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1. Introduction

Our modern society depends upon the processing, storage and transfer of large amounts
of 'data. Digital data- and signal processing systems have invaded our life.

Designing these systems is a task of ever-increasing complexity. Because of time-to-
market restrictions, the design time should be as short as possible. To avoid accidents
and accompanying legal problems, the system should not exhibit 'strange’ behaviour
(just another way to state that it should not contain too many bugs). Customers will
only buy the system if initial, operational and maintenance costs are not too high.
These often contradicting demands are depicted in figure 1-1.

Figure 1-1; Demands posed upon system design

The design process always starts with a set of requirements which must be transformed
into the operational system. The requirements are often given in an informal way. This
means a fuzzy, incomplete and error-prone start of the design process. Using an opera-
tional computer program as 'formal' system specification provides no solution to this
problem. A complex program is always derived from an informal specification. While
being correct in itself, informal specification errors and derivation errors may cause the
program to behave incorrectly under some obscure conditions.

1: Introduction 1



Design processes should pay attention to the fact that the specifications may be incor-
rect. Working with incorrect specifications will yield systems which may conform to
the specification, but do not operate as intended.

The best way to catch specification errors is by simulating the formally specified
system. This allows the customer to check whether or not the system operates as
intended. On-line interactive simulation allows a customer ta check the system
behaviour under conditions which he 'forgot to mention' in the informal specifications.
Simulation will never certify a specification as being correct, it only provides a higher
level of confidence. It is up to the customer to state that he is satisfied with the system
behaviour as sirnufated. Once this is done, actual system design can start.

Chapter outline:

Chapter | states the problems found in general system design, compares some existing
approaches and introduces the three-stage design path chosen in this Ph.D the-
sis.

Chapters 2 and 3 introduce an improved 'Object-Oriented’ model (with extensions)
which will be used to describe and simulate the system.

Chapters 4 and 5 show how this model can be used for high-level system behaviour
analysis and high-level system architecture design.

Chapter 6 describes how the high-level architecture modules can be implemented in a
mix of hardware and software.

Chapter 7 provides descriptions of the necessary tools. These provide an innovate mix
of graphical and textual descriptions to combine designing and simulation.

Chapter 8 provides the results achieved so far and describes the work which remains to
be done.

Appendix 1 shows the result of applying the model for system behaviour analysis.

Appendix 2 gives a list of results achieved with the tools which have been developed.
This includes an ASIC which forms the major part of a switching network for a
telephone exchange.

Appendix 3 provides a list of terms used in this Ph-D thesis.
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1.1 Target: designing complex data process-
ing systems

The design methodology described in this Ph.D thesis aims at complek data processing
systems. The methodology should be generally applicable. It should not be limited to a
single 'problem domain' like digital signal processing or real-time process control.

The methodology should be capable of designing system architectures at almost any
level of 'module complexity’. Designing at computer-, board-, chip-, register or gate
level does not differ that much. Parallels can be drawn in software design. The differ-
ence lies more in the complexity of the modules which constitute the system at each
level. Within each complexity level, systems are built out of communicating modules.
This makes it possible to use a common methodology.

As stated in the introduction, the specifications for a system are often fuzzy and need
clarification, The informal specification must be formalised, if possible in a form which
can be simulated on a computer. This allows checking whether the formalised be-
haviour matches the informal behaviour. Informal behaviour basically exists in the
mind of the customer. The best way to check the formal behaviour is to show the cus-
tomer what the system does. To ease checking, the formal behaviour should be stated
in the terms which the customer used in his informal behaviour description.

When the formal system specification has been checked and approved, actual system
design can start. A system architecture must be designed which exhibits the same be-
haviour as the formal specification. If necessary, this architecture can be refined to
lower levels of module complexity until each of these modules can be implemented.
Until that point, functionality can be moved freely between the modules, while modules
may be combined or split up. When a module is implemented, the functionality is
fixed. During implementation, a module may be split up into lower-level architectures,
but the module's functionality remains the same. This is an iterating process -
implementing high-level modules by decomposing them into lower-level modules. The
iteration ends when pre-designed modules are used.

One of the major targets of our design methodology is to allow the use of Application
Specific dntegrated Circuits (ASIC's) as module of the designed system. ASIC's com-
bine some very desired properties. They are small, fast, consume little power and can
perform very complex functions. To allow ASIC design, the lowest level module li-
brary should contain elements which can be implemented in ASIC form.
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The lowest level modules used in this design path are the 'basic building blocks'. These
model hardware structures like registers, memories (including queues, stacks and con-
tent addressable memories), arithmetic/logic operators and state machines. An imple-
mented basic building block may contain thousands of gates, whose combined be-
haviour is described with only a few lines of text. This allows a much shorter design
time than when the gates had to be connected manually. Combinations of basic building
blocks may be stored as a single complex module, ready for re-use. This allows a de-
signer to create a library of modules to build future systems from, decreasing design
time even further. Translation of basic building blocks into lower description levels
('gate’, 'transistor’ and 'layout’) is an automatic process.

1.2 Requirements for the design methodology

Before introducing our design methodology, we first give a list of requirements we
think necessary for any design methodology. Section 1.3 gives some existing
methodologies and checks their adherence to the requirements.

No architecture restrictions

A design methodology should not force the designer into designing more or less
fixed architectures. Limiting the number of possible architectures immediately
limits the range of applications covered by a methodology.

Applicable to all architecture levels

Limiting the range of architecture levels a methodology can handle also gives
problems. When a methodology is only applicable to high-level architectures, a
follow-up method must be applied to do the low-level architectures. Conversely,
a methodology intended only for low-level architectures cannot give insight into
the complete system.

Using a single methodology which covers a large range of architecture levels
gives several advantages. Designers familiar with the methodology can do the
high-level architectures and continue working on subsequently lower levels.
Mixed level designs become natural - high-level modules can be us®d as test
environments for low-level designs. j

i

Possibility of simulation/execution

Being able to simulate a system has several advantages. An informal specifica-
tion can be validated by formalisation followed by simulation. Interactive
simulation allows building and verifying a design in small steps. This reduces
the possibility of covering a mistake under a large number of quasi-simultaneous
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changes made to the system. Simulation also allows stochastic analysis of the
operational system.

Mixed-level simulation should be possible. A high-level architecture may have
one or more elements modelled at lower levels. The remaining high-level ele-
ments act as test environment for the low-level designs.

Open to analysis

Systems described with any design methodology should be open to several kinds
of analysis. Design decisions are based on analysis results. Both static and dy~
namic analysis should be possible:

Static analysis looks at system characteristics which can be deduced from the
system description. For a software-implemented system, static analysis
will provide the characteristics which are known 'at compile time', for
instance:

. The complexity of the functions which are performed.
° Statically allocated data storage.
. Connections between system elements.

. Communication formats used.

Dynamic analysis looks at system characteristics which are exhibited during
operation. For a software-implemented system, dynamic analysis pro-
vides the so-called 'run time' characteristics like:

. Data processing characteristics - the tasks which were performed, the
amount of time needed.

. Dynamic data storage requirements,

. Data transfer characteristics - the amount of data transported, the amount
of time needed, the occurrence of blocking or deadlock.

P 3

By applying analytical methods to the static system description, some of the dy-
namic characteristics can be predicted. Queueing theory can be applied to pre-
dict some of the data transfer characteristics. The Calculus of Communicating
Systems ([mil80]) can predict other data transfer characteristics like deadlock
([hui88]). These analytical methods share a large disadvantage - they require the
system to be abstracted to a degree that it does not adhere to the original be-
haviour anymore (data dependent traffic patterns are very difficult to take into
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account). Where analytical methods fail, dynamic system analysi§ must be based
upon statistics gathered during simulation.

Short design cycles

As stated in the introduction, a customer wants his system delivered 'ASAP’
(As Soon As Possible). A design methodology should provide results fast, while
maintaining high standards of quality and reliability.

Gaining speed in a design methodology can be done in two ofthogonal direc-
tions:

. Increase designer productivity

The number of correctly designed-in entities per time unit is almost
independent of the entity complexity [kee92]. By using powerful enti-
ties, the number of entities (and time) needed to describe the system is
reduced. Studies have shown that writing 100.000 lines of code requires
between 50 and 75 times the effort of writing 10.000 lines of code
[ebe89a]. This indicates that the gain achieved by using higher complex-
ity entities is even larger than can be expected from the complexity ratio.

Very powerful entities are found in previously designed system
elements. Re-usability is a powerful way to increase designing speed.
The number of errors introduced in a system relate to the amount of new
code written. A design made out of library elements should therefore be
of a much higher quality than one made from scratch.

Designer productivity also depends on the tools used. Interactive design
tools allow immediate checking of modifications and give a designer
high confidence in his own work.

. Support teams of designers working together on one project

A design methodology should make it possible to divide the work across
several designers early on in the process. The methodology and tools
should support this by allowing the exchange of finished design elements
and multi-level simulation. This allows giving each designer a copy of a
roughly subdivided system. Each designer is then assigned to one of the
subsystems. Once (intermediate) results are produced, they can be
distributed to all group members for inclusion in their system.

User friendly

User friendly-ness is both a question of tooling and of the design methodology.
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A user friendly methodology models systems in a way a designer finds
‘natural’. A model built with such a methodology closely follows our perception
of 'reality’. Each of the model entities has a corresponding entity in the 'real
world'. This makes it easier to describe the functions of the model to people
unfamiliar with the methodology. This holds even when this 'real world’ does
not exist but is a more abstract concept.

Even when a methodology in itself is user friendly, having impossible-to-work-
with tools will not make it very popular. Making a tool user friendly involves
lots of ergonomic aspects which we will not describe here. The most important
is that the tool's operation should be intuitive. Tt should also provide fast
responses to design actions. Having a huge set of compilers, linkers and
simulators cannot be considered user friendly methodology support.

1.3 Current design methodologies

This section reviews several existing design methodologies and compares their
attributes to the requirements stated in the previous section. Tools are not evaluated, as
these are always evolving and would blur the view.

This section is divided into three sections according to 'phase’ of the design path (high-
level system behaviour modelling, high-level system architecture, low-level component
implementation/architecture). The existing design methodologies are checked for their
usability for these phases. Some methodologies do not cover all phases and must be
extended with other methodologies.

1.3.1 High-level system behaviour modelling

High-level system behaviour modelling is the first phase of the design path. It is used
to analyse the requirements and transform an informal specification into a more-or-less
formal description of the same system.

Hatley and Pirbhai ([hat87]) use a 'Requirements Model’ to fix the specifications
of a system. The system is decomposed according to it's functions, leading to a layered
description of processes, stores and data flows. Processes are described by 'Process
Specifications’, for which any description method may be used. A superimposed
‘Control Model’ with control flows, control stores and Finite State Machine-like
'Control Specifications’ is used to control the data transformations in the system.
Timing requirements may be specified. Data types used by the data and control flows
are specified separately in a 'Requirements Dictionary', which allows static system
checks to be performed.
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The Hatley and Pirbhai methodology does not place many restrictions on the
systems designed with it. In general, systems modelled with this methodology
can not be simulated. No real semantics of the modelling entities are given.
Also, no syntax and semantics of an entity specification language are provided
(any language can be used, with a tendency to 'structured English’). System

- analysis is limited to static consistency checking (the requirements dictionary is
checked for completeness, the connections drawn on the diagrams are checked
for 'balancing' errors). Design speed is adequate, because complex entities can
be described and work can be distributed. Behaviour errors cannot be detected
by simulation which may lower the design speed. Hatley and Pirbhai use
functional decomposition to build their system model. If this is done too strictly,
it may become difficult to comprehend the mapping of the model to the
problem,

Ward and Mellor ([war85]) base on the same work as Hatley and Pirbhai,
namely that of DeMarco ([dem78]). The 'Essential Model’ describes the behaviour of
the system independent of any architecture or implementation - this is the equivalent of
the Hatley/Pirbhai ‘Requirements Model’. Ward and Mellor separate data flows into
continuous data flows and event-type data flows. The same separation is done with
control flows. Modelling identical processes is eased by directly indicating that there
are multiple instances of a process. 'Entity Relationship Diagrams' (taken from
[che76]) are offered as ‘'data oriented’ adjunct to the functionally oriented
"Transformation Scheme' (which combines Process- and Control Specifications).

The Ward and Mellor methodology shares most of the problems and capabilities
with Hatley/Pirbhai. This is not surprising, as they have the same ancestor. The
separation of data flows types gives a better semantic base for the
interconnections. It also models real-world communication methods more
closely, as these can be synchronised ('event-type') or unsynchronised
(‘continuous'). Modelling with entity relationship diagrams helps building more
comprehensible systems, as they decompose the system in a more 'natural’ way.

VHDL (VHSIC Hardware Description Language, [iee88]) allows the definition of
virtually any kind of entity, complete with input/output ports and an internal
architecture, The entities themselves may form components of higher level
architectures. True parallelism can be described because each entity bebaves as a
separate process. Unlike Hatley/Pirbhai and Ward/Mellor, VHDL is an executable
language with syntax and semantics. The problem with VHDL as behayiour description
language is stated in the first line of the IEEE Standard VHDL Language Reference
Manual: 'The design entity is the primary hardware abstraction in VHDL' (underline by
author). The language is targeted at hardware architectures, not at formal descriptions
of abstract problems. For this task, VHDL 1is comparable to other structured
programming languages - it is possible to describe parallel tasks, but the level of
abstraction is fairly low. Data types and behaviour descriptions are at the level of a
language like Pascal. Interface methods are low-level hardware oriented, but can be

8 An Object-Oriented Modelling Technique for Complex (Real-Time) Systems



extended to include functions like buffering and multi-source communication channels,
Extensions like these can be placed in libraries for common use. Another approach is
taken by Benders and Stevens ([ben®1]), who describe a VHDL preprocessor with
high-level synchronization and communication constructs,

VHDL is a reasonably modern hardware specification language. In this section, VHDL
can stand for other such languages like ELLA ([pra86]) and SID ([sag90]), all of
which have similar capabilities.

Hardware description languages like VHDL place a very stringent restriction
upon the systems designed with them - they are fully targeted towards hardware
(ASIC’s). A large advantage of these languages is that syntax and semantics are
fully defined. Simulation of the described system is possible, tools for gathering
statistics are available. System consistency is defined by syntax and semantics
and can be checked by compilers. Using hardware description languages for
general system analysis is slow because of the low abstraction level. It is
difficult to describe complex entities in a clear and concise way. The capabilities
to describe complex data structures and communication protocols are limited.
The way a system is decomposed using a hardware description language is up to
the designer.

1.3.2 High-level system architecture modelling

Following rigid specification of the system's functionality, the functions must be
allocated to actual operational modules. This defines a high-level system architecture
and forms the second phase of the design path. At the end of this phase, an
implementation is chosen for each of the architecture modules. High-level architecture
design is very goal-oriented. The objective is to re-use already existing architecture
module implementations. It is much cheaper to use an already existing implementation
than to design a totally new one.

Hatley and Pirbhai ([hat87]) build an ‘Architecture Model’ which defines the
configuration of physical modules that perform all the required data and control
operations. Each of the 'Architecture Modules’ is subdivided into four parts - user
interface, input processing, output processing and functional/control processing. A fifth
part may be added, containing maintenance, self-test and redundancy management
processing. Architecture Modules may be layered. The lowest layers are specified by
an implementation choice and the functions which must be performed (referring to the
"Process Specifications’ and ‘Control Specifications’ stated in the 'Requirements
Model’, see section 1.3.1). 'Architecture Flow Diagrams' indicate how data travels
through the system. ‘Architecture Interconnect Diagrams’ show the actual
interconnections for the data flows. An ‘Architecture Dictionary’ summarises the data
types used in the system.
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The Architecture Modules provide a good means to describe a system
architecture. The problem remains that the system cannot bel simulated and
thoroughly analysed. Implementation choices are solely based upon the
designer's experience. It cannot be checked whether or not a physical module
can perform the functionality assigned to it. The subdivision of Architecture
Modules is a functional one. It may not reflect actual implementations.

Ward and Mellor (Iwar85]) do not use a new modelling technique to build their
'Implementation Model’. The framework of the 'Architecture Modules’ used by Hatley
and Pirbhai is absent. The Implementation Model re-groups the functions and stores
present in the 'Essential Model’ (see section 1.3.1). For each of the functional groups
“in the Implementation Model, an implementation method is stated. Ward and Mellor
divide the Implementation Model into a 'Processor Model’, which is subdivided in a
'Task Model’. This shows a tendency towards software implementations. Separate
sections are devoted to interface-, process management- and data management
modelling,

The Ward and Mellor Implementation Model has the same shortcoming as the
Hatley/Pirbhai Architecture Model - it cannot be simulated. The subdivision in
Processor and Task models is tendentious.

VHDL (fiee88)) is better suited for high-level architecture design than for behaviour
modelling. The rigid hardware orientation gives it the same shortcomings as stated in
section 1.3.1. VHDL is not abstract enough to describe true behaviour.

SDL. The CCITT "Specification and Description Language’ ([eci87]) is developed to
describe the concurrent behaviour of processes in telecommunication’ systems. Using
SDL, a system is described as a set of communicating state machines. Communication
is performed by sending messages, which are buffered by the receiver. As shown by
Hulzebos ([hul88]), the same language can also be used to describe parallel hardware
processes. Implementation of such a (reasonably abstract) description is not a simple
issue. Direct implementation is impossible, for instance because infinitely long buffers
are assumed. The original SDL model must be changed by introducing artificial limits
before implementation can start.

1.3.3 Low-level component architecture modelling

Once the functional-, interface- and implementation method specifications have been
given for an operational module, it can be implemented. During implementation,
lower-level architectures may be introduced, as long as the total functionality remains
intact. Hardware as well a5 software (with an appropriate processor) and mixed
hardware/software implementations can be chosen.
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Hatley/Pirbhai (hat87]) and Ward/Mellor ([war85]) stop when a high-level
system architecture has been defined. Ward and Mellor state which tasks must be
placed in a processor, but they do not generate any executable code for these tasks.
Hatley and Pirbhai devote chapter 24 of their book to this phase (13 pages out of 4011!).
They state ‘hardware decomposition stops when separate, deliverable units are
identified’. They do not state how large these modules are. From their text it appears
that they mean functional groups of Integrated Circuits, like 'memeory’ and 'CPU".
Below that level, their architecture modelling technique becomes too cumbersome.

VHDL ([iee88]) is very well suited for intermediate- and low-level architecture
design. Given the correct libraries, Register Transfer Level and Gate Level designs can
be entered and simulated without much problems. Using VHDL as a tool for software
module prototyping/programming is not the goal of the language and should be
avoided.

Like other hardware description languages, VHDL is an input language for silicon
compilers, Given a 'structural VHDL' description of a system, these compilers can
generate a silicon layout of a circuit which performs the system's functions. Currently,
'structural VHDL' is a (varying) subset of the complete VHDL language. Often, such a
description must make use of predefined Register Transfer Level library entities, which
themselves are defined in terms of logic gates. Most of these langunage systems have
special constructs to define often used hardware entities like Programmable Logic
Arrays or Finite State Machines (the ASA system described in [sag99] is an example
here).

For more limited applications, specific silicon compilers can be generated. Examples
are Cathedral (iman86]) and HiFi ([1an89]), which are both targeted towards signal
processing algorithms. Cathedral allows designing a signal processing ASIC with only a
transfer function equation (accompanied by some directives) as specification. This is,
however, accomplished by using a few parametrisable architectures as foundation for
building the ASIC. Although designs made with such a system look different, the basic
structure is the same.
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1.4 Our approach: Object Oriented
Modelling

In section 1.3, several approaches towards system design have been examined. These
all had one or more drawbacks. In this section, we will give a design methodology
which tries to circumvent the problems encountered. The remainder of! this Ph.D thesis
will give more insight in the basic design model and methodology, in that order. Like
in the previous section, the design path is split into three parts:

1 High-level system behaviour modelling, during which the problem
statement is analysed and a complete (operational) behaviour model of the
system is built.

2) High-level system architecture design, during which the system behaviour
model is transformed into a high-level system architecture model.

3 Low-level module architecture design and implementation, during
which the modules which comprise the system architecture model are
implemented in hardware and software.

In our view, tooling is just as important as a solid model to build upon. The tools
should be consistent throughout the design path, having similar interfaces and
behaviour. This shortens familiarisation time for the designers. Operation of the tools
should be ‘intuitively’, it should follow operational procedures which a user already
expects. The same quality is something which we try to attain for the whole design
methodology.

The basic model introduced in chapters 2 and 3 is a very complex model.

The tools support this model with an interactive graphical design and simulation
environment. Setting up a design always starts with a bare and simple model. The
designer gradually introduces the complexity needed to model the system. It is possible
that a system design never uses all of the basic model's capabilities. All bookkeeping
and consistency checking functions are performed by the tools while the design is built.
These functions are normally invisible to the designer.

Using an interactive design environment allows the designer to concentrate upon his
task: designing a system using those capabilities of the model which are actually
needed, without being bothered with the intricacies of the model itself.

Conveying the operation of an interactive design environment on a static medium like
paper is a nearly impossible task. There is no substitute for hands-on experience, but
that is something we cannot offer in this Ph.D thesis.
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1.4.1 High-level system behaviour

During high-level system behaviour modelling, the problem statement is analysed and a
complete (executable) behaviour model of the system is built. Our Object Orfented
Analysis method is based mainly upon Coad and Yourdon ([coa90]), and Shlear/Mellor
(Ishi88]). Bailin ([bai89]) provided a suitable requirements specification method.
Shlear and Mellor ([shi89]) described a method to analyse the problem statement.
These methods have been merged into a single framework. We added timing and
concurrency to describe and design real-time systems. Chapter 4 provides an in-depth
description of the methodology, which can be outlined as follows:

o Compile a list of 'things’' which are found in the problem statement, the
"Problem Domain Entities’'. :

o Give the system a structure by defining 'forms part of relationships between the
Problem Domain Entities. These relations may be fixed or variable (Problem
Domain Entities which 'travel’ through the system).

. Build a superimposing structure by finding 'is a kind of relationships between
the Problem Domain Entities. This will later reduce the amount of work because
~ similar behaviour need be coded only once.

. Define communication channels by tracing '‘communicates with’ relationships
between Problem Domain Entities.

. Determine the global operational ‘aspects’ of the system. These will be used to
keep a better overview of the system by concentrating on one aspect at a time.

. Define the 'message’ protocols to be used in the communication between the
Problem Domain Entities, This includes describing in an informal way what a
message is supposed to achieve.

. Implement the handling of the messages by the Problem Domain Entities. This
includes defining variable storage timing aspects.

The result of the analysis phase is a system containing communicating Problem Domain.
Entities which exhibits the desired behaviour. This system can be simulated and shown
to all interested parties (customers). The system behaviour described this way serves as
a reference for the other phases, it is also the starting point for the next phase.
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1.4.2 High-level system architecture

The high-level system architecture is designed by mapping the Problem Domain
Entities onto a set of Abstract Processing Entities. Each of these form an abstract
description of the operations performed by a (hardware and/or software implemented)
processing unit. The problem-domain communication channels are re-mapped onto
Abstract Communication Channels. Each of these represent a hardware communication
medium (with accompanying protocols).

The re-mapping process i3 implementation directed. During high-level system
architecture design, preliminary implementation choices are made. These are based
upon the required capabiliies of the Abstract Processing Entities and Abstract
Communication Channels and a database containing ‘profiles’ of actual processing units
and communication channels. Operations of Abstract Processing Entities may be
combined to make better use of a processing unit which is not fully loaded. An
Abstract Processing Entities may be split to distribute a heavy processing load across
several processing units. Abstract Processing Entities may be duplicated to design fail-
safe systems. Communication channels may be split or combined for similar reasons.

The high-level system architecture design phase ends when the preliminary
implementation choices have been fixed. The chosen Abstract Processing Entity
implementations can handle the processing load they have been assigned to do. The
chosen Abstract Communication Channel implementations can handle the data traffic.
All functions of the analysis phase systern have found a place in the Abstract Processing
Entities. The overall behaviour adheres to the behaviour of the analysis phase system.

The result of the architecture design phase is a system containing’ communicating
Abstract Processing Entities, connected by Abstract Communication Channels. For
each of these system elements, a behaviour description and implementation strategy are
given. The complete specifications for each of the Abstract Processing Entities and
Abstract Communication Channels are given to the designers which will implement
them in the next phase.

|
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1.4.3 Low-level component implementation

During the low-level component implementation phase, the Abstract Processing Entities
and Abstract Communication Channels are implemented. This is done in the form
chosen at the end of the high level architecture design phase. Software implementations
(programs) can be constructed from the behaviour descriptions which define an
Abstract Processing Entity. Because these descriptions are executable, creating a first
software implementation can be done by direct translation.

For hardware, the route to Application Specific Integrated Circuits (ASIC's, the main
target of this design path) is somewhat more complex. Hardware implementations have
a low-level architecture of their own. Several steps are needed to replace the abstract
behaviour by more hardware oriented behaviour: '

1) The Abstract Processing Entity is replaced by a Low-level Simulation Entity.
The message interface is converted into a hardware compatible interface using
Interface Entities and Interface Primitives (registers and memories, for
instance). This fixes the interface between the hardware implementation and the
‘outside world’. It includes a mapping of the behaviour level data types onto
hardware compatible data types. Also, interface protocols must be defined.

2) The internal Absiract Processing Entity functions are translated into one or more
Algorithmic Level Entities. During this translation, the behaviour level
operations are converted into operations on the hardware compatible data types.

3 The Algorithmic Level building blocks which define a piece of data processing
hardware are translated into real data paths and controller structures. These are
specified in a 'language’ which uses basic building blocks like registers,
memories (including queues and stacks), arithmetic and logic operators and state
machines. During this translation, the hardware interface primitive elements are
included in the datapath.

4) The basic building blocks are converted into a suitable Hardware Description
Language equivalent. This system description is converted into an ASIC using a
set of standard design tools.

5 The system parts are actually built and connected together. Following system
integration tests, the design path is concluded with delivery of the complete
system to the customer.
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Figure 1.4.3-1 shows the relations between the entities which are used during the first
three steps of the ASIC implementation process. At the left, an Abstract Processing
Entity is shown in it's original form. At the top-right, an Abstract Processing Entity
has been converted into an Algorithmic Level equivalent. At 'the bottom-right, an
Abstract Processing Entity has been converted into a basic building blocks design. The
communication methods indicated in this figure allow all design elements to
communicate with eachother.
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Figure 1.4.3-1: Three levels of abstraction in one system

Although not stated explicitly here, testing and testability plays an important role in the
design process. An almost mandatory system aspect is ‘testing and maintenance’,
which defines the global system functions related to keeping a high level of confidence
in the system's operation, This aspect translates to built-in test hardware (scan paths)
and extra testing code in software,
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2. The Basic Model

This chapter describes the basic Object-Oriented model used for Problem Domain
Entities and Abstract Processing Entities (during system behaviour analysis respectively
high-level architecture synthesis). Extensions to the basic model are given in chapter 3.

The basic properties of the model are found by the following line of reasoning:

Problem stated in chapter 1:

We need to analyse problem statements for complex information processing
systems, When this has been done, architectures must be designed which
implement these systems. These architectures range from very coarse grain
(high-level system architecture) to fine grain (basic building blocks which can
be implemented in hardware).

Solution:

Provide a modelling technique which can be used to model and simulate the
problem and any architecture derived from this problem model. The
requirements for this modelling technique are the following:

1) The modelling technique should provide an abstract way to describe
concurrent systems of any kind. Both the problem statement and all
derived architectures contain concurrent communicating processes. A
high level of abstraction is necessary to describe complex systems
without going into fine details.

2) The modelling techniqgue should allow analysis and structure
modifications. Architecture design basically consists out of modifying
the system structure. Analysis is needed to base modification decisions
on.

3 The modelling technigue should provide simulation capabilities.
Comparing a model to an informal specification is only possible by
simulation, The modelling technique is designed to be used in an
interactive graphical design and simulation environment (see chapter 7).

Sections 2.1 through 2.1.6 gradually introduce and explain the basic model which
fulfils these requirements. The remainder of this chapter describes the basic model in
greater detail.
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2.1 Ideas behind the model

The basic idea behind the model is to provide the designer with a fully Object-Oriented
simulator for information processing systems. Standard Object-Oriented languages like
Smalltalk ([gol89], [dig88]) solve problems by describing the problem as a set of
communicating objects, each with their own behaviour. A user can 'ask’ such a system
to perform a function. This function is performed by all the objects in' cooperation by
sending messages back and forth. Eventually, a result message will be returned and the
problem is solved.

"Real information processing systems contain a multitude of elements (‘objects’ or
‘entities’ in Object-Oriented parlance) which are all active at the same time. This
concurrency aspect is lacking in most Object-Oriented languages. In Smalltalk, for
instance, sending a message always makes the sending object wait for a response (even
a dummy one). Only one object is active at a time. The system has no idea of time,
which makes it virtually impossible to simulate real-time systems.

The predecessor of Smalltalk, Simula ([bir73], [fra77]) was a language specifically
designed for simulation of general systems. This language allowed concurrency by
having objects behave as processes. When a process object is created, it becomes
operational and starts it's internal operations. A process object can put itself 'asleep’
for a specified or indefinite time. If indefinite sleep is entered, it must be 'awakened’
by another object. Actual calculations take zero simulated time. By inserting sleeping
periods between calculations, an object simulates real calculations.

The model proposed in this Ph.D thesis builds upon Smalltalk. Timing and
concurrency constructs are added to allow general system simulation.
Redefined communication methods allow complex communication
protocols to be modelled directly.

The following sections state more specifically what this model is based upon.

2.1.1 Standard Object-Oriented constructs

The Object-Oriented system model is built out of communicating objects. Each of these
objects contains internal variables and the operations (‘methods’) which manipulate
these variables. The objects communicate by sending ‘messages’ between eachother.
Receiving a message invokes one of the methods in the receiving object. These methods
may change the internal state of the object (the variables stored within it). They may
also invoke the sending of other messages. A message may be a direct command (like a

18 An Object-Oriented Modelling Technique for Complexv(Rea‘l-'ﬁme) Systems




procedure in Pascal) or a request for information (like a function). In the latter case, a
result message is returned.

Actual objects are instantiations of a ‘class’. The class defines which variables are
stored within the objects and the operations which are performed when messages are
received. Each ’‘instance’ (actual object created from such a class definition) has it's
own set of variables. Identical messages sent to instances of different classes may
provoke different reactions, something which is called .'polymorphism’. For instance,
both a circle and rectangle object may be sent the message 'surface'. Both will
calculate and return their surface area, but use radically different methods to do so.

A class description may be based upon another class description by a process called
'inheritance’. A derived class ('subclass’y may add new variables and methods to those
already defined in the original class (the 'superclass’y. It is also possible to re-define
methods which are already present in the superclass. Inheritance allows classes to share
common functionality. For instance, both the circle and rectangle classes may be based
upon a class called 'displayable object’. This superclass may contain general purpose
methods to display something on a computer screen. The rectangle and circle classes
can refine these methods to display themselves,

2.1.2 Separation of object state from system structure

In most Object-Oriented languages, no distinction is made between variables stored
within an object and external objects with which this object communicates. The internal
variables contain the object’s ’‘state’ and are often replaced by other values. References
to other objects are stored in variables which are seldom changed. This network of
references embodies the ‘static system structure’. Sending a message to a stored
reference does not differ from sending a message to a variable (variables are objects
too!). This situation is depicted in figure 2.1.2-1a: 'object2’ and ‘object3’ are stored as
variable within 'objectl’. This is misleading because they are not actually contained in

'object]’.
obzectz I
.| object3 |

a) "External” objects reached by b) External objects reached via
storing them in variables , comimunication channels

Figure 2.1.2-1: Two methods for describing the static system structure
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In our view, merging variables and external references is incorrect:

i

The state of an object is something completely different from the static
system structure, and should be treated as such.

