
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Theses and Dissertations

2-1-2012

Feature-based generation of pervasive systems architectures Feature-based generation of pervasive systems architectures

utilizing software product line concepts utilizing software product line concepts

Mostafa Ahmed Hamza

Follow this and additional works at: https://fount.aucegypt.edu/etds

Recommended Citation Recommended Citation

APA Citation
Hamza, M. (2012).Feature-based generation of pervasive systems architectures utilizing software product
line concepts [Master’s thesis, the American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/1198

MLA Citation
Hamza, Mostafa Ahmed. Feature-based generation of pervasive systems architectures utilizing software
product line concepts. 2012. American University in Cairo, Master's thesis. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/1198

This Thesis is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of AUC Knowledge Fountain. For more
information, please contact mark.muehlhaeusler@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F1198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1198?utm_source=fount.aucegypt.edu%2Fetds%2F1198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1198?utm_source=fount.aucegypt.edu%2Fetds%2F1198&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mark.muehlhaeusler@aucegypt.edu

THE AMERICAN UNIVERSITY IN CAIRO

SCHOOL OF SCIENCES AND ENGINEERING

Feature-based Generation of Pervasive Systems’

Architectures Utilizing Software Product Line

Concepts

Thesis Document submitted to

Department of Computer Science and Engineering

In partial fulfillment of the requirements for the degree of

Master of Computer Science

by Mostafa Hamza

B.S., Computer Science

The American University in Cairo

September/2011

The American University in Cairo

Feature-based Generation of Pervasive Systems’

Architectures Utilizing Software Product Line Concepts

A Thesis Submitted by Mostafa Hamza

To Department of Computer Science and Engineering

September/2011

In partial fulfillment of the requirements for the degree of Masters of
Science

Has been approved by

Dr.

Thesis Committee Chair / Adviser ________________________

Affiliation __

Dr.

Thesis Committee Reader / examiner _______________________

Affiliation __

Dr.

Thesis Committee Reader / examiner _______________________

Affiliation __

_________________ _______ ___________ ____

Department Chair/ Date Dean Date

Program Director

III

Acknowledgments

I would like to thank all the people who helped me in order to bring this research up to

that level by their advice, guidance, contribution, technical and informational support,

and criticism. There were many people who were involved in this research work from

various areas.

From AUC, my advisor, Dr. Sherif Gamal Aly, who had major contribution and

significance in this research. His guidance, ideas and suggestions have been invaluable

throughout the bachelor and master‟s theses. He supplied me with unlimited support and

was very generous with his time and devotion to this project. Dr. Hoda Hosny, who

guided me in the proposal and the evaluation; she was generous in her time and ideas for

this research work to succeed; Dr. Sherif El-Kassas, who provided valuable criticism in

the proposal and validated the idea. I would like also to thank those who contributed in

the experiments and had valuable input in order to verify the correctness of the work.

They dedicated time and effort for this project to succeed Sarah Nadi, Karim Hamdan,

Ahmed Rizk, Amr Gouda, and Daniah Mohktar.

I would like to thank all my family members; my wife, Daniah Mokhtar, My mother,

Zakeya El-Memey, My Father, Ahmed Hamza, and my sister, Rania, and brother

Mohamed. They have provided me with invaluable and unlimited support that this work

would not have been possible without their help.

IV

Abstract

As the need for pervasive systems tends to increase and to dominate the computing

discipline, software engineering approaches must evolve at a similar pace to facilitate the

construction of such systems in an efficient manner. In this thesis, we provide a vision of

a framework that will help in the construction of software product lines for pervasive

systems by devising an approach to automatically generate architectures for this domain.

Using this framework, designers of pervasive systems will be able to select a set of

desired system features, and the framework will automatically generate architectures that

support the presence of these features. Our approach will not compromise the quality of

the architecture especially as we have verified that by comparing the generated

architectures to those manually designed by human architects.

As an initial step, and in order to determine the most commonly required features that

comprise the widely most known pervasive systems, we surveyed more than fifty existing

architectures for pervasive systems in various domains. We captured the most essential

features along with the commonalities and variabilities between them. The features were

categorized according to the domain and the environment that they target.

Those categories are: General pervasive systems, domain-specific, privacy, bridging,

fault-tolerance and context-awareness. We coupled the identified features with well-

designed components, and connected the components based on the initial features

selected by a system designer to generate an architecture. We evaluated our generated

architectures against architectures designed by human architects. When metrics such as

coupling, cohesion, complexity, reusability, adaptability, modularity, modifiability,

packing density, and average interaction density were used to test our framework, our

generated architectures were found comparable, if not better than the human generated

architectures.

V

Table of contents

ACKNOWLEDGMENTS ...III

ABSTRACT .. IV

LIST OF ABBREVIATIONS .. XVI

CHAPTER 1 .. 18

INTRODUCTION ... 18

1.1. Background ... 18

1.1. Problem Definition .. 19

1.2. Thesis Statement ... 19

1.3. Proposed Approach ... 20

CHAPTER 2 .. 22

LITERATURE REVIEW... 22

2.1. Features of Pervasive Systems ... 22

2.1.1. Ubiquitous Access .. 22

2.1.2. Context awareness... 22

2.1.3. Intelligent Interaction .. 23

2.1.4. Natural interaction... 23

2.2. Software Architecture Definition ... 24

2.3. Software Product Line (SPL) ... 25

2.3.1. SPL history ... 25

2.3.2. Fundamentals of SPL .. 26

2.3.3. SPL Life Cycle ... 27

VI

2.3.4. Domain Engineering ... 27

2.3.5. Application Engineering ... 30

2.3.6. Variability and Commonality Management ... 31

 Dynamic Software Product Line (DSPL) .. 31

2.4.1. The Decision maker .. 33

2.4.2. The SPL Configurator.. 34

2.4.3. DSPL Architecture .. 35

2.5. SPL in Domain Specific ... 40

2.5.1. Distributed and Embedded Systems ... 40

2.5.2. Data-intensive systems .. 41

2.5.3. Adaptive Systems ... 44

2.5.4. Pervasive systems .. 45

2.6. Software Engineering Approaches used with SPLs ... 48

2.6.1. Aspect-Oriented Programming ... 49

2.6.2. Feature Oriented Programming .. 49

 Feature Models ... 49

2.6.3. Model Driven Architecture ... 52

2.6.4. Feature Oriented Model Driven Development .. 53

2.6.5. Component-based Architecture ... 54

2.7. Reference Architecture Evaluation .. 54

2.7.1. Architecture Evaluation and Metrics ... 55

2.7.1.1. Coupling .. 55

2.7.1.2. Cohesion.. 55

2.7.1.3. Complexity... 56

VII

2.7.1.4. Size .. 57

2.7.1.5. Reusability ... 58

2.7.1.6. Adaptability ... 59

2.7.2. Evaluation Frameworks and Metric Suites ... 60

2.7.2.1. Narasimhan and Hendradjaya’s Evaluation Suite .. 60

2.7.2.2. Zayaraz and Thambidurai’s Measurement Techniques ... 64

2.7.3. Evaluation Tool (SDMetrics) .. 67

2.8. SPL Evaluation ... 68

CHAPTER 3 .. 72

A STUDY AND CATEGORIZATION OF PERVASIVE SYSTEMS ARCHITECTURES . 72

3.1. General Pervasive Systems (Non-environment Specific) .. 72

3.2. Privacy and Security ... 73

3.3. Domain-specific Architectures .. 83

3.3.1. Learning systems ... 83

3.3.2. Smart Active Spaces ... 91

3.3.3. Health ... 97

3.3.4. Games ... 100

3.3.5. Mobile ... 101

3.3.6. Retail Systems ... 106

3.3.7. Emergency Management ... 107

3.3.8. Transportation: .. 110

3.3.9. Bridging: .. 111

3.3.10. Fault Tolerance .. 114

3.3.11. Context-aware ... 115

VIII

3.3.12. File Migration .. 119

3.3.13. Document Editing .. 120

CHAPTER 4 ... 122

FEATURE-BASED GENERATION OF PERVASIVE SYSTEMS’ ARCHITECTURES

METHODOLOGY .. 122

4.1. Discussion and Classification of Common and Variable Features in Pervasive System

Architectures.. 122

4.2. The Methodology for Generating Pervasive Architectures .. 138

4.3. Implementation ... 139

4.4. The Evaluation Criteria .. 144

4.4.1. Experimentation .. 144

4.4.2. Results ... 151

4.4.2.1. Component Packing Density (CPD) ... 155

4.4.2.2. Component average interaction density (CAID) .. 158

4.4.2.3. CRITAll .. 160

4.4.2.4. Coupling .. 162

4.4.2.5. Cohesion ... 166

4.4.2.6. Modularity... 168

4.4.2.7. Reusability ... 170

4.4.2.8. Complexity .. 172

4.4.2.9. Modifiability .. 174

4.5. Results analysis and highlights ... 175

CHAPTER 5 ... 178

CONCLUSION .. 178

IX

List of contributions ... 178

Directions for future work .. 179

5. Appendices .. 182

5.1. Appendix I .. 182

5.2. Appendix II ... 183

5.2.1. Requirements .. 183

5.2.1.1. Retail with context awareness ... 183

5.2.1.2. Health ... 185

5.2.1.3. Transportation and Mobile .. 187

5.2.2. Architectures designed by Subjects .. 189

REFERENCES .. 204

X

List of Figures

FIGURE 1: MIXED SPL OVERVIEW [12] ... 36

FIGURE 2: EVOLUTIONARY SOFTWARE PRODUCT LINE ENGINEERING PROCESS [30] 38

FIGURE 3: CONCEPTUAL OVERVIEW OF DCAC APPROACH [34] .. 40

FIGURE 4: MODEL-DRIVEN MULTI-LAYER ARCHITECTURE FOR SPL DEVELOPMENT [78] 44

FIGURE 5: ASSOCIATIONS AMONG THE ASSETS IN PRODUCTS OF WEB-BASED SYSTEMS [9] 44

FIGURE 6: SPL FOR PERVASIVE SYSTEMS FOLLOWING THE MDD APPROACH [13] 46

FIGURE 7: GLOBAL ARCHITECTURE FOR PERVASIVE SYSTEM FRAMEWORK [44] 48

FIGURE 8: DEPENDENCY TREE FOR MAINTINABILITY .. 66

FIGURE 9: THE FAMILY EVALUATION FRAMEWORK (FEF) [26] .. 70

FIGURE 10: ARCHITECTURE FOR PERVASIVE SYSTEMS [92] .. 73

FIGURE 11: CASA HIGH LEVEL ARCHITECTURE [55] .. 74

FIGURE 12: PRIVACY MANAGEMENT PLATFORM ARCHITECTURE [85] .. 75

FIGURE 13: CONFAB INFOSPACES [39] ... 76

FIGURE 14: A TRUSTED ARCHITECTURE [15] .. 77

FIGURE 15: DOMAIN EXTENSION FOR MODELING ACCESS CONTROL IN PERVASIVE COMPUTING [71] 79

FIGURE 16: P3P ARCHITECTURE [11] ... 80

FIGURE 17: A PERVASIVE SERVICE PROTECTED BY PSIUM [36] ... 81

FIGURE 18: LOCATION-AWARE SYSTEM ARCHITECTURE WITH ANONYMITY ENHANCER [36] 82

FIGURE 19: PRIVACY SYSTEM ARCHITECTURE AS PRESENTED IN [63] ... 83

FIGURE 20: A MODEL OF PERVASIVE LEARNING [87] ... 84

FIGURE 21: MOBILEARN SYSTEM DATAFLOW ARCHITECTURE [32] ... 85

FIGURE 22: OVERVIEW OF THE PROPOSED INFRASTRUCTURE AT [32] .. 87

FIGURE 23: MAS-BASED SYSTEM ARCHITECTURE FOR PERVASIVE LEARNING [32] 88

file:\\vboxsrv\Vm-Shared\Mostafa%20Hamza%20Masters%20Thesis%20-%20Feature-based%20Generation%20of%20Pervasive%20Systems%20Architectures%20Utilizing%20Software%20Product%20Line%20Concepts.docx%23_Toc309860936

XI

FIGURE 24: CLUE SYSTEM CONFIGURATION [65] ... 90

FIGURE 25: HIGH LEVEL ARCHITECTURE FOR PERVASIVE COMPUTING SERVICES IN SMART SPACES [46] .. 92

FIGURE 26: SENSOR VIRTUALIZATION [46]... 93

FIGURE 27: PERCEPTUAL COMPONENTS VISUALIZATION AND APIS [46] .. 93

FIGURE 28: GAIA ARCHITECTURE [1] ... 94

FIGURE 29: ITRANSIT ARCHITECTURE AND DATA MODEL [69] .. 95

FIGURE 30: SMEET ARCHITECTURE [64] ... 97

FIGURE 31: GENERIC ARCHITECTURE FOR HEALTHCARE PERVASIVE SYSTEM [18]..................................... 98

FIGURE 32: HANDOVER FROM INDOOR TO OUTDOOR [18] ... 98

FIGURE 33: HANDOVER FROM OUTDOOR TO INDOOR [18] ... 99

FIGURE 34: TELE-HEALTH SYSTEM [74] .. 100

FIGURE 35: THE PEGASUS COORDINATION INFRASTRUCTURE [14] .. 101

FIGURE 36: MOBE OVERALL ARCHITECTURE [66] ... 103

FIGURE 37: MOBIPADS ARCHITECTURE [7] .. 105

FIGURE 38: OVERALL ARCHITECTURE FOR A NETWORK SERVICE FRAMEWORK FOR MOBILE PERVASIVE

COMPUTING [23] ... 106

FIGURE 39: MOBIDIS ARCHITECTURE [60].. 108

FIGURE 40: ESCAPE ARCHITECTURE [38] .. 109

FIGURE 41: CIMIS ARCHITECTURE [38] .. 109

FIGURE 42: ITRANSIT ARCHITECTURE [20] ... 111

FIGURE 43: BASIC BRIDGING ARCHITECTURE [17] .. 113

FIGURE 44: UMIDDLE ARCHITECTURE [45]... 114

FIGURE 45: FAULT MANAGER ARCHITECTURE [81] .. 115

FIGURE 46: CONTEXT-AWARE PERVASIVE ARCHITECTURE [48] .. 117

FIGURE 47: FUNCTIONAL BLOCKS FOR CONTEXT MANAGEMENT FRAMEWORK (CMF) [35] 119

file:\\vboxsrv\Vm-Shared\Mostafa%20Hamza%20Masters%20Thesis%20-%20Feature-based%20Generation%20of%20Pervasive%20Systems%20Architectures%20Utilizing%20Software%20Product%20Line%20Concepts.docx%23_Toc309860959

