View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Research Commons@Waikato

Working Paper Series
ISSN 1177-777X

A robust semantics hides fewer errors

Steve Reeves and David Streader

Working Paper: 03/2009
June 10, 2009

(©Steve Reeves and David Streader
Department of Computer Science
The University of Waikato
Private Bag 3105
Hamilton, New Zealand

https://core.ac.uk/display/29196214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A robust semantics hides fewer errors

Steve Reeves and David Streader
Department of Computer Science, University of Waikato, liam, New Zealand
{stevr,dstt @cs.waikato.ac.nz

June 10, 2009

Abstract

In this paper we explore how formal models are interpreted tarwhat de-
gree meaning is captured in the formal semantics and to wdgred it remains
in the informal interpretation of the semantics. By applyanrobust approach to
the definition of refinement and semantics, favoured by tleamtlbased commu-
nity, to state-based theory we are able to move some aspeatsttie informal
interpretation into the formal semantics.

1 Introduction

As engineers proud of our reputations and our subject we aartplanes to fly and
banks to be trustworthy. As engineers we want real systeriwiiion in the way we
have specified them and for there to be no unpleasant swspri with increasing
complexity we, like members of all other engineering diois, are forced to fall
back on mathematics to help us achieve this. Mathematiessotfs the ability to
unambiguously communicate requirements and offers usf®oa basis for a formal
notion of correctness. But mathematics works only with farmodels, so we might
be able to prove a refinement relation exists between absindconcrete versions of a
model at a formal level, but the models at that level haveflecethe actual, informal
world and its requirements and implementations. Thus we lzagap that we must
narrow as far as we can:

Requirements Implementation Informal
Interpretation Gap
Abstract==>Concrete Formal

To an engineer formality without interpretation is useld&sgineers must pay close
attention to how to interpret formal models if they wish togsplanes falling out of the
sky and other unwanted events from occurring in the actuaihformal world around
us.

Consider thisl3*" century Sufi teaching story [1]:

Once, a man found Mulla Nasruddin searching for somethirtgeground
outside his house. On being asked, Nasruddin replied thaglsdooking
for his key. The man also joined in the search and in due coasked
Mulla: “Where exactly did you drop it?”

Mulla answered: “In my house.”
“Then why are you looking here?” the man asked.
“There is more light here than in my house,” replied Mulla.

Theoreticians design languages and methodologies that) wihiccessful, illumi-
nate a path so engineers can construct reliable working/aodt But occasionally both
theoreticians and engineers need to spend time lookingnrtbe bright light of the
formal theory but in the shadowy world of its interpretatiorhe problem with inter-
pretations is that by their very nature they are informatsithey must always have
informal components which “connect” with the actual worlthus we can formally
prove nothing about interpretations, no matter that it ipémant to make the correct
interpretation and for interpretations to seem naturahtoengineer.

Of course, what we do is to compile actual world collectiohproperties that we
want our system to have and properties that we want it not ¥e hiaterpret these in
our formal world and try to prove that the properties, solipteted, that we want to
hold do hold, and those that we do not want to hold do not holt More properties
we can compile, and the more we can prove hold or do not haddiribre confidence
we can have that our formalisation reflects the actual wditd.any realistically large
or complex system, this process can never be completedgtter® can do is make it
as complete as possible.

In this paper we are interested in writing specificationstiet constructing imple-
mentations that satisfy them. The formal construction ofmaplementation, or con-
crete specification, from a more abstract specification wkoall a refinement step
Given that the very reason for writing the specification isdostruct implementations
that satisfy it we believe that it is very natural for the sewtizs of a specification to be
intimately connected to the semantics of refinement. Thimisfor many event-based
formal methodologies: in CSP failure semantics is intifyatelated to failures refine-
ment. Failures refinement is not always satisfactory whamnteaminating processes
are considered. Consequently failures/divergences raéiné[2], NDFD refinement
[3] and CFFD refinement [3] have been defined, but in each casemnly is a new
refinement defined but also a new semantics is defined.

In some state-based formal methods the same semanticsfaredd@gartial rela-
tions) but with several distinct refinement preorders [4]5Although there is nothing
wrong with this state-based approach we will argue thatités some of the meaning
of operations out of the formal semantics and may cause sdfitalties.

Our approach will be to use a general parametrised framevtiakken from [7, 8],
where this intimate relation between semantics and refinemsea central idea and
explore what effect it can have on a state-based formal rdetho

We are all familiar with mathematicians writing down ternmait describe actual
things and via (formal) reasoning drawing conclusionsgoterms) from the original
terms. It is the engineer who has the responsibility to prietrthe terms and decide

whether the formal reasoning steps correctly reflect therinkl world. We can help
the engineers by defining a semantics for the terms that seclw the engineers’
interpretation of the world around them. Subsequentlyeegyis only need think about
the semantics rather than the terms. This works well as lsnf@ correct semantics
(and reasoning) is chosen.

