
To appear in Proceedings of the REX Workshop on Semantics - Foundations
and Applications, Beekbergen, The Netherlands, June 1992, which are to be
published as a volume of Lecture Notes in Computer Science, Springer-Verlag,
1993. Citations should refer only to the Proceedings, not to this preprint.



ON THE ACTION SEMANTICS OF CONCURRENT
PROGRAMMING LANGUAGES

Peter D. Mosses

Computer Science Department, Aarhus University
Ny Munkegade Bldg. 540, DK-8000 Aarhus C, Denmark

ABSTIXACT Action semantics is a fhmeworkframework  for semantic description 
ming languages. In this framework, actions are semantic entities, used to represent the potential
behaviour of programs -also the contributions that parts of programs make to such behaviour.
The notation for expressing actions, called action notation, is combinator-based. It is used in much
the same way that lambda-notation is used in denotational semantics. However, the essence of
action notation is operational, rather than mathematical, and its meaning is formally defined by a
structural operational semantics together with a bisimulation equivalence.

This paper briefly motivates action semantics, and explains the basic concepts. It then
illustrates the use of the framework by giving an action semantic description of a small exam-
ple language. This language includes a simple form of concurrency: tasks that may synchronize
by means of rendezvous. The paper also discusses the operational semantics of action notation,
focusing on the primitive actions that represent asynchronous message transmission and process
initiation.
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Action semantics is a recently-developed framework for formal semantics [12, 14]  
It combines formality with many good pragmatic features. Regarding comprehen-
sibility and accessibility, for instance, action semantic descriptions d~criptio~  compete with
informal language descriptions. Action semantic descriptions scale up smoothly
from small example languages to full-blown practical languages. The addition
of new constructs to a described language does not require reformulation of the
already-given description. An action semantic description of one language can
make widespread reuse of that of another, related language. All these prag-
matic features are highly desirable. Action semantics is, however, so far fa the 0~~
semantic framework that enjoys them! See [12]  for a comprehensive exposition
of action semantics, with demonstration of its claimed pragmatic qualities.

Action semantics is compositional,  like denotational semantics [10].   The
main difference between action semantics and denotational semantics concerns
the universe of semantic entities: action semantics uses entities called actions,
rather than the higher-order functions used with denotational semantics. Actions
are inherently more operational than functions: when performed, actions process
information g7xzduaZZg.

Primitive actions, and the various ways of combining actions, correspond
to fundamental concepts of information processing. Action semantics provides a
particular notation for expressing actions. The symbols of action notation are
suggestive words, rather than cryptic signs, which makes it possible to get a
broad impression of an action semantic description from a superficialsuperncial reading,
even without previous experience of action semantics. The action combinutorq
a notable feature of action notation, obey desirable algebraic laws that can be
used for (simple) reasoning about semantic equivalence. We shall consider the
basic concepts of action performance in Section 

The main aim of this paper is to illustrate the action semantics of concur-
rent prograprogramming  languages.   In 2 we shall describe a simple example
language having task declarations. Tasks may synchronize by means of ren-
dezvous, arranged by matching entry call and accept statements. The action
semantic description of this language shows how the standard primitive actions
for usynchronous message transmission can be used to explicate synchronization
The intended interpretation of all the action notation used in the description will
be explained (albeit briefly) when we firstfist meet it.

The formal definition of action notation [12, Appendices B and C]  con-
sists of a structural operational semantics  [13, 5, 1] ,  ],  together with a bisimulation
equivalence. In Section 3 we shall consider the configurations that arise in this
operational semantics, paying particular particulax attention to aspects supporting mes-mes-
sage passing and concurrent action performance. We shall also discuss how the
asynchrony of message transmission and action performance is related to the
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straightforward distributed implementation of concurrent processing.
It is worth pointing out that the structural operational semantics of action

notation induces an operational semantics for all languages described using action
semantics. However, the induced semantics is not really structural in the usual
sense, since configurationsconngurations involve action terms rather than program syntax.
Note that a structural operational semantics for a programming language usually
involves repetitious patterns of rules for transitions, for instance determining deterring a
sequential order of execution of the components of various phrases; an action
semantics for the language uses a single combinator to express the fundamental
concept of sequencing, and the structural operational semantics of the combi-
nator specifies the corresponding pattern of transitions, once and for all. Thus
action semantics can be regarded as a technique for factorization of a conventional
structural operational semantics.

Why isn’t action notation defined denotationally? That would have the
advantage of inducing denotational models for all languages with action seman-
tic descriptions, as well as making domain theory available for reasoning about
actions. The difficulty is that action notation involves concepts, such as concur-
rency and unbounded nondeterminism, whose available denotational models are
not only very intricate but also not fully abstract with respect to the intended
operational semantics of actions. Such a denotational ‘model’ would not satisfy
all the desired algebraic laws. However, action notation could be exploited as
auxiliary notation in a conventional denotational semantics 

On the other hand, although our combination of structural operational
semantics and bisimulation does verify the essential algebraic laws, this does not

sticiently provide a sufficiently strong action theory for reasoning about nontrivial program
equivalence. It is currently unclear how to develop a stronger action theory, to
avoid the need for direct and tedious reasoning at the operational level. In
Section 4 we shall consider some possible directions for future research.

Readers are assumed to be familiar with the general ideas of denotational
and structural operational semantics.

1. BASIC CONCEPTS

Just as the lambda-notation is used in denotational semantics for specifying
functions, so our action notation is used in action semantics for specifying actions.
Action notation includes also notation for data and for auxiliary entities called  cafe
@elders.

Actions are essentially dynamic, wmputational entities. The performance
of an action directly represents information processing behaviour and reflects
the gradual, step-wise nature of computation. Items of data are, in contrast,
essentially static, muthemuticd  entities, representing pieces of information, e.g.   e.g.?
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particular numbers. (Of course actions are ‘mathematical’ too, in the sense
that they are abstract, formally-defined formally-denned entities, analogous to abstract machines
defined in automata theory.) A yielder represents an  item of data,
whose value depends on the current  information, i.e.>  i.e.,  the previously-computed
and input values that are available to the performance of the enclosing action.
For example, a yielder might always evaluate to the datum currently stored in a
particular cell, which could change during the performance of an action.