XII

FIGURE 48: NODE LAYOUT [40] ... 120

FIGURE 49: TENDAX ARCHITECTURE [84] ... 121

FIGURE 50: PERVASIVE ARCHITECTURES .. 123

FIGURE 51: PRIVACY FEATURES ... 124

FIGURE 52: LEARNING FEATURES .. 125

FIGURE 53: SMART ACTIVE SPACES’ FEATURES .. 126

FIGURE 54: HEALTH FEATURES .. 127

FIGURE 55: GAMES’ FEATURES .. 128

FIGURE 56: MOBILE FEATURES .. 129

FIGURE 57: RETAIL FEATURES .. 130

FIGURE 58: EMERGENCY SYSTEMS' FEATURES ... 132

FIGURE 59: TRANSPORTATION FEATURES.. 133

FIGURE 60: BRIDGING FEATURES... 134

FIGURE 61: CONTEXT-AWARE FEATURES ... 135

FIGURE 62: FAULT TOLERANCE FEATURES ... 136

FIGURE 63: FILE MIGRATION FEATURES... 137

FIGURE 64: DOCUMENT EDITING FEATURES .. 137

FIGURE 65: PERVASIVE CATEGORIZATION USING ECLIPSE AND FMP PLUGIN.. 140

FIGURE 66: CONFIGURATION OF RETAIL WITH CONTEXT-AWARENESS .. 140

FIGURE 67: IMPLEMENTATION PROCESS ... 141

FIGURE 68: LOOKUP TABLE SAMPLE .. 142

FIGURE 69: GENERATED ARCHITECTURE FROM RA GENERATOR .. 143

FIGURE 70: GENERATED ARCHITECTURE FOR HEALTH PERVASIVE SYSTEM FROM THE RA GENERATOR .. 146

FIGURE 71: GENERATED ARCHITECTURE FOR RETAIL PERVASIVE SYSTEM FROM THE RA GENERATOR 147

XIII

FIGURE 72: GENERATED ARCHITECTURE FOR TRAFFIC PERVASIVE SYSTEM FROM THE RA GENERATOR .. 148

FIGURE 73: CPD FOR CASE 1 .. 156

FIGURE 74: CPD FOR CASE 2 .. 157

FIGURE 75: CPD FOR CASE 3 .. 157

FIGURE 76: CAID FOR CASE 1... 158

FIGURE 77: CAID FOR CASE 2... 159

FIGURE 78: CAID FOR CASE 3... 160

FIGURE 79: CRITALL FOR CASE 1 .. 161

FIGURE 80: CRITALL FOR CASE 2 .. 161

FIGURE 81: CRITALL FOR CASE 3 .. 162

FIGURE 82: CASE 1 COUPLING ... 163

FIGURE 83: CASE 1 COUPLING COMPUTATION PARAMETERS .. 164

FIGURE 84: CASE 2 COUPLING ... 164

FIGURE 85: CASE 2 COUPLING COMPUTATION PARAMETERS .. 165

FIGURE 86: CASE 3 COUPLING ... 165

FIGURE 87: CASE 3 COUPLING COMPUTATION PARAMETERS .. 166

FIGURE 88: COHESION FOR CASE 1 .. 167

FIGURE 89: COHESION FOR CASE 2 .. 167

FIGURE 90: COHESION FOR CASE 3 .. 168

FIGURE 91: MODULARITY FOR CASE 1 ... 169

FIGURE 92: MODULARITY FOR CASE 2 ... 169

FIGURE 93: MODULARITY FOR CASE 3 ... 170

FIGURE 94: CASE 1 REUSABILITY .. 171

FIGURE 95: CASE 2 REUSABILITY .. 171

XIV

FIGURE 96: CASE 3 REUSABILITY .. 172

FIGURE 97: CASE 1 COMPLEXITY ... 173

FIGURE 98: CASE 2 COMPLEXITY ... 173

FIGURE 99: CASE 3 COMPLEXITY ... 174

FIGURE 100: POSITIVELY MONOTONIC METRICS ... 176

FIGURE 101: NEGATIVELY MONOTONIC METRICS-1 ... 176

FIGURE 102: NEGATIVELY MONOTONIC METRICS-2 ... 177

FIGURE 103: PERVASIVE FEATURES VS DOMAIN .. 180

FIGURE 104: RA GENERATOR CLASS DIAGRAM .. 182

FIGURE 105: SUBJECT 1 - CASE 1 – RETAIL ... 189

FIGURE 106: SUBJECT 1 - CASE 2 – HEALTH.. 190

FIGURE 107: SUBJECT 1 - CASE 3 – TRANSPORTATION ... 191

FIGURE 108: SUBJECT 2 - CASE 1 – RETAIL ... 192

FIGURE 109: SUBJECT 2 - CASE 2 – HEALTH.. 193

FIGURE 110: SUBJECT 2- CASE 3 – TRANSPORTATION .. 194

FIGURE 111: SUBJECT 3 - CASE 1 – RETAIL ... 195

FIGURE 112: SUBJECT 3 - CASE 2 – HEALTH.. 196

FIGURE 113: SUBJECT 3 - CASE 3 – TRANSPORTATION ... 197

FIGURE 114: SUBJECT 4 - CASE 1 – RETAIL ... 198

FIGURE 115: SUBJECT 4 - CASE 2 – HEALTH.. 199

FIGURE 116: SUBJECT 4 - CASE 3 – TRANSPORTATION ... 200

FIGURE 117: SUBJECT 5 - CASE 1 – RETAIL ... 201

FIGURE 118: SUBJECT 5 - CASE 2 – HEALTH.. 202

FIGURE 119: SUBJECT 5 - CASE 3 – TRANSPORTATION ... 203

XV

List of Tables

TABLE 1: ZAYARAZ AND THAMBIDURAI’S NOTATION ... 64

TABLE 2: THE ELEMENTS OF THE FRAMEWORK AND THE QUESTIONS USED IN THE ANALYSIS [58] 69

TABLE 3: COMPARISON BETWEEN ONE BIG RA AND SMALL RAS .. 138

TABLE 4: ALL METRICS WE USED IN EVALUATING THE GENERATED ARCHITECTURES 149

TABLE 5: SDMETRICS DIAGRAM OUTPUT FOR CASE 1 .. 151

TABLE 6: SDMETRICS DIAGRAM OUTPUT FOR CASE 2 .. 151

TABLE 7: SDMETRICS DIAGRAM OUTPUT FOR CASE 3 .. 152

TABLE 8: NARASIMHAN AND HENDRADJAYA’S EVALUATION SUITE FOR CASE 1 152

TABLE 9: NARASIMHAN AND HENDRADJAYA’S EVALUATION SUITE FOR CASE 2 153

TABLE 10: NARASIMHAN AND HENDRADJAYA’S EVALUATION SUITE FOR CASE 3 153

TABLE 11: ZAYARAZ AND THAMBIDURAI’S MEASUREMENT TECHNIQUE FOR CASE 1 154

TABLE 12: ZAYARAZ AND THAMBIDURAI’S MEASUREMENT TECHNIQUE FOR CASE 2 154

TABLE 13: ZAYARAZ AND THAMBIDURAI’S MEASUREMENT TECHNIQUE FOR CASE 3 155

TABLE 14: MODIFIABILITY FOR CASE 1 ... 174

TABLE 15: MODIFIABILITY FOR CASE 2 ... 174

TABLE 16: MODIFIABILITY FOR CASE 3 ... 175

XVI

List of Abbreviations

 4SRS: Four Step Rule Set

 ADSA: Adaptability Degree of Software Architecture

 BAPO: Business, Architecture, Process and Organization

 BL: Business Logic

 CASA: Context-Aware Security Architecture

 CBSE: Component-based Software Engineering

 CFFP: COSMIC Full Function Points

 CFOs: Context Feature Objects

 CID: Component Interaction Density

 CIID: Component Incoming Interaction Density

 CIMS: Context Information Management Services

 CMC: Component Management Core

 CMF: Context Management Framework

 CMS: Context Management Service

 COID: Component Outgoing Interaction Density

 CP: Configurable Product

 CPD: Component Packing Density

 DCAC: Dynamic Client Application Customization

 DSPL: Dynamic Software Product Line

 ERAS: The Environment Role Activation Service

 FEF: Family Evaluation Framework

 FMP: Feature Modeling Plug-in

 FODA: Feature-Oriented Domain Analysis

 FOMDD: Feature Oriented Model Driven Development

 FOP: Feature Oriented Programming

 IOSA: Impact on Software Architecture

 JAPELAS: Japanese Polite Expressions Learning Assisting System

 LCOM4: Lack of Cohesion in Methods

 MADAM: Mobility and Adaptation-enabling Middleware

 MAS: Multi-Agent System

 MDA: Model Driven Architecture

 MDD: Model Driven Development

 OMG: Object Management Group

 OSGI: Open Service Gateway Initiative

 OSGi: Open Service Gateway Interface

 P3P: Privacy Preferences Project

 PAN: Personal Area Networks

 PIM: Platform Independent Model

 PL: Pervasive Learning

 PSIUM: Privacy Sensitive Information Diluting Mechanism

 PSM: Platform Specific Model

 QoS: Quality of Service

 RDF: Resource Description Framework

XVII

 SCV: Scope, Commonality and Variability Analysis

 SMS: Security Management Service

 SPE: Secure Persona Exchange

 SPL: Software Product Line

 SPLE: Software Product Line Engineering

 TANGO: Tag Added learning Objects

 TeNDaX: Text Native Database Extension

 TPM: Trusted Platform Module

 UI: User Interface

 VMM: Virtual Machine Monitor

 XMI: XML Metadata Interchange

18

Chapter 1

Introduction

1.1. Background

A newly founded domain is pervasive systems. A pervasive system is a new trend of

systems that shifts away from the one person, one computer paradigm to the era where

human interaction is explicit. In other words, pervasive systems are the systems that exist

everywhere around the users and provide them with a variety of personalized services

according to their needs. We discuss the characteristics of pervasive systems in more details

in section 1. There are numerous challenges facing the design of successful pervasive

systems. Some of the major challenges are power management, wireless discovery, user

interface adaptation and context aware computing.

Software development is still a difficult engineering process as the level of complexity is

increasing day after day especially for the newly found domains and technologies, such as

Pervasive systems. The convolutions of software lead both researchers and practitioners

towards exploring the software engineering challenges concentrating mainly on

manufacturing individual products. Nowadays, the attention shifted from engineering stand-

alone products into producing mass-customizable families of similar products, namely the

Software Product Lines (SPL). Instead of starting from scratch for every developed product,

a software product line targets the utilization of reusable core assets.

SPL is mainly based on reusability. It targets the development of software components that

share a common and managed set of features. SPL is divided into three engineering

processes: domain engineering, application engineering and variability and commonality

management. Domain Engineering is for developing core assets in the product line, while

application engineering is for building the final products on top of the product line

infrastructure. Above these two processes comes variability and commonality management

to configure the SPL, add new core assets, or enhance existing ones. SPL is discussed in

more details in section 2.3.

19

Current implementations of pervasive systems are based on ad-hoc implementations through

the adoption of frameworks. One major drawback however, is that developed pervasive

systems are not very scalable and are unable to evolve easily. Also, when dealing with large

and complex pervasive systems, the approaches presented in the related work, seem

insufficient. Pervasive systems are now moving from research to production which requires

the produced artifact to be more complex and to be of higher quality than the prototypes

produced by the research [44]. The heterogeneity of such systems and their management by

the traditional techniques of software development is hectic. This calls for a methodology

that accelerates their development.

1.1. Problem Definition

Many attempts were made to build product line specifications for various kinds of

application domains. Product lines have mainly been specified for application families that

are characterized by their multi-layer systems, for their data intensive usage [79], and for

specific domains such as embedded and distributed systems. two basic attempts for product

line specifications for pervasive systems found in [45] and [14]. Our literature review leads

us to conclude that the idea of Software Product Lines has not yet been maturely adopted in

the domain of Pervasive Systems. There is a clear lack of quasi-comprehensive reference

architectures for pervasive systems development, primarily due to the limited research efforts

made to analyze existing pervasive systems architectures and to create a suitable enough

reference architecture that can be used as a guide for building such systems. The existing

pervasive product lines do not contain reference architecture and do not accommodate for

many features of pervasive systems applications which include but are not limited to: context

identification and reaction, sensor intensity, the presence of actors, and event dissemination.

1.2. Thesis Statement

Our objective in this work was to perform a detailed review of existing pervasive systems

architectures, and to capture a semi-comprehensive set of features that would be

accommodated in the specification of a reference architecture to be used in the development

of a Software Product Line for pervasive systems. Our review will focus on gathering the

20

features that should be present in any pervasive systems. Subsequently, and instead of

creating an extremely sizable reference architecture for pervasive systems, we automatically

generate architectures for pervasive systems by allowing designers to select a set of features

for pervasive systems. Our automatically generated architectures were compared to human

generated architectures based on a set of pre-determined metrics used in the evaluation of

systems architectures.

1.3. Proposed Approach

The research was divided into four phases. The first phase was to define pervasive systems

and the main characteristics for achieving ubiquity and pervasiveness. The second phase was

to group the different features from the various architectures of pervasive systems and

categorize them. The third phase was to generate component-based architectures, and the

fourth phase was to evaluate them.

The first phase was initiated by investigating the pervasive systems‟ characteristics from

previous work. We narrowed down our related work collection to focus on approaches that

were adopted for defining pervasive systems. Perhaps the most prominent definition is Mark

Wieser‟s definition of pervasive systems in which he states: “The most profound

technologies are those that disappear. They weave themselves into the fabric of everyday life

until they are indistinguishable from it” [92]. The settled characteristics are ubiquitous

access, context awareness, intelligent Interaction and natural interaction. They are all

discussed in details in section 1.

In the second phase, we surveyed the literature for the most prominent architectures in the

domain, while capturing commonalities and variances in each. We then categorized them

according to their usage and operating environment as explained in section 4.1. The third

phase was to generate component-based architectures for a specified set of features. All the

collected pervasive features are first presented to the system designer and he/she selects the

features he/she wishes wanted to include in the system. The selected features are then passed

to our developed tool to generate a component-based architecture that best matches the

selected features. The final task was to compare the results from the evaluation metrics,

21

(presented in sections 2.7.1, 2.7.2 and 2.7.3), for the generated architectures against a

professionally-made architecture (as presented in section 4.4.2).

This document is organized as follows: Chapter 2 discusses the related work and literature

review on pervasive systems and SPLs. It also discusses the current software engineering

approaches used with SPL processes and the evaluation frameworks and metrics we came

across in order to analyze the generated architectures. Chapter 3 includes the study we

performed for more than fifty pervasive architectures to extract the features and components

from them. Chapter 4 is the core part of the thesis, which discusses the categorization we

carried out, our implementation to generate the pervasive systems‟ architectures, the

experiments we did to evaluate the generated architectures and the results of the experiments.

Chapter 5 is the conclusion for our thesis and finally the appendices.

22

Chapter 2

Literature Review

In this chapter we present our findings from the related work. We show the features for

pervasive systems that we extracted. Also, we highlight the SPLs and other software

engineering approaches. Finally, we present the evaluation methods we found to evaluate

both the architectures and the SPL.

2.1. Features of Pervasive Systems

The optimization of quality is crucial for pervasive systems as they require invisible

operation which causes them to be small in size and work with limited memory. In order

to have a pervasive computing environment, it is necessary to have the following:

ubiquitous access, context awareness, intelligent interaction and natural interaction [26].

2.1.1. Ubiquitous Access

Ubiquitous access is the sensors and the actuators that transfer input and output between

the real world and the virtual world based on wireless communication infrastructures.

There are many media that data could be sent over such as broadband satellite systems,

cellular radio communications, personal and local area radio communications, infrared

and ultrasonic communications. Due to the variety of hardware and software capabilities,

a communication infrastructure is required for maintaining knowledge about device

characteristics and managing coherent device interactions. The challenge is in keeping

the different connections live while moving between the different network types and

technologies. The routing and handing over can be managed at the network level.

Ubiquitous access also includes service discovery and registration, lookup services, self-

configuration and caching.

2.1.2. Context awareness

It refers to the ability of the system to recognize and localize objects as well as people

and their intentions. Also, it includes tracking other objects and coordinating the

activities with respect to and relative to other objects. Examples of such systems are:

voice and vision based systems, biometrical systems (fingerprint, retina, face recognition)

23

In a study mentioned in [26], a framework is to be proposed for building context-aware

applications. It utilizes a set of software components that work as wrappers for collecting

low level sensor data. Such data are then transformed into high level context

information. Context information is a time index that is represented in a metadata model

named Resource Description Framework (RDF). It is represented over the instances of

the abstract object classes as follows: person, thing and place and their contextual

interrelatedness. A context prediction system is used for predicting the future sensor data.

It assumes a stationary time series underlying the sensor data process.

2.1.3. Intelligent Interaction

It is the ability of the technology-rich environment in the pervasive systems to adapt to

people dealing with it [81].

2.1.4. Natural interaction

Natural Interaction refers to the interaction between the humans and the surrounding

environment and how the surrounding environment receives inputs from the user and acts

upon it, such as natural speech and gesture recognition. Rami et al. describe [95] the

characteristics of pervasive systems as follows:

1. Heterogeneity: Variety of software and hardware components that work with each

other to produce users‟ goals.

2. Presence of small devices: In order to be invisible to the users. They should be

small in size, memory, and power consumption.

3. Limited network facilities: Most of the network protocols are limited in

connection such as GPRS and Bluetooth.

4. High mobility: Handheld devices that can accompany the user everywhere.

5. User-oriented: Presented services should target the user and not a specific device

or location.

6. Dynamic environment: Users keep moving, and the environment should keep

track of them in order to deliver their services.

7. Adaptation to diversity: Pervasive applications should adapt themselves to the

device requirements, networks, etc.

24

8. Interaction with peers: The applications should have the ability to form ad-hoc

networks between others in order to exchange information.

9. Flexible computation model: Users are interested in different types of data.

Therefore, the need for constructing a flexible computation model will help

pervasive systems to evolve rapidly and smoothly.

Another approach presented in [81] divides the pervasive systems into five features that

should be present in order to name an application as a pervasive one. It should contain

the support for context, location, actors, sensors and events. The difference between the

previous approach and the current one is splitting the location from the context. Context

has a broader view than the user‟s location. There are other interesting things about the

user which are variable. Context includes lighting, noise level, network connectivity,

communication costs, communication bandwidth, and social situation, e.g. with your

boss, co-workers [77].

Now, we will be discussing the different definitions of what is software architecture.

2.2. Software Architecture Definition

In this section, we will be showing the definition for software architectures. The most

formulated and standardized is the definition presented by IEEE Standard 1472000 [3]. It

states that the “Architecture is the fundamental organization of a system embodied in its

components, their relationships to each other, and to the environment, and the principles

guiding its design and evolution”. In other words, the architecture is a design or a set of

designs for a certain system which targets accomplishing a task or more in the environment.

The Standard defines the system as “a collection of components organized to accomplish a

specific function or set of functions”. Also, the environment defined by the Standard as the

situation and conditions of developmental, operational, political, and other manipulations

upon that system. The architecture defines the structure and the behavior of the system. The

structure includes the different ingredients that build the system up. For example, class

diagram from UML can describe the structure of a system. The behavior of a system is

25

defined by the interactions inside the system according to inputs given to it. Sequence

diagram from UML is used to describe such behavioral attitude of a system.

Now, we will be showing SPL‟s definition, history, fundamentals and life cycle of SPLs in the

following section.

2.3. Software Product Line (SPL)

In this section we will be talking about SPL history, fundamentals, SPL life cycle,

engineering processes: domain engineering, application engineering and variability and

commonality management.

2.3.1. SPL history

Although not new in concept, the idea of Product Lines was adopted in the domain of

software engineering. Computer scientists paid much attention recently to explore software

product line engineering (SPLE) in response to the growing need for methodologies that cut

development costs and take much less time to market than what is currently in place. The

move towards applying SPLE is always motivated by economic concerns. The key feature

behind SPLE is the application of reusability; and SPLE is not the first approach to reuse

software. Previous reusability attempts for developing core assets lacked an organized

analysis of future variability [22].

Now, we will be giving a glimpse about SPLs‟ history. In the 1990s, the concept of product

lines was introduced, and the first methodology that was applied was Feature-Oriented

Domain Analysis (FODA). Concurrently, many companies started to investigate product

lines such as Philips which introduced the building-block method.

Later, many companies and scientific projects in Europe started exploring SPLE [27] such as:

 Architectural Reasoning for Embedded Systems (ARES) between 1995 and

1998.

 Product-Line Realization and Assessment in Industrial Settings (Praise) from

1998 to 2000.

 Engineering Software Architectures, Process and Platforms (ESAPS) from

1999 to 2001.

26

 From Concepts to Application in system-Family Engineering (CAFÉ) from

2001 to 2003.

 FAct-based Maturity through Institutionalization, Lessons-learned and

Involved Exploration of System-family Engineering (FAMILIES) from 2003

to 2005.

2.3.2. Fundamentals of SPL

Studies have shown that applying the SPL approach can result in a shorter time-to-market

and improved productivity. SPL is different from single system development. There is a

huge change in perspective between the traditional way of developing software products

and SPLs. The former is based on ad-hoc next-contract vision while the latter is based on

a strategic view of a field of business. SPL is dependent on the concept of reusability

but, not in the traditional meaning. Reusability is for building assets that are to be used in

the product line [51]. SPL works on the development of software components that share

a common, managed set of features and they are developed using the same set of core

assets.

The fundamentals of the SPL Engineering Approach are divided between Domain

Engineering, Application Engineering and variability and commonality management.

Domain Engineering is the development of core assets to be used in the product line,

while application engineering is concerned with building the final products on top of the

product line infrastructure. They are loosely coupled and are synchronized by platform

releases. Domain engineering addresses development for reuse while application

engineering addresses development with reuse. Variability and commonality

management is for configuring the SPL, adding new core assets, or enhancing existing

ones.

Two major techniques are used when dealing with requirements in the SPL: use cases and

feature models, and they can be used together. The former is used when dealing with

user orientation in the sense of focusing on the functionalities that should be used by the

product line. Consequently, it is considered the driving force for guiding the

27

development. The latter has a re-use orientation and is used to address better

functionality for the product line members [7].

2.3.3. SPL Life Cycle

In order to deliver a successful product, the management process should capture the life

cycle of the product starting from the inception phase until delivery. Three essential

activities are carried out during the SPL life cycle, the core asset development, product

development and management. The domain engineering or core asset development and

the application engineering or product development are considered two separate life-

cycles [27]. The product management is the phase at which the scope of the product line

and its market strategy are defined. The management of common and variable features

and the change in the market could affect the product line life cycle. For example, the

introduction of new features or the elimination of outdated ones should be monitored by

the product management. Each life-cycle contains four stages which are: requirements

engineering, design, realization and testing.

2.3.4. Domain Engineering

Domain engineering is the process of developing core assets that will be used in the

product line. In other words, it is the process of saving the previous experience in

building systems or components from a certain domain in the form of assets. The

activities in the domain engineering start with product management, with the aim of

capturing the commonalities and variabilities among the products. Followed by domain

requirements engineering which targets getting the requirements, identifying the

commonalities and variabilities and constructing a variability model. The third phase is

the domain design phase which is responsible for the development of the product line

architecture that is going to be the basic infrastructure. Domain realization is where the

detailed design and reusable components are implemented with the realization of the

variabilities. During domain testing, the reusable components that were implemented in

the previous activity as well as the constructed reusable test assets can be reused in

testing.

28

The organization of the assets is dependent on how they will be used to produce different

products. The organization of such assets is the key for successful product lines.

Industrial experience has shown that having the right assets is not enough for easy

assembly. The choice of the right asset should be done in less time than developing it.

The evaluation of the asset organization as suggested by Hunt [42] is based on three

approaches which are: key domain abstractions, architecture, and features. Such

approaches are evaluated against the criteria of: natural division, ease of finding, general

applicability, reasonably sized groups and similarly sized groups.

Natural division: it evaluates if the grouping of the components is understandable and

related to some set of concepts to the project. The selection should be a single category

for each component because multiple categories could lead to ambiguity.

Ease of finding component: the product developer is given some product description and

s/he will choose a component to derive the product. The evaluation here is based on

examining the organizational map to the product description to ensure that the description

is easily understood by the product developer.

General applicability: checks if the approach can be applied to a wide range of problem

domains.

Reasonably sized groups: each group should be in a range of manageable size for the ease

of searching.

Similarly sized groups: this is to maximize the average amount of information provided

by each choice.

Organization Approaches: These approaches as suggested by Hunt in [42] for organizing

the asset base are:

1- Key Domain Abstraction Organization: which starts by creating a group under

the root for each domain identified followed by the identification of the top level

abstractions in each domain.

29

2- Architectural Organization: it is applied by mapping the architecture onto a

tree – similar to what is done in single product projects. Grouping the

components into reasonably sized groups besides having a layered architecture

helps in organizing the assets.

3- Feature Based Organization: This approach works by organizing the asset

base as features. Features are identified at the early stages in the development

process which is the foundation for having an early organization of assets.

Moreover, features give the glimpse of having a clear vision of the problem and

the solution domain. Converting the feature model into an architectural model is

also easy because the former is in the form of a tree.

The implementation and documentation of the domain software components needs a

systematic way to accomplish. A methodology called Open Service Gateway Interface

(OSGi) helps the developer during the implementation and documentation [22]. OSGi is

a java-based interface, framework and computing environment that is used to manage,

develop and deploy software components. The main motive to use OSGi is the flexibility

in adding, removing and editing components without recompiling the whole system.

Moreover, OSGi is a dynamic environment, i.e. an application can easily migrate to an

updated software component dynamically. Concerning its architecture, it is divided into

four layers. The first layer is the Security Layer and it is used in signing its assets. The

second layer is the Module Layer and it is responsible for managing the bundles – java

classes and other sources that bring functionalities to the end user. Thirdly, the Lifecycle

Layer, is the layer responsible of controlling the security and life cycle operations of the

bundle. Finally, the Service Layer which is used to register services, search for them and

receive notifications whenever their state changes.

 Almeida et al. [22] define some rules that should be followed in order to have proper

domain implementation which are:

 A component must have interfaces.

 A component should have a transparent life cycle mechanism.

30

 A component should be configurable.

 A component must have a third-party integration mechanism.

 Context independence.

 Documentation.

 Evolvabiltiy.

 Version compatibility.

Their methodology [22] is divided into two steps, component implementation and

component documentation.

The Component Implementation is divided into seven activities. The activities from 1 to

4 are responsible for developing a reusable component, while the rest are for using a

service from a reusable component.

