
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Sandim Eleute� rio, Jane D. A. and de Franc� a, Breno B. N. and Rubira, Cecilia M. F. and de Lemos,
Rogerio (2018) Realising Variability in Dynamic Software Product Line Solutions. In: Software
Engineering for Variability Intensive Systems: Foundations and Applications. CRC Press.
 (In press)

DOI

Link to record in KAR

http://kar.kent.ac.uk/66574/

Document Version

Pre-print

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/189719953?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Realising Variability in Dynamic Software Product Line
Solutions

Jane D. A. Sandim Eleutérioa,b, Breno B. N. de Françab, Cecilia M. F. Rubirab,
Rogério de Lemosc,d

aFaculty of Computing, UFMS, Campo Grande, MS, Brazil
bInstitute of Computing, UNICAMP, Campinas, SP, Brazil

cSchool of Computing, University of Kent, UK
dCISUC, University of Coimbra, Portugal

Abstract

Modern systems need to be able to self-adapt to changes in user needs, and changes
affecting the system itself or its environment. Dynamic software product line (DSPL) is
an engineering approach for developing self-adaptive systems based on commonalities
and variabilities for a family of similar systems. Currently, many DSPL approaches fail
to meet all adaptability requirements, and in many cases, they are developed in a such
unstructured manner that the controller is not explicitly represented, for example. We
specify a two-dimension taxonomy to address basic technical issues for realising vari-
ability in DSPLs. The self-adaptation dimension classifies the different design choices
for the adaptability requirements. The DSPL variability dimension classifies different
design choices for implementing variability schemes and for creating different kinds of
feature models. Our study was substantiated by surveying several DSPL approaches,
and evaluating and comparing their different design strategies. We also summarise
practical issues and difficulties, identify major trends in actual DSPL proposals, and
suggest directions for future.

Keywords: Dynamic Software Product Line, Self-Adaptive Systems, Adaptation
Taxonomy, Variability Taxonomy

1. Introduction

Modern software systems need to adapt both at design time and runtime to het-
erogeneous environments and devices. Software Product Lines (SPLs) are related to
emerging techniques where several artefacts are reused. Software Product Line (SPL)
deals with the modelling of commonalities and variabilities among a family of similar
systems [1]. Commonality corresponds to similar parts among family products, while
variability is defined as the ability of a product to be extended, modified, customised, or

Email addresses: jane@facom.ufms.br (Jane D. A. Sandim Eleutério),
breno@ic.unicamp.br (Breno B. N. de França), cmrubira@ic.unicamp.br (Cecilia M. F.
Rubira), r.delemos@kent.ac.uk (Rogério de Lemos)

Preprint submitted to Elsevier March 28, 2018

1 INTRODUCTION 2

configured for a specific context [2]. In general, feature models [3] are used to represent
variability and commonality by means of features that can be classified as mandatory,
optional or alternative [4]. Mandatory features are present in all products derived from
SPL. Optional features may or may not appear in derived products, while alternative
features may be selected according to mutual exclusion constraints. While SPLs deal
with static variability, which is defined at design time, and its decision is performed
using binding, Dynamic Software Product Line (DSPL) deal with both static and dy-
namic variability. Dynamic variability, also called late or runtime variability, is also
defined at design time, however, its decision is performed using binding at deployment
or runtime.

Systems able to adapt their behaviour and/or structure at runtime are called self-
adaptive software systems (SASS) [5]. These systems should are able to adapt in re-
sponse to changes that occur to the system itself, its environment, or even its goals,
with no human interference. Feedback control loops provide a generic mechanism of
self-adaptation [6], and it is often modelled as the MAPE-K loop [7].

Software engineers could systematically reuse SASS good practices to develop
DSPL approaches.

From the perspective of variability, software product line (SPL) deals with com-
monalities and variabilities in product families by performing binding during the design
phase. Dynamic software product lines (DSPLs) are considered a sub-type of SPLs,
which handles variability by performing binding at runtime. From the perspective of
dynamicity, self-adaptive software systems (SASS) are able to dynamically adapt their
structure during runtime when responding to changes.

According to Bencomo et al. [8], many DSPL approaches are not as dynamic
as they should be, because they partially (or do not) implement self-adaptation ac-
tivities. Bencomo et al. [8] also concludes the research on DSPL variability is still
heavily based on the specification of variability decisions during design time. In other
words, variability and its decision options are defined at design time, and variability
decision making occurs during execution. Ideally, a DSPL solution should allow new
decision options to be incorporated at runtime, improving the dynamicity of such so-
lution. Dynamicity can be understood as the system’s ability to undergo changes and
adapt at runtime, reacting to foreseen, foreseeable, and unanticipated changes in the
most autonomous way as possible. Ideally, DSPL systems should be easy to under-
stand, maintain and reuse. With such systems growing in size and complexity, em-
ploying self-adaptation and variability techniques while satisfying the software quality
attributes, such as modifiability, reusability, and testability, are deep concerns to the
DSPL systems engineers.

The goal of this chapter is to define a two-dimensional taxonomy that aims to iden-
tify how design issues related to variability and self-adaptation can affect the key qual-
ity attributes of DSPLs. In the context of self-adaptive system, variability design issues
are related to the managed subsystem (or target system), the self-adaptation design
issues are related to managing subsystem (or controller, or feedback control loop),
and the quality attributes are related to the self-adaptive system that encapsulates both
the managed and managing subsystems. Based on the above, the major contributions
of this chapter are: (i) identification of design issues related to variability and self-
adaptation that are relevant to DSPLs; and (ii) evaluation of these design issues in the

2 PERSPECTIVES ON VARIABILITY AND SELF-ADAPTATION 3

context of quality attributes that are pertinent to DSPLs. Based on our findings, we
have also identified several research challenges when building DSPLs that make use of
the SASS principles.

The remainder of this chapter is organised as follows. Section 2 gives a brief de-
scription of dynamic software product line (DSPL) and self-adaptive software sys-
tems (SASS). Section 3 describes a proposed taxonomy for classifying different de-
sign issues to DSPL, analysing of with a set investigated DSPL approaches. Section
4 presents an appropriate design criteria based on quality attributes for an ideal DSPL
solution. Section 5 discusses some research challenges. Finally, Section 6 presents
some concluding remarks and lessons learned.

2. Perspectives on Variability and Self-adaptation

Over the years, several contributions have emerged that apply variability modelling
concepts, using features models, in the development of self-adaptive software systems,
such as MoRE [9], MADAM [10], and DiVA [11]. From the viewpoint of runtime
adaptation, variability modelling can include both system (functional) and context (en-
vironmental) information, and if well established, variability modelling promises to be
a valuable basis for the definition of appropriate models in time of execution. Context
information includes data related to the environment where the system is running, such
as network, memory resources, battery level, and battery consumption, and other com-
puting resources, while system information is obtained by specific sensors that monitor
the system components at runtime.

On the other hand, research on DSPLs has increasingly been using SASS tech-
niques to improve the management of runtime variability, such as ASPL [12], Ar-
CMAPE [13], and BSN-DSPL [14]. The MAPE-K feedback control loop (see Section
2.2) can be applied to automate variability and product derivation management pro-
cesses at runtime. Thus, we can infer that there is a synergy between these two areas of
research, which encompasses both DSPLs that support dynamic variability using SASS
techniques, and SASS that apply (D)SPL techniques to manage variability at runtime.

2.1. Dynamic Software Product Line

The Dynamic Software Product Line (DSPL) extends the concept of conventional
SPL since the latter emphasises the variability analysis, decision-making and product
configuration at the design time. DSPL emphasises variability analysis at design time,
but postpones the decision of the variability and the application reconfiguration to be
made at runtime.

In SPLs, the binding can occur at design time to generate a product using static
binding. In the case of DSPLs, the binding should occur at runtime in order to support
dynamic variability. Dynamic variability (also called late or runtime variability) can
be represented using dynamic compositions, which is a set of features with dynamic
binding [15]. In contrast, static variability can be represented using static compositions,
which is a set of features with static binding [16].

2 PERSPECTIVES ON VARIABILITY AND SELF-ADAPTATION 4

2.2. Self-adaptive Software Systems

Self-adaptive software systems are systems that are able to modify their behaviour
and/or structure in response to changes that occur to the system itself, its environment,
or even its goals [17].

Self-adaptation enables a system to adjust itself in response to changes, and there is
a wide range of approaches to engineering self-adaptive software systems through tried
and tested reference models. For example, Weyns et al. formalise the self-adaptive sys-
tem’s environment as a collection of processes and attributes using their FOrmal Ref-
erence Model for self-adaptation (FORMS) [18]. Although there are several reference
models for self-adaptive software systems [7, 19, 20], most of them share the common
use of a feedback loop [6, 21, 22]. In this chapter, we adopt as a feedback control loop,
the Monitor, Analyse, Plan, Execute - Knowledge (MAPE-K) reference model [7], as
shown in Figure 1.

The main feedback control loop, in the Managing Subsystem, which embodies the
stages of the MAPE-K reference model, observes (via probes) and adapts (via effectors)
a Managed Subsystem. The Monitor stage enables to obtain the state of the target
system and its environment. The Analyse stage analyses the state of the target system
and its environment in order, first, to decide whether adaptation should be triggered,
and second, to identify the appropriate courses of action in case adaptation is required.
The Plan stage, first, selects amongst alternative course of action those that are the
most appropriate, and second, generates the plans that will realise the selected course
of action. The Execute stage executes the plans that deploy the course of action for
adapting the system. Finally, Knowledge represents any information related to the
perceived state of the target system and environment that enables the provision of self-
adaptation.

2.3. DSPL versus SASS

Weyns et al. [23] use the general terms manager subsystem and managed subsystem
to indicate the constituent parts of a self-adaptive software system. The first part of
Figure 1 (left side) represents this separation, where the managing subsystem manages
the managed subsystem and is organised according to an autonomic control loop, and
the managed subsystem consists of the application logic that provides the system’s
domain functionality.

The second part of Figure 1 (right side) illustrates a DSPL application represented
as a self-adaptive system, in order to encompass managed and managing subsystems.
The managed subsystem is a DSPL, which contains the application logic, according to
its domain. This subsystem is unconscious of the rest of the system, and its components
(parts) are isolated and do not access the rest of the system. The managing subsystem
is a controller, which includes the adaptation logic and is independent of DSPL. So the
logic can be reused in different domains. The managing subsystem is transparent to
the DSPL and is responsible for monitoring, adaptation reasoning and acting on DSPL.
Finally, the entire system interacts with an environment, which refers to the context in
which the system is running, including hardware, operating system, other systems and
networks access.