Some objects ‘travel’ through the system (customers entering and iéaving a waiting
line, for instance). The presence or absence of these travelling objects should be treated
as object state. Travelling objects entering another object must be stored in an internal
data structure. They must be removed when they leave again.

We separate the static system structure from the variables by defining the structure
using communication channels. These communication channels are connected to
'connectors’ which are placed within the objects.

In our model, a message directed to an external object is sent to a local output

connector. This connector places the message on the communication channel it is

connected to. The channel forwards the message to other connectors attached to it. -
These other connectors transfer received messages to the actual object they are placed

in. This situation is depicted in figure 2.1.2-1b: 'object2’ and ‘object}’ can only be

reached via communication channels attached to 'connX' and 'connY”.

By using local connector names, an object may be instantiated at different places within
a system or even within separate systems. Each instantiation may have a completely
different 'hookup' to other objects. No problems will occur when these other objects
support the message protocols used by the replicated object. Seen.from the instantiated
object, it's environment must provide the services it requests by sending messages over
the output connectors. How these services are provided does not matter..

2.1.3 Separation of communication from behaviour

In the previous section, we saw that sending and receiving messages between basic
model objects is handled by connectors connected by communication channels. We now
go a step further and basic model objects into a 'processing core’ and a commumcanon
shell”: ‘

. The processing core contains the state variables and the operations to be
performed upon reception of messages. This core is defined by classes which
may inherit behaviour from other classes.

20 An Object-Oriented Modelling Technique for Complex (Real-Time) Systems
i «




. The communication shell selects, buffers and translates messages before
passing them on to the processing core. It surrounds the behaviour core and
protects the core from changes in the environment.

Separating behaviour from communication allows experimenting with several system
structures, something which is necessary during architecture design. It is possible, for
instance, to add a new communication channel without changing any behaviour core.
This allows an architecture designer to study the effect of the new system structure on
the system performance: Following this change, analysis and/or simulation may tell
whether this extra channel removes a system communication bottle-neck.

2.14 Dynamic multiple inheritance

The way in which behaviour is inherited between classes differs between different
Object-Oriented languages.

'Single inheritance':

Smalltalk ([gol89]) uses a tree-like class hierarchy, with class 'Object’ as root.
Each class has only a single direct 'superclass’, which is repeated until the
'Object' class is reached. All classes in Smalltalk ultimately inherit behaviour
from class 'Object’, which directly translates to 'all objects are a kind of
Object'.

Most Object-Oriented languages use this kind of inheritance, either with or
without a single root class (C+ + [str87], for instance, allows multiple root
classes).

'"Multiple inheritance':

In the Eiffel language ([mey88]), each class can inherit from multiple other
classes. Inheritance relationships can be represented as a directed acyclic graph.

Multiple inheritance gives problems when two or more superclasses have
variables with the same name or can receive the same message. When a subclass'

" wants to update a variable, it must indicate unambiguously in which class this
variable is located. When a message is received, it must be defined which
superclass should handle it in case the subclass cannot do that.
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Multiple inheritance is desirable. It allows defining the behaviour of an object as the
combination of behaviours of other objects. The basic model uses a method which has
most of the advantages of multiple inheritance. This method adds a very important
advantage of its own - 'inheritance’ may change over time:

'Dynamic multiple inheritance':

Each basic object defines it's behaviour by the combined behaviour of a set of
‘behaviour defining objects’. These behaviour defining objects are stored in a
user-defined number of ‘slots’ within the processing core.

Message handling ambiguity is avoided by imposing an ordering upon the slots.
This allows the interface shell to select the 'first’ behaviour defining object
which can respond to a received message.

The overall behaviour of a basic object can be changed by replacing one or
more behaviour defining objects: 'Dynanic multiple inheritance’. Behaviour
defining objects are themselves normal Smalltalk objects, and allow only single
inheritance.

2.1.5 Timing of objects

Each basic object should be seen as a self contained abstract processing unit. All basic
objects in the system are capable of concurrent operation. They can all be handling
messages at the same time. Synchronisation and cooperation are both achieved by
sending messages.

Basic objects have two 'modes’ of operation for handling messages:

1) ‘Reactive’ mode: Objects are idle until a message arrives. At that time,
processing is started by activating the corresponding method. This is the normal
Object-Oriented way of handling a message. The object reacts to the messages 1t
receives.

2) 'Imperative’ mode: The processing core actively retrieves messages which
have been received and buffered by the communication shell. It is also possible
to wait until specific messages arrive. The object itself determines which
messages to receive and in which order they will be handled.

The simulation model is made time-conscious by allowing a basic object to specify
processing times. Handling a message is always done at a specific processing priority
level. Receiving a message with a priority level higher than the processing priority
interrupts the Tunning method and starts the method corresponding to this message.
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Once the high priority message is handled, the low priority message method is resumed
at the point of interruption.

2.1.6 Channel behaviour

A channel's behaviour is relatively simple. Multiple connectors may be connected to a
single channel. Connectors are inherently bidirectional - they are capable of sending
and receiving messages.

Channels generally broadcast any message placed upon them. Figure 2.1.5-1a) depicts
this situation. It is possible to indicate that a channel concentrates messages towards a
specific object. The other direction then automatically distributes messages. Figure
2.1.5-1b) shows the same situation with concentration and distribution towards-
respectively from 'objectC’.

a) All objects intercommunicate b) Direct communication between
(channel broadcasts messages) objects A and B prohibited by
channel message routing

Figure 2.1.5-1: Message channel routing

The channels should be seen as a simple communication medium. Routing messages
based on contents or other system properties and/or states cannot be done by the
channels themselves. Additional basic objects are needed to perform this function.

Timing of a channel is relatively simple. Only a single message can be transferred at a
time. A channel may be in one of three states:

. 'Free'’: no message is present on the channel.

. ‘Blocked"; at least one of the receiving connectors refuses to handle the
message which is present on the channel.

*  ‘Transferring" the message is actually transferred between the sending and
receiving connectors.
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Basic message transfer involves the following seven steps (it is assumed that the
channel is in the ‘free’ state before starting):

1))

2)
3)

49

)

The sending basic object presents a message to one of it's connectors for
transfer.

This connector offers the message to the channel.
The channel notifies all receiving connectors that a message has been offered.

The receiving connectors inspect the message offering and decide what to do
with it. For now, the most important choices are to recefve or block the
message.

If any of the receiving connectors decides to block the message, the channel
makes the transition to the ‘blocked” state.

If none of the receiving connectors blocks the message (anymore), actual
message transfer starts, The channel makes the transition to the ‘transferring’
state. This state lasts a designer-specified time.

Following message transfer, the channel gdes back to the ‘free’ state. The
receiving connectors pass the message to their respective processing cores.

Other messages may be offered to the channel while it is ‘blocked’ or ‘transferring”:

While 'blocked’, a higher priority message offering is distributed immediately
by the channel. The message transfer cycle is restarted at step 3. Lower- and
equal priority message offerings have to wait until the current message has been
transferred.

While ‘transferring’, offered messages are stalled in the sending connectors.
Following transfer, the channel selects the highest priority message offered to it
and immediately restarts the transfer cycle at step 3 (the channel does not
become ‘free’). If there are multiple high-priority messages to choose from, a
random choice is made between them (this gives all connectors a fair chance to
use the channel).
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2.2 Mapping of data transfers and events on
messages

In Object-Oriented systems, all communication takes place in the form of sending
messages.

Messages always contain a fixed part. This part identifies the message and may be used
to differentiate between messages. It is also used to select the method which must
handle the message in the processing core. This is the reason why the fixed part is
called ‘message selector’ in Smalltalk.

Messages may contain a variable part in the form of parameters. The number of
parameters may vary. Objects of any class may be used as parameter.

Messages serve three purposes in an Object-Oriented system:

1) Events are used for synchronisation purposes. They are normally encoded by a
message without parameters like 'resetKeyPressed'. Here, the message
selector indicates the type of event.

2) Commands are requests to an object to perform a local function. These may

» also be transferred by messages, either with or without parameters like
'stopCarriage’ or 'setSpeedTo: 37'. Again, the message selector indicates
the command given.

3 Requests ask an object to return some information which is present in (or can
be obtained by) the receiver. These need two messages. The first issues the
actual request. The second one contains the reply, going in the opposite
direction. In the normal 'mode of operation' the sender waits for the reply,
while the reply is only received by the original requester. The requesting
message may Or may not contain parameters, like 'giveSpeed’ (reply: '37') or
'multiply: 3 with: 2’ (reply: '6').

Reply messages are special in that they do not actuaily require a message
selector - the recipient is known and is anxiously awaiting. In most Object-
Oriented languages, the reply 'message’ consists out of a single object. When
more results must be returned, it must be done in the form of a compound
object like an Array. ’

Events and commands are no problem in the basic model. The sending
object need not wait for anything to be returned, and can go on with it's
operations immediately.
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Requests and replies need special aitention. Returning a reply may take some time. The
behaviour of the sender during that time has to be specified. Two possibilities exist to
model this behaviour:

n

2)

Standard behaviour. The sender waits for a reply. The receivingkobject returns
the result using the normal Smalltalk techmique at end of it's method.

Decoupled behaviour. The sender does not wait for a reply. A separate result
message is used to return the requested information.

Examples of both methods are given below.

' Standard request message handling behaviour:

Example segment of a sending method:
result : = floatAlu multiply: 2.0 with: 3.1 .

"'floatAlu’ is the name of a connector with access to a floating point ALU.
This way of sending a message within an assignment indicates a result is
expected which must be awaited.”

Receiving method:
multiply: x with: y
“x*y

"The \éaret indicates that a standard result message is to be generated and sent
back across the connector at which the multiply:with: message was received.”

This is normal (Smalltalk) message sending behaviour, no concurrency is used.
The sender waits for the reply, the receiver stops processing after sending the
result back. The syntax directly follows that of Smalltalk.
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Decoupled request message handling behaviour:

Example segment of a sending method:
floatAlu multiply: 2.0 with: 3.1 .

"This way of sending a message without an assignment indicates no result is
expected immediately. The sender simply continues with his operations after
this expression (assuming message sending is not blocked)."

Receiving method:
multiply: x with: y
floatRequester multiplyResult: x * y

"'floatRequester’ is a connector which is used by the floating point ALU to
send messages to the sender of floating point operation requests. It is assumed
that this is always the same object. This way of sending a reply message back
does not stop processing in the receiver. The receiver may continue with it's
operations.”

Method in requesting object:
multiplyResult: aFloat
result : = aFloat

"The original sender must be prepared to receive a separate result carrying
message. "

This looks like normal (Smalltalk) message sending behaviour, but there is a
very important difference:

After sending a message to another basic model object, the sender
need not wait for a (dummy) result. This allows true concurrent
operation of basic model objects.

The sending object may have several requests standing out at the same time.
This means that it must be prepared to receive several result messages.
Administration of these requests and handling the result messages can become
very complex. Extra 'tag’ parameters attached to the request and reply messages
may be needed to identify them.
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Our modelling system has two extensions beyond these two methods:

1

2)

Following the caret expression which returns the reply message, a receiver may
specify more operations to be performed.

The reply message may be used to indicate that processing has started. It can
also contain a (receiver generated) tag which will be added to the actual result
message. This tag may be used by the sender in his outstanding requests
administration. !

A sender may be actively waiting for a reply message or poll the reception of
such a message.

The latter allows the sender to do some background processing while waiting for
a result. This ‘background processing’ may be polling for other messages. It is
possible to await a caret result message (which contains no message selector) by
referring to the original request message.

Some examples of polling and waiting are given below:

Example of waiting for a single message:

self waitFor: #multiplyResult: into: #({result).

"waitFor:into: lets the sending object wait for the reception of a message with
the indicated message selector. The parameter values attached to this message
will be assigned to the variables named in the indicated Array (between #()). By
substituting a message connector for self, the channel from which the message
must be read can be specified.” ,

Example of polling for a single message:

pollResuit : =
self pollFor: #multiplyResult: into: #(result).

"pollFor:into: checks for the reception of a message with the indicated message
selector. This returns a Boolean result, indicating whether or not the message
was actually present (and received). If the message was present, the received
parameter values will be assigned to the variables named in the indicated Array
(between #()). By substituting a message connector for self, the channel from
which the message must be read can be specified.”

An Object-Oriented Modelling Technique for Complex (Reil—Time) Systems



Example of waiting for a caret result message:

requestidentifier : =
floatAlu muitiply: 2.0 with: 3.1 {identifier}.

self
waitForResultOf: requestidentifier
into: #(result).

“Indications between {} following the sending of a message to a connector
change the message sending behaviour, not the message itself. In this case, the
keyword ‘identifier' indicates that the value assigned to requestidentifier
should be an identification for the message just sent, and not the result value."

*waitForResultOf:into: lets the sending object wait for the reception of the
(caret) result of the indicated message. The received value is assigned to the
variable named in the indicated Array (between #{)). By substituting a virtual
message connector for self, the channel from which the message must be read
cah be specified. 'poll’ may be substituted for ‘wait' in
waitForResultOf:into: to change the waiting into a polling operation. This
returns a Boolean result indicating whether or not the reply has been received. "

The extensions described above are the main (true) concurrency introducing methods in
our modelling system. They make it possible to have more than one basic object active
at the same time, without having to introduce an explicit multitasking concept with
processes and semaphores as done in Smalltalk.

The automatic starting of a behaviour method upon the reception of a message is called
‘reactive’ behaviour - the object reacts to a message.

’

The extensions described above allow a behaviour method to operate in 'imperative
mode. The object itself determines which messages to receive and in which order they
will be handled.

Stated in standard computer interface terminology, ‘reactive’ behaviour models-
interrupts, while ‘imperative’ behaviour models polling. Some extra extensions to this
imperative mode will be given in section 2.5.
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2.3 The interface shell

Each basic object consists out of two layers. This section deals with the: 'interface shell’
which surrounds the ‘processing core’. The next section describes this core which
contains data storage and performs the data processing functions.

connector
&‘comm.

message
selector/
manipulator

A ut
lnput v f ter
uffer

output
buffer

Figure 2.3-1: Elements of the interface shell

As depicted in figure 2.3-1, the shell is subdivided into two layers. The outer layer
contains separate elements for each connector (only one connector is drawn expanded):

o The input filter is used to determine which messages on the channel will be
"~ received.
. The input buffer can be used to store incoming messages while the processing
core is busy.

. The output buffer is capable of holding outgoing messages while the channel
is occupied.
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The inner layer is common to all connectors of a basic object. It contains the following
elements:

. The message selector/manipulator selects the message to be offered to the
processing core for handling. It can also perform some simple operations on
these messages.

. The virtual connector table allows the core to use virtual names for the
connectors. A single real connector may be known under several names.

Separate sections will be used to describe each of these elements.

Default behaviour of the interface shell elements following object creation is very
simple: they are virtually absent. A system which doesn't use these elements to their
full capabilities comes close to normal Smalltalk behaviour.

2.3.1 The input filter

Each message channel connector contains an input 'filter'. The purpose of this element
is 1o make a selection of the messages on the channel. The messages which pass the
filter will be handled by the input buffer and message selector and - ultimately - the
processing core.

The filter’s decision as to what should happen with a message are based mainly on the
message selector. Furthermore, the decision may be influenced by the following
variables:

. Parameters of the message. This includes 'hidden' parameters like message
priority.
Note that it is a bit strange that it is possible to check the parameters of a
message which has not been received yet. The filter may decide to block the
message transfer. Here, this decision is conditioned by the message contents.
According to the channel behaviour described in section 2.1.5, the channel
notifies all receiving connectors that a message has been offered. It is assumed

that this notification includes enough data to let the message filters take their
decision.

. State of the input buffers. This includes their filling level and the messages
stored.

. Variables stored in the processing core. lt is also possible to check the
operating priority of the processing core.
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Making a decision can be seen as a continuous process. Decision making starts when a
message is placed on the communication channel. It stops when the message is thrown
away, being transferred or removed from the channel. In the mean time the channel is
in the ‘blocked’ state (see section 2.1.5), and the initial decision may change.

The following decisions can be taken by the message ﬁlter

Accept the message. This opens the path from the chanel to the input
buffer. When message transfer starts while the filter accepts the message, the
message will be stored in the buffer. If no buffer is used, the ‘message will be
transferred directly to the processing core via the message selector/manipulator.

Accepting a message while the buffer is full will block the channel. The same
happens when no buffer is used while the processing core is busy and/or the
message selector does not select the message.

Absorb the message. To the outside world, this is like accepting the
message. Internally, the message is thrown away. It will not be stored in the
buffer or transferred to the processing core.

Stated in simple terms, absorbing a message means ‘I know the message, but I
do not handle it’.

Hold the message. This blocks the channel. The decision to hold a message
should not be taken unconditionally as this may block the channel indefinitely.
The only way out of that situation is when the message is removed from the
channel, for instance by a timeout.

As stated under ‘accept’, holding the message can also be done automatically.

Ignore the message. This operation cannot be specified in the filter, it is
automatically applied to all the messages which are not stated in the filter - the
message is unknown.

The 'ignore’ operation is basically the same as ‘absorh’. There is a significant
difference - it is not allowed that a message is ignored by all connectors
attached to a channel. When the latier happens, it indicates that no-one
understands the message. Simulation tools which detect this situation will halt
the system with an error message. '

Reject the message. Messages may be rejected because they are not allowed
at all or because they are not allowed under the given conditions. During
simulation, rejecting a message immediately halts the complete system with an
error message. This option allows a designer to build his own error checking
system.
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Standard reply messages are always sent to a specific message connector (the one which
was used to send the request). Therefore, filters always accept a standard reply
message.

An input filter with an empty specification has special behaviour - it will accept all
messages. Now it is up to the message selector and operational core to decide whether
or not to handle the message. When the message selector's specification is empty too,
at least one of the behaviour objects should have a method which is started with the
message selector. The message will be automatically rejected if this is not the case.

As stated above, a non-empty filter specification causes unknown messages to be
ignored. It is possible to change this is into rejecting all unknown messages. This can
be used as a debugging aid during system simulation: All until then ignored messages
must be specifically absorbed to prevent simulation halts.

A filter specification looks like a set of Smalltalk methods. For each of the message
selectors, a separate text describes what to do with matching messages. An example:

terminal: address display: aString

"Display the given string on this terminal object if the address pararneter
matches the address variable stored in the 'interface' behaviour object.
Block reception if the input buffer is full:"

self
absorblf: "Address incomect:”
address "= interface address.
salf
holdIf: "Address correct but buffer full:"
{address = interface address) &
{self inputBufferFillLevel = seif inputBufferDepth).
self
receivelf; "Address correct and space in buffer:"

{address = interface address) &
{(seif inputBufferFillLevel < self inputBufferDepth)
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2.3.2 The input buffer

Incoming messages can be stored temporarily in the input buffer. This element is
located between the input filter and the message selector/manipulator, Each message
connector has it's own input buffer. The following parameters are attached to each
input buffer:

. Buffer depth. The number of messages which the buffer can store can be set
between zero (no buffering at all) and - virtually - infinite.

‘o Buffer algorithm. The choice is limited to FIFO (First-In-First-Out) or
'priority FIFQ'. The first keeps the messages in strict order of entry into the
buffer. The latter sorts them so that higher priority messages are always in front

~ of lower priority messages, with equal priority messages in normal FIFO order.

The two algorithms inherently available in an input buffer are relatively simple.
More complex algorithms can be simulated by the message selector, which can
extract messages from the buffer at any point.

The default buffer depth is zero. When the buffer depth is set non-zéro, the default
buffer algorithm is priority FIFO.

ot R len
filter .
communi- non-specific selection
cation from buffer
channel message A
' header
storage
>
Tessage buffer
body
storage | § ¢+ i

Messages are retrieved from the y .
stores or the input buffer. message specific |
selection i

Figure 2.3.2-1: Conceptual diagram of the input buflfer

Figure 2.3.2-1 should be used as a guide to describe the combined behaviour of the
buffer and filter.
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Conceptually, messages transferred across the channels consist out of a header and a
body. The header contains the parameters needed to determine whether or not the
message should be received. The body is the bulk of the message and is transferred
when blocking is removed from the channel. Channels may select another (higher
priority) message for transfer while the channel is blocked. When this happens, the
header is invalidated and a new one is distributed.

Message selection is a combinatorial process. Any element selecting a message based
upon the message header should be prepared for being offered a new set of data.

The headers which are distributed across the channel are loaded in a header holding
store. Here, they can be inspected by the filter, which decides what to do with the
message. Note that blocking is overruled when the message selector or processing core
select the message:

. Ignore/Absorb: The channel is not blocked by this receiver.
. Hold: The channel is blocked by the receiver.

. Accept: Blocking depends upon the buffer. If there is space in the buffer, no
blocking is done. If there is no space (or the buffer depth is zero), the channel] is
blocked.

Transfer of the message body starts once no receiver is blocking the channel anymore.
The actual transfer takes a predefined time. When the transfer is complete, the body is
loaded in a separate holding store. If there is space in the input buffer and the filter
accepts the message, the complete message is copied to the buffer and the holding
stores are invalidated. If the message cannot be copied to the buffer, it remains in the
holding stores until one of the following happens:

. The filter (again) accepts the message while space is (or becomes) available in
the buffer. At this point the message is copied to the buffer.

. The message selector or the processing core retrieve the message. The message
never enters the buffer and is taken directly from the holding stores.

. A new message is offered on the channel. The header of this message is loaded
in the header holding store. At the same time, the body holding store is
invalidated, If, at this time, the header was selected (either by the filter,
message selector or processing core), the message is lost. During simulation,
loosing a message will normally lead to a system halt. In order to simulate real
channel behaviour, a warning can be given instead.

Seen from the message selector and processing core, messages may be selected from
the input buffer (head first) followed by the header holding store. Messages can be
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retrieved from the input buffer and the holding stores. The method of message selection
(see section 2.3.3.2) determines how the header holding store is treated. If selection is
non-message specific, the header is selected when the filter accepts the message. If
selection is message specific, the header is examined directly - messages may be
selected which are not accepted by the filter. Message selection is indicated in figure
2.3.2-1 with the dotted lines.

2.33 The message selector/manipulator

Multiple messages may be waiting in the input buffer(s) for service by the processing
core. The message selector/manipulator is the interface shell element which selects the
message to handle. It can also perform simple manipulations and/or direct the resulting
messages to a specific behaviour object (see section 2.1.4). Each interface shell has
only a single message selector/manipulator, which is shared by all message connectors.

2.3.3.1 Requirements for the actual message transfer

All message selector/manipulator operations are performed in a 'combinatorial'
fashion. Message selection and manipulation is a continuous process, resulting in
offering one (manipulated) message to the processing core. Message selection merely
indicates that the selected message has been checked to conform to specific
requirements. Any message selection may be redrawn while actual transfer has not
started yet. The actual message transfer is performed when the following two
requirements are met:

D The message must be completely available. The input buffers always
store complete messages which can be selected immediately.

While a channel is blocked, only the message header is available for selection.
Selecting this header will override blocking introduced by a filled (or absent)
buffer. When all blocking has been removed from a channel, message transfer
starts and the body is loaded into the holding store. The message is then
completely available. What happens at that point has already been described in
section 2,3.2,

2) The processing core is willing to handle the message. This is the case
when the priority of the offered message is higher than thie operational priority
of the processing core. The priority of messages is always higher than the 'core
idle' priority. This is necessary to assure that a message can be received at all.
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2.3.3.2 ~ Message selection

The message selector/manipulator uses a two-layer scheme to select messages:

1

Non-message specific selection. Here, the actual message contents do not
matter. If input buffers are present, only the messages at the head of the buffer
can be selected. If the buffer is empty or absent on a channel, message headers
loaded in the input holding store can also be selected, provided the filter accepts
the message.

Default behaviour for message selection is to use 'round-tobin' message
selection with priority. Each input channel presents a single message, from
which the highest priority message is selected. If there are multiple messages
with the same priority, ‘round robin' selection is done, giving each channel a
fair chance.

A preference may be given to a specific channel. More specifically, it is
possible to give a scanning order for the channels. This scanning order may be
selected based upon buffer fill levels and/or core variable values. The scanning
order may exclude channels and can specify whether or not message selection
should take priority into account. When multiple scanning orders could be
selected at the same time (because their selection conditions are all true), a
default priority is used to select one of them.

Non-specific message selection is specified by a list of texts. Each of these starts
by stating under which criteria this selection is made. Following this, the
channel scanning order and optional manipulations are specified, as in the
following example:

"Use this non-specific message selection when the 'state’ variable in
the 'main’ behaviour object indicates the 'shutdown’' mode:"

main state = #shutdown
"Only receive from the ‘control’ connector in this case:"
receiveFrom: #(control).

"Increase the priority of all messages selected this way
{(section 2.3.3.4):"

increasePriorityBy: 20
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2)

Message specific selection. Tt is possible to select specific messages, based
upon the following criteria: :

The message selector. The fixed part of the messages forms the main
selection criterion. ’

Message parameters. These include hidden parameters like message
priority.
Input buffer fill levels.

Operational core variable values, including the core priority.

The priority of the message which would be selected by non-message
specific selection. This allows specific selection to be postponed when
higher priority messages are waiting.

The input channel(s) on which the message may be received. If not
specified, all channels are open for reception. If a subset of channels is
specified, the order of specification also dictates the scanning order.

Selection of messages waiting at a channel starts at the head of the input
buffer, proceeds to the tail of the buffer, and then looks in the header
holding store. Message specific selection may select messages which do
not pass the filter.

Message specific selection specifications look like a list of Smalltalk methods.
Each of them start with the message selector which forms the main selection
criterion. This is followed by an expression which indicates the other conditions
which must hold for this selection to take place. Each specification ends with
the operations to be performed on the received message, as in the following

example:

setSystemModeTo: state

"If this message is received from the 'control’ connector and the
'state’ parameter indicates 'reset’..."

(receivedFrom: #(control)) & (state = #reset)
"...then receive this message, and perform some mianip(ihfarions: i
translateTo: #reset. "Translate the message (sect. 2.3.3.3)"

setPriorityTo: #255. "Change message priority (sect. 2.3.3.4)"
sendTo: #(main) "Specify behaviour object (sect. 2.3.3.5)"
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Message specific selection always has priority over non-message specific selection.
When multiple specific selections hold, a default priority order is used to select
between one of them.

Message specific selection is used by the processing core to receive standard reply
messages. This way of operation ensures that the reply message is accepted and
forwarded to the core as soon as it is offered on the channel.

As far as a channel is concemed, request and reply messages are simple normal
messages which are handled separately. A channel is not kept free for the reply during
the handling of a request.

A standard reply message cannot be selected by the message selector/manipulator, as it
does not contain a fixed message part. Non-message specific selection skips reply
messages. Without countermeasures, unexpected reply messages remain stored in input
buffers or may even block a channel. To get rid of them, reply messages are flushed
from the buffers and absorbed at the inputs while the processing core runs at the idle
priority. This is done under the assumption that no requests are standing out during
periods of inactivity.

2.3.33 Message translation

Re-using a behaviour object in a different basic model object may cause a mismatch
between the message formats understood by behaviour object and the messages which
are actually received. This mismatch can be removed by the message
selector/manipulator by translating messages into another format. Message translation
shields the behaviour objects from changes in their environment. This can only be done
when message specific selection is used.

Translation may involve combining several messages into a single one. To do so, the
source messages needed are specified as belonging together. To be able to select
multiple identical messages, an already selected message is skipped for the remaining
selection process. Actual selection of the messages is not done before all messages
meeting the selection criteria are available. Actual translation is postponed until they
are all present in their entirety. At that point, the selection criteria should still hold.

Translation always involves specifying a new message selector. Parameters for the
translated message are either direct copies of parameters from the source message(s) or
simple constants. Complex calculations on message parameters are not allowed,
because this is a task for the processing core.
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2.3.34 Priority manipulation

The message presented to the processing core may be given a priority which differs
from the original message priority. The operations allowed are very simple - assigning
a fixed new priority or raising/lowering the priority by a fixed amount. The resulting
priority should lay within the allowed message priority range - from just above the
'core idle’ priority to just below the 'no interrupts allowed' priority.

Unless specified otherwise, the priority of a message equals the processing priority of
the sending behaviour method, limited to the range described above.

Translated messages may be based upon the combination of several other messages. In
this case, the resulting priority is by default the maximum of the priorities of the
original messages.

Priority manipulation can be applied to messages selected with non-message specific
selection criteria. This makes it possible, for instance, to raise the priority of all
messages coming from a specific connector.

2.3.3.5 Behaviour object selection

In order to obtain dynamic multiple inheritance, the processing core may contain
multiple behaviour defining objects (see section 2.1.4). The slots in which these
behaviour objects are stored have a predefined priority (the order in which they are
named). By default, messages which are presented to the processing core are handled
by the highest priority object which recognises the message selector.

For each of the message selection mechanisms described in section 2.3.3.2, specific
behaviour object slot(s) may be selected for handling. If more than one slot is
specified, then the scanning order is given by this specification - the first behaviour
object which recognises the message selector will handle it.

2.3.4 The virtual connector translation table

The connector names used in the behaviour descriptions are virtual names. This allows
more flexibility in placing behaviour objects in different environments. A virtual
connector translation table placed within the interface shell is used to translate the
virtual connectors names into the real connectors placed in the basic object. In addition
to this, the table may also contain references to local behaviour object slots. For this
reason, names of real connectors and behaviour object slots must be unique within a
basic model object.
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Behaviour objects can poll input buffers for the presence of specific messages. This is
done through the virtual connector translation table.

The translation table is used to decouple behaviour from the actual communication
architecture. Sending a message to a virtual connector may route this to a local or
remote behaviour object:

. Local behaviour objects are reached by referring to virtual connector names
which stand for a local behaviour slot. Messages sent to such a virtual connector
never leave the basic model object.

U Remote behaviour objects are reached by referring to virtual connector names
which stand for a real connector. Messages sent to such a virtual connector are
sent across communication channel attached to the referred real connector.

The sender does not know where the receiver is located. Figure 2.3.4-1 shows how the
behaviour slots and virtual connector table relate. This figure also shows that the
message selector/manipulator does not use the translation table. The message
selector/manipulator directly accesses the connectors and slots.

! l access to ?ec;:less to
Variable “ connectors connectors
N
gonnector
. tructure
Boe‘l)laesgto ur Virtual connector
m translation table
st R
| Message selector/
message. manipulator message
dispatching | jjaccess to selection

local slots

Figure 2.3.4-1: Use of the virtual connector translation table

When creating a basic model object, all the behaviour slot names are stored in the
table. These names refer to their respective slots (a one-to-one translation). Each time a
connector is placed in a basic model object, it's name is added to the table too, again
translating one-to-one (unless this gives a name conflict). The table may be updated by
the designer. Virtual names may be added, changed or removed. The table may contain
several references to the same connector or behaviour slot. This is especially helpful for
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connectors, as it indicates that a single channel provides comm;mica}ion facilities to
different virtual objects. ‘

The behaviour when a message is sent to a local behaviour object is relatively simple.
The sending method is stalled until the started method has finished operation - the
started method should be seen as a simple subroutine. This must be done because there
can only be a single active method within a basic model object. The processing priority
during the handling of the 'subroutine’ is determined by the message priority assigned
by the sending method. Because the default message priority is the processing priority,
the processing priority does not change unless specific action is taken by the sender.

‘Note that the message selector/manipulator uses the real slot names: when selecting
behaviour objects. The virtual connector translation table is only used for messages sent
by the behaviour objects.

2.3.5  The output buffer

Each communication channel connector may contain an individual output buffer.
Without this buffer, a sending method blocks at the output action when the
communication channel is occupied. With the buffer inserted, the messages are held in
the buffer until the channel can transfer them. The sending method only blocks when
the buffer is completely filled.

Like the input buffer described in section 2.3.2, the output buffer can be set to any
length between zero and virtually infinite. The former is defanlt and indicates 'no
output buffer'. As with the input buffer, siraight First-In-First-Out or priority FIFO
message sorting algorithms can be selected (the latter is defanlt).