A performance of an action, which may be part of an enclosing action, either:

completes, corresponding to normal termination (the performance of the
enclosing action proceeds normally); or

esapes> corresponding to exceptional termination (parts of the enclosing
action are skipped until the escape is trapped); or

 corresponding to abandoning the performance of an action (the enclos-
ing action performs an alternative action, if there is one, otherwise it fails
too); or

&verges, corresponding to nontermination (the enclosing action diverges).

Actions can be used to represent the semantics of programs: action performances
correspond to possible program behaviours.   Furthermore,  actions can represent
the (perhaps indirect) contribution that putis of programs, such as statements
and expressions, make to the semantics of entire programs.

An action may be nondeterministic, having different possible performances
for the same initial information. Nondeterminism represents implementation-
dependence, where the behaviour of a program (or the contribution of a part
of it) may vary between different implementations-or even between different
instants of time on the same implementation. Note that nondeterminism does
not imply actual randomness: an implementation of a nondeterministic behaviour
may be absolutely deterministic.

The information processed by action performance may be classified accord-
ing to how far it tends to be propagated, as follows:

transient: tuples of data, corresponding to intermediate results;

                  bindings of tokens to data, corresponding to symbol tables;

 data stored in cells, corresponding to the values assigned to vari-
ables;

pemunent: data communicated between distributed actions that are per-
formed by separate 
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Transient information is made available to an action for immediate use. Scoped
information, in contrast, may generally be referred to throughout an entire action,
although it may also be hidden temporarily. Stable information can be changed,
but not hidden, in the action, and it persists until explicitly destroyed. Permanent
information cannot even be changed, merely augmented.

When an action is performed, transient information is given only on com-
pletion or escape, and scoped information is produced only on completion. In
contrast, changes to stable information and extensions to permanent information
are made &ting action performance, and are unaffected by subsequent diver-
gence, failure, or escape.

The different kinds of information give rise to so-called socalled &et8 of actions,
focusing on the processing of at most one kind of information at a time:

the b~ic facet, processing independently of information (control flows);

the jimctionul facet, processing transient information (actions are given
and give data);

the deckwutive facet, processing scoped information (actions  and
pro&e bindings);

the imperative facet, processing stable information (actions mseme and
zmweme cells of storage, and chunge the data stored in cells); and

the comm~nicutive facet, processing permanent information (actions send
message, receive messages in buffers, and offer contracts to ugents).

These facets of actions are independent. For instance, changing the data stored
in a cell     or even unreserving the cell     does not affect  aRect any bindings. There are,
however, some directive actions, which process a mixture of scoped and stable
information, so as to provide finite representations of self-referential bindings.
There are also some h@id primitive actions and combinators, which involve more
than one kind of information at once, such as an action that both reserves a cell
of storage and gives it as transient data. In this paper, for simplicity, we ignore
the directive facet of actions; we also ignore escapes (exceptional termination).

The notation for specifying actions consists of action p~~~~t~~~~ which may
involve yielders, and action co~~~nuto~s, which operate on one or two s~~ct~on~.
Action notation provides also some notation for specifing speci&ing ~0~~ of actions.

1.2. YIELDERS

YieZdem are entities that can be evulwted to yield data during action per-
formance. The data yielded may depend on the current information, i.e., infor~tion, i.e., the
given transients, the received bindings, and the current state of the storage. In
fact action notation provides primitive yielders that evaluate to compound data
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(tuples, maps, lists) representing entire slices of the current information, such as
the current state of storage. Evaluation cannot affect the current information.

Compound yielders can be formed by the application of data operations
to yielders. The data yielded by evaluating a compound yielder are the result
of applying the operation to the data yielded by evaluating the operands. For
instance, one can form the sum of two number yielders. Items of data are a
special case of data yielders, and always yield themselves when evaluated.

The information processed by actions consists of items of data, organized in struc-
tures that give access to the individual items. Data can include various familiar
mathematical entities, such as truth-values, numbers, characters, strings, lists,
sets, and maps. It can also include entities such as tokens and cells, used for
accessing other items. Actions themselves are not data, but they can be incor-
porated in so-called &&wz~~ow, which are data, and subsequently enact& back
into actions. (Abstraction and enaction are a special case of so-called 7-e$uztion
and mflection.) New kinds of data can be introduced hoc, for representing
special pieces of information.

Now that we have introduced the main concepts underlying action notation, let
us take a walk through an illustrative action semantic description of a concur-
rent programming language, briefly indicating the intended interpretation of the
notation that it uses as we go along. For a summary of the entire standard action
notatio, see  [ 12, Appendix D].

The language described here is a small-scale, ‘ideal’ programming language.
Syntactically, it is a sublanguage of (and of the language described in [12, 
Appendix  A] ),A])j and the specined semantics is quite close to that indicated in the
ADA Reference Manual.

The modular structure of our illustrative action semantic description is
formally specifiedspecined as follows.

Abstract Syntax

Semantic Functions

(needs:  Abstract Syntax, Semantic Entities.)

ADA 

abstractions,

2.   AN ILLUSTRATIVE EXAMPLE
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Semantic Entities

Sorts

Values
Variables

Numbers
Tasks

Required Bindings

(needs:

(needs:
(needs:

.

Values, Variables, Tasks.)

Numbers.)

 Numbers.)

The action semantic description consists of three main modules, concerned with
specifying abstract syntax, semantic functions, and semantic entities. Here, let
us not worry about the formal details of modularization, and concentrate on the
bodies of the modules.

The  grammar -grammar like specification given in this subsection consists mainly of a set
of (numbered) equations. Ignoring the double brackets [  the equations
have the same form as productions in a particular variant of BNF grammar.
Terminal symbols are written as quoted strings of characters, such as “(” and
44or''. Nonterminal symbols are written as unquoted words, such as Expression,
and we adopt the convention that they generally start with a capital letter, to
avoid confusing confuing them with symbols for semantic functions and entities, which
we write using lower case letters. There is a precise formal interpretation of a
grammar as an algebraic specification of sorts of trees [12,  Chapter  3].  Here, it is
enough to know that occurrences of [  indicate the construction of nodes of
trees. (In denotational semantics such brackets merely separate abstract syntax
from semantic notation, and cannot be nested.)

grammar:

 Identif ier = 1 digit)* .