3 A TAXONOMY FOR DSPL 5

Figure 1: DSPL in the context of SASS.

3. A Taxonomy for DSPL

There are several design issues for implementing DSPL approaches, and for each
approach there are different associated alternative strategies, called design solutions.
The proposed taxonomy identifies the several common design issues for implementing
DSPLs, and classifies their different design solutions. The taxonomy was developed
based on previous studies that define taxonomies in the area of self-adaptation [20, 24,
25, 26] and DSPL [27, 28].

3.1. Dimensions of Taxonomy

Our proposed taxonomy classifies the design issues of a DSPL scheme into two
dimensions: the first dimension is related to variability design issues, while the second
dimension is related to self-adaptation design issues.

Variability dimension. This dimension was based on previous taxonomies [28, 27].
Bashari et al. [28] present a detailed adaptation taxonomy for DSPL, establishing an
individual classification for each MAPE-K activity, that is: monitor, analyse, plan, and
execute. Galster et al. [27] have provided a variability characterisation for software
systems.

Using the taxonomies of Bashari et al. [28] and Galster et al. [27], we com-
bine similar design issues and remove design solutions that are applicable only to SPL
(static variability). Besides, design issues related to the self-adaptation process were
reallocated to the self-adaptation dimension (Section 3.4), such as design issues and its
design solutions for the MAPE-K loop.

After, the variability dimension was analysed using the DSPLs selected for vali-
dation (Section 3.2). This analysis also resulted in the refining of the set of design
solutions and the addition of the design issue for feature modelling strategy and the
platform to implement variability. Section 3.3 describes the variability dimension and
applies it to the selected DSPLs.

3 A TAXONOMY FOR DSPL 6

Self-adaptation dimension. This dimension was based on previous taxonomies [20,
24, 25, 26]. McKinley et al. [24] have proposed a compositional adaptation taxon-
omy, comparing how, when and where the recomposition occurs. Later, Salehie and
Tahvildari [25] proposed a taxonomy for self-adaptation, that relies on the object to
adapt (what), realisation issues (how), temporal characteristics (when), and interaction
concerns of adaptation (where), extending the taxonomies of Oreizy et al. [20] and
McKinley et al. [24]. Andersson et al. [26] have presented an adaptation taxonomy
for self-adaptive software systems, focusing on modelling dimension.

Using these previous taxonomies, we combine similar design issues and remove
design solutions that are not applicable to DSPLs, generating a first version of the self-
adaptive dimension of our taxonomy. Besides, we have added design issues related to
the feedback control loop MAPE-K.

After, our initial self-adaptation dimension was analysed using the DSPLs selected
for validation (Section 3.2). This analysis also resulted in the refining of the set
of design solutions and the addition of the design issue for the architectural pattern
used. Section 3.4 describes the self-adaptation dimension and applies it to the selected
DSPLs.

3.2. Selection of DSPL Approaches

We have selected relevant approaches in the intersection of DSPLs and SASS. In
particular, we have selected two types of systems: (i) SPLs that support dynamic vari-
ability, and (ii) self-adaptive systems that apply SPL techniques to manage variability at
runtime. The selected DSPL approaches that support some form of dynamic variability
are: Abbas et al. (ASPL) [12, 29], Abotsi et al. [30], Baresi et al. [31], Bencomo et

al. (Genie) [32, 33], Casquina et al. (Cosmapek) [34], Cetina et al. (MoRE) [35, 36],
Cubo et al. (Dynamic DAMASCo) [37, 38], Fuentes and Gamez [39, 40], Gomaa and
Hashimoto [41], Hallsteinsen et al. (MADAM) [10, 42, 43], Lee et al. [44, 45], Morin
et al. (DiVA) [46, 47, 11], Nascimento et al. (ArCMAPE) [13, 48], Parra et al. (CA-
Pucine) [49, 50], Pessoa et al. [14, 51], Rosenmüller et al. [15, 1]. This list was defined
based on two sources of information: (i) the systematic mapping study developed by
the authors to identify approaches that include dependability attributes in DSPLs [52],
and (ii) two surveys [8, 28] that identify DSPLs and analyse the use of the MAPE-K
feedback control loop.

This previous systematic mapping study [52] reviewed papers about Dependable
DSPLs selecting nine primary studies. In addition, we made a comparison of the pri-
mary studies regarding the MAPE-K loop activities and the DSPL dimension. The
survey developed by Bencomo et al. [8] questioned the dynamism level of DSPL ap-
proaches compared to MAPE-K loop. They selected nine DSPL approaches and anal-
ysed whether each DSPL meet phases of feedback control loop at runtime (dynamic)
or design-time (static). The survey presented by Bashari et al. [28] proposed a concep-
tual framework for comparing adaptation realisation in DSPL based on MAPE-K loop.
They also compared seven DSPL approaches using the proposed framework.

Tables 1 and 2 provide a summary of the main aspects of the DSPL approaches
presented in this section, showing the different strategies for each design issue of our
taxonomy (Section 3). In order to compare the DSPL approaches, we assign weights
to each design strategy, which reflect the contribution (negative, neutral, positive and

3 A TAXONOMY FOR DSPL 7

+positive) of that strategy in facilitating the construction of DSPL applications. A
negative weight (-1) is attributed when a solution clarifies that it does not explicitly
support a design issue or when the chosen design issue is a poor choice. However, in
some situations, it is not possible to claim there is support or not a specific design issue,
and in this case, we choose not to penalise the solution, indicating as ‘Not specified’
(–). A positive weight (+1) is attributed to the solution when a good design issue is
chosen. And a +positive weight (+2) is attributed to the solution when it chooses the
design issue considered the best choice. Adding up the weights of DSPL approach
produces a final score that is an indication of the suitability of that implementation for
the development of well structured DSPLs.

The reader should note that some design issues have mutually exclusive design
strategies, while for others, the strategies have an additive character (these are marked
with ‘+’ in Tables 2 and 1). Thus, the highest score attainable by a approach is 38,
obtained by adding the maximum possible scores for each design issue. Section 3.3
evaluates the selected approaches (Section 3.2) for each design issue included in the
Variability Dimension (D1). Section 3.4 evaluates the same approaches considering
the design issues of the Self-Adaptation Dimension (D2). Section 3.5 summarises our
findings.

3.3. Variability Dimension

Table 1 presents the design issues and their respective design solutions of the vari-
ability dimension applied to the selected DSPLs, which are discussed below.

D1-A1. Variability Type. Static variability is performed by the compiler while dy-
namic variability is performed by the system itself at runtime. A DSPL approach must
support at least dynamic variability. We classify the design approaches for supporting
DSPL variability in two types: (i) only dynamic variability, and (ii) both static and

dynamic variabilities. For the purpose of enhancing the structuring of DSPL systems,
it is desirable to allow the support of both variability types. As a result, the support
of both static and dynamic variability is assigned weight +2 while the support of only
dynamic variability received +1.

D1-A2. Variability Conceptual Model. Although Kang and Lee [3] present only two
variability models for SPLs, feature model and decision model, we also consider other
strategies for the variability modelling raised by Galster et al. [27]. Thus, the variability
can be represented as: (i) feature model, (ii) decision model, (iii) change scenarios, (iv)
profiles, (v) rules / conditions and (vi) variant labels / annotations. The representation
of variability as feature models is a classical approach used by most of the (D)SPL
approaches. In the second scheme, decision model represents the variability as a set
of decisions, commonly in tabular notation or textual notation. In the third scheme,
change scenarios are modelled to describe events or options that trigger changes in the
system. In the fourth approach, profiles are created to represent descriptive summaries
of artefacts in the environment (as a table, model or a set of expressions). In the fifth
approach, a set of rules or conditions is defined referring to elements or artefacts that
realise the system in order to support variability. In the sixth approach, variant labels
or annotations are added to artefacts that represent the DSPL.

3 A TAXONOMY FOR DSPL 8

Table 1: Summary of variability dimension.

DSPL

Variability

Dimension
Design

Issue

DSPL

Approach

A
bb

as
et

a
l.

A
bo

ts
ie

t
a

l.

B
ar

es
ie

t
a

l.

B
en

co
m

o
et

a
l.

C
as

qu
in

a
et

a
l.

C
et

in
a

et
a

l.

C
ub

o
et

a
l.

F
ue

nt
es

&
G

am
ez

G
om

aa
&

H
as

hi
m

ot
o

H
al

ls
te

in
se

n
et

a
l.

L
ee

et
a

l.

M
or

in
et

a
l.

N
as

ci
m

en
to

et
a

l.

P
ar

ra
et

a
l.

P
es

so
a

et
a

l.

R
os

en
m

ül
le

r
et

a
l.

Variability
Type

Dynamic +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

Static & Dynamic +2 +2 +2 +2

Variability
Conceptual
Model

Feature model +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2 +2

Decision model

Change scenarios

Profiles

Rules/Conditions

Labels/Annotations 0

Feature
Modelling
Strategy

FM only with
dynamic features

0 0 0 0 0 0 0 0 0 0 0

Multiple models +1 +1 +1

Single model +2

Architectural
Model

Unsupported – – – -1

Customized lang. +1 +1 +1 +1 +1 +1 +1 +1 +1

ADL +1 +1 +1

Architectural
Style

Unsupported -1

Component-based +1 +1 +1 +1 +1

Service-oriented +1 +1 +1

Hybrid +2 +2 +2 +2 +2 +2 +2

Variability
Managed
Element

Code +1

Component +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

Service +1 +1 +1 +1 +1 +1 +1 +1 +1

Aspect +1 +1 +1 +1

Architecture

Variability
Traceability

Direct link +2 – – +2 +2 – – +2 +2 +2 – – +2

Traceability matrix +1 +1 +1

Transform. rules

Score 8 7 7 8 11 7 11 7 8 4 11 11 10 8 6 6

– Not specified.

3 A TAXONOMY FOR DSPL 9

Kang et al. [3] consider the feature model as the most adequate variability repre-
sentation due to its clearer semantics and graphical notation. Our choice of weights in
Table 1 expresses this preference. The feature model technique is assigned weight +2
since it is a well-known technique for SPL development. Decision model and change
scenarios techniques represent variability explicitly using textual notations, while pro-
file and rules/ condition definitions represent variability in a more implicitly manner.
The variant label/annotation technique promotes variability to be scattered and tangled
in the source code, which decreases the system’s modularity. We consider the use
of techniques, such as (i) decision model, (ii) change scenario, (iii) profile definition,
and (iv) rule/condition definition more robust than using the variant label technique.
Correspondingly, these techniques have received weight +1 while the label/annotation
technique received weight 0.