Communication channel connectors are inherently bidirectional. Messages sent by a
connector are not received by the same connector's input structure.

The behaviour of the output buffer can be explained by looking at figure 2.3.5-1. The
processing core sends messages through the virtual connector translation table to the
communication channel connectors. The messages are held in an output message
holding store. Messages remain there uatil placed in the output buffer.  If no buffer is
used, messages remain in the output holding store until the message transfer is started
on the channel. During the time that a message remains in the output store, the
processing core 15 blocked.
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Figure 2.3.5-1: Conceptual diagram of output message handling

Seen from the channel, messages are presented for transfer by the head of the output
buffer or (if no buffer is used) the output message holding store. When the channel is
free or blocked, the channel arbitration algorithm selects between the messages offered
by the attached connectors. The header of the selected message is distributed to the
receivers for inspection. If there are no receivers blocking the message, the body of the
message is transferred. Upon completion of the transfer, the message is removed from
the output buffer or holding store. The latter will un-block the processing core again. If
the message was removed from the output buffer and the holding store was filled, the
message in the store is immediately moved to the output buffer. This will also un-block
the waiting behaviour method.

The message selected by the channel's arbitration algorithm may change while the
channel is blocked:

. If the output buffer is operated in priority FIFO mode, sending a high priority
message may place this message at the head of the buffer immediately. This
new message then becomes open to selection.

] A message may be sent with a transmission start timeout specified. If the
transmission has not started when this timeout expires, the message is redrawn
from the holding store or output buffer. If this message was at the head of the
output buffer, the next message in the buffer becomes open to selection.

In both cases a new message is offered to the channel. This causes the channel
arbitration algorithm to be run again. A new message is selected and the corresponding
header is distributed for inspection by the receivers.
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A message cannot be redrawn once body transmission has started. This is the main
reason why the transmission timeout is related to the start of the message body
transmission. The maximum blocking time for a sending processing core is the
transmission timeout time plus the specified transmission time. This can only happen
when no buffer is used. :

When a buffer is used, the maximum blocking time is the timeout time. Blocking only
occurs while the buffer is full. Once space becomes available, the message is placed in
the buffer and the processing core is un-blocked.

The processing core may obtain the following three pieces of information regarding
each output structure:

. The channel status - 'free', 'blocked’ or 'transferring’.

. Bufler fill level and bufler depth. The latter is needed because this parameter is
not under core control and may be needed for fill level control algorithms.

. Whether or not specific messages are waiting in the buffer. Searching for
messages starts at the head of the buffer and proceeds towards the tail. A
message which is not yet in transfer may be removed from the buffer. This has
the same consequences as a timeout on that message.

2.4 The processing core

Actual data processing and data storage within a basic model object is performed by the
processing core. The actual behaviour of the object is defined by a set of ‘behaviour
objects’, which are stored in named 'slots’ within the core. Behaviour objects can be
removed or replaced by others during system operation. This way, the overall
behaviour of the basic model object can change dynamically.

Defining the behaviour of a basic model object as the 'sum’ of the behaviours of the
individual behaviour objects leads to a form of ‘multiple inheritance:

. True multiple inheritance allows any object to inherit behaviour from
several other object classes. The inheritance links between these classes are
static. '

) In the basic model, only the basic model objects inherit écombine) their
behaviour from multiple behaviour object classes. The behaviour objects
themselves use single inheritance. The basic model uses non-fixed ('dynamic')
links, which is why we call this inheritance scheme ‘dynamic multiple
inheritance’.
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2.4.1 Priorities and interrupts

The processing core behaves like a processor with interrupt capability. Only a single
message can be handled at a time, which is always done at a speclﬁc processmg
priority level’. When a message is accepted by the core, the processing priority is set to
the message's priority. While handling the message, the processing priority can be
checked and manipulated by the processing core itself. Messages sent while handling a
message by default receive the processing priority as message priority.

Handling a message is interrupted when the message selector offers a message with a
higher priority than the processing priority. Handling the interrupted message is
resumed when the high priority message has been handled. At that time, the original
processing priority is restored too.

The processing core performs actual processing in ‘zero’ simulated time. The core
interleaves moments of activity with waiting periods to create the illusion of being
busy. All interrupts will happen during these waiting periods. An interrupt will
temporarily halt the waiting period timer. This is necessary to prevent an interrupt from
reducing the 'processing time' of another message.

The processing priority can be varied over a restricted range. At the lowest priority,
any message will interrupt processing. This priority can be used for 'background
processing', which is done when there is nothing else to do. At the highest priority, no
message is capable of interrupting. This level is automatically selected when initialising
a behaviour object, and can also be used to provide access protection (record locking in
a database, for instance). '

The processing core does not provide true multitasking capabilities. There were several
reasons not to do so:

. The separate basic model objects already behave as truly concurrent processes.
Adding another process does not slow down the system, something which
happens in a real multitasking environment.

e Muititasking is normally not needed in an Object-Oriented environment.
Multitasking is used to allow several large programs to run at the same’
computer. Switching between these programs is normally done when the
running program must wait for input. An Object-Oriented environment is event
driven. Methods are staried automatically when something happens.
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2.4.2 The behaviour object

The actual behaviour of a basic model object is defined by the behaviour objects which
are stored inside it's processing core. The message selector/manipulator entity in the
interface shell can send messages to any of these behaviour objects - if needed, to
specific elements.

The behaviour objects are stored in named ’‘slofs’ within the processing core. They
themselves may contain a set of user-defined local variables, which remain intact
during the lifetime of the behaviour object. A set of 'methods’ define the actions to be
taken when a message must be handled. Each method is identified by a name which
should match the message selector which starts the method.

24.2.1 Behaviour object variables (‘state')

The state of a behaviour object is stored in a set of user-defined variables. These
variables may be manipulated by the behaviour object’s methods, either by assignment
or sending messages to them. They cannot be accessed from outside the basic model
object (they are 'hidden' from the outside world). External access to the variables is
completely controlled by the behaviour object's methods. The input filters and message
selector/manipulator have 'read only' access to all variables.

The state variables remain intact between the handling of the messages. They form the
'long term' memory of a behaviour object.

Type checking of behaviour object variables is possible by specifying the class to which
a variable should belong. This class may be any of the standard system classes (like
Integer or String) or a user-defined class. When assigning to a typed variable, the value
should either belong to this type, or be 'no value'. When the type of a variable
indicates a collection of some kind (Array or Set, for instance), the type of the objects
stored in this collection can also be specified.

The default initialisation value for each of the variables is 'no value’. An initialisation
method may store other values when the system is reset or a behaviour entity is created.

2.4.2.2 The behaviour descriptions ('methods')

The actual operations of a behaviour object are defined by a set of 'methods’. Each of
these methods is known by a symbolic name, which must be unique for a behaviour
object. When a message is received by the behaviour object, the method which matches
it's name against the message selector is started automatically.
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The methods themselves are located in the class definition from which the behaviour
object is an 'instance’,

When a method is changed, all behaviour objects belonging to the same
class change their behaviour.

Behaviour objects are based upon Smalltalk objects. Using standard Smalltalk
constructs, conditional execution and loops can be defined. The pseudo-variable ‘self’
refers to the behaviour object itself. Behaviour objects add the pseudo-variable ‘shell’
which provides access to the basic model object in which the behaviour object is stored.
This is necessary to access and change the processing priority and to perform
imperative mode operations like polling connectors for the reception of specific
messages.

2.5 Concurrency and timing

The basic model allows true concurrency simulation. Timing aspects can be simulated.
Timing simulation allows analysing whether or not a designed sysiem meets some
externally imposed timing constraints. This capability is needed for real-time system
design.

We have already described several timing aspects, but these are summarised and
completed in this section. There are three basic timing specifications which can be
given:

. Processing delays
. Data transfer time
. Timeouts

These are described in more detail below.
Processing delays

In a real environment, the actual processing of data - performing operations -
takes time. Even storing and retrieving data takes time, depending on the
complexity of the data struciure and the presence of dynamic-sized structures
(for which space must be found).
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Like in most simulators, this is simulated by interleaving bursts of processing
(done in 'zero time') with periods of waiting ([fra77]). This creates the
appearance that the processing is done during the specified waiting time. In the
basic model, sending messages is seen as normal processing. Sending a message
which requires an immediate reply automatically haits the processing core until
the reply message is received. '

Within the processing core of a basic model object, an interrupt caused by the
reception of a high priority message may postpone handling another message.
Due to the fact that actual operations take no (simulated) time at all, these
interrupts must always come during periods of waiting (for reply messages or a
specified time}. This means that an actual processing burst is automatically
protected against interrupts.

Data transfer time

Sending data across a communication channel takes time. In the basic model, a
channel can transfer only a single message at a time. This means that messages
have to compete for the channel - introducing extra waiting time. The actual
transfer time can be specified when the message is created by the processing
core. ‘

Timeouts

Messages have to compete for the data channels. A busy channel introduces a
waiting time for the messages, especially for those with a low priority. To limit
this waiting time, a timeout may be specified by the processing core when
creating the message. If the message transfer has not started when this timeout
expires, a piece of user-defined processing is started to handle the timeout, This
will normally invoke the setting of a flag or re-sending the message at a higher
priority. The processing priority during timeout handling is automatically set to
just below the 'no interrupts allowed’ priority.

When a request message is sent, a different timeout can be specified. If
reception of the result message has not started when this timeout occurs, a
timeout just like the one described above will be generated.
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2.6 System reset and initialisation

When the system is reset, it must be brought to a fixed default state. Following this,
initialisation must be done before actual operations can occur. The default reset state is
system defined, while initialisation is user-defined.

When the system is reset, the following happens:

. All input and output buflers are cleared. All messages present in the system are
lost.
. All behaviour objects are removed. System state stored in these objects is

completely lost.

Individual behaviour slots may be protected from clearing. System state stored
in these behaviour slots remains intact during system reset.

. The first slot within each basic model object is loaded with an instance of a
designer defined class. This new behaviour definition object is subsequently sent
the message 'initialize’. While handling this message, it may create and store
behaviour objects in other slots.

2.7 Object-Oriented aspects

The modelling system is implemented in Smalltalk, which is a fully Object-Oriented
design environment. This does not imply that the model is fully Object-Oriented too.
The following list describes the Object-Oriented’'ness' of the major basic model
elements:

. The interface shell does not fit in the Object-Oriented line of thought.
Although messages are handled by it, no inheritance is present. For now, each
shell is a unique element, although it may be a (modified) copy of another one.
In the next chapter, we will see that it is possible to have a set of basic model
objects which share exactly the same shell architecture (a ‘multiple’).

o The processing core is not Object-Oriented with respect to the behaviour
slots. These are specified with the interface shell, and therefore do not inherit
behaviour. This is not necessary either, because the slots themselves do not
exhibit behaviour of their own.
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o The behaviour objects are fully Object-Oriented. They are instances of user-
defined classes, which have the same capabilities as normal Smalltalk classes.
The only difference is that their methods are specified in an ‘extended
Smalltalk’ language, which is translated into standard Smalltalk before
compiling. They allow single inheritance, just like Smalltalk classes.

. Dynamic multiple inheritance behaviour is simulated by the shell, and
depends upon the behaviour of the behaviour objects. The behaviour object
classes are highly re-usable, and may need even less adapting and sub-classing
than normal Smalltalk classes. This is due to the fact that a basic model object's
behaviour is the sum of the behaviours of the behaviour objects. Several
existing behaviour objects can be combined with a new element. This new
element coordinates their actions and modifies their behaviour by
"preprocessing’ and 'postprocessing’ messages.

2.8 Mapping of other models on this model

The model proposed here is a general purpose sysiem description method. Checking
whether or not it is generally applicable can be done by comparing this model to other
existing models. We will only indicate how the basic concepts of the other model can
be simulated in our system.

We will not try to give a comprehensive list of modelling techniques. The two
examples given in the next sections have been chosen because they have relatively
complex semantics. Models like 'Communicating Sequential Processes’ ([hoa78]) and
Petri Nets ([pet81]) are based on more mathematical grounds. They have simpler
semantics and are therefore easier to simulate using objects.

Mapping the basic model onto other models can also be done. This is a far from trivial
conversion because of the high abstraction level of the basic model. Being able to
convert a system described with the basic model into a mathematically based
description allows the system to be analysed with mathematical tools. The problem
remains that even relatively simple abstract systems may be converted into very
complex mathematical models. The complexity of these models often makes it
impossible (or impractical) to use mathematical analysis tools.
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28.1 The CCITT Specification and Description Language
(SDL) '

SDL ([cci87]) builds a system out of communicating processes. Communication takes
place using ‘signals’, which are sent across predefined communication channels. The
processes are described using a state machine-like syntax. State transitions are caused
by the reception of signals. The current state, signal type and ‘enabling conditions'
determine which transition is made. Data is stored by processes, transported as signal
parameter and processed during state transitions.

Mapping this model on the basic model is relatively simple. Basic objects,
communication channels and messages take the place of processes, channels and signals
respectively. Building an Object-Oriented state machine is trivial. Just store a state in a
variable and use this variable to determine what to do with a received message. Part of
this message handling will be setting a new ‘state in the variable, preparing for the next
message reception. The enabling conditions can be described by the message filters
and/or the message selector.

There are some basic differences between the basic model and SDL which must be 7
bridged some way or another:

. Each SDL process has a single (infinite) signal buffer, while the basic model
uses separate buffers for each channel. The SDL buffering method can be
simulated in the basic model by routing all incoming messages through a single
connector. An alternative is to use non-channel specific message selection,
which treats all input buffers as a single storage pool for messages.

. Signals received by a SDL process in a state in which these signals are not
expected are lost, unless a specific 'save signal’' construct is used. In the basic
model, we try not to loose messages - we even stop simulation when this
happens. Loosing a message can be easily simulated by receiving the message,
then doing nothing with it. This can be performed by the filters, which can
'absorb’ a message. When a message is handled by the processing core, being in
a specific state may be a reason not to do anything with it.

SDL allows processes to be created and removed. While a basic model object does not
allow this, the 'multiple object’ extension described in section 3.1 is an almost exact
maich for this functionality. It allows identical basic objects to be created and destroyed
during the lifetime of the system. Like in SDL, these objects are all attached to the
same set of communication channels. Creating a basic object is done by sending a
message to a special ‘management’' connector. Selection between identical objects can
be done either by a user-defined or system-defined identifier. Destroying a basic object
can be done in several ways, the 'suicide’ which an SDL process can do is one of
them.
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2.82  The Hatley/Pirbhai and Ward/Mellor models

The basic models used by Hatley/Pirbhai ([hat87]) and Ward/Mellor ([war85]) are
both based on the work done by DeMarco ([dem78]). They differ more in the
application of their models than in the modelling techniques themselves. We have
chosen to provide a description of the mapping of the Hatley/Pirbhai model onto the
basic model. Mapping the Ward/Mellor model onto the basic model follows the same
methodology.

An important remark up-front: The Hatley/Pirbhai model does not require the
processing to be described in an executable language. The 'Structured English’ they use
is not a programming language. Unless a more rigid specification language is used,
their model cannot be simulated.

The Hatley/Pirbhai ‘requirements model’ uses separate processes and data stores. These
are interconnected by ‘dara flows’ which may carry and route multiple items of
information. Processes perform data manipulation when all the data items they require
are present on the incoming data flows, generating data items on the output data flows.
Data can be stored in the data stores, which normally have destructive write and non-
destructive read (each item separately). A data store can store a subset of the
information present on the input data flows.

Control of the Hatley/Pirbhai 'requirements model' is performed by a 'control model’.
This uses control flows, control stores and state machine-like descriptions of the actual
control algorithms. The control flows behave almost exactly like the data flows.
Control stores store events in a FIFO fashion. Control flows emanating from a process
indicate data conditions, those pointing into a process can enable or disable the process.
When disabled, a process will not handle data nor produce output, even when the
necessary input data is present. Multiple processes may be collapsed in a 'transaction
centre’, which can perform multiple functions selected by the control flow entering it.
The state machines are non-clocked, they make a state transition immediately when all
conditions necessary for this transition hold.

Mapping the Hatley/Pirbhai model upon our basic model is done by replacing all
processes, stores and control processes by basic model objects. Data and control flows
are replaced by message channels. Each data item is represented by a separate message
to indicate its presence and value. A separate message is used to indicate that a data
item is not present on a flow anymore.

Simulating the continuous processes is done by sending a message each time a data item
changes or is removed from a flow. Routing the data iterns is done by the filters, which
determine the messages received by an object. Each time a message is received, a table
of 'current’ data items can be updated, and new messages generated from this table.
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A data store mapped onto a basic model object is a very simple process. It relays data
itemn change messages, but 'swallows' data itern removed messages. Actual data storage
is done by the processes, which each keep a copy of the data item. A control store
simply buffers control event messages in a FIFO, removing a message each time the
attached state machine 'consumes’ one of them.

A Hatley/Pirbhai control process can be simulated just like a normal process, extended
with a state variable. Each time a control flow changes, a table of 'current’ control
flows is updated. Following this, the stored state and control flows are evaluated,
control flow messages are sent and a new state is entered.

Control flows entering a process are handled just like data flows. When a 'disable’
message is received, messages are sent to invalidate data items. When an ‘enable’
message is received, stored input data items are evaluated and new data item messages
may be generated.

The Hatley/Pirbhai ‘architecture model’ basically uses the same operational model as
the requirements model. The only difference lies in the system configuration. This
difference is necessitated by the assignment of physical implementations to
communication channels and operational modules.

Mapping the Hatley/Pirbhai model entities onto basic model objects is a straightforward
task. 'Framework' objects can be designed which model the basic Hatley/Pirbhai
entities. These can be subclassed to provide the necessary behaviour originally
described in structured English. The result will be an executable Hatley/Pirbhai model.
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3. The Extensions to the Basic Model

The basic model objects described in the previous chapter are not enough to model
general information processing systems. Several important modelling techniques cannot
be performed with the basic model objects alone:

° Decomposition of a complex system element into other less complex elements.

. Allowing a variable number of a specific system element during a system's
lifetime. ‘

. System elements which 'travel' through the system - their 'is contained in’

relation is not a fixed one.
. Continuous, non-synchronised communication methods.

Solutions to these problems are described in this chapter.

3.1 Groups

A complete system is composed out of a multitude of objects. Manipulating an large
amount of basic model objects at once is very difficult for a designer. A way out of this
problem is to group objects together and treat this group as a single unity.

Looking at it from the other side, the system is decomposed into a small amount of
complex objects. These are again decomposed into less complex objects. At any level,
'simple-enough’ objects are described by a single basic model object.

The latter way of decomposing complex objects into simpler ones is the preferred way
of designing a system. It is generally referred to as the ‘fop-down' design method:

1) The behaviour of a complex object is described in rough terms.
2) This complex object is decomposed into a set of simpler objects.

3 For each of these a more detailed behaviour description is gi ven. The combined
behaviour of the simpler objects should adhere to the original behaviour.

This process repeats itself until the desired level of detail is reached.

During the decomposition of a complex object, objects with which it communicates
may remain intact. These may be used as test environment for the decomposed object.
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Our modelling technique represents objects and their communication channels on
"Entity Communication Diagrams’. Decomposing an cobject then becomes replacing it
by a lower-level Entity Communication Diagram, which itself is represented by a
symbol at the position of the replaced object. Communication channels which were
connected to the original object remain connected to the symbol of the Entity
Communication Diagram. They emanate on the lower-level Entity Communication
Diagram through ’‘super comnectors’. These are modelling elements which have no
other function than to signal that a communication channel is connected to another
communication channel outside the Entity Communication Diagram. This conversion is
depicted in figure 3.1-1: The basic object 'TOPENTITY" is decomposed into two basic
objects named 'SUB1’ and 'SUB2'. These are both placed within the Entity
Communication Diagram which replaces the original basic object.

CO
TOPENTITY
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......
""""""
.....
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----
....
....

b) Grouping entity with contents

Figure 3.1-1: Replacement of a basic object by a group

A lower-level Entity Communication Diagram should be seen as a single object placed
within a high-level Entity Communication Diagram. Because the symbol represents a
group of other objects, we have given it the name ‘grouping entity’ or simply ’a
group'.

Neither a grouping entity, nor a super-connector can do any processing. They are
merely a technique to symbolise the decomposition of a complex object into less
complex objects. The same hierarchy introducing technique is used by other graphically
oriented system modelling methodologies.

The behaviour of a basic model object is characterised by the messages it receives and
sends. The internal operations are "hidden’ from the outside world. A grouping entity
which replaces a basic model object may send and receive the same messages, but have
a different method of handling them. A basic model object behaves like a single
process. A grouping entity contains several basic objects, which perform true
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concurrent operations. This may lead to slightly different timing behaviour of a
grouping entity.

In the single entity a message may have to wait for processing. Within a grouping
entity it may be handled much earlier because there are multiple processes available.
This capability can be used to gain performance by parallelising or pipelining a system
at a high level of abstraction. This technique is used during the high-level system
architecture design phase, described in chapter 5.

3.2 Multiples

Systems often contain elements which are copies of eachother. They exhibit (almost)
the same behaviour and share connections to other entities. Examples are semaphores
and mailboxes in an operating system, tellers in a bank or drilling machines in a
wortkshop.

One can model these by simply copying a single prototype. These copies are attached to
the shared channels as shown in figure 3.2-1a. With the channel routing depicted there,
the duplicates cannot communicate amongst eachother.

'Y TELLER1 Y
cust xact

LINE S PY VAULT
cust xact

PY TELLER2 &
cust xact

o

a) Duplicated entities

Z

LINE P PY TELLERS JPS 'Y VAULT
cust cust xact

g

b) Using a "Multiple" as replacement for the duplicates ‘

Figure 3.2-1; Duplication versus multipfe
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Figure 3.2-1b shows a ’'multiple’ which replaces the duplicated entities. The
'TELLERS' entity contains two separate tellers, each containing an identical
communication shell. The actual contents of the buffers and the stored behaviour
objects may differ. Using an identical communication shell provides each of the entities
with the same interface to entities outside the multiple.

Each of the entities in a multiple has an identical set of named slots to store behaviour
objects. Behaviour objects stored in identicafly named slots within individual entities
normally belong to the same class. This provides all entities within the multiple with
the same behaviour. Entities in a multiple behave differently when identically named
slots contain behaviour objects belonging to different classes. This modelling capability
is sometimes very handy. Some tellers may be used for depositing money, while others
are for borrowing money.

The shell parameter settings in each entity of a multiple are the same. This means that
the filter parameters are equal too. Each entity in a multiple will be offered the
incoming messages. In order not to have every entity receiving all messages, these
must be ‘addressed’. Within the processing core, a unique *address’ of some kind must
be stored (the teller number, for instance). Incoming messages must carry a matching
address, which is checked by the message filters. Multiple addresses may be used, as
well as 'group addresses’. The latter allow a subset of the entities in a multiple to
receive a message.

The addresses must be assigned one way or another. Addresses can be assigned by the
designer when the amount of entities in the multiple is fixed. This becomes different
when the amount of entities varies during the lifetime of the system. The next section
describes this situation.

3.2.1 Dynamic multiples

A muitiple where the amount of entities changes during the lifetime of the system is
called 'dynanric multiple’. In a dynamic multiple, entities can be created or removed
whenever necessary.

The amount of entities can vary from zero to an upper bound set by the designer. Upon
system reset, all entities are removed. The ‘management connector’ described in the
next section is capable of creating an initial set of entities. An example of such an
initial entity is the 'system mailbox' in the iRMX®™ operating system ([int84]). This is a
normal mailbox used for communication with the -operating system, which is always
available.

The difference between a normal and a dynamic muitiple is the absence respectively
presence of a management connector.
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3.2.11 The management connector

Managing the set of entities in the multiple is a process which should be seen in
separation from the actual functionality of these entities themselves. The management
functions are provided by the 'management’ connector. These functions are available
even when the multiple is empty. Figure 3.2.1.1-1 gives an example of the
management connector (the 'M’).

z £
commandPort commandPort
MAILBOXES PROCESSES
managementPort

Figure 3.2.1.1-1: Example of a management connector

The management connector is actually a basic model object which is placed within the
multiple. This basic model object can create and delete entities in the multiple. It also
has access to the slots of the entities present in the multiple. A default behaviour object
is included which can handle elementary entity creation and deletion messages. The
designer may modify this behaviour object to enhance it's behaviour,

A management connector has limited access to the slots of an entity in the multiple.
The contents of a slot can only be changed if it is not active (has no method in
execution). The management connector may also send messages to a behaviour object
stored in a slot. These are only accepted when the message priority is higher than the
processing priority of that entity's core.

The management connector plays an important role in the initialisation of a multiple.
During system reset, the management connector's behaviour object is sent an
'inftialize’ message. This allows the behaviour method to create and initialise an initial
set of entities in the multiple. The default behaviour object does nothing in response to
this message - the multiple remains empty.

3.2.1.2 Entity creation

When creating a new entity, at least one of the behaviour slots must be filled with a
behaviour object. Otherwise, it cannot do any processing. The method used is the same
as described in section 2.6 for basic object initialisation. Upon creation of an entity, an
instance of a designer specified class is loaded in the first behaviour slot. This instance
is subsequently ininalised. During initialisation, the other slots may be loaded with
entities and initialised.
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The management connector responds to two basic entity creation messages, ‘'new’ and
'newlD: <anyObject>". Both create a new basic object with shell parameters and
settings as specified by the designer. Both load an instance of the specified class in the
first behaviour slot of the new object. The initialisation messages for this instance differ
between the two creation messages:

. The 'new’ message uses a simple 'initialize’ message. A system generated
identifier for the created basic object shell is returned to the sender of 'new’.
This identifier can be used for subsequent addressing.

. The 'newlD: <anyObject>' message passes the given object to the created
behaviour object with an 'initialize: <anyObject>' message. By storing the
given object within the behaviour object, it can be used for subsequent
addressing.

3.2.1.3 Entity removal

There are two ways to remove an entity from a multiple. They have in common that the
entity is removed completely, including shell. If a channel was blocked by this entity,
blocking is removed. If the shell was offering a message for transmission, this message
i5 redrawn from the channel. Messages which were already in transmission will be
completed. Messages held in buffers will be lost.

By default, the management connector's behaviour object responds to a single basic
entity removal message: 'remove: <identifier>'. The given identifier must match
the system generated identifier for one of the basic object shells present in the multiple.

An entity may also remove itself from a multiple. This is done when a behaviour
method sends the message ‘remove’ to the pseudo-varniable 'shell’.

A dynamic multple entity may be emptied by sending the message 'reset' to the
management connector. Following this, the standard ‘initialize’ message may be sent
to perform re-initialisation.

3.3 Multiple groups

A multiple group entity combines the functions of a grouping entity (grouping entities
together on a lower-level Entity Communication Diagram) and a multiple (providing a
set of identical basic model objects). It contains a set of identical grouping entities. As
with normal multiples, dynamic multiple groups can be indicated by adding a
management connector as described in section 3.2.1.1. This allows complete Entity
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Communication Diagrams to be added to- and removed from the system during run-
time.

Default initialisation of a newly created group follows system initialisation methods as
described in section 2.6. The first behaviour slot of the basic object entities is loaded
with an instance of a designer defined class. These instances are then sent initialisation
messages, with as default a simple ‘initialize’ message.

The management connector responds to two basic group creation messages, ‘'new’ and
‘'newlD: <anyObject> for: <anArrayOfStrings>'. Both create a complete
grouping entity with contents as specified by the designer. For each of the basic objects
in it, an instance of a designer specified class is loaded in the first behaviour slot. The
initialisation messages for these instances differ between the two creation messages:

. 'new' uses simple ‘initialize’ messages, A system generated identifier for the
created prouping entity is returned to the sender of 'new’. This identifier can
be used for subsequent addressing.

. 'newlD: <anyObject> for <anAmayOfStrings>' uses 'initialize:
<anyObject>>' messages for the behaviour objects stored in basic objects
whose names appear in the given Array of Strings. By storing the given object
within these behaviour objects, it can be used for subsequent addressing. All
other behaviour objects are initialised with a simple 'initialize’ message.

Like normal multiples, multiple groups have two methods for removing a group
contained within them. Upon removal, anything contained within the group is lost,
channel blocking is removed and offered messages are redrawn,

By default, the management connector’s behaviour object responds to a single grouping
entity removal message: 'remove: <identifier>'. The given identifier must match
the system generated identifier for one of the groups in the multiple.

An entity may also remove it's group from a multiple. This is done when a behaviour
method sends the message 'removeGroup' to the pseudo-variable 'shell’. When
dynamic multiple groups are nested, 'removeGroup’ will only remove the innermost
nested group as seen from this entity.

A dynamic multiple group may be emptied by sending the message 'reset’ to the
management connector. Following this, the standard 'initialize’ message may be sent
to do any re-initialisation necessary.
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3.4 Continuous data transfers

Message transfers carry an inherent synchronization aspect. Not considering
transmission and buffering delays, a message received now was sent relatively recently.
This provides extra information regarding the state of the sending object.

Another way of communication lets a sender produce a continuous value. Receivers
may sample this value at any time they like. The obvious (and often given) example is
the analog thermometer. It hangs outside, continuously displaying a temperature.

Ultimately, all forms of communication are based on continuous values. The value is
polled regularly by the receiver. Changes in the value may indicate an event. When this
has been detected, other values may be polled to -determine witich event has happened.
It is also possible to insert a fixed time delay and poll the same information channel
again. This assumes the sender has then placed a value on it which provides more
information.

The model provides a way to specify continuous data transfers. A basic model object
may be fitted with continuous data input and output connectors:

. Continuous data output connectors are accessed through the virtual
connection translation table described in section 2.3.4, They can be directly
assigned a value, which places this value on the channel. Asgigning ‘no value’
to the virtual connector name has the same function as placing a hardware
output into 'three-state’. The output connector always remembers the last value
assigned to it. When the name of the virtual continuous data output connector is
used in an expression, it provides the current channel value. Connector ‘temp’
in figure 3.4-1 is an example of a continuous data output.

. Continuous data input connectors are also accessed through the virtual
connection translation table. These cannot be assigned a value, only used in
‘read-only' fashion. When used in an expression, they provide the current
channel value. Connector 'voltage' in figure 3.4-1 is an example of a
continuous data input connector.

databus databus
THERMOCOUPLE CONVERTER PROCESSOR
temp .] voltage

Figure 3.4-1: Example of continuous data transfer
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These connectors are connected by special communication channels. These continuous
data channels have some specific characteristics:

J Continuous data channels are 'typed’. The designer must specify a class
(like 'Integer’, 'String’ or 'Array of Boolean') for transfer across the continuous
data channel. The values which are transferred must be instances of this class or
the 'no value' object.

. Continuous data channels provide no routing. Theybehave like a
hardware 'data bus’. A value placed on the channel by an output is immediately
distributed to all connectors attached to the channel. The model does not
introduce a time delay for this distribution.

J Continuous data channels are multidirectional. Multiple outputs and
inputs may be connected to a channel. Each output may send values to any
input. Only a single output may be active at a time. When no- or more than one
output sends a value, the channel distributes ‘no value’. The designer may
specify that sending more than one value at a time is an illegal operation.

3.5 Travelling Objects

Until now, we have only considered system elements which have a fixed 'position’ in
the system. The design elements described up to now define the 'static’ system
structure. Even dynamic multiples cannot move from their location on an Entity
Communication Diagram.

In most systems there are objects which are not fixed in position. They can 'move
around' like people walking through a building. There are two ways to control the
operations and 'transfers’ of travelling objects:

. The passive travelling object. Such an object can be seen as a simple data
store which is shuffled around and operated upon. Data packets in a Local Area
Network can be modelled as passive travelling objects. They are transferred
between basic objects based upon their destination address until they reach their
destination.