Activity 1: Defining the component and describing the general-purpose information is the

first activity. Such data is stored in a manifest file to be used by the OSGi framework to

install and activate it properly.

Activity 2: The software engineer specifies the provided services which are similar to

specifying an interface that consists of operation and attribute definitions.

Activity 3: At this stage, the services and the code to register them are implemented.

Activity 4: In this activity, the component is built and installed which requires compiling

and packaging it in a suitable form for deployment.

Activity 5: Similar to activity 1, the software engineer describes the components that will

reuse other services.

Activity 6: The required services and the rest of the code are connected at this activity.

Activity 7: The last activity, similar to activity 4, is for building and installing the

component that reuses the services.

2.3.5. Application Engineering

Application engineering is the process of building up the final product with the core

assets developed in the domain engineering as presented in [51]. The activities in the

application engineering are almost the same like domain engineering. The difference is

that the application engineering is intended for the development of a certain product on

top of the platform developed in the domain engineering. The activities start with

31

application requirements engineering that capture the requirements of a certain product

with the least possible deviation from the existing commonalities and variabilities defined

in the product line infrastructure. The application design is where an instance of the

reference architecture is instantiated with the requirements defined in the previous

activity. The application architecture should be consistent with the reference architecture

as long as we are dealing with reusable component i.e. plug-and-play reuse. Application

realization is a stage where the product is implemented based on the available

requirements and architecture by reusing and configuring existing components and

developing new product-specific ones. Application testing is the final activity before

delivering the product. The product is validated against the application requirements.

2.3.6. Variability and Commonality Management

Modeling the variability is usually produced using the concept of variation points. Such

variation points identify where the location of product variations will occur [7].

In domain engineering, the domain requirements commonality and variability are

developed for producing a set of well-defined reusable assets of SPL. Dependencies

among the requirements of a domain help in getting the requirements set, however, they

could lead to requirements conflict and inconsistencies. A feature oriented approach for

managing domain requirements dependencies suggests using features to reflect the

requirements dependencies. Features are tightly-related requirements from the

stakeholder‟s perspective and they could not be independent in a system. This approach

uses the directed graph for the representation and analysis of the domain requirements

dependencies. The directed graph is better than the tree structure because a tree structure

cannot capture feature dependencies.

2.4. Dynamic Software Product Line (DSPL)

Newly introduced technologies such as ubiquitous computing, service robotics, unmanned

space and water explorations, are facing pressure in producing economically high quality

software on time. Such technologies are dependent on collecting the inputs through sensors

that change dynamically and adapting themselves to changes in requirements at runtime.

Therefore, there is a need for a DSPL that gets software done with a high capability in

adapting itself according to the users‟ needs and resource limitations [87]. A static or

32

traditional software product line is mainly targeting the variability at the development time.

On the other hand, a dynamic software product line targets the variability at the runtime of a

system by binding variation points at runtime according to the changes in the environment.

In other words, for the generated products in a SPL, binding features could be accomplished

at any time, either at design time, compile time, configuration time or runtime. The main

difference between the DSPL and SPL is that product functionalities could change

automatically without any human intervention.

As mentioned earlier, SPL is proposed in order to cut down the costs and reduce the time-to-

market. By the use of commonalities and variability management, products are selected

from a set of features. These features are selected at different binding times. The features

that will be used at runtime will be postponed till the end of the product cycle to get bound.

Once the product is released from the SPL, it has no connection with it, i.e. no automated

activity is specified in the SPL in order to keep the features updated.

On the contrary, DSPL aims to create products that are configurable at runtime. The

products also will have the capability to reconfigure themselves and gain advantage from

constant updates. A configurable product (CP) is that produced from a DSPL and it is

similar to the one produced from a traditional SPL [13]. The difference is in the two added

components to the CP to enable reconfiguration which are: the decision maker and the

reconfigurator. The decision maker's task is to retrieve the environmental changes that

suggest modification such as external sensors or users. Such information is then analyzed

and the appropriate actions are chosen to be carried out. The reconfigurator's mission is to

execute such changes by the use of the standard SPL runtime binding.

DSPL has the following properties which are not in the traditional SPL [78] and [13]:

 Adaptability: It is the ability to adapt to the change in the requirements and surrounding

environment.

 Change in binding several times as well as variation points during the lifetime of the

software.

33

 Automatic capabilities: CP should be able to take decisions about the features that should

be activated or deactivated at runtime according to the collected environmental or user

requirements changes, i.e. it works under unexpected changes from the surrounding

environment.

 Product updates: Ease of updating the product features at runtime.

 It is dependent on the individual desires and the situation not on the “Market” as the

driving force for it.

In the following two sub-sections, we will be discussing the decision maker and the SPL

configurator.

2.4.1. The Decision maker

The decision maker is responsible for taking the decisions of which features to be

activated/deactivated. In order to allow the decision maker to take decisions, some

information should be taken into account [13]:

 The available features in the CP along with their states.

 The features' dependencies.

 The information about an involution scenario or required features that are present in

the adaptation triggers.

 The user requests for features activation/deactivation.

The decision maker generates decision models. The decision models are

important for SPLs as they direct the derivation of the product variations specified by the

change in requirements. In DSPL, the varying requirements at runtime require the

decision models to support automatic reconfigurations in response to such changes.

Three main approaches have been proposed for the description of decision models for

DSPL in order to allow the product to self-adapt itself according to the change in the

requirements during runtime. The three approaches are [34]:

34

o Situation-action approaches: configurations are specified as to exactly what

actions to perform in certain situations.

o Goal-based approaches: high-level goals and objectives are defined so that the

system self-adapts itself to fulfill them.

o Utility functions-based approaches: application properties, context and goals are

assigned to a utility value for each application.

Utility functions-based approaches are advised because they have many advantages [34]

which are:

1. Achieving the best configuration is a complex process, and requires reasoning

on the dependencies between the context elements, adaptation forms and

concurrent forms.

2. It is better than the situation-action approaches because the situations are not

explicitly described. They result from the middleware at runtime.

3. In order to adopt the application at runtime, a decision model for shared

resources applications can be built from the model fragments accompanied by

the components.

The study by Brataas et. al [34] suggests applying the utility function over their MADAM

(Mobility and Adaptation-enabling Middleware) approach. The MADAM approach is a

self-adaptation approach that uses the architecture models to control variation at runtime.

This approach was developed for the mobile computing environment [43].

A mathematical formula is implied to solve the resulting scalability problem due to the

increase in the variants that lead to poor performance [34]. The algorithm works by

going through all the alternatives, then choosing the one with the peak utility. This cuts

down the performance from the exponential number of computational power to find a

variant in a number of variant points to a linear number.

2.4.2. The SPL Configurator

The SPL configurator is responsible for the following [13]:

35

o Computing the required configurations in either scenarios – involution and

evolution – and sending them to the CP configurators.

o Generating a variability model for the CP derived from the SPL variability model

according to the selected features.

There are two types of DSPL [13] which will be presented in the following section.

2.4.3. DSPL Architecture

2.4.3.1. Connected DSPL

The DSPL is responsible for the product adjustments. Updates are the task of the

DSPL to be sent to the products attached to it. It works when the CP senses new

environmental changes [13]. It sends such collected data to the DSPL in charge,

which in turn starts processing the sent information and calculates the variations

that could be done. If the changes do not apply to any variant, the process fails

and the adaptation may not be completed. If the changes are applicable, the

updates and the configurations are sent to the CP after they get generated. Finally

the CP updates itself.

2.4.3.2. Disconnected DSPL

The CP is in charge of the adaptation once the product is released. The DSPL

produces artifacts that have the capability to configure themselves to deal with

contextual changes. It works when the CP senses changes. This time the CP

calculates the changes that are required to be done without contacting the DSPL.

If there is no configuration that suits the requirements, the adaptation process

fails. The CP reconfigures itself to the new adaptations if there is a generated

configuration [13].

Cetina et al. [13] proposes a mixed approach as shown in Figure 1. It solves the problem

that may be caused from connected and disconnected DSPLs. Connected ones produce

products that must always be connected with the responsible DSPL. On the other hand,

36

disconnected ones produce automatic CPs that are shorter in range. The mixed approach

produces CPs that are scenarios aware. In involution scenarios, CPs behave as in D-

DSPL while in the evolution ones they behave as in C-DSPL. These are the steps carried

out when there are changes in the requirements at runtime:

1. The CP senses the changes in the environment and it activates the adaptation

process.

2. The CP computes the configurations that are required to deal with the

situation.

a. If there is no configuration that suits the environmental changes, the

CP contacts the SPL in charge. The SPL generates the required

configurations and then sends them to the CP. If there are no relevant

updates to the situation the operation fails.

b. If there are matching configurations that can be generated. The CP

performs the task and reconfigures itself

Figure 1: Mixed SPL Overview [13]

37

A study about a transition from static to dynamic software product line was conducted by

Klaus and Holger [78]. It targets having minimal transitional steps, and it does not

recommend having a middleware as a form of migration. Its goal is to have features allowed

to be removed and added during runtime of a system, i.e. runtime variability. Such

transition could lead to many difficulties and complexities. An example of such complexities

is how the system could handle a certain feature and then what should happen when the

feature is called and during the processing the behavior of the system is changed by

removing this feature.

Another study found some concerns that should be taken care of during the change of

configuration throughout the runtime according to [31] which are:

 For the parts that are not affected by the reconfiguration, they must continue to work

without any impact on them.

 The reconfigured components must finish their current task before being configured.

 Reconfiguration concerns must not be intervened with the application concerns.

Gomaa and Hussein [31] describe a way for modeling all the possible configurations for an

application. The four configuration scenarios that are proposed for a product family to

evolve automatically are: Product Configuration, Product Reconfiguration, Feature

Reconfiguration and Component Reconfiguration. Product Configuration is for the initial

runtime configuration while, Product Reconfiguration is for reconfiguring a product to

another one at runtime. Feature and Component Reconfiguration are for dynamically adding,

removing or replacing features and components, respectively. Figure 2 shows the

reconfigurable process and life cycle for evolutionary SPL.

38

Figure 2: Evolutionary Software Product Line Engineering Process [31]

Trinidad et al. [68] proposes a process for generating component architectures from a feature

model for such systems. It works by activating or deactivating the features by the generated

architecture. Four steps are proposed to produce a component model from a feature model.

They were successfully applied to a real-time television SPL [68] as follows:

1. Defining the core architecture: By extracting the features that are common among the

products. Then, defining the component model by creating a component for each

feature. Finally, relationships between the features are added which will be reflected

in the component model. For example, a relation between a parent feature and a child

feature is a dependency from the parent component to the child one.

2. Defining the dynamic architecture: This step works by using the non-core features to

generate the dynamic architecture. It is the same as the first step but this time they

are generated to the non-core features. Then, the set of interfaces according to the

responsibilities of each component are added.

39

3. Adding the configurator: The configurator in the architecture is the one responsible

for taking the dynamic decisions for a product. It is also responsible for knowing the

feature model, handling activation and deactivation requests of features and checking

them in order to produce applicable configurations.

4. Defining the initial product: The last step is defining the initial product by choosing

the core features that will be primarily active.

Another study describes how product line engineering can be used for producing product

lines based on web services that can be dynamically customized at runtime [35]. The case

study was carried on a radio frequency management system to demonstrate the suggested

approach. The approach can be extended to work with client/server applications. It also

suggests using the Dynamic Client Application Customization (DCAC) as shown in Figure 3.

It is a proposed approach where at runtime the client user interface objects are customized

based on the features chosen for the application and the values of parameters.

40

Figure 3: Conceptual overview of DCAC approach [35]

2.5. SPL in Domain Specific

In this section, we focus on the SPL development for certain domains from both industry

and academia. Many attempts have been made for utilizing SPLs for specific domains

such as distributed and embedded systems, data-intensive systems, adaptive systems and

pervasive systems.

2.5.1. Distributed and Embedded Systems

An approach presented is SPLE for configurations of a vehicle control system [50]. The

number of possible configurations grows exponentially with the number of options

41

besides the growth of the configuration space as new features are introduced. This

approach uses a method for solving the optimization problem with the identification of

the minimal set of configurations and the verification of this small set to achieve the

correctness of the entire product family. An example of family of indicators systems is

used to illustrate the approach in [50]. The example goes through the requirements, the

logical architecture and the evolution of the product line.

Another approach in the research of [96] describes how mobile device limitations and

API fragmentation problems can be solved using aspect-oriented programming. Memory

usage and application footprint size are examples of such limitations. The research

suggests using AspectJ - an aspect oriented extension to java and assists in developing

modules for the crosscutting concerns - in implementing product lines for mobile device

applications [96]. It divides the optional features to be developed over the base ones into

aspects.

2.5.2. Data-intensive systems

The proposed approach in [79] uses component based and model driven development in

building a SPL for data-intensive systems. Data-intensive systems are the systems that

handle data processing, visualization and storage. They are often multi-tier architectures.

Designing such systems from scratch is a costly process. Improving productivity of such

systems as their complexity increases day after day can be achieved using reusability of

software components. The work done by Schmoelzer et al. [79] presents an approach

that combines the concepts of SPLE with component-based software engineering and

model-based development for data-intensive systems.

Data-intensive systems are usually developed in a multi-layered architecture. They

contain three layers which are the user interface (UI), Business logic (BL) and Data

Access and persistency (DB).

Variability has influence over the three layers of multi-layer architecture. Any variability

in the data structure has effect on the three layers. The database layer is affected because

saving the data persistently is required. The BL layer variability consists of the

combination of control flow and data structure variability. The UI layer variability is

42

affected by the change in the layout and the way of presenting the data depending on the

customers' needs.

Variability in the database layer: For each product, it has its data structure that has

different variant selections and data structures. Obtaining variability can be done by

combining different data models. It can be achieved by the analysis of the individual and

minimal data model for each variation point and variant. After producing data models for

variabilities, the mapping between variability space and data model space is defined. The

dependencies between variation points and variants are imported from the dependent

models to the variability model. The data model of all selected variants and variation

points are combined to a single model that is used for the generation of the database

structure for a certain product.

Variability in BL: The business layer contains a set of reusable components with

interfaces that are used for their connections. They are called interconnection points or

component assemblies, and they are used for obtaining larger components with more

functionality. In other words, these reusable components are loosely coupled. The

reused components and their way of interaction define the behavior of the component

assemblies. The general BL functions are stored in components that are designed for

variation points.

Variability in UI: similar to the way BL components are handled. The UI can be

described for example as a set of UI controls that are built together to form the layout.

Combining the UI components is the most crucial process in the SPL because it is the

visible part to the user. The behavior and the layout should be working properly to

achieve a single UI. This is obtained by defining layouts in XML files which may define

extension points for other layouts.

43

The framework for model-based product line architecture is shown in Figure 4:

44

Figure 4: Model-driven multi-layer architecture for SPL development [79]

Web-based systems are a kind of data-intensive systems. Web applications are evolving

rapidly. They have turned from simple static pages to complicated applications that can

be accessed over the internet. Developing a product line for web-based systems helps in

sharing the common infrastructure between many of its services. Koriandol is a product

line architecture used to design, implement and maintain families of applications as

presented in [10]. It is used for developing product line for web-based systems. Figure 5

shows, the organizational representation of a web-based system by Koriandol. It also

contains a variability management mechanism to dynamically bind variation points to the

fitting variant in addition to the ability to manage the variability during run-time.

2.5.3. Adaptive Systems

Adaptation systems are the systems that adjust their properties and resources according to

the user needs and resource constraints at runtime. The approach presented in [74] uses

the SPL techniques in order to build adaptive systems. Adaptive systems are built as

“component oriented system families with variability modeled explicitly as part of the

family architecture” [74]. The approach includes five steps in order to develop adaptive

systems:

1. Identify fixed and varying user needs and resource constraints: by providing a

UML profile to model the requirements. During this phase, variability is

handled and presented in the models by the use of built-in variability

techniques.

Figure 5: Associations among the assets in products of web-based systems [10]

45

2. Design the architecture: the architecture is modeled using aspect-oriented

methods.

3. Design and implement the components identified by the architecture design

and derive runtime plan objects: prototype tools are implemented in order to

generate plan objects that will be carried out by the system in case of change

in the resources or the requirements at runtime.

4. Design property predictors for the components and composition: predict the

Quality of Service (QoS) for different variants using property predictors.

They are defined during the design phase to be used at runtime in order to

choose the best fit variants according to the state of the environment.

5. Design the utility function: it calculates the gain that the different users will

get according to their preferences. These preferences appear as weights and

are used in the adaptation process.

2.5.4. Pervasive systems

An approach for the design of pervasive SPLs based on Model Driven Development

(MDD) and variability modeling principles is proposed in [14]. The proposed SPL is to

build dynamically-adaptive pervasive systems. Figure 6 shows the proposed SPL for

pervasive systems following the same methodology as the MDD approach. It uses

variability modeling from the SPL at runtime. It utilizes the variability modeling and the

available resources to get the most efficient reconfiguration of the software system to

match the users‟ goals.

46

Figure 6: SPL for pervasive systems following the MDD Approach [14]

The work presents the possible scenarios in a pervasive systems environment. The

software should be able to adapt itself with the available resources without the

contribution of the users. The possibilities are:

1. A resource becomes unavailable.

2. A new resource becomes available.

3. A new goal is requested from the user.

4. A goal is discarded from the user.

Moreover, it suggests a methodology for automatic reconfiguration:

1. Identify the knowledge reuse: By identifying the knowledge that will be used to

dynamically reconfigure the system. The knowledge comes from The Scope,

Commonality and Variability analysis (SCV) that is made for SPLs to capture such

analysis knowledge to be used in the dynamic configuration. This step is carried out

by the use of PervML, FAMA feature model and Realization model.

2. Extend the SPL: By the use of the previous information, it will be transferred to the

SPL product.

47

3. Introduce the autonomic reconfigurator component: By applying the autonomic

behavior of the system architecture which is done through dynamic bindings.

Another methodological approach for building pervasive systems based on software

factories and model driven architecture is suggested in [45]. Software factories focus on

developing reusable assets while MDA focuses on high abstraction models to capture the

system, and automatic code generation.

The proposed methodology follows the same way of development that MDA uses. The

work suggests the following techniques for developing pervasive systems:

1. Platform Independent Models (PIMs): for capturing the pervasive system

requirements. The proposed language is PervML.

2. Platform Specific Models (PSMs): these models should have direct representations of

the constructs of the technology they model. The proposed PSM is the OSGi (Open

Service Gateway Initiative) which is a framework initially created for hosting

software for residential gateways. It is a middleware platform that is used to bridge

the different components and hardware entities.

3. PIM to PSM transformation: transforming the PIM to PSM to be able to get them in

an executable form for the specified domains i.e. platform dependant.

4. PSM to source code transformation: generating the source code from the PSM by

applying templates to the elements of the models to generate the code.

The architecture of the framework for pervasive system development as provided by the

approach is:

1. User interface layer: It contains two components. The main user interface which is

in charge of the access to the system services, and individual service interface which

is responsible for the interaction of every particular service in the system.

2. Logical layer: It is classified into two groups.

a. Services for supporting the functionality specified in PervML model: They are

java classes that are registered as OSGi services.

48

b. Services for the management of the system execution: It contains all the

auxiliary functionalities that are needed to check trigger conditions, provide

web services and ensure overall constraint satisfaction.

3. Communication layer: It is responsible for the management of the pervasive system

with the physical or logical environment. It contains drivers which represent devices

or external software systems.

Figure 7 represents the architecture of the framework.

Figure 7: Global architecture for pervasive system framework [45]

There are software engineering approaches with SPLs presented in the next section.

2.6. Software Engineering Approaches used with SPLs

There are many approaches that appeared in software engineering such as aspect-oriented

programming (AOP), feature-oriented programming, model-driven development, Feature

Oriented Model Driven Development and Component-based Architecture. All such newly

49

introduced approaches solve some of the limitations in the commonly used approach of

object oriented development [6]. They were proposed to be used with SPL such as in [6],

[32], [52], and [97].

2.6.1. Aspect-Oriented Programming

AOP is a programming paradigm that was proposed for improving the separation of

concerns in software. Separation of concerns means cutting down the program or the

system that needs to be developed into distinct parts or areas of functionality. AOP is

built on modularity which is proposed in procedural and object oriented programming.

Some concerns are called crosscutting concerns as they "cut across" multiple abstractions

in a program [96]. It is similar to what OOP does for object encapsulation and

inheritance.

AOP solves the problem of the scattered or tangled code which is hard to understand or

maintain. This is partially useful when one concern is spread over a number of modules

with either different classes or methods. When there is an attempt to modify, it will

require modifying all the affected modules.

2.6.2. Feature Oriented Programming

Feature Oriented Programming (FOP) is a paradigm for building software product lines

where programs are produced by composing features. The development of FOP is based

on feature models.