D1-A3. Feature Modelling Strategy. There are at least two design strategies for the
DSPL feature representation: (i) only dynamic feature modelling and (ii) static and dy-

namic features modelling. In the first case, the feature model represents only dynamic
features with dynamic binding, encompassing FODA1-like feature models, orthogonal
variability models (OVM) and common variability language (CVL). In the second case,
the mechanism supports both static and dynamic features at the same time. Most of the
traditional notations of feature models emphasise only variability in space, having no
special representation to define whether a variation point should be bound at design
time or runtime. Thus, there are at least two design strategies for combining static with
dynamic features and representing variability in time: (i) use of multiple models with
a feature model to represent all (static and dynamic) features and a separate model to
differentiate static and dynamic features or to represent its binding times; and (ii) use
of a single feature model based on an extended notation to represent both static and dy-
namic features. We have assigned weight 0 to approaches which support only dynamic
features, whereas weight +1 was assigned to those which support both dynamic and
static features using multiple models, and weight +2 to those which support dynamic
and static features using a single model.

D1-A4. Architectural Model. There are at least three design techniques for represent-
ing PLA architectures: (i) using customised languages, and (ii) using ADL. In the first
case, some DSPL approaches define customised languages or ad-hoc models to repre-
sent the architectural model. In the second case, Architecture Description Languages
(ADLs) are used to define the software architecture. ADL is any language used in
an architecture description and it can be used by one or more viewpoints to represent
identified system concerns within an architecture description [53]. This design issue
has mutually exclusive strategies. Adopting design strategies for representing archi-
tectural models produce well-structured software systems. This justifies the positive
weight assigned to this design issue and the negative weight assigned to the approach
that did not offer any support.

1Feature-Oriented Domain Analysis [4].

3 A TAXONOMY FOR DSPL 10

D1-A5. Architectural Style. It refers to the highly granular entities of the system and
how they are connected to each other [28]. There are at least three different architec-
tural styles used by DSPL approaches: (i) component-based style, (ii) service-oriented

architecture style, and (iii) hybrid architectural style. In the first approach, component-
based architectures provide functionalities structured as architectural configurations
composed of components and connectors. In the second approach, service-oriented ar-
chitectures are based on services to provide systems’ functionalities to service clients.
In the third approach, hybrid architectural styles are based on components and ser-
vices, using specifications such as Service Component-Architecture (SCA). We have
assigned weight -1 to approaches which do not support any architectural style, whereas
weight +1 was assigned to those which support some kind of architectural style; the
hybrid approach was given weight +2.

D1-A6. Variability Managed Element. The variability managed element is the part
of the system that changes when the variability is carried out. The variability can be
attached to different levels of abstraction, such as: (i) code, (ii) component, (iii) service,
(iv) aspect, and (v) software architecture. In the first case, the variability promotes
changes in the code, which is generated, compiled and deployed at runtime. In the
second case, the variability is attached to components, allowing the connection and
disconnection of components. In the third case, the variability promotes changes at
service level by allowing the disconnection and connection of services. In the fourth
case, the dynamic variability is performed by a dynamic aspect weaving. In the last
case, two or more architecture are compared and one is chosen to meet variability.

For the purpose of enhancing the structuring and dynamicity of DSPL systems, it
is desirable to allow changes to be applied to different kinds of managed elements as
many as possible. This design issue has an additive character.

D1-A7. Variability Traceability. It refers to the mapping between the variability and
architectural models. There are at least three strategies for supporting traceability: (i)
direct link, (ii) traceability matrix, or (iii) transformation rules. In the first approach,
a direct link is defined between the variability elements and architectural elements,
without the creation of a mapping element between both. For instance, using OVM
to relate features to architectural elements. In the second approach, the traceability is
performed by using a traceability matrix, such as a table or a mapping model, relat-
ing variability elements of variability to architectural elements. In the third approach,
transformation rules define the mapping between variability elements and architec-
tural elements. The direct link approach promotes well-structured DSPL easier to be
changed and maintained since less complicated solutions can be developed. In order
to reflect these qualities, we have assigned a weight +2 to approaches which support
direct link traceability, whereas weight +1 was assigned to those which support some
traceability technique using two separated models; approaches that did not specify or
declare the traceability used did not receive a weight.

3.4. Self-adaptation Dimension

Table 2 presents the design issues and their respective design solutions of the self-
adaptation dimension applied to the selected DSPLs, which are discussed below.

3 A TAXONOMY FOR DSPL 11

Table 2: Summary of self-adaptation dimension

Self-

Adaptation

Dimension Design Issue

DSPL

approach

A
bb

as
et

a
l.

A
bo

ts
ie

t
a

l.

B
ar

es
ie

t
a

l.

B
en

co
m

o
et

a
l.

C
as

qu
in

a
et

a
l.

C
et

in
a

et
a

l.

C
ub

o
et

a
l.

F
ue

nt
es

&
G

am
ez

G
om

aa
&

H
as

hi
m

ot
o

H
al

ls
te

in
se

n
et

a
l.

L
ee

et
a

l.

M
or

in
et

a
l.

N
as

ci
m

en
to

et
a

l.

P
ar

ra
et

a
l.

P
es

so
a

et
a

l.

R
os

en
m

ül
le

r
et

a
l.

Adaptation
Cause

Context + + + + + + + + + + + +

System + + + + + + + + +

User + +

Adaptation
Automation

Assisted 0

Autonomous +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

Adaptation
Binding
Time

Design + + + +

Load + + + + + + +

Runtime + + + + + + + + + + + + + + + +

Adaptable
Arquitetural
Pattern

Not supported -1 -1 -1 -1 -1 -1

Partly supported 0

Microkernel +1

Reflection +2 +2 +2 +2 +2 +2 +2 +2

Adaptation
Realisation Type

Close 0 0 0 0 0 0 0 0 0 0

Open +1 +1 +1 +1 +1 +1

Adaptation
Realisation
Technique

Replacement + + + + + + + +

Reorganisation + + + + + + + +

Code generation

U
se

of
M

A
P

E
-K

P
at

te
rn

Monitor
Realisation +1 +1 0 +1 +1 +1 +1 0 +1 +1 +1 +1 +1 +1 +1 +1

How & When +1 0 +1 0 +1 0 +1 +1 +1 +1 0 +1 +1 +1

Analyse
Realisation +1 0 +1 +1 +1 0 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

How & When +1 0 0 0 +1 0 0 +1 +1 +1 0 0 0 0

Plan
Realisation +1 0 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

How & When +1 0 0 0 0 +1 0 0 +1 0 +1 0 0 -1 0

Execute
Realisation +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

How & When +1 0 +1 0 0 0 +1 0 +1 +1 0 +1 +1 +1 +1 +1

Knowledge

Model

Support

Model-free

Model-based (static) +1 +1 +1 +1 +1 +1 +1 +1 +1

Model-based (dynamic) +2 +2 +2 +2 +2 +2 +1

MAPE-K

Pattern

Not supported -1 -1 -1 -1 -1 -1

Partly supported 0 0 0 0 0 0

Fully supported +1 +1 +1 +1

Score 20 5 7 13 14 12 14 9 11 19 13 18 14 10 12 15

3 A TAXONOMY FOR DSPL 12

D2-A1. Adaptation Cause. It refers to the source that triggers/initiates the adaptation
process. Such sources can be represented as: (i) context, (ii) system, and (iii) user.
Changes in context occur in the environment and are external to the system. The abil-
ity to react to context changes requires the capture of context information. Context
information can be divided into the system context and user context [10, 42]. The
system context information includes data related to the environment where the system
is running, such as network, memory resources, battery level and consumption, and
other computing resources. The user context information includes data such as po-
sition (based on GPS information in a smartphone, for instance), and environmental
information in which the user is entered, such as light and noise. Changes in system

occur internally, for instance, the failure of a component, the performance of a service,
and exceptions. The ability to react to system changes requires specific sensors within
the implemented system according to the change to be detected. The change can also
be triggered by some user action while using the system and they refer to changes in
user requirements or needs at runtime. This design issue has an additive character, and
a approach could add up to 3 points.

D2-A2. Adaptation Automation. Automation refers to the degree of outside interven-
tion during adaptation. Andersson et al. [26] define the automation as a degree, which
can vary from (i) assisted to (ii) autonomous. In the first case, the adaptation is ex-
ternally assisted, either by another system or by human intervention. In the second
case, the adaptation process is fully automated with no external influence guiding how
the system should adapt. Since autonomic computing promises that, increasingly, the
adaptation processes should be completely autonomous, this justifies the neutral weight
assigned to the assisted approach and the positive weight assigned to the autonomous
adaptation technique.

D2-A3. Adaptation Binding Time. It defines the moment when the adaptation binding
occurs. There are three different design solutions for the binding occurrence: (i) at

design time, (ii) at load time, and (iii) at runtime. In general, SPLs implement binding
at design time, while DSPLs can support the three bindings types, although DSPLs
should support at least the binding at runtime. In addition, each DSPL approach can
optionally support design and/or load binding time mechanisms. This design issue also
has an additive character, and an approach could add up 3 points.

D2-A4. Adaptable Architectural Pattern. Here, we consider the architectural patterns
for adaptive systems presented by Buschmann et al. [54], which are Microkernel and
Reflection patterns. Hence, the use of adaptable architectural pattern can be: (i) not

supported when the approach does not follow an adaptable architectural pattern; (ii)
partly supported when the approach follows another architectural pattern that is not
specifically designed for self-adaptive applications, such as the layer architectural pat-
tern, that brings several benefits such as separation of concerns, maintainability, and
reusability [54]; (iii) microkernel, when the approaches follows the Microkernel Ar-
chitectural Pattern; or (iv) reflection, when the approaches follow the Reflection Archi-
tectural Pattern.

3 A TAXONOMY FOR DSPL 13

Transparency refers to whether an application is aware of the “infrastructure” needed
for adaptation. Different degrees of transparency (concerning application source, vir-
tual machine, and so on) can be implemented. The reflection pattern supports a high
degree of transparency, while the microkernel pattern supports a lower degree. In order
to reflect these qualities, we have assigned weight -1 to approaches which have not
used any architectural pattern; and weight 0 to approaches which support another ar-
chitectural pattern not specific to adaptive systems, whereas weight +2 was assigned to
those which support the reflection pattern, and weight +1 was given to those approaches
which applied the microkernel pattern.