Next we give a simple example to illustrate how easy it is te the wrong seman-
tics and how considering the formal model alone can notfgiénie situation.

1.1 Example

As the truth of a statement is ascertained by the constmofia valid proof, reasoning
about the proof of statements should be reliable. By reagpabout what can be
proved we are going to offer a rigorous but informal arguntkat the following formal
statement F$ invalid.

From assumptioiPa A Pb) — R we can showPa — R) V (Pb — R) FS
Informal ArgumentThe assumption is that from a proof 8z A Pb we can construct
a proof of R. But this does not necessarily mean that we can construaiat pf R
just from a proof of Pa or construct a proof of? just from a proof of Pb. This is
clearly true as knowing eithePa or Pb is to know less that to know botRa and Pb
and there is at least the possibility that the truth of hBthand Pb were needed in the
construction of the proof oR.

But despite this (hopefully) convincing informal argumeret can provide a formal
proof that from(Pa A Pb) — R we can indeed shoPa — R) V (Pb — R).

1. (Pa A Pb) — R

2. -((Pa — R)V (Pb— R)) Ass
3. =((wPaV R)V (-PbV R)) Def — .2
4. PaAN-RANPbOAN-R DeMorgan,—FE
5. —(PaAPb)VR Def — .1
6. —(Pa A Pb) Ass
7. 1 From — 4,6
8. R Ass
9. 1 From — 4,8
10. € VE,5,6,7,8,9
11.(Pa — R)V (Pb— R) Cont, 2,10

What has gone wrong?

1.2 Explanation

The first mistake in Section 1.1 is the assumption that therpmétation of formal
statements is both obvious and universally agreed uporeekhthe statemeiiS can
be given a classical or a constructive [9, 10] interpretatio

With a constructive interpretation the informal argumeritideed correct. And the
formal argument is incorrect as it is based upon classigat|dBut if, as is common,
the statement is given a classical logic interpretation the mistake was made before
the informal argument was constructed and indeed befordotfmeal statement was
given. The very first two sentences of Section 1.1 are mistakdassical logic is a

logic of truth (or at least truth as formalised by truth table semanti¢s$3.donstructive
logic that is a logic ofproof and hence choosing to base the argument on what can
be provedis a mistake, as it makes use of the wrong semantics. Hencifamgnal
argument based on proof cannot be said to relate to a clagsiegpretation of any
formal statement. In particular the previously give infarnargument does not relate

to the classical interpretation &fS.

As using the semantics can so easily lead us astray it migtetrbpting to avoid it
but this is not always very practical. To reason syntadiidhliat one statement cannot
be proved from another would require reasoning about albfsravhich is not easy to
do. In such situations it is usual to reason about a semaariitgppeal to a soundness
and completeness result.

This example illustrates that:

1. reasoning with semantics can be very helpful;
2. itis important to select the correct semantics; and

3. an apparently innocent change to the semantics, in themrahe change is
from truth to proof, can have disastrous effects.

One of the worst aspects of such “mistakes” is that they cabnadound by con-
sidering the formal arguments alone.

Naturally if changing the semantics is difficult then oneusion is simply not to do
it. But as illustrated later (Section 6) semantics are ofteenged even by theoreticians.
Itis useful to engineers and theoreticians alike to haviediht ways to safely interpret
formal statements and choose the most appropriate intatjane for a given situation.

Here we are interested in the refinement of specificationstasdrery clear from
the many definitions in the literature there is certainly me aniversally agreed upon
definition of refinement or indeed one interpretation of wigdihement means.

We will next look at how an engineer might informally integpthe statement that
A'is a refinement o€ and provide some answers to the question: what use is a formal
refinement to an engineer?

2 Interpretation and robustness of refinement

We are interested in refinement, that is in the formal trams&tion of an abstract
specification into a more concrete specification.

Before we give our formalisation of refinement we look at thirsformal interpre-
tations of refinement each based on an associated inteipretéa specification. Each
of these different interpretations may be of use to the erggiin different situations.

Refinement interpreted as preservation of guaranteeA C,, C Under this interpre-
tation a specification is interpreted agwarantedhat “if the entity is used in the
prescribed way then one of the prescribed observable bednawivill be seen and
nothing else”. Then we have the following natural information of refinement,
which appears in many places in the literature [6, 4, 5, 1118p

The entityC is a refinement of a more abstract en#ityvhen no user
of A could observe if they were give@ in place ofA, which is to
say that nothing they observe Gfwould suggest that they were not
observingA, so the guarantee given withis preserved.

Refinement interpreted as implication,A C_, C Under this interpretation a specifi-
cation is interpreted as an assertion about the behavicam efitity (formalised
naturally as a logical terni_, (A)) [14]. A refinement relation holds between
entitiesC andA if and only if the behaviours asserted by the interpretatib@
satisfy the interpretation o&, formalised byA C_, Ciff I_,(C) — I, (A).