2.6.2.1. Feature Models

A feature model is a hierarchy of features with variability [52]. It is a domain

modeling technique which is widely used in SPLE. It has the capability of modeling

the common and variable product requirements inside a SPL as well as the product

configurations and derivations. The hierarchical way of representation is used for

organizing the large number of features into multiple levels of increasing details.

Features are used to describe the high level components of the system and its

variabilities between the products. A Feature model represents the common and

variable features of concept instances and the dependencies between the variable

50

features. It consists of feature diagrams and dependency rules. The feature diagram

is a set of nodes and a set of directed edges [84] that form a tree. There are two types

of features: mandatory features and optional ones. The mandatory feature should

exist in the description of a concept instance if and only if its parent is included. The

optional feature may be included in the description of the concept instance if the

parent is included. If not, the optional one cannot be included. Feature modeling

helps in avoiding the redundancy of features, i.e. removing the features that are

included and never used. It also makes sure not to miss the relevant features and

variation points that are not included in the reusable software. Moreover, it helps in

having an abstract, concise and explicit representation of the variability that exists in

the software.

Feature dependencies are either static or dynamic as proposed in Bragança and

Machado‟s approach [7]. The static dependencies reflect the hierarchical feature

relations and static constraints among features in the same level. The former are

decomposition and generalization which are used for capturing the parent-child

features dependencies. Static constraints could be either required or excluded [97].

Dynamic dependencies are either Serial, collateral, synergetic, state change, behave

change, date change or code change [97]. Serial is for features that should be active

one after the other while collateral is for the ones that should be active at the same

time. Synergetic is used for describing the features (two or more) that should be

synchronized during their active period. A change relationship is described as one

feature causes change in another. Change is divided into state change which is used

when a feature causes change in the state of another during the active time. Behave

change describes if the change is in the behavior of one feature by another. A data

change relationship captures the change in data used within a feature by another one.

Code change dependency is for representing if one feature caused change in the code

of another feature‟s code.

The following method is proposed to solve the problems with the analysis of the

dependencies between features in a SPL [76]. The methodology is divided into six

separate steps that are applied sequentially (S1 - S6).

51

S1: Artifact consolidation: A list of product feature specifications should be

available for the product line. High level features are divided into sub-features.

During this decomposition, dependencies between features appear. A feature

dependency model is used to capture such dependencies and features.

S2: Feature dependency analysis: This activity is done by tracing the features

dependencies in the feature dependency model. If a found feature is not listed in

the product feature specifications, it is recorded. At the end of that process, there

should be a list of all excess features that need to be added to the product line.

S3: Feature dependency restructuring: Excess features could be the result of i)

misunderstanding in the dependency and the decomposition structure in the

product specifications or ii) that feature decomposition was done in a wrong way

that caused unnecessary dependencies. The former is solved by adding excess

features to the product feature specification. The latter is solved by restructuring

the decomposition and dependencies.

S4: Artifact consolidation: A realization dependency model is used to map

features A functional dependency is used to describe the dependencies among

features. The <<Functionality>> stereotype is used to describe the relationship

between architecturally realized components for the features that are in different

architectural elements. The <<Implementation>> stereotype is used to mark the

dependencies between the components that may require services from others to

implement their responsibilities. The component dependency model is formed by

the use of the functional and implementation dependencies at the components

level.

S5: Component dependency analysis: Tracing the realization and implementation

dependencies forward for each product feature specification to derive the

corresponding component configuration. Then, listing the features for each

realized component configuration by tracing realization dependencies backwards.

The features and components that are not found in the product feature

specification are listed.

S6: Component dependency restructuring: Correcting dependency violation can

be carried out either by changing the realization mapping from features to

52

components. The same dependent features are realized by the same architectural

elements or by separating needed parts into their own components. Either ways

can be used, but the one that best fits is the one with the least components in the

products.

2.6.3. Model Driven Architecture

Model Driven Development (MDD) is a rising paradigm used for software construction.

It is based on using models to specify programs, and modeling transformations to create

executables [32]. Moreover, it is used to reuse specific patterns of software development.

Therefore, model-driven removes the repetition that could happen in the implementation

activities. Model Driven Architecture (MDA) is a framework for software development

that was proposed by the Object Management Group (OMG) in 2001. MDA suggests a

way to achieve the understanding, design, implementation, deployment, maintenance and

modification of software [32]. MDA is applied by first capturing the business concerns

of the system in a model called Platform Independent Model (PIM) thus abstracting away

any technical details. Secondly, by introducing to the PIM the technical side of the

intended platform, it is transformed into a Platform Specific Model (PSM). Finally, the

PSM is used in generating the code.

Four Step Rule Set (4SRS): It is a model-driven method developed at Minho University

that is used as a framework to map UML use case models into UML object diagrams for

single system development [57]. It is divided into four steps in order to change the use

cases into objects.

Step 1 – Object Creation: at this stage, for each use case three objects are created

(interface, data and control). The suffix (i, d, c) is used for referencing each object to its

use case and 'O' for referencing an object.

Step 2 – Object Elimination: the decision on which of the three objects generated from

the first step will be added in the object model takes place at this step. The choice is

made based on entirely representing the use case in computational terms. This step is

also important because it removes the redundancy in the user requirements and points out

53

the missing ones. This step is divided into internal steps: use case classification, local

elimination, object naming, object description, object representation, global elimination

and object renaming [57].

Step 3 – Object Packing and Aggregation: this step takes the remaining objects after the

previous step in order to construct a coherent object model. However packaging is an

immature technique because it introduces a very light semantic unity between the objects,

it helps in easily reversing the objects within the design phase. In other words, packaging

is flexible in allowing the temporary acquisition of complete and clear object models. On

the other hand, aggregation requires a strong semantic cohesion between the objects and

that makes the reverse a difficult process. Therefore, it could be used only under a

conscious design decision. For example, it can be used when working on a part of the

system that needs the creation of a legacy sub-system or with a pre-defined reference

architecture that limits the object model.

Step 4 – Object Association: this is the final step where the object model is created and

the associations in it are introduced.

An approach described in [11] uses the model driven method 4SRS to obtain the architectural

functional requirements of a product line from its requirements. Moreover, it describes rules

that can be used to transform the requirements model into architectural models while

preserving variability and without extensive information about the domain.

2.6.4. Feature Oriented Model Driven Development

Feature Oriented Model Driven Development (FOMDD) merges the two previously

discussed approaches, Feature Oriented Programming (FOP) and Model Driven

Development (MDD). FOMDD utilizes FOP by producing models from features. Then,

by using MDD, it transforms these models into executables [32].

54

2.6.5. Component-based Architecture

Component-based software engineering (CBSE) is a branch in software engineering. A

software component is "a software element that conforms to a component model and can

be independently deployed and composed without modification according to a

composition standard" [30]. A component model defines well-defined standards and

interactions. It is obsessed with specifying "standards for naming, meta data, component

behavior specification, component implementation, interoperability, customization,

composition and deployment". However, a software component infrastructure is

composed of software components and their interactions and dependencies. "Building

systems from components is a natural evolution from existing methods and can always be

related to other industries" [30].

A systematic approach is presented in [30] for developing a feature-driven and

component-based product line:

1. Develop a feature model from feature-driven analysis and design methods while

identifying the variabilies and commonalities.

2. Choose one of the aspect-oriented implementation techniques according to the features,

their variabilities and the pattern of the combination required among them.

3. Convert the generated aspects into code snippets, using a chosen mechanism such as C++

templates, parameters or frames, that will be associated together forming complete

components.

4. Select and devise the features then, map them to the matching aspects to deliver the final

components and the whole application out of code snippets and aspects.

2.7. Reference Architecture Evaluation

In this section we will be discussing the different evaluation methodologies that we came

across. There are numerous evaluation criteria and frameworks for valuing object-oriented

methodology.

55

2.7.1. Architecture Evaluation and Metrics

We now present the evaluation metrics that we came across for evaluating component-

based architectures which are coupling, cohesion, complexity, size, reusability and

adaptability

2.7.1.1. Coupling

Coupling measures the relationship of dependency between two interacting modules. As

quoted in [53], Fenton calculated coupling by the relationships between the elements

belonging to different modules of a system. The equation used is:

Where i is the number corresponding to the worst coupling type, and n the number of

interconnections between S and S', global variables and formal parameters, respectively.

2.7.1.2. Cohesion

Cohesion evaluates the tightness between the linked features composing a system or

module. Interconnected relations are considered cohesive. The following equations are

presented in [53] for calculating cohesion.

Where #MaxInteractions(sp) is the maximum number of possible intra-module interactions

between the features exported by each module of the software part sp

56

Lack of Cohesion in Methods (LCOM4) [55] measures the number of "connected

components" or number of connected methods in a class. LCOM4 is calculated by

determining the related methods, and then a graph linking the related methods to each

other is drawn. Methods a and b should have the following properties in order to be

related:

1. They both access the same class-level variable, or

2. a calls b, or b calls a.

The resulting value is evaluated as follows:

 LCOM4=1 means a cohesive class, which is the "good" class.

 LCOM4>=2 means there is a problem. The class should be split into smaller

classes.

 LCOM4=0 happens when there are no methods in a class. This is also a "bad"

class.

2.7.1.3. Complexity

It is used as a metric to evaluate how the system or module is complex. Research is done

to detect the factors that contribute to the complexity. In [53], system complexity is

defined by the dependency in the relationships between the elements. It is measured by

converting the components and their elements into graph.

Where G represents the graph, E is the number of edges, R is the binary relation between

two elements (E x E) and p is the number of connected components of G.

According to [71], complexity is broken down to measure different aspects which are

structural complexity, data complexity and system complexity. Structural complexity of

a module i, S (i), is calculated as follows:

57

Where fout (i) is the number of modules that module ‘i’ invokes directly.

Data complexity for a module i, D(i), is for measuring complexity in the internal interface

for module i. The equation is:

Where v (i) is defined by the count of input and output variables that are passed to and

from module i

System complexity is calculated as the sum of both structural and data complexities. The

formula is:

In [2], another kind of complexity is presented which is configuration complexity.

Configuration complexity can be applied to any component dependency diagram, entity-

relationship model, box-line diagram, or node-arc structure. It can be defined by the

following forumula:

Where R is the number of relationships and C is the number of components.

Example: For 50 components and 50 dependencies, the complexity measure is 1.

2.7.1.4. Size

Component size for a system is the sum for all the sizes of all the disjoint components or

nodes in a system as mentioned in [53], [23] and [2].

The equation for calculating size as presented in [53] is:

58

Where n is the number of elements, e is the element that belongs to the component E, and

m is the module inside the component

2.7.1.5. Reusability

Reusability is an important aspect for evaluating object oriented architectures. In [48], a

metric for classes‟ reusability is calculated by the following equation:

Where

59

2.7.1.6. Adaptability

Adaptability means that the system is flexible enough to be able to change its behavior

according to the changes in the environment. In [94], two metrics were suggested which

are: Impact on Software Architecture (IOSA) and Adaptability Degree of Software

Architecture (ADSA). They are calculated from the adaptability scenarios, which are

scenarios that are generated from the change in system behavior propagated by the

system usage or requirements change. Calculating IOSA is carried out by adding each

adaptability scenario‟s impact analysis.

60

Where, C is the set of components and T is the set of connectors. |CR| is the change

requirements’ number. |S| is the adaptability scenario number. |PCRk| and |PSk| are the

probability of change requirement CRk and adaptability scenario Sk, respectively. IA is

the impact analysis result of the whole architecture or architecture elements under

change requirement or adaptability scenario. Csk and Tsk are the set of impacted

components and connectors Sk, respectively.

ADSA is calculated by the following equation:

If the ADSA = 1 this means that the architecture is totally adaptable in all dimensions,

while if the result is 0 this means that architecture cannot adaptable to any change

requirement.

2.7.2. Evaluation Frameworks and Metric Suites

For evaluating component-based architectures, there were proposed evaluation suites and

frameworks. This section will summarize the related work we came across.

2.7.2.1. Narasimhan and Hendradjaya’s Evaluation Suite

They presented a suite for measuring the integration of the software components [89]. The

metrics are complexity, criticality, triangular and dynamic metrics. We will not go through

dynamic metrics because they are designed to test applications during runtime.

 Complexity Metrics

They are divided into two categories: one for the packing density of integrated components, and

the other for the interaction density between the components

1. Component packing density (CPD)

Density is directly proportional with complexity, i.e. the higher the density, the more complex

the system is. The following formula is used to calculate the CPD:

61

Where could be: LOC, object/classes, operations, classes and/or

modules in the related components, and is the number of the

components

2. Component interaction density (CID)

It is the ratio between the actual numbers of interactions to the available number of interactions

in a component. The higher the density, the more complex the components are.

Where is the number of actual interactions and is the number of maximum

available interactions

3. Component incoming interaction density (CIID)

Where is the number of the used incoming interactions and is the number

of available incoming interactions

The higher density of CIID, the more examination for the component is needed to check all the

received interfaces or events.

4. Component outgoing interaction density (COID)

Where is the number of outgoing interactions used and is the number of

outgoing interactions available.

62

5. Component average interaction density

It is used for evaluating the entire components‟ assembly complexity. The lower the value of

CAID means lower both interactions and complexity.

Where is the summation for all the interaction densities for components 1 to n

and is the number of the existing component in the real system

 Criticality Metrics

Critical component is a component that binds a system. Without the existence of it, the system

will not be able to interact with each other. The metrics for criticality are: Link Criticality,

Bridge Criticality, Inheritance Criticality and Size Criticality metrics.

6. Link criticality metrics

For a component to be called critical one, it needs its links to exceed a certain threshold value.

The initial indicator presented in this research is 8 links as a threshold value

Where is the number components with links that are more than a

critical value

7. Bridge criticality metrics

Bridge component links are used to connect two or more components or applications. Importance

weight should be added to each bridge link by the developer. This weight should reflect the

probability for failure.

Where is the number of bridge components

63

8. Inheritance criticality metrics

It counts the number of base components or elements where others inherit from. The more the

count is, the more possibility for risks to rise.

Where is the number of root components which has inheritance

9. Size criticality metrics

It measures the size for a component. In order to specify the threshold, you choose the

maximum size of a component in the system.

Where is the number of components with exceeding an agreed

critical value

10. #Criticality metrics

Criticality metrics is a summation for all the previous matrices. The is used to

identify the crucially level of the components‟ associations.

11. Triangular metrics

It is calculated through CPD, CAID and CRITall. The three metrics have different

prospective to measure. This metric is used to classify and identify software systems‟

types. However, this metric is not fully mature and still under development.

64

2.7.2.2. Zayaraz and Thambidurai’s Measurement Techniques

Zayaraz and Thambidurai presented a technique for quantifying and measuring software

quality [28]. The technique is built on top of COSMIC Full Function Points (CFFP) and

ISO 9126 quality standards. They have incorporated both CFFP and ISO 9126 quality

standards to be applied at the architectural level. The notation they used is presented in

Table 1. The steps required for measuring the architecture are:

1. Detect the software layers in architecture.

2. Detect the functional processes in every layer.

3. Detect the data flow, i.e. Read, Write, Entry and Exit

4. Applying the rules and principles of COSMIC FFP methodology.

5. Convert the architecture into an architectural COSMIC FFP graph and specifying

the components and connectors.

6. Calculate the architectural complexity measures - System coupling, System

cohesion and System complexity using the following metrics.

Table 1: Zayaraz and Thambidurai’s Notation

Parameter Notation

Entry E

Exit X

Read R

Write W

Number of components N

Layer L

65

The following shows the difference between Entry, Exit, Read and Write according to [20]:

- Entry: it is the movement of data from a user into the functional process that requires it.

- Exit: it is the movement of data from a functional process to the user that requires it.

- Read: it is the movement of data from persistent storage to the functional process that requires

it. The storage must be internal to the system unit to be treated as read.

- Write: it is the movement of data from a functional process to persistent storage. The storage

must be internal to the system unit to be treated as write.

For system coupling, the following equation is used:

Where represents the current connectivity, while

 represents the maximum potential interconnections between layers. The

output range is between 0 and 1.

For system cohesion, the following equation is used:

Where is the degree of connectivity in a layer and represents

the maximum potential intra-connectivity for every layer; the value for is between 0

and 1.

66

For system complexity, the following equations are used for measuring both Intra-layer and

Inter-layer complexity:

Total System complexity is:

Maintainability is computed by adding modifiability, extensibility and reusability as shown in

Figure 8.

Figure 8: Dependency tree for Maintinability

The following are the equations for calculating modifiability, reusability, extensibility and

maintainability:

67

2.7.3. Evaluation Tool (SDMetrics)

According to [80], SDMetrics tool was developed in order to analyze architectures. It takes

XML Metadata Interchange (XMI) file as input and extracts the following categories:

Size

 NumOps: Number of operations of the component

 NumComp: Number of sub-components of a component

 NumPack: Number of packages of the component

 NumCls: Number of classes of the component

 NumInterf: Number of interfaces of the component

Inheritance

 ProvidedIF: Number of interfaces the component provide

Diagram

 Diags: Number of times the component appears in a diagram

Coupling

 Dep_Out: Number of outgoing UML dependencies (component is the client)

 Assoc_Out: Number of associated elements via outgoing associations

68

 Assoc_In: Number of associated elements via incoming associations

 Dep_In: Number of incoming UML dependencies (component is the supplier)

Complexity

 Connectors: Number of connectors owned by the component

General

 NumManifest: Number of artifacts of which this component is a manifestation

 RequiredIF: Number of interfaces the component requires

2.8. SPL Evaluation

As an evaluation framework for SPL, an analysis tool is suggested by Mari in [59]. The

evaluation is based on three sources. The three sources are: Normative Information Model-based

Systems Analysis and Design (NIMSAD) evaluation framework, definition of the method and its

ingredients, and finally the component-based software development methodologies. The

evaluation framework is for finding out if the elements defined in the framework are considered

by the method not rating them. In other words, the task of the evaluation framework is to

investigate how the elements were done.

69

Table 2: The elements of the framework and the questions used in the analysis [59]

The results of the evaluation are divided into four elements: context, user, contents and

validation. Method context is for defining the atmosphere the method will be used in. The

method user is for defining the software architects and their skills. The contents method is

for defining the interface between the requirements and the architecture design. The last

method is validation, which is used for validating the method and making sure that it is

mature enough to be used.

The Family Evaluation Framework (FEF) is proposed to evaluate the performance of SPLs

inside organizations. Its emphasis is on the main phases in SPLs which are the domain and

application engineering as well as the variability management [27]. The structure of FEF is

based on the BAPO model (Business, Architecture, Process and Organization). The BAPO

model covers the software engineering concerns in producing a product. Each dimension is

divided into five levels and three to four evaluation aspects.

70

Figure 9: The Family Evaluation Framework (FEF) [27]

Each level shows the organizational way of dealing with SPL. In order to go to a higher

level, the previous ones should be satisfied. Business is for measuring the business

involvement in the SPL. Architecture is responsible for the application engineering, domain

engineering and variability management. Process is for measuring the product line processes

to be used and their maturity. Organisation is for assessing the domain and application

engineering over the organization. The result from this assessment is an evaluation profile

covering all the aspects in the framework [27].

In this chapter, we discussed the related work by showing the pervasive system‟s features that we

found in the literature review. Then, we highlighted on the definition of the SPL, the SPL

lifecycle, the different applications for it in different domains and the different software

71

engineering approaches that can be integrated with SPLs. Finally, we explained the different

evaluation methods we found to evaluate both the architectures and the SPL.

72

Chapter 3

A Study and Categorization of Pervasive Systems Architectures

In this chapter we present the conducted survey we did to extract the architectures from the

pervasive systems. Moreover, we discuss the related pervasive architectures as we researched

them, and their key features and components. The architectures collected in our survey will

help in establishing a well-structured categorization reference for building pervasive systems.

Throughout the section, we will be dividing the pervasive systems according to their usage

and operating environment. This will help in extracting the main features from the

architectures and grouping them according to the categorization criteria. By selecting these

features we will be able to generate architectures that could eventually facilitate the process

of building a Software Product Line for pervasive systems.

3.1. General Pervasive Systems (Non-environment Specific)

An architecture is presented in [93] for pervasive systems. The proposed architecture is

founded on middleware technologies and a variety of services. It is composed of core

services as shown in Figure 10. The Application Objects which reside on the different

devices communicate with the Service Manager. The Service Manager is responsible for

supplying object invocation interfaces of various service components to the application.