D2-A5. Adaptation Realisation Type. According to Salehie and Tahvildari [25], there
are two different types of adaptation: (i) close adaptation, and (ii) open adaptation. In
the first approach, the system has only a fixed number of adaptive options, and no new
behaviours and alternatives can be introduced at runtime. In the second, the system
can be extended, and new alternatives can be added at runtime. As a consequence,
new behaviour and even new adaptable elements can be introduced into the system for
use by adaptation mechanism. We have assigned a neutral weight when the approach
implements close adaptation; and a positive weight when the approach supports open
adaptation.

D2-A6. Adaptation Realisation Technique. It is related to the implementation ap-
proach to perform the adaptation. There are at least three different design solutions for
implementing the adaptation: (i) replacement, (ii) reorganisation of the architecture,
and (iii) code generation. In the first approach, adaptation is achieved by replacing one
element with another with a same interface, without affecting the rest of the system ar-
chitecture. In the second approach, a reconfiguration of architecture is performed when
the adaptation occurs, reorganising the architectural structure. In the third approach,
the adaptation is performed by generating, compiling and deploying a new portion of
source code in order to change or fix the system behaviour. This design issue also has
an additive character, and a approach could add up 3 points.

D2-A7. Use of the MAPE-K Pattern. This requirement should consider at least three
design issues: (i) whether or not the four activities of the MAPE-K are present in
the adaptation mechanism implementation as individual functionalities (realisation of

individual MAPE-K activities), (ii) to what extent the knowledge base supports the rep-
resentation of models (knowledge model support, and (iii) whether or not the approach
adheres to MAPE-K pattern, as shown in Table 2.

The first aspect identifies whether or not the implementation of the monitor, anal-
yse, plan, and execute functionalities are supported. Each functionality can be clas-
sified as: (i) not implemented, or (ii) implemented. Moreover, when the activity is
implemented, one should consider how the set of adaptation options is defined and
when the option binding is performed. These options could be: (i) statically defined +

design time binding: statically defined at design time and it could not be changed dur-
ing runtime execution, that is, the static binding is performed, (ii) statically defined +

runtime binding: statically defined at design time but the option binding is performed at
runtime, and (iii) dynamically defined + runtime binding: the set of options is dynami-
cally defined, in the sense that new options could be included/removed during runtime,

3 A TAXONOMY FOR DSPL 14

and the option binding is also performed at runtime. For each activity (Monitor, Anal-
yse, Plan and Execute), we have assigned a neutral weight when the functionality was
not implemented and a positive weight when it was implemented. When the activity
is implemented, we have assigned a negative weight (-1) when the set of decisions is
statically defined at design time, and their binding cannot be changed at runtime; a
neutral weight (0) when the set of decisions is statically defined at design time but their
binding is realised at runtime; and a positive weight (+1) when the set of decisions is
dynamically defined and their binding is also realised at runtime.

For the second design issue, the knowledge base can be (i) model-free or (ii) model-

based. In the first approach, the knowledge base has no predefined model for the system
or the environment. In the second approach, the knowledge base uses a model of the
system and its context. Two kinds of models exist according to the adaptation realisa-
tion type: (i) static models or (ii) dynamic models. We have assigned a neutral weight
when the approach is model-free. When the approach supports the representation of
knowledge models (model-based), we have assigned a +1 weight when the approach
implements static models; and a +2 weight when the approach supports dynamic mod-
els.

On the one hand, static models are used by systems with close adaptation and
model-based knowledge. Static models cannot be extended at runtime, that is, the
set of adaptation options are defined at design time, and they cannot be changed at
runtime. One of these options is chosen at runtime by the analyser and/or the planner
components. On the other hand, dynamic models are used by systems with open adap-
tation and model-based knowledge. Dynamic models incorporate a set of adaptation
options that can be changed at runtime by including new options or removing existing
ones. The option to be executed is also chosen during runtime by the analyser and
planner components.

The third aspect refers to whether or not a control loop pattern is supported. The
control loop pattern can be: (i) not supported when the approach does not implement
the feedback loop; (ii) partly supported when the control loop is structured in an ad-
hoc manner; or (iii) fully supported when the approach explicitly applies the control
loop pattern. We have assigned weight +1 for full support of control loops, weight 0
for partial support, and weight -1 for no support.

3.5. Summary

As much as possible, DSPL approaches should be highly adaptable, dynamic, re-
liable and simple. In spite of these requirements, the previous discussions revealed
that several decisions taken in the design of the studied DSPL approaches resulted in
solutions which are too inflexible, static and complex. Ranking the studied approaches
according to their final score (Table 3), out of the maximum of 38, we have: Morinet al.

(29); Abbas et al. (28); Casquina et al., Cubo et al. and Nascimento et al. (25); Leeet

al. (24); Hallsteinsen et al. (23); Bencomo et al. and Rosenmüller et al. (21); Cetina et

al. and Gomaa and Hashimoto (19); Parra et al. (18); Fuentes and Gamez (16); Baresi
et al. (14); and Abotsi et al. (12). Tables 1and 2 present, in a summarised fashion, both
the positive and negative design issues of each approach, allowing the software engi-
neer to compare different approaches and evaluate potential difficulties and the impact
of a given choice in the construction of DSPLs. Therefore, Tables 1and 2 are meant

4 GENERAL DESIGN CRITERIA 15

Table 3: Summary of dimensions.

Dimension

DSPL

Approach

A
bb

as
et

a
l.

A
bo

ts
ie

t
a

l.

B
ar

es
ie

t
a

l.

B
en

co
m

o
et

a
l.

C
as

qu
in

a
et

a
l.

C
et

in
a

et
a

l.

C
ub

o
et

a
l.

F
ue

nt
es

&
G

am
ez

G
om

aa
&

H
as

hi
m

ot
o

H
al

ls
te

in
se

n
et

a
l.

L
ee

et
a

l.

M
or

in
et

a
l.

N
as

ci
m

en
to

et
a

l.

P
ar

ra
et

a
l.

P
es

so
a

et
a

l.

R
os

en
m

ül
le

r
et

a
l.

Self-Adaptation 20 5 7 13 14 12 14 9 11 19 13 18 14 10 12 15

DSPL Variability 8 7 7 8 11 7 11 7 8 4 11 11 10 8 6 6

Final Score 28 12 14 21 25 19 25 16 19 23 24 29 24 18 18 21

primarily as a guide for decision-making rather than an absolute measurement of the
suitability of a given approach.

4. General Design Criteria

The taxonomy developed in Section 3 identifies several design issues, which should
be taken into account while designing a DSPL. The design decisions should be taken
according to the demanding quality attributes.This section outlines the main criteria
that can be followed by software engineers to build effective DSPLs. Based on these
criteria, we identify the choices for designing an ideal DSPL approach.

4.1. Quality Attributes

Q1. Dynamicity. Dynamicity is a system’s ability to undergo changes and adapt at run-
time. Dynamicity can be measured as the degree of a system to self-adapt to runtime,
reacting to foreseen, foreseeable, and unanticipated changes in the most autonomous
way possible.

Q2. Autonomy. Autonomy is the degree of external intervention during adaptation
[26]. Autonomous systems operate without the direct intervention of humans or others
systems, and have some kind of control over their actions and internal state [55].

Q3. Flexibility. Flexibility is the degree to which a product or system can be used with
effectiveness, efficiency, freedom from risk and satisfaction in contexts beyond those
initially specified in the requirements [56]. Flexibility can be achieved by adapting a
system for additional user groups, tasks and cultures [56]. Flexibility enables systems
to take account of circumstances, opportunities and individual preferences that might
not have been anticipated in advance [56]. If a system is not designed for flexibility, it
might not be safe to use the product in unintended contexts [56].

4 GENERAL DESIGN CRITERIA 16

Q4. Performance. Performance is the degree of a system or component to accomplish
its designated functions within given constraints, such as speed, accuracy, or memory
usage [57]. Performance can be a measure of a system’s ability to perform its func-
tions, including response time, throughput, and number of transactions per second [58].
Performance is an indication of the system responsiveness to execute any action within
a given time interval. It can be measured in terms of latency or throughput. Latency
is the required time to respond to any event. Throughput is the number of events that
occur in a period of time.

Q5. Complexity. Complexity establishes the degree to which a system’s design or code
is difficult to understand because of numerous components or relationships among
components [57]. Complexity is a measurement of how many more computing re-
sources the approach of a problem requires as the problem grows in number of vari-
ables [58]. Feedback control loop and adaptation pattern are examples of techniques to
cope with and reign in the management complexity of dynamic systems [59].

Q6. Transparency. Transparency refers to whether an application or system is aware
of the infrastructure needed for recomposition [24]. Different degrees of transparency
determine both the proposed approach’s portability across platforms and how easily it
can add new adaptive behaviour to existing programs [60].

Q7. Separation of Concerns. This principle is used to deal with the complexities that
exist in the definition and use of software systems [61]. Separation of concerns can be
understood as the principle of software design that the source code be separated into
layers and components that each have distinct functionality with as little overlap as
possible [62].

Q8. Modularity. The modularity is related to the degree to which a system or computer
program is composed of discrete components so that a change to one component has
minimal impact on others [57]. Modularity is the ability of a system to be composed of
separate, interchangeable components, each of which accomplishes one function and
contains everything necessary to accomplish this. Modularity increases cohesion and
reduces coupling and makes it easier to extend the functionality (modifiability) and
maintain the system (maintainability). Cohesion is the manner and degree to which the
tasks performed by a single software module are related to one another [57]. Coupling
is the manner and degree of interdependence between software modules [57].

Q9. Modifiability. Software modifiability refers to a measure of how easy it may be to
change an application to cater for new functional and nonfunctional requirements [63].
The modifiability of a system is improved as system modularity improves. Modifiabil-
ity can be understood as a design quality attribute that composes maintainability.

Q10. Reusability. The the reusability is the degree to which an software asset can be
used in more than one software system, or in building other assets [57]. Software reus-
ability is the use of existing software assets in some form within the software product
development process. Reusing the code of adaptation logic should be possible. Ideally,
the adaptation logic should be defined independently of the application logic, so that
adaptation logic components can be reused in distinct domains.