Refinement interpreted as subset of implementationgy =; C Under this interpre-
tation a specification is given by the set of its implementai A concrete
specification is a refinement of a more abstract specificatiand only if the
implementations satisfying the concrete specificationsasabset of the imple-
mentations satisfying the abstract specification.

Definition 1 Two interpretations of refinemeit, andC, are called consistent if and
only if for all entitiesA andC (A C, C) < (A, C).

Definition 2 The more interpretations a formal definition of refinemerd Hzat are
consistent with each other, the more robust is the definition

In what follows, we advocate robustness both because iefuli® have different
ways to interpret (and formalise) the same intuition (abebat refinement is) and
because we believe errors with the semantics (of refinenagatless likely to occur
given a robust definition characterising the intuition.

We also see that, in the three sorts of refinement listed altbegaefinement pre-
order characterises the semantics of a specification, aredwdrsa. This is another
way in which a definition of refinement and a semantics of djpations can both be
regarded as very robust.

The idea that refinement and specification should charaeteach other is not a
new idea, nor is the usefulness of having more than one s@saht the event-based
world it would seem strange to use failure semantics and setfailure refinement,
although it would be possible to do this. Matthew Hennes§y ¢bnstructs an elegant
trio of semantic and refinement definitions, axiomatic,itgstnd denotational, and
formally proves that are all consistent. He then goes onmsicler different refinement
preorders, but for each he constructs a different axiomégting and denotational
semantics.

In the event-based literature the definition of refinemesd@iently characterises the
denotational semantics and hence it is not uncommon to askefinition of refinement
to define the meaning or denotation of the operational sdosgantThis has been so
popular an approach that a survey of over 150 different séinsmll based on different
definitions of refinement, can be found in [16, 17].

In the state-based literature this approach is not so combutrvhat is common is
to define the semantics of an operation as a partial relaliben different definitions
of refinement, based on different interpretations of thdiglarelations, can be given

X

Figure 1: Entity, conteXt and User and their interfaces

U

but without changing the semantics. In Section 6 we will dé&scsome consequences
of this approach that could be avoided by using a semantinitiefi that, as in event-
based approaches, is closely related to a robust definifilmfinement.

3 Arobust interpretation of refinement

This section gives an outline of a formal definition of refirerhand three consistent
interpretations that follow from it (for further detailses§7, 8]).

Our first step towards formalising refinement is to decidemi@user can observe,
so we make some assumptions. In practice we are interesteasoning about and
refining small entities (modules) which are combined to makarger entity. Thus we
model an entityE as existing in some conteXt(the rest of the larger whole) interacting
on the set of actionglct. All E’s actions interact withX at the E-X interface (see
Figure 1).X andU interact at a different interface and on a disjoint set oicars. We
model the observer aspassiveuserU that is a third entity that observes or interacts
with X, but neither blocks th& actions nor interferes witk-X communication.

We will give formal general definitions of refinement with dixfi parameters rep-
resenting botlg, the contexts in which entities will be placed, afidan observation
function from entities to sets of traces frop{Q) (of event names or states), where
each tracer € O is a potential observation.

This general model can be made more concrete by instamfiénparameters
defining : one, how we represent our entities; two, the setefexts=; and three, the
observation functio® from entities to sets of traces.

This results in what we call special theoryIt has been shown ([18]) that some of
the classic theories of operations, abstract data type§jARd processes that appear
in the literature are special theories of the general modelghere.

3.1 Refinement interpreted as preservation of guarantee

Definition 3 Let= be a set of contexts each of which the entiiendC can commu-
nicate privately with, and le© be a function which returns a set of traces, each trace
being what a user observes of an execution. Then

ACzo C2Vr e =Z.0(C) CO([Al)

1[E], denotes the execution of entiyin contexta.

3.2 Refinement as implication

Itis easy to see that we can give entities in our general neodsational semantics. We
are not the first to use relations as a semantics for a divarsgerof models: indeed
Hoare and He in their Unifying Theories of Programming (UTH}]) do just this.
The main difference between this work and others is that wavate our relational
semantics by defining a consistent testing semantics.

Definition 4 Let = be a set of contexts each of which the enfitgan communicate
privately with, andO be a function which returns a set of traces, each trace being
what a user might observe of an execution. The relationabsdics of an entityA is a
subset oE x O. Let

Az.o(z,0) 22 €ZN0€ O([A],)

then
[Alz.0 = {(z,0)|Az,0(z,0)}

Refinement is now the subset relation between relationsglidgation between the
predicates that define them.
For any entities\ andC let

AC_=z0C=2Cz0—Az0
then we have our first consistency result:

ACz0C« [ClzoC[Alzo &AL =z0C

3=

3.3 Refinement as subset of implementation

Given that refinement is frequently characterised as theatémh of non-determinism
and that software is currently run on deterministic computee will define what it
means to be deterministic in our general model.

