
Working Paper Series
ISSN 1177-777X

A robust semantics hides fewer errors

Steve Reeves and David Streader

Working Paper: 03/2009
June 10, 2009

c©Steve Reeves and David Streader
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29196214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A robust semantics hides fewer errors

Steve Reeves and David Streader
Department of Computer Science, University of Waikato, Hamilton, New Zealand

{stevr,dstr}@cs.waikato.ac.nz

June 10, 2009

Abstract

In this paper we explore how formal models are interpreted and to what de-
gree meaning is captured in the formal semantics and to what degree it remains
in the informal interpretation of the semantics. By applying a robust approach to
the definition of refinement and semantics, favoured by the event-based commu-
nity, to state-based theory we are able to move some aspects from the informal
interpretation into the formal semantics.

1 Introduction

As engineers proud of our reputations and our subject we wantaeroplanes to fly and
banks to be trustworthy. As engineers we want real systems tofunction in the way we
have specified them and for there to be no unpleasant surprises. But with increasing
complexity we, like members of all other engineering disciplines, are forced to fall
back on mathematics to help us achieve this. Mathematics offers us the ability to
unambiguously communicate requirements and offers us proof as a basis for a formal
notion of correctness. But mathematics works only with formal models, so we might
be able to prove a refinement relation exists between abstract and concrete versions of a
model at a formal level, but the models at that level have to reflect the actual, informal
world and its requirements and implementations. Thus we have a gap that we must
narrow as far as we can:

Requirements

Abstract Concrete

Implementation Informal

Formal

Interpretation Gap

To an engineer formality without interpretation is useless. Engineers must pay close
attention to how to interpret formal models if they wish to stop planes falling out of the
sky and other unwanted events from occurring in the actual but informalworld around
us.

Consider this13th century Sufi teaching story [1]:



Once, a man found Mulla Nasruddin searching for something onthe ground
outside his house. On being asked, Nasruddin replied that hewas looking
for his key. The man also joined in the search and in due courseasked
Mulla: “Where exactly did you drop it?”

Mulla answered: “In my house.”

“Then why are you looking here?” the man asked.

“There is more light here than in my house,” replied Mulla.

Theoreticians design languages and methodologies that, when successful, illumi-
nate a path so engineers can construct reliable working software. But occasionally both
theoreticians and engineers need to spend time looking, notin the bright light of the
formal theory but in the shadowy world of its interpretation. The problem with inter-
pretations is that by their very nature they are informal since they must always have
informal components which “connect” with the actual world.Thus we can formally
prove nothing about interpretations, no matter that it is important to make the correct
interpretation and for interpretations to seem natural to the engineer.

Of course, what we do is to compile actual world collections of properties that we
want our system to have and properties that we want it not to have, interpret these in
our formal world and try to prove that the properties, so interpreted, that we want to
hold do hold, and those that we do not want to hold do not hold. The more properties
we can compile, and the more we can prove hold or do not hold, the more confidence
we can have that our formalisation reflects the actual world.For any realistically large
or complex system, this process can never be completed; the best we can do is make it
as complete as possible.

In this paper we are interested in writing specifications andthen constructing imple-
mentations that satisfy them. The formal construction of animplementation, or con-
crete specification, from a more abstract specification we will call a refinement step.
Given that the very reason for writing the specification is toconstruct implementations
that satisfy it we believe that it is very natural for the semantics of a specification to be
intimately connected to the semantics of refinement. This istrue for many event-based
formal methodologies: in CSP failure semantics is intimately related to failures refine-
ment. Failures refinement is not always satisfactory when non-terminating processes
are considered. Consequently failures/divergences refinement [2], NDFD refinement
[3] and CFFD refinement [3] have been defined, but in each case not only is a new
refinement defined but also a new semantics is defined.

In some state-based formal methods the same semantics are defined (partial rela-
tions) but with several distinct refinement preorders [4, 5,6]. Although there is nothing
wrong with this state-based approach we will argue that it leaves some of the meaning
of operations out of the formal semantics and may cause some difficulties.

Our approach will be to use a general parametrised framework, taken from [7, 8],
where this intimate relation between semantics and refinement is a central idea and
explore what effect it can have on a state-based formal method.

We are all familiar with mathematicians writing down terms that describe actual
things and via (formal) reasoning drawing conclusions (other terms) from the original
terms. It is the engineer who has the responsibility to interpret the terms and decide

2



whether the formal reasoning steps correctly reflect the informal world. We can help
the engineers by defining a semantics for the terms that is closer to the engineers’
interpretation of the world around them. Subsequently engineers only need think about
the semantics rather than the terms. This works well as long as the correct semantics
(and reasoning) is chosen.

Next we give a simple example to illustrate how easy it is to use the wrong seman-
tics and how considering the formal model alone can not clarify the situation.

1.1 Example

As the truth of a statement is ascertained by the construction of a valid proof, reasoning
about the proof of statements should be reliable. By reasoning about what can be
proved we are going to offer a rigorous but informal argumentthat the following formal
statement FSis invalid.