 Literal =  digit+ 1 .

The standard nonterminals digit   and         are always implicitly available in our
grammars, for convenience when specifying the lexical syntax of identifiers identsers and
numerals. The terminal symbols that they generate are single characters, rather
than strings of characters. (A string is simply a node whose branches are all
characters.)

The equations above involve so-called regz&z7- eq?-esGo?zs. In our notation, a
regular expression is either a single symbol, or it consists of a sequerzce (RI R,J

a grouped set of alternatives (RI R,J, an optional paxt R’,  an optional
repeatable  paxt R*, or an obligatory repeatable part R+.
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(3) Expression = 1 [ “(” “)” 1 1

[ Unary-Operator Expression ] 1

[ Expression Binary-Operator Expression n .

Note that literals and identifiers are  cases (formally,  of expres-
sions, rather than merely occurring as components of expressions.

We make no attempt to distinguish syntactically between expressions accord-
ing to the sort of entity to which they evaluate: truth-values or numbers. Such
distinctions between expressions would not simplify the semantic description at
all, and they would in any case be context-dependent.

(4)  Unary-Operator 

(5) Binary-Operator 

(6) Statement = [ “null” “;” ] I [ Identifier “:=” Expression “;” ]
[ “if’ Expression 

“end” “if’ “;” ] I

[ “while” Expression  “loop” “;” 1
[ “declare” Block “;” 1 I [ Identifier “.” Identifier “;” 1
[ “accept” Identifier ( “do” Statement  “end” )? “;” 1 .

The statement [ 11 “.” I2 ] here is a call on the entry I2 of task I& to be matched
by an accept statement for I2 in the body declared for I-.

(7) Block = [ Declaration* “begin” Statement  “end” 1 m

A block is essentially a statement with some local declarations. Following ADA,
blocks can occur directly in ordinary statement sequences.

(8) Declaration = [ Identifier “:” “constant” Identifier “:=” Expression “;” 1
[ Identifier “:” Identifier “:=” Expression “;” ]
[ “task” Identifier “is” Entry  “end” “;” ]
[ “task” “body” Identifier “is” Block “;” 1 .

= [ “entry” Identifier “;” 1 .

Task entries are supposed to be declared before the corresponding task bodies,
although we cannot insist on this in our context-free grammar. We retain the
entries of a task head only for the sake of familiarity, as they are irrelevant to
our dynamic semantics of tasks.

(10) Program = [ Block Y’ ] l

closed.

That concludes the specificationspecScation of the abstract syntax of our illustrative lan-
guage.

 special  subsorts)

Literal  Identifier  Expression 

(

 “else” Statement   

 “then” Statement   

 “loop”  Statement    "end'' 

Entry 

+  

+  

+  
+  

+  

= “+” I “2 I “not” .

= “+” I ‘L” I ‘k” “1” I“mod”  
44 =W U<V  “and”  I . “or” 
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In action semantics, we specify semantic functions  by semantic equations, much
as in denotational semantics. Each equation defines the semantics of a particular
sort of phrase in terms of the semantics of its components, if any, using constants
and operations for constructing semantic entities. The required compositionality
of semantic functions is generally apparent from the semantic equations.

A semantic function always takes a single, syntactic argument and gives a
semantic entity as result. It is usual to specify the  of each semantic
function. For instance,

evaluate :: Expression -+ action [giving a value]

asserts that for every abstract syntax tree  for an expression, the semantic
entity evaluate  is an action which, when performed, gives a value. The actual
definition of                       by the semantic equations is then required to be consistent
with this. Formally, action [giving a value] is a term denoting a sort of actions,
as specified in [l2, [12 ,  Appendix B].

The right hand sides of the semantic equations involve the standard notation
for actions and data provided by action semantics, together with any further
notation introduced for special semantic entities. It must be emphasized that
all the notation is ! The fact that it is possible to read it
informally-and reasonably fluently-does not preclude reading it formally as
well. The grouping of the symbols might not be completely obvious to those
who have not seen action notation before, but it is in fact unambiguous. The
following hints about the general form of action notation may be helpful.

The standard symbols used in action notation are ordinary English                  
In fact action notation mimics natural language: terms standing for actions form
imperative verb phrases involving conjunctions and adverbs, e.g., e.g.? check it and
then escape, whereas terms standing for data and yielders form noun phrases,
     the items of the given list.. Definite and indefinite articles can be exploited

appropriately, e.g., choose a cell then reserve the given cell. (This  featurefature of action
notation is reminiscent of Apple’s HYPERCARD scripting language HYPERTALK

[2], and of COBOL.)
These simple principles for choice of symbols provide a surprisingly gram-

matical fragment fragment of English, allowing specifications of actions to be made fluently
readable-without sacrificing formality at all! To specify grouping unambigu-
ously, we may use parentheses, but for large-scale largescale grouping it is less obtrusive
to use indentation, which we emphasize by vertical rules, as illustrated in the
semantic equations given later. Moreover, let infix operation symbols always
associate to the left, with weaker w&er precedence than prefix symbols (which in turn
have weaker precedence than postfix  post& symbols).

Compared to other formalisms, such as the so-called A-notution, action
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notation may appear to lack conciseness: each symbol generally consists of sev-
eral letters, rather than a single sign. But the comparison should also take into
account that each action combinator usually corresponds to a complex pattern of
applications and abstractions in     -notation. Lnotation. For instance, (under the simplifying
assumption of determinism!) the action term /ll & might correspond to
something like ~~~.~~.~~.A~&~~(~~~.A~~~~~). In any case, the increased length of
each symbol seems to be far outweighed by its increased perspicuity. It would also
be rather misleading to use familiar mathematical signs to express exprem actions, whose
essence is unashamedly computational. For some applications, however, such as
formal reasoning about program equivalence on the basis of their action seman-
tics, optimal conciseness may be highly desirable, and it would then be appro-
priate to allow abbreviations for our verbose symbols. Note that the essence of
action notation lies in the standard collection of primitives and combinators with
their intended operational interpretation, rather than in the standard verbose
symbols themselves.