Definition 5 An entityA is deterministic iff its relational semantics is a function
Detz0(A) £ (,0) € [Alz,0 A (2,p) € [Alzo = 0=p

We now say thaimplementations are deterministic entitiasd so we can define
the semantics of an entiyy to be the set of implementations that satisfy it:

[Alrz.0 = {(I|Detzo() A lllz0 € [Alz0}
and then for any entitie& andC:
ACiz0C=Crz0CAz0

Using this we recreate the relational semantics of theyehtittaking the union of
the functions and see our second consistency result:

ACrz=0C&ACs0C

4 |Interfaces

In this section we will show why both contexts and users aezled to define refine-
ment by demonstrating situations where two different typemterfaces are needed:
atransactionalinterface between entities and contexts anéh#eractiveinterface be-
tween contexts and users.

We will refer to an interface afransactionalif interaction (observation) occurs
at no more than two distinct points: initialisation and fiation of the entity. If
termination is successful then there may be distinct olagiens that could be made at
finalisation, but if termination is unsuccessful then afittban be “observed” is that the
entity fails to terminate.

An example of an entity with transactional interaction isragyam that accepts a
parameter when called and returns a value when it termin&tiesrly if the program
fails to terminate no value can be returned.

In contrast we refer to an interface ageractivewhen interaction can occur at
many points throughout the execution. Hence with intevactiterfaces more than one
observation can be made prior to termination and even priaph-termination.

An example of an interactive entity is a coffee machine. Tawbtwo cups of cof-
fee the user first inserts a coin, then pushes the approprittten and takes the first cup
of coffee. But if after inserting a second coin the vendingchiae now “fails to ter-
minate” by not producing a second cup of coffee the previpsistcessful interactions
mean that what has been observed cannot be representediby noih-termination
alone. (We still have our first cup of coffee!)

5 Abstract Data Type Refinement

With entities being abstract data types, contexts beingtbgrams that use the ADTs
(by using, calling, the operations the ADT provides) andrsi¥eing the users of the
program, we must have an interactive ADT/program interfaBat the definition of
refinement is sensitive to the type of program - user inter{see [7] for details).

A computational method for deciding whether data refinerhefds between ADTs
is problematic as the definition of data refinement involveaniification over all pro-
grams (usually an infinite collection). But the classic Hpafle and Saunders result
[19] uses retrieve or simulation relations between theestptices of two the ADTs to
define a forward or backward simulation between them. UBgfille simulations are
quantified only over all operations (a finite collection) retADTSs, and it is proved
that they are sound and jointly complete with respect to eefient. Thus the Hoare,
He and Saunders guarantee is tha i a forward or backward simulation & then
any observation that can be made of any program uSinguld have been made of the
same program using.

The Hoare, He and Saunders proof is based on the operatigimgtearelational
semantics and the behaviour of the program under consideta¢ing defined by se-
guential composition of the relational semantics of indidal operations. The proof
makes no restriction on the relations used to model the tipagmand to define the
retrieve or simulation relation.

Partial relations are open to a variety of interpretatice®([5, 6, 4] for three dis-
tinct interpretations). For example, |& = {a,b} be a state space of two states and
take an operatioR where[P] C D x D define the semantics & by [P] £ {(a,a)}.
This specification can be considered either as requiringtiafig correct implemen-
tation: when an implementation &f is started from state then if it terminates it
will terminate in states; or as requiring a totally correct implementation: when an
implementation of operatioR is started from state then it will terminate and it will
terminate in state. In addition the implementation’s behaviour from stateould be
interpreted as undefined or as blocked.

We need to be wary of using the sequential composition ofglaeiations since as
Spivey pointed out modelling sequential composition ofraiens as the relational
composition of partial relations has a meaning ttdiffers from the meaning that
would be be natural in a programming languag&pivey [20, p136].

For example lefO] £ {(a, a)(a,b)} and[P] = {(a,a)} and let]O; P] = [O; [P]-
Spivey’s problem can be seen by consideffdgP] = {(a,a)} and asking what has
happened when an implementation®ferminates in staté

Itis easy to see that modelling the relational semanticssefcqaence of operations
as the sequential composition of the relational semanfitisevindividual operations
is consistent with a partial correctness interpretatiomimt consistent with a total cor-
rectness interpretation . The Hoare, He and Saundersseasuiased on the relational
semantics of a sequence of operations being the sequeotigdasition of the rela-
tional semantics of the operations. Thus to avoid Spivesdbiem operations with a
partial relation semantics must have a partial correctimgsgoretation.

6 Semantic changes, the benign and the problematic

In the state based world Z, B and Event B use partial relatamtheir operational
semantics. Thus Z, B and Event B formal models are of intéoaess as they possess a
formal operational semantics and yet are, by design, oparaoiety of interpretations.

This has the desirable consequence of allowing these methdxk flexible in that
they can be used in a wide range of situations. Also, thouglofiens up the possibility
that problems, of the kind discussed in Section 1 might bredhiced.