The Core Components encapsulate different services such as Service Discovery, Context

Service and Other Services. The Network Infrastructure/protocols interact with the Core

Components through the Communication Management Agent

73

Figure 10: Architecture for pervasive systems [93]

3.2. Privacy and Security

The focus of the research in [56] is to offer secure services through context-aware

computing environments that can adapt to the changing conditions when requests are

issued. It presents a middleware for securing context-aware applications for smart homes

using authentication and authorization techniques. The Context-Aware Security

Architecture (CASA) supplies the security infrastructure for context-aware applications

to be assembled. The security Management Service (SMS), as shown in Figure 11, is

used for handling the organization of the system policies and role relationships. The

Authorization Service is introduced within the architecture to control the access to the

system according to the policies stored in the SMS. The Environment Role Activation

74

Service (ERAS) keeps the system‟s condition information and handles enabling and

disabling roles according to the environment variables. The Authentication Service is in

charge of confirming and reclaiming identifications from the environment. Handling the

sensors, network protocols and environmental conditions is achieved by the Context

Management Service (CMS).

Figure 11: CASA high level architecture [56]

An architecture for adapting pervasive environments for several users while at the same

time ensuring their privacy is presented in [86]. Different users with different privacy

adjustable levels can be served according to their preferences. The contradiction in the

users‟ needs is satisfied by clustering the real sensors so that they can be activated in a

location for a user and deactivated in another one. The privacy management architecture,

shown in Figure 12, is composed of a real sensor network, a virtual sensor layer and a

management layer. The role of the virtual sensor layer is to provide a reduced number of

sensor devices to be configured. The management layer is responsible for the

communication between the mobile device and the services as well as distributing data

and configuration requests. The virtual sensor layer is responsible for calculating and

75

enforcing the current configuration of the environment. The bottom layer represents the

real sensor network which is configured through the virtual sensor network. Users are

served according to the state of each sensor type. By “XOR-ing” the user‟s requirements

with the nearby current area, he/she will be clearly accepted, conditionally accepted, or

rejected. The user is accepted if the user‟s requirements match the sensor‟s state.

Conditionally accepted if the user moves to a different location but the previous location

was a clear accept, then the system will trigger if he/she accepts the new configuration or

not. If a newly appeared user demands to change the current configuration, a clear reject

for this user will be issued as it conflicts with the previously registered users.

Figure 12: Privacy management platform architecture [86]

“XOR-ing” the user’s
requirements with the
current setting of each
region

It publishes allowed
data to all known
subscribers when
triggered by the
platform or by a timer

Receives incoming
subscription requests to
the sensor readings and
decides about their
acceptance

Responsible for triggering re-
calculations of the current
setting if one of the user moves

Gets access to all
essential information, all
registered users and the
scopes this virtual sensor
has to manage

76

The research in [40] presented Context Fabric (Confab), an infrastructure for building

privacy-sensitive ubiquitous computing applications according to the privacy

requirements and the trust level. It is based on three interaction mechanisms for privacy-

sensitive applications: optimistic, pessimistic and mixed-initiative. Optimistic

applications allow users to share personal information and identify abuses. The

pessimistic applications‟ main goal is to prevent abuses. The mixed-initiative permits

users to choose between sharing information or not. The data model for Confab holds the

data about one‟s location or activity. People, places, things and services are sent to

infospaces. Infospaces are network-addressable logical storage units that store the

context data about those entities which are managed by infospaces servers. As shown in

Figure 13, infospaces (the clouds in the figure), contain contextual data about a person,

place or thing. Every infospace contains tuples (squares in the figure) that hold data

about individual pieces of contextual data. The infospaces servers are the container for

the infospaces (represented in rounded rectangles).

Figure 13: Confab infospaces [40]

The research presented in [16], proposes an architecture for building trust in pervasive

applications. It suggests distributing trusted computing to the terminals rather than

centralizing trust. As shown in Figure 14, each trusted terminal is called a trusted point.

Therefore, there is a need to establish the trust with the terminals in order to gain access.

The Trusted Platform Module (TPM) is embedded into the terminal which is the root of

77

trust. It connects to ICH through the LPC Bus. The measured VMM (Virtual Machine

Monitor) includes a trusted driver and reference monitor to control the application

programs.

Figure 14: A trusted Architecture [16]

Another research which discusses the challenges that models, protocols and architectures

face in securing pervasive systems is in [72]. Their challenges are categorized as

follows:

 The need to integrate the socio-technical perspective

 Breakdown of classical perimeter security and the need to support dynamic

trust relationships

 Balancing non-intrusiveness and security strength

 Context awareness

 Mobility, dynamism, and adaptability

 Resource constrained operations

 Balancing security and other service tradeoffs

78

Another research defines the challenges for pervasive systems as discussed in [69]:

 Unobtrusiveness

 Location Dependency

 Context Dependency

 Amount of Data Collection

 Role of Service Provider

 Lack of ownership

There are also suggested models for security in pervasive systems [72], which are:

 Models for authentication

 Models for access and usage control

 Models for privacy

 Models for dissemination control

Figure 15 shows the different perspectives for the socio-technical view and the

computing-system view for pervasive systems.

79

Figure 15: Domain extension for modeling access control in pervasive computing [72]

The Privacy Preferences Project (P3P) is an attempt for securing web applications that

were found useful for pervasive systems [12]. It is for creating a privacy standard for the

web. As shown in Figure 16, the P3P architecture consists of a two-way relationship

between a web-based service, which represents a service that is required to be accessed,

and a user agent, which represents a user requiring a service. The user agent contains an

embedded trust engine for privacy control. It is also responsible for sending the data

from the repository according to the users‟ preferences.

80

Figure 16: P3P Architecture [12]

The Secure Persona Exchange (SPE) framework is based on P3P with an underlying

notice-choice privacy model [12], [60]. The securities requirements addressed in the

framework as presented in the research are:

 Confidentiality: the personal content is required to be secured from other

entities not members of the system. This could be achieved by the use of

SSL.

 Integrity: personal data needs to be protected against tampering during

communication. Achieving this could be done through securing the message

digests and communicating over SSL.

 Authentication: the participants in the system should be authenticated to

guarantee their identity. There are two ways for authentication: entity

authentication and data authentication. The former is for authenticating the

participant in the exchange and the latter is for authenticating the personas and

templates exchanged.

 Non-repudiation: it is not a core security requirement of the system but it

prevents an entity from denying previous commitments or actions. It is

achieved by preventing a service provider from denying data collection.

Another research shows two techniques for preventing data misuse and privacy

protection [37]. The first technique is the Privacy Sensitive Information diluting

Mechanism (PSIUM). It stops the misuse of data by a service provider by using a

mixture of true and false sensor data. PSIUM solves the security flaw in P3P where P3P

81

cannot guarantee that the service provider will not follow the rules. PSIUM, Figure 17,

works by sending true and false data about the location of the user. The service provider

will process the data and send them to all the locations specified. The destination, which

is the client‟s device, will process the data with the true location and discard the rest. The

second technique protects privacy sensitive information by the combination of frequently

changing pseudonyms and dummy traffic as shown in Figure 18. This helps in hiding the

identity of the users so that the trackers will not be able to trace any of the users.

Figure 17: A pervasive service protected by PSIUM [37]

82

Figure 18: Location-aware system architecture with anonymity enhancer [37]

Another techniques used for privacy-enhancement in pervasive systems is mix zones

described in [5] and [4]. The mix zone model works by assuming the existence of a

trusted middleware system and un-trusted applications. An “application zone” is a

geographic space in which an application registers the user interests such as a

supermarket, hospital grounds or university buildings. The role of the trusted middleware

is to limit the information sent to the applications concerning the location of the users

registered in the application spaces. This region is called mix zone. Mix zones are the

areas in which the users' identity is mixed with other users. Applications do not get

traceable user identity, however they receive a pseudonym. The pseudonym changes

once a user enters a mix zone.

Finally, system architecture, proposed in [64], for preserving users‟ privacy with

location-based applications is shown in Figure 19. The location server abstracts away

any positioning system used to retrieve location. Users register to the location servers to

register their privacy preferences which are saved in the validators. This is achieved

83

when applications query the location server. According to the validators, users‟

locations are either hidden or released to the applications.

Figure 19: Privacy system architecture as presented in [64]

3.3. Domain-specific Architectures

Domain-specific pervasive systems, according to our classification, are the pervasive

systems that are developed to act in particular domains. We now describe in details such

systems.

3.3.1. Learning systems

Thomas [88] attempted to theorize the pervasive learning space in a practical and useful

way. A presented model is introduced for designing, developing and evaluating

pervasive learning. There are four key components that need to be considered during the

creation of pervasive learning (PL) environments: community, autonomy, locationality,

and relationality as shown in Figure 20. These components overlap, interact with each

other and cannot function in separation.

84

Community (C): Learning is not provided by one teacher. Learners are educated by a

learning community, and are educating others in the community as well.

Autonomy (A): This provides a learning community without one central authority figure

or authority structure directing the course of learning. Learners become comfortable with

the knowledge that in the world there is no correct “answer,” but that there are many

variations and possibilities and learning feedback comes from a variety of sources.

Locationality (L): Learning should be inside the classroom and outside it.

Relationality (R): Relating the collected knowledge to the lives of the learners is better as

they learn within their own personal environments where they can understand better.

Figure 20: A model of pervasive learning [88]

MOBIlearn system is a research project intended to support pervasive learning

environments by combining context awareness and adaptivity [9]. Its purpose is to

support a variety of learners such as their skills and motivation to learn, and the context

of learning itself. This allows users to create their own learning places, configuring the

physical resources available to them in the ways that they find most comfortable, efficient

and supportive to them. Figure 21 shows the data flow between the components. The

context awareness subsystem is responsible for storing the contextual data which is in the

form of XML documents. The context metadata is collected from different locations

85

such as: the sensor input, other subsystems or the user input, to be saved in the context

awareness subsystem. User settings, current and previous activity, device capabilities

and other information are composed from the metadata in the form of context feature

objects (CFOs) at run-time. Such data is filtered and then gets ranked to determine the

best options. The content and service subsystem receives such ranked groups to start

activating the appropriate content, services or interface presentations to the user.

Figure 21: MOBIlearn system dataflow architecture [33]

A proposed infrastructure that supports pervasive and adaptive learning, as shown in

Figure 22, is based on the multi-agent system (MAS) paradigm [33]. It allows the

deployment and the integration of various components, devices, learners, educational

services and situations to form pervasive learning communities. The infrastructure is

composed of various networking technologies, various devices and a local server for

content. Figure 23 shows the architecture that is built on top of the infrastructure which

aims to provide personalized and adaptive support for the students. The student modeling

agent is responsible for collecting different information from particular components and

making them available to the other components. The location-awareness service is used

to provide face-to-face learning groups to mobile students. The adaptive mechanisms

supply the students with the learning material that fit to their learning styles. Automatic

guidance messages are sent to the individuals to guide them to learn and move in the real

86

world according to their personalized context-aware knowledge and the knowledge

structure in the learning environments. The presence of Question/Answer service

provides an intelligent asynchronous Q&A knowledge sharing platform.

87

Figure 22: Overview of the proposed infrastructure at [33]

88

Figure 23: MAS-based system architecture for pervasive learning [33]

A context-aware language-learning support system for Japanese polite expressions

learning, called JAPELAS (Japanese polite expressions learning assisting system),

provides the learner with the appropriate polite expressions deriving the learner‟s

situation and personal information [38]. Japanese polite expressions are subjective to the

situation. JAPELAS has the following modules:

89

Learner model: This module has the learner‟s profile such as name, age, gender,

occupation and interests which are collected from the user before using the system. It

also stores the comprehensive level of each expression for the user by detecting it during

the system use.

Environmental model: This module has the data about the rooms in a certain area. The

room is detected in the location manager using a RFID tag and GPS. The location is used

to determine the formality

Educational model: This module is responsible for managing the expressions which are

the learning materials. The teacher enters the basic expressions. Both the learner and the

teacher can add or modify expressions during the system use.

IR communication: IR simplifies the names of communication targets where users can

point to the person rather than enter the target names.

Location manager: It is responsible for detecting the learner‟s location using RFID and

GPS, e.g. store, private room, home, etc. where RFID tags are used indoors, while GPS is

used for outdoors. RFID tags are attached in the entrance doors in the room, and identify

the rooms.

Polite expression recommender: Based on polite expression rules, this module provides

the appropriate expression at the current situation.

Figure 24 shows the CLUE system configuration. It is the generic concept for JAPELAS

and it is proposed by the same authors [66].

90

Figure 24: CLUE system configuration [66]

Another system is called TANGO (Tag Added learning Objects), a vocabulary learning

system presented in [38] and [66]. It is used to detect the objects around a learner using

RFID tags. Moreover, it provides the learner with the educational information. TANGO

has the following modules:

Learner model: This module has the learner‟s profile such as name, age, gender,

occupation, interests that are entered by the user prior to the use of the system. A test is

carried out by the user to determine the user‟s comprehensive level and it is updated

during the system use.

Environmental model: This module is responsible for preserving the data of objects,

rooms and buildings, and the link between objects and expressions in the learning

materials database.

Educational model: This module manages the learning material that contains the words

and expressions. The teacher enters the fundamental expressions for each object. Then,

both the learners and teacher can add or modify them during system use.

Communication tool: This tool provides the users with a BBS (bulletin board system)

and a chat tool, and stores their logs into a database.

91

Tag reader/writer: This module reads the ID from a RFID tag attached to an object.

Referring to the ID in the object database, the system obtains the name of the object.

User interface: This module provides learner questions and answers.

3.3.2. Smart Active Spaces

In [47], an architectural framework and a set of middleware components are presented

that help in the integration of perceptual components, sensors, actuators and context

acquisition in smart spaces. Besides, it allows the discovery of the newly appearing

resources and gets them integrated to the system. The system consists of three tiers as

shown in Figure 25:

 A sensors tier: it consists of the sensors that represent the infrastructure of the

smart space. Signals are collected from the environment through the sensors

then, context is extracted after processing. Figure 26 shows a set of APIs used

as interfaces between the sensors and the smart space applications.

 A tier of perceptual components: It is responsible for extracting context

cues from the collected signals, as shown in Figure 27, mainly from the audio

and video ones. Context collected from perceptual components recognize the

location and the identification of the people and objects.

 A tier of agents: This tier is responsible for tracking and modeling higher-

level contextual situations, as well as incorporating the service logic of the

pervasive computing services. Information exchange between perceptual

components and agents is based on CHILIX [47], an IBM middleware that

enables access to the output of the perceptual components based on XML over

TCP transfer of information.

92

Figure 25: High level architecture for pervasive computing services in smart spaces [47]

93

Figure 26: Sensor virtualization [47]

Figure 27: Perceptual components visualization and APIs [47]

Gaia which is presented in [73], [58], [83] and [1] is a middleware operating system that

manages the resources in an active space. It brings OS functionalities to the real world.

94

As depicted in the architecture shown in Figure 28, Gaia is composed of Gaia Kernel,

application framework and Active Space Applications. For the Gaia Kernel, it consists of

the Component Management Core (CMC) and a set of services. The CMC is responsible

for managing the components through creation, destruction, and uploading. The CMC

consists of three abstractions:

 Gaia Components (it is the minimum software unit in the system)

 Gaia Nodes (any device capable of hosting the execution of Gaia

Components)

 Gaia Component Containers (Gaia Nodes organize components into

containers, and export an interface to manipulate the components that belong

to such groups.)

The set of services are used to deliver security, privacy, context and presence. The application

framework is responsible for decomposing an application into multiple components. The quality

of service is introduced to guarantee that the presented services are up to the level through

probing and profiling. The active space applications are the applications that could be built on

top of Gaia to provide different functionalities.

Figure 28: Gaia architecture [1]

95

iTransIT framework is another research carried out to integrate transportation systems

and related services, and has been proposed for usage in global smart spaces [70]. It

utilizes the spatial application programming model that allows accessing and using

context distributed across different services. Figure 29 shows the architecture of

iTransIT. It divides the system into three tiers, legacy tier, iTransIT tier and context-

aware applications tier. The legacy tier contains the current as well as future systems that

are used to collect data. iTransIT tier is used to integrate the legacy systems that

implement the spatial objects, as well as maintaining the information gathered by sensors

or provided to the actuators. Systems in that tier are the ones that interact with the users,

i.e. purpose specific, and the legacy systems. Finally, the application tier contains the

services that supply context-aware access.

Figure 29: iTransIT architecture and data model [70]

SMeet presented in [65] is another approach for smart meeting spaces. It enables users to

interact with remote ones by the use of a wide range of devices embedded in meeting

rooms.

Exposes data model to

other iTransIT systems or

user services

96

As shown in Figure 30, SMeet is composed of the SMeet mediator, the ACE Connector,

component services, and the SMeet space GUIs:

o The SMeet mediator configures a SMeet node with component services.

o The ACE Connector supports a transparent and constant connection for SMeet

nodes, and it overcomes the network issues.

o The SMeet space GUIs allows ease of control and monitor of the SMeet node by the

participants.

 The component services provide access to resources such as devices and

software programs such as audio/video tools. They are categorized into four

functional sets: media & data, networking, display, and multimodal interaction:

o Media & data component services supply flawless audio and video

communication among participants by providing real-time media

transmission.

o Networking monitoring service is used for monitoring network

performance.

o Interactive display control service controls display devices based on user

interaction such as pointing, hand-motion tracking, etc. Moreover, it

enables users to place and resize visual data on any part of display.

o Multimodal interaction component services supply user-friendly

interaction with the tiled display.

97

Figure 30: SMeet Architecture [65]

3.3.3. Health

Pervasive systems invaded healthcare systems to offer e-health services. We will go

through some of the architectures proposed for healthcare pervasive systems. A policy-

based architecture is presented in [19] that monitors patients and the elderly people

indoor as well as outside it by making use of software agents and wireless sensor

technologies. When an alarm is generated due to disturbance in the patient‟s health

situation, automatic actions are carried out by notifying the nurse or the doctor on his/her

PDA to take appropriate actions. The system has two main modules; one handles the

interactions between the patient‟s equipment and the hospital‟s database, and the other

handles the interactions between the hospital‟s database and the doctor‟s devices. Figure

31 shows the architecture of the system. For indoor monitoring, sensors collect the data,

and deliver them to a Bluetooth device (actor) attached to the patient to be sent to the

hospital through a Wi-Fi connection at home. Then, messages pass through a gateway to

98

be forwarded to the hospital‟s database. However, outdoor monitoring requires a mobile

connection to send the patient‟s data. As claimed by the authors, the best technology that

could be used is 3G. Therefore, the collected data is sent to the hospital through the 3G

enabled mobile device carried by the patient. For indoor and outdoor communication, a

VPN is required to secure accessing the database and increase reliability. For shifting

between indoor and outdoor monitoring, a handover among the devices is required.

Figure 32 and Figure 33 show the sequence for that handover.

Figure 31: generic architecture for healthcare pervasive system [19]

Figure 32: handover from indoor to outdoor [19]

99

Figure 33: handover from outdoor to indoor [19]

Another system is presented in [75] for checking users‟ health status and taking the

appropriate action according to the symptom diary entered by the user from his/her PDA.

The system is divided into three main subsystems as shown in Figure 34. The first

subsystem is the Sensor Networks which contain the set of sensors used to monitor the

patients. The second subsystem is the Management which manages the flow of the drugs

and actions to be taken to handle the patient‟s situation. The third subsystem is the

Server which contains the Database, Knowledge Base, Allocation and Communication.

100

Figure 34: Tele-health System [75]

3.3.4. Games

Pervasiveness extended to the games domain in order to make it in one way or another

more realistic. In [15], they presented a coordination infrastructure called Pegasus which

allows flexibly coupling and reconfiguring of components during runtime. In other

words, developing pervasive games without expecting the accurate configurations of

physical interaction devices became easier.

It divides the user interface components into the following:

 Tangible Game Boards

 The Gesture Based Interaction Device

o Gesture Recognition

o Intensity Measurement

o Pointing

o The Smart Dicebox

 Other Interface Components (such as ordinary computing devices (PCs, PDAs

etc.) or simple interfaces such as physical buttons or RFID-augmented playing

cards)

Figure 35 shows the architecture for the Pegasus. It is based on three layers of

abstraction which are: Basic Tools Layer, Network Data Layer and Functional Object

Layer. The first is responsible for handling the low level functionalities of dealing with

data trees, network transfer and XML parsing. It is composed of lightweight XML-

related library functions. Moreover, it contains functions to be used for connecting and

handling data transfer between multiple Pegasus software components. The second is

used to abstract away the access to shared information among Pegasus instances using

predefined functions such as Gateway Accessor. Finally, the functional object layer is

used to implement the functional objects on top of the network data layer. A functional

101

object is informed through other functional objects or through Accessors with the

changes in the data and evaluates the situation according to such changes.

