interface design literature, however an explicit treatment of metaphor and its mappings to other design views has yet to be addressed. We introduce the Interface Specification Meta-Language (ISML) framework and demonstrate its use in comparing the semantic and syntactic features of an interactive system. Challenges facing this research are outlined and further work proposed

    From SMART to agent systems development

    Get PDF
    In order for agent-oriented software engineering to prove effective it must use principled notions of agents and enabling specification and reasoning, while still considering routes to practical implementation. This paper deals with the issue of individual agent specification and construction, departing from the conceptual basis provided by the SMART agent framework. SMART offers a descriptive specification of an agent architecture but omits consideration of issues relating to construction and control. In response, we introduce two new views to complement SMART: a behavioural specification and a structural specification which, together, determine the components that make up an agent, and how they operate. In this way, we move from abstract agent system specification to practical implementation. These three aspects are combined to create an agent construction model, actSMART, which is then used to define the AgentSpeak(L) architecture in order to illustrate the application of actSMART

    On the Action Semantics of Concurrent Programming Languages

    Get PDF
    Action semantics is a framework for semantic description of prograrnming languages. In this framework, actions are semantic entities, used to represent the potential behaviour of programs --- also the contributions that parts of programs make to such behaviour. The notation for expressing actions, called action notation, is combinator-based. It is used in much the same way that lambda-notation is used in denotational semantics. However, the essence of action notation is operational, rather than mathematical, and its meaning is formally defined by a structural operational semantics together with a bisimulation equivalence.This paper briefly motivates action semantics, and explains the basic concepts. It then illustrates the use of the framework by giving an action semantic description of a small example language. This language includes a simple form of concurrency: tasks that may synchronize by means of rendezvous. The paper also discusses the operational semantics of action notation, focusing on the primitive actions that represent asynchronous message transmission and process initiation
    • ā€¦
    corecore