From assumption(Pa ∧ Pb) → R we can show(Pa → R) ∨ (Pb → R) FS
Informal Argument:The assumption is that from a proof ofPa ∧ Pb we can construct
a proof ofR. But this does not necessarily mean that we can construct a proof of R

just from a proof ofPa or construct a proof ofR just from a proof ofPb. This is
clearly true as knowing eitherPa or Pb is to know less that to know bothPa andPb

and there is at least the possibility that the truth of bothPa andPb were needed in the
construction of the proof ofR.

But despite this (hopefully) convincing informal argumentwe can provide a formal
proof that from(Pa ∧ Pb) → R we can indeed show(Pa → R) ∨ (Pb → R).

1. (Pa ∧ Pb) → R

2. ¬((Pa → R) ∨ (Pb → R)) Ass

3. ¬((¬Pa ∨ R) ∨ (¬Pb ∨ R)) Def → .2
4. Pa ∧ ¬R ∧ Pb ∧ ¬R DeMorgan,¬E

5. ¬(Pa ∧ Pb) ∨ R Def → .1
6. ¬(Pa ∧ Pb) Ass

7. ⊥ From − 4, 6
8. R Ass

9. ⊥ From − 4, 8
10. ⊥ ∨E, 5, 6, 7, 8, 9
11. (Pa → R) ∨ (Pb → R) Cont, 2, 10

What has gone wrong?

1.2 Explanation

The first mistake in Section 1.1 is the assumption that the interpretation of formal
statements is both obvious and universally agreed upon. Indeed the statementFS can
be given a classical or a constructive [9, 10] interpretation.

With a constructive interpretation the informal argument is indeed correct. And the
formal argument is incorrect as it is based upon classical logic. But if, as is common,
the statement is given a classical logic interpretation then the mistake was made before
the informal argument was constructed and indeed before theformal statement was
given. The very first two sentences of Section 1.1 are mistaken. Classical logic is a

3



logic of truth (or at least truth as formalised by truth table semantics). It is constructive
logic that is a logic ofproof and hence choosing to base the argument on what can
beprovedis a mistake, as it makes use of the wrong semantics. Hence anyinformal
argument based on proof cannot be said to relate to a classical interpretation of any
formal statement. In particular the previously give informal argument does not relate
to the classical interpretation ofFS.

As using the semantics can so easily lead us astray it might betempting to avoid it
but this is not always very practical. To reason syntactically that one statement cannot
be proved from another would require reasoning about all proofs which is not easy to
do. In such situations it is usual to reason about a semanticsand appeal to a soundness
and completeness result.

This example illustrates that:

1. reasoning with semantics can be very helpful;

2. it is important to select the correct semantics; and

3. an apparently innocent change to the semantics, in the example the change is
from truth to proof, can have disastrous effects.

One of the worst aspects of such “mistakes” is that they cannot be found by con-
sidering the formal arguments alone.

Naturally if changing the semantics is difficult then one solution is simply not to do
it. But as illustrated later (Section 6) semantics are oftenchanged even by theoreticians.
It is useful to engineers and theoreticians alike to have different ways to safely interpret
formal statements and choose the most appropriate interpretation for a given situation.

Here we are interested in the refinement of specifications andit is very clear from
the many definitions in the literature there is certainly no one universally agreed upon
definition of refinement or indeed one interpretation of whatrefinement means.

We will next look at how an engineer might informally interpret the statement that
A is a refinement ofC and provide some answers to the question: what use is a formal
refinement to an engineer?

2 Interpretation and robustness of refinement

We are interested in refinement, that is in the formal transformation of an abstract
specification into a more concrete specification.

Before we give our formalisation of refinement we look at three informal interpre-
tations of refinement each based on an associated interpretation of a specification. Each
of these different interpretations may be of use to the engineer in different situations.

Refinement interpreted as preservation of guarantee,A ⊑p C Under this interpre-
tation a specification is interpreted as aguaranteethat “if the entity is used in the
prescribed way then one of the prescribed observable behaviours will be seen and
nothing else”. Then we have the following natural informal notion of refinement,
which appears in many places in the literature [6, 4, 5, 11, 12, 13]

4



The entityC is a refinement of a more abstract entityA when no user
of A could observe if they were givenC in place ofA, which is to
say that nothing they observe ofC would suggest that they were not
observingA, so the guarantee given withA is preserved.

Refinement interpreted as implication,A ⊑→ C Under this interpretation a specifi-
cation is interpreted as an assertion about the behaviour ofan entity (formalised
naturally as a logical termI→(A)) [14]. A refinement relation holds between
entitiesC andA if and only if the behaviours asserted by the interpretationof C
satisfy the interpretation ofA, formalised byA ⊑→ C iff I→(C) → I→(A).

Refinement interpreted as subset of implementations,A ⊑i C Under this interpre-
tation a specification is given by the set of its implementations. A concrete
specification is a refinement of a more abstract specificationif and only if the
implementations satisfying the concrete specification area subset of the imple-
mentations satisfying the abstract specification.