Figure 35: The Pegasus coordination infrastructure [15]

Another research discusses pervasive games for mobile users [54]. The use of location-

based gaming techniques helps the user to roam around according to the game. Wireless

Gaming Solutions for Future (MOGAME), a research project at the University of

Tampere Hypermedia, has presented a prototype of a persistent multiplayer game that is

based on the collected preferences from the players. The prototype is a player-centered

game that is based on pervasiveness. The game is called “The Songs of North” (SoN)

and it is based on location awareness mixed with reality. The player is in contact with a

spirit world that is placed over the physical environment. Players can interact with the

spirits and also hear the sounds of that other world [54].

3.3.5. Mobile

The approach in [67] is that servers continuously push software applications to mobile

devices (MoBeLets), depending on the current context of use. The difference between

this approach and the others is that usually data are pushed to devices.

102

A software module called MoBeSoul that resides on the mobile phone is responsible of

managing the whole lifecycle of a context-aware application as shown in Figure 36. It is

divided into the following sub-modules:

Context sub-module: It collects the data from the physical, virtual, MoBe Context

sensors or through the user's explicit actions. It is responsible for producing, storing,

maintaining, and updating a description of the current context of the user.

Personalization sub-module: It contains two components, The Personal Data Gatherer

and The Personalized Context Generator.

 The Personal Data Gatherer: It is responsible for collecting data about the user's

preferences and habits, and storing them into the internal databases: the User's

Profile database and the Usage and Download Statistics database. The first

database contains all the data about the user, such as, age and gender, besides the

user's preferences. The latter contains the history of the downloaded MoBeLets

including their execution time and the resources they use.

 The Personalized Context Generator: It interacts with the context sub-module. It

allows changing the interaction between the user and the context sub-module

according to the preferences of each user.

Filter and Download sub-module: This sub-module is responsible for selecting the

appropriate MoBLets to download. It works by receiving notifications from the context

sub-module. The scheduler component receives such notifications and then redirects it to

the MoBe Descriptor Server (MDS) which sends only the descriptor not the code. The

filter engine filters the received MoBLet descriptors according to the private context

descriptors. The downloader then connects to the MoBe MoBLet Server (MMS) and

starts downloading the code.

Executor sub-module: Its responsibility is to run the downloaded code inside a sandbox.

The Scheduler manages starting, pausing, stopping and destroying MoBLets. The

Security Manager gives the permission to the MoBLets if it requires access to the

resources outside the sandbox.

103

Figure 36: MoBe overall architecture [67]

Another research in [8] presents the Mobile Platform for Actively Deployable Service

(MobiPADS) system. It is designed to support the active deployment of augmented

services for mobiles. Mobilets are active-services entities and represent the services that

form the service-chain composition.

As shown in Figure 37, MobiPADS consists of two agents, a MobiPADS server and a

MobiPADS client. The server is designed to accept multiple connections from different

Other processes running on mobile

user’s mobile device such as agenda,

timer or an alarm clock

MoBe Context Server: The MCS pushes

information about the current context to

the users’ devices

104

MobiPADS clients. Both the server and the client agents are divided into MobiPADS

system components and service spaces. The MobiPADS System Components are

responsible for providing essential services for the deployment, reconfiguration and

management of the mobilets. The MobiPADS Service Space contains a chain of mobilets

that allow the mobile applications to use the functionalities that the mobilets provide.

Mobilets access the system components to acquire their services through mobilet APIs.

Also, events are used to monitor the contextual changes. The meta-objects allow the

applications and the middleware to reconfigure both the event compositions and the

service chain when required.

105

Figure 37: MobiPADS Architecture [8]

A framework is presented in [24] which enables mobile devices to utilize the available

resources in the surrounding environments. The framework's main goal is to use the

resources for service advertisement, discovery, filtration, synthesis and migration. In

Figure 38, the architecture for the framework is divided into four components: services,

surrogates, context monitors and mobile clients.

106

Services are applications with interface that can provide the user access to surrounding

devices such as a projector, printer … etc. Surrogates, such as a desktop in the wired

infrastructure, help the mobile clients to filter the services and to communicate with the

suitable one. The dispatching surrogate, a special type of surrogate, is responsible for

configuring the network and finding the suitable surrogate on behalf of the mobile device.

The context monitor is responsible for supplying context information to surrogates.

Figure 38: Overall architecture for a network service framework for mobile pervasive computing [24]

3.3.6. Retail Systems

There were many approaches to introduce pervasive systems to retail systems. The

research motivation in [29] is to provide more efficient and effective handling of

customer goods rather than stopping the supply chain at the supermarket's checkout. The

system presented collects the favorite stocks and their consumption rates and notifies the

users with the shopping lists and prices. The system architecture is divided into: back-

end system, middleware, shopping cart, home network and mobility. The back-end

system is responsible for tracking the goods by using bar codes or RFIDs through the

integration with the supermarket infrastructure. The middleware is the link between the

back-end and the users. It consists of two elements. First, the transcoder, it

107

communicates with the back-end by transforming data between various access devices

and system modules. Second, the web or mobile web device, it links the users with the

appliance server. The appliance server is responsible for managing user's sessions. The

shopping cart is equipped with a RFID reader, a bar code reader, an IEEE wireless

Ethernet card and display. The home network is based on X10 with connectivity provided

through an Open Service Gateway Initiative (OSGI) device. Finally, the mobility is

satisfied by accessing the services on the user‟s mobile devices through a WAP gateway

connected to the transcoder. An out of stock SMS is automatically sent to the registered

users.

3.3.7. Emergency Management

In emergency management, pervasive systems could be of great help in such situations.

A pervasive architecture based on a Mobile Ad hoc NETwork (MANET) is presented in

[61] for supporting workflow management in case of emergency situations named

MOBIDIS (Mobile @ DIS). It assigns tasks and prioritizes them to the emergency team

according to different predefined models. In Figure 39, each mobile device contains a

wireless stack. The wireless stack consists of a network interface and hardware to

calculate the distance of the neighbors. The Network Service Interface abstracts away the

communication and routing protocols to the upper layers. The Predictive Layer signals

the Coordination Layer if there could be a possibility in losing the connection for the

coming instant. It utilizes the predictive algorithm. The coordination Layer's

responsibility is to find out if a peer is going to disconnect through the Disconnection

Manager, and if so, it applies algorithms for choosing a bridge. The Coordination Layer

also contains the Workflow Execution Engine that is used to assign tasks and the

Workflow Reviewer to review the tasks.

108

Figure 39: MOBIDIS architecture [61]

ESCAPE, presented by Turong et al., is a peer-to-peer context-aware framework for

emergency situations [39]. It manages and provides context data for adapting processes

for emergency management systems. The ESCAPE framework architecture is presented

in Figure 40. It is composed of the back-end system and the context information

management services (CIMS). The back-end system receives the collected context

information from CIMS. CIMS resides on every handheld device carried by individuals

who form connected teams. It is responsible for collecting context information. The

CIMS consists of different components and services as shown in Figure 41. The Web

Services Client API is used to communicate with other web services. The SOAP server

is used to provide building services based on SOAP. Team discovery and service

broadcasting is done through the Service Location Protocol (SLP). Service Discovery

and Team Management components are used to locate and manage the connected CIMSs.

The Query and Subscription module is responsible for processing the sent requests from

the clients. Collecting context information from other CIMSs and forwarding them to the

back-end is the responsibility of the Data Aggregation and Publish Component. The

109

Sensor Executor is used to manage the internal context-aware sensors. Finally, the

Lightweight Data Storage component is located at the CIMS to store the gathered context

data locally. The back-end system contains the situation context information

management service (SCIMS) which is responsible for saving the context data related to

a situation in a database for providing support for the teams and for post-situation

analysis.

Figure 40: ESCAPE architecture [39]

Figure 41: CIMIS architecture [39]

110

3.3.8. Transportation:

iTransIT is a framework presented in [21] that was developed to provide a structured

approach for designing and implementing Intelligent Transportation Systems (ITS).

iTransIT, as shown in Figure 42, is structured as a legacy tier, iTransIT tier and

application tier. The legacy Tier is used to generalize all the legacy systems especially

transportation systems that can be integrated into the system. iTransIT tier is used for

collecting all the traffic data and form a spatial data layer to be used by the application

tier. The application tier includes the pervasive services that provide the users‟ context-

aware access to the traffic data.

111

Figure 42: iTransIT architecture [21]

3.3.9. Bridging:

Context management systems are heterogeneous. Therefore, there is a need to bridge

them together in order to serve mobile users. The research presented in [18] aims to

integrate transparent and semi-transparent bridges between different Context

Management Systems (CMSs). Examples of such different CMSs could be home/office

environments, mobile telecom environments or wireless ad-hoc environments. The

AWARNESS project was developed to serve this purpose. The bridge functionalities as

stated should first be able to map the identification for the users where they could have

112

different identities across different CMSs. Secondly, it should be able to discover the

context producer in other SMSs in order to translate the context query and filter the

discovery results. Thirdly, the bridge should have the capability of forwarding the

context information from other CMSs (foreign CMSs) to the native CMS by taking care

of different communication mechanisms for the CMSs. Fourthly, the bridge should be

able to format context information by translating context semantics and encode them to

be understood by the native CMS. Fifthly, bridging needs to context adaptation and

reasoning in the case of misunderstood context information from foreign CMSs. Finally,

privacy is important to ensure applying the native CMS's policy over the foreign ones in

case they do not ensure it. Figure 43 shows the AWARNESS bridging architecture. The

AWARNESS Bridge, which is located in the middle, consists of a context broker and

many context producers. The context broker is responsible for recognizing management

and context discovery. The context producers act as proxies and handle context

adaptation, reasoning, and formatting context information for foreign CMSs.

113

Figure 43: Basic bridging architecture [18]

uMiddle, a system for universal interoperability and a bridging framework for

middleware in pervasive systems is introduced in [46]. It enables interaction between

different devices over various middleware platforms. Figure 44 shows the system

architecture of uMiddle. The devices that need to communicate are called native devices

such as a Bluetooth digital camera and a MediaRenderer TV in Figure 44. Mappers and

Translators are abstractions to enable interoperability. A Mapper is responsible for

creating service-level and transport-level bridges for recognizing the newly appearing

devices and abstracting communication, respectively. A translator establishes a device-

level bridge for native devices which is responsible for translating the different

114

representations of device semantics besides working as a proxy for that device. Hosts are

used on the network over the runtime to connect devices. The Directory Module is used

to handle the availability of the devices.

Figure 44: uMiddle architecture [46]

3.3.10. Fault Tolerance

Fault tolerant pervasive systems require relying on eliminating any error or system failure

before deployment and if there are errors, the system should have the ability to mask the

failures and continue providing the service. Therefore, there are three key requirements

for developing fault tolerant pervasive systems as proposed in [17] which are:

1. Dynamic discovery of new services and resources.

2. Automated and transparent recovery from failure.

3. Analytical determination of component replication strategies and deployment

architectures.

Achieving this could be done through replication, replica synchronization and failover.

115

The architecture for a fault manager is presented in [82]. The Checkpoint store is used by

the applications to store their status regularly. Moreover, each application sends a

heartbeat message to the fault manager to ensure it is connected. When an application

gets disconnected, the fault manager, shown in Figure 45, retrieves the current context

information from the Space Repository through the context infrastructure. This enables

the application to be restarted on an appropriate surrogate device using the saved state

from the checkpoint storage.

Figure 45: Fault manager architecture [82]

3.3.11. Context-aware

The presented architecture in [49] is a case study to validate a software engineering

framework for context-aware pervasive computing. The architecture, as shown in Figure

46, is built with loosely coupled layers on top of each other. They are the context

116

gathering, context reception, context management, query, adaptation, and application

layers. The context gathering layer is responsible for collecting the data from the sensors

and processes them to extract the needed information from the raw sensor data. The

context reception layer links the context gathering and the context management layers. It

sends the collected data from the context gathering layer in a fact-based representation to

the context management layer and returns back the queries to the appropriate component.

The context management layer is responsible for maintaining a set of context models for

the applications to contact. The query layer provides the top layers, the adaptation and

the application layers, with an interface to query the context management with the fact

and situation abstractions. The adaptation layer holds repositories for situation,

preferences and triggers. Then it evaluates them on behalf of the application layer

according to the results of the query layer. Finally, the application layer supplies a

programming kit for two programming models, the branching toolkit and the triggering

toolkit. The former is used to support context-dependent choices among different

alternatives. However, the latter is used to provide functionalities for creating new

triggers dynamically in addition to activating/deactivating the existing triggers.

117

Figure 46: Context-aware pervasive architecture [49]

118

A generic framework for context management is presented in [36] called the Context

Management Framework (CMF). According to Figure 47, the functional blocks that

make up the framework are the Context Source, Context Provider, User Manager and

Application Components. The Context Source collects different information from

different data sensors or other domains. It is also responsible for delivering the context

information either by monitoring the environment directly or by proper interpretation of

heterogeneous and distributed context information. This is achieved by the two sub-

components of the Context Source which are Context Reasoner and Context Wrapper.

The Context Reasoner is responsible for interpreting such collected context information

from the sensors and filters them according to analysis techniques that help in selecting

the context parameters. The context parameters extracted are used for instantiating or

adapting a certain application. However, the Context Wrapper's duty is to encapsulate

particular or singular context information. The Context Provider collects the information

and provides it to the User Manager and the Application Components. The User

Manager preserves information about the end users, their devices, and the subscription

rights for accessing contextual information and related privacy aspects. The Application

Components which reside in the application layer form the communication link with the

Context Provider by establishing get and publish/subscribe functionalities.

119

Figure 47: Functional Blocks for Context Management Framework (CMF) [36]

3.3.12. File Migration

An architecture is presented in [41] that enables caching Personal Area Networks (PAN)

in order to increase the availability of data generated by mobile devices, and data

migration between these devices and a remote server. Different devices connect with

each other in an ad-hoc manner. Nodes have the same layout either on mobile device,

internet based system or on a backup server. Figure 48 shows the basic components for

each node, file manager, cache, migration queue and on top of all the applications. When

an application needs to save a file, it passes it to the underlying file manager with the

metadata collected from the user or automatically. Both the file and the metadata are

stored locally with pointers residing in the migration queue to be sent to other nodes.

Migration queues are data structures used to unite the file manager‟s outbound

communications. Files are migrated in chunks rather than complete files to fit in cache

and to decrease the probability of losing a file on an unstable link. When an application

120

requests a remote file, a request is placed in the migration queue and the file manager

retrieves it.

Figure 48: Node layout [41]

3.3.13. Document Editing

An architecture is presented in [85] that is used for pervasive document editing. The

approach used is based on the Text Native Database extension (TeNDaX), a collaborative

database-based document editing and management system. It enables pervasive

document editing and management on the stored documents in the database. Users can

access the documents anywhere and anytime. Once a change is done by someone, it is

saved directly in the database and the changes are propagated to all other users. Figure

49 shows the building blocks for the system. The presentation layer is the main access to

the documents by the users where they can perform their modifications, such as

OpenOffice. The business logic layer is the interface between the database and the word-

processing application. It contains the Application Servers and they are responsible for

text editing within the database. The real-time server components are used to propagate

the information to all the connected users. The data layer is the primary storage area.

.

121

Figure 49: TeNDaX architecture [85]

In conclusion, we discussed the related pervasive architectures collected in our survey. This

helped in defining a well-structured categorization reference for building pervasive systems. The

categorization is done according to the pervasive systems‟ usage and operating environment.

Also, we extracted the main features from the architectures and grouped them according to the

categorization criteria.

(A-G) letters are the

presentation layer

AS (1-4) are the

Application servers

RTSC (1-4) are the real-time

server components

DB (1-4) are the

databases

122

Chapter 4

Feature-based Generation of Pervasive Systems’ Architectures

Methodology

In this chapter we discuss our methodology of categorizing the pervasive systems. A variety of

architectures for different scopes in pervasive systems were discussed in Chapter 3. We

extracted the pervasive features from these architectures along with their underlying components.

We classified them according to their type and the domain they fit in. In the next section, we

will be showing in some details the categorization that we followed and the features that we

support.

4.1. Discussion and Classification of Common and Variable Features in

Pervasive System Architectures

In this section we discuss the main building blocks of pervasive systems‟ architectures that were

developed by earlier researchers. In Figure 50, we show how Pervasive architectures may be

classified by disciplines. We categorized pervasive architectures into general, bridging, privacy

and security, fault tolerance, context-awareness and domain specific architectures as we

presented in [62].

123

Pervasive
Architectures

Privacy and
Security

Domain
Specific

Learning

Smart Active
Spaces

Health

GamesMobile

Retail
Systems

Emergency
Management

Transportation Data
Management

Document
Editing

Data Migration

Bridging
Fault

Tolerance
Context-

awareness
General

Figure 50: Pervasive architectures

Figure 51 summarizes the privacy features extracted from the surveyed pervasive

architectures. Privacy in pervasive systems consists of Trusted Channels or Trusted

Points or both for securing the communication. Authentication is used to ensure the

identity of the connected users. In Identity Hiding there are numerous techniques that

could be used. Proxy for Anonymity, True and Wrong Data Sent, Pseudonyms and

Dummy Traffic and Mixzones are used to conceal the users from the provided pervasive

functionalities.

124

Figure 51: Privacy features

Figure 52 summarizes the learning features extracted from the surveyed pervasive

architectures. Learning pervasive systems are characterized by the following:

 Learner Profile: To reflect the learner‟s interests and motivation to learn in

order to be easily used to locate instructors. It is also responsible of updating

the learners‟ profiles and keeping track of their changes.

 Environment Model Management: It is used to allow the learners to select

the physical surrounding resources that could be used in their learning

process.

 Educational Model Management: It is divided into Learning Material,

Learning Agents, Evaluation and Assessment.

Privacy and Security

Trusted Channels

Trusted Points

Authentication

Identity Hiding

Proxy for Anonymity

True and Wrong Data
Sent

Pseudonyms and
Dummy Traffic

Mixzones

125

o Learning Material: It is the material that is used in the learning

process. It could be audio/visual or softcopies.

o Learning Agents: They are either Resource Agents or Q&A Agents.

The Resource Agents are used to manage the resources available

wether physical or virtual. The Q&A Agents are used to provide the

learner and the instructor with a way of communication to document

their interaction.

o Evaluation: It is evaluation engine that is used for evaluating the

educational material by the learners.

o Assessment: For assessing the educational material.

Figure 52: Learning features

Figure 53 shows the smart active spaces‟ features extracted from the surveyed pervasive

architectures. They are divided into Virtual Spaces, Agents and Services.

 Virtual Space: It is the hypothetical space surrounding the user. It is divided

into Session Tracking and Perceptual Component:

o Session Tracking: It is used to link the user data and applications with

the user. A user can roam around different places where he/she can

retrieve his/her data and the applications available.

Learning

Learner Profile

Environment
Model

Management

Educational
Model

Management

Learning
Material

Learning Agents

Resource Agent

Q&A Agent

Evaluation

Assessement

Interactive
Multimedia

Conferencing

126

o Perceptual Component: It is the class of components that are used to

extract context indications from collected signals.

 Services: These are the set of services that should be available for the smart

pervasive systems:

o Presence Service: It collects the information about the active space

resources, i.e. it keeps the status of the software components, people

and devices.

o Media and Data Component Service: It supplies the participants with

real-time audio/video communication. (This is used in smart meeting

spaces)

o Multimodal Interaction Component Service: It provides user-friendly

interaction with the tiled display.

Figure 53: Smart active spaces’ features

Figure 54 shows the health features extracted from the surveyed pervasive architectures.

Health features are divided into the following:

Smart Active
Spaces

Virtual Space

Session Tracking

Perceptual
Component

Services

Presenence Service

Media and Data
Component Service

Multimodal
Interaction

Component Service

127

 Drug Manager: It is responsible for managing the supply of drugs to the

patients according to the situation and the need.

 In-door and Outdoor Handover: It is a handover mechanism to switch

between monitoring indoors and outdoors to sustain availability all the time.

 Health Sensor Network: It contains the health sensors that monitor the

patient‟s situation such as heartbeat, blood pressure … etc.

 Health Data Warehousing: It is a database that contains the patients‟ history

as well as the medication required for them to keep track of their progress.

 Physician Notification: It is used for notifying the physician with the

patient‟s situation. If the case is severe, the nearest physician gets notified.

Figure 54: Health features

Figure 55 shows the games‟ features extracted from the surveyed pervasive architectures.

Health

Drug Manager

In-door and
Outdoor

Handover

Health Sensor
Network

Health Data
Warehousing

Physician
Notification

128

 Gesture Based Interaction Devices: They are the devices used to allow the

players to interact with the games using their body movements or using

external devices.

o Gesture Recognition: It is used to capture the players‟ body movement

and to send to the game engine the required action.

o Pointing Devices: They are used by the players for easily playing

without being so close.