. The active travelling object. An active travelling decides for itself which
actions it has to perform. If a specific action cannot be performed at the location
where the object resides, it has to find out where to go and move itself
overthere. Active travelling objects can be used to model processes running in a
multiprocessor environment. These processes can move themselves to less busy
processors when they receive to little processing time.
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Travelling objects should actually move (and not be copied) between basic model
objects. A travelling object which is located within several basic objects at the same
time can receive a message within one object, responding by sending a message from
within another object. This would mean that a completely invisible connection exists
between those objects. To remove this possibility, we introduce the following general
rule regarding travelling objects:

l A travelling object may only be located within one basic object at a time.

In general, one should be very careful with data transferred between objects. If this is a
complex data structure, copies should be sent instead of the original. Otherwise,
updating the data structure within one object would also alter the data structure in
another object - again a means for illegal communication.

In the real world, sending a file through a computer connection creates a copy of the
file at the receiving end. It is then up to the sender whether or not the original file
should be deleted. Unless a rigid update protocol is used, updates at either end are not
reflected in the file at the other end.

The modelling system described in the previous sections provides all capabilities needed
to model travelling objects. They can be modelled as behaviour objects which can be
stored directly in a behaviour slot. They can also be stored within a data structure
located in another behaviour entity. A travelling object may be transferred across a
communication channel as message parameter.

The modelling system does not provide automatic protection against storing an object
within multiple basic simulation entities. We think this is something which the designer
must accomplish, because it is very difficult to remove something from a complex data
structure automatically. Within a data structure, there may be several references to the
object, all these references have to be removed 'manually’.

It is possible to check whether or not exactly the same objects are stored within more
than one basic simulation entity. If this is an undirected search (no specification for the
object to search for), it will take a large amount of time - something which should not
be done on a regular basis.

3.6 Summary and conclusions

The model introduced in the previous chapters allows complex systems to be modelled
as a set of communicating objects. The basic objects in this model operate
concurrently. They communicate with- and synchronise to other objects by sending and
receiving messages across communication channels.
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Each basic object contains a 'communication shell’ which filters, buffers and selects
messages before transferring them to the actual ‘processing core’. This core contains a
set of ‘behaviour objects’ which define the data storage and actual operations
('methods’) performed by the basic object. Behaviour objects can be replaced by other
behaviour objects which changes the overall behaviour of a basic object:

Methods manipulate the data stored within the behaviour object in which they are
defined. They can send messages to other basic objects across the: communication
channels. These outgoing messages may be buffered in the communication shell.
Methods are also capable of sending messages to other behaviour objects in the same
processing core. Methods send messages to virtual connectors which each represent
either a real connector or local behaviour object. This allows the routing of messages to
be changed without modifying behaviour objects.

Methods are started by the reception of a message which matches their name ('reactive’
mode of operation). A priority system allows methods to be interrupted in order to
handle a higher priority message. A running method may poll or wait for specific
messages to be received by the communication shell ( ‘imperative’ mode of operation).

Messages may carry parameters which can be very complex objects in themselves.
These 'travelling’ objects may be used to model system elements which do not stay at a
fixed location in the system. Travelling objects can be stored inside basic objects as a
behaviour object. They can also be stored inside the data structure within a behaviour
object. ‘

An alternative means of communication between basic objects is provided by the
‘continuous data channels’. These provide non-synchronised communication between
objects. Methods can place data on an output connector connected to such a channel.
Other methods can read the value on a continuous data channel through an input
connector.

A system structure is specified by placing objects and communication channels on
" 'Entity Communication Diagrams’. Hierarchy is introduced in the system by grouping
objects together in 'grouping entities’. Each of these contain a lower level Entity
Communication Diagram, which is denoted by a single symbol on another Entity
Communication Diagram.

Groups of basic objects which have an identical communication shell may be denoted
by a ‘mulitiple’. Each of these basic objects operate independently, they may contain
different sets of behaviour objects. The amount of basic objects in the multiple may
vary during the operation of the system when a ‘multiple management connector’ is
placed in the multiple. By sending messages to this connector, complete basic objects
may be created and destroyed within the multiple.
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Groups of identical Entity Communication Diagrams may be placed in a 'mulitiple
group'. As with the multiple, a multiple management connector may be used to create
and destroy complete Entity Communication Diagrams during the system's operation.

The modelling technique described above is designed to be used with interactive tools.
Setting up a design always starts with a bare and simple model. The designer gradually
introduces the complexity needed to model the system under design. All bookkeeping
and consistency checking functions are performed by the tools. The tools combine
design and simulation, which gives the designer immediate feedback on his design
actions.

The basic model uses dynamic multiple inheritance to describe behaviour as a
combination of several other behaviours. Coupled with the re-usability which is
inherent in Object-Oriented techniques, this allows system behaviour to be described at
a very high abstraction level.

The model can be used during system behaviour analysis as well as architecture
synthesis. The high abstraction level of the model and use of interactive tools allow
very complex systems to be handled.
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4. Object Oriented Analy51s usmg
the Model

This chapter will describe an Object Oriented Analysis method which uses the model
described in chapters 2 and 3. This method is an extension of the methods as described
by Shlear and Mellor ([shI88]) and Coad and Yourdon ([coa90]). As stated in section
1.1, analysing the system requirements should be seen as the first step in
hardware/software system design. This chapter is an elaboration of the Object-Oriented
" Analysis method described in section 1.4.1. Chapter 5 outlines how the same model
can be used for high-level system architecture design.

The main objective of the Object Oriented Analysis method is to analyse the system
requirements and build a solid foundation on which the remaining design steps can be
based.

The basic model and accompanying tools provide a way to describe,
simulate and analyse the behaviour of the system under design at a very
high level of abstraction.

The ordering of this chapter follows the sequence of steps which should be taken to do
successful Object Oriented Analysis. Analysing a system with OOA should follow
normal 'top-down' design procedures. The behaviour of major system elements and
their interactions should be described and analysed first. In subsequent steps, the major
system elements are decomposed and analysed in greater detail. This means that the
OOA steps described in this chapter may be repeated several times before reaching the
required level of detail.

4.1  Finding the Problem Domain Entities

The first step in doing Object Oriented Analysis is to find and name the so-called
'Problem Domain Entities’. The 'problem domain’ includes the system to be designed
and environment with which the system communicates. Including the environment in
the problem domain allows a 'real life’ test setup to be created for the system under
design. It is not required (nor the intention) to analyse and describe the environment at
the same level of detail as the actual system.

The Problem Domain Entities are all the entities which form part of the problem
domain for any 'reasonable’ amount of time. Entities which are continuously available
within the problem domain certainly fit this requirement. Entities stored within and
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transferred between these continuously available entities also fulfill this requirement.
Temporary variables used during a calculation should not be considered a Problem
Domain Entity.

Finding Problem Domain Entities is actually quite simple. If there is a written problem
statement, simply look for the nouns used there, and you have a reasonable start.
Another approach is to do a brain-storming session, and write down all 'things' which
are related to the problem.

A system built with OOA is a simulation of an abstract reality.

This means that you can also find the Problem Domain Entities by imagining which
operations have to be executed to perform a specific system function. Any. entity
involved in these operations will become a Problem Domain Entity.

The chance of finding an entity which later tumns out not to be a Problem Domain
Entity is much smaller than overlooking an element which is a Problem Domain Entity.
Neither of the two is a real problem. A non-Problem Domain Entity will simply be
removed. Elements overlooked are in most cases buried deep in the system. They turn
up when performing detailed analysis of a system element. At that time, they can be
added without any problem. If they had been 'visible’ outside the sub-part, they would
not have been overlooked. It may be better to skip these buried Problem Domain
Entities during the first analysis steps, because they provide too much level of detail.

The result of the search for Problem Domain Entities is a list of names. This list need
not contain a structure, providing structures is something which is done in the next
steps of QOA. An example list for a multiprocessor system could be the following:

"Elements of a multiprocessor system (first detail step):”

Processes (variable amount}
Processors {fixed amount)
Semaphores {variable amount)
External events {fixed amount)
Mailboxes {(variable amount)

4.1.1 Layering the Problem Domain Entities

In essence, all Problem Domain Entities are stored within other Problem Domain
Entities. The problem domain itself is the topmost Problem Domain Entity, containing
all others within it. The first step following the finding of the Problem Domain Entities
is to place them in the correct ‘forms part of relationships to eachother. This
relationship states which entities are contained in another entity, thereby providing the
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system with a spatial structure. As we will see shortly, the “forms parti of" relationship
need not be a fixed one.

The ‘system context diagram’ used by Hatley and Pirbhai ([hat87]) makes a
firm distinction between the actual system and the 'outside world'. This outside
world is represented by terminators’ which are connected to the communication
channels which originate from the system. The terminators generally stand for
those elements in the outside world which have a direct connection with the
system. They provide the system with stimuli and receive responses in return.

The problem with the Hatley/Pirbhai model is that the terminators have no
interaction amongst themselves. This makes it very difficult to build an accurate
model of the environment in which to test the system. For Hatley/Pirbhai, this
is not a problem as the system model needs not be simulated anyway.

We avoid this problem by making the environment a part of the problem
domain. This means that a model of the environment should be designed which
can be used during system tests.

Static 'forms part of relationships are easy to model and understand. Grouping entities
(as presented in section 3.1) can be used to subdivide a complex Problem Domain
Entity into several lower-level Problem Domain Entities.

Multiple entities can be used when a fixed amount of a certain type of Problem Domain
Entities form a part of another Problem Domain Entity. Each of the replicated entities
has it's own internal variables, but is otherwise the same.

In general, the amount of entities in the multiple will change over time. If this time is
larger than the life span of the system to design, then the amount can be considered a
fixed value. The number of processors in a computer system is normally a fixed value,
as it is not changed every day.

There should be a way to differentiate between the entities in a multiple. In the case of
a fixed multiple, this must be done by the designer because the entities are created
before the system starts operating. Each of the entities in a multiple has a different set
of Problem Domain Entities stored inside of them. Their behaviour differs only because
of these different Problem Domain Entities. Imagine what would happen if two
processors on a network had the same address and were therefore indistinguishable.

Figure 4.1.1-1a shows the situation where entities in two multiples have a one-to-one
relationship. For each entity in 'PROGRAMMERS' there is a corresponding entity in
"TERMINALS’. Modelled this way, all programmers share a communication channel
towards their terminals. In such a situation, it is better to have a multiple group. Each
of the groups within the multiple combines the related entities which, were present in
the separate multiples. This gives each of these relations a private communication
channel. This situation is depicted in figure 4.1.1-1b. We will see later (during
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architecture design), that it may be necessary to break up a multiple into several
parallel multiples. This should not be done during system analysis, however.

PROGRAMMERS F'S PN TERMINALS
userlF userIF

a) A fixed one-on-one relation between multiples, channel shared

A

PROGRAMMER [’} Y TERMINAL

user userlF
WORKBOOTHS

b) Using a "Multiple group” gives private communcation channels

Figure 4.1.1-1: Parallel multiples

Some Problem Domain Entities have non-fixed 'forms part of relationships. They
move between Problem Domain Entities. An example of such a Problem Domain
Entity is a process in a multiprocessor system. Such a process may be moved to another
processor if it will receive more processing time there.

" Modelling these 'travelling' Problem Domain Entities has been described in section
3.5. They can be stored as behaviour objects or within data structures which reside
within a behaviour object. They 'travel’ by being a parameter within a message.

4.1.2 Defining dynamic system structures

As stated in the previous section, multiples of Problem Domain Entities are almost
always dynamic. A multiple is considered static if it does not change over the life-time
of the analysed system. This means that there must be a way to model multiples which
do change during the life-time of the system. The dynamic multiples described in
section 3.2.1 are introduced for this purpose.

As with fixed multiples, the behaviour of all entities in a dynamic multiple is in
principle the same. Their actual behaviour depends upon the Problem Domain Entities
stored within them. Also, while present in the system, there must be a way to
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differentiate between them. This is done by storing a "tag’ value in each of the multiple
entities. The tag attached to an entity should be known to any Problem Domain Entity
which wants to send a message to it. The tag is assigned to an entity in a multiple
during creation. Messages containing the tag are subsequently sent to those entities in
the system which need to communicate with the newly created entity.

Within a Problem Domain Entity stored in a dynamic multiple, other Problem Domain
Entities may be present. These can include other dynamic multiples, fixed multiples
and/or single Problem Domain Entities. Each of these can be layered in itself.
Whenever a Problem Domain Entity with internal structure is created, the internal
Problem Domain Entities should be created too. The creation of such a complex entity
may generate several tags. These all have to be stored and made available to the
‘outside world'.

The ’travelling’ Problem Domain Entities described in section 3.5 are another way to
model dynamic system structures. They are created when necessary, and can then be
stored in dynamic data structures (like Sets or Lists) within behaviour objects.

Figure 4.1.2-1 shows how the Problem Domain Entities of the multiprocessor system
example relate to eachother. The processes have been modelled as travelling Problem
Domain Entities which are stored in a Set structure within each of the processors.

/ N\
Z N pd N Z N
/ \ / \ / N\
il |
Mailboxes ) Processes
External N /
Events Z ™
/ N\
Semaphores Processors
\ ,/ \ /7 \ ‘//
\ Multiprocessor System /

Figure 4.1.2-1: Example of a system structure

4.2 Classifying Problem Domain Entities

Aside from the 'Is contained in' relationships, Problem Domain Entities also form
other kinds of relationships. A very important one is the 'is 2 kind of relationship.
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It is possible to analyse each Problem Domain Entities behaviour completely on it’'s
own. This would lead to a large amount of duplicated work. Detecting common
behaviour and describing this behaviour once will lower the amount of work. Detection
of commen behaviour should be done as early as possible.

The actual implementation of 'is 2 kind of relationships is done during later analysis
phase steps. The basic model described in chapter 2 uses behaviour objects to model
actual basic model object behaviour. It is not necessary to model these behaviour
objects in this stage of the QOA process. For now, it is sufficient to attach a note to a
basic object stating that it's behaviour should be based upon some other behaviour(s).

4.2.1 Using inheritance

The simplest form of the ‘is 2 kind of relationships are formed when a Problem
Domain Entity adds new behaviour to- or modifies existing behaviour of another
Problem Domain Entity. The new entity is said to 'inherit’ behaviour of the original
entity.

Single inheritance as described above ties the Problem Domain Entity behaviours
together in a tree-like hierarchy. The 'root’ of this tree is the most general Problem
Domain Entity behaviour available for a system. This behaviour includes functions
which any Problem Domain Entity can use (like waiting for a predefined time or
changing the processing priority).

Some Problem Domain Entity behaviours are never used on their own. A ‘human’ is
always more than just a human, no actual Problem Domain Entities are created directly
from the "human' behaviour description. Such a behaviour is seen as a *metaphor’ to be
built upon.

In Smalltalk ([gol89]), a behaviour template from which no actual objects are created is
called a 'metaclass’. A metaclass allows common object behaviour to be described at a
central place. Objects which use this common behaviour are always created from
subclasses of this metaclass. These subclasses extend the common behaviour and
thereby create more specialised behaviour.

An example of inheritance can be found in the multiprocessor system when different
types of semaphores are used. Processes waiting at semaphores may be ordered in
different ways. The process restarted when the semaphore is triggered may be either
the longest waiting or the one with the highest priority. The general semaphore
behaviour can be modelled in a metaclass, the ordering methods can be implemented in
subclasses of this metaclass. Actual semaphores are created from these subclasses.
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4.2.2 Combining behaviour

A more complex form of the 'is a kind of relationships is found when a Problem
Domain Entities behaviour is based on the behaviours of several other Problem Domain
Entities. This form of behaviour linking is called 'multiple inheritance’.:

The basic model allows ‘run-time’' behaviour changes. In section 2.1.4 this property is
called 'dynamic multiple inheritance’. This is accomplished by storing behaviour
objects within a basic entity. The interface shell within a basic entity is capable of
automatically forwarding received messages to the correct behaviour entity. Behaviour
may be changed by modifying the set of stored behaviour objects.

The mailboxes of the multiprocessor system example can use dynamic multiple
inheritance to their advantage. A simple mailbox oconsists out of a' queue to store
messages and a semaphore to hold processes which are waiting for messages while the
queue is empty. The semaphore can be a normal semaphore of any type (see the
example at the end of the previous section). By changing semaphore types, the mailbox
can be given different ordering methods for waiting processes.

4.2.3 Re-using previously defined behaviour

Until now, we assumed that the analyst builds a completely new system of Problem
Domain Entities for each project. This would take a lot of time, even when inheritance
is used. By re-using behaviour defined within other projects, a designer can save
himself a lot of work.

Behaviour templates are stored in the design system's libraries and can be preserved for
later projects. They can be exchanged between analysts and/or built by specialised
firms ([cox90]).

4.3 Problem Domain Entity 'communicates
with' relationships

The communication between the Problem Domain Entities in the system must be
guided into the proper channels following the definition of the system structure:

o Private 'point-to-point’ connections should be used to interconnect
Problem Domain Entities which need to communicate without interference of
other data sources.
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L 'Bus'-like connections may be used between groups of Problem Domain
Entities which all have to communicate with eachother. Such a connection is a
shared resource, which means that data sources may interfere with eachother
(messages may be delayed because the channel is already in use).

. Indirect connections must be used when the sender does not know how the
messages will be routed. This knowledge may be located in a ‘roufing’ Problem
Domain Entity which receives messages and forwards them without changes.
Multiple routing Problem Domain Entities may be needed to transfer a message
from sender to receiver.

Communication channels can be connected to a multiple entity Problem Domain Entity.
Messages sent to a multiple are presented to all the Problem Domain Entities present
within it. The message filter within each of them must decide whether or not to handle
the message. This decision can be based upon the message itself, the parameters of the
message (tags!) and/or behaviour ohject variables. This means that a message may be
handled by any subset of the Problem Domain Entities.

N

A
control ctrl ioPort
Mailboxes
External
Events Processors
systemPort
triggers
\ 4
\ Multiprocessor System /
Figure 4.3-1: Communication channels in the multiprocessor system

Communication channels are specified graphically on an Entity Communication
Diagram. Figure 4.3-1 shows the interconnections between the elements of the
multiprocessor system. All processors have to communicate with the mailboxes and
semaphores in the system. They use a shared bus to do so. The 'ctrl’ connectors are
used to create and remove mailboxes and semaphores. Private channels are used to
control the external events and trigger semaphores. Controlling which semaphore is
triggered by an external event can be done by sending messages through the
semaphores, The addressed semaphore forwards this message to an external event,
which makes this semaphore a 'routing’ Problem Domain Entity. Note that the
‘processes’ are not visible in this Entity Communication Diagram - they are stored
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1nside the processors. The editing and simulation tools use other te¢hniques to show and
edit the contents of a basic model object. | }

4.4 Defining the system's operational aspects

The previous sections defined a system structure containing layered Problem Domain
Entities and communication channels. The next two major steps are the definition of the
message protocols and how the messages should be handled by the Problem Domain
Entities. ‘

For complex systems, the amount of messages can be massive. A human analyst
quickly looses overview of the system's operation when all these messages are
presented at the same time. To lower the amount of messages which are 'visible' to the
analyst, they should be placed in groups which correspond to the different aspects of
the system's operation. The next sections present some of these aspects:

System initialisation

Normal system operation
System reconfiguration

System maintenance and testing
Abnormal system operation
System shutdown and restart

The tools used for the analysis phase allow the designer to label each message with the
aspect(s) it is used for. After choosing a 'current aspect’, all messages which are not
labelled with this aspect are kept out of sight. During simulation of the system, only
messages labelled with the current aspect are allowed to be sent. This will help
debugging the system.

Defining message protocols and implementing message handling should be done in an
order which follows the 'natural’ order of the system's operations. It is very difficult to
simulate normal system operation if it has not been initialised!

4.4.1  System initialisation

During system initialisation, the elements which are needed to get the system
operational must be brought into the system and linked together (they must know
eachother's tags). This need only be done when the system contains dynamic structures
like dynamic multiples. Single Problem Domain Entities and fixed multiples are
defined by the designer and exist before the system is started.
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System initialisation is a very important phase for systems which can be 'configured’ or
‘installed'. These systems contain variable amounts of specific Problem Domain
Entities. These amounts vary from installation to installation, but remain static during
the system’s Lifetime..

4.4.2 Normal system operation

A system is supposed to spend most of it's time in 'normal operation’ - performing
those actions which are needed for the main system functions.

There are a lot of different aspects which can be found in normal system operation.
These are generally highly interrelated. They occur concurrently and may rely upon
eachother (for instance because a system function uses a data structure which is updated
by another function). Splitting 'normal operation’' into too many aspects may give
problems because these cannot be tmly separated.

443 System reconfiguration

The system configuration as defined during initialisation may need to be changed
during the system's operation. Designers should anticipate reconfiguration and build the
necessary operations into the system right from the start. These operations should be
able to change the system configuration without disturbing the running operations.

During system operation, data structures are built which depend upon the
configuration. These data structures should be updated during reconfiguration. This
makes reconfiguration a much more complex task than the initial configuration.

4.4.4 System maintenance and testing

During operation, a system's performance should be monitored and inspected by
extracting specific information. This information may be used to 'tune’ the system for
optimum performance, for instance by choosing different cache sizes or message
routing policies. Communication should be monitored to detect anomalies like
increasing error rates or late responses. This allows the initiation of preventive
maintenance before total breakdown of an entity or communication channel.

Complex interconnected data structures built during operation should be checked
periodically for their integrity. External entities should be asked to perform self tests
and report the results of these tests to the system.
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All these operations can be initiated by a system user or by the system itself (scheduled
in advance). System maintenance and testing functions should be designed into the
system as early as possible: 'design for testability’ right from the start. The system
specifications should already state that all Problem Domain Entities should be open to
analysis. The functions introduced to do so will then automatically be incorporated in
the final system.

4.4.5 Abnormal system operation

Certain parts of a system may break down. Communication channels may be disrupted
and processors may fail. This is not so prominent during the analysis phase, where the
analyst may assume the actual system will be error free (‘the system' is then only an
abstract description of the actual operations). The entities with which the system
communicates may be expected to break down anytime. When restructuring the system
during the architecture phase, the communication channels and processing entities
within the system become more real. They only have a finite reliability, often
expressed in 'mean time between failure’ figures.

The abnormal system operation aspect has as objective to define how the system should
react to failures. Workarounds should be found so that the system remains operable,
possibly with slower responses or with a part of it's capabilities removed.

4.4.6 System shut-down and restart

Some systems do not operate continuously. A car's motor management system only
runs while the motor is running. The easiest way to shut down and restart a system is to
use 'persistence’. This means that the data structures are stored in such a way that they
remain intact while the system is shut down. With persistence, the system will restart as
if nothing had happened. Unfortunately, this system-as-a-whole behaviour is difficult to
achieve.

In most cases, systems are implemented to Tun on computers or ‘computer-like
processing elements. Each of these system components stores a portion ;of the system
data structure in it's 'working memory'. This memory looses it's contents when the
system component is switched off. It is therefore necessary to store all data structures
in a safe place (for instance a battery backed RAM) during power down. This can
become quite complex if only a few processing elements have the capability to store
data in a safe place. All other elements must transfer their data structures to/from these
'safe keepers', using the already existing communication channels.

In the previous paragraph, the word implemented was highlighted. Determining which
processing elements can be used as 'safe keeper’ cannot be done before implementation
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choices for the Abstract Processing Entities have been made. It is important to
anticipate these operations in the analysis phase. The analyst should pin-point the vital
data structures which must be saved (the amount of kilometers before the next oil
change, for instance)., For these vital data structures, storage and retrieval protocols
must be defined.

4.5 Defining communication protocols

Behaviour description of the system's Problem Domain Entities starts with their
externally observable behaviour. In an Object Oriented environment, this will consist
out of the 'messages’ sent between the Problem Domain Entities. These messages are
the information carriers used for communication within the system. The messages come
in several forms, depending on their main purpose. These main purposes are described
in the following sections.

Messages are distinguishable by their 'format’, which should be seen as the fixed part
of a message (the 'message selector'). Messages may carry parameters, which form the
variable parts of the message. These parameters may be 'travelling’ Problem Domain
Entities or system defined variable types. Parameters can be used as 'tags' when a
message is sent to a multiple Problem Domain Entity.

Messages are routed across the message channels which have been defined earlier. A
message channel should be seen as a distribution medium without 'intelligence'. A
channel simply transports messages between Problem Domain Entities. More than two
Problem Domain Entities can be connected to a channel.

During high-level system behaviour analysis, the channels should be seen as 'broadcast’
media. A message sent across a channel is received by all other Problem Domain
Entities connected to that channel. During high-level system architecture design, the
channels may be provided with simple message traffic distribution and concentration
functions.

Each of the Problem Domain Entities connected to a channel inspects the messages sent
across the channel. Within multiples (as described in section 3.2), each of the internal
Problem Domain Entities inspects and handles the messages on it's own. '

4.5.1 Trigger and synchronization messages

Messages which do not carry any parameters can be used to trigger events in Problem
Domain Entities. They may also signal that a Problem Domain Entity has started a
specific operation, asking other Problem Domain Entities to synchronise their operation
to the sender.
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Messages may include ‘tags’ to route them to a specific Problem Domain Entity within
a multiple. Tags should not be considered 'data’ when a trigger or synchronization
message is sent directly to the target Problem Domain Entity.

Within the multiprocessor system, the following (tagged) tngger message may be sent
by an external event to a semaphore: i

triggerSemaphore: <semiD>

"Indicate the semaphore identified by < semiD> that an extemal event has
occurred. The semaphore may release a waiting process as a resuit of this.”

Messages may have to be routed by other Problem Domain Entities before reaching
their destination. In this case, the tags can be seen as routing information (data) which
has to be used in the routing process. A routing Problem Domain Entity may even
change the tags or the whole message structure. Routing information which has been
used within a routing Problem Domain Entity may be absent in outgoing messages. In
the multiprocessor system example, the following message may be sent by a process to
an external event via a semaphore:

connectSemaphore: <semiD> toExternalEvent: <eventlD>

"Indicate the semaphore identified by < semID> to receive trigger messages
from the extemal event identified by < eventlD> . The semaphore forwards
this message to the indicated extemal event.”

4.5.2 Command and data transfer messages

The message format may specify a command which must be executed. Parameters can
be used to further detail the operations to do. Within the multiprocessor system, the
following command message may be sent by a process to a mailbox:

storeData: <aString> inMailBox: <mBoxID>

"If processes are waiting at the indicated mailbax, release one of thern and
give it the indicated String. Otherwise, store the String in this mailbox for
later retnieval.”

Data structures within a Problem Domain Entity may have to be kept up-to-date with
data structures within other Problem Domain Entities. Messages carrying 'unsolicited’
data (data which was not asked for) can be seen as commands to update an internal data
structure. The message format and/or data itself indicates what to do with such a
message.
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The remarks on routing tags made in the previous section also hold for command and
data transfer messages.

4.5.3 Messages requesting data or status

Messages may ask the recipient to return another message. This returned message can
be a simple confirmation of message reception or a 'message handled' indication. The
returned message may also contain other information, such as status information or data
which was asked for in the requesting message.

This behaviour of a message may be present in trigger- as well as command messages.
It is an orthogonal extension of the message types presented in the previous two
sections. The following example message is sent in the multiprocessor system from a
process to a mailbox:

poliMailBox: <mBoxID>

“If messages are present in the indicated mailbox, remove the first one
and return it to the requesting process. Otherwise, retum the 'no object’
object.”

4.5.4 Continuous data transfers

Not all data transfers in a system need to be made by messages. Message reception
invokes an action, which is sometimes not wanted or possible (the receiving Problem
Domain Entity may be busy handling another message).

If a data item must be kept up-to-date between different Problem Domain Entities, the
normal way to do so is by appointing one of them 0 manage the original item. This
manager handles update requests and distributes changes in the value with update
messages. This is sometimes not the most obvious way to describe this kind of
behaviour. When the data channel is one which is connected to external Problem
Domain Entities, it may not be a realistic description at all. A thermocouple delivers a
DC voltage, not a message each time the temperature changes by a tenth of a degree!

A continuous data channel as described in section 3.4 can be used to distribute small
amounts of data. This channel is seen by other Problem Domain Entities as a read-only
variable, which they can use whenever they need it. Receiving Problem Domain
Entities are not informed that the value has changed. They should inspect (‘poll’) the
value regularly if they need to take action upon value changes.
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Figure 4.5-1 shows a possible application of the external events in the multiprocessor
system example. The generic 'external event' is replaced by an Analog-to-Digital
converter, which measures the voltage generated by a temperature sensor. This voltage
is transferred using a continuous communication channel.
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processPort]
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control processPort systemPort
Semaphores
alarms triggers  ctrl ’
\
\ Multiprocessor System /
Figure 4.5-1: The multiprocessor system with an analog input

4.6 Implementing the handling of the
messages

The last stage in system behaviour analysis is to describe the actual handling of the
messages. In principle, each of the messages which is accepted by a Problem Domain
Entity invokes an internal action. This internal action will be the starting of a
Smalltalk-like. 'method” within one of the behaviour objects to handle the message.
Parameters carried by a message are available to the method as read-only variables.

Within a method, it is possible to send messages across communication channels. It is
also possible to manipulate local variables or send messages to other local behaviour
objects. :

4.6.1 Using a low level library

Behaviour objects may contain data structures built out of other objects. These objects
can be travelling Problem Domain Entities and/or objects instantiated from classes
provided by the design environment. The classes provided by the design environment
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may themselves model data structures ranging from simple arrays to indexed and sorted
lookup tables.

The behaviour object which models a processor within the multiprocessor system can
be relatively simple when these complex data structures are used. It need only contain a
‘Set of Processes' to hold all processes contained within the processor. A 'List of
Processes’ is used to store those processes which are ready to run. The process at the
head of this list is the process which is actually running. The 'Processes’ themselves are
more complex objects which need to be modelled by the designer.

Aside from standard data structures, the design environment provides very complex
objects which may be stored within a behaviour object. For instance, complete text
editing windows can be attached to a behaviour object which models a terminal. The
text editor window object is provided by the design environment, the behaviour object
can exchange messages with it to receive and display text.

4.6.2 Inserting timing estimates

To be able to design time sensitive systems, several timing aspects must be modelled.
Timing aspects are divided into two groups:

. Problem Domain Entity internal operations. The timing of Problem
Domain Entity operations can easily be modelled by letting a Problem Domain
Entity wait for a certain simulation time (specified by the designer), followed by
performing the actual operations in zero simulation time. This will create the
illusion that the actual operations took the specified waiting time to be
performed.

Operations can be broken down into smaller segments, each with their own
timing specification. This can be used to model data dependent timing. A simple
example is to attach a time delay to the internal operations of a loop construct.
This way, the total waiting time depends on the number of loop iterations.

. Data transfers across communication channels. The time needed to
transfer a message is specified by the designer in the sending behaviour method.
This may be done either by stating a fixed time or by a 'message length’
indication. In the latter case, the channel computes the actual transfer time
(based upon channel speed and message overhead). It is possible to define a
timeout when sending a message. ’

Message transfer time specifications only provide an approximation of 'real
world' communication channel behaviour. This is not a problem during high-
level system behaviour analysis. Message transfer timing is specified only to
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find communication bottlenecks (which have to be removed during system
architecture synthesis).

A (somewhat complex) example of a method within the Analog-to-Digital converter of
the multiprocessor system depicted in picture 4.5-1;

startConversions

"Start the endless loop of reading and converting a value and storing this
value in the 'currentValue’ variable. An alarm is sent to the semaphore
indicated in 'alarmSemaphore’ when the value exceeds the 'limit’ variable."

[ self wait: 10 microSeconds. “Simulate conversion time”

currentValue : = voltage. “Read input value and store”
{currentValue > limit) "Check value against fimit"
ifTrue:
[ alarms "Use 'alarms’ connector..."
triggerSemaphore: "...to trigger the alarm semaphore”
alarmSemaphore "(see first example in section 4.5.1)"
{ transferTime: "Specify message transfer time”
2 microSeconds } 1.  "(between {} not part of actual message)”
self
delay: "Start timer to wait for next conversion”
990 microSeconds
atPriority: "Wait at the lowest possible priority,”
0 "this allows other messages to be handled"™

] repeat "Repeat the whole block over and over”

4.6.3 Exploiting concurrency

In the real world, Problem Domain Entities show a large amount of concurrency. Each
Problem Domain Entity can be seen as a separate process, which is allowed to handle
messages at the same time as other Problem Domain Entities in the system.