4 GENERAL DESIGN CRITERIA 17

Q11. Testability. The effort required to test software is called testability [57]. Soft-
ware testability refers to the ease with which software can be made to demonstrate its
faults through (typically execution-based) testing [64]. In general, system testability
relates to several structural issues [64]: separation of concerns, the level of documenta-
tion, and the degree to which the system uses information hiding. In the ideal world, it
should not be difficult to test every adaptation scenario in a systematic manner. How-
ever, testability is affected by the dynamism of the self-adaptive system, as it increases
the degree of unpredictability. Non-dynamic systems can be tested at design time to re-
duce the occurrence of unforeseen situations. Whereas dynamic systems are prepared
to anticipate the changes that may occur at runtime, changes at runtime in self-adaptive
systems may have different degrees of anticipation [5]: foreseen (taken care of), fore-
seeable (planned for), and unforeseen (not planned for).

Q12. Reliability. Reliability is the capability of the software product to maintain a
specified level of performance when used under specified conditions [57]. Reliability
is the ability of a system to remain operational over time, and how the system behaves
in varying circumstances. Performing tests and correcting failures result in improved
reliability.

4.2. An Ideal DSPL Approach

After describing the quality attributes in the previous section, we proceed by dis-
cussing each design issue and present an ideal model for developing DSPLs, consid-
ering both the self-adaptive dimension and the variability dimension. We discuss how
each design choice can affect the quality attributes while designing the DSPL. Table 4
shows a summary of our findings. A ‘+’ in the Table 4 indicates a positive relation-
ship between a design alternative and a quality attribute, that is, the use of the design
alternative helps in the achievement of the quality goal. A ‘-’ in the table indicates
the opposite situation. Finally, a blank cell indicates that, depending on the context
of use, it could have a negative or positive effect. Both design issues and quality at-
tributes are abstract, and the scores of the tables are meant to guide developers in their
choices among design alternatives, and identify possible design conflicts. The interac-
tions among design alternatives and quality attributes can be complex, and these design
choices should be understood in the context of other design decisions. Trade offs are
also discussed in this section since the quality attributes can be conflicting to each
other.

4.2.1. Variability Dimension (D1)

D1-A1. Variability Type. A DSPL approach should support at least the dynamic vari-
ability. From the viewpoint of developing well-structured DSPLs, it seems to be rea-
sonable the approach to provide support for both static and dynamic variability since
part of the software variability could be decided during design time. Thus, an ideal
DSPL approach should deal with static variability and dynamic variability.

D1-A2. Variability Conceptual Model. An ideal DSPL approach should represent the
variability as feature model. Pohl et al. state that the explicit representation of the
software variability has significant advantages as the improvement of modifiability,

4 GENERAL DESIGN CRITERIA 18

Table 4: Taxonomy design issues versus quality attributes.

Dimension
Design Issue

QualityAttributes

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
10

Q
11

Q
12

V
ar

ia
bi

li
ty

D
im

en
si

on

Variability
Type

Dynamic

Static & Dynamic

Variability
Conceptual
Model

Feature model

Decision model

Change scenarios

Profiles

Rules / Conditions

Variant labels / Annotations

Feature
Modelling
Strategy

FM only with dynamic features

Multiple models

Single model

Architectural
Model

Unsupported

Custom languages

ADL

Architectural
Style

Unsupported

Component-based

Service-oriented

Hybrid

Variability
Managed
Element

Code

Component

Service

Aspect

Architecture

Variability
Traceability

Direct link

Traceability matrix

Transformation rules

S
el

f-
A

da
pt

at
io

n
D

im
en

si
on

Adaptation
Cause

Context

System

User

Adaptation
Automation

Assisted

Autonomous

Adaptation
Binding
Time

Design

Load

Runtime

Adaptable
Arquitetural
Pattern

Not supported

Partly supported

Microkernel pattern

Reflection pattern

Adaptation
Realisation Type

Close

Open

Adaptation
Realisation
Technique

Replacement

Reorganisation

Code generation

U
se

of
M

A
P

E
-K

P
at

te
rn Activity

Realisation

Not implemented

Statically + Design time binding

Statically + Runtime binding

Dynamically + Runtime binding

Knowledge
Model
Support

Model-free

Model-based (static)

Model-based (dynamic)

MAPE-K
Pattern

Not supported

Partly supported

Fully Supported

4 GENERAL DESIGN CRITERIA 19

modularity and reusability [65]. The decision model, change scenario, profile defini-
tion, and rule/condition techniques represent variability in a more implicitly manner
when compared to the feature model scheme, as a consequence, their use can affect
negatively the traceability quality attribute. However, these techniques can support
some variability modularity and modifiability since variability changes can be located
in few places. We consider that performing changes to a single component is better
than making a widespread change to the system. The variant label/annotation tech-
nique promotes variability to be scattered and tangled in the source code, which can
decrease the system’s modularity and variability traceability and reusability.

D1-A3. Feature Modelling Strategy. Considering that variability should be represented
explicitly as feature models (D1-A2 paragraph), and ideally DSPLs should support both
static and dynamic variability (D1-A1 paragraph), then the representation of both static
and dynamic features is the design choice to be naturally taken. The single model
scheme as a design alternative has some advantages by promoting the creation of sim-
pler systems that are easier to be modified, traced and reused. On the other hand,
the primary and secondary model strategy can promote the creation of more complex
systems, it becomes more difficult to be maintained and more difficult to achieve vari-
ability traceability.

D1-A4. Architectural Model. An ideal approach for DSPL should adopt a design strat-
egy for representing architectural models in order to benefit from all the advantages of
a well-known architecture-centric approach [66], that is, yield systems easier to mod-
ify, reuse, test, and trace. The non-use of architectural model is an design alternative
that can have a negative effect on the system’s complexity, modifiability, traceability,
modularity, reusability, testability, and reliability.

D1-A5. Architectural Style. The three main styles considered in our study are: the
component-based style, the SOA style, and the hybrid approach which combines both
styles. An ideal DSPL approach should follow a specific architectural style, either
component-based or SOA style, however, the use of the hybrid approach provides sup-
port to more flexible DSPLs.

D1-A6. Variability Managed Element. The variability managed element is the part of
the system that changes when the variability is carried out. An ideal approach should
provide a multi-level attachment of variability since it is important for DSPL develop-
ers/architects to be able to attach variability at different levels of system structure. This
design alternative improves the system’s flexibility and modifiability.

D1-A7. Variability Traceability. It refers to the mapping between the variability and
architectural models. Ideally, a DSPL approach should use the direct link approach
between variability elements and architectural elements, without the creation of a map-
ping artefact between both. This design choice improves modifiability, changes trace-
ability, understanding, and readability since the system is less complex. Besides, direct
links between the artefacts can facilitate systematic and consistent reuse [65]. The use
of traceability matrix or transformation rule implies in the creation of an extra artefact
to define the mapping between variability and architectural elements, which can cause

4 GENERAL DESIGN CRITERIA 20

a negative effect on the system’s complexity. Moreover, the traceability matrix tech-
nique represents more explicitly the mapping when compared to the transformation
rule technique.

4.2.2. Self-adaptation Dimension (D2)

D2-A1. Adaptation Cause. Some of the required properties for DSPL, prescribed by
Hallsteinsen et al. [67], are: context and situation awareness, unexpected changes,
and changes by users, such as functional or quality requirements. Ideally, a DSPL
approach should react to the three kinds of adaptation causes (context, system, and
user). As a consequence, the approach would be more dynamic, complete, and flexible.
However, the implementation of the three strategies in the same system can cause a
negative impact on the system’s complexity, testability, performance, and reliability.
In order to support context and system changes, the system should support different
kinds of sensors according to the information to be collected. Also, the volume of
information could be very high, meaning that the performance of the system could
be compromised. Moreover, since context, system and user changes occur at runtime
when a system implements all strategies, this approach could also affect negatively the
system’s testability and reliability.

D2-A2. Adaptation Automation. According to Hallsteinsen et al. [67], DSPLs should
include autonomic capabilities. This design alternative improves system’s flexibility,
however, it can increase the system’s complexity, and, as a consequence, the system
can be more difficult to be tested, harder to be maintained and less reliable. Each of
the predicted situations should be supported by the system, and unpredicted situations
should be handled properly during runtime. When the adaptation process is assisted by
humans or other systems, the approach can become less autonomous and less reliable
since software adaptation, when performed by humans or other systems, becomes an
onerous (regarding time, effort, and money) and error-prone activity, mainly due to
involuntary injection of uncertainties by developers [68, 25].

D2-A3. Adaptation Binding Time. Runtime binding is required for DSPLs. Hallstein-
sen et al. [67] also indicate the necessity of supporting other kinds of bindings in order
to ease maintenance throughout their life cycle. So, an ideal approach should realise
the three types of binding time (design time, load time and runtime). This design alter-
native can improve system’s flexibility, however, it can increase system’s complexity
since a high number of variation points are going to be specified in the system.

D2-A4. Adaptable Architectural Pattern. Reflection and microkernel are well-known
patterns recommended to build adaptive systems [54]. We consider that an ideal ap-
proach should apply the reflection architectural pattern since it supports transparency
because the base level (managed subsystem) is unaware of the meta-level (managing
subsystem). Changing a software system is easy since the metaobject protocol provides
a safe and uniform mechanism for changing software [54].

The use of the microkernel pattern also improves modifiability, and flexibility since
additional adaptations only requires the addition or extension of internal elements [54].
Also, this pattern provides support for separation of concerns and modularity since

4 GENERAL DESIGN CRITERIA 21

external elements can implement their own policies. However, transparency is not
fully satisfied since the use of a metaobject protocol is not required.

A disadvantage of using both patterns is a possible negative impact on the system’s
performance. Reflective software systems are usually slower than non-reflective sys-
tems, as a consequence of the complex relationship between the base level and the meta
level [54]. Microkernel systems can be slower when compared to monolithic systems
due to their support for flexibility and modifiability.

D2-A5. Adaptation Realisation Type. The design decision of using open adaptation
has a number of advantages since the system can be extended, and new alternatives
and behaviours can be added at runtime. It leads to better dynamicity and flexibil-
ity; however, the runtime discovery mechanisms can be complex, and they can impact
negatively on the system’s performance and testability. On the other hand, the close
adaptation strategy leads to more reliable and testable systems since the system has
only a fixed number of adaptive options, and no new behaviours and/or alternatives
can be introduced at runtime. Moreover, it makes the system simpler and easier to
maintain, although, it impacts dynamicity and flexibility negatively.

D2-A6. Adaptation Realisation Technique. An ideal model for DSPL should allow
reconfigurations of the architecture structure when adaptations occur. This design al-
ternative promotes an architecture-centric adaptation approach at a higher level of ab-
straction than code, based on coarse-grained architectural elements, realised by com-
ponents and/or services. This design decision also promotes the construction of modu-
lar software systems, which in turn improves modifiability, reusability, and testability.
However, it can lead to a worse performance and flexibility since on-the-fly adaptations
can be complex and fine-grained modifications are not supported.