Figure 55: Games’ features

Figure 56 shows the mobile features extracted from the surveyed pervasive architectures.

Here are the features described:

 Security Management: It is an important feature in order to prevent any

unauthorized access for the mobile resources.

o Sandbox: It is the same concept as in java. It is used to execute the

downloaded programs and services in tightly-controlled resources.

 Mobilet: It is a chain of service objects used to supply improved services to

the underlying mobile applications. They can be added, updated or deleted

dynamically.

Games
Gesture Based

Interactive
Devices

Gesture
Recognition

Pointing Devices

129

 Mobile Manager: It is responsible for executing and migrating the services

and the programs.

o Executer: It is responsible for executing the downloaded programs

inside the sandbox.

o Service Migration: It is responsible for the services to migrate between

the mobile phones and the detected resources.

 Surrogates: They are wired resources that mobile phones can use to filter the

services and to communicate with the suitable ones.

Figure 56: Mobile features

Figure 57 shows the retail features extracted from the surveyed pervasive architectures.

Retail features are:

 Shopping Cart: The shopping cart is equipped with Readers and a PDA to

keep track of the added items and display to the customer the price and special

offers for the related products.

Mobile

Security
Management

Sandbox

Mobilet

Mobile
Manager

Executer

Service
Migration

Surrogates

130

o Screen: The shopping cart could be equipped with a screen that

displays the different messages and notifications to the user, such as

the list of items currently in the basket.

o Internet: The shopping cart could be connected to the Internet in order

to help the user to check the reviews for a certain product.

 Readers: They are used to keep track of the products and their location. They

are installed on the shopping cart and on the shelves.

o Bar Code Reader: It is a type of monitoring for the products.

o RFID Reader: It is the Radio Frequency Identification to monitor the

products.

 Transcoder: It is used to communicate with the back-end system of the shop

by transforming the data and making them available to the customers.

 Home Appliance Server: The server is located at the store owner‟s home. Its

responsibility is to connect to the store and check the availability of the items

that are out of stock from home. It could be configured according to the

users‟ needs and preferences.

Figure 57: Retail features

Retail

Shopping Cart

Screen

Internet

Readers

Bar Code Reader

RFID Reader

Transcoder

Home Appliance
Server

131

Figure 58 shows the emergency systems‟ features extracted from the surveyed pervasive

architectures. Emergency systems are categorized by the following features:

 Distance Calculation: It is used to calculate the distance between the sensors

and the neighbors as well as the distance between the nearest emergency team

and the situation place.

 Workflow Management: It is responsible for assigning tasks to the

emergency team according to the different predefined models.

o Workflow Execution Engine: It is used to assign tasks to the

emergency team.

o Workflow Reviewer: It is used to review the tasks given and report if

they are done correctly or not.

 Situation Context Information Management Service: It is responsible for

saving the context data related to a situation in a database for providing

support for the emergency teams and for post-situation analysis.

 Team Manager: It is responsible for monitoring the team‟s progress and

prioritizes tasks.

132

Figure 58: Emergency systems' features

Figure 59 shows the Transportation features extracted from the surveyed pervasive

architectures. Transportation features are:

 Legacy Tier: It is responsible for integrating with the current traffic systems

 Management Tier: It is responsible for managing the incoming traffic data

that are collected and for analyzing them.

o Geo-data Collector: It is responsible for collecting the geographical

data from the streets, filtering them and sending them to the

management tier.

Emergency Systems

Distance Calculation

Workflow
Management

Workflow Execution
Engine

Workflow Reviewer

Situation Context
Information

Management Service

Team Manager

133

Figure 59: Transportation features

Figure 60 shows the bridging features extracted from the surveyed pervasive

architectures. The Bridging architecture features are:

 Context Broker: It is responsible for identity management and context

discovery.

 Context Producer: It is responsible for handling context adaptation,

reasoning, and formatting context information for foreign CMSs.

 Interoperability: It is responsible for exchanging information between

different devices. It is divided into Mapper and Translator.

o Mapper: It is responsible for creating service-level bridges and for

recognizing the newly appearing devices and transport-level bridges

for abstracting the communication.

o Translator: It establishes the device-level bridge for native devices.

Moreover, it is responsible for translating the different representations

of device semantics as well as working as a proxy for that device.

 Directory Module: It is used to handle the availability of the devices.

Transportation

Legacy Tier

Management
Tier

Geo-data
Collector

134

Figure 60: Bridging features

Figure 61 shows the context-aware features extracted from the surveyed context-aware

pervasive architectures. The features of Context-aware pervasive systems are:

 Adaptation Manager: It stores the repositories for situation, preference and

triggers. Then it evaluates them on behalf the application layer according to

the results of the query layer.

o Situation Repository: It contains all the situations and the changes that

happened to them i.e. context changes.

o Preference Repository: It holds the preferences for each user.

 Context Manager: It is responsible for maintaining a set of context models

for the applications to contact.

o Model: It is a used to support the different tasks that can be carried out

by the users.

o Context Repository: It maintains all the extracted models.

o Context Wrapper: It is responsible for encapsulating particular or

singular context information to be supplied to the Context Reasoner.

o Context Reasoner: It is responsible for interpreting collected context

information from the sensors and filters them according to the analysis

techniques.

Bridging

Context Broker

Context
Producer

Interoperability

Mapper

Translator

Directory
Module

135

Figure 61: Context-aware features

Figure 62 shows the extracted learning features from the above pervasive architectures.

Fault Tolerance features are:

 Checkpoint Store: It is responsible for regularly storing the status of all the

devices and the sensors connected.

 Fault Management: It is responsible for managing the applications and

devices whenever they get disconnected and searches for the next available

application and device to failover to.

o Heartbeat Messaging: It used to ensure that the applications are

connected.

o Fault Notification: It is used to notify the fault manager when any

device or application is disconnected.

Context-
aware

Adaptation
Manager

Situation
Repository

Preference
Repository

Context
Manager

Model

Context
Repository

Context
Wrapper

Context
Reasoner

136

Figure 62: Fault tolerance features

Figure 63 shows the learning features extracted from the surveyed file migration

pervasive architectures. File Migration features are:

 File Manager: It is responsible for managing the migrating files on the move

by abstracting the location of a file without the interaction from the user.

o Cache: It is used for the redundancy and to cache the files on the move

in order not to lose them.

o Migration Queue: It is a data structure responsible for uniting the file

manager‟s outbound communications.

Fault Tolerance

Checkpoint Store

Fault Management

Heartbeat
Messaging

Fault Notification

137

Figure 63: File migration features

Figure 64 shows the document editing features extracted from the surveyed pervasive

architectures. Document Editing features are:

 Document Editing Tools: The tools are used to edit the documents. They

communicate with the real-time server components to reflect the changes

automatically.

 Documents Data Warehousing: It is a database that is responsible for saving

the documents.

 Real-time Editing: They are used to propagate the information to all the

connected users.

Figure 64: Document editing features

File Migration File Migrator

Cache

Migration Queue

Document Editing

Document Editing Tools

Documents Data Warehousing

Real-time Editing

138

4.2. The Methodology for Generating Pervasive Architectures

Our methodology for generating pervasive systems is based on collecting all the pervasive

features that we discussed above in one place. Each feature being mapped to its set of

components. The components are filed up in reference architectures according to their

category. By choosing the features, the components are included in the architecture. We

had to choose between either a big reference architecture that collects all the components for

all the categories or to have smaller architectures and select from them according to the

design. We compared between both approaches in Table 3.

Table 3: Comparison between one Big RA and Small RAs

 One Big RA Small RAs

Definition For each new feature, its

components got added to the big

RA with all its necessary wrappers

and integrations to the other

components.

When a set of features is selected

together, their features got

extracted from the big RA.

For each new feature category, we generate

their components and their wrappers. When a

set of features are selected we integrate the

components together according to certain

rules.

We generate the components, and

automatically generate the connections

between them according to lookup table.

Pros
1. Having a big picture of all

the components

2. Connections and

integrators are already

generated from the

insertion phase of the

features.

1. Incremental development

2. Can be automated by applying rules on

how to connect components together

3. Less processing power

4. Architectures are loosely coupled and

can be easily replaced

Cons 1. Much processing of the

whole architecture

1. Requires complex set of rules in order

to be smart enough to detect the

connections between the components

139

The main architectural pattern that we used is the component-based architecture pattern. It is

used mostly with the design of the different architectures that we encountered. As mentioned

earlier, a component model defines well-defined standards and interactions. Some other

patterns are used such as the N-Tier architecture and the client/server architecture which are

used in specific situations according to the specific needs and requirements. When using

component-based architectures, the design generated is more abstract than the object-oriented

design. It is decomposed to logical or functional components with well-defined

communication interfaces containing methods, events, and properties. The component-based

architecture style is most fitted with a service locator for integrating the components together.

In the next section we discuss the implementation technicalities in more details.

4.3. Implementation

In order to automatically generate RAs for selected features, we developed our

implementation process as shown in Figure 67 and presented in [63]. We first select the

required features using the Feature Modeling plug-in (FMP) [25] within Eclipse. Figure 65

shows the categorization we did using FMP plug-in, while Figure 66 shows the selection of

the features for a retail with context-awareness system. Then, we generate the component

diagrams from these features. We used Visual Paradigm for UML [90] to generate the

component diagrams. We then export the generated diagrams in the form of XML

documents. For modifications done on the component architectures through Visual Paradigm

after exportation, the XML document must be re-exported to reflect the updates. The reason

behind using XML during the generation of the architectures is that XML is easier and better

for standardizing the processing among the different tools used in our approach.

140

Figure 65: Pervasive Categorization Using Eclipse and
FMP Plugin

Figure 66: Configuration of Retail with Context-
awareness

In more details, we used Visual Studio 2008 [91] to develop a program in C# and Windows

Forms which maps the generated XML diagrams to the selected features, named RA

Generator. The program goes over the features and extracts the categories that will be used,

e.g. retail or health. Then, it starts mapping each feature to the corresponding component and

adds them to the generated component diagram. A second iteration is performed over the

generated component diagram in order to remove the unneeded connections and to glue the

unconnected components that come from different categories together according to a pre-

defined lookup table. A lookup table is manually pre-populated with components that need

to be connected together before running the RA Generator. The class diagram and

description about the classes are presented in Appendix I. The lookup table is defined by

gathering the matching components together from the different categories and checking if a

component reads/writes/uses another one. In other words, if interactions are found by the

141

designer between components, they are appended to the lookup table. For the lookup table

structure, shown in Figure 68, each line expresses a connection between 2 components by

declaring the component names separated by a comma „,‟. For example, the “Shopping Cart”

component, which is used in retail systems, has a connection to the “Application Tier

Subsystem”, which is a component of the actor. The “Shopping Cart” utilizes the

“Application Tier Subsystem” by accessing the different retail applications that the actor is

using. In other words, if the actor has a retail application that he/she uses in setting

preferences and compiling the shopping list, “The Application Tier subsystem” will act as the

bridge between the “Actor” and the “Shopping Cart” with the correct wrappers to ensure they

understand each other. The final generated XML document is readable through Visual

Paradigm for UML and the component diagram can be viewed from there.

Figure 67: Implementation Process

142

Figure 68: Lookup table Sample

143

A sample of a generated architecture is shown in Figure 69:

Figure 69: Generated Architecture from RA Generator

144

4.4. The Evaluation Criteria

Throughout the surveyed papers, the evaluation methods adopted by the researchers were one

or more of the following:

 Prototypes: Developing instances from the final product but on a smaller scale and with

limited resources

 Scenarios: Developing UML scenarios (i.e. use cases, sequence diagrams, etc ...)

 Applications: Developing applications and systems that can be used in reality

 Case Studies: Extensive research on a specific case rather than having a broad one on the

entire domain.

 Questionnaires: Having questions to different people and comparing the results to the

designed systems to ensure the completeness of the designed systems.

 Simulations/Evaluations: Developing or using off-the-shelf applications that can be used

to simulate or emulate the work of a system.

 Experiments: Performing different tests and benchmarks in order to ensure the absence of

problems.

In evaluating the SPL, there should be a "domain" aspect when using the FEF for evaluating

the architecture. This aspect was not used in evaluating other SPLs because they were

domain specific such as distributed systems, embedded systems and data-intensive systems.

4.4.1. Experimentation

In order to evaluate our generated architectures, we conduct an extensive search in order

to find quantifying metrics for evaluating high level architectures. We were also looking

for the low and high values for each of these metrics as discussed earlier in section 2.7.

The evaluation process we decided to follow is:

1. Gather the specific pervasive system requirements. This task was done by

collecting the needed tasks to be accomplished from the pervasive system.

2. Select the features needed according to the specified requirements.

145

3. Generate the underlying components from the RA underlying the features selected

in step 2.

4. The evaluation methodology was:

a. Generate architectures according to our methodology.

b. Have evaluators with experience in system architectures both in industry

and academics to design architectures.

5. Apply the metrics and the evaluation tool (SDMetrics) on all the designs both the

generated ones and those devised by evaluators.

We stated a set of requirements for three types of pervasive systems that target different

domains as shown in Appendix II – section 5.2.1. The three systems are of almost the

same complexity in order not to have any influence on the metrics. We selected the

features that match those requirements and then generated the architectures as shown in

Figure 70, Figure 71 and Figure 72. Then, we distributed these requirements among five

different human evaluators. Each evaluator was required to develop high level

architectures (component diagrams) for the three requirements documents. The

evaluators were selected with varying years of experiences ranging from 3 to 5 in the

field of software and systems architecture. The requirements given to the evaluators and

the designed architectures by them are included in Appendix I.

146

Figure 70: Generated Architecture for health pervasive system from the RA Generator

147

Figure 71: Generated Architecture for retail pervasive system from the RA Generator

148

Figure 72: Generated Architecture for traffic pervasive system from the RA Generator

149

We used SDMetrics [80] to extract the components, interfaces, associations and other

metrics from the component diagrams. Two evaluation frameworks were used in our

evaluation, Narasimhan and Hendradjaya‟s Evaluation Suite [89], and Zayaraz, and

Thambidurai‟s Measurement Techniques [28]. Table 4 shows all the metrics we used.

Back to section 2.7 for more details.

Table 4: All metrics we used in evaluating the generated architectures

Metric Definition

Component Packing Density

(CPD)

It measures the packing density of the components in the

architecture. It is calculated as the ratio between the

number of subcomponents related to a component with

respect to the number of components

Component average

interaction density (CAID)

It is used for evaluating the entire components‟ assembly

complexity. It is calculated by the ratio between the

component interaction densities to the number of

components.

CRIT link It measures the criticality of a component in terms of the

links connected to it. The initial indicator presented in this

research is 8 links as a threshold value.

CRIT Bridge The bridge component links are used to connect two or

more components or applications. The importance weight

should be added to each bridge link by the developer. This

weight should reflect the probability of failure.

CRIT Size It measures the size of a component. In order to specify the

threshold, one must choose the maximum size of a

component in the system.

150

CRIT All Criticality metrics is a summation over the matrices CRIT

link, CRIT Bridge and CRIT Size.

Coupling It measures the relationship of dependency between two

interacting modules.

Cohesion It evaluates the tightness between the linked features

composing a system or module.

Complexity It is used as a metric to evaluate how the system or module

is complex.

Modifiability It evaluates to what extent the components could withstand

changes without affecting the whole system.

Modularity It evaluates if the system is built on modular basis or not.

Reusability It evaluates if the components in the system can be used in

another system without major changes.

For the SDMetric tool, there are terminologies that are used while displaying the results

which are:

Terminology Definition

Elements The number of components and sub-components in a diagram

Interfaces The number of interfaces that the components utilize while

communicating with each other

Associations The number of associations that describe the relationship between

two components

deps The number of dependencies in the architecture

151

4.4.2. Results

In this section, we will be presenting the results for the evaluation. Table 5, Table 6 and

Table 7 show the output from the SDMetrics tool for case 1, 2 and 3, respectively.

SDMetrics takes XMI file and extracts from the input diagram the number of elements,

interfaces, associations and dependencies. We used the output from the tool to be used as

input to the evaluation metrics in the Narasimhan and Hendradjaya‟s Evaluation Suite,

and Zayaraz and Thambidurai‟s Measurement Techniques. The data shows the

measurements we made when comparing the generated architectures with those generated

by human subjects (S1-S5). Table 8, Table 9 and Table 10 show the output for

Narasimhan and Hendradjaya‟s metrics on the 3 cases.

Table 5: SDMetrics Diagram Output for Case 1

Case 1 Generated S1 S2 S3 S4 S5

Elements 61 23 43 43 21 33

Interfaces 4 0 0 0 0 0

Associations 11 8 20 12 4 6

Deps 7 1 0 7 7 2

Table 6: SDMetrics Diagram Output for Case 2

Case 2 Generated S1 S2 S3 S4 S5

Elements 47 23 47 39 26 48

Interfaces 3 0 0 0 0 0

Associations 10 9 22 9 6 8

Deps 4 0 0 5 8 3

152

Table 7: SDMetrics Diagram Output for Case 3

Case 3 Generated S1 S2 S3 S4 S5

Elements 44 19 37 34 24 44

Interfaces 2 0 5 0 0 0

Associations 8 5 5 9 4 10

Deps 4 3 5 4 9 1

Table 8: Narasimhan and Hendradjaya’s Evaluation Suite for Case 1

Metric Generated S1 S2 S3 S4 S5

Component Packing Density (CPD) 0.63 0.75 0.91 0.79 1.10 0.32

Component average interaction density (CAID) 0.10 0.17 0.13 0.32 0.20 0.19

CRIT link 0 0 0 0 0 0

CRIT Bridge 4 1 6 4 2 2

CRIT Size 0 0 1 0 0 0

CRIT All 4 1 7 4 2 2

In case 1, the higher the value of CPD, the more complex is the system. Table 8 shows

that the CPD of the generated architecture is better than S1, S2, S3 and S4. However, the

lower the value for CAID means the less system complexity. The generated system was

found better than all the other architectures designed by the architects. CRIT link is set at

the threshold value of 8 which means that for all the systems there is no criticality

components. For CRIT Bridge, the generated system is better than the S2 but at the same

level as S3. For CRIT Size, the threshold value was set to be 8 sub-components for a

component. The only system that exceeded the threshold is S2. The summation for all

the criticality values showed that the generated architecture is better than S2 but at the

same level as S3.

153

Table 9: Narasimhan and Hendradjaya’s Evaluation Suite for Case 2

In case 2, Table 9 shows that the CPD for generated architecture is better than S1, S2 and

S4. However, S3 and S5 are better than the generated architecture. With request to

CAID, the generated architecture is better than S1, S3, S4 and S5, but equivalent to S2.

CRIT link shows that S3 is reaching the threshold for the links. CRIT Bridge shows that the

generated architecture is better than S1, S2 and S4, but equivalent to S1 and S5. For

CRIT Size, none of the architectures reached the threshold. For CRIT All, the generated

architecture is better than S1, S2, S3 and S4, and the same as S5.

Table 10: Narasimhan and Hendradjaya’s Evaluation Suite for Case 3

Metric Generated S1 S2 S3 S4 S5

Component Packing Density (CPD) 0.52 0.80 1.07 0.62 1.18 0.33

Component average interaction density (CAID) 0.13 0.20 0.31 0.26 0.18 0.13

CRIT link 0 0 0 0 0 0

CRIT Bridge 3 2 3 3 3 5

CRIT Size 0 0 0 0 0 0

CRIT All 3 2 3 3 3 5

Metric Generated S1 S2 S3 S4 S5

Component Packing Density (CPD) 0.68 0.82 0.92 0.56 1.17 0.30

Component average interaction density (CAID) 0.12 0.18 0.12 0.24 0.17 0.15

CRIT link 0 0 0 1 0 0

CRIT Bridge 2 3 7 2 5 2

CRIT Size 0 0 0 0 0 0

CRIT All 2 3 7 3 5 2

154

In case 3, Table 10 shows that the CPD for generated architecture is better than S1, S2, S3

and S4. However, S5 is better than the generated architecture. For the CAID, the

generated architecture is better than S1, S2, S3 and S4, but at the same level as S5. CRIT

link shows that none of the architectures reached the threshold for the links. CRIT Bridge

shows that the generated architecture is better than S5, equivalent to S2, S3 and S4, and

worse than S1. For CRIT Size, none of the architectures reached the threshold. For CRIT

All, the generated architecture is equivalent or better than S2, S3, S4 and S5, but worse

than S1.

Table 11, Table 12 and Table 13 show the Zayaraz and Thambidurai‟s measurement

technique for evaluating the three architectures, respectively. It measures coupling,

cohesion, complexity, modifiability, modularity and reusability.