The informal appearance and suggestive words of action notation should
encourage programmers to read it, at first, rather casually, in the same way that
they might read reference manuals. Having thus gained a broad impression of the
intended actions, they may go on to read the specification more carefully, paying
attention to the details. A more cryptic notation might discourage programmers
from reading it altogether.

The intended interpretation of the standard notation for actions is specified
operationally, once and for all, in [12,   Appendix C]  All that one has to do before
using action notation is to specify the information that is to be processed by
actions, which may vary significantly according to the programming language
being described. This may involve extending data notation with further sorts
of data, and speci&ing standard sorts, using sort equations. Furthermore, it
may be convenient to introduce formal abbretkztions for commonly-occurring,
conceptually-significant patterns of notation. Extensions, specializations, and
abbreviations are all specified uZgebm&ZZg, as illustrated in Section 2.3.

Now let us begin to define the semantic functions for our illustrative lan-
guage. We first declare the symbols used for the semantic functions.

introduces: the value of _
_ , the binary-operation-result of 

execute  elaborate , synchronize , run .

The place-holder _ indicates argument positions in operation symbols. For seman-
tic function faction symbols, we keep to prefix notation, but otherwise we exploit infix
and more generally, ‘mixfix’'mixfix' notation.

For simplicity, let identifiers be their own semantics. They are included in
the sort token, which is specified in Section 2.3.1 to be a subsort of strings.

then 

.

specializing
abbreviations

algebraically,

evaluate 
 the unary-operation-result of 
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The sort number  

(1) the value of [ &digit+ 1 = integer-number of decimal [ d j’J .

The operation decimal _ is a standard data operation on strings. We could define 
a corresponding semantic function, but it wouldn’t be very exciting, so we take
this short-cut.   The use of [ . . .  in the right hand side of the semantic equation
above is atypical; it is needed because decimal _ expects its argument to be a
string, not a tuple of characters.

The unbounded natural number returned by decimal I’J is mapped either
to a bounded number, or to nothing (which is included in every sort of data
and can be used to represent error values) by the operation integer-number of _ j

 evaluate :: Expression +
[giving a value]
[using current bindings 1 current storage] .

The sort action [giving a value] includes those actions which, whenever performed,
complete giving an individual of sort value as transient data; the performance
must never give any other sort of transient data, produce any bindings, escape,
or diverge. However, failure is  an implicit possibility (because actions that
refer to current information generally fail when performed with no information
available).

Similarly, action [using . . .] includes actions that refer at most to the indi-
cated kinds of information.

(2) evaluate kLiteral = give the value of .

The primitive action           completes, giving the data yielded by evaluating the
yielder    .

(3) evaluate kldentifier =
give the entity bound to I then

give the given value or
give the value assigned to the given variable .

The functional action combination Al then A2 represents ordinary functional
composition of Al and As: the transients given to the whole action are propagated
only to Al9 the transients given by Al on completion are given only to AZ, and
only the transients given by 4 are given by the whole action. Regarding control
flow, Al then A2 specifies normal left-to-right sequencing.

The primitive action give    fails when    yields nothing. In the above
equation,    is the yielder T, which refers to the current
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binding for the particular token T, provided that there is one; otherwise it yields
nothing, causing the giving action to fail.

The yielder given yields all the data given to its evaluation, provided
that this is of the data sort   . For instance the given value (where ‘the’ is
optional) yields a single individual of sort value,   if such is given. Otherwise it
yields nothing, and give the given value fails. This causes the alternative currently
being performed to be abandoned and, if possible, some other alternative to be
performed instead, i.e., b&&z&&g.

The action Al or & represents implementation-dependent choice between
alternative actions, although here ~41, & are such that one or the other of them
is always bound to fail, so the choice is actually deterministic.

The special yielder the value assigned  to   , refers
to the current storage for the particular variable yielded by   , analogously to
the entity bound  to 2’. If I is currently bound to an entity that is neither a value
nor a variable (e.g., a task) both alternatives fail, causing their combination to
fail as well.

The special data sorts entity, value, and variable speciEed are specified in Section 2.3.

(4) evaluate [ “(” E:Expression “)” ] = evaluate E .

(5) evaluate [ 0:Unary-Operator IMxpression 1 =
evaluate E then give the unary-operation-result of 0 .

(6) evaluate [ &:Expression 0:Binary-Operator : Expression 1 =
( evaluate I31 and evaluate )
then give the binary-operation-result of 0 .

The action Al and As represents implementation-dependent order of performance
of the indivisible subactions of Al, AZ. When these subactions cannot ‘interfere’
with each other, as here, it indicates that their order of performance is simply
irrelevant. Left-to-right  Left-toright order of evaluation can be specified by using the  combi-combi-
nator & and then AZ instead of Al and AZ above. In both cases, the values given
by the subactions get  and subsequently passed on by the combinator Al
then As.

The evaluation of an expression may give any individual of sort value.    
leave it to the semantics of operators, sp~ifi~ specified  below, to insist on individuals
of particular sorts-numbers, for instance. For simplicity,  simp~city, we do not bother
with precise error messages in case the given operands  operant are not of the right sort
for a particular operator: we merely let the application of the corresponding co~~ponding
operation yield nothing,  so that the action which gives it must fail. In any case,
errors arising due to wrong sorts of operands are stati~~y statically  detectable in most
languages, and should therefore be the concern of a static semantic description,
not of the dynamic semantics that we are developing here.

Note that we would not have to mod@ modify the above equation at all if we were
to extend the example language so that expression evaluation could have ‘side-
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effects’, such as changing stored values or communicating. This is in marked
contraslcontrast to the situation in denotational semantics.

the unary-operation-result of :: + yielder
[of value] [using given value] .

The notation for sorts of yielders is analogous to that for sorts of actions.

(7) the unary-operation-result of “+” = the given number .

(8)  the  of “-” = the negation of the given number .

(9) the unary-operatiorwesult of “not” = not the given truth-value .

Numerical operations such as negation  and absolute  are specified in Sec- Set-
                          The truth-values are the usual ones from our standard data notation,
equipped with various logical operations, such as not .

the binary-operation-result of :: Binary-Operator + yielder
[of value] [using given value21 .

(10) the binary-operation-result of “+” =
the sum of (the given number#l, the given number#2) .

The yielder given Y#TZ yields the n’th individual component of a given tuple, tuple,
for 72 > 0, provided that this component is of sort   .