If a method within a Problem Domain Entity sends a message, the default behaviour is
to wait until the message is being delivered (actual transmission has started). If the
message did not request a result, the sending Problem Domain Entity method continues -
it's operations immediately following this. When an output buffer is used, the sending
method need not even wait until the message is being delivered.Normally, a method
which returns a result message stops at this point. It is possible, however, that a
method returns a result and contirues operating. The result can then indicate that
message handling has been stafted. Actual results can be sent later as normal messages.
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The example method in the previous section shows an example of how concurrency can
be introduced in a system model. When started, it samples input values at regular
intervals. While this is going on, processes running in processors may request the last
sample value by sending messages like the following:

sampleValue

"Retum the value of the last sample. This message can be handled during
the main waiting period in the 'startConversions' method. During this
period, the processing prionty is lowered to enable interrupts like these."

" currentValue "Standard Smalftalk result retum method”™
{ transferTime: "Specify message transfer time”
2 microSeconds } "(between {} not part of actual message)"

4.7 Simulating the system

In the high-level system behaviour analysis phase, simulating the system is necessary to
check if the behaviour implemented with the analysis tool matches the expected
behaviour. We state ‘expected’ here, not 'specified’, because it is the analysis phase
itself which is needed to specify the behaviour. Before the analysis phase, the
behaviour may be described, but is normally not specified completely. Even
mathematical equations may not be enough to specify a system completely.

During analysis, system elements are described with more and more detail. Each time
this cycle is made, it is necessary to match the modelled behaviour against the specified
behaviour. Checking the modelled behaviour against the specification can be automated
using test sets or analytical methods. It is possible that the model exhibits unwanted
behaviour at times that the specification specified 'unknown’. To find these anomalies,
the analyst should be able to test the modelled behaviour with extra simulations.

Simulating the system also serves another purpose. It is done to show a customer what
the system will do given certain inputs. It is not uncommon that during such a session
the customer wants to see the system react to previously unspecified inputs. If the result
is not what was expected, this will lead to a new piece of specification which has to be
modelled in the system. This way, simulation can be used to remove ambiguities in the
specified behaviour. Once the analyst and customer agree upon a certain system model
behaviour, this is what the actually implemented system should do.
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471 Gathering statistics

i

When system timing is hard-specified, critical path analysis can be used to check if the
system adheres to this specification. If system timing is specified with statistical
measurements, critical path analysis becomes less usable. Other analytical methods
exist (queueing theory), but these only work for relatively simple abstract systems.

A common way out of thls problem is to run a simulation of the system using close-to-
real-life test value sets. The timing results of such a test session are collected in
statistics. Mean and maximum system response times can be derived from these
statistics.

The same timing results can be used to spot system bottlenecks during high-level
system behaviour analysis. Communication channels and processing cores which are
continuously active may slow down the complete system. These elements should be
given extra attention during high-level system architecture synthesis.

Aside from timing measurements, collecting statistics can be helpful when limits must
be imposed on dynamic storage structures like message buffers. Using large structures
reduces the chance of overflow, but increases the cost of the implemented system.
Statistics gathered during system simulation provide the analyst with the data needed to
find an optimal storage structure size.

The design and simulation tools are capable of monitoring all communication channels
and Problem Domain Entities during simulation. The tool user can specify exactly what
must be monitored and how the data should be presented. Data gathered during
simulation can be written to log files for later evaluation. It can also be presented in
continuously updated charts on the computer screen.

4.8 System consistency issues

The following sections explain consistency checks which can be performed by the basic
model design and simulation tools. :

In an interactive design environment, consistency errors are flagged as warning. This is
necessary because systems are modelled in small increments, an element may call upon
elements which have not been added yet. During simulation of the system model,

consistency errors will be flagged as a fatal error (which aborts simulation).
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4.8.1 Static consistency checks

Static consistency checks are those checks which can be performed by looking at the
system description alone. Some of these checks are so simple, that an interactive
system can perform them 'on the fly' (while building the system model). Making these
errors is simply not allowed by the design and simulation tools. Some examples:

. Violating Problem Domain Entity- and communication channel naming rules.

. Designer specified tags for Problem Domain Entities in a multiple should all be
different.

. Continuous data channels can only be connected to matching connectors.

The semantics of the system structure are relatively simple: Basic model objects
communicate across basic model communication channels. System structure related
checks are therefore quite simple too, and are all related to the messages:

. Messages sent across a channel should be known to other Problem Domain
Entities connected to that same channel At least one of them should
(conditionally) accept or absorb the message.

. Messages which are known to a Problem Domain Entity should be sent by at
least one other Problem Domain Entity connected to the message channel.

. Messages which require a result should be handled in a way that a matching
result message Is returned by at least one Problem Domain Entity. To check this
out, the internal descriptions of Problem Domain Entities must be examined.

4.8.2 Dynamic consistency checks

The dynamic consistency of a system is determined by values stored in the system. This

kind of consistency is very difficult to determine from the system description alone.

Analytical methods cannot handle complex systems without abstracting them to a level
that their behaviour differs from the original specifications. The best way to perform

dynamic consistency checks is by performing extensive simulations. Some examples:

. Problem Domain Entities stored in a multiple must be distinguishable at all
times. Therefore, tags assigned to entities in a multiple must be different.

. All designer specified Iimits built into the system should be considered part of
the dynamic consistency checks. These include the sizes of dynamic storage
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structures (like message buffers) and time limits (like umeouts) Warnings
should be generated when these limits are exceeded. j

. Variables of a Problem Domain Entity may not be used if tbey contain the 'no
object’ object. Testing whether a variable is assigned 'no object' is allowed, but
it is better not to need this test (it introduces an extra state for such a variable).

The designer may also use specific system operations to build his own consistency
checks. Rejecting a message if a message buffer is full is an example. Within a
behaviour method, aborting simulation can also be specified.

Performing dynamic consistency checks may require a more global view of the system
than a single Problem Domain Entity or message channel. It is therefore necessary to
provide a programmable consistency checking system which resides outside the design.

Global statistics generation and consistency checking have much in common. They both
have access to the total system state. Statistics generation records selected parts of this
state. Consistency checking stops simulation or generates a warning message if selected
parts of the state fall outside specified limits.

4.8.3 Deadlocks

All Problem Domain Entities are separate processes which can operate concurrently.
They may wait for specific events in other Problem Domain Entities. This means there
is a danger for deadlock - two or more Problem Domain Entities waiting for eachother.

Detecting deadlock is done by tracing back messages which are blocked by a busy
Problem Domain Entity. This trace must be extended to all Problem Domain Entities
which are blocked by these blocked messages. This recursive method yields a tree of
blocked Problem Domain Entities and messages. Each tree node is a blocked Problem
Domain Entity, each branch is blocked message. The root of the tree is the Problem
Domain Entity from which deadlock checking started. Deadlock is found when one of
the nodes in the tree is again the root (the tree has become a directed graph with a cycle
in it).

Deadlocks may resolve automatically when a timeout expires. This will remove one of
the tree branches. If one of the branches in the cycle contains a message with a
timeout, it means that deadlock was expected. In that case, simulation should not be
aborted (giving a message may be useful, though).

A system may contain a specific Problem Domain Entity which is monitoring
communications and tries to detect and resolve deadlocks. Aborting simulation if
deadlock is detected would preclude testing this system function. The reaction of the
design and simulation tools upon deadlock detection should therefore be programmable.
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4.8.4 Meeting timing requirements

As stated in section 2.1.5, timing can play an important role in system design. Meeting
specific timing requirements is the major objective in the design of real-time systems.
Timing requirements form a part of the dynamic consistency checks. These can be
specified by the analyst like any other consistency check.

A simple way to build timing restrictions into the system is to specify timeout periods
for result messages. The method may abort simulation when the timeout expires. This
gives the analyst a chance to trace the handling of the message. The statistics gathering
tools can provide exact time traces of message handling. These traces allow the analyst
to spot bottle-necks in the system before timing restrictions are violated.

4.8.5 Specification-to-implementation consistency

When analysing the system in a top-down fashion, behaviour descriptions serving as
specification are implemented in lower level behaviour descriptions. In this process,
more and more detail is added to the system. Adding detail means that the behaviour
may change.

Specified timing is in most cases an estimate of the maximum response times. An
implementation will therefore have slightly different timing characteristics.

A single Problem Domain Entity description normally handles a single message at a
time. A sub-divided Problem Domain Entity contains concurrent Problem Domain
Entities which can handle several messages at the same time. This means that message
handling results may be returned at different times or even in a different order. In most
cases, this poses no problems as long as maximum response times are adhered to and
the actual results are identical.

If the ordering of results is important, then this must be stated in the specification. Any
implementation should then adhere to this ordering. As with any other consistency
check, the analyst may build message ordering checks into the system.
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4.9 The result of the analysis phase: system
behaviour

In this chapter, we have seen how Object-Oriented Analysis can be used to analyse a
system under development. The system is described in terms of communicating
Problem Domain Entities, which together possess the behaviour of the system. The
analysis itself was done in a top-down stepwise fashion. Complex Problem Domain
Entities were initially specified in global terms and subsequently analysed in greater
detail.

The basic model described in chapters 2 and 3 is used for this high-level system
behaviour analysis. This allows the designed system to be simulated to show how it
behaves in response to external and internal events. The system analyst and the
customer have agreed that this is the wanted behaviour. The remaining phases of the
design path should all deliver systems which exhibit the same behaviour.

The next phase of the design path is the high-level system architecture phase. In this
phase, the Problem Domain Entities must be mapped onto 'Abstract Processing
Entities'. These will later become the actual hardware and/or software processing
entities. The presence of an operational system behaviour description gives the designer
several advantages:

. Behaviour analysis can spot Problem Domain 'bottle-necks’ (Problem Domain
Entities or communication channels which are heavily loaded). These need extra
attention during architecture design.

e The basic algorithms are already present in the system. The complexity of these
algorithms can be estimated. This allows the designer to make well founded
decisions upon how to split or combine them.

e The designer need not build a completely new system. The analysis phase system
can be modified step-by-step, gradually transforming Problem Domain Entities
into Abstract Processing Entities. Each step is preceded by analysis of the
current system configuration and followed by analysing the new system
configuration. The objective is to utilise the Abstract Processing Entities to their
full potential while meeting overall system requirements. Individual steps may
even be suggested by an expert system ([rovoQ]). '
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5. High-Level System Architecture
Synthesis

In the previous chapter, the behaviour of the system which must be built has been
analysed. This was done in terms of Problem Domain Entities and their interactions.
The problem domain does not describe the actval architecture of the system. The
grouping of functions in Problem Domain Entities and their interconnections directly
follow the original problem statement:

The system built during high-level system behaviour analysis is an
‘architecture independent’ solution to the problem statement.

If a system is architecture independent, then it is of course also Implementation
independent. System implementation cannot begin before an architecture has been
fixed.

High-level system architecture synthesis aims at providing an optimal
system architecture, ready for implementation.

This architecture contains communicating 'Abstract Processing Entities’. These provide
abstract descriptions of the processing functions performed by the modules of the final
system. For each of these, an implementation strategy will be selected based on their
processing-, data storage- and communication requirements. An implementation
strategy may use any mixture of hardware and software, ranging from ASIC's 1o
standard software running on standard computer hardware.

The Abstract Processing Entities communicate across 'Abstract Communication
Channels’. These model the communication channels which will be present in the final
system. The implementation sirategy for the Abstract Communication Channels will be
selected during high-level system architecture synthesis. This selection is based upon
the communication requirements of the Abstract Processing Entities connected to these
channels. The implementation strategy may range from simple point-to-point
communication lines to complex Local Area Networks.

The system model which results from high-level system architecture synthesis directly
models the actual processing operations of the final system. This model is therefore
called the "Processing Model'.

High-level system architecture synthesis is performed by re-mapping the functions of
the Problem Domain Entities into the Abstract Processing Entities. This re-mapping is
done gradually, by modifying the system structure in small steps. Before each step, the
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system structure is analysed to decide which modification step to perform. Following
each modification, the resulting structure is analysed to determine whether or not this
modification actually improved the system.

Throughout high-level system architecture synthesis, preliminary implementation
choices are made. These label an Abstract Processing Entity or Abstract
Communication Channel with actual capabilities. Preliminary implementation choices
allow the architecture designer to match the functions of a Processing Model element to
it's chosen capabilities. High level system architecture synthe51s ends when all
preliminary implementation choices are fixed.

. Both the Abstract Processing Entities and Problem Domain Entities use;the basic model
as introduced in chapters 2 and 3. All the analysis methods described in the previous
chapter remain usable during high-level system architecture synthesis,

System structure modifications are made with an ‘architecture editor’ tool. This tool
can split and combine existing basic model objects and communication channels. These
operations are described in the next section.

Using the architecture editor, the Processing Model can be created out of the high-level
system behaviour model. This keeps the amount of new objects that must be introduced
in the system to the minimum, reducing the amount of errors accordingly. Using
libraries of previously designed Abstract Processing Entities can be done as it was
proposed for Problem Domain Entities in the previous chapter.

5.1 Architecture Editor operations

This section introduces the main tool used during architecture synthesis, the
‘architecture editor'. It's purpose is to modify the system model structure in ways
indicated by the designer. The architecture editor provides four basic operations:

1) Combining basic model objects

2) Combining communication channels
3) Splitting basic model objects
4) Splitting communication channels

These basic operations will be described in the following secuons The remainder of
this chapter uses the basic operations to convert the high-level system behaviour model
into the Processing Model (the actual high-level system architecture).

Architecture editor operations do not change the finctiopality of the system.
Performing these operations .may change the system timing because concurrency is
removed or added.
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In general, combining communication channels or processing entities decreases system
performance (concurrency is removed from the system). Splitting processing entities or
communication channels usually increases the system performance (exira concurrency
is introduced into the system).

5.1.1 Combining basic model objects
There are two methods to combine basic model objects:

1) Place them in a grouping entity as described in section 3. 1.
2) Actually merge the operations of the original objects into a new basic object.
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Figure 5.1.1-1: Combining basic model objects in a group

The first method combines basic model objects by placing them on the Entity
Communication Diagram within a ‘'grouping’ entity. The symbol for the grouping
entity replaces them at their original Entity Communication Diagram. This is a
relatively simple operation because no changes need to be made in the combined
objects. Their behaviour remains exactly the same. Figure 5.1.1-1 shows the
multiprocessor system model example after combining the mailboxes and semaphores
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in the grouping entity 'Communication Resources’ (figure 4.3-1 on page 73 shows the
system structure from which this structure has been derived).

Merging basic object operations into a single basic object is a much more complex
operation which requires the following four steps;

1

2)
3

4)

Place the elements of the original communication shells and pr&cessing cores Iin
the new basic object.

Combine connectors which are connected to the same communication channels,

Re-route messages which were originally sent between now combined basic
objects.

Remove behaviour objects whose functions are already provided by other
behaviour objects.

These steps are explained in more detail below.

Merging basic objects replaces two (or more) concurrent processes by a single process.
This means that functions which were first executed in parallel now have to be
performed in sequence. T¥ming of the function handling may change as a result of this
(the actual finctionality remains the same).

Step 1 - Combining communication shells and processing cores:

All connectors and behaviour slots of the original entities are placed within the
combined entity. Connectors remain connected to their communication
channels. Existing behaviour objects move with their slots.

The message filter and buffer specifications are simply copied. Message
selector/manipulator entities are specified with several lists of selection criteria
and corresponding actions. The designer must indicate how these (priority
ordered) lists should be merged.

Combining virtual connector translation tables may generate naming conflicts.
Identically named entries may be collapsed into one if they all refer to
connectors which are connected to the same communication channel (like the
'processPort' connectors on the mailboxes and semaphores of the multiprocessor
system example). In all other cases, one of the virtual names must be changed.
The behaviour methods referring to such a changed name must be updated.
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Step 2 - Combining connectors:

All connectors which were connected to the same channel may be collapsed into
a single one. The message selector/manipulator specifications and virtual
connector translation table must be updated to reflect these changes.

Message filter specifications are given as lists of message selectors (see section
2.3.1). Each of these has a textual specification of what is done with the
messages which match the selector. Designer intervention is needed when
specific messages are received by more than one of the original connectors.
Following combination, this message will only be received once. This situation
can be detected when the logical conditions for accepting a message have a non-
empty intersection.

Combining message buffers is a trivial broblem if they use the same mode
('straight FIFQ' or 'priority FIFQ', as indicated in section 2.3.2). The designer
has to intervene when the buffer modes differ. Buffer depths can be added.

Step 3 - Re-routing inter-object messages:

Messages which were sent between two combined entities can be routed
internally (these may have been sent via other basic model objects). This may
increase system performance because no communication channel is needed for
these messages. Internal re-routing is done by changing the viriual connector
translation table. A connector reference is replaced by an internal slot reference.

Messages may be sent to more than one entity. The designer should intervene
when at least one of these entities is now combined with the sender. The
connector cannot be removed as long as external entities rernain in the set of
receivers.

Following this step, one or more connectors may be left unused. These
connectors can be removed from the combined entity.

Step 4 - Removing obsolete behaviour objects:

Behaviour objects may be removed when their functionality is available in-
" another behaviour object. This can be done, for instance, when a data cache is
combined with the actual data. Using fixed classes (like a 'Cache' class) for this
purpose allows tools to detect this situation. Otherwise, detecting this possibility
relies on the designer's experience. Messages sent to the removed behaviour
object may be re-routed by changing the virtual connector translation table.
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5.1.2 Combining communication channels

Communication channels may be combined to save interconnection hardware. System
timing may change because a single channel can only carry a single message at a time
(where the original separate channels were capable of transferring messages in
parallel). When combining channels, two problems must be solved:

1) Identical message formats may have been sent over the separate channels.

In general, these messages must be made distinguishable to prevent them from
being received by the wrong receivers. The sending behaviour object methods
must be changed because they define the message format (message selector and
parameters).

The situation is simplified when these messages were Infended to be received by
receivers on the separate channels. Such a message now only needs to be sent
once. This requires changing the sending behaviour object method.

2) Channels may have different topologies.

a) Original situation. 'objectA' can directly communicate via 'channel2’
with 'objectB'. Communication via 'channell’ must always involve
'objectC".

b) Combination 1, 'objectC' is not ¢) Combination 2. 'objectC" is still
__-needed anymore as intermediate. needed as intermediate. Direct
Direct communication is communication between 'object]’
maintained. and 'object2’ is prohibited.

Figure 5.1,2-1: Combining different channel topologies
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When channels are used as broadcast media, they can be connected at any point
and continue operation. Other channel topologies (tree-like structures, for
instance) may cause problems when they are combined. Combining a direct link
with a tree-like channel topology is illustrated in figure 5.1.2-1. Selecting
between the two combinations depicted there is up to the designer.

Combining channels may cause multiple connectors of an Abstract Processing Entity to
become connected to the same channel. These can be collapsed into one as indicated by
step 2 of the previous section.

5.1.3 Splitting basic model objects

Splitting basic model objects increases the amount of concurrency in the system. This
allows the system to work on more tasks at the same time. Splitting basic model objects
also increases communication overhead because data which was once directly available
is now distributed across several objects. The extra communication overhead can be
minimised by keeping data and operations which manipulate this data together as much
as possible.

When splitting an basic model object, the system architect should distribute the object’s
internal behaviour objects and connectors across the group of new objects. The internal
elements of a basic model object form an intricate network of dependencies. This
network should remain intact after the split. The following two dependencies can be
found in a basic entity:

1)  Connector-behaviour method dependencies:

Behaviour methods are started by messages which are received by specific
connectors. Methods also send messages across specific connectors. Splitting a
method from it’s connector necessitates relaying these messages between basic
model objects. The basic model object which contains the original
communication channel connector becomes a message router. A new
communication channel may be needed to transfer this message.

Another solution is to provide the method carrying object with an extra
connector to receive the message directly from the original communication
channel. This reinstates the original situation regarding the connector-behaviour
method dependency (at the cost of an extra communication channel interface).

2) Inter-behaviour object dependencies:

Communication between behaviour objects which are distributed across different
basic model objects must remain possible. Messages originally sent directly
must be routed across a channel to which the different basic model objects are
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connected. If such a channel is unavailable, a ’private' channel! must be created
with accompanying connectors. Message routing is done by changing the virtual
connector translation tables.

Continuous data inputs and outputs have their own problems when basic model objects
are split: k

5.1.4

Reading a continuous input which is placed in another basic model object can be
done by sending read request messages. Another solution is to provide the basic
model object with the method with it’s own continuous data input and connect
this input to the continuous data channel.

Updating a continuous output located in another basic model object can be done
by sending update request messages. It is possible to use! the three-state
capabilities of continuous outputs to provide the basic model object with the
method with it's own connection to the continuons communication channel.
Controlling which of these connectors is active may be more complex than
sending update messages.

Splitting communication channels

A message channel may be split in multiple channels to increase the communication
bandwidth between Abstract Processing Entities. There are several ways to split a
channel:

Fully parallel split (figure 5.1.4-1b): The channel is duplicated. Each basic
model abject connected to the original channel receives an extra connection 0
the new channel. Messages may be distributed across both channels, which
means that two messages may be transferred in parallel.

Segmenting (figure 5.1.4-1c): The channel is split in separate segments, each
connected to a subset of the original basic model objects. The segments can
transfer messages in parallel, without disturbing eachother. These messages do
not automnatically appear on other segments. Specific basic model objects have
connections to two or more of these segments. These are used to route messages
between segments (object *C' in the figure). In a truly segmented channel there
is always only a single path between segments.

Partially parallel split (figure 5.1.4-1d): A new channel is connected in parallel
to the original one, but not a/f basic model objects get a connection to this new
channel (like object 'A' in the figure). This may be combined with segmenting
by disconnecting some basic model objects from the old channel (object 'D’ in
the figure). The latter case needs routers to transfer messages between the
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channels. The routing function can be performed by all basic model objects with
access to both channels (objects 'B' and 'C' in the figure).

a) Original b) Fully parallel c¢) Segmented d) Partially
channel split channel parallel split

Figure 5.1.4-1: Several ways to split a channel

5.2 Removing dynamic structures

One of the operations which must be done during high-level system architecture
synthesis is finding ways to implement the dynamic multiples which are present in the
system model. These model entities from which there are a varying amount present in
the system. The system itself can decide to create new entities or remove old ones.

The basic software implementation of dynamic multiples is to use dynamically allocated
memory. This memory is used to store the data structures of the entities in the multiple.
The operational parts of the entities (the methods) are shared by all entities in the
multiple. Each time a method is started, it is provided with a pointer to the data
structure it has to work with, The basic software implementation allows only a single
entity to be active at a time.

5: High-Level System Architecture Synthesis 97



pd
processPo processPort
. . Semaphores
triggers triggers ctrl

a) Original situation: a dynamic multiple (the '"M* connector is the
multiple management connector described in section 3.2.1.1)
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Figure 5.2-1: Steps in converting a dynamic multiple into hardware
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A hardware implementation of dynamic multiples may follow the same approach.
Figure 5.2-1 shows how the 'Semaphores’ dynamic multiple in the multiprocessor
system example can be converted:

D

2

3

9

Each basic object in the dynamic multiple is split into it's operations and the
actual variables. The dynamic multiple is replaced by a dynamic multiple group
to contain these objects. The result is depicted in figure 5.2-1b. The 'data’
connectors are used by the 'Operations' basic object to retrieve and store the
actual status information of the semaphore.

The dynamic multiple group is split into two parallel dynamic multiples. This
situation is depicted in figure 5.2-l1c. For each entity in the 'Operations’'
multiple, an accompanying member of the 'Storage' multiple must be present.
Each time a new entity is created in the 'Operations’ multiple, it immediately
creates a new entity in the 'Storage' multiple to hold the status information of
the semaphore it represents.

The communication channel between the multiples is shared between all
semaphores. To ease communication, identical tags should be used to address
entities in both dynamic multiples. This makes it unnecessary to perform tag
translation in the 'Operations' multiple.

The 'Operations’ multiple is reduced to a normal basic object. This results in
the situation shown in figure 5.2-1d. The tag present in the messages sent to this
object is used to address the entities in the 'Storage’ dynamic multiple. The
entity creation and removal messages must now be handled via the "processPort'
connector. These messages are simply forwarded to the 'ctrl’ connector of the
'Storage' dynamic multiple. The tag which results from the creation operation is
returned via the "processPort’ connector.

The remaining 'Storage’ dynamic multiple models a dynamically allocated
memory. This can be split in a memory manager and an actual 'dumb’' data
memory. Implementations of these can be pre-designed and placed in a library.

Some remarks can be made:

Using only a single 'Operations’ basic model object allows only a single
semaphore to be active at the same time. By changing the 'Operations’ dynamic
multiple into a normal multiple, a specific amount of semaphores can be active
at once. The entities in this multiple are indistinguishable, they can all perform
the same operations. Distributing the incoming message across this multiple
must be done either statistically (for instance by hashing the tag) or
deterministically (for instance by a 'manager’ object which chooses one of the
idle 'Operations’ entities).
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. The dynamically allocated memory may be shared with information for other
data structures. This way, the mailboxes of the multiprocessor system example
can be merged with the semaphores. Whether or not the 'Operations' basic
objects are merged too is up to the architecture designer.

® The basic behaviour of the converted dynamic multiple remains the same.
Message handling delays occur when the 'Operations’ entity (or entities) cannot
handle the processing load which was handled concurrently by the entities in the
original dynamic multiple.

5.3 Building fail safe systems

Like removing dynamic structures, introducing 'fail safe’ system structures is an
operation which is common in high-level system architecture design. These structures
allow a system to remain operational even when parts of it do not function properly.
This is normally achieved by providing the system with spare parts or by re-allocating
tasks. There are numerous possibilities to do this, some of which are:

. Hot standby operation. Each system element which must remain operational has
at least one copy which is performing exactly the same operations in parallel.
One of the copies takes over immediately when the active element fails.

- Cold standby operation. A system element which must remain operational has a
spare copy which is capable of taking over it's tasks. The active element
regularly saves it's internal state. When taking over, the spare loads the last
stored state and starts from there.

. Function re-assignment. Systems with interconnected identical processors can
use function re-assignment to increase their reliability. When a processor breaks
down, it's functions are distributed across the remaining processors.

Duplicating basic model objects and communication channels is the first step towards
modelling these strategies. Checking for errors and managing the error recovery
process can be done by introducing new basic model objects in the system. Function re-
assignment can be modelled by using travelling objects to model the functions.

An example of hot standby operation modelling is given in figure 5.3-1. The 'Manager’
entity distributes all messages which are received on the ‘command’ connector towards
the processors. It compares the results which it receives back from the processors. Only
one of these results is actvally retummed across the 'command'' connector. A
malfunctioning processor delivers results which differ from the other two. This
processor will not be used anymore.
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Figure 5.3-1: 'Hot standby' operation modelling
5.4 Preliminary implementation choices

High-level system architecture design has a specific goal: The final architecture must be
implemented in hardware and/or software modules.

Direct implementation of high-level system architecture elements in the Processing
Model may be impossible or too expensive, In these cases, architecture optimisations
are necessary as described in section 5.5. Following these optimisations, another
attempt at selecting an implementation strategy may be performed. Designing a new
Processing Model element implementation is left as last resort when optimising does
not yield the required results. This 'new’ element may be an adaption of an already
existing implementation.

Selecting an implementation strategy starts by generating the ‘profile’ of the Processing

- Model element which must be implemented. Such a profile forms a standardised highly

abstract description of the requirements of the Processing Model element. The contents
of basic model object and communication channel profiles are described in the next
sections.

Requirements profiles can be matched against a database containing profiles of actual
implementations. A database search may come up with implementations which are not
optimal:

. An implementation may be over-rated. The excess capabilities may be used to let
this system element perform additional functions.

. An implementation may be siightly under-rated. These can only be used if it is
possible to reduce the processing, data storage and/or data transfer
requirements.

5: High-Level System Architecture Synthesis 101



The profile of a chosen Abstract Processing Entity or Abstract Communication Channel
- implementation can be attached to the Processing Model element. This profile acts as
an extra system constraint when architecture changes are executed. It also allows a
more precise modelling of the element’s operation.

The starting point for moving towards system implementation is by: selecting those
elements of the system which need special attention {the 'bottle-necks’ mentioned in
section 4.9). When implementation choices for these elements have been fixed, the
remaining system elements can be handled. Excess capacities in the already fixed
elements may be used to perform these remaining element's functions.

54.1 Selecting communication channels

Choosing implementations for Processing Model elements should start with the
Absiract Communication Channels. They form the network which interconnects the
Abstract Processing Entities. Choosing the channel implementations first fixes the
interface requirements of the Abstract Processing Entities.

Channel ‘profiles’ are used to describe the characteristics of existing channel
implementations. They contain the following information:

Communication protocol used by the channel
Channel topology

Data/event rate(s)

Physical characteristics

Error probability and handling

Cost '

Existing communication channel implementation profiles are placed in a database
within the architecture design toolbox. A channel's requirements for the first three
elements of the profile can be deduced from the Processing Model. With this data, a
computer can search the database with implementation profiles for suitable channel
implementations. The final channel implementation decision is taken by ‘the architecture
designer.

Following the selection of a channel implementation, the Abstract Processing Entities
connected to this channel should be taken under consideration. This is the subject of the
next section,
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54.2 Selecting processing entities

In the previous section, communication channel capabilities were abstracted into a
‘profile’. These profiles were matched against channel requirements to provide an
initial implementation choice. The same method can be applied to processing entity
implementations.

The profile of an implemented processing entity should contain the following
information:

Data (and program) storage capabilities
Interface capabilities

Processing capabilities

Cost

The first three elements of the required profile for an Abstract Processing Entity can be
deduced from the Processing Model. The required interfaces are given by the
communication channel implementation choices made in the previous section.

5.5 System architecture optimisation

The main objective of system design is to build a system which performs as specified
while the total cost is as low as possible. System architecture optimisation plays an
important role in reaching this objective.

Once preliminary implementation choices have been made, architecture optimisations
can be applied to use these Processing Model elements to their full potential.
Architecture optimisation steps may also be performed when direct implementation of
Processing Model elements proves impossible or too costly.

Architecture optimisation and making preliminary implementation choices forms the
core of high-level system architecture design. Optimisation may cause different
implementations to be chosen for certain system elements. These choices may lead to
new optimisations. This loop is broken when a near-optimal solution is found.

System architecture optimisations do not change the fiunctionality of the system. System
timing may change when architecture optimisations are performed. In general,
combining communication channels or processing entities decreases system
performance. Splitting processing entities or communication channels generally
increases the system performance. These timing changes may be compensated by
choosing different communication channel or processing entity implementations.
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The next sections outline how the architecture editor functions (described in section
5.1) can be applied to perform system architecture optimisation.

5.5.1 Combining low bandwidth data channels

Multiple communication channels may exist between two communicating Abstract
Processing Entities. Some of these may be combined to lower system costs. The
combined channel should be capable of handling the increased communication load.

If multiple parallel communication channels remain, the message traffic may be re-
distributed amongst them. Having multiple paths to choose from gives the architecture
designer extra freedom in optimising the system. Message distribution decisions will be
influenced by channel characteristics.

5.5.2 Combining processing entities

Processing entities which are not fully utilised may be given extra functions to perform.
If it is possible to move a processing entity's functions into other processing entities,
then this processing entity can be removed. ’

When entities are fully combined, communication between the original entities will
become internal communication within the combined entity. This may be a major
driving force to combine entities. It can improve system speed by removing
communication overhead.