Definition 1 Two interpretations of refinement⊑x and⊑y are called consistent if and
only if for all entitiesA andC (A ⊑x C) ↔ (A ⊑y C).

Definition 2 The more interpretations a formal definition of refinement has that are
consistent with each other, the more robust is the definition.

In what follows, we advocate robustness both because it is useful to have different
ways to interpret (and formalise) the same intuition (aboutwhat refinement is) and
because we believe errors with the semantics (of refinement)are less likely to occur
given a robust definition characterising the intuition.

We also see that, in the three sorts of refinement listed above, the refinement pre-
order characterises the semantics of a specification, and vice versa. This is another
way in which a definition of refinement and a semantics of specifications can both be
regarded as very robust.

The idea that refinement and specification should characterise each other is not a
new idea, nor is the usefulness of having more than one semantics. In the event-based
world it would seem strange to use failure semantics and not use failure refinement,
although it would be possible to do this. Matthew Hennessy [15] constructs an elegant
trio of semantic and refinement definitions, axiomatic, testing and denotational, and
formally proves that are all consistent. He then goes on to consider different refinement
preorders, but for each he constructs a different axiomatic, testing and denotational
semantics.

In the event-based literature the definition of refinement frequently characterises the
denotational semantics and hence it is not uncommon to use the definition of refinement
to define the meaning or denotation of the operational semantics. This has been so
popular an approach that a survey of over 150 different semantics, all based on different
definitions of refinement, can be found in [16, 17].

In the state-based literature this approach is not so common, but what is common is
to define the semantics of an operation as a partial relation.Then different definitions
of refinement, based on different interpretations of the partial relations, can be given

5



E
X

U

Figure 1: Entity, conteXt and User and their interfaces

but without changing the semantics. In Section 6 we will discuss some consequences
of this approach that could be avoided by using a semantic definition that, as in event-
based approaches, is closely related to a robust definition of refinement.

3 A robust interpretation of refinement

This section gives an outline of a formal definition of refinement and three consistent
interpretations that follow from it (for further details see [7, 8]).

Our first step towards formalising refinement is to decide what the user can observe,
so we make some assumptions. In practice we are interested inreasoning about and
refining small entities (modules) which are combined to makea larger entity. Thus we
model an entityE as existing in some contextX (the rest of the larger whole) interacting
on the set of actionsAct. All E’s actions interact withX at theE-X interface (see
Figure 1).X andU interact at a different interface and on a disjoint set of actions. We
model the observer as apassiveuserU that is a third entity that observes or interacts
with X, but neither blocks theX actions nor interferes withE-X communication.

We will give formal general definitions of refinement with explicit parameters rep-
resenting bothΞ, the contexts in which entities will be placed, andO, an observation
function from entities to sets of traces from℘(O) (of event names or states), where
each tracetr ∈ O is a potential observation.

This general model can be made more concrete by instantiating its parameters
defining : one, how we represent our entities; two, the sets ofcontextsΞ; and three, the
observation functionO from entities to sets of traces.

This results in what we call aspecial theory. It has been shown ([18]) that some of
the classic theories of operations, abstract data types (ADT) and processes that appear
in the literature are special theories of the general model given here.

3.1 Refinement interpreted as preservation of guarantee

Definition 3 LetΞ be a set of contexts each of which the entitiesA andC can commu-
nicate privately with, and letO be a function which returns a set of traces, each trace
being what a user observes of an execution. Then1

A ⊑Ξ,O C , ∀x ∈ Ξ.O([C]x) ⊆ O([A]x)

1[E]x denotes the execution of entityE in contextx.

6



3.2 Refinement as implication

It is easy to see that we can give entities in our general modela relational semantics. We
are not the first to use relations as a semantics for a diverse range of models: indeed
Hoare and He in their Unifying Theories of Programming (UTP,[14]) do just this.
The main difference between this work and others is that we motivate our relational
semantics by defining a consistent testing semantics.

Definition 4 Let Ξ be a set of contexts each of which the entityA can communicate
privately with, andO be a function which returns a set of traces, each trace being
what a user might observe of an execution. The relational semantics of an entityA is a
subset ofΞ × O. Let

AΞ,O(x, o) , x ∈ Ξ ∧ o ∈ O([A]x)

then
JAKΞ,O , {(x, o)|AΞ,O(x, o)}

Refinement is now the subset relation between relations or implication between the
predicates that define them.

For any entitiesA andC let

A ⊑→,Ξ,O C , CΞ,O → AΞ,O

then we have our first consistency result:

A ⊑Ξ,O C ⇔ JCKΞ,O ⊆ JAKΞ,O ⇔ A ⊑→,Ξ,O C

3.3 Refinement as subset of implementation

Given that refinement is frequently characterised as the reduction of non-determinism
and that software is currently run on deterministic computers we will define what it
means to be deterministic in our general model.