(11) the binary-operation-result of “.-” =
the difference of (the number#l, the given number#2) .

(12) ‘k” =
the product of (the given number#l, the given number#2) .

(13) “/” =
the quotient of (the given number#l, the given number#2) .

(14) =
the module of (the given number#l, the given number#2) .

(15) the binary-operation-result of “=” =
the given value#l is the given value#2 .

(16) the bina~,operation-r~ult of “<” =
the given number#l is less than the given number#2 .

(17) the bina~-operation-r~ult of “and” =
both of (the truth-value#l, the given truth+alue#2) .

(18) the bina~-operation-r~ult of “or” =
either of (the truth-value#l, the given truth=value#2) .
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So much for the action semantics of expressions. Now for statements.

 execute     :: Statement   action
[completing 1 diverging 1 storing 1 communicating]
[using current bindings 1 current storage 1 current buffer] .

(19) execute (Sl:Statement = execute Sl and then execute Sz l

The basic action combination Ai and then As combines the actions Al, AZ into a
compound action that represents their normal, left-to-right sequencing, perform-
ing AZ only when Al completes.

(20) execute [ “null” “;” JJ = complete .

The primitive action complete is the unit for Al and then AZ.

(21) [ Lldentifier “:=” IXxpression “;” 1 =
give the variable bound to I and
evaluate E

then assign the given value#2 to the given .

The special action assign Yl to 

(22) [ “if” IMxpression “then” Sl:Statement+
“else“ S&Statement+ “end” “if” “;” 1 =

evaluate E then

I
check the given truth-value and then execute Sl

or

I check not the given truth-value and then SJ .

The action check   requires   to yield a truth-value; it completes when the
value is true, otherwise it fails. It is used for guarding alternatives. Here, the
compound action (check   and then Al) or (check not    and then As) expresses
a deterministic choice between Al and AZ, depending on the condition  . The
transients given to the combination Al or A2  are passed on to both its subactions;
similarly for the action Al and AZ, and for Al and then AZ.

(23) execute [ “while” E:Expression “loop” s:Statement+ “end” “loop” “;” 1 =
unfolding
evaluate E then

I check the given truth-value and then execute S and then unfold
or

I check not the given truth-value .

The action combination unfolding A performs A but whenever it reaches the
dummy action unfold, it performs A instead. It is mostly used in the semantics
of iterative constructs, with unfold occurring exactly once in A, but it can also
be used with several occurrences of unfold.

(24) execute [ “declare” &Block “;” 1 = execute B .

14
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11: Identifier “.” I&Identifier “;” 1 =
give the agent bound to 11 then

send a message [to the given agent] [containing entry of 121 and then
receive a message [from the given agent] [containing the done-signal] l

Task declarations bind task identifiers to agents, as specified later. They do not
bind entry identifiers to anything at all, treating them literally as labels.

The primitive action send  where    yields a M& of message, initiates the
transmission of a message. The usual form of    is message [to Yl] [containing Yz],
where Yl yields an individual ugent and Y2 yields individual data. The sort
yielded by    is implicitly restricted to messages from the performing agent and
this should determine an individual message.

The action receive    waits indefinitely for a message of the sort specified
by    to arrive, removes it from the buffer, and gives it.

The notation for entries and signals that are contained in the messages is
specinedspecified in Section 2.3.

(26) execute [ “accept” Hdentifier “end” “;” 1 =
receive a message [from any agent] [containing entry of ] then
send a message [to the sender of the given message]

[containing the done-signal] .

Synchronization is ensured by the entry call statement action waiting for the
 before completing. Our action semantics is merely expressing the

usual informal explanation of the basic notion of a rendezvous in ADA. Extended
rendezvous is just as straightforward:

(27) execute u “accept” kldentifier “do“ S:statement+ “end” “;“ j =
receive a message [from any agent] [containing entry of I ]   then

execute   and then
send a message [to the sender of the given message]

[containing the done-signal] 

For simplicity, we do not include selection between alternative accept statements
in the language described here. The action semantics of such constructs is given
in  [12,  Chapter  17]

Although Block      is not a subsort  subsort of Statement, let us overload the semantic
function execute _ by extending it to blocks:

execute_  :: Block + action
[completing 1 diverging 1 storing 1 communicating]

1 1 current buffer] 

(28) execute [ “begin” S:statement+ “end” ] = execute   

agent

Y

YY

Y

Y

Y

sort

done-signal 
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(zg) execute [ D:Declaration+ “begin” S:Statement+ “end” 1 =
furthermore elaborate hence

synchronize and then
execute   .

The action furthermore      produces the same bindings as     , together with any
received bindings that A   doesn’t override. In other words, it overlays the received r~eiv~
bindings with those produced by A.

The combination Al hence A2 lets the bindings produced by Al be received
by AZ, which limits their scope    unless they get reproduced by AZ. It is analogous
to functional composition. The compound combination furthermore Al hence A2
(recall that prefixes  preExes have higher precedence than infixes!)  innxes!) corresponds to ordinary
block structure, with Al being the block head and A2 the block body: nonlocal
bindings, received by the combination, are also received by AZ unless they are
overridden by the local bindings produced by Al.

The action synchronize above is concerned with task initialization, con-
sidered later. Now for declarations.

:: Declaration+ + action

[binding 1 diverging 1 storing 1 communicating]
[using current bindings 1 current storage 1 current buffer] .

(30) ( Dl: Declaration D2: Declaration+ ) =
elaborate Dl before D2 l

The action  before  represents sequencing of declarations. Like furthermore

 hence AZ, it lets  receive bindings from Al, together with any bindings
received by the whole action that are not thereby overridden. The combination
produces all the bindings produced by AZ, as well as  any produced by Al that
are not overridden by A2. Thus  may rebind  a token that was bound by Alo
Note that the bindings received by the combination are not reproduced at all,
unless one of Al9 A2 explicitly reproduces them.

The use of the combinator Al before A2  in the semantics of declaration
sequences allows later declarations to refer to the bindings produced by earlier
declarations   but not the other way round. Mutually-recursive task declarations
are considered later.

(31) elaborate [ Il:ldentifier ‘Y “constant”     dent i f ier “:=”   :Expression “;” Jj =
evaluate then bind II to the given value .