Experts in Z know only too well that, given some common intetations of Z, to
use Z safely (avoiding the problems discussed in Sectiom8)ged to restrict how it
is used to a particular (informal) methodology, a good exi@mnpwhich is the informal
method followed in [5].

B [13] is like Z but with its methodology formally built intche B tool kit. The
relational semantics of a B operation is, in part of its damabtalised so as to be
undefined. But this happens only in part of its domain; thati@hal semantics is still
a partial relation. Then, prior to computing refinement of anBchine it is required
that all operations be proved total (see [13, p297 Propediyl6p525 Condition1]) on
some domairD and that it be proved that only states/ihare reachable. Thus B has

2To readers familiar with [4] this may seem so obvious thas indt worth stating but to casual readers
familiar with [5] this may even seem untrue. Consequentlg goint will be discussed in more detail in
Section 6.1.

a two stage development: initially operations with pantédhtional semantics can be
defined but when a machine is to be refined Spivey’s problenbeagnored as only
operations with a total relational semantics need be censit

Event B is more like Z in that it is, by design, open to many liptetations and
Spivey’s problem is not avoided by any formal methodologyos¥inotably Event B
refinementis defined to be (only) the existence of forwardigtion and not the “full”
refinement as defined in B [13] and elsewhere [5, 19, 4, 6].réstang questions that
arise from this are: what kind of contexts are Event B machihesigned to operate
in?; and what guarantee does Event B refinement offer thenearf?

6.1 Data types or Processes

Woodcock and Davies’ definition of data refinement in [5] iatttaken from [19] and
applied to ADT with operations that are interpreted as umeefioutside of precondi-
tion, which some call contractual. Although using Z, with [artial relation seman-
tics, they define data refinement while using a total coresgrinterpretation of the
relational semantics. They have achieved this by chang@gémantics of operations
from Z partial relations to a lifted totalled semantics prio computing data refine-
ment. Another view is that the semantics has not changedrenttansformation to
total relations is just a step in the computation of refinetn@thatever your view, the
transformation exists. For ease of discussion we will r&dat as a transformation of
the semantics.

The engineer must therefore bear in mind that the Hoare, ldé&annders guaran-
tee applied to the data types in [5] is based on operatiotsantibtal relation semantics
due to the transformation of the semantics, not on Z's “ddfigbartial relation seman-
tics.

In [5, Table 16.1] value passing operations are modelled rmgiwg the values
input into a sequence initialised at the start of the progexecution and the output
values wound into a sequence to be observed. In additiomanstt of rules [5, Table
16.2] is defined in which input and output occurs and can be aeeach step.

In our terminology there is, therefore, a change in the moguser interface from
transactional to interactive, and thus a change in the defindf refinement. Because
we advocate using robust definitions of refinement whereegfent can be used to
define the semantics, we choose to view this change of refimeasea second transfor-
mation in the semantics. However, this is benign, as the etdf rules are apparently
equivalent.

Subsequently, Bolton and Davies’ definition of data refinenire [6] is also that
taken from [19] but is applied to ADTs with operations tha arterpreted as blocked
or guarded outside of precondition, which some call behawalb They go on to make
similar semantic transformations to those in [5]. But thise the second semantic
transformation, that of changing the program/user intarflaom transactional to inter-
active, results in a subtly different refinement relationvignich backward simulation
is not sound21]. One of the difficulties is that having made the appdyebénign
transformation in the semantics the lack of soundness ¢d@ndiscovered simply by
looking at the formality. Just as in our example Section tbdking at the formal proof
alone will not reveal any errors.

10

6.2 Relational semantics or Logical semantics

The initial semantic transformation in Section 6.1 reptapartial relations with lifted
total relations. The logical or axiomatic approach progide alternative to using a
transformation because it keeps the partial relation séinsaout defines sets of axioms
to characterise refinement.

Which semantics, the relational or logical, was used waardsyl as unimportant
as any refinement based on the logical definition was als@stagsumed, a refinement
based on the relational definition.

But recently Boiten and Derrick have shown [22] a the key Itefite completeness
of forward and backward simulation with respect to data efient fails to hold for
operations that are blocked outside of precondition wheir #emantics is given in
the logical style, although it still holds for the relatidrstyle semantics [21]. Further,
using arestrictedsimulation relation, a soundness and completeness resubbe re-
established [21] for the logical style. This again showshat &n apparently innocent
change in semantics can have unforeseen consequences.

If we regard Z’'s semantics as given by partial relations (wteutside of precon-
dition a specification is necessarily silent about what leagpdue to the partiality),
yet use an axiomatic or logical definition of refinement, lob&® example on “un-
defined outside of precondition”, then we have a semantiasishsilent about what
happens outside of precondition but a definition of refinentiest is not silent about
what happens outside of precondition. We can view this aisigdlyat the definition of
refinement extends the semantics with additional meanioifound in the semantics
(in this case the additional meaning defines the behaviasidriof the precondition).