The replacement technique is simpler and less flexible than architecture reorganisa-
tion since the components can be changed individually at runtime, but no modifications
to the architectural configuration are carried out. The use of this technique can make
the system easier to reuse, test, trace and modify since it reduces the number of possi-
ble applications scenarios and limits customisability of DSPLs [1]. This strategy is also
based on changes of coarse-grained elements when compared to the code generation
technique, which promotes fine-grained modifications.

In this context, one can claim that the code generation technique can lead to more
flexible systems, however, it becomes less reliable, less modular and less reusable.
Moreover, this technique can also impact negatively on performance and testability
since code generation, compilation, and loading are performed during runtime. How-
ever, a hybrid approach also could be adopted by the architect, combining coarse-
grained and fine-grained adaptation realisation techniques.

D2-A7. Use of MAPE-K Pattern. Ideally, a DSPL should implement all four activities
of the MAPE-K control loop. Moreover, it should be possible for the set of decisions to
be dynamically defined and their binding be realised at runtime. This strategy can lead
to more dynamic and flexible systems since options can be included/modified/removed
during runtime. However, it can impact negatively the complexity, testability, relia-
bility and performance. The design choice using the dynamically defined adaptation

5 RESEARCH CHALLENGES 22

options with runtime binding is more dynamic and flexible when compared to the most
commonly used design choice in DSPLs, which is the statically defined with runtime
binding [8].

An ideal model should support a model-driven approach for representing knowl-
edge models at runtime. Cheng et al. [69] argue that models at runtime support the
development of runtime assurance strategies. All studied approaches have realised
model-based approaches for designing the knowledge base. It leads to approaches
which are easier to test, more reliable, and easier to modify. Moreover, ideally, dy-
namic models should be supported in order to improve the system’s dynamicity and
flexibility. However, this design alternative can impact negatively the complexity and
performance since the execution of runtime adaptations is not a simple task and the
correctness of the dynamically modified models should be validated. The use of static
models solves part of these limitations during design time; however, the approach be-
comes less flexible, but more reliable.

Lemos et al. [70] consider that the use of feedback control loop patterns is one
of the cornerstones for developing self-adaptive software systems since they can be
associated to different kinds of assurances at the conceptual level and at the code level.
It leads to approaches which are more modular and reliable, easier to modify, test, and
reuse.

5. Research Challenges

Despite many improvements in mechanisms to support runtime adaptation, the full
potential of building dynamic software product line systems depends on advances in
other research fields.

Testing and Assurance. self-adaptive software systems (SASS) can take different con-
figurations at runtime in response to changes in context, in the system itself or its
goals. Considering scenario variations, decision making and binding at runtime, per-
forming the test and validation tasks becomes very complex. This complexity is further
extended in systems that perform open adaptation because they can introduce new be-
haviours and new options at runtime, such as systems that perform service discovery at
runtime.

In the context of DSPLs, Metzger and Pohl [71] claim that to address (context)
situations unknown during design time, quality can be only partially assured and un-
der certain assumptions. The authors raise the following issues as challenges: how to
model such assumptions? How to check if the assumptions hold in the actual situa-
tion? How to ensure the quality of an application during runtime if not all potential
adaptations of the application are known and predefined?

There are several researches in model-based testing for SPL as listed in Razak et

al. [72]. However, these surveys only consider static variability, and may not be able to
test situations that might occur at runtime. In the context of DSPLs, Santos et al. [73]
address the formal verification of DSPL, proposing a formal structure, which specifies
the DSPL adaptive behaviour to reason about the adaptations that could be triggered
at runtime; however, their approach is focused on DSPL verification at design time.
Other two works, A-FTS [74] and DFPN [75], were proposed for models supporting

5 RESEARCH CHALLENGES 23

and model checking of DSPL, focusing on execution states (“ready”, “wait”). Ongoing
work is the Devasses project [76] which has as one of its objectives to deal with model-
based online testing, aiming to research, define and implement a solution to employ
model-based testing techniques to SOA orchestrations at runtime.

Fault Tolerance and Reliability.. In a previous work [52], we also compared DSPL
approaches regarding dependability and fault tolerance. Most of the DSPLs analysed
in this study did not have as one of their objectives the improvement of dependability
or the ability to tolerate failures. However, Nascimento et al. [13] deal with the high-
est amount of dependability attributes, exploring the different software fault tolerance
techniques based on design diversity.

Besides, there are some approaches dealing with variability-aware reliability analy-
sis techniques that can be applied in DSPLs, as [77, 78]. For instance, Rodrigues et al.

[78] proposed a model for feature-aware discrete-time Markov chains, called FDTMC,
for verifying probabilistic properties (e.g., reliability and availability) of product lines.
Among the DSPL approaches analysed in our study (listed in Section3.2), only Pessoa
et al. [14] deal with reliability. Pessoa et al. [14] proposed a DSPL approach that is
explored and evaluated in the medical area, in particular in the Body Sensor Network
domain, in which reliability and maintainability are key requirements. The proposed
approach by Pessoa et al. [14] is based on FDTMC [78].

A Uniform Solution for Modelling Static and Dynamic Variability. Bosch et al. [79]
list dynamic variability and runtime concerns as one of the trends of software variability
area. According to Bosch et al. [79], designing variation points such that the variability
mechanism, which determines the binding time, can be easily replaced during system
implementation is particularly important. In this context, we pose another challenge:
How to represent dynamic variability efficiently?

Despite the numerous notations for modelling variability using feature model, most
of them deal only with static variability. The modelling of dynamic variability has
been neglected, with few attempts to represent it, as showed in Table 1. Among sixteen
analysed approaches (Table 1), only four of them deal with both static and dynamic
variabilities [1, 34, 38, 44], using their own notations, as Lee et al. [44], or multiple
models in order to complement the feature model. Thus, one of the challenges is the
definition of a standard notation to represent both static and dynamic variabilities.

Reference Models, Reference Architectures, Implementation Frameworks and Auto-

mated Tools. In the context of DSPLs, there is no reference model to be followed
on how to build a DSPL. Salehie and Tahvildari [25] raised the following issues that
are applicable to the DSPL project: which architecture styles and design patterns are
appropriate for this purpose? Which component model provides the best support for
the sensing and effecting in vivo mechanisms? Which interfaces and contracts need to
be considered?

On architectural styles, our taxonomy concluded that DSPLs use both hybrid,
component-based, and service-oriented architectures. On architectural patterns, DSPLs
are mostly based on the reflection architectural pattern. However, there is a gap be-
tween the definition of architectural styles and patterns and the concrete realisation of

6 CONCLUSIONS 24

DSPLs. There is still a lack of models and processes that guide the development of
DSPLs, applying these architectural styles and patterns.

Regarding the component model, at the level of the managing subsystem, it is nec-
essary to build monitoring and adaptation components that are reusable in other DSPLs,
that is, they are domain independent. At the managed subsystem level, a DSPL needs
to be constructed in order to be “understood” by the controller, to expose important
information through sensors, and expose its variation points to facilitate variability
management by effectors.

Regarding interfaces and contracts, although numerous research efforts have in-
vestigated approaches to develop DSPLs, there is still a lack of reference models and
reference architectures that could help realising in a systematic manner adaptation pro-
cesses, variability management, and the instrumentation of probes/effectors.

Based on the sixteen DSPL approaches (Table 1) from our study, we identified the
following challenges: how to facilitate the technologies selection that fits in a given
purpose? Bashari et al. [28] proposed a conceptual reference framework for DSPL,
but they do not address practical issues for developing and realising DSPLs. There is
still a gap in reference models and reference architectures that can serve as a basis or
guide the design and construction of DSPLs. Similarly, implementation frameworks
and automated tools are needed as means of supporting and instrumenting the process
of building DSPL, and to make them widely usable by the industry.

Feedback Control Loops. Metzger and Pohl [71] state that the use of the autonomic
computing concepts is a challenge in the DSPL development. In particular, the appli-
cation of feedback control loops when building well-structured DSPLs. Also, Capilla
et al. [80] discuss the need to explore mechanisms for compositional adaptation [24] in
order to implement runtime variability in DSPLs, in particular, the adoption of MAPE-
K loop. Moreover, Lemos et al. [70] discuss the importance of using the feedback
control loops in order to obtain assurances [81].

According to Table 2, few approaches have applied the MAPE-K loop, for example.
More specifically, only four approaches [12, 34, 13, 14] have used the MAPE-K feed-
back control loop for structuring the managing subsystems. The adoption of feedback
control loops contributes to raising the maturity of DSPLs.

6. Conclusions

The trend in the development of new Dynamic software product line (DSPL) ap-
proaches indicates the combined use of self-adaptation and variability management.
However, for that to be achieved there is the need to define a clear taxonomy that allows
to compare existing approaches from dynamic software product line and self-adaptive
software systems.

This chapter has provided a comprehensive taxonomy for comparing DSPL ap-
proaches regarding two key dimensions, namely, self-adaption and variability. Using
our taxonomy, sixteen prominent DSPL approaches were compared and weighted to
evaluate their design decisions, aiming to obtain a better understanding of the research
area. Then, these design decisions were analysed in the face of quality attributes. Thus,
as key messages of this chapter we realise that: (i) there is no single way to design and

6 CONCLUSIONS 25

develop DSPLs, and this chapter demonstrated, based on the taxonomy, that there are
a variety of design decisions taken by the DSPL approaches, (ii) in the same way, each
design decision has trade-offs when analysed concerning the quality criteria, and this
analysis guides the architectural decisions of the engineers in the development of the
DSPL, (iii) the taxonomy presented in this chapter supports the reuse of knowledge
from the SASS research, which is a promising way to develop more dynamic DSPLs,
and (iv) both the DSPL and SASS research areas can take advantage of the intersec-
tion of these two areas, providing more dynamicity and autonomy for the DSPLs and
providing more means to represent the variability for adaptation in SASS.

References

[1] M. Rosenmüller, N. Siegmund, S. Apel, G. Saake, Flexible feature binding in
software product lines, Automated Software Engineering 18 (2) (2011) 163–197.

[2] M. Svahnberg, J. van Gurp, J. Bosch, A taxonomy of variability realization tech-
niques, Software: Practice and Experience 35 (8) (2005) 705–754.

[3] K. C. Kang, H. Lee, Variability Modeling, in: R. Capilla, J. Bosch, K.-C. Kang
(Eds.), Systems and Software Variability Management: Concepts, Tools and Ex-
periences, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, Ch. 2, pp. 25–
42.