The declarative action bind T to   produces the binding of the token T to the
bindable data yielded by  . It does mt reproduce any of the received bindings! not 

Y 
Y 

E
E

elaborate 

elaborate 

elaborate 
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(32) elaborate [ 11: Identifier “:”       :Identifier “:=” EExpression “;” 1 =

allocate a variable for the type bound to  and
evaluate E

then

bind 11 to the given variable#l and
assign the given value#2 variable#l .

The action allocate d for    is special notation, specified in Section 2.3.3 . As we
only deal with simple variables in this simple example, allocate a variable for   
merely chooses, reserves, and gives a single storage cell.

The basic and functional combinators, such as Al and AZ, all pass the
received bindings to their subactions without further ado     analogously to the
way Al and A2 passes all the given data to both Al and AZ. They are similarly
unbiased when it comes to combining the bindings produced by their subactions:
they produce the disjoint union of the bindings, providing this is defined, oth- 0th.
erwise they simply fail. Here, one or the other of the combined actions never
produces any bindings at all, so failure cannot arise.

(33) elaborate [ “task” 1:ldentifier “is” E:Entry+’ “end” “;” 1 =

offer a contract [to any agent]

receive a message [containing an agent] then

bind I to the task yielded by the contents of the given message m

The primitive action offer   , where   yields a sort of contract, initiates the
arrangement of a contract with another agent. The usual form of    is a contract

[to any agent] [containing abstraction of A],  where A is the action to be performed
according to the contract.

The action initial task-action  is defined in Section 2.3.6.

(~4) elaborate u “task” I:ldentifier “is” B:Block “;” n =

send a message [to the agent bound to I
B  .

The use of closure above ensures static bindings: the execution of the block B
when the task is initiated initiate receives the same bindings as the declaration. These
may include bindings to other tasks: a system of communicating tasks can be
set up by first East declaring all the task entries, then all  the bodies. They may alsoado
include bindings to variables; but attempts to assign to these variables,  v~iabl~, or to
inspect their values, always fail, because the  cells cell referred to are not local to
the agent performing the action. It is currently a bit complicated comp~cat~ to describe
the action semanticssenrantics of distributed tasks that have access to shard varibles variables-
the task that declares a variable has to act as a               semer for assignments and
inspections      so we let our illustrative language deviate from Tom ADA  in this respect.
We shall return to this matter in Section 3.

Y Y

Y

Y

]
]

Y

Y

 to the given 
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synchronize _ :: Declaration+ -+ action
[completing 1 diverging 1 communicating]
[using current bindings 1 current buffer] .

The action synchronize     is used to delay the execution of the statements of a
block until all the tasks declared locally in the block have been started.

(35) synchronize (Dl:Declaration Dz:Declaration+) =
synchronize Dl and synchronize Ds .

(36) synchronize [ kldentifier “is” B:Block “;” j =
receive a message [from the agent bound to  ]  I

[containing the begin-signal] .

 D: [ Identifier “:” “constant”’ Identifier “:=” Expression “;” n 1

Identifier “is” Entry+ “end” “;” l’j 1

synchronize = complete .

The above conditional equation corresponds to several ordinary semantic equa-
tions.

Finally, we specify the action semantics of entire programs.

 run :: Program + action
[completing 1 diverging 1 storing I communicating]
[using current storage I current buffer] .

 run [ “.” 1 =
produce required-bindings hence

execute and then
send a message [to the user-agent] [containing the terminated-signal] .

The primitive action produce produces a binding for each token mapped to a
bindable value by the map yielded by   . See Section  2.3.7  for the definition of
the bindings of required identifiers in our illustrative language.

The termination message sent above insists that the user should be able to
notice when the program has terminated.

Some evidence of the good pragmatic qualities (modinability, extensibility,
comprehensibility) of action semantic descriptions may be observed in the seman-
tic equations given above. In particular, notice how the poZgmorphism of the
action combinators makes the well-formedness of the action terms independent
of whether or not subactions might change storage, refer to bindings, communi-
cate, etc.: our semantic equations would not need any significant modifikations
when adding, say, function calls with side-effects to expressions.

 D 

 D 

 “ task”  

 B  

polymorphism
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To complete our semantic description of the illustrative language, we have to
specify the notation that is used in the semantic equations for expressing semantic
entities. Most of the notation used here has a fairly obvious interpretation, so
rather few comments are provided.

includes: [12]/Action Notation.

introduces: entity m

 entity = value 1 variable 1 type 1 task (disjoint) s

datum = entity 1 message 1

token = string of (letter, (letter 1 digit)*) .

bindable = entity .

storable = value .

= I task I entry I signal 1 III .

All the sorts specified above have a standard usage in action notation, except for
entity. Although our sort equations look a bit like the so-called domain equations
used in denotational semantics, their formal interpretation is quite different. We
use the same symbol _ I _ for soti sort union  as we used for combining alternatives
in grammars. Thinking of sorts of data as sets sets   we may regard _ I _  as  ordinary
set union; it is associative, commutative, and idempotent. The use of 0 above
formally expresses an inclusion, leaving open what other sorts might be included
in datum and sendable.

introduces: value .

includes: [12]/Data Notation/Instant/Distinction ( value        s , _ is _ ).

0 value = truth-value  number (disjoint) l

introduces: variable , assign _ to - , the - assigned to - , allocate _ for _ .

 assign _ to _ :: yielder [of value], yielder [of variable] + action [storing] .

the  assigned to - ::  yielder [of variable]  yielder [of value] .

Q _ ::

for 

sendable 

III .

2.3.2. VALUES

2.3.3. VARIABLES

2.3.1. SORTS

2.3. SEMANTIC ENTITIES
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action [ giving a variable 
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 [storing] 

 allocate _ for 
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(11 variable = cell .

(2) assign ( Yl:yielder [of value]) to ( Yz:yielder [of variable]) =
store the storable yielded by Yl in the cell yielded by Y2 I

(3) the  assigned to ( Y:yielder [of variable]) =
the (   & storable) stored in the cell yielded by    . l

(4) allocate (vsvariable) for ( Y:yielder [of type]) =
allocate a cell .