It is now not clear if the meaning of the specification is gilsnthe semantics or
by the definition of refinement. If the meaning is given by temantics then why use
this definition of refinement that is based on a different nivagth If the meaning is
given by refinement then why not formalise this in the sencafti

A way to make the formal model more robust would be, as we hdveaated, to
change the semantics to keep it “consistent” with the déimibf refinement.

6.3 Conclusions

From the previous two sections and our example in Sectionvé.tonclude that un-
derstanding or interpreting formal models to the extenunegl to prevent failure of
real (software) systems is far from easy. Apparently inmbchanges to the semantic
model can very easily introduce errors that are hard to deteen by theoreticians.
Despite the difficulty of designing safe, useful theordtfcameworks we still need to
give engineers greater freedom in how they develop software

7 Stepwise design
To design reliable complex systems that are open to humaarstaohding we need

both simple and intuitive high-level descriptions thatazlg reflect the required be-
haviour and detailed low-level descriptions that an impemation can be clearly seen

11

to satisfy.

If we tried to specify everything down to the last detail garl the design process
we would fail to see any clear, big picture. Consequently vighvio add detail in a
stepwise fashion through out the design process. But wetwiatoid leaving informal
any essential methodological restrictions, so we wish tloiothe design of B and
formalise, as much as we can, any essential methodology.

7.1 Stepwise semantics

The advantage of basing a wide variety of semantic modelsrabthe common se-
mantics is that we can uniformly define some operations, aggiarallel composition,
choice, event hiding, recursion on the semantics and thigh,ssme effort, lift these
definitions to the more detailed semantic models. For exapipé, 17] and referred to
earlier, has one definition of parallel composition not 18fimtions of parallel com-
position.

We advocate the following steps towards a target semantics.

Step 1.Any formal statement is written using some well-defined aynFor exam-
ple, let there be ternigs; constructed from some signatute= {®} U Act, whereAct
is a set of actions of interest, addt C A, whereA is the set of all possible actions,
and® is an in-fixed binary operatap € A x A — A.

To be of use to an engineer this must have some interpretatitime informal
world where they work and do their modelling and designingctsan interpretation
Is, of terms in our example language is very flexible in as mucthagé¢rms can be
interpreted as representing any entity from a set of thinigls & binary operation on
this set. This syntax puts no further restrictions on whtarjpretations can be made.

Ig,
Inf. world
o Isem | Y
Syntax » Sem;
(@, Act) H waan

We can reduce the flexibility in the way the terms can be intgtgul by specifying
a formal semantics for them. So, continuing our exampleutetefine the formal
semantics of an actioa to be a relationJa] € S x S over some sef, [Act] =
{[a]|a € Act} and the semantics of the binary operator to be set ufidn= U.

From the semantic interpretation we can infer and equafio#:a] = [a]. So now
the valid interpretations are restricted to a subset of Hiil\nterpretations given by
Is,, namely by eliminating those that do not obey the equation.

We will write Is.,, for the standard and obvious informal interpretationSoés
some set of statesjn Act as being an operation which moves between state§frac
the state-to-state relational semantics of the operatidg.,, is a valid interpretation
for this more restricted semantics since is obeys the equatind of coursd s..,, talks
about less of the informal world thal,, did, as our diagram suggests.

12

Let 74 andI¢.[-] be informal mappings from some formal domdinto the real
world. We will refer to I~ as a I-refinement of 4 when for alld in D, I-([d]) is a
subset off 4 (d).

We have used some English here rather than using only mativaizotation to
remind the reader that this has to be an informal definitioe (bformal world is in-
volved), but from now we will rely on the reader to remembaeattall interpretations
are an informal mapping into the informal (“real”) world. &2rly in our example
Isem ([d]) is a subset of 5, (d) and hencé s, is an I-refinement of g,,.

To help make intuitions more robust we require that:

1. interpretations are homomorphic, efg,, (a ® b) £ Ig,(a)lsy(®)Is,(b) and
ISem(a 5> b) = ISem(a)ISem(@)ISem(b)

2. so are semantic mappinds] the semantics of a term is given by the semantics
of its components, e.da @ b] = [a][®][b]

3. informal intuitions are preservet, (&) = Isem ([])

Step 2. Let us extend our example and assume fh&t= {(1,1)} and the state
space is given by = {1,2}. This relational semantics can be interpreted in several
different ways, see Section 5 for four distinct interprietas.

sy Inf. world
/—\\
Syntax > Semy > Sem, Iso \D
@A) owpaap Hs o qus maems)
partial relations lifted total relations

Just as we refined how we interpret the syntax by defining thearécs of the
terms we can also refine how we interpret the initial semargén; by defining a
meaning (second semanti&m,) for the initial semantics. In our example we can
define how to lift and totalise the initial partial relatioarsantics. Lifting addsl. to
S to give S| and operations now havg, x S, relational semantics andl on the
left of the relation is interpreted as the operation failstart and on the right of the
relation it is interpreted as the operation fails to terniéf.aHow we totalise the relation
formalises the interpretation we wish to give it.