Definition 5 An entityA is deterministic iff its relational semantics is a function:

DetΞ,O(A) , (x, o) ∈ JAKΞ,O ∧ (x, p) ∈ JAKΞ,O ⇒ o = p

We now say thatimplementations are deterministic entitiesand so we can define
the semantics of an entityA to be the set of implementations that satisfy it:

JAKI,Ξ,O , {(I|DetΞ,O(I) ∧ JIKΞ,O ⊆ JAKΞ,O}

and then for any entitiesA andC:

A ⊑I,Ξ,O C , CI,Ξ,O ⊆ AI,Ξ,O

Using this we recreate the relational semantics of the entity by taking the union of
the functions and see our second consistency result:

A ⊑I,Ξ,O C ⇔ A ⊑Ξ,O C

7



4 Interfaces

In this section we will show why both contexts and users are needed to define refine-
ment by demonstrating situations where two different typesof interfaces are needed:
a transactionalinterface between entities and contexts and aninteractiveinterface be-
tween contexts and users.

We will refer to an interface astransactionalif interaction (observation) occurs
at no more than two distinct points: initialisation and finalisation of the entity. If
termination is successful then there may be distinct observations that could be made at
finalisation, but if termination is unsuccessful then all that can be “observed” is that the
entity fails to terminate.

An example of an entity with transactional interaction is a program that accepts a
parameter when called and returns a value when it terminates. Clearly if the program
fails to terminate no value can be returned.

In contrast we refer to an interface asinteractivewhen interaction can occur at
many points throughout the execution. Hence with interactive interfaces more than one
observation can be made prior to termination and even prior to non-termination.

An example of an interactive entity is a coffee machine. To obtain two cups of cof-
fee the user first inserts a coin, then pushes the appropriatebutton and takes the first cup
of coffee. But if after inserting a second coin the vending machine now “fails to ter-
minate” by not producing a second cup of coffee the previously successful interactions
mean that what has been observed cannot be represented by noting non-termination
alone. (We still have our first cup of coffee!)

5 Abstract Data Type Refinement

With entities being abstract data types, contexts being theprograms that use the ADTs
(by using, calling, the operations the ADT provides) and users being the users of the
program, we must have an interactive ADT/program interface. But the definition of
refinement is sensitive to the type of program - user interface (see [7] for details).

A computational method for deciding whether data refinementholds between ADTs
is problematic as the definition of data refinement involves quantification over all pro-
grams (usually an infinite collection). But the classic Hoare, He and Saunders result
[19] uses retrieve or simulation relations between the state spaces of two the ADTs to
define a forward or backward simulation between them. Usefully, the simulations are
quantified only over all operations (a finite collection) in the ADTs, and it is proved
that they are sound and jointly complete with respect to refinement. Thus the Hoare,
He and Saunders guarantee is that ifA is a forward or backward simulation ofC then
any observation that can be made of any program usingC could have been made of the
same program usingA.

The Hoare, He and Saunders proof is based on the operations having a relational
semantics and the behaviour of the program under consideration being defined by se-
quential composition of the relational semantics of individual operations. The proof
makes no restriction on the relations used to model the operations and to define the
retrieve or simulation relation.

8



Partial relations are open to a variety of interpretations (see [5, 6, 4] for three dis-
tinct interpretations). For example, letD , {a, b} be a state space of two states and
take an operationP whereJPK ⊆ D ×D define the semantics ofP by JPK , {(a, a)}.
This specification can be considered either as requiring a partially correct implemen-
tation: when an implementation ofP is started from statea then if it terminates it
will terminate in statea; or as requiring a totally correct implementation: when an
implementation of operationP is started from statea then it will terminate and it will
terminate in statea. In addition the implementation’s behaviour from stateb could be
interpreted as undefined or as blocked.

We need to be wary of using the sequential composition of partial relations since as
Spivey pointed out modelling sequential composition of operations as the relational
composition of partial relations has a meaning that“differs from the meaning that
would be be natural in a programming language”, Spivey [20, p136].

For example letJOK , {(a, a)(a, b)} andJPK , {(a, a)} and letJO; PK , JOK; JPK.
Spivey’s problem can be seen by consideringJO; PK = {(a, a)} and asking what has
happened when an implementation ofO terminates in stateb.

It is easy to see that modelling the relational semantics of asequence of operations
as the sequential composition of the relational semantics of the individual operations
is consistent with a partial correctness interpretation but not consistent with a total cor-
rectness interpretation . The Hoare, He and Saunders results is based on the relational
semantics of a sequence of operations being the sequential composition of the rela-
tional semantics of the operations. Thus to avoid Spivey’s problem operations with a
partial relation semantics must have a partial correctnessinterpretation2.

6 Semantic changes, the benign and the problematic

In the state based world Z, B and Event B use partial relationsas their operational
semantics. Thus Z, B and Event B formal models are of interestto us as they possess a
formal operational semantics and yet are, by design, open toa variety of interpretations.