The sort cell has a standard usage in action notation, corresponding to ‘locations’
in denotational semantics. For simplicity here, we do not bother to distinguish
between cells for storing different sorts of values values3 so the type entities are quite
redundant. In a more realistic example, the specifkation of variable allocation
and assignment can become quite complex.

The standard action Yl in Y2 changes the data stored in the cell
yielded by Y2 to the storable data yielded  by Yl* The cell concerned must have
been previously reserved, using otherwise the storing action fails. The
standard yielder the  stored in evaluates to the data of sort  currently stored
in the cell yielded by   .

The standard notation  allocate a cell abbreviates the following hybrid action:

indivisibly
choose a cell [not in the mapped-set of the current storage] then

1 reserve the given cell and  give it.

introduces: type f boolean-type f integer-type .

type = boolean-type 1 integer-type (individual) .

introduces: , _ ,

_ g sum _ p difference _ f product _ g

quotient _ f modulo _ .

0 min-integer , max-integer : integer .

:: integer + number (pa~~a2)
 negation _ :: number -+ number (paces)

_ - ::
(Pascal)

:: number2 + number (Pascal)
0 - is less than _ ::  number, number -+ (total) m

:: number2 + number 

(partial). 
(partial). 

(partial). 
(partial). 

 store 

 reserve 

v  

2.3.5. NUMBERS

2.3.4. Types
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(1) i :  integer [min-integer]  [max max-integer] *
integer-number of i : number .

(2) i : integer [min successor max-integer]  + integer-number of i = nothing .

(3) i : integer [max predecessor min-integer] + integer-number of i = nothing .

(4) integer-number of i : number +
negation integer-number of i = integer-number of negation i .

(5) integer-number of il : number ; integer-number of h : number +

(1) sum (integer-number of & integer-number of h) =
integer-number of sum (& b) ;

(2) difference (integer-number of &, integer-number of &) =
integer-number of difference (iI, b) ;

(3) product (integer-number of gl, integer-number of h) =
integer-number of product (&, h) ;

(4) quotient (integer-number of il, integer-number of h) =
integer-number of integer-quotient (& &) ;

(5) modulo (integer-number of &, integer-number of &) =
integer-number of integer-modulo  (il, &) .

(6) integer-number of & : integer-number ; integer-number of b : integer-number
*

(1) integer-number of $1 is integer-number of k = il is & ;

(2) integer-number of il is less than integer-number of h = il is less than h .

The specification of integer arithmetic uses loosely-specsed loosely-specified  bounds on integers.
It extends the standard arithmetic operations from standard integers to the sort
number in a uniform way: the result is nothing when it would have been out of
bounds.

introduces: p task of _ t task-abstraction _ , initial task-action ,
signal I begin-signal p done-signal , terminated-signal ,

entry f entry of - .

task of :: abstraction + task 

task-abstraction _ :: task + abstraction 

signal  begin-signal   done-signal

initial task-action : action .

entry of :: token + entry (total) .

 task  
signal 

2.3.6. TASKS

terminated-signal (individual) .(individual) 

(total) 
(total) 

(total) 

-
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w t = task of   1 Mask = .

(2) initial task-action =
send a message [to the contracting-agent]

[containing the performing-agent]
and then
receive a message [from the contracting-agent] [containing a task]

then
 [containing the begin-signal]

and then
enact the task-abstraction of the task yielded by

the contents of the given message .

(3) entry of  is entry of = kl is b .

The action enact     performs the action incorporated in the abstraction yielded
by   . The use of closure _ on an abstraction ensures that the incorporated action
receives whatever bindings were current when the closure was evaluated.

introduces: required-bindings .

required-bindings : map 

(1) required-bindings =
disjoint-union of ( map of          to true,

map of “FALSE” to false,
map of “BOOLEAN” to boolean-type,
map of “MININT” to integer-number min-integer,
map of “MAXINT“ to integer-number max-integer,
map of “INTEGER” to integer-type ) .

Now that we have seen the use of action notation in the semantic description
of a simple concurrent programming language, let us consider the operational
semantics of action notation.  We shall pay particular attention to communicative
actions, i.e., actions for sending and receiving messages and for offering contracts.

The operational semantics of action notation [12, [l2, Appendix C] uses a vari-
ant of structural operational semantics [13,  5, 1] to define a transition system.
Sequences of transitions correspond to performances of actions, representing pro-
gram behaviour. The transition system is the basis for defining action equiva-
lence; see [12, [12,  Section  C.4]. C.41.

send a message [to the contracting-agent]

 task-abstraction   

[token to value type].
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Here we shall consider mainly what  arise in the operational
semantics of action notation. Once one has seen that, it should be fairly easy to
imagine how particular primitive actions and combinators determine transitions
between configurations.

To start with, suppose that a single agent is performing an action in isola- isola-
tion,tion, without any message transmission. The relevant components of the current
configuration are just the (abstract) syntax of the rest of the action being per-
formed, together with the current transient data, bindings, and storage. Actually,
due to the interleaving of steps in the performance of the combination Al and AZ,
various subactions may have different current transients and bindings at the same
time, and it is easiest to keep track of this by inserting transients and bindings
directly in the abstract syntax tree of the action. On the other hand, an agent
only has one current storage, which is best kept separate from the syntax tree.  tree*

Next, let the action being performed involve the sending and receipt of
messages. The current configuration should now record what messages have
been sent (at least since the previous connguration) and the messages that have
been received but not yet removed, i.e., the current buffer. We may imagine
the single agent making transitions between such local conngurations. Between
transitions, any messages to be sent get dispatched, and fresh messages may be
inserted in the buffer. Transitions may inspect and remove messages from the
buffer, but not add any new ones.

Finally, consider a (conceptually) distributed collection of concurrent agents,
each performing its own action by making transitions between local configura-
tions as described above. Now the only messages that get inserted in the buffer  btier
of a particular agent are supposed to be those messages that have been sent to
that agent by other agents in the system; moreover, all messages that get sent
are supposed to arrive, sooner or later. A global connguration of the system
of agents is essentially a map from the agents to their local configurations; this
can be represented as a set of local conngurations, provided the identity of the
performing agent is a component of each local connguration.