Interpreting[a] = {(1,1)} as blocked (guarded) outside of precondition and re-
quiring a totally correct implementation (so it must teriati@ from statel) we map
all, and only, states outside of the preconditionltand only toL. Thus we have
[[{(15 1)}HS = {(L 1),(2, 1), (L, J—)}

In our example the meaning of the partial relation semaigibgas been formalised
by the application of a semantic functidn]s that lifts and makes total the partial

3For details of how to interpret the usual pre state, posestlations as relations between contexts and
observation traces see [7, 21] and for details of how to ektérs interpretation to cover lifted relations
S, x S, see[21]

13

relations. Of course we do not need to go through the inteimedemantics (partial
relations) we could simply use a mappifg]] s from the syntax to the new semantics.
The advantage of using an intermediate semantics is thétemettical definitions and
results can be established for the the initial, or interratisemantics and this used to
establish similar results for a whole range of more detalehantics.

Because care is needed to make sure that intuitions at advighdf abstraction, for
example with partial relation semantifq, transfer correctly to a less abstract level,
for example for the lifted totalised semantif§s we advocate keeping to the three
points raised at the end of step 1.

7.2 Refining interpretations

Applying stepwise design to one of our robust interpretagiof a high-level refine-
ment, as defined in Section 3, can be done by including andi@finement operator
C g inthe signature of our terms in the definition of our syntastiep 1. This allows us
to talk about refinement at some level of abstraction, onedeintly gives a theory of
refinement at some level of abstraction. We can now intethietheory as a distinct
further theory based at another level of abstraction. Weaffén use this method to
view the original refinement in the original theory as takisigce at a high-level of
abstraction and the further theory given by the interpretadf the high-level theory
as giving us a lower-level theory with its own lower-levefinement , which we will
call C, (see [8] for more details). This interpretation betweeroties is formalised
by defining two semantic mappings. We use a semantic magpjndo interpret, or
embedhigh-levelEy entities as low-level entitiels,. and a separate semantic mapping
vA to interpret, orembed low-level entities as high-level entities. When they form
a Galois connection we call such pairs of semantic mappingartical refinement
denoted by, and writeEy C,, [En],

In Section 3.2 we have refinement as implication and we cam thie context and
observation function pair from that section as defining adalgheory and then apply
the well-known reading of Galois connections as theorydfamations between two
theories, one at a high level based (@, Oy) and the other at a lower level based on
(L, 0L). Galois connections thus provide a very strict design sttgéen theories
and preserve many features of the theories including ursobset (which we use to
define refinement), and fixed points.

For our purposes all we need consider are simple Galois ations such as the
subset morphism§]> whereEyC[En]c and henceEy T E impliesEy C Ey.
Intuitively we can think of(2y, On) as defining drame outside of which the high-
level (abstract) specification slent We note that we can us#lent outside of frame
to give yet another valid interpretation to Z's partial t@aal semantics.

The simple version of vertical refinement with subset magpts is able to intro-
duce nondeterminism, outside of frame, unlike one of ounesfients defined in Sec-
tion 3 which never introduce nondeterminism. Neverthelass call it a refinement
because it offers an engineer a simple guarantee: that dravioair of the low-level
(concrete) specification that lies within the frame is a véha of the high-level (ab-
stract) specification is behaviour of the abstract spetidfina

14

What happens to Spivey’s problem and the lack of monotgnigiten we use ro-
bust definitions of refinement and semantics? We are not ptiegito offer a magic
solution to these problems because we believe there are W@seime we start with
a robust definition of semantics and refinement where the isécsaare partial rela-
tions. Recall that fixing the refinement fixes the semantizsf we try to change the
refinement to formalise the behaviour outside the prec@rdie.g to being undefined,
or to being guarded, then we are forced to change the sersaimtie can change the
semantics by constructing a Galois connection betweentteartes. This is where our
approach stops us relying on informal methodology as we ngla@.

If Z,, is a Z operation schema it has a partial relation semaR{gsvith domain
dom(R,p) and range-an(R,;,). From this we can define the conte&g, = dom(Rop)
and observation$(a, b)|a € dom(Rop) A b € ran(Rop)}. Thus different operation
schemas exist on different layers, or in different theqréexl we make use of Galois
connections to relate one theory with another. We have notgrsidered relating a
set of theories to a single theory, and indeed it is uncleariwe would interpret a set
of theories as a single thing. Hence we have not yet atteniptedate partial relations
as a whole to any theory

A well-known solution to these problems, that B [13] adojgdp restrict refine-
ment and sequential composition to being applied only wiieparations are total on
some domaimD and the operations never leale Adopting this solution we can re-
strict the operational semantics to total relations advex D. Thus all operations now
exist in the same theory or layer. With this restriction,y&d to be useful in practice, it
is easy to establish that: Spivey’s problem no longer appii@notonicity results hold
andaUb]s = [a]s U [b]s is true whenu]s = U.