5.5.3 Splitting high bandwidth data channels

As indicated in section 5.1.4, there are several ways to distribute message traffic across
multiple channels. This may become necessary when the original channel cannot handle
the communication load. The way in which the channel is split depends upon the
message traffic patterns:

. All Abstract Processing Entities conumunicate amongst eachother. The channel
should be duplicated to distribute the message traffic.

. A small group of Abstract Processing Entities keep the channel occupied with
messages sent between members of this group. A new channel should be
connected to the entities within the group (partially parallel split).
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. There are several groups of Abstract Processing Entities with relatively little
communication between the groups. The channel should be segmented so that
each of these groups has it's own segment.

554 Splitting and duplicating processing entities

Splitting and duplicating processing entities is done when no implementation can be
found which provides the required processing and/or data storage capabilities:

. Splitting a processing entity provides a set of processing entities with different
characteristics. These can be connected in sequence to form a processing
'pipeline’ when the original entity had very complex functions to perform.
These can be connected in parallel when the original entity had different
functions to perform. Splitting processing from data storage provides the
opportunity to choose a much larger separate data store,

. Duplicating a processing entity provides a set of processing entities with the
same characteristics. These are connected in parallel and share the processing
and data storage load.

Long-term data storage may form a problem when processing entities are split or
duplicated. Keeping data and operations on this data combined in a single entity is not
always possible. Separating data storage and operations before splitting or duplicating
the actual operations provides a good solution to this problem.

5.6 Final implementation choices

The preliminary implementation choices will be made final when a satisfactory system
architecture has been found. The following sections give an indication of what can be
expected from these final implementation choices.

Rigid interface specifications are needed to ensure that implemented processing entities
can be interconnected. Section 5.7 provides an overview of the possible interfaces.
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5.6.1 Communication channels

Abstract Communication Channels can be implemented with very diverse methods.
Communication channel implementations may be selected based jupon the type
(continuous data or message driven) and use of the channel as present in the Processing
Model:

s Continuous data communication channels have no implicit protocols. Their
implementation ranges from analog two-wire connections to simple (three-state)
data buses.

. Channels which carry events can be implemented with very simple methods. A
two-wire connection suffices for a single event, multiple events can be encoded
to reduce the needed number of wires.

. Point-to-point communication channels can be implemented as simple serial or
parallel connections with handshake protocols.

. Multi-source and multi-destination channels can be implemented by standard
computer buses or communication networks. These include arbitration and error
recovery protocols.

Direct communication between software modules is regarded an interface, which will
be described in section 5.7.1.

5.6.2 Software implemented processing entities

Software implementations of an Abstract Processing Entity consist out of two parts:

1) The hardware on which the software must run, The choice for this hardware is
based upon the processing, interface and data storage capabilities needed by the
Abstract Processing Entity. The hardware may range from a processing core
embedded in an ASIC, via single chip microcomputers to complete (board-level)
computers.

2) The sofiware itself This should be a translation of the behaviour description of
the Abstract Processing Entity into the machine 'language! of the chosen
processor. This translation may be done via intermediate 'high-level' languages.
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5.6.3 Hardware implemented processing entities

Hardware implementation of an Abstract Processing Entity means that a (new) data
processing architecture must be designed. This architecture is specifically tailored to the
functions which must be performed. Examples of functions which can be implemented
in highly specialised hardware are fast Fourier transforms, data compression and
decompression, data encription and decription, image generation and communication
channel switching.

Designing new hardware should only be done when existing implementations cannot be
used. This only happens for extreme situations, like very high data processing speed or
ultra low power requirements.

5.6.4 Mixed hardware/software implementations

Mixed hardware/software implementations are obtained when 'general purpose’
programmable elements are combined with specifically designed hardware:

. An already existing processor's instruction set is changed. This can be done to
tailor this processor to the processing requirements.

. New hardware Is added to an existing processor. This hardware may perform
specific processing or interface functions.

. A new general purpose processor is designed. Although designed to implement a
specific Abstract Processing Entity, this processor may be re—programmed for
other purposes.

5.7 Interface specifications

Interfaces must be specified to define the interconnections which will be present in the
final system. The different Abstract Processing Entities are implemented separately.
The interface specifications must be very thorough to ensure that implemented
processing entities can communicate when they are interconnected in the final system.

There are various types of interfaces which can be present in the final system. The next
sections describe these types, where they are used and what is needed to specify them.
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571 Software-software interfaces

Direct interfaces between software implemented entities can only occur when these
software modules run within a single processor. The interface between application
modules and an operating system is a very important software-software interface. The
two major types of software-software interfaces are the following:

. Shared variables. These are generally used for non-event driven communication
(for instance to distribute status information). Shared variables can be specified
by giving their storage format, memory space and address.

. Procedure and function calls. These are used to indicate an event or transfer a
request. Their specification includes the formats of variables given and returned
and how these are transferred. The way to invoke the actual routine should also
be specified (for instance direct call, table look-up or software interrupt).

5.7.2 Software-hardware interfaces

Software-hardware interfaces are needed when software interacts with input/output
hardware. The software initiates an interactions through input and output instructions.
External devices initiate an interaction with software through interrupts.

Interrupts and input/output instructions provide only a primitive means of
communication with external devices. It is possible to raise the hardware-software
interface level by using more complex processor hardware and instructions.

A good example of an advanced hardware-software interface is the T9000 'transputer’
(Ipou91]). This processor is capable of sending and receiving data packets with a single
instruction. A built-in multitasking operating system runs other tasks while a task waits
for the completion of such a transfer.

5.7.3 Hardware-hardware interfaces

Interfaces between hardware elements occur in a multitude of places. Each time there is
an Abstract Processing Entity to Abstract Communication Channel connection, a
hardware interface must be defined and built.
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Section 6.2.3 provides the primitives which can be used for hardware-hardware
communication. These 'primitives’ include registers, queues and multiport memories.
A multitude of different communication forms and protocols can be built using these
primitives.

5.7.4 Sensors, actuators and adaptors

Systems are not built using direct digital interfaces only. Special interfaces must be
applied whenever special voltage or current levels are needed or non-electrical
communication forms are used. Three basic types of these 'special interfaces’ can be
found in a system:

. Adaptors are used to convert the voltage and current levels used within the
data processing equipment into other levels and vice verse. Examples of
adaptors are power drivers, input protection networks, digital-to-analog and
analog-to-digital converters.

. Sensors are used whenever values or states must be input into a data
processing system. These are often non-electrical in nature. A sensor generally
includes an adaptor for connection to the digital processing hardware.

. Actuators are used whenever a data processing system must effect changes to
it's environment. These changes are mostly of non-electrical nature. Like
sensors, actuators generally include an adaptor at the processor interface.

Designing interfaces like these is a far from trivial and often specialised job. Their
- importance is visible in the problem statement when the external interfaces of the
system are non-electrical. Problem Domain Entities must be introduced during high-
level system behaviour analysis to convert these interfaces into something more
manageable. These Problem Domain Entities remain visible in the architecture phase.
Their basic function does not change at all and will later be implemented in hardware.
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5.8 Design consistency issues

All design consistency issues which were described in section 4.8 are valid during high-
level system architecture design. The methods used to check for inconsistencies remain
operational because the same basic model is used.

Making preliminary implementation choices introduces three consistency issues which
are not inherent to the basic model as described in chapters 2 and 3:

U The processing and data storage requirements of an Abstract Processing Entity
should remain within the profile of an implementation choice made for this
entity.

. The communication performed on an Abstract Communication Channel should
be allowed by the profile of an implementation choice made for this channel.

. All Abstract Processing Entities attached to a channel should be able to interface
with it.

59 Design for testability

Design for testability is the follow-on of these ‘maintenance and testing’ functions
described in section 4.4.4. These functions monitor and maintain the operational
characteristics of the system. Design for testability focuses upon the final architecture
and it's components. Two major goals must be met:

. Testing the system components in isolation. This can be used prior to system
integration to make sure that the individual components are operational.

. Testing the system as a whole. This can be done following integration to check
the communication channels and the component's adherence to the specified
protocols.

To reach these goals, the set of existing test messages should be expanded with
messages which concentrate upon the architecture components. The actual
implementation of the handling of these messages remains to be done during
implementation of the system modules. Standard design for testability measures like
boundary scan (board level) and scan testing (device level) should be used whenever
possible. These methods can be applied automatically by integrating them in the design
tools (this will be described in section 6.5.4).
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Both boundary scan and scan testing allow 'structural’ tests to be performed. They are
capable of checking all elements of the system structure down to the logic gate level.
Structural tests are preferred above 'functional’ tests, which only test the basic
functions of a system. A functional test may leave some system elements untested.
Functional tests have an advantage over structural tests in that they can be performed
while the system is operational. The ‘maintenance and testing' functions will therefore
in general be performed by functional tests.

5.10  The result of system architecture design:
the Processing Model

The end result of high-level system architecture design is a network of processing
entities interconnected by communication channels. This network models the
partitioning of processing in the final system, and is therefore called the 'Processing
Model’. The Processing Model performs the same functions as the high-level system
behaviour model from which it has been derived.

Implementation strategies have been chosen for each of the processing entities and
channels. Interface- and functional specifications are available for each of the
processing entities. These will be used during low-level module architecture design and
implementation, which is the subject of the next chapter.
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6. Implementing the Processing
Model in Software and Hardware

The last phase of the design path handles low-level module architecture design and
implementation. During this phase, Abstract Processing Entities and Abstract
Communication Channels are converted into operational hardware and software.

This chapter concentrates upon hardware implementation. An executable language is
used to define the behaviour of Abstract Processing Entities. This allows the generation
of software to be more or less automated by compiler-like tools.

The target of this chapter is the design of digital Application Specific Integrated
Circuits (ASIC's). These have the following advantages:

. ASIC’s allow the highest functional density of all implementation techniques.

. Because of the tight packing, interconnection delays are minimised. This gives
ASIC's an advantage in overall system speed.

] The low level components in an ASIC can be matched exactly to the
requirements. This allows highly optimised architectures to be the built.

ASIC's also have their problems. The major one is the following:

. Design errors cannot be corrected within finished devices. A design which is not
100% correct is virtually useless.

Building a prototype to verify the design is very expensive. Functional verification is
therefore done by extensive simulations. Simulating complex ASIC's at gate- or lower
levels is very time consuming. The amount of simulation runs is reduced to the bare
minimum to shorten this time. Building a comprehensive test set under these constraints
is very difficult.

Using ’‘correctness by construction’ methods removes the necessity of low-level
functional verification of the design. Silicon compilers take a high level description of
the circuit and convert it into an ASIC layout. Creating an ASIC this way depends on
the availability of a correct (proven or simulated) high level description.

System requirements analysis and high-level architecture design use behaviour
descriptions of the system components. The behaviour of these system models has been
checked and approved. The abstraction level of current 'silicon compiler’ languages is
too low to match these behaviour descriptions. Several intermediate descriptions of the
system are needed to close this 'semantic gap'.
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The design path described here uses two intermediate levels:

o Algorithmic level. Design modules described at this level contain hardware
oriented interfaces and algorithms. This level is used to remove most of the
abstract-ness of the behaviour description.

] 'Basic building block’ level. The algorithmic level description is translated
into real data paths and controller structures. These are specified in a 'language’
which uses basic building blocks like registers, RAM's, ROM'’s, queues, stacks,
Content Addressable Memories, operators and state machines. This level is used
to optimise the implementation of the algorithms.

Conversion between the levels is done by compilers. Non-optimal conversion results
may be improved manually. The resulting basic building blocks can be handled by
silicon compilers.

The algorithmic level entities and basic building blocks can be seen as very specialised
behaviour descriptions. The behaviour level model as introduced in chapters 2 and 3
can be used to simulate these entities. This is not done because simulation would be
slowed down enormously. The specialised low-level entities have much less simulation
overhead than behaviour level entities. This is needed because a large amount of them
is necessary to describe the system.

This chapter outlines the steps to be taken to turn the high-level system architecture
components into silicon. The next section describes software implementation issues for
new hardware.

6.1 Software implementation issues

Complex Abstract Processing Entities will be implemented as a processor-like
architecture, driven by a 'machine language' program. Development tools are available
for standard machine languages. These allow the actual algorithms to be specified in a
more or less abstract language. This helps the programmer to concentrate on the
algorithms and disregard the hardware. Section 6.1.1 outlines the tools necessary to
perform program development for a new processor.

These programs must be interfaced to the hardware which surrounds the processor
core. This is the subject of section 6.1.2.
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6.1.1 Toolbox construction for new processors |

A set of software design tools must be created for each new processor architecture:

. An ‘'assembler’ to translate symbolic descriptions of the processor's
instructions into the 'machine code' bit patterns which are understood by the
actual hardware.

. One or more 'compilers’ which translate high-level programming languages

into machine language.

The ideal compiler would take the behaviour description of the Abstract
Processing Entity and tum this into executable machine code.

. Machine level simulators which are able to simulate the execution of the
machine language. This allows the running of programs before any actual
hardware has been designed. ‘

. Debuggers which allow testing of- and removing errors in programs written in

any of these languages. To aid debugging of programs running on the actual
processor, extra hardware may be added. This hardware finds it's roots in the
high-level system behaviour aspect 'system maintenance and testing’ (section
4.4.9).

The most important step in this process is the definition of the machine language - the
actual instructions which will be executed directly in hardware. An assembler can be
created when symbolic names have been assigned to these instructions. Compilers can
be created when the semantics of these instructions have been defined in a machine
readable form. This information can also be used to create machine level simulators
and debuggers. Building all these tools may be done by specialised programs ([you88]).

Generating a new machine language from a behaviour description of an Abstract
Processing Entity is a far from trivial task. The Algorithmic Level description of a
processing entity provides a better starting point. This description must be analysed to
find the necessary short-term storage locations and common operations. The storage
locations become registers and on-chip memories. The common operations become the
instructions of the processor. The actual machine language is formed by assigning bit
patterns to each of these instructions.
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6.1.2 Interfacing languages with hardware

The basic interface between the software and hardware domains is the assembly
language. All instructions coded in the assembly language are one-to-one translated into
machine code. The bit patterns which comprise the machine code are directly
executable by the processor's hardware.

Input and output is performed by a few instructions which access specific memory
locations or ‘ports’. Synchronising to external events is done with interrupts.
Controlling devices this way requires some extra 'intelligence’ in the form of a device
control program. A device control program is a set of machine language routines which
can be called from any language.

Complex (input/output) operations may also be performed directly in hardware. Special
instructions are used to initiate these operations. The T9000 'Transputer’, for instance,
can transfer information packets with a single instruction ([pou91]). Instructions like
these are disguised as procedure or function calls in a high level language. Some
languages call such operations ‘primitives’. This is a very appropriate term because the
operation of these instructions is defined in lower-level languages only.

6.2 Coupling behaviour to lower language
levels

The first step to be taken when converting an Abstract Processing Entity into hardware
is to define the exact interfaces to be used. These interfaces couple the processing entity
with the chosen communication channel implementations.

Three language abstraction levels are used in the design path which is described in this
text. A behaviour level language is used during high-level behaviour analysis and
architecture synthesis. This chapter adds an algorithmic level language and a ’basic
building block' level.

Simulation of a system described at several abstraction levels should be possible. This
allows abstract system elements to function as test environment for the more detailed
system elements. :

Mixed level simulations like these give problems in interfacing the different language
levels. The approach taken here is to use very hardware-oriented interface primitives
like registers, queues and dual port memories. These primitives are themselves basic
building blocks. They can be directly accessed from within algorithmic level
descriptions. The next section describes the interface to the behaviour level.
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6.2.1 Low-Level Simulation Entities

Replacing an Abstract Processing Entity by a "Low-Lewel Simulation Entity' starts the
implementation process. A Low-Level Simulation Entity resembles a grouping entity
because it contains other elements. Connectors for message channels and continuous
data channels may be present at it's boundary. The function of the 'Entity
Communication Diagrams' is taken over by ‘schematics’. As shown in figure 6.2.1-1,
a Low-Level Simulation Entity schematic may contain the following elements:
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b) Low-Level Simulation Entity replacement with contents

Figure 6.2.1-1: A Low-Level Simulation Entity and it's internal structure

. Interface entities. These couple the internal entities to the message driven
environment (entities 'mssgA’, 'mssgB’, 'contIn’ and 'contOut’ in figure 6.1.1-
1b).

e  Interface primitives. These are actually basic building blocks used to
interconnect the different abstraction levels (like entity "REGISTER’ in figure
6.1.1-1b).

o Algorithmic level entities. These are depicted by a symbol like entity
'ALGORITHM’ in figure 6.1.1-1b.

. Basic building blocks. These are introduced in the Low Level Simulation Entity
when the algorithmic level entities are converted into datapaths and controllers
(section 6.4).
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The interface entities and interface primitives are described in the following sections.
Algorithmic level entities are described in section 6.3.

6.2.2

Interface entities

All connectors placed in the symbol of a Low-Level Simulation Entity are internally
provided with an interface entity. These interface entities perform four separate
functions:

1)

2)

3

They handle the messages which are received by a connector. Message reception
is translated in the manipulation of the interface primitives. The message
interface entity has all the capabilities of a message filter as described in section
2.3.1. This function is described with method-like texts like the following
example (which may be placed in the ‘mssgA’ interface entity in figure 6.2.1-
1):

replaceValue

“Tell the 'REGISTER' interface primitive entity to load the value
which is present at it's input connector.”

REGISTER load "this is a standard register command”

Interface entities monitor interface primitives for specific changes. When one of
these occurs, a message is formatted and sent across a message connector. The
following example shows how the ‘mssgA’ interface entity checks the
"REGISTER' in figure 6.2.1-1:

"Specify the condition under which the message must be sent:”
(REGISTER = 255)

"Send the 'limit reached' message when this occurs.”

JlimitReached

Values input on a continuous data input are decoded and placed on internal
data buses. This may be done with true three-state outputs. The following
example is the description of the 'contIn’ interface entity in figure 6.2,1-1:

"Convert an external integer value into an 8 bits wide integer:"

output : = contin width: 8

6: Implementing the Processing Model in Software and Hardware 117




4) Values present on internal data buses are encoded and output on a continuous
data output. Full control of the 'three-state’ capabilities ofl the output is
available (see section 3.4). The following example is taken from the 'contOut’
interface entity in figure 6.2.1-1:

"Output the REGISTER value as an integer when it is not 255:"

contOut : =
(input = 255) "check for limit"
ifTrue: [nil] "place in three-state condition”

ifFalse: [input asinteger] “convert to normal integer”:

There are two reasons for choosing this interface method between the between the
behaviour level and algorithmic/basic building block levels:

. Fixing the interface. Interfaces must be well defined to allow the
interconnection of the system elements at the end of the implementation phase.
This definition is formed by the hardware interface primitives and the interface
language specifications. The hardware interface primitives themselves are basic
building blocks. These remain unchanged when moving down the chain of
language levels.

The data type used by both the algorithmic level and basic building blocks
represents an integer with a specified (and fixed) number of bits. The interface
languages have the means to convert high level data types into these integers
and vice verse.

. Language compatibility. The interface language is a modified version of the
language used for the behaviour entity methods. The way this language tests and
manipulates the interface entities is almost the same as done by the algorithmic
level language. The basic building blocks allow the same constructs and add the
possibility to transfer data across 'physical’ data buses.

6.2.3 Hardware interface primitives

Hardware interface primitives provide a consistent interface between the behaviour
level, algorithmic level and basic building block level entities in a design. Together
with the interface entities described in the previous section, they define how abstract
messages are received and sent by hardware constructs. There are three basic interface
methods between the different abstraction levels. These all base upon elements of a
basic building block design:

1) Reading and writing data stores located within basic building blocks.
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2) Reading the value on a data bus.

3 Sending commands to basic building blocks to control the handling and storage
of data.

All operations within 2 Low-Level Simulation Entity are timed by a 'clock’ signal.
These operations include the hardware interface primitives.

The next sections describe the hardware interface primitives in more detail. A complete
description of the basic building blocks is given in [ver90¢].

6.2.3.1 Direct bus connections

Data buses provide a means to transfer data values, These data values are of the
standard fixed-bit-width integer type. A bus can only transfer a single value within each
clock cycle.

. Behaviour level bus manipulation:

Direct bus connections are the equivalent of the behaviour level continuous data
channels. These two may be coupled by special interface entities, as indicated
by functions 3) and 4) in section 6.2.2,

An interface entity which receives a message can send commands to hardware
interface primitives (see section 6.2.3.7). Such a command may force a specific
value on a bus.

A message may be sent when an interface entity detects a specific value on a
bus.

. Algorithmic level bus manipulation:

Algorithmic level entities have no direct connections with data buses. Placing a
value on a bus must be done indirectly by sending commands to blocks which
are connected to the bus. Algorithmic level entities can check the value on a bus
just like the behaviour level interface entity.

0 Basic building block bus manipulation:
All actual data transfers between basic building blocks are performed by the

data buses. State machines which control algorithms are capable of testing bus
values just like the behaviour level and Algorithmic Level entities.
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6.2.3.2 Synchronization with signals

'Signals' are single bit semaphore-like storage locations which are attached to a basic
building block design. The ‘scope' of a signal is the complete Low-Level Simulation
Entity in which it is defined. They can be tested and manipulated by all language
levels. Signals are normally used for synchronization purposes.

6.2.3.3 Registers and synchronizers

A registers is a data store which can hold a single integer with a fixed bit width, Each
register model includes a 'flag' bit. This bit is set automatically when the register is
loaded with a new value. It can be reset on command.

All language levels can read the contents of the register and it's flag bit. The behaviour
level and algorithmic level languages can directly assign values to a register. These
assignments are actually executed at the next clock. Other basic building blocks use a
bus to present data to a register. A 'load’ command will then load this value into the
register at the next clock. A bus may also be used to distribute a register's value to
other basic building blocks.

Each Low-Level Simulation Entity has it's own clock signal. This clock assures that
data transfers within a Low-Level Simulation Entity occur reliably. The clocks are not
synchronized between different Low-Level Simulation Entities present in a system, they
may run at different frequencies. Values transferred from one Low-Level Simulation
Entity to another may reach this other Low-Level Simulation Entity just before or after
it's clock. The same may happen with messages received from basic behaviour level
entities.

Normal register implementations show unwanted behaviour when input signals change
within a short time interval around the clock instant. This behaviour may range from
abnormally long settling times to the destruction of the register.

The hardware solution to this problem is called a synchronizer. Synchronizers are
special registers which are capable of handling signals which are not synchronised to
the clock. They may take several clock cycles to load a signal coming from the outside
world. This behaviour can be modelled in the behaviour level interface entities.

6.2.3.4 Queues

Registers provide a single storage location. The First-In-First-Out (FIFO) memory
provides a queue which can hold multiple data words. Data is read from this memory
in the same order it was written.
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The basic building block FIFO memory allows reading and writing one word per clock
cycle. Reading and writing can be done at the same time. The number of words in the
memory can be checked to allow the implementation of flow control algorithms.

6.2.3.5 Multiport Random Access memories

A FIFQ imposes a strict ordering upon the handling of the data written into it. It is also
an inherently unidirectional communication method.

Both these restrictions can be lifted by using 'Random Access Memories' (RAM's). The
storage locations within a RAM can be written and read in any (‘random’) order.
Multidirectional communication can be implemented by giving communicating
processes independent access ports to the RAM.

The basic building block RAM model has separate read and write ports. Each port
allows a single data transfer per clock cycle. No flags are available to indicate whether
a storage location is free or written. Controlling the traffic through a multiport RAM
has to be implemented separately.
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Figure 6.2.3.5-1:  Dual-port RAM communication example

Figure 6.2.3.5-1 shows two processes interconnected by a dual-port RAM. Each
process has a separate read and write port, controlled by 'rwCtrl' buses. These buses
are combined in the basic building block 'CTRLCOMB® before being presented to the
‘control’ connector at the RAM.,

6.2.3.6 Content Addressable Memories

Data words which are transferred between communicating processes may encode
commands in their bit pattern. The reading process(es) may have a preference for some
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commands. Searching these commands in a Random Access Memory must be done
sequentially and takes a long time.

This can be avoided by using a 'Content Addressable Memory' (CAM). All storage
locations within a CAM can be matched against a given data word in a single clock
cycle. Specific bits in the data words may be ignored during the search. Each search
action provides the number of matched words and the first matched word. Bits in the
stored data can be modified as a result of the matching process.

The basic building block CAM model allows a single search-and-modify action per
clock cycle. The stored data words may be extended with flag bits to indicate their
. status. The logic to generate and mask these flags must be provided external to the
CAM.

6.2.3.7 Controlling low level entities directly

Basic building blocks are controlled by sending them commands. These commands may
be generated by several sources:

. - State machine controllers. These are themselves basic building blocks.
. Algorithmic level entities,
. Behaviour level message interface entities.

The basic building blocks check all commands which are received. Some commands
may only be given when specific connectors are present. Other commands may not be
combined within a single clock cycle.

6.3  Converting behaviour to hardware
| oriented algorithms

The first step towards hardware implementation of an Abstract Processing Entity is the
conversion into an Algorithmic Level equivalent.

The hardware interface architecture was defined in the previous section. This included
the conversion of the abstract data types into hardware compatible integers and vice
verse. :

This hardware interface provides the outer shell of the Abstract Processing Entity
implementation, The Algorithmic Level entity introduced in this section describes the
internal operations. This descnptlon shares it's operators and ‘data type’ with basic
building blocks.
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An Algorithmic Level entity provides a way to describe algorithms which can be
implemented in hardware. The actual implementation in datapath and controller
architectures is postponed until later.

The next section describes the capabilities of the Algorithmic Level entity. Section
6.3.2 outlines the behaviour level to algorithmic level conversion.

6.3.1 The Algorithmic Level entity

An Algorithmic Level entity provides local data storage and procedures which operate
on this data. These procedures also have access to basic building blocks placed in the
'environment’ of the Algorithmic Level entity. This environment includes all elements
drawn on the same schematic as the Algorithmic Level entity. Each of the Algorithmic
Level entities in a design is a separate concurrent process. These characteristics are
described in the next sections,

The Algorithmic Level entities are based upon the 'Hardware Oriented Design and
Simuiation System’ described in [hul90].

6.3.1.1 Local data storage

The data storage located within an Algorithmic Level entity can only be accessed by the
internal algorithms. These local data stores represent simple registers and Random
Access Memories which can be written and read just like their interface primitive
counterparts. There is a significant timing difference between the interface pnmitives
and the local data stores, which is explained in section 6.3.1.5.

Complex ‘local’ data storage can be provided to an Algorithmic Level entity by placing
basic building block memories in it's environment. Complex data stores like these
remain intact when the Algorithmic Level entity is converted into basic building blocks.

6.3.1.2 Interfaces

The procedures placed within an Algorithmic Level entity have access to the basic
building blocks placed in their environment. External registers and RAM's can be
written directly. Other basic building blocks must be controlled by sending them
commands. Obtaining values from external entities (including buses) can be done by
direct name reference.
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6.3.1.3 Basic Algorithmic Level language constructs

The language used for Algorithmic Level entity procedures provides most of the
language constructs found in ordinary algorithmic languages:

Assignment and control expressions. Expressions operate on values stored
in local variables or basic building blocks placed in the environment of the
Algorithmic Level entity. The results of these expressions can be assigned to
(local) registers or RAM locations. The expression operators are the same as
those used in the basic building block descriptions.

Commands can be sent to all basic building blocks placed in the environment.
Parameters for these commands may be given in the form of an expression.

Flow control. Conditional evaluation of program segments is possible by the
use of a 'CASE'-like construct. The same construct is also used for 'IF-THEN-
ELSE' tests.

All standard loop constructs are available, including a special 'endless’ loop.
Special constructs allow breaking out of a loop.

Subroutines. Large programs can be broken up into a main routine and one or
more subroutines. There are two kinds of subroutines:

. 'Local' subroutines can only be called from within the Algorithmic
Level program itself.

. 'Global' subroutines can also be called by other Algorithmic Level
entities.

Parameter passing between routines must be done with the normal external
variable storage entities.

6.3.1.4 Concurrent programming

Each Algorithmic Level entity is capable of running a single 'program’ at a time. All
Algorithmic Level programs placed within a Low-Level Simulation Entity can be
running concurrently. Communication between Algorithmic Level entities is performed
using the hardware interface primitives described in section 6.2.3.
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An Algorithmic Level entity can call global subroutines within other Algorithmic Level
entities placed in it's environment. There are two ways to request a remote subroutine
call:

. A subroutine call blocks the calling entity until the external call has been
handled.

. A co-routine call allows the calling entity to continue as soon as the call has
been posted.

Each Algorithmic Level entity provides a priority system like the one described in
section 2.4.1 for the behaviour level processing core:

. The entity is always operating at a specific priority level, This priority can be
manipulated by the internal procedures.

. The main routine starts at the highest possible priority level. The priority is
lowered to the lowest possible level when no routine is running.

. Global subroutines are started when their request has a higher priority than the
operating priority. The operating priority is set to the priority of the request.
Other requests are queuved in priority FIFO order.

. Remote global subroutine calls by default receive the operating priority as
priority.
These capabilities can be used to design complex client-server architectures al an

algorithmic level. Each basic behaviour level entity can be broken up into a set of
cooperating Algorithmic Level entities.

6.3.1.5 Timing

Algorithmic Level entities are placed in an environment which contains basic building
blocks. The Algorithmic Level entities must be synchronised to the clock used by these
basic building blocks. This synchronization is only needed for external accesses and
timing purposes. Timing characteristics of an Algorithmic Level entity can be.
summarised as follows:

o Clock synchronization. An Algorithmic Level program contains 'wait'
statements. Execution of such a statement stops the program until at least the
next clock. The waiting period may be stretched by specifying specific
conditions which must be true to exit the wait state.
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. Interfacing external entities. Reading external entities always returns steady
state values (as if it was done just before the clock). Manipulation of external
entities is buffered. The actual changes are postponed until the next clock. This
gives the external entities the opportunity to check for illegal command
combinations and multiple assignments.

. Handling local variables. Assigning a value to a local register or RAM is
done immediately. Reading a local variable always reflects the last value
assigned to it.

Figure 6.3.1.5-1 shows an Algorithmic Level entity which is being used to calculate the
Fibonacci series (Xn = Xna + Xn2, Xo = X1 = 1, N > 1). The resulting values are
placed in the external variable ‘OUTPUTREG'. The actual algorithm shown in the
right window makes use of the fact that assignments to external variables are not
executed before the next clock. 'QUTPUTREG' is first assigned Xn-1, which becomes
Xn-2 in the next loop. The '‘OUTPUTREG' value used in the addition has been assigned
during the previous loop.

) AL block ' FIBONACCI’, main routine

| _localBeg := 1 “Local variable assignment “
HOUTPUTREG := 1: “External assigmment *
< 1 1. “Wait a single clock cycle “

“Endless loop start”
“Assign output 'a new value:
OUTPUTREG := _localReg:
“tUse old ocutput value:
_localReg ‘= _localReg + OUTPUTREG:
{13 *Clock updates OUTPUTREq.
“Endless loop end "

|} localReq: A iocal register with 48 bits

Figure 6.3.1.5-1:  Example of an Algorithmic Level entity
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6.3.2

Converting behaviour to algorithms

The interface entities, interface primitives and Algorithmic Level entities have been
introduced in the previous sections. This section describes how a behaviour level Basic

Model

entity can be converted into an Algorithmic Level equivalent. This conversion is

a four-step process:

1) Convert the data types

2) Create the hardware interface

3 Convert the message handling shell
4) Convert the processing core

These steps are detailed below.

Step 1: Data type conversion

The behaviour level uses all kinds of data types for parameters and stored
values. Equivalent integer-based data types must be defined for use by the
algorithmic level. The actual conversion between complex data types and
integer values is handled by the interface entities. Equivalent integer-based
operations must be formulated for the operations performed on the behaviour
level data types.

Step 2: Interface boundary conversion

The format of messages received and sent by the Algorithmic Level system must
be defined down to the bit level. This includes the placement of the parameters
attached to the messages.