This has the desirable consequence of allowing these methods to be flexible in that
they can be used in a wide range of situations. Also, though this opens up the possibility
that problems, of the kind discussed in Section 1 might be introduced.

Experts in Z know only too well that, given some common interpretations of Z, to
use Z safely (avoiding the problems discussed in Section 5) you need to restrict how it
is used to a particular (informal) methodology, a good example of which is the informal
method followed in [5].

B [13] is like Z but with its methodology formally built into the B tool kit. The
relational semantics of a B operation is, in part of its domain, totalised so as to be
undefined. But this happens only in part of its domain; the relational semantics is still
a partial relation. Then, prior to computing refinement of a Bmachine it is required
that all operations be proved total (see [13, p297 Property 6.4.1, p525 Condition1]) on
some domainD and that it be proved that only states inD are reachable. Thus B has

2To readers familiar with [4] this may seem so obvious that it is not worth stating but to casual readers
familiar with [5] this may even seem untrue. Consequently this point will be discussed in more detail in
Section 6.1.

9



a two stage development: initially operations with partialrelational semantics can be
defined but when a machine is to be refined Spivey’s problem canbe ignored as only
operations with a total relational semantics need be considered.

Event B is more like Z in that it is, by design, open to many interpretations and
Spivey’s problem is not avoided by any formal methodology. Most notably Event B
refinement is defined to be (only) the existence of forward simulation and not the “full”
refinement as defined in B [13] and elsewhere [5, 19, 4, 6]. Interesting questions that
arise from this are: what kind of contexts are Event B machines designed to operate
in?; and what guarantee does Event B refinement offer the engineer?

6.1 Data types or Processes

Woodcock and Davies’ definition of data refinement in [5] is that taken from [19] and
applied to ADT with operations that are interpreted as undefined outside of precondi-
tion, which some call contractual. Although using Z, with its partial relation seman-
tics, they define data refinement while using a total correctness interpretation of the
relational semantics. They have achieved this by changing the semantics of operations
from Z partial relations to a lifted totalled semantics prior to computing data refine-
ment. Another view is that the semantics has not changed and the transformation to
total relations is just a step in the computation of refinement. Whatever your view, the
transformation exists. For ease of discussion we will referto it as a transformation of
the semantics.

The engineer must therefore bear in mind that the Hoare, He and Saunders guaran-
tee applied to the data types in [5] is based on operations with a total relation semantics
due to the transformation of the semantics, not on Z’s “official” partial relation seman-
tics.

In [5, Table 16.1] value passing operations are modelled my winding the values
input into a sequence initialised at the start of the programexecution and the output
values wound into a sequence to be observed. In addition another set of rules [5, Table
16.2] is defined in which input and output occurs and can be seen at each step.

In our terminology there is, therefore, a change in the program/user interface from
transactional to interactive, and thus a change in the definition of refinement. Because
we advocate using robust definitions of refinement where refinement can be used to
define the semantics, we choose to view this change of refinement as a second transfor-
mation in the semantics. However, this is benign, as the two sets of rules are apparently
equivalent.

Subsequently, Bolton and Davies’ definition of data refinement in [6] is also that
taken from [19] but is applied to ADTs with operations that are interpreted as blocked
or guarded outside of precondition, which some call behavioural. They go on to make
similar semantic transformations to those in [5]. But this time the second semantic
transformation, that of changing the program/user interface from transactional to inter-
active, results in a subtly different refinement relation for which backward simulation
is not sound[21]. One of the difficulties is that having made the apparently benign
transformation in the semantics the lack of soundness cannot be discovered simply by
looking at the formality. Just as in our example Section 1.1,looking at the formal proof
alone will not reveal any errors.

10



6.2 Relational semantics or Logical semantics

The initial semantic transformation in Section 6.1 replaces partial relations with lifted
total relations. The logical or axiomatic approach provides an alternative to using a
transformation because it keeps the partial relation semantics but defines sets of axioms
to characterise refinement.

Which semantics, the relational or logical, was used was regarded as unimportant
as any refinement based on the logical definition was also, it was assumed, a refinement
based on the relational definition.

But recently Boiten and Derrick have shown [22] a the key result: the completeness
of forward and backward simulation with respect to data refinement fails to hold for
operations that are blocked outside of precondition when their semantics is given in
the logical style, although it still holds for the relational-style semantics [21]. Further,
using arestrictedsimulation relation, a soundness and completeness result can be re-
established [21] for the logical style. This again shows us that an apparently innocent
change in semantics can have unforeseen consequences.

If we regard Z’s semantics as given by partial relations (where outside of precon-
dition a specification is necessarily silent about what happens due to the partiality),
yet use an axiomatic or logical definition of refinement, based for example on “un-
defined outside of precondition”, then we have a semantics that is silent about what
happens outside of precondition but a definition of refinement that is not silent about
what happens outside of precondition. We can view this as saying that the definition of
refinement extends the semantics with additional meaning, not found in the semantics
(in this case the additional meaning defines the behaviour outside of the precondition).