[4] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S. Peterson, Feature-
Oriented Domain Analysis (FODA) Feasibility Study, Tech. rep., Software Engi-
neering Institute, Carnegie Mellon University, Pittsburgh, PA (1990).

[5] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Di Marzo Serugendo, S. Dustdar,
A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer,
M. Litoiu, S. Malek, R. Mirandola, H. A. Müller, S. Park, M. Shaw, M. Tichy,
M. Tivoli, D. Weyns, J. Whittle, Software Engineering for Self-Adaptive Systems:
A Research Roadmap, in: Software Engineering for Self-Adaptive Systems, Vol.
5525 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2009,
pp. 1–26.

[6] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu,
H. Müller, M. Pezzè, M. Shaw, Engineering self-adaptive systems through feed-
back loops, in: B. H. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee (Eds.),
Software Engineering for Self-Adaptive Systems, Vol. 5525 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin, Heidelberg, 2009, pp. 48–70.

[7] J. O. Kephart, D. M. Chess, The vision of autonomic computing, Computer 36 (1)
(2003) 41–50.

[8] N. Bencomo, J. Lee, S. Hallsteinsen, How dynamic is your Dynamic Soft-
ware Product Line?, in: 4th International Workshop on Dynamic Software Prod-
uct Lines (DSPL), 14th International Software Product Line Conference (SPLC
2011), 2010, pp. 61–68.

6 CONCLUSIONS 26

[9] C. Cetina, V. Pelechano, Variability in Autonomic Computing, in: R. Capilla,
J. Bosch, K.-C. Kang (Eds.), Systems and Software Variability Management:
Concepts, Tools and Experiences, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2013, Ch. 17, pp. 261–267.

[10] S. Hallsteinsen, E. Stav, A. Solberg, J. Floch, Using Product Line Techniques to
Build Adaptive Systems, in: 10th International Software Product Line Confer-
ence (SPLC’06), IEEE, 2006, pp. 141–150.

[11] B. Morin, O. Barais, G. Nain, J.-M. Jezequel, Taming Dynamically Adaptive
Systems using models and aspects, in: 2009 IEEE 31st International Conference
on Software Engineering, IEEE, Vancouver, BC, 2009, pp. 122–132.

[12] N. Abbas, J. Andersson, Architectural reasoning for dynamic software product
lines, in: Proceedings of the 17th International Software Product Line Conference
co-located workshops on - SPLC ’13 Workshops, ACM Press, New York, New
York, USA, 2013, p. 117.

[13] A. S. Nascimento, C. M. Rubira, F. Castor, ArCMAPE: A Software Product Line
Infrastructure to Support Fault-Tolerant Composite Services, in: 2014 IEEE 15th
International Symposium on High-Assurance Systems Engineering, IEEE, 2014,
pp. 41–48.

[14] L. Pessoa, P. Fernandes, T. Castro, V. Alves, G. N. Rodrigues, H. Carvalho, Build-
ing reliable and maintainable Dynamic Software Product Lines: An investigation
in the Body Sensor Network domain, Information and Software Technology 86
(2017) 54–70.

[15] M. Rosenmüller, N. Siegmund, G. Saake, S. Apel, Code generation to support
static and dynamic composition of software product lines, in: Proceedings of the
7th international conference on Generative programming and component engi-
neering - GPCE ’08, ACM Press, New York, New York, USA, 2008, p. 3.

[16] J. van Gurp, J. Bosch, M. Svahnberg, On the notion of variability in software
product lines, in: Proceedings Working IEEE/IFIP Conference on Software Ar-
chitecture, IEEE Comput. Soc, 2001, pp. 45–54.

[17] R. de Lemos, H. Giese, H. Müller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl,
G. Tamura, N. Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker, N. Bencomo,
Y. Brun, B. Cukic, R. Desmarais, S. Dustdar, G. Engels, K. Geihs, K. GÃ¶schka,
A. Gorla, V. Grassi, P. Inverardi, G. Karsai, J. Kramer, A. Lopes, J. Magee,
S. Malek, S. Mankovskii, R. Mirandola, J. Mylopoulos, O. Nierstrasz, M. Pezza,
C. Prehofer, W. Schafer, R. Schlichting, D. Smith, J. Sousa, L. Tahvildari,
K. Wong, J. Wuttke, Software engineering for self-adaptive systems: A second
research roadmap, in: R. de Lemos, H. Giese, H. Müller, M. Shaw (Eds.), Soft-
ware Engineering for Self-Adaptive Systems II, Vol. 7475 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2013, pp. 1–32.

6 CONCLUSIONS 27

[18] D. Weyns, S. Malek, J. Andersson, FORMS: a FOrmal Reference Model for Self-
adaptation, in: Proceeding of the 7th international conference on Autonomic com-
puting - ICAC ’10, ACM Press, 2010, p. 205.

[19] J. Kramer, J. Magee, Self-managed systems: An architectural challenge, in: 2007
Future of Software Engineering, FOSE ’07, IEEE Computer Society, Washington,
DC, USA, 2007, pp. 259–268.

[20] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson, N. Medvi-
dovic, A. Quilici, D. S. Rosenblum, A. L. Wolf, An architecture-based approach
to self-adaptive software, IEEE Intelligent Systems 14 (3) (1999) 54–62.

[21] S. Dobson, S. Denazis, A. Fernández, D. Gaïti, E. Gelenbe, F. Massacci, P. Nixon,
F. Saffre, N. Schmidt, F. Zambonelli, A survey of autonomic communications,
ACM Trans. Auton. Adapt. Syst. 1 (2) (2006) 223–259.

[22] J. L. Hellerstein, Y. Diao, S. Parekh, D. M. Tilbury, Feedback Control of Com-
puting Systems, John Wiley & Sons, 2004.

[23] D. Weyns, B. Schmerl, V. Grassi, S. Malek, R. Mirandola, C. Prehofer, J. Wuttke,
J. Andersson, H. Giese, K. M. Göschka, On Patterns for Decentralized Control in
Self-Adaptive Systems, Lecture Notes in Computer Science 7475 (2013) 76–107.

[24] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, B. H. C. Cheng, Composing adaptive
software, Computer 37 (7) (2004) 56–64.

[25] M. Salehie, L. Tahvildari, Self-adaptive software: Landscape and Research Chal-
lenges, ACM Transactions on Autonomous and Adaptive Systems 4 (2) (2009)
1–42.

[26] J. Andersson, R. de Lemos, S. Malek, D. Weyns, Modeling Dimensions of Self-
Adaptive Software Systems, in: Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics), Vol. 5525 LNCS, Springer Berlin Heidelberg, 2009, pp. 27–47.

[27] M. Galster, D. Weyns, D. Tofan, B. Michalik, P. Avgeriou, Variability in Soft-
ware Systems – A Systematic Literature Review, IEEE Transactions on Software
Engineering 40 (3) (2014) 282–306.

[28] M. Bashari, E. Bagheri, W. Du, Dynamic Software Product Line Engineering: A
Reference Framework, International Journal of Software Engineering and Knowl-
edge Engineering 27 (02) (2017) 191–234.

[29] N. Abbas, J. Andersson, W. Löwe, Autonomic Software Product Lines (ASPL),
in: Proceedings of the Fourth European Conference on Software Architecture
Companion Volume - ECSA ’10, Vol. 46, ACM Press, New York, New York,
USA, 2010, pp. 324–331.

6 CONCLUSIONS 28

[30] K. S. Abotsi, S. T. Kurniadi, H. I. Alsawalqah, D. Lee, A software product line-
based self-healing strategy for web-based applications, in: Proceedings of the
15th International Software Product Line Conference on - SPLC ’11, ACM Press,
New York, New York, USA, 2011, pp. 31:1–31:8.

[31] L. Baresi, S. Guinea, L. Pasquale, Service-Oriented Dynamic Software Product
Lines, Computer 45 (10) (2012) 42–48.

[32] N. Bencomo, G. Blair, C. Flores, P. Sawyer, Reflective Component-based Tech-
nologies to Support Dynamic Variability, in: Second International Workshop on
Variability Modelling of Software-Intensive Systems, 2008, pp. 141–150.

[33] N. Bencomo, P. Grace, C. Flores, D. Hughes, G. Blair, Genie: Supporting the
Model Driven Development of Reflective, Component-based Adaptive Systems,
in: Proceedings of the 13th international conference on Software engineering -
ICSE ’08, ACM Press, New York, New York, USA, 2008, p. 811.

[34] J. C. Casquina, J. D. A. S. Eleuterio, C. M. F. Rubira, Adaptive Deployment In-
frastructure for Android Applications, in: 12th European Dependable Computing
Conference Adaptive, 2016, pp. 218–228.

[35] C. Cetina, J. Fons, V. Pelechano, Applying Software Product Lines to Build Au-
tonomic Pervasive Systems, in: 2008 12th International Software Product Line
Conference, Universidad Politécnica de Valencia, IEEE, 2008, pp. 117–126.

[36] C. Cetina, P. Giner, J. Fons, V. Pelechano, Autonomic Computing through Reuse
of Variability Models at Runtime: The Case of Smart Homes, Computer 42 (10)
(2009) 37–43.

[37] J. Cubo, N. Gamez, L. Fuentes, E. Pimentel, Composition and Self-Adaptation
of Service-Based Systems with Feature Models, in: Safe and Secure Software
Reuse, 13th International Conference on Software Reuse, ICSR 2013, Pisa, June
18-20. Proceedings, Vol. 7925 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2013, pp. 326–342.

[38] J. Cubo, N. Gamez, E. Pimentel, L. Fuentes, Reconfiguration of Service Failures
in DAMASCo Using Dynamic Software Product Lines, in: 2015 IEEE Interna-
tional Conference on Services Computing, IEEE, 2015, pp. 114–121.

[39] L. Fuentes, N. Gamez, A feature model of an aspect-oriented middleware family
for pervasive systems, in: Proceedings of the 2008 workshop on Next generation
aspect oriented middleware - NAOMI ’08, ACM, 2008, pp. 11–16.

[40] L. Fuentes, N. Gámez, Modeling the Context-Awareness Service in an Aspect-
Oriented Middleware for AmI, in: 3rd Symposium of Ubiquitous Computing and
Ambient Intelligence 2008, Vol. 51, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2009, pp. 159–167.

6 CONCLUSIONS 29

[41] H. Gomaa, K. Hashimoto, Dynamic software adaptation for service-oriented
product lines, in: Proceedings of the 15th International Software Product Line
Conference on - SPLC ’11, 2, ACM Press, New York, New York, USA, 2011,
p. 1.

