2,357 research outputs found

    Higher-Order Process Modeling: Product-Lining, Variability Modeling and Beyond

    Full text link
    We present a graphical and dynamic framework for binding and execution of business) process models. It is tailored to integrate 1) ad hoc processes modeled graphically, 2) third party services discovered in the (Inter)net, and 3) (dynamically) synthesized process chains that solve situation-specific tasks, with the synthesis taking place not only at design time, but also at runtime. Key to our approach is the introduction of type-safe stacked second-order execution contexts that allow for higher-order process modeling. Tamed by our underlying strict service-oriented notion of abstraction, this approach is tailored also to be used by application experts with little technical knowledge: users can select, modify, construct and then pass (component) processes during process execution as if they were data. We illustrate the impact and essence of our framework along a concrete, realistic (business) process modeling scenario: the development of Springer's browser-based Online Conference Service (OCS). The most advanced feature of our new framework allows one to combine online synthesis with the integration of the synthesized process into the running application. This ability leads to a particularly flexible way of implementing self-adaption, and to a particularly concise and powerful way of achieving variability not only at design time, but also at runtime.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    Requirements and Tools for Variability Management

    Get PDF
    Explicit and software-supported Business Process Management has become the core infrastructure of any medium and large organization that has a need to be efficient and effective. The number of processes of a single organization can be very high, furthermore, they might be very similar, be in need of momentary change, or evolve frequently. If the ad-hoc adaptation and customization of processes is currently the dominant way, it clearly is not the best. In fact, providing tools for supporting the explicit management of variation in processes (due to customization or evolution needs) has a profound impact on the overall life-cycle of processes in organizations. Additionally, with the increasing adoption of Service-Oriented Architectures, the infrastructure to support automatic reconfiguration and adaptation of business process is solid. In this paper, after defining variability in business process management, we consider the requirements for explicit variation handling for (service based) business process systems. eGovernment serves as an illustrative example of reuse. In this case study, all local municipalities need to implement the same general legal process while adapting it to the local business practices and IT infrastructure needs. Finally, an evaluation of existing tools for explicit variability management is provided with respect to the requirements identified.

    Context-driven progressive enhancement of mobile web applications: a multicriteria decision-making approach

    Get PDF
    Personal computing has become all about mobile and embedded devices. As a result, the adoption rate of smartphones is rapidly increasing and this trend has set a need for mobile applications to be available at anytime, anywhere and on any device. Despite the obvious advantages of such immersive mobile applications, software developers are increasingly facing the challenges related to device fragmentation. Current application development solutions are insufficiently prepared for handling the enormous variety of software platforms and hardware characteristics covering the mobile eco-system. As a result, maintaining a viable balance between development costs and market coverage has turned out to be a challenging issue when developing mobile applications. This article proposes a context-aware software platform for the development and delivery of self-adaptive mobile applications over the Web. An adaptive application composition approach is introduced, capable of autonomously bypassing context-related fragmentation issues. This goal is achieved by incorporating and validating the concept of fine-grained progressive application enhancements based on a multicriteria decision-making strategy

    Feature-based generation of pervasive systems architectures utilizing software product line concepts

    Get PDF
    As the need for pervasive systems tends to increase and to dominate the computing discipline, software engineering approaches must evolve at a similar pace to facilitate the construction of such systems in an efficient manner. In this thesis, we provide a vision of a framework that will help in the construction of software product lines for pervasive systems by devising an approach to automatically generate architectures for this domain. Using this framework, designers of pervasive systems will be able to select a set of desired system features, and the framework will automatically generate architectures that support the presence of these features. Our approach will not compromise the quality of the architecture especially as we have verified that by comparing the generated architectures to those manually designed by human architects. As an initial step, and in order to determine the most commonly required features that comprise the widely most known pervasive systems, we surveyed more than fifty existing architectures for pervasive systems in various domains. We captured the most essential features along with the commonalities and variabilities between them. The features were categorized according to the domain and the environment that they target. Those categories are: General pervasive systems, domain-specific, privacy, bridging, fault-tolerance and context-awareness. We coupled the identified features with well-designed components, and connected the components based on the initial features selected by a system designer to generate an architecture. We evaluated our generated architectures against architectures designed by human architects. When metrics such as coupling, cohesion, complexity, reusability, adaptability, modularity, modifiability, packing density, and average interaction density were used to test our framework, our generated architectures were found comparable, if not better than the human generated architectures

    Dynamic adaptation of service compositions with variability models

    Full text link
    Web services run in complex contexts where arising events may compromise the quality of the whole system. Thus, it is desirable to count on autonomic mechanisms to guide the self-adaptation of service compositions according to changes in the computing infrastructure. One way to achieve this goal is by implementing variability constructs at the language level. However, this approach may become tedious, difficult to manage, and error-prone. In this paper, we propose a solution based on a semantically rich variability model to support the dynamic adaptation of service compositions. When a problematic event arises in the context, this model is leveraged for decision-making. The activation and deactivation of features in the variability model result in changes in a composition model that abstracts the underlying service composition. These changes are reflected into the service composition by adding or removing fragments of Business Process Execution Language (WS-BPEL) code, which can be deployed at runtime. In order to reach optimum adaptations, the variability model and its possible configurations are verified at design time using Constraint Programming. An evaluation demonstrates several benefits of our approach, both at design time and at runtime.This work has been developed with the support of MICINN under the project everyWare TIN2010-18011 and co-financed with ERDF.Alférez Salinas, GH.; Pelechano Ferragud, V.; Mazo, R.; Salinesi, C.; Díaz, D. (2014). Dynamic adaptation of service compositions with variability models. Journal of Systems and Software. 91:24-47. https://doi.org/10.1016/j.jss.2013.06.034S24479

    Adaptive model-driven user interface development systems

    Get PDF
    Adaptive user interfaces (UIs) were introduced to address some of the usability problems that plague many software applications. Model-driven engineering formed the basis for most of the systems targeting the development of such UIs. An overview of these systems is presented and a set of criteria is established to evaluate the strengths and shortcomings of the state-of-the-art, which is categorized under architectures, techniques, and tools. A summary of the evaluation is presented in tables that visually illustrate the fulfillment of each criterion by each system. The evaluation identified several gaps in the existing art and highlighted the areas of promising improvement

    Realising Variability in Dynamic Software Product Line Solutions

    Get PDF
    Modern systems need to be able to self-adapt to changes in user needs, and changes affecting the system itself or its environment. Dynamic software product line (DSPL) is an engineering approach for developing self-adaptive systems based on commonalities and variabilities for a family of similar systems. Currently, many DSPL approaches fail to meet all adaptability requirements, and in many cases, they are developed in a such unstructured manner that the controller is not explicitly represented, for example. We specify a two-dimension taxonomy to address basic technical issues for realising variability in DSPLs. The self-adaptation dimension classifies the different design choices for the adaptability requirements. The DSPL variability dimension classifies different design choices for implementing variability schemes and for creating different kinds of feature models. Our study was substantiated by surveying several DSPL approaches, and evaluating and comparing their different design strategies. We also summarise practical issues and difficulties, identify major trends in actual DSPL proposals, and suggest directions for future

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India
    corecore