It is now not clear if the meaning of the specification is givenby the semantics or
by the definition of refinement. If the meaning is given by the semantics then why use
this definition of refinement that is based on a different meaning? If the meaning is
given by refinement then why not formalise this in the semantics?

A way to make the formal model more robust would be, as we have advocated, to
change the semantics to keep it “consistent” with the definition of refinement.

6.3 Conclusions

From the previous two sections and our example in Section 1.1we conclude that un-
derstanding or interpreting formal models to the extent required to prevent failure of
real (software) systems is far from easy. Apparently innocent changes to the semantic
model can very easily introduce errors that are hard to detect even by theoreticians.
Despite the difficulty of designing safe, useful theoretical frameworks we still need to
give engineers greater freedom in how they develop software.

7 Stepwise design

To design reliable complex systems that are open to human understanding we need
both simple and intuitive high-level descriptions that clearly reflect the required be-
haviour and detailed low-level descriptions that an implementation can be clearly seen

11



to satisfy.
If we tried to specify everything down to the last detail early in the design process

we would fail to see any clear, big picture. Consequently we wish to add detail in a
stepwise fashion through out the design process. But we wishto avoid leaving informal
any essential methodological restrictions, so we wish to follow the design of B and
formalise, as much as we can, any essential methodology.

7.1 Stepwise semantics

The advantage of basing a wide variety of semantic models allon one common se-
mantics is that we can uniformly define some operations, suchas parallel composition,
choice, event hiding, recursion on the semantics and then, with some effort, lift these
definitions to the more detailed semantic models. For example, [16, 17] and referred to
earlier, has one definition of parallel composition not 150 definitions of parallel com-
position.

We advocate the following steps towards a target semantics.
Step 1.Any formal statement is written using some well-defined syntax. For exam-

ple, let there be termsTΣ constructed from some signatureΣ , {⊕}∪Act, whereAct

is a set of actions of interest, andAct ⊆ A, whereA is the set of all possible actions,
and⊕ is an in-fixed binary operator⊕ ∈ A × A → A.

To be of use to an engineer this must have some interpretationin the informal
world where they work and do their modelling and designing. Such an interpretation
ISy of terms in our example language is very flexible in as much as the terms can be
interpreted as representing any entity from a set of things with a binary operation on
this set. This syntax puts no further restrictions on what interpretations can be made.

Syntax

(⊕, Act)

Sem1

(∪, JActK)

Inf. world

J K

ISy

ISem

We can reduce the flexibility in the way the terms can be interpreted by specifying
a formal semantics for them. So, continuing our example, letus define the formal
semantics of an actiona to be a relationJaK ⊆ S × S over some setS, JActK ,

{JaK|a ∈ Act} and the semantics of the binary operator to be set unionJ⊕K , ∪.
From the semantic interpretation we can infer and equation:Ja⊕aK = JaK. So now

the valid interpretations are restricted to a subset of the valid interpretations given by
ISy, namely by eliminating those that do not obey the equation.

We will write ISem for the standard and obvious informal interpretation ofS as
some set of states,a in Act as being an operation which moves between states andJaK as
the state-to-state relational semantics of the operationa. ISem is a valid interpretation
for this more restricted semantics since is obeys the equation. And of courseISem talks
about less of the informal world thanISy did, as our diagram suggests.

12



Let IA andIC .J K be informal mappings from some formal domainD to the real
world. We will refer toIC as a I-refinement ofIA when for alld in D, IC(JdK) is a
subset ofIA(d).

We have used some English here rather than using only mathematical notation to
remind the reader that this has to be an informal definition (the informal world is in-
volved), but from now we will rely on the reader to remember that all interpretations
are an informal mapping into the informal (“real”) world. Clearly in our example
ISem(JdK) is a subset ofISy(d) and henceISem is an I-refinement ofISy.

To help make intuitions more robust we require that:

1. interpretations are homomorphic, e.g.ISy(a ⊕ b) , ISy(a)ISy(⊕)ISy(b) and
ISem(a ⊕ b) , ISem(a)ISem(⊕)ISem(b)

2. so are semantic mappings,J K the semantics of a term is given by the semantics
of its components, e.g.Ja ⊕ bK , JaKJ⊕KJbK

3. informal intuitions are preserved,ISy(⊕) = ISem(J⊕K)

Step 2. Let us extend our example and assume thatJaK = {(1, 1)} and the state
space is given byS = {1, 2}. This relational semantics can be interpreted in several
different ways, see Section 5 for four distinct interpretations.

Syntax

(⊕, Act)

Sem1

(∪, JActK)

partial relations

Sem2

(J∪KS , JJActKKS)

lifted total relations

Inf. world

J K J KS

ISy

ISem

IS2

Just as we refined how we interpret the syntax by defining the semantics of the
terms we can also refine how we interpret the initial semantics Sem1 by defining a
meaning (second semantics,Sem2) for the initial semantics. In our example we can
define how to lift and totalise the initial partial relation semantics. Lifting adds⊥ to
S to give S⊥ and operations now haveS⊥ × S⊥ relational semantics and⊥ on the
left of the relation is interpreted as the operation fails tostart and on the right of the
relation it is interpreted as the operation fails to terminate3. How we totalise the relation
formalises the interpretation we wish to give it.