[42] J. Floch, S. Hallsteinsen, E. Stav, F. Eliassen, K. Lund, E. Gjorven, Using archi-
tecture models for runtime adaptability, IEEE Software 23 (2) (2006) 62–70.

[43] K. Geihs, P. Barone, F. Eliassen, J. Floch, R. Fricke, E. Gjorven, S. Hallsteinsen,
G. Horn, M. U. Khan, A. Mamelli, G. A. Papadopoulos, N. Paspallis, R. Re-
ichle, E. Stav, A comprehensive solution for application-level adaptation, Soft-
ware: Practice and Experience 39 (4) (2009) 385–422.

[44] J. Lee, G. Kotonya, D. Robinson, Engineering Service-Based Dynamic Software
Product Lines, Computer 45 (10) (2012) 49–55.

[45] Jaejoon Lee, G. Kotonya, Combining Service-Orientation with Product Line En-
gineering, IEEE Software 27 (3) (2010) 35–41.

[46] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, A. Solberg, Models@ Run.time
to Support Dynamic Adaptation, Computer 42 (10) (2009) 44–51.

[47] B. Morin, F. Fleurey, N. Bencomo, J.-M. Jézéquel, A. Solberg, V. Dehlen,
G. Blair, An Aspect-Oriented and Model-Driven Approach for Managing Dy-
namic Variability, in: Model Driven Engineering Languages and Systems, Vol.
5301 LNCS of Lecture Notes in Computer Science (LNCS), Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2008, pp. 782–796.

[48] A. S. Nascimento, C. M. F. Rubira, R. Burrows, F. Castor, A Model-Driven In-
frastructure for Developing Product Line Architectures Using CVL, in: 2013 VII
Brazilian Symposium on Software Components, Architectures and Reuse, IEEE,
2013, pp. 119–128.

[49] C. Parra, X. Blanc, L. Duchien, Context Awareness for Dynamic Service-
Oriented Product Lines, in: SPLC ’09 Proceedings of the 13th International Soft-
ware Product Line Conference, ACM, San Franscisco, CA, 2009, pp. 131–140.

[50] C. Parra, X. Blanc, A. Cleve, L. Duchien, Unifying design and runtime soft-
ware adaptation using aspect models, Science of Computer Programming 76 (12)
(2011) 1247–1260.

[51] L. M. Pessoa, Flexibilidade em Linhas de Produtos Dinâmicas Cientes de Quali-
dade: uma Abordagem Baseada em Linguagens Específicas de Domínio, Master’s
thesis, Universidade de Brasília, [in Portuguese] (2014).

[52] J. D. A. S. Eleuterio, F. N. Gaia, A. Bondavalli, P. Lollini, G. N. Rodrigues,
C. M. F. Rubira, On the Dependability for Dynamic Software Product Lines A
Comparative Systematic Mapping Study, in: 42th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEAA), 2016, pp. 323–330.

6 CONCLUSIONS 30

[53] ISO/IEC/IEEE, Systems and software engineering – Architecture description,
Tech. Rep. ISO/IEC/IEEE 42010:2011, IEEE (2011).

[54] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal, Pattern-Oriented
Software Architecture - A System of Patterns, Vol. 1 of Wiley Series in Software
Design Patterns, John Wiley & Sons, 1996.

[55] M. C. Huebscher, J. a. McCann, A survey of autonomic computing—degrees,
models, and applications, ACM Computing Surveys 40 (3) (2008) 1–28.

[56] ISO/IEC, System and Software Engineering - System and software Quality Re-
quirements and Evaluation (SQuaRE) - System and software quality models.,
Tech. Rep. ISO/IEC 25000:2014, ISO/IEC (2014).

[57] ISO/IEC/IEEE, Systems and software engineering – Vocabulary, Tech. Rep.
ISO/IEC/IEEE 24765:2010, IEEE (2010).

[58] IBM. IBM Terminology [online, cited 28/Mar/2017].

[59] H. A. Müller, H. M. Kienle, U. Stege, Autonomic Computing Now You See It,
Now You Don’t, in: Software Engineering, Vol. 5413 of Lecture Notes in Com-
puter Science, Springer Berlin Heidelberg, 2009, pp. 32–54.

[60] P. K. Mckinley, S. M. Sadjadi, E. P. Kasten, B. H. C. Cheng, A Taxonomy of
Compositional Adaptation, Tech. rep., Michigan State University, East Lansing,
Michigan (2004).

[61] J. van Zyl, Product Line Architecture and the Separation of Concerns, in: G. J.
Chastek (Ed.), Software Product Lines: Second International Conference, SPLC
2 San Diego, CA, USA, August 19–22, 2002 Proceedings, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2002, pp. 90–109.

[62] W. L. Hursch, C. V. Lopes, Separation of Concerns, Tech. Rep. NU-CCS-5-03,
Northeastern University, Boston (1995).

[63] I. Gorton, Software Quality Attributes, in: Intergovernmental Panel on Climate
Change (Ed.), Essential Software Architecture, Vol. 1, Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2011, pp. 23–38.

[64] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, 2nd Edition,
Addison Wesley, 2003.

[65] K. Pohl, G. Böckle, F. van der Linden, Software Product Line Engineering –
Foundations, Principles, and Techniques, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2005.

[66] J. Bosch, Architecture-Centric Software Engineering, in: C. Gacek (Ed.), Soft-
ware Reuse: Methods, Techniques, and Tools: 7th International Conference,
ICSR-7 Austin, TX, USA, April 15–19, 2002 Proceedings, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2002, pp. 347–348.

https://www-01.ibm.com/software/globalization/terminology/

6 CONCLUSIONS 31

[67] S. Hallsteinsen, M. Hinchey, S. Park, K. Schmid, Dynamic software product lines,
Computer 41 (4) (2008) 93–95.

[68] J. Andersson, R. de Lemos, S. Malek, D. Weyns, Reflecting on self-adaptive soft-
ware systems, in: Proceedings of the 2009 ICSE Workshop on Software Engi-
neering for Adaptive and Self-Managing Systems, SEAMS ’09, IEEE Computer
Society, Washington, DC, USA, 2009, pp. 38–47.

[69] B. H. C. Cheng, K. I. Eder, M. Gogolla, L. Grunske, M. Litoiu, H. A. Müller,
P. Pelliccione, A. Perini, N. A. Qureshi, B. Rumpe, D. Schneider, F. Trollmann,
N. M. Villegas, Using Models at Runtime to Address Assurance for Self-Adaptive
Systems, in: Models@run.time (Foundations, Applications, and Roadmaps), Vol.
8378 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2014,
pp. 101–136.

[70] R. D. Lemos, D. Garlan, C. Ghezzi, H. Giese, Software Engineering for Self-
Adaptive Systems: Assurances (Dagstuhl Seminar 13511), Dagstuhl Reports
3 (12) (2014) 67–96.

[71] A. Metzger, K. Pohl, Software product line engineering and variability manage-
ment: achievements and challenges, in: Proceedings of the on Future of Software
Engineering - FOSE 2014, ACM Press, New York, New York, USA, 2014, pp.
70–84.

[72] S. A. Razak, M. A. Isa, D. N. A. Jawawi, O. L. Fuh, Model-Based Testing for
Software Product Line: A Systematic Literature Review, International Journal of
Software Engineering and Technology 2 (2) (2017) 27–34.

[73] I. S. Santos, L. S. Rocha, P. A. S. Neto, R. M. C. Andrade, Model Verification of
Dynamic Software Product Lines, in: Proceedings of the 30th Brazilian Sympo-
sium on Software Engineering - SBES ’16, ACM Press, New York, New York,
USA, 2016, pp. 113–122.

[74] M. Cordy, A. Classen, P. Heymans, A. Legay, P.-Y. Schobbens, Model Checking
Adaptive Software with Featured Transition Systems, in: Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), Vol. 7740 LNCS, Springer, Berlin, Heidelberg,
2013, pp. 1–29.

[75] R. Muschevici, D. Clarke, J. Proenca, Feature Petri nets, in: Proceedings of the
14th International Software Product Line Conference (SPLC), 2010, pp. 99–106.

[76] DEVASSES, DEsign, Verification and VAlidation of large scale, dynamic Service
SystEmS [cited 23/Mai/2017].
URL http://www.devasses.eu/

[77] V. Nunes, D. Mendonça, G. Rodrigues, V. Alves, Towards Compositional Ap-
proach for Parametric Model Checking in Software Product Lines, in: Workshop
on Dependability in Adaptive and Self-Managing Systems – WDAS, 2013, pp.
19–22.

http://www.devasses.eu/
http://www.devasses.eu/
http://www.devasses.eu/

6 CONCLUSIONS 32

[78] G. N. Rodrigues, V. Alves, V. Nunes, A. Lanna, M. Cordy, P.-Y. Schobbens,
A. M. Sharifloo, A. Legay, Modeling and Verification for Probabilistic Properties
in Software Product Lines, in: 2015 IEEE 16th International Symposium on High
Assurance Systems Engineering, IEEE, 2015, pp. 173–180.

[79] J. Bosch, R. Capilla, R. Hilliard, Trends in Systems and Software Variability,
IEEE Software 32 (3) (2015) 44–51.

[80] R. Capilla, J. Bosch, P. Trinidad, A. Ruiz-Cortés, M. Hinchey, An overview of
Dynamic Software Product Line architectures and techniques: Observations from
research and industry, Journal of Systems and Software 91 (2014) 3–23.

[81] B. Schmerl, J. Andersson, T. Vogel, M. B. Cohen, C. M. Rubira, Y. Brun,
A. Gorla, F. Zambonelli, L. Baresi, Challenges in Composing and Decomposing
Assurances for Self-Adaptive Systems, in: R. de Lemos, D. Garlan, C. Ghezzi,
H. Giese (Eds.), Software Engineering for Self-Adaptive Systems (SEfSAS), no.
9640 in Lecture Notes in Computer Science, Springer, 2017, pp. 1–29.

	Introduction
	Perspectives on Variability and Self-adaptation
	Dynamic Software Product Line
	Self-adaptive Software Systems
	DSPL versus SASS

	A Taxonomy for DSPL
	Dimensions of Taxonomy
	Selection of DSPL Approaches
	Variability Dimension
	Self-adaptation Dimension
	Summary

	General Design Criteria
	Quality Attributes
	An Ideal DSPL Approach
	Variability Dimension (D1)
	Self-adaptation Dimension (D2)

	Research Challenges
	Conclusions