What we have ended up with is a very familiar two-step appnoditst, reason
about partial relations and avoid refinement and sequenaimd) secondly, only when
these partial relations have been used to build total mlatdo we apply refinement
and sequencing. We make no claim for novelty here as it caadathat it appears in
the B tool kit, in the informal methodology of Using Z [5] anden in Dijkstra’s early
work [23]

8 Conclusion

The use of robust definitions of semantics and refinement\emifad in the event-
based literature has been used as the basis for a statedggsedch that keeps track
of what is in the formal model and what remains to be integatdhformally. We
advocate three broad principles:

One define refinement and the semantics of specifications to hestob
Two even small changes to a formal semantics should be checkedlfg

Three in stepwise design the semantic mappings should respectpewsifications are
composed by their operators

1. the semantics of a term is built from the semantics of itagonents

15

2. our informal intuitions are preserved

By following these principles we have interpreted partelations as silent outside of
frame and only if we consider operations that are all totasome domain have we
been able to proceed by formal stepwise development.

References

[1] Ltd, T.P.: The Fabulous Adventures of Nasruddin Hojaa-Ha Publishers Ltd.
(UK))

[2] Roscoe, A.: The Theory and Practice of Concurrency. &eerall International
Series in Computer Science (1997)

[3] Valmari, A., Tienari, M.: Compositional Failure-bas&kmantics Models for
Basic LOTOS. Formal Aspects of Computidg1995) 440-468

[4] de Roever, W.P., Engelhardt, K.: Data Refinement: Mddieénted Proof Meth-
ods and their Comparison. Cambridge Tracts in Theoreticahuter Science
47. Cambridge University Press (1998)

[5] Woodcock, J., Davies, J.: Using Z: Specification, Refieatrand Proof. Prentice
Hall (1996)

[6] Bolton, C., Davies, J.: A singleton failures semantios €ommunicating Se-
quential Processes. Formal Aspects of Computi®(006) 181-210

[7] Reeves, S., Streader, D.: General refinement, part omerfaces, determin-
ism and special refinement. In: Refine08 - International Refient Workshop,
Turku, Elsevier (2008) to appear.

[8] Reeves, S., Streader, D.: General refinement, part tweaibfle. In: Refine08 -
International Refinement Workshop, Turku, Elsevier (2008 ppear.

[9] Troelstra, A.S.: From constructivism to computer scien Theor. Comput. Sci.
211(1999) 233-252

[10] Bridges, D., Reeves, S.: Constructive Mathematicshirdry and Programming
Practice. Philosophia Mathemati¢1999) 65-104

[11] Derrick, J., Boiten, E.: Relational concurrent refirmmh Formal Aspects of
Computingl5(2003) 182-214

[12] Derrick, J., Boiten, E.: Refinementin Z and Object-ZuRdations and Advanced
Applications. Formal Approaches to Computing and InfoliovafTechnology.
Springer (2001)

[13] Abrial, J.R.: The B-Book: Assigning Programs to MeagenCambridge Univer-
sity Press (1996)

16

[14] Hoare, C., Jifeng, H.: Unifying Theories of ProgramigifPrentice Hall Interna-
tional Series in Computer Science (1998)

[15] Hennessy, M.: Algebraic Theory of Processes. The MI@sBi(1988)

[16] van Glabbeek, R.J.: Linear Time-Branching Time Speutt. In: CONCUR ‘90
Theories of Concurrency: Unification and Extension. LNC8,48pringer-Verlag
(1990) 278-297

[17] van Glabbeek, R.J.: The Linear Time - Branching Timec@pan Il. In: Inter-
national Conference on Concurrency Theory. (1993) 66—-81

[18] Reeves, S., Streader, D.: State- and Event-based madime Technical report,
University of Waikato (2006) Computer Science Working Re&peries 09/2006,
ISSN 1170-487X, http://researchcommons.waikato.acngzpapers/12/.

[19] He, J., Hoare, C., Sanders, J.: Data refinement refin€eOFE86 LNCS213
(1986) 187-196

[20] Spivey, J.M.: The Z notation: A reference manual. 2rtth.ePrentice Hall (1992)

[21] Reeves, S., Streader, D.: Guarded operations RefineandrSimulation. Tech-
nical report, University of Waikato (2009) Computer Scienkechnical Report
0—/2009, http://www.cs.waikato.ac.radstr.

[22] Boiten, E., Derrick, J.: Incompleteness of relatiosiahulations in the blocking
paradigm. In ?27? (2008)

[23] Dijkstra, E.W.: A Discipline of Programming. Prentietall (1976)

17