InterpretingJaK = {(1, 1)} as blocked (guarded) outside of precondition and re-
quiring a totally correct implementation (so it must terminate from state1) we map
all, and only, states outside of the precondition to⊥ and only to⊥. Thus we have
J{(1, 1)}KS = {(1, 1), (2,⊥), (⊥,⊥)}.

In our example the meaning of the partial relation semanticsis has been formalised
by the application of a semantic functionJ KS that lifts and makes total the partial

3For details of how to interpret the usual pre state, post state relations as relations between contexts and
observation traces see [7, 21] and for details of how to extend this interpretation to cover lifted relations
S⊥ × S⊥ see [21]

13



relations. Of course we do not need to go through the intermediate semantics (partial
relations) we could simply use a mappingJJ KKS from the syntax to the new semantics.
The advantage of using an intermediate semantics is that mathematical definitions and
results can be established for the the initial, or intermediate, semantics and this used to
establish similar results for a whole range of more detailedsemantics.

Because care is needed to make sure that intuitions at a high level of abstraction, for
example with partial relation semanticsJ K, transfer correctly to a less abstract level,
for example for the lifted totalised semanticsJ KS we advocate keeping to the three
points raised at the end of step 1.

7.2 Refining interpretations

Applying stepwise design to one of our robust interpretations of a high-level refine-
ment, as defined in Section 3, can be done by including an explicit refinement operator
⊑H in the signature of our terms in the definition of our syntax instep 1. This allows us
to talk about refinement at some level of abstraction, or equivalently gives a theory of
refinement at some level of abstraction. We can now interpretthis theory as a distinct
further theory based at another level of abstraction. We will often use this method to
view the original refinement in the original theory as takingplace at a high-level of
abstraction and the further theory given by the interpretation of the high-level theory
as giving us a lower-level theory with its own lower-level refinement , which we will
call ⊑L (see [8] for more details). This interpretation between theories is formalised
by defining two semantic mappings. We use a semantic mappingJ Kv to interpret, or
embed, high-levelEH entities as low-level entitiesEL and a separate semantic mapping
vA to interpret, orembed, low-level entities as high-level entities. When they form
a Galois connection we call such pairs of semantic mappings avertical refinement,
denoted by⊑v, and writeEH ⊑v JEHKv

In Section 3.2 we have refinement as implication and we can view the context and
observation function pair from that section as defining a logical theory and then apply
the well-known reading of Galois connections as theory transformations between two
theories, one at a high level based on(ΞH, OH) and the other at a lower level based on
(ΞL, OL). Galois connections thus provide a very strict design step between theories
and preserve many features of the theories including union,subset (which we use to
define refinement), and fixed points.

For our purposes all we need consider are simple Galois connections such as the
subset morphismsJ K⊇ whereEH⊆JEHK⊆ and henceEH ⊑⊇ EL implies EH ⊆ EL.
Intuitively we can think of(ΞH, OH) as defining aframeoutside of which the high-
level (abstract) specification issilent. We note that we can usesilent outside of frame
to give yet another valid interpretation to Z’s partial relational semantics.

The simple version of vertical refinement with subset morphisms is able to intro-
duce nondeterminism, outside of frame, unlike one of our refinements defined in Sec-
tion 3 which never introduce nondeterminism. Nevertheless, we call it a refinement
because it offers an engineer a simple guarantee: that any behaviour of the low-level
(concrete) specification that lies within the frame is a behaviour of the high-level (ab-
stract) specification is behaviour of the abstract specification.

14



What happens to Spivey’s problem and the lack of monotonicity when we use ro-
bust definitions of refinement and semantics? We are not attempting to offer a magic
solution to these problems because we believe there are none. Assume we start with
a robust definition of semantics and refinement where the semantics are partial rela-
tions. Recall that fixing the refinement fixes the semantics, so if we try to change the
refinement to formalise the behaviour outside the precondition, e.g to being undefined,
or to being guarded, then we are forced to change the semantics. We can change the
semantics by constructing a Galois connection between two theories. This is where our
approach stops us relying on informal methodology as we now explain.

If Zop is a Z operation schema it has a partial relation semanticsRop with domain
dom(Rop) and rangeran(Rop). From this we can define the contextsΞop = dom(Rop)
and observations{(a, b)|a ∈ dom(Rop) ∧ b ∈ ran(Rop)}. Thus different operation
schemas exist on different layers, or in different theories, and we make use of Galois
connections to relate one theory with another. We have not yet considered relating a
set of theories to a single theory, and indeed it is unclear how we would interpret a set
of theories as a single thing. Hence we have not yet attemptedto relate partial relations
as a whole to any theory

A well-known solution to these problems, that B [13] adopts,is to restrict refine-
ment and sequential composition to being applied only when all operations are total on
some domainD and the operations never leaveD. Adopting this solution we can re-
strict the operational semantics to total relations overD × D. Thus all operations now
exist in the same theory or layer. With this restriction, proved to be useful in practice, it
is easy to establish that: Spivey’s problem no longer applies, monotonicity results hold
andJa ∪ bKS , JaKS ∪ JbKS is true whenJ∪KS , ∪.