Messages may contain such complex data types that they cannot be handled as a
whole. It is also possible that the channel implementation choice enforces a
sequential protocol. In both cases, messages have to be broken up into pieces
which must be handled sequentially by the interface primitives.

Message format conversions are handled by the message connector interface
entities. These entities also handle accepting, absorbing, ignoring, blocking and
rejecting messages. Any conditional decision in this respect must be based upon
the state of interface primitive entities.
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Step 3: Message interface architecture conversion

The interface shell present in a behaviour level entity must be converted into an
Algorithmic Level equivalent:

o Input filter functionality should be implemented in Algorithmic Level
entities and/or basic building blocks. Forwarding the handling decision
to the communication channel must be performed by the message
interface entity.

o Input and output buffers are implemented with interface primitives.
A simple buffer may be implemented with a register or FIFO memory.
Multiport RAM's, Content Addressable Memories and local Algorithmic
Level entity memories may be used in complex situations.

o The message selector/manipulator is complex enough to warrant
the use of a separate Algorithmic Level entity. This separates message
selection and handling.

The virtual connector translation table is a static resource within the message
interface shell. The contents of this table do not change. It's functionality can be
completely incorporated within the implementation of the processing core.

Step 4: Processing core implementation

The behaviour objects can be implemented with one or more Algorithmic Level
entities:

o Variables used in the original behaviour objects can be placed in local
Algorithmic Level variables or basic building blocks.

. The main routine can be used to initialise these variables and select
messages when this is not done by external means. ‘

. Subroutines can be used to implement the different methods. Global
subroutines can be used when these must be invoked by an external
message selector.

J The operations on the original abstract data types have been converted
into integer handling equivalents in step 1. Complex operations should
be placed in local subroutines.

. Input and output actions are performed by the appropriate
manipulation of the interface primitive entities.

128

An Object-Oriented Modelling Technique for Complex (Real-Time) Systems



The conversions described above are relatively straightforward. Some optimisations
may be done during the conversion:

. The operations have been detailed to a much deeper level. This allows a re-
scheduling of the behaviour level timing specifications. Reducing peaks in the
processing load will also lower the amount of hardware needed.

. Extra concurrency may be brought into the system by applying multiple
Algorithmic Level entities. These can perform complex operations and message
handling in parallel.

6.4 Converting algorithms to datapaths and
controllers

An Algorithmic Level entity describes a piece of data processing hardware. The
operations and storage structures present in an Algorithmic Level entity are already in
the realm of digital hardware. What is lacking is the scheduling and assignment of
variables and operations:

. It is not specified which operations are done within the same clock cycle. Only a
rough indication is given by their placement between the wait statements.

. The Algorithmic Level entities’ local variables are only a rough indication of the
needed data storage. Data stores may be combined when they never contain
active data at the same time.

. Nothing is said regarding the actual architecture of the final system. No
indication is given of the use of data buses and the sharing of operational
hardware.

The goal of basic building block hardware design is the following:

Create an actual architecture containing storage, data processing and control elements
out of a description which only provides a functional specification.

The basic building blocks are the lowest-level design elements which need human
intervention. They can be converted into logic gates by logic synthesis programs.
Layout fragments for these gates are stored in libraries. These fragments can be placed
and interconnected by placement and routing programs. The end result is a complete
ASIC layout. This process can be performed fully automatically ([baa%1], [zan91]).
Appendix 2 gives some examples of these conversions.
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6.4.1 Basic building block design elements

The next sections describe the basic building blocks in somewhat greater detail. A
complete description is given in [ver90c]. Section 6.4.2 outlines how an Algorithmic
Level design can be converted into basic building blocks.

6.4.1.1 Data storage

All communication primitives which provided storage (sections 6.2.3.3 through
*6.2.3.6) are available for data storage in the basic building block design:

J Registers.
. Random Access Memories. These can have multiple read and write ports.
J First-In-First-Out memories. These implement a multi-level queue. Data is

read from the 'head' of the queue and written at the 'tail'.

. Content Addressable Memories. These allow searching all words in parallel
by matching bits with a given reference word. Multiple words can be changed
within a single clock cycle.

The next memory type is a very common data storage structure which is seldom used
for communication purposes:

J Last-In-First-Out memories. These implement a multi-level ‘pushdown
store’ or 'stack’. Data manipulations are always performed at the 'head’ of this
store.

The signals introduced in section 6.2.3.2 can be used as single bit data storage.

6.4.1.2 Data transfer with buses

Data transfer between basic building blocks is performed by data buses. A bus must be
connected to the basic building blocks by 'connectors’. Each bus carries a fixed number
of bits and can only be connected to connectors which have the same width. The values
transferred by a bus are fixed bit width integers with the specified number of bits.

Multiple output connectors may be attached to a bus. Only one of these may be active
during a clock cycle. The other output connectors on that bus must be held in a 'three-
state’ condition (like the 'bBusOut’ and 'cBusOut' outputs shown in figure 6.4.1.3-1).
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The state of output connectors is controlled by sending commands to the basic building
blocks they are placed in.

6.4.1.3 Data manipulation with operators

'Operators’ are basic building blocks which can perform arithmetic and logic
operations. An operator can have multiple input and output connectors. The values of
the output connectors are defined by a set of expressions. These expressions use the
names of the input connectors as parameter. The operators used by the expressions are
the same as those used by the Algorithmic Level entity assignment expressions.

"AND data value on cBus to A
: [reg!ster:"

Hlton 1= fromA /N cBusIn.

will come here

Figure 6.4.1.3-1:  Basic building block operator example

Each set of expressions defines a function. An operator may contain multiple function
definitions. Only one of these may be active during a clock cycle. Figure 6.4.1.3-1
shows an operator symbol ('ALU" in the left schematic window) and the description of
one of it’s functions in the right window. Each function is described by a separate text.

6.4.14 Control with state machines and microprograms

Finite State Machines can be used to control other basic building blocks. Controlling is
done by sending abstract commands to these blocks. A FSM can test values present in
other design elements. The results of these tests may influence the generation of control
signals and state transitions. The FSM basic building block can be used to describe the
following three basic control structures:

. 'Mealy' state machines: Both control signals and state transitions can be
conditional.
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. 'Moore’ state machines: The control signals generated in a state are always
the same. Only state transitions can be conditional.

. Microprograms: The control signals generated in a state are always the same.
Each state has a default 'next' state. Only a single conditional state transition
per state is allowed.

The FSM basic building block can model a subroutine stack. Interrupting a FSM is
possible when the stack is available.

)

“Check main instruction register

irg bufCirl | for multi-cycle instructions:"

ol dl)l’l'l)‘ﬁl"u)I ‘i‘E‘s:TtrCode
newDPTR e lccBus IR1REG
rMa [
o;‘go!'n:‘lu? #188168811 “MOVUC a,@a+dptr"”
CODE Setlo: #£18A818060:
CONTROLLER H > UaitCycle
#19808911 “MOVC a, @a+pc”

Figure 6.4.1.4-1:  Basic building block FSM example

Figure 6.4.1.4-1 shows an example of a basic building block Finite State Machine
symbol ("CONTROLLER' in the left window) and its description (right window). Each
state is defined with a separate text. This text starts with a symbolic state label
('NormalCycle' in the example). The text may contain symbolic commands which are
sent to other basic building blocks in the design. The example shows how the basic
building block named 'CODE' is sent the command 'SetTo:' with parameter
%100010000. State transitions are indicated with symbols (like '-> ') followed by state
labels. Conditional constructs start with the value which must be tested (the contents of
the 'IRIREG’ in this example), followed by a list of possible values and accompanying
actions.

6.4.1.5 Distributed control structures

Distributed control architectures use a data bus which carries encoded control values.
This bus is attached 'control connectors’ placed in all system elements which must be
controlled. Each of these control connectors generates local control signals based on the
bus value.
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JZ) (o) )R Control: SPALU (instrCode) (2] ]|

oldSP + 1.
_stackInc.
_stackinc

licessages will coms here

Figure 6.4.1.5-1:  Basic building block control connector example

Figure 6.4.1.5-1 shows an example of the use of a control connector. The bottom right

window shows one of the functions which can be performed by the operator 'SPALU’

in the schematic window. The top right window shows the description of the-
'instrCode' control connector which controls this operator. It shows the value (each 'x'

stands for a 'don't care’ bit) which must be present on the control bus to let the

operator perform the "Pushl’ function.

6.4.2 Converting algorithms to register transfers

An Algorithmic Level entity defines algorithms in a very hardware oriented form:

. The only data type is an integer with a fixed number of bits. Basic building
blocks use the same data type.

. Interface primitives are used for communication with the environment and other
Algorithmic Level entities. These interface primitives are basic building blocks.

. An Algorithmic Level entity is aware of the fact that it's environment is timed by
a clock signal. Interactions with entities placed in the environment are
synchronised by 'wait’ statements.

Two operaflons remain to be performed to convert an Algorithmic Level entity into
basic building blocks:

. Scheduling: The Algorithmic Level expressions have to be assigned clock
cycles during which they will be performed.
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i Assignment: The Algorithmic Level operations and local data stores must be
placed in basic building blocks. These must be interconnected to form a 'data

path'.

These operations are outlined in the next two sections.

6.4.2.1 Operation scheduling

Assigning operations to happen during specific clock cycles is a very complicated
optimisation problem. Assigning a large amount of operations to each clock cycle will
result in a fast system which uses a large amount of hardware. Finding a sensible
balance between speed and hardware cost is a difficult task. The approach taken here is
a two step process. First, the algorithm is speeded up as much as possible. Second, the
designer is allowed to reduce the hardware cost by removing parallelism. These steps
are outlined below.

Phase 1: Optimise for speed

The Algorithmic Level entity description is converted to a FSM-like form. All high-
level conditional and looping constructs are transformed in state transitions. Several
techniques are then applied to optimise this state machine ([bud92}]):

i Expression forwarding. Expressions which may be executed earlier are moved
forward to other states. This may remove temporary variables.

i Expression optimisation. This may reveal that some expressions evaluate to a
constant value. Conditions may become fixed as a result of this.

i State elimination. States without expressions are either removed or combined
with other states.

] Variable lifetime analysis. Storage locations which never contain active values at
the same time may be combined.

Basic building block interactions should be handled with care. Moving these around
might crash externally defined communication protocols.

Phase 2: Reduce hardware requirements
The speed-optimised FSM uses a large amount of hardware to perform many operations

in parallel. This is the fastest possible implementation of the original Algorithmic Level
entity. The designer is given two methods to reduce the hardware requirements:
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i Specify limits for the amount of operations which may be performed in parallel.
The designer cannot influence how the operations will be re-scheduled to make
use of the reduced hardware.

] Increase the number of clock cycles allowed to perform operations. How these
operations will be distributed across the extra clock cycles is not under control
of the designer.

Applying these methods interactively allows a des1gner to fine-tune the final schedule.
Manual intervention should be possible.

6.4.2.2 Data path synthesis

The operations must be performed by interconnected basic building blocks, the so-
called 'data path’. Defining this architecture is done in four steps:

1) Optimise the operations

2) Create storage entities

3 Build the actual data transfer paths

4) Handle Algorithmic Level co- and subroutine calls

These steps are outlined below. The operations performed in the FSM description are
replaced by control commands. This FSM can then be replaced by a basic building
block state machine.

Step 1: Operation optimisation

The basic operations described in the scheduled FSM description can be optimised to
share hardware:

. Bit width conversions may be used to make better use of operator hardware
which is needed anyway.

. Complex operations can be broken down into smaller parts. These may be used
separately or in other combinations during other clock cycles.

Step 2: Creating storage entities

The local Algorithmic Level storage facilities are converted into basic building blocks.
The maximum number of read and write operations in a single clock cycle is
determined. This value defines the number of necessary read and write ports. The
actual read and write operations are assigned to these ports.
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Step 3: Building data transfer paths

The assignments specified in the FSM description must be performed by connecting
buses between read and write ports. Operators are inserted in these tmnsfer paths to
perform the necessary operations found during step 1.

Step 4: Algorithmic Level co- and subroutine calls

Standard data paths are appended to handle the external co- and subroutine calls. This
hardware should handle priority related functions.

Operations which were 'atomic’ in the original Algorithmic Level description may now
be distributed over several clock cycles. Intermediate results are held in temporary

storage locations. Interrupting such a sequence may cause problems.

6.4.3 Re-using old designs

Basic building block designs need not always be created from scratch as done in the
previous sections. Hardware architectures ranging from very specific to general
purpose processors can be placed in libraries. Combinations of these architectures
expand the solution space even further. The processes of selection and modification are
outlined in the next two sections.

6.4.3.1 Selecting a design for re-use

Selecting a basic building block design from a library follows the same principle as
outlined in section 5.4.2, Each of the designs is given a 'profile’ which states it's
capabilities. A similar profile is deduced form the problem statement. An expert system
can be used to match profiles and select an initial set of architectures to choose from.

Some simple changes to a design may make it the best solution. This flexibility is very

hard to incorporate into a profile. Human intervention is needed to guide the expert
system and make the final selection.

6.4.3.2 Parametrization and modification

An existing basic building block design may be parametrized at the following points
(without changing the actual architecture):

. Width of system elements. Changing the number of bits in a word alters the
precision of calculations.
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. Number of words in storage entitics. Memory sizes may be 'cut-to-fit' to
a particular problem.

. Functions in an operator. Changing operator functions modifies the
operations performed in the data path.

. FSM states. Modifying the control sequences allows a data path to perform
totally different algorithms.

Modifications to an architecture can be made by simply adding and removing basic
building blocks. Complete hierarchies of basic building blocks can be combined or split
with only a few design actions.

6.5 Converting basic building blocks into
ASIC's

Basic building blocks are meant to be implemented in hardware. All storage structures
can be converted into parametrisable standard architectures. Gate-level equivalents exist
for each of the basic operators. These can all be described in standard Hardware
Description Languages like VHDL ([ice88]), ELLA ([pra86]) and SID ([sag90]). This
conversion can be performed fully automatically by a compiler ([sim98], [baa91],
[zan91]). Once converted, standard tools can be applied to generate several forms of
hardware implementations:

. Small and Medium Scale Integration circuits. This implementation
methodology uses of-the-shelf components. Logic circuit density ranges from 1
to 100 gates.

. Programmable logic. These are off-the-shelf components whose function can

be programmed. Each of these may contain up to several thousands of gate
‘equivalents’ (actually usable gates).

. Application Specific Integrated Circuits (ASIC's). These are specially
built circuits which may contain several hundreds of thousands of gates. Around
the year 2000, well over ten million gates can be integrated in a single package
([she91]).

The design methodology described in this Ph.D thésis targets very complex systems.
Most of these systems have to be implemented by using ASIC's for at least major

system parts.
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Appendix 2 shows some examples of ASIC's which have been designed with the basic
building blocks design and simulation tools. These have been fully automatically
converted into a silicon layout via SID.

Several optimisations are performed during the conversion of the basic building block
design into Hardware Description Languages. These are described in sections 6.5.1
through 6.5.3.

Testing complex ASIC's is complicated by the fact that only a few connections to the
outside world are available. Section 6.5.4 describes how low level testing facilities can
be incorporated within the design. ‘

6.5.1 Removing unused functionality

An obvious way to reduce the size of the generated circuit is to remove those parts
which are not going to be used. There are two kinds of functionality which can remain
unused in a basic building block design:

. Model introduced overhead. Basic building block models contain functionality
which may remain unused in a specific design.

. Designer introduced extraneous functionality. Designers may 'simply forget to
remove some parts of a design.

Parts of a design which do not interact with other design elements may' be removed as a
whole. Operator functions and state machine states which are never used may be
removed too. These situations can be detected by examining the static design
description.

6.5.2 Operator optimisation

Operators are used to describe the actual arithmetic and logic operations performed in a
basic building block architecture. The functionality of an operator is defined by the
functions it can perform. Each function is entered as a set of expressions. Each
expression defines an output connector value as a function of the input connector
values. Expressions use a set of basic operators to describe the actual arithmetic and
logic operations. Each of these basic operators can be directly implemented as a gate
level design.

An operator can be directly implemented by interconnecting the gate level equivalents
of the basic operators. Selection of the executed function can be performed by
multiplexers placed in front of the outputs. The result will be a large network of
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interconnected gates. Logic optimisation of this network is a very complex task when
thousands of gates are involved.

Optimisation at the expression level is needed before converting the basic operators into
gates. The following list gives some examples of what can be done at this level:

. Propagate and generate constants.

. Make use of normally unused functionality in the standard gate level
implementations (for instance the carry input of an adder).

. Find commen constructs in the different functions. Their hardware can be shared
' between functions by inserting extra multiplexers.

6.5.3 State machine optimisations

Basic building block state machines are described in a very abstract form. State
transitions are specified using symbolic state names. Controlling an entity is done by
sending symbolic commands. This allows several optimisations to be performed:

] State assignment. Actual state numbers have to be assigned to the abstract
state names.

. Control vector assignment. Different bit vectors must be assigned to the
abstract commands sent to a controlled entity.

. Constant encoding. Some commands carry constant parameters. These can
be generated directly or in an encoded form. In the latter case, a constant
decoder is needed at the controlled entity.

o Control vector combination. A single control vector suffices when several
entities always receive identical commands. Control vector space can be shared
between entities from which only one is active within a clock cycle. In this case,
a separate indication is needed to indicate for which entity this control vector is
meant.

6.5.4  Incorporating low level test facilities

Hardware is generally built without redundancy. Gates and interconnections which will
never be used are removed during optimisation. It is therefore of prime importance to
test all design elements. Only 'structural’ testing methods provide a systematic means
of reaching-all design elements.
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Structural testing methods work at the gate level only. They explicitly do not test
higher level functions.

Basic building blocks hide actual gate level implementations as much as possible to
achieve technology independence. This means that structural tests cannot be specified in
a basic building block design.

) Testing logic must be added during the translation of a basu: building block design into
Hardware Description Language:

A scan chain which connects all registers.
» Self test logic for complex storage structures.

With these standard additions, test vectors can be generated automatically by
specialised programs in the ASIC design environment.

6.6 Integrating the system

The final acts in the design path are the assembly of the system followed by system
integration tests. A system which passes these test can be delivered to the customer.

The system parts which form the final system should be pre-tested before integration.
This allows the system integration tests to concentrate on the interconnections between
the system parts. These interconnections were specified during high-level system
architecture design. Implemented modules must adhere to these interconnection
specifications.

System integration is a hierarchical process. System parts are built out of smaller parts.
Each of these can be tested separately. This directly follows the hierarchical system
decomposition as present at the end of the high-level system architecture phase.

6.7 Summary of the design path, final
remarks

The last three chapters described a design path which starts at a - pdssibly informal -
problem statement. The end result is an operational system which solves the problem
more or less economically. The design path consists out of three separate phases:

1) High-level system behaviour analysis
2) High-level system architecture synthesis
k)] Low-level module implementation
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These phases can be summarised as follows:
Phase 1: High-level system behaviour analysis

The original problem statement is analysed. An operational behaviour model of the
system is built. An Object Oriented Analysis method is followed which results in a set
of communicating Problem Domain Entities:

° Compile a list of entities which are found in the problem statement, the Problem
Domain Entities.

° Give the system a structure by defining 'forms part of relationships between
Problem Domain Entities.

° Build a superimposing structure by finding ‘is a kind of relationships between
Problem Domain Entities.

° Define communication channels by tracing 'communicates with’ relationships
between Problem Domain Entities.

° Determine the global operational ‘aspects’ of the system.

° Define the ‘message’ protocols to be used in the communication between
Problem Domain Entities.

° Define how messages are handled by Problem Domain Entities.

The system behaviour described this way serves as a reference for the other phases.
The behaviour has been simulated and is approved by the customer.

Phase 2: High-level system architecture synthesis

Architecture synthesis is performed by re-structuring the system behaviour description.
The Problem Domain Entities found during system analysis are mapped onto a set of
Abstract Processing Entities. The problem domain communication channels are mapped
onto Abstract Communication Channels.

Preliminary implementation choices are made during architecture synthesis. These are
based upon the required capabilities of the Abstract Processing Entities and Abstract
Communication Channels and a database containing 'profiles’ of actual processing units
and communication channels. Abstract Processing Entities and Abstract Communication
Channels may be split and combined to optimise the system.

High-level system architecture synthesis ends when the preliminary implementation
choices have been fixed. The result is called the 'Processing Model’ of the system. This
model defines how data is processed in the system. It also defines what kind of modules
will be used and how these are interconnected.
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Phase 3: Low-level module implementation

During this phase, the Abstract Processing Entities and Abstract Communication
Channels are implemented in the form chosen at the end of the previous phase.
Software implementations can be derived from the Abstract Processing Entity
behaviour descriptions. The route to hardware in the form of Application Specific
Integrated Circuits is as follows:

The Abstract Processing Entity is replaced by a Low-level Simulation Entity.
The message interface is converted into a hardware compatible interface using
Message Translation Entities and Hardware Interface Primitives.

The Abstract Processing Entity-internal interface shell and processing core are
translated into one or more Algorithmic Leve] entities.

The Algorithmic Level entities are translated into data paths and Finite State
Machine controllers. These are specified by parametrisable basic building
blocks.

The basic building blocks are converted into a suitable Hardware Description
Language. This system description can be converted into an ASIC using a set of
standard design tools.

The system modules are actually built and connected together. Following system
integration tests, the design trajectory is concluded with delivery of the complete
system to the customer.

Some final remarks:

The actual 'life’ of a system starts after delivery. Maintaining, upgrading and
extending an operational system can be as complex as designing it. These post-
delivery operations are covered by the operational aspect ‘system maintenance
and testing’

Testing plays an important role in the design trajectory. Periodic testing of the
system components is necessary to detect gradual degradation and initiate
preventive maintenance. Integrated testing facilities are convenient when the
system has been modified 'in the field'.

The Algorithmic Level entities and basic building blocks are not Object-
Oriented. They are not data abstractions and lack characteristics like inheritance
and polymorphism.
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7. Tools

The system design path described in chapters 4, 5 and 6 must be supported by
computer based tools. This chapter describes the tools which will be available in the
complete 'toolbox’. The emphasis will be on the actual design and simulation tools.
These provide the framework to which other analysis, manipulation and conversion
tools will be attached.

The next section provides an overview of the needed tools. Section 7.2 gives some
general ideas which apply to all of them. Section 7.3 outlines how complex projects
can be supported. :

7.1 Overview

All tools will be placed within a single design environment:
. Design and simulation tools.
. Analysis tools.

. A generalized monitoring tool. This can be used to generate log files, signal
specific events and set 'breakpoints’ during simulation,

. Expert systems. These guide the designer in taking the correct design steps.
They also do optimisations.

. Data bases. These contain re-usable design entities.

The next sections describe the tools which are needed for the different design
abstraction levels.

7.1.1 Behaviour Level design

The Behaviour Level toolbox is used during high-level system behaviour analysis to
model the Problem Domain Entities. The same tools are used to model the Abstract
Processing Entities during high-level system architecture synthesis.
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The basic Behaviour Level design and simulation tool is a graphical editing window
which allows the drawing of Entity Communication Diagrams.

. Symbols are placed on the 'working sheet' to denote basic simulation entities,
grouping entities, multiples and multiple groups.

. Connectors are depicted by small symbols located at the boundary of the entity
symbols.

. Communication channels are defined by drawing lines between connectors.
Grouping entities are edited by opening a new graphical editing window.

Any entity drawn in an Entity Communication Diagram immediately receives a default
behaviour and starts behaving as such. Definitions of message filters, message selectors
and behaviour objects are entered in separate edit windows. Other specifications are
changed with menus and ‘fill-in-the-blanks’ forms. Each behaviour change is
immediately reflected in the system simulation.

The major operations done during high-level system architecture synthesis are the
splitting and combining of entities and channels. These operations will be performed by
an ‘architecture editor’ tool under direction of the designer.

7.1.2 Algorithmic Level design

An Abstract Processing Entity which must be implemented in hardware is replaced by a
Low-Level Simulation Entity. Low-Level Simulation Entities are indicated on an Entity
Communication Diagram by a special symbol.

The contents of a Low-Level Simulation Entity are defined by the top-level 'schematic’
of a basic building block design. This schematic is edited in a separate window. The
Algorithmic Level entities, hardware interface primitives and interface entities are all
indicated by symbols on this schematic. Sub-schematics may be used to group together
several other entities.

Connectors and data buses are depicted in ways similar to Behaviour Level connectors
and communication channels. Textual descriptions of Algorithmic Level routines and
interface entities can be edited and compiled in separate windows. Drawing something
on a schematic or otherwise changing an entity's behaviour is immediately reflected in
the simulation,

Entities within a Low-Level Simulation Entity are timed by a clock signal. Each Low-
Level Simulation Entity clock runs at a fixed frequency defined by the designer.
Simulation of the Low-Level Simulation Entity contents is done clock-by-clock. The
system outside the Low-Level Simulation Entity is advanced in time with each clock
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tick. Simulating the Behaviour Level ‘system sends the correct amount of clock ticks to
each Low-Level Simulation Entity embedded in it.

7.1.3 Basic building block design

Basic building blocks are used to design actual data paths and controllers out of
Algorithmic Entity descriptions. These are all depicted with symbols on the schematics
which were already used during Algorithmic Level design. Textual descriptions of
operators, state machines and control connectors are edited and compiled in separate
windows. Memories, signals and subroutine stacks can be monitored and changed using
their own dedicated windows. Fully interactive simulation is retained at this level of
design. There is no need to stop or even reset simulation when changes are made in the
system.

States: CONTROL, #1

ﬁaw: an opar;tor. 15 functions |step

Figure 7.1.3-1:  Basic building block design in action

Figure 7.1.3-1 shows a snapshot of a basic building block design session. The bottom
window shows the schematic of a microprocessor core. The top right window shows
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the contents of the ROM. The top left window shows the first state of the 'CONTROL’
Finite State Machine.

7.1.4 Gate Level (and lower) design

The basic building blocks are directly translatable to real hardware structures. The last
tool in the system design toolbox translates basic building blocks in a standard
Hardware Description Language. The remaining conversions (HDL description to logic
gates, gates to transistors and transistors to layout) are performed with standard tools
. outside the interactive design environment. This allows the system design path to be
implementation technology independent.

7.2 Common tool behaviour

The tools used in the design path will be highly interactive. Simulating during entry
and modification of a design gives immediate feedback to the designer. This allows an
exploratory and stepwise design approach,

These capabilities are obtained by using a mixed graphics/textual description method:

i Graphical methods are used to define the overall system structure. An entity is
placed in the system by drawing it's symbol on an 'Entity Communication
Diagram’ or 'schematic’. Hierarchical layering of the design is possible by
using symbols which denote complete Entity Communication Diagrams and
schematics.

Connections between the entities are defined by drawing lines on the Entity
Communication Diagrams and schematics. These lines start and end at
connector symbols located at the edge of the entity symbols.

. Detailed descriptions of internal entity operations are given in a textual form.
Where possible, the internal operations are broken up into separate parts. This
allows an entity's behaviour to be defined, compiled and checked in small steps.

Entities placed on a schematic immediately take part in the simulation.’ New entities are
given a simple default behaviour which can be modified later on. Data transfer starts
immediately when a connection is drawn.
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Compiling a textual description instantly installs the described behaviour in the system,
These compilers thoroughly check for syntax errors. Unresolved references only
generate warnings. This is necessary because a textual description may reference an
entity which is not yet present in the system. Trying to use such a reference aborts
simulation with an error message. The design can be lest-complled to check for
unresolved references

Entities may be designed and tested in isolation. Integration into the system is done by
simple cut-and-paste operations. Similar operations are available to move entities
between the design and libraries.

The state of the simulated system can be checked by requesting the entities to display
their contents or operations. Continuous display of values or operations is done by
attaching probes and special inspection windows. A system-wide event monitoring tool
will be available. This allows three operations to be performed in case a specified event
occurs:

° Generate a user-defined message. These can be used to draw attention to very
obscure conditions. -

° Place an entry in 2 log file. The resulting file can be used to compare other
designs to the monitored design. The log file can also be formatted as a set of
test vectors and responses.

. Abort simulation with an error message. The associated event can be seen as a
breakpoint or termination condition for a long simulation run.

Interactive simulation is done by advancing the system step by step. The state of the
system is displayed after each step. Modifying the system state and/or structure is done
between steps. It is not necessary to re-run a complete simulation after making a
modification to the system.

Free running simulation is possible by specifying the number of steps or time to
simulate. Setting this value to infinity allows the simulation to run until a termination
condition or error is encountered.

7.2.1 Ergonomics and Ease-Of-Use

The systems which can be designed with this toolbox are very complex. Several
measures must be taken to keep the system manageable for a designer. The learning
curve for the description methods and toolbox use must be as low as possible. The
following sections sum up some of the measures taken to make this possible.
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7.2.1.1 Multi-windowing and 'viewers'

The system is described by a tree-like hierarchy of Entity Communication Diagrams
and schematics. The amount of information on the screen must be kept under control.
Edit windows need only be attached to those design elements which are of interest to
the designer. Other elements may have no window attached or have their window
'collapsed’ so that it takes up a minimum amount of screen space.

The schematic windows are used to define the system structure. They are also the basic
user interface for obtaining state information during simulation. The designer can
simply point the cursor at a schematic element and request status information. Status
information is displayed continuously by attaching small ‘viewer’ windows to the
schematic elements. Viewers form the simulated equivalent of a probe.

The few characters of information offered by a viewer are not enough to display the
contents of a complex Behaviour Level data structure or basic building block memory.
Special windows can be opened which allow the inspection of these information
sources. These windows act bidirectionally. Changes made during simulation are
reflected immediately in the window. Manual editing of the window contents alters the
stored information.

Those elements which have to be defined textually can be edited with a private edit
window. A built-in text editor allows the inspection and editing of these definitions.
Two methods are used to decrease the number of needed text windows:

. All texts belonging to a single basic entity must be edited in one: window.

. A ‘upiversal compiler’ window can be used to edit and compile all textual
descriptions which reside in the system.

7.2.1.2 System aspects

The system aspects as defined in section 4.4 are an integral part of the Behaviour Level
design tools. During editing and simulation, the designer may select a set of 'current’
aspects. The amount of visible design information is reduced by displaying only those
parts of the system which are needed for the selected aspect(s). Generating messages
which do not belong to one of the selected aspects aborts simulation.
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7.2.1.3 Menus and help

All tool operations are menu and 'fill-in-the-blanks' form driven. The menus are design
state sensitive. They display currently impossible selections in a different color on the
screen.

The toolbox will be fitted with an extensive context-sensitive help system. This system
provides help for anything which can be displayed on the screen. A hypertext-like text
linking system provides further information. The help system contains all syntax and
semantics rules of the languages used in the toolbox.

7.2.1.4 Language consistency

The toolbox uses several languages for the different description levels. Each of these
languages is targeted towards it's application. The needed constructs are provided in a
concise syntax. These syntaxes try to borrow as much as possible from eachother. This
has two advantages:

. Conversion between abstraction levels is simplified,
. Users of the system have less syntax to learn.

The main expression syntax is taken from Smalltalk. Expressions used in Algorithmic
Level entities and basic building blocks operate on the same data type and use the same
operators. Controlling and testing basic building blocks is done in a syntactically
consistent way. The commands generated by a state machine are also used by control
connectors, Algorithmic Level routines and message interface entities.

7.2.2 Documenting the designs

Working with the toolbox, a designer can obtain all information by looking at the
screen and clicking some mouse buttons. An example of this tool behaviour is given in
the bottom line of the left window in figure 7.2.2-1. Complete and up-to-date
documentation in a readable format is needed when the toolbox is not available.
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" Simulator: CONTRO [EIE[4] ‘Comment: PC.
FASYN TTEET

OL
AACAROML [i———f] GACA -

Fain program counter,
|incremented by 1, 2 or 3
each clock cycle depending
lon current instruction
length.

fActual PC operations are
[ ilpexrformed by PCALU.