We are not to make any assumptions at all about the relative restive processing
speeds of different agents   not even that they are stable.  Thus it would not be
appropriate for a global transition to consist a local transition for ecu  agent in
the system. Nor would it be satisfactory for each global transition  tradition to consist of
local transitions for an arbitrary subset of the agents, for then some particular  p~icu~
agent might never be included, whereas all action performances are supposed to
proceed concurrently.

The simplest way to represent arbitrary relative processing speed  spud while
e~uringensuring that all agents eventually make transitions (until there is nothing more

 However,  we exclude the possibility that one agent can make infinitely many transitions while another
agent makes only one!

 configurations  

each

1  

1  
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of their actions to perform, of course) seems to be the following: associate an
arbitrary finite  with each local transition when it is made; then let each
global transition reduce all the delays by one unit, and make new local transitions
for all agents whose transition delay has become zero. (It is convenient, but not
essential, to let delays be positive integers.)

Similarly we may represent the time-consuming nature of physical message
transmission by attaching arbitrary fmite finite  delays to messages when they are sent,
only inserting them in the buffer of the receiving agent when the delay has been
reduced to zero.

This technique is analogous to the way that  one can represent  reprent fGmes8 in
terms of unbounded nondeterministic choice. The nondeterminism that arises is
enormous; in many cases it is also irrelevant, in the sense that the overall message-
passing and termination behaviour of a system of agents may be independent of
the particular delays chosen for local transitions and message transmissions. The
appeal of our operational semantics lies in the directness with which it represents
the arbitrary processing speeds of agents.

Notice that each local transition involved in a global transition is deter-
mined exclusively by the corresponding local configuration   not by some global
property of the entire set of local configurations.  conngurations. This suggests that a distributed
implementation of multi-agent action performance could be obtained straightfor-straightfor
wardly from implementations of single-agent performances. Models for concur-
rency based on  communication, such as CCS [7,8,9] and CSP (with
output guards)  [3,4] can be surprisingly difficult to implement on a distributed
system   without introducing centralistic arbiters, that is.

The above considerations have not addressed the question of how a sys-
tem of agents gets initialized, with the identities of particular agents known to
other agents so as to permit direct communication between them. In fact it is
sumcient sufficient to start from a single active agent, the so-called user-agent, all other
agents being initially inactive. An active agent can offer a contract that incor-
porates an action; some inactive agent can accept the contract, whereupon it
starts performing the incorporated action. As illustrated in Section 2, one can
make the incorporated action report back the identity of its performing agent to
its contracting agent (i.e., the sender of its contract) and then wait for a mes-
sage containing an abstraction to be enacted. By offering several such contracts,
binding tokens to the reported agent identities, and forming closures from the
abstractions subsequently sent, each agent involved acquires knowledge of the
other agents’ identities, so that direct communication between them is possible.

Contracts get arbitrary finite delays, just as messages do. In  [12]  the agent
that accepts a contract is chosen horn from those inactive when the delay on the
contract becomes zero. But this involves some global knowledge. To eradicate
this remaining trace of synchrony, one could let  a contract be offered to each

synchronous

fairness

delay

—
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agent in some arbitrary order, with a new delay each time the agent is found to
be active, until an inactive agent is found     if ever!

Note that agents correspond more to process activation identities than to
processors, and cannot be recontracted: once active, they remain active. This
avoids confusion about what to do with messages where the target agent gets
recontracted between the sending and receipt of the message.

Message buffers are supposed to be unbounded. If they were bounded, mes- mes-
sages that arrived when the target buffer happened to be full would presumably
disappear, whereas with the present semantics of action notation, all messages
are assumed to arrive safely. Incidentally, to prevent confusion between messages
with identical contents sent between the same two agents, each message gets a
local serial number, whose latest value is a component of the local configuration connguration
of the agent sending the message.

As mentioned in Section 2,  each agent has its own local storage, which
cannot directly be allocated, updated, or inspected by other agents. Shared
storage, which would be needed for the action semantics of tasks in full ADA (and
which is also convenient for describing abbe&) can be represented by introducing
an auxiliary ‘server’ agent, contracted to wait for messages from ‘client’ agents
instructing it how to act on its own local storage. Although this representation
of shared storage corresponds quite well to conventional computer architecture,
it is desirable to provide direct support for the concept of shared storage. It
now seems possible to achieve this by a very minor extension to action notation,
where the corresponding changes to the operational semantics of action notation
do not invalidate the established laws of action equivalence. This extension is
joint work with Martin Musicante, and we hope to report on it in detail in the
near future.

We have looked at an action semantic description of a simple programming lan- pro~a~ng lan-
guage that includes constructs for synchronization between concurrent tasks. The
presence of concurrency does not affect the description  de~ription of the other constructs contacts
at  all        ina~-in sharp contrast to the situation with conventional denotational descrip- descrip
tions, where the domains of higher-order functions used to model concurrency conc~ency
and  nondeterminismnondeter~nism are radically radic~ly different from those normally  used u~d to model
s~uentialsequential computation.

The action semantics of an ordinary rendezvous between  betw~n tasks is easily  wily
expressed by a simple pattern of asynchronous message passing. It is much
more complicated to give an action semantics for languages like CCS and CSP,
where commitment  co~tment to one synchronization possibility between two processes can
exclude other possibilities     also between other processes. When processes are

4. CONCLUSION
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represented by agents, one is forced to explicate how a commitment made by
one agent gets communicated to the other agents. But perhaps this difficulty dimculty
merely reflects the fact that CCS and CSP are abstract specification specincation languages,
rather than realistic programming languages for distributed processing, where
communication delays can be significant. signincant.

Further experiments with the action semantic description of concurrent
programming languages are needed, to test the adequacy of the communicative
part of action notation. We have already discussed the desirability of extending
action notation with direct support for shared storage. Other features that are
not so easy to represent directly in the current notation include interrupts and
time-outs; some preliminary investigations addressing these topics were reported
in [6].

Finally, it remains to develop a decent  for reasoning about equiva-
lence between communicative actions. The current theory of action notation [12,
Appendix B] is quite weak, and doesn’t provide any useful equivalences between
systems of communicating agents.

The author welcomes collaboration on all aspects of the development of
action semantics. The e-mailInternet address for e-mail e-mail is pdmosses@daimi.aau.dk.
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