What we have ended up with is a very familiar two-step approach: first, reason
about partial relations and avoid refinement and sequencing; and, secondly, only when
these partial relations have been used to build total relations do we apply refinement
and sequencing. We make no claim for novelty here as it can agued that it appears in
the B tool kit, in the informal methodology of Using Z [5] and even in Dijkstra’s early
work [23]

8 Conclusion

The use of robust definitions of semantics and refinement as favoured in the event-
based literature has been used as the basis for a state-basedapproach that keeps track
of what is in the formal model and what remains to be interpreted informally. We
advocate three broad principles:

One define refinement and the semantics of specifications to be robust

Two even small changes to a formal semantics should be checked formally

Three in stepwise design the semantic mappings should respect howspecifications are
composed by their operators

1. the semantics of a term is built from the semantics of its components

15



2. our informal intuitions are preserved

By following these principles we have interpreted partial relations as silent outside of
frame and only if we consider operations that are all total onsome domain have we
been able to proceed by formal stepwise development.

References

[1] Ltd, T.P.: The Fabulous Adventures of Nasruddin Hoja. (Ta-Ha Publishers Ltd.
(UK))

[2] Roscoe, A.: The Theory and Practice of Concurrency. Prentice Hall International
Series in Computer Science (1997)

[3] Valmari, A., Tienari, M.: Compositional Failure-basedSemantics Models for
Basic LOTOS. Formal Aspects of Computing7 (1995) 440–468

[4] de Roever, W.P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Meth-
ods and their Comparison. Cambridge Tracts in Theoretical Computer Science
47. Cambridge University Press (1998)

[5] Woodcock, J., Davies, J.: Using Z: Specification, Refinement and Proof. Prentice
Hall (1996)

[6] Bolton, C., Davies, J.: A singleton failures semantics for Communicating Se-
quential Processes. Formal Aspects of Computing18 (2006) 181–210

[7] Reeves, S., Streader, D.: General refinement, part one: interfaces, determin-
ism and special refinement. In: Refine08 - International Refinement Workshop,
Turku, Elsevier (2008) to appear.

[8] Reeves, S., Streader, D.: General refinement, part two: flexible. In: Refine08 -
International Refinement Workshop, Turku, Elsevier (2008)to appear.

[9] Troelstra, A.S.: From constructivism to computer science. Theor. Comput. Sci.
211(1999) 233–252

[10] Bridges, D., Reeves, S.: Constructive Mathematics in Theory and Programming
Practice. Philosophia Mathematica7 (1999) 65–104

[11] Derrick, J., Boiten, E.: Relational concurrent refinement. Formal Aspects of
Computing15 (2003) 182–214

[12] Derrick, J., Boiten, E.: Refinement in Z and Object-Z: Foundations and Advanced
Applications. Formal Approaches to Computing and Information Technology.
Springer (2001)

[13] Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge Univer-
sity Press (1996)

16



[14] Hoare, C., Jifeng, H.: Unifying Theories of Programming. Prentice Hall Interna-
tional Series in Computer Science (1998)

[15] Hennessy, M.: Algebraic Theory of Processes. The MIT Press (1988)

[16] van Glabbeek, R.J.: Linear Time-Branching Time Spectrum I. In: CONCUR ‘90
Theories of Concurrency: Unification and Extension. LNCS 458, Springer-Verlag
(1990) 278–297

[17] van Glabbeek, R.J.: The Linear Time - Branching Time Spectrum II. In: Inter-
national Conference on Concurrency Theory. (1993) 66–81

[18] Reeves, S., Streader, D.: State- and Event-based refinement. Technical report,
University of Waikato (2006) Computer Science Working Paper Series 09/2006,
ISSN 1170-487X, http://researchcommons.waikato.ac.nz/cmspapers/12/.

[19] He, J., Hoare, C., Sanders, J.: Data refinement refined. ESOP 86 LNCS213
(1986) 187–196

[20] Spivey, J.M.: The Z notation: A reference manual. 2nd. edn. Prentice Hall (1992)

[21] Reeves, S., Streader, D.: Guarded operations Refinement and Simulation. Tech-
nical report, University of Waikato (2009) Computer Science Technical Report
0–/2009 , http://www.cs.waikato.ac.nz/∼dstr.

[22] Boiten, E., Derrick, J.: Incompleteness of relationalsimulations in the blocking
paradigm. In ???? (2008)

[23] Dijkstra, E.W.: A Discipline of Programming. PrenticeHall (1976)

17