% 530 B

PC: a register, value 42, 16 bits|step|

Figure 7.2.2-1: The 'comment editor’ window

All structural and most of the functional design information is present in the design
itself. A ‘comment editor’ window allows adding extra functional information. These
comments become an integral part of the design. They complete the functional design
information. The right window in figure 7.2.2-1 shows the comment attached to the
'PC' register shown in the schematic window on the left.

Documentation can be generated automatically from the information present in the
design environment. The documentation is a plain English text which follows the
design hierarchy as closely as possible. All textual definitions and comments are
included. This textual information can be enhanced by adding printouts of the Entity
Communication Diagrams and schematics. Figure 7.2.2-2 shows the documentation as
generated for the 'PC’ register shown in figure 7.2.2-1. Note the inclusion of the text
in the comment window under the heading 'Designer comments:'.

7.3 Working on large projects

Large projects cannot be done by a single designer. The design must be split into more
or less separate parts with a defined 'interface'. This must be done as éarly as possible
in the design path. Each of the parts is given to a designer for detailed design.
Intermediate results of this detailed design must be combined at crucial points in the.
design path. This allows checking their interoperability and adherence to the original
specifications.
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'MCS8052\MCS8052CORE\CONTROL\PC' is a register.

This register is 16 bits wide and is controlled by an unnamed control input.
The default function is ‘load'.
This register is loaded with value 65535 (FFFFh) following system reset.

The value loaded for the ‘reset' command is O.

Designer comments:

Main program counter,
incremented by 1, 2 or 3
each clock cycle depending
on current instruction
length.

Actual PC operations are
performed by PCALU.

-~

This register has the following connectors:

Control connector without a name:
Has a width of 11 bits and is connected to bus ’instrCode’.

Control specification:

"Hold PC when executing non-first
cycles (INTCALL is regarded a
single, first cycle):”

% xx Txxxx1XxXXX,
%axx1xxx1xx0x,
%xx1xxx1x1xx Hold

{nput connector without a name:
Has a width of 16 bits and is connected to bus 'newPC’.

Continuous output connector without a name:
Has a width of 16 bits and is connected to bus 'oldPC".

Figure 7.2.2-2: Example of automatically generated documentation
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The design path described in this Ph.D thesis provides the necessary framework to
work with groups of designers:

High-level system behaviour analysis

The first split is made when the message interface and global functionality have been
defined for the major Problem Domain Entities. The first task for the system analysts is
to generate a minimum working model for these Problem Domain Entities. The
working models are combined into a complete system to check if they work together.
The complete system is distributed as test environment for the detailed Problem
Domain Entity analysis. This is a recursive process which ends when the system
description contains enough detail and is approved by the customer.

High-level system architecture synthesis

High-level system architecture synthesis starts out like system behaviour analysis. The
system behaviour description is split into a very crude major system architecture. Each
of the architecture components is given to an architecture designer. Architecture design
is performed by moving functionality between design elements. The architects should
keep in touch so that they can offer and request processing facilities. Deciding on a
communication channel implementation should be done together by architects working
on Abstract Processing Entities which connect to this channel.

Low-level module architecture synthesis and implementation

Implementation starts when implementation strategy choices have been fixed for all
Abstract Processing Entities and communication channels. An Abstract Processing
Entity can be given to different kinds of designers:

Programmers are needed for the software parts of any implementation strategy.
ASIC designers are needed for the custom hardware parts.

Board-level hardware designers are needed to interconnect standard hardware
and ASIC's.

Each of the designers of a (sub) component is responsible for delivering it ‘operational
as specified’. This allows integration tests to focus upon overall system behaviour and
interfaces. ,

152  An Object-Oriented Modelling Technique for Complex (Real-Time) Systems



Tool support for group designs
The basic functions to support designing with a group have already been described:

° Entities can be filed out for distribution. This includes complete hierarchies of
design entities.

. Entities can be replaced by others.

. Documentation forms an integral part of a design. This eases the transfer of
design elements between designers.

The group design process can be streamlined by adding the following functions to the
design environment:

. Version management. This allows designers to track the changes made in the
design entities and restore an entity to it's former state.

. Automatic notification of major updates made by other designers. The actual
incorporation of these changes should remain under local control.

J An automated ‘marketplace’ for exchanging functions and deciding on
implementation choices.
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8. Conclusion

This Ph.D thesis is a snapshot of the status of a very complex project. Some historical
background is needed to judge the results up to this point. The next section provides
this background. Section 8.2 summarises the results which have been reached so far.
Section 8.3 outlines the work which still has to be done.

8.1 History of the project

The original goal of this Ph.D work was to build a multitasking operating system in an
ASIC. It was intended as follow-up of the work described in [ver87] and [vos87]. No
tools were available which were capable enough to allow analysing the problem
statement. A survey of tools revealed two different tool 'worlds': :

. The world of high-level sofiware design tools.
] The world of low-level hardware design tools.

Tools which spanned the complete system design path were not found. The focus of the
Ph.D work shifted towards the definition of a complete system design path. Tools
should be provided to support this design path.

A several year's old interest in Object-Oriented techniques provided the first ideas. A
system built with these techniques solves problems by simulating some kind of
'reality’. The objects themselves mimic the behaviour of 'things' which are found in
the problem specification.

Directly simulating the problem specification is not enough for hardware systems.
These need a rigid architecture in which the operations are spatially and timely
separated. An architecture designer needs to build a system containing communicating
processes. Again, objects can be used to simulate these.

The original goal of the Ph.D work was the generation of an Application Specific
Integrated Circuit. This also became the major goal of the design path. Designing at
gate level was thought to be too cumbersome. Silicon compilers were capable of
handling higher level elements like registers, memories, ALU's and state machines.
These became the lowest level building blocks of the design path.

Architecture design can be seen as a transformational process in which system functions
are continuously relocated and refined. A high-level abstract object model was needed
to do problem analysis and the first steps of architecture design. This model evolved in
the basic model described in chapters 2 and 3.
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The gap between abstract objects and basic building blocks was too large. It resembled
the gap between the two tool-'worlds' described above. The Algorithm Level was
introduced to bridge this gap with an extra translation and optimisation step.

The highly interactive Smalltalk environment ([gol84]) provided the ideas which shaped
the tools. A first version of the basic building blocks design and simulation tool was
built within a few months. Tool construction started at that level because the models
needed there were very well understood. At that time, the behaviour level model was
not refined enough to build a tool around it.

The work diverted into several directions at the same time:

. The tool prototype went through several revisions. New features were added
which could also be used for other description levels.

. An Algorithmic Level language was defined. A prototype tool for it was built
((hul90]).

. The behaviour level model was refined. Prototype tool construction has been
started.

8.2 Results

Nearly five years of Ph.D work were not enough to reach all project goals. Thls section
describes what has been completed (as of March 22, 1992).

. A complete design path for complex data processing systems has been specified.

. The system description models needed along the design path have been
specified.

. A basic building block level design and simulation tool has been built and
extensively tested ([ver90al, [ver90c]). A prototype Algorithmic Level tool has
been built ([hul88]). A 'mock-up’ version of the Behaviour Level design tool is
operzational.

. A number of designs have been completed with the basic building block tool
(see appendix 2). The Object-Oriented Analysis method described in chapter 4
has been applied to one complex system ([hu91] and appendix 1).

. A prototype automatic conversion tool to convert our basic building block
designs into the Hardware Description Language ELLA ([pra86]) has been
completed and tested ([baa®1]). A more capable converter for the SID language
([sag90]) is available ([zan91]). Several ASIC layouts have been generated with
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8.3

this converter (see appendix 2). Preliminary work for a VHDL ([iee88])
conversion tool has been done ([sim90]).

Future work

As stated in the previous section, work is not complete. There are several things which
still have to be done:

The basic building block design and simulation tool must be completed.

The Algorithmic Level entity must be completed and incorporated into the basic
building blocks tool.

The Behaviour Level 'mock-up' tool must be converted into a true prototype.

The high-level system architecture synthesis operations must be defined and
tools must be generated to support them. '

Library management for designs at different levels must be introduced in the
toolbox. The design process can be supported by knowledge bases and expert
systems like the ones described in [rov90].

The basic building blocks to Hardware Description Language conversion tools
must be completed. The subset of the basic building blocks they currently
support should be extended to cover most designs.
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Al. Analysis example: X-25 protocol

The high-level systern behaviour analysis method outlined in chapter 4 has been applied
to a few systems.

Applications

recerve: data channel: alcn
discChannel: alcn

send: data channel: alcn
discChannel: alcn

manager ,
NetworkManager et LogicalChannels
IMan {Links link

T receive: packet link: aLln

clearindication: aLin
interrupt: alln

send: packet link: aLln
clearRequest: alin
intConfirm: aLln

LmkManager Loglcaleks

pLink
A receive: frame link; aPln
¥ send: frame link: aPln
ILink

ctrl PhysicalLinks
medium

H transfer: frame

Figure Al-1: X-25 protocol analysis example

Y.C. Hu ([hu91]) gives a first-level decomposition of the ISDN X-25 protocol. The
basic entities which are stated in the problem domain are directly mapped onto Problem
Domain Entities (depicted in figure Al-1):

o Applications model the ‘users' of the network. An application can request a
logical channel for communication with another application somewhere on the
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network. Once this channel is established, data can be sent and‘ received across
it. A channel can be disconnected when it will not be used anymore.

. Logical channels form the endpoints of communication for the network of
communication links. A logical channel may route the data traffic generated and
received by a single application across several parallel links. The channel must
keep the order of the packets sent and received across different links intact.

° Logical links provide error recovery and frame contents formatting
procedures. '

. Physical links place frames which must be sent on the communication
medium and check received frames for errors. Frames received with errors in
them are simply discarded.

. Network and link managers are used to conirol the set of channels and links
respectively. These have common behaviour which they inherit from a common
superclass called *Manager'.

Packets and frames are modelled as travelling Problem Domain Entities. The services
described in the standard are mapped onto messages. Figure Al-1 indicates some of
these messages. Sending is done with the send:... messages which go in the direction of
the 'PhysicalLinks' multiple. Receiving is done with the recesve:... messages which
move in the direction of the ‘Applications’ multiple. The figure shows most of the
messages related to the 'data transfer' and 'disconnect channel' aspecis of system

operation.

The variables stored within the behaviour objects of the different entities can be directly
derived from the state variables used in the protocol description (for instance the
receive and transmit window counters in the logical links). Coding the actual protocol
behaviour in Smalltalk-like methods is a relatively straightforward task. The example
below is taken from the 'LogicalChannels' dynamic multiple: ‘

send: data channel: aLcn

"Handle the data which is sent by an application. The message filter has
made sure that the logical channel number (lcn) matches alen.”™

link "Create and send packet to logical link”
send: (Packet for: lcn sendSeq: pS recvSeq: pR data: data)
link: linkNr.

pS:=pS + 1 "Increment send sequence number”
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A2. Some Low-Level Designs

The basic building block level design tool 'IDaSS for ULSI' (Interactive Design and
Simulation System for Ultra Large Scale Integration, [ver®0c]) was originally
conceived to test the ideas behind interactive designing. The original goal was to build
a prototype tool and evaluate this with a few designs.

The IDaSS for ULSI tool generated a lot of interest. Work started March 1988. By
August 1990, a paper was published ([ver90a]) and a conference tutorial was given
{[ver90b]). The tool is being evaluated by several companies (Philips P-ASIC, IBM
Zurich and others). It has been used for numerous designs by students within our
group. Short descriptions of some of these designs will be given below. The figure at
the end of each header estimates the amount of working days needed to complete the
design. Note that these students never worked with IDaSS before. Most of them had no
prior experience with digital system design.

Instruction cache for a RISC processor [hu89] (100 days)

The first complex design done with IDaSS for ULSI was a high performance
instruction cache based upon work presented in [bor90]. This is a very complex
two-way set-associative cache, capable of delivering two words per clock cycle
to the attached processor core.

Intel 8048 microcomputer core [mae90] (25 days)

Figure A2-1: Schematic of an 8048 compatible microprocessor core

Appendix 2: Some Low-Level Designs 159



This is a re-design of the Intel 8048 microcomputer core. The design contains
an 8-bit processing core with 64 bytes RAM and 1024 bytes program memory.
It closely follows the original single bus architecture as defined by Intel.
Instruction execution takes one to five clock cycles. The complexity of this
design is very modest, a single schematic containing 14 basic building blocks
(shown in figure A2-1). The main elements of the 8048 processor are
immediately visible in this design, like the program counter ('PC’'), ROM,
RAM, accumulator (' ACCU") and program status word ('PSW’).

This design has been converted into an ASIC layout using the ASA silicon
compiler ([zan91], [sag90]). The result took 21 mm? and ran at 15 Mhz clock
frequency. The result of this conversion is shown in figure A2-2. Memories are
implemented by parametrisable macrocell generators (ROM at the bottom and
RAM at the far right side). Standard cell technology is used to implement the
other design elements (like the CONTROL state machine above the ROM and
the ALU between ROM and RAM). This layout was generated without any
designer intervention.

Figure A2-2; Layout of the 8048 compatible microprocessor core
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Pipelined Intel 8052 microcomputer [lec90] [bek91] (100 days)

This design is based on the pipelined version of the Intel 8052 microcomputer’s
processing core designed by W. Lecluse. The architecture differs radically from
the original Intel design and manages to execute most instructions in a single
clock cycle. R. den Bekker added the input and output components which are
standard on the 8052 microcomputer. Work on an instruction cache is almost

finished.
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Figure A2-3: Processor core symbol of 8052 microcomputer

This is a complex design with several levels of nested schematics and more than
eighty basic building blocks. Figure A2-3 shows the symbol of the actual
processing core of this microcontroller. This core communicates with external
interface registers using the 'bufCtrl', 'bBus' and 'cBus' connectors. 'bufCtrl'
addresses the interface registers and specifies the operation to be performed.
'bBus’ is used to read the addressed interface register, while 'cBus' can be used
to write modified contents back into the same register (in the same clock cycle).

testbit
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Figure A2-4: Processor core architecture of 8052 microcomputer

Control is completely distributed by control buses and control connectors. The
'instrCode' bus present in figure A2-4 forms the main control mechanism. The
'CONTROL' schematic contains all elements of the design which are needed to
generate the actual control signals on this bus, Three data buses ("aBus’, 'bBus'
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and 'cBus') are used to transfer data between the system parts in each clock
cycle. 'aBus' is generated by 'CONTROL' and carries immediate data
constants.

ins tnCode |
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bBus
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Figure A2-5: "ALU" schematic of 8052 microcomputer core

Figure A2-5 shows the contents of the 'ALU’ schematic in figure A2-4. This
schematic contains the actual Arithmetic Logic Unit (the 'ALU’' operator),
which performs 51 different functions (all byte and bit manipulations). Selecting
between these operations is done by the 'instrCode' control connector. The
Program Status Word ('PSW'), accumulator (‘'A') and 'B' registers are also
located on this schematic. Reading and writing these registers as interface
registers is controlled by the 'DIRCTRL' operator (in turn controlled by the
"bufCtrl' control connector). 'AUX' is a temporary data storage register used
during multi-cycle instructions (like multiply and divide). "BANKSEL' is a very
simple operator which extracts two 'bank select’ bits from the program status
word for use by the 'RAM' schematic in figure A2-4.

Floating point core [bal91] [hot91] [kor91] (75 days)

This design represents an IEEE standard compatible floating point core.
Multiplication, addition and subtraction are implemented fully combinatorial.
Eighty bit precision division takes up to seven clock cycles using the "Newton-
Raphson’ algorithm. Sine and cosine are calculated in approximately 200 clock
cycles using the 'cordic’ algorithm. The architecture of the design is not very
optimised because the emphasis of this project was on algorithms and precision.

Based on this design, a floating point adder and multiplier have been described
in a single basic building block operator.
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A 'Grammar Processor' [jac91] [lun91] (50 days)

The Ph,.D work of R.J.H. Bloks is centered around a so-called 'Grammar
Processor’. This is a processor which is intended for the execution of
communication protocols. The protocols are described in the form of an
extended grammar. V

The hardware for the processor contains several cooperating processors. A
central processor ([jac91]) stores and executes the grammar 'rule base'. Tests
needed to decide which grammar rule to execute are evaluated by one or more
aitribute evaluation processors ([lun91]). The latter design uses a five-stage
pipeline which is invisible to the grammar compiler.

A complete protocol engine requires a grammar processor, packet storage
memory and a low-level hardware interface. The Token Ring ([ieeBS])
controller core described in [lee90] can be used as basis for such a low level
engine.

Neural network [verz91] (25 days)

The first test in designing massively parallel architectures was a simple digital
neural network. The basic neuron is shown in figure A2-6. A network of these
neurons {as shown in figure A2-7) can be taught to discern between several
patterns of zeroes and ones.

E—h CTRL CONTROL

Figure A2-6: A single neuron implemented in basic building blocks

Paiterns which must be recognised are presented in parallel via the 'Ix' inputs.
During recognition, each neuron calculates it's own excitation value in the
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'STATE' register. Excitation values of other neurons :are transferred
sequentially via the 'Iy' and 'Oy’ inputs and outputs (these are buffered in the
'D' registers). The "WGT' RAM contains the weights of the connections to each
of the other neurons, and is addressed sequentially via the 'ADR' counter
register while excitation values pass through the neuron. The 'WGT' RAM is
updated automatically during the learning of the patterns which must be
recognised. The resulting patterns are output in parallel via the 'Ox' outputs,
The operation of the neurons is controlled by placing values in the 'CTRL'
register of each neuron. This value is decoded by the 'CONTROL' state
machine.

3
LoH]

Figure A2-7: A simple neural network

PCM switching network [1aa91] (100 days)

Two different architectures for a digital PCM switching network were designed
and evaluated in approximately six months. Four of these networks in parallel
form the switching network of a non-blocking fault-tolerant telephone exchange
which supports 40.000 subscribers. One of the architectures has been converted
into an ASIC layout with ASA (scaled down to 10.000 subscribers). The result
was a chip measuring 51 mm? (figure A2-9). This chip contains six identical
512 words by 4 bits RAM's, a 512 words by 36 bits RAM ‘and control logic
implemented in standard cells, Four of the smaller memories contain the data
for the 'Time' switches (located in the 'T_SWITCH' on figure A2-8). The
remaining small memories control the two 'Space’ switches ('S_SWITCHI1' and
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'S_SWITCH2' on figure A2-8). The large memory controls the 'Time'
switches,

out@

outl

seld

Figure A2-8: PCM switching network Space-Time-Space switches core

Figure A2-9; PCM switching network ASIC layout
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A3. Terminology

The major terms used in this Ph.D thesis are listed in alphabetical order in this
appendix. The number between braces is the page number where the term is described
in the text.

A
Abstract Communication Channel: an abstract model of a communication channel
which will be present in the final system (89)

Abstract Processing Entity: an abstract model of a processing entity which will be
present in the final system (89)

Algorithmic Level entity: a design entity which describes a piece of hardware in an
algorithmic (Pascal-like) language (123)

Architecture editor: a tool which can combine and split processing entities and
communication channels (90)

B
Basic building block: a low level design entity which can be handled by a silicon
compiler (130)

Basic model entity: one of the entities which can be used in the basic model. This
includes basic model objects, groups, (dynamic) multiples, (dynamic) mulitiple
groups and Low-Level Simulation Entities.

Basic model object: an abstract entity which describes data storage, data operations and
communication within the basic model {17)

Behaviour object: an object capable of data storage and operations, stored in a
behaviour slot within the processing core of a basic model object (46)

Behaviour slot: an element of the processing core within a basic model object which
can hold a single behaviour object (44)

C
Communication channel: the means to transfer messages between basic model objects,
can perform simple routing functions (23)

Continuous dafa: an alternative means of communication between basic model objects,
has it's own channels and connectors (61)
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Control connector: a special connector placed within a basic building block, which
allows controlling this block with a value present on a data bus (132)

D

Dynamic multiple: a group of basic model objects with an identical description but
different state, where the amount of objects varies during the operation of the
system (57)

Dynamic multiple group: a group of identical Entity Communication Diagrams, where
diagrams can be added and removed during the operation of the system (59)

Dynamic multiple inheritance: the way in which a basic model object inherits behaviour
from the behaviour objects stored in it's processing core (22)

E

Entity Communication Diagram: a diagram which graphically describes a system with
symbols for all basic model entities, communication channels and continuous
data channels (55)

G

Group: an object in the basic model which can be used to group other basic model
entities together on an Entity Communication Diagram (54)

|

Input buffer: a storage place for messages which have been received but cannot be
handled yet by the processing core of a basic model object (34)

Input filter: an entity in the interface shell of a basic model object which decides what
to do with the messages which are present on the communication channel it is
connected to (31)

Interface shell: that part of a basic model object which contains the input filters, input
buffers, message selector/manipulator, virtual connector translation table and
output buflers (30)

Interface Entity: an entity which forms the interface between the abstract basic model
communication methods (messages and continuous data) and the hardware
oriented interfice primitives within a Low-Level Simulation Entity (117)

Interface Primitive: a basic building block which is used to describe the interface
hardware between a Low-Level Simulation Entity and other basic model entities
(118)
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L

Low-Level Simuiation Entity: an entity which replaces a basic model object which has
to be converted into hardware (116)

M

Management connector: a special connector on a dynamrc multiple or dynamic mulitiple
group which is used to control the creation and removal of entities in the
multiple (58)

Message: the main means of communication between basic model objects, sent across
communication channels. Contains a message selector and an optional set of
parameters (25)

Message selector: the fixed part of a message which may be used to differentiate
between different messages (25)

Message selector/manipulator; an element of the interface shell within a basic model
obyject which selects the messages to be handled by the processing core (36)

Method: a textual description of the handling of a message within a behaviour object
(46) ‘

Multiple: a group of basic model objects with an identical description but different
state, where the amount of objects is fixed during the operation of the system

(36)

Muitiple group: a group of identical Entity Communication Diagrams, where the
amount of diagrams is fixed during the operation of the system(59)

0
Operator: a basic building block which describes combinatorial operations as a set of
designer-defined functions (131)

Output buffer: an element of the interface shell within a basic model object which can
be used to store messages which cannot yet be transferred by a communication -
channel (42) :

|

Problem domajn: the system to be designed and the environment with which the system
* communicates (66)

Problem Domain Entity: any entity which forms part of the problem domain for any
'reasonable’ amount of time (66)
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Processing core: that part of a basic‘ model object which contains the behaviour slots
and behaviour entities and defines the actual behaviour (44)

Processing entity: the generic name for an Abstract Processing Entity which has been
assigned an implementation strategy during high-level system architecture
synthesis (91)

Processing Model: the system model which describes the actual operations as they will
be performed in the final system (89)

Profile, communication channel: an abstract description of the capabilities or
requirements of a comununication channel (102)

Profile, processing entity: an abstract description of the processing, data storage and
interface capabilities or requirements of a processing entity (103)

S

Schematic: a diagram which graphically describes a Low-Level Simulation Entity’s
contents with interfice entities, interface primitives, Algorithmic Level entities
and basic building blocks (116)

Signal: a single bit semaphore-like interfice primitive which is used for synchronisation
purposes within a Low-Level Simulation Entity (120)

Super connector: a graphical element used to denote that a comwnunication channel,
continuous data channel or data bus is continued across an Entity
Communication Diagram or schematic boundary (55)

T
Tag: an object which is used to address specific entities within a (dynamic) multiple or
(dynamic) multiple group (70)

Three-state: the condition in which no values are placed on a continuous data channel
(61) or data bus (130)

Travelling object: object which does not have a fixed location within a system, moves
between basic model objects as message parameter (62)

Vv

Virtual connector translation table: a table which translates virtual names used by
behaviour object methods into real connector or behaviour slot names (40)
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Summary

The increasing complexity of the societies' data processing systems makes it very
difficult to design them within the given time and cost constraints.

The Object-Oriented design paradigm is gaining acceptance in the software world. Data
processing is performed by a set of 'objects’ which communicate by exchanging
messages. Each of these objects behave like elements in an (abstract) ‘real world'.
Designing such a system can be done very quickly by re-using and modifying already
existing behaviour.

This Ph.D thesis describes how Object-Oriented design methods can be applied to
systems which contain a mix of software and hardware modules. An improved object
model is introduced which allows designing systems which contain a high degree of
concurrency. The model can be simulated on a computer in an interactive design
environment. Timing can be specified and simulated to check system performance. The
complete system design path 1s split in three phases:

1) High-level system behaviour analysis. An extended Object-Oriented Analysis
method is used to obtain an operational system defined in terms of 'Problem
Domain Entities’. This is an architecture-independent description of the system
which serves to fix and complete the system specifications.

2) High-level system architecture synthesis. A system architecture is synthesized by
gradually transforming the Problem Domain Entities into 'Abstract Processing
Entities'. Implementation choices are made for these processing entities and the
communication channels which connect them.

3) Low-level module architecture synthesis and implementation. The Abstract
Processing Entities are implemented in 2 mix of hardware and software. The
path towards Application Specific Integrated Circuits is formed by several lower
level description tools which co-reside in the design environment.

This Ph.D thesis gives characteristics common to the tools used for this design path.
These tools are highly interactive and combine design and simulation. Simulation will
not be interrupted while the designer modifies the system structure or entity behaviour.
Shortening the design-simulate-debug cycle gives a designer immediate feedback on
design actions.

Several design and simulation tools have been implemented. Using these, some ASIC's
have been designed (including some processors and the switching network for a
telephone exchange which supports 40.000 subscribers).
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Samenvatting

De toenemende complexiteit van de data verwerkende systemen gebruikt door de
samenleving maakt het zeer moeilijk om deze tegen acceptabele kosten te ontwerpen
binnen de gegeven tijd.

De Object-Georienteerde werkwijze wordt in toenemende mate geaccepteerd binnen de
'software’ wereld. Hierbij wordt data verwerkt door een verzameling 'objecten’ die met
elkaar communiceren door het uitwisselen van berichten. Ieder van die objecten bootst
het gedrag na van een element uit een (abstracte) realiteit. Zo'n systeem kan zeer snel
ontworpen worden door het hergebruiken en veranderen van reeds bestaand gedrag.

Dit proefschrift beschrijft hoe de Object-Georienteerde ontwerp methoden gebruikt
kunnen worden voor systemen die een mengeling van 'hardware’ en 'software’
bevatten. Een verbeterd object model wordt geintroduceerd dat een hoge graad van
parallellisme toelaat. Dit model kan op een computer worden gesimuleerd in een
interactieve ontwerpomgeving. Tijdsvertragingen kunnen worden gespecificeerd en
gesimuleerd om systeem prestaties te kunnen controleren. Het totale systeem ontwerp
pad is opgesplitst in drie fasen:

1) Hoog-niveau systeemgedrag analyse. Een uitgebreidde Object-Georienteerde
analyse methode wordt gebruikt om een operationeel systeem te definieren in
termen van ‘Probleem Domein Entiteiten'. Dit is een architectuur-
onafhankelijke beschrijving van het te ontwerpen systeem die gebruiki wordt om
de systeem specificaties vast te leggen en te completeren.

2) Hoog-niveau systemarchitectuur synthese. Een systeemarchitectuur wordt
gesynthetiseerd door Probleem Domein Entiteiten geleidelijk te transformeren in
' Abstracte Dataverwerkings Entiteiten’. Voor deze entiteiten en de verbindende
communicatie kanalen worden implementatie keuzes gemaakt.

3 Laag-niveau module architectuur synthese en implementatie. De Abstracte
Dataverwerkings Entiteiten worden geimplementeerd in in een mengeling van
hardware en software. Het pad naar Applicatie Specificke Geintegreerde
Circuits wordt gevormd door verscheidene laag-niveau ontwerp hulpmiddelen
die in de ontwerp omgeving aanwezig zijn.

Dit proefschrift geeft de gemeenschappelijke karakteristicken voor de bij dit
ontwerppad gebruikte ontwerphulpmiddelen. Deze zijn sterk interactief en combineren
ontwerpen en simuleren. Simulatie wordt niet onderbroken als de ontwerper de systeem
structuur of entiteit gedrag verandert. Het korter maken van de ontwerpen-simuleren-
foutzoeken cyclus geeft de ontwerper een directe terugkoppeling over de genomen
ontwerpacties.

Verschillende van deze tools zijn geimplementeerd. Hiermee zijn enige ASIC's
ontworpen (waaronder enkele processoren en het schakelnetwerk van een
telefooncentrale voor 40,000 abonnees).
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Theses/Stellingen:

D

2)

3)

4)

The best way to catch specification errors is by simulating the formally specified
system. (this Ph.D thesis)

De beste manier om fouten in de specificatie te vinden is door het formeel
gespecificeerde systeem te simuleren. (dit proefschrift)

The number of correctly designed-in entities per time unit is almost independent
of the entity complexity. ([koo92], page 224)

Het aantal correct in het ontwerp gebruikte elementen per tijdseenheid is vrijwel
onafhankelijk van de complexiteit van die elementen. ([ko092], pagina 224)

The problem with VHDL as behaviour description language is stated in the first
line of the VHDL language reference manual: 'The design entity is the primary
hardware abstraction in VHDL' (underline by author). (this Ph.D thesis)

Het probleem van VHDL als gedragsbeschrijvingstaal is aangegeven in de eerste
regel van de VHDL taal referentie handleiding: ‘De ontwerp eenheid is de
primaire hardware abstractie in VHDL' (onderlijning door auteur). (dit
proefschrift)

Modelling methods, that are used to define system architectures, should make a
sharp distinction between system state and system structure.

Modelleringsmethoden die gebruikt worden om systeemarchitecturen te
definieren moeten een duidelijk onderscheid maken tussen systcemtoestand en
systeemstructuur.

Innovative research can be seriously hampered by policy makers who do not see
the tightly coupled multi-disciplinary nature of system design.

Innovatief onderzoek kan ernstig gehinderd worden door beleidsmakers die niet
inzien dat het ontwerpen van systemen een sterk gekoppelde multi-disciplinaire
aangelegenheid is.

System optimisation and making preliminary implementation choices form the
core of architecture design. (this Ph.D thesis)

Systeem optimalisatie en het maken van voorlopige implementatie keuzes
vormen de kern van het ontwerpen van architecturen. (dit proefschrift)
Describing the purpose of a language in a few lines is far more important than
giving pages full of syntax definitions.

Het beschrijven van het doel van een taal in een paar regels is veel belangrijker
dan het geven van pagina's vol met syntax definities.



8)

9)

10)

11)

12)

Interactive design and simulation tools reduce system design time by shortening
the design-simulate-debug cycle.

Interaktieve ontwerp en simulatie gereedschappen brengen de systeem ontwerp
tijd terug door het verkorten van de ontwerpen-simuleren-verbeteren cyclus.

Fully automated high-level architecture synthesis will never realize the results
which can be achieved by a skilled and creative designer.

Volledig geautomatiseerde hoog-niveau architectuur synthese zal nooit de
resultaten realiseren die kunnen worden bereikt door een getrainde en kreatieve
ontwerper.

Viewing design processes as modifiable architectures of interconnected tool
operations allows the design process itself to be optimised just like the designs
made with it.

Het beschouwen van ontwerpprocessen als modificeerbare architecturen van
gekoppelde ontwerpgereedschap-operaties laat het toe het ontwerpproces te
optimaliseren op dezelfde manier als de ontwerpen die ermee gemaakt worden.

Common-sense organizational principles like reusability and interchangeability
are still the exception rather than the rule (in software design). ([cox90]) The
basic model provides system design with these principles.

'Gezond verstand' organisatorische principes zoals herbruikbaarheid en
uitwisselbaarheid vormen nog steeds de uitzondering op de regel (bij het
ontwerpen van software). ([cox90]) Het 'basic model' maakt het mogelijk deze
principes the gebruiken bij het ontwerpen van systemen.,

Fuzzy logic is more than just a buzzzzzword.

Stellingen behorende bij het proefschrift van A.C. Verschueren 'An Object-Oriented
Modelling Techmque for Analysis and Design of Complex (Real-Tlme) Systems'.
Eindhoven, 19 mei 1992, %
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