Table 11: Zayaraz and Thambidurai’s Measurement Technique for Case 1

Metric Generated S1 S2 S3 S4 S5

Coupling 0.31 0.25 0.07 0.46 0.75 0.26

Cohesion 0.97 0.83 0.24 0.83 0.94 0.47

Complexity 0.00042 0.00010 0.000005 0.00353 0.00808 0.00016

Modifiability 20739.20 10004.00 2479566.80 402.53 125.45 6694.63

Modularity 12.88 1.93 3.91 4.68 2.92 4.91

Reusability 16.08 5.93 18.50 6.87 4.25 8.78

Table 12: Zayaraz and Thambidurai’s Measurement Technique for Case 2

Metric Generated S1 S2 S3 S4 S5

Coupling 0.21 0.10 0.20 0.38 0.53 0.28

155

Table 13: Zayaraz and Thambidurai’s Measurement Technique for Case 3

I

n

the sub-sections below we analyze the above results and show why the generated

architectures were better or worse.

4.4.2.1. Component Packing Density (CPD)

CPD measures the packing density of the components in an architecture. CPD is

directly proportional to the number of interfaces, associations and dependencies

between the components, and inversely proportional to the number of components.

Cohesion 0.58 0.58 0.54 0.88 0.81 0.52

Complexity 0.00047 0.01573 0.00011 0.00009 0.00238 0.00006

Modifiability 10,373 10,010 44,494 12,659 592 34446.23

Modularity 7.00 2.90 8.50 5.78 4.14 7.81

Reusability 11.80 12.90 13.47 8.43 6.03 11.40403

Metric Generated S1 S2 S3 S4 S5

Coupling 0.40 0.33 0.06 0.30 0.25 0.39

Cohesion 0.88 0.69 0.31 0.74 0.88 0.93

Complexity 0.00145 0.00223 0.00003 0.01593 0.01595 0.00

Modifiability 20738.53 651.00 524304.00 3336.67 3644.89 2940.60

Modularity 11.17 2.83 2.50 4.55 4.50 10.82

Reusability 13.69 5.83 18.50 7.88 8.50 13.35

156

Therefore, the higher the CPD, the more complex the system is. Figure 73, Figure 74

and Figure 75 show the CPD for cases 1, 2 and 3, respectively. The three generated

architectures were better than the subjects. For case 1, the CPD value for the

generated architecture is 0.63 while the average for the subjects is 0.77. However, in

case 2, the CPD for the generated architecture is 0.68 while the average CPD for the

subjects is 0.75. Finally, in case 3 the CPD for the generated architecture is 0.52

while the average for the subjects is 0.80.

Figure 73: CPD for Case 1

0.00

0.20

0.40

0.60

0.80

1.00

1.20

G
en

er
at

ed S1 S2 S3 S4 S5

Case 1

Component Packing Density (CPD)

Component
Packing Density
(CPD)

CPD average for
subjects

157

Figure 74: CPD for Case 2

Figure 75: CPD for Case 3

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

G
en

er
at

ed S1 S2 S3 S4 S5

Case 2

Component Packing Density
(CPD)

Component
Packing Density
(CPD)

CPD average for
subjects

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

G
en

er
at

ed S1 S2 S3 S4 S5

Case 3

Component Packing Density (CPD)

Component
Packing Density
(CPD)

CPD average for
subjects

158

4.4.2.2. Component average interaction density (CAID)

CAID is calculated as the sum of Component Interaction Density (CID) over the

number of components. As discussed earlier, CID is calculated by defining the ratio

between the actual numbers of interactions (associations) to the available number of

interactions in a component. Hence, the lower the value of the CAID, the less

interactions and complexities the architecture will have. Figure 76, Figure 77 and

Figure 78 show the CAID calculated for cases 1, 2 and 3, respectively. In case 1 the

CAID for the generated architecture has the value of 0.1 while the average is 0.2 for

the subjects. In case 2 the CAID value is 0.12 for the generated architecture, while

the average among the subjects is 0.17. For case 3, the CAID is 0.13 for the

generated architecture and the average is 0.22 for the subjects.

Figure 76: CAID for Case 1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

G
en

er
at

ed S1 S2 S3 S4 S5

Case 1

Component Average Interaction Density

Component average
interaction density
(CAID)

CAID for the
Subjects

159

Figure 77: CAID for Case 2

0.00

0.05

0.10

0.15

0.20

0.25

0.30

G
en

er
at

ed S1 S2 S3 S4 S5

Case 2

Component Average Interaction Density

Component average
interaction density
(CAID)

CAID for the
Subjects

160

Figure 78: CAID for Case 3

4.4.2.3. CRITAll

The Criticality metric is used to measure the critical components in a system.

Without their existence, the system components will not be able to interact with each

other. The more critical components exist in a system, the higher is the tendency for

its failure. CRITAll is represented in the link criticality, bridge criticality, inheritance

criticality and size criticality metrics. CRITAll is the summation for all these

measures. In Figure 79, case 1 scored the value 4 for CRITAll for the generated

system while the average for the subjects is 3.2. In Figure 80, the CRITAll is 2 for the

generated system while the average is 4. In Figure 81, the CRITAll is 3 while the

average is 3.2. In case 1, our generated architecture is worse than the average

because there are many bridge components in the generated system.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

G
en

er
at

ed S1 S2 S3 S4 S5

Case 3

Component Average Interaction Density

Component
average
interaction density
(CAID)

CAID for the
Subjects

161

Figure 79: CRITAll for Case 1

Figure 80: CRITAll for Case 2

0

1

2

3

4

5

6

7

8

G
en

er
at

ed S1 S2 S3 S4 S5
Case 1

CRITAll

CRIT All

CRIT All for the
Subjects

0

1

2

3

4

5

6

7

8

G
en

er
at

ed S1 S2 S3 S4 S5

Case 2

CRITAll

CRIT All

CRIT All for the
Subjects

162

Figure 81: CRITAll for Case 3

4.4.2.4. Coupling

The research attempted to investigate why coupling was better in some cases, and

worse in others. After a thorough investigation, it seemed like it had to do with the

number of categories, but that was invalidated. We found that the number of layers

involved in the architecture affects the coupling. However, the number of components

inside each layer is inversely proportional to the coupling as shown in Figure 83,

Figure 85 and Figure 87. In other words, the more layers in the generated

architecture, the worse the coupling is, and the more components inside a layer, the

lower the coupling is. Also, the number of entries, exits, reads and writes, within

each layer, affects the coupling. The more interactions among the layers, the higher

the coupling in the architecture exists. In cases 1 and 2, the coupling is lower than the

average for the generated architecture, however, in case 3, the coupling is higher than

the average.

0

1

2

3

4

5

6

G
en

er
at

ed S1 S2 S3 S4 S5

Case 3

CRITAll

CRIT All

CRIT All for the
Subjects

163

Figure 82, Figure 84 and Figure 86 show the comparison of coupling between the

generated architecture and the human designed architectures. The dotted line shows

the average of the subjects. In case 1, the coupling is 0.31 while the average for the

subjects is 0.36. In case 2, the coupling is 0.21 and the average is 0.30 as shown in

Figure 84. In case 3, the coupling is 0.40 and the average is 0.27 as shown in Figure

86. In this case, our design is deviating from the average by 27.5%. According to the

analysis, case 3 has the worst coupling because it has the highest number of layers.

Figure 82: Case 1 Coupling

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80

Generated S1 S2 S3 S4 S5

Case 1

Coupling

coupling Average for Subjects

164

Figure 83: Case 1 coupling computation parameters

Figure 84: Case 2 Coupling

0

5

10

15

20

25

1 2 3 4 5 6

number of layers

number of components in
the layers

Entry, Exit, Read & Write

0.00
0.10
0.20
0.30
0.40
0.50
0.60

Generated S1 S2 S3 S4 S5

Case 2

Coupling

coupling Average for Subjects

165

Figure 85: Case 2 coupling computation parameters

Figure 86: Case 3 Coupling

0

5

10

15

20

25

30

1 2 3 4 5 6

number of layers

number of
components in the
layers

Entry, Exit, Read &
Write

0.00

0.10

0.20

0.30

0.40

0.50

Generated S1 S2 S3 S4 S5

Case 3

Coupling

coupling Average for Subjects

166

Figure 87: Case 3 coupling computation parameters

4.4.2.5. Cohesion

In order to analyze where the cohesion of our generated architecture stands with respect

to the other human-designed architectures, we had to investigate how far we are with

respect to the average. In case 1 according to Figure 88, the cohesion for the generated

architecture is 0.97, which is the highest cohesion among all the other architectures,

while, the average for the subjects is 0.66. Figure 89 shows the cohesion for case 2. It

shows that cohesion for the generated architecture is 0.58 which is below the average.

The average is 0.30. Figure 90 shows the generated architecture for case 3 which is

0.88. It is higher than the average which is 0.71. Like coupling, cohesion is affected by

the number of entries, exits, reads and writes between the components within a layer and

the number of components.

0

5

10

15

20

25

30

1 2 3 4 5 6

number of layers

number of
components in the
layers

Entry, Exit, Read &
Write

167

Figure 88: Cohesion for Case 1

Figure 89: Cohesion for Case 2

0.00
0.20
0.40
0.60
0.80
1.00
1.20

Generated S1 S2 S3 S4 S5

Case 1

Cohesion

cohesion Average for Subjects

0.00

0.20

0.40

0.60

0.80

1.00

Generated S1 S2 S3 S4 S5

Case 2

Cohesion

cohesion Average for Subjects

168

Figure 90: Cohesion for Case 3

4.4.2.6. Modularity

Modularity is affected by coupling, cohesion and the number of layers. It is directly

proportional to cohesion, and inversely proportional to coupling. The generated

architecture showed the highest modularity of values 12.9 for case 1 and 11.7 for case 2

as shown in Figure 91 and Figure 93, respectively. This is because the generated

architecture has high cohesion and low coupling. However, in case 2 as shown in

Figure 92, the modularity is 7 because cohesion is not high. The averages for case 1,

case 2 and case 3 are 3.67, 5.83 and 5.04, respectively

0.00

0.20

0.40

0.60

0.80

1.00

Generated S1 S2 S3 S4 S5

Case 3

Cohesion

cohesion Average for Subjects

169

Figure 91: Modularity for Case 1

Figure 92: Modularity for Case 2

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00

Generated S1 S2 S3 S4 S5

Case 1

Modularity

Modularity Modularity Average for subjects

0.00

2.00

4.00

6.00

8.00

10.00

Generated S1 S2 S3 S4 S5

Case 2

Modularity

Modularity Modularity Average for subjects

170

Figure 93: Modularity for Case 3

4.4.2.7. Reusability

Reusability is directly proportional to modularity and inversely proportional to coupling.

For case 1, the generated architecture‟s reusability is 16.08; while, S2 scored a reusability

of 18.5. The reason behind S2 having a high reusability is the low coupling it achieved.

The average for case 1 is 8.87. In case 2, reusability was 11.80 for the generated

architecture and the average was 10.45. In case 3, the generated architecture scored a

reusability of 13.69 and the average is 10.81. In the three cases, the reusability was high

and above average. S2 scored the highest reusability in all the cases because it achieved

almost the lowest coupling.

0.00
2.00
4.00
6.00
8.00

10.00
12.00

Generated S1 S2 S3 S4 S5

Case 3

Modularity

Modularity Modularity Average for subjects

171

Figure 94: Case 1 Reusability

Figure 95: Case 2 Reusability

0.00

5.00

10.00

15.00

20.00

Generated S1 S2 S3 S4 S5

Case 1

Reusability

Reusability Reusability Average for Subjects

0.00

5.00

10.00

15.00

Generated S1 S2 S3 S4 S5

Case 2

Reusability

Reusability Reusability Average for Subjects

172

Figure 96: Case 3 Reusability

4.4.2.8. Complexity

Complexity is calculated by the entries, exits, reads and writes among the components in

a layer and among the layers themselves. It is the summation of intra-complexity and

inter-complexity. Intra-complexity measures the complexity among the components

within a layer while inter-complexity measures the complexity among the layers. Intra-

complexity is directly proportional to the entries and exits among the components in a

layer and inversely proportional to the number of layers within a layer. However, inter-

complexity is directly proportional to entries, exists, reads and writes between the layers

and inversely proportional to the number of components in each layer. The Complexity

of the architectures was low for all the cases as shown in Figure 97, Figure 98 and Figure

99. In cases 1, 2 and 3, the generated architecture has complexity of 0.00042, 0.00047

and 0.00145, respectively. The averages for case 1, case 2 and case 3 are 0.00238,

0.00367 and 0.00704, respectively.

0.00

5.00

10.00

15.00

20.00

Generated S1 S2 S3 S4 S5

Case 3

Reusability

Reusability Reusability Average for Subjects

173

Figure 97: Case 1 Complexity

Figure 98: Case 2 Complexity

0.00000
0.00100
0.00200
0.00300
0.00400
0.00500
0.00600
0.00700
0.00800
0.00900

G
en

er
at

ed S1 S2 S3 S4 S5

Case 1

Complexity

complexity

Complexity
Average for
Subjects

0.00000
0.00200
0.00400
0.00600
0.00800
0.01000
0.01200
0.01400
0.01600
0.01800

G
en

er
at

ed S1 S2 S3 S4 S5

Case 2

Complexity

complexity

Complexity
Average for
Subjects

174

Figure 99: Case 3 Complexity

4.4.2.9. Modifiability

Modifiability measures how much modifications can be done to the modules and

components of a system without affecting the others. Modifiability is inversely

proportional to the coupling and the inter-complexity. Table 14, Table 15 and Table 16

show the modifiability for the cases 1, 2 and 3, respectively. In case 1, S2 scored the

highest modifiability because it scored the lowest coupling and inter-complexity with

respect to the others.

Table 14: Modifiability for Case 1

Case 1

Generated S1 S2 S3 S4 S5

20739.20 10004.00 2479566.80 402.53 125.45 6694.63

Table 15: Modifiability for Case 2

Case 2

Generated S1 S2 S3 S4 S5

0.00000
0.00200
0.00400
0.00600
0.00800
0.01000
0.01200
0.01400
0.01600
0.01800

G
en

er
at

ed S1 S2 S3 S4 S5

Case 3

Complexity

complexity

Complexity
Average for
Subjects

175

10,373 10,010 44,494 12,659 592 34446.23

Table 16: Modifiability for Case 3

Case 3

Generated S1 S2 S3 S4 S5

20738.53 651.00 524304.00 3336.67 3644.89 2940.60

4.5. Results analysis and highlights

We averaged the results for each metric of the 3 cases for the generated architectures and

averaged all the metrics for all the subjects in order to reach a deeper analysis. We

divided the metrics into two categories, positively monotonic and negatively monotonic

metrics. The positively monotonic metrics indicate that the higher their values, the better

the results. However, the negatively monotonic metrics mean that the lower the value,

the better the results out of the metric we get. In Figure 100, we show the comparison for

the positively monotonic metrics - cohesion, modularity and reusability - between the

generated architectures and the architectures designed by the subjects. The generated

architectures showed better performance. However, Figure 101 and Figure 102 show the

negatively monotonic metrics which are complexity, cohesion, CPD, CAID and CRITAll.

176

Figure 100: Positively Monotonic Metrics

Figure 101: Negatively Monotonic Metrics-1

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Cohesion Modularity Reusability

positively monotonic

0.66

4.85

10.04

0.81

10.35

13.86

Subjects Generated

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Coupling Complexity

Subjects 0.307216931 0.00436236

Generated 0.305555556 0.000777298

Negatively Monotonic Metrics

177

Figure 102: Negatively Monotonic Metrics-2

In this chapter, we presented our methodology in categorizing the pervasive systems. We

classified the extracted features from the pervasive architectures presented earlier in

Chapter 3 according to their type and the domain they best fit in. We showed the

categorization that we followed and the features that we support. We also generated

architectures according to our methodology using FMP, C# and Visual Paradigm. Finally,

we showed our evaluation methodology and the results out of the evaluation.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

CPD CAID CRIT ALL

Subjects 0.78 0.20 3.466666667

Generated 0.61 0.12 3

Negatively Monotonic Metrics

178

Chapter 5

Conclusion

List of contributions

We believe we took a number of steps in this thesis which contribute to the future of

pervasive system architectures. They may be summarized as follows:

1. We managed to draw attention to the importance of implementing a reference

architecture for pervasive systems.

2. We proposed a generic reference architecture that can be used to obtain a SPL

for pervasive systems.

3. After studying more than fifty published architectures for pervasive systems,

we extracted the major architectural features.

4. We categorized the extracted features by their type and the environment that

they best fit in.

5. We devised a methodology by utilizing the feature-driven approach in order to

generate pervasive systems architectures. The approach is based on the

automatic generation of pervasive systems‟ architectures from a

predetermined architectural features set.

6. We developed an architecture generation tool (RA Generator) to extract the

needed components which map the selected features that fully cover all the

desired features. The system designer can select the features needed and

import them to the RA Generator and he/she gets a component-based

architecture that reflects the selected features as output.

7. We evaluated the RA generated architectures and showed that, in some ways,

they are better than those designed by human architects. Our evaluations

included coupling, cohesion and complexity and others.

179

Directions for future work

We believe the research we presented in this thesis opens the door for a fully

functional SPL for pervasive systems. Here we give some directions for extending on

this work:

1. Further enhancements could be applied on the features by adding new

features, editing the current ones or removing the unnecessary ones.

2. Adding the ability to change the categorization of the features to be loose

enough to be included in any domain. A proposed approach could be by

having a detailed feature list with respect to domain as shown in Figure 103.

The x-axis describes the features and the y-axis shows the domains. If a

feature can be applied in a certain domain, then it is mapped to it in the

diagram.

3. Include an automated mechanism in order to detect if there are any

contradiction or redundancy between the selected features exist.

4. More work towards generating not only component-based architectures but

also implementing them by creating a repository that aligns with the RA

components and contains implementation tools for various platforms.

5. Enhancing the RA generator with a better way to glue together the

components selected from different categories as an alternative to the lookup

table.

6. Implementing a configuration mechanism to help the system designer to

configure the features selected before generating the architecture. This will

help in decreasing the manual intervention after generating the architectures.

7. Implementing the generation of PervML for pervasive systems and give the

designer the option to choose between generating a PerML, component-

diagram or both.

180

Figure 103: Pervasive Features vs Domain

Each point above can add another step forward towards implementing a complete

SPL for pervasive systems. This will save time and effort in implementing future

pervasive systems.

In conclusion, we devised a methodology to automatically generate pervasive systems‟

architectures. We utilized the fundamental SPL concepts for building a reference

architecture. The reference architecture can be used as input for a SPL to speed up the

process of generating pervasive systems. We studied more than fifty related pervasive

architectures and extracted their design features. We categorized the features according

to the domain that each feature fits in. The features cover most of the pervasive systems‟

requirements that we came across. By mapping the features to components, we were able

to build the reference architecture repository.

A pervasive system architecture is generated by selecting features by the system designer

that reflect the requirements. In order to verify our methodology, we developed a C#

program that we called RA Generator. It extracts from the reference architecture, the

0

1

2

3

4

Domain 1 Domain 2 Domain 3 Domain 4

P
e

rv
as

iv
e

 F
e

at
u

re
s

Domains

Pervasive Features

181

components that map to the selected features. Then, we automatically enhance the

architecture to refine the final output. The refinements include removing the unneeded

connections and adding associations between the different categories incorporated

together. The removal of the unneeded connections is necessary when two components

are connected together and only one is included in the new system; then the connection

between them will be removed. This is done by checking if a component has a loose

connection from its end. Adding connections between components of different categories

is done through a pre-defined lookup table that contains the components needed to be

connected together. The lookup table is a text-based file that contains the components

that need to be connected together.

We compared our generated architectures against the architectures designed by selected

software architects. The comparison between architectures was held in terms of coupling,

cohesion, complexity, reusability, adaptability, modularity, modifiability, packing

density, and average interaction density in order to evaluate the generated architecture.

We verified that our generated architectures are better in most of the metrics we tested

against.

182

5. Appendices

5.1. Appendix I

In this appendix, we will show the class diagram for the RA Generator and the

description for some of the main classes and methods.

Figure 104: RA Generator Class Diagram

Program class: the main entry to the RA Generator tool, and contains the method Main.

XMLParser class: parse the features generated from the Features xml.

Form1 class: the UI where we select the features to be incorporated in a system.

o Load_Features_click method: loads the features and create an instance from

xmlParser class.

o Parse_diagram method: parses the RAs according to the selected categories

from Load_Features_Click and extract the components that map to the selected

features.

o second_Iteration method: Connects the components together and removes the

unneeded connections.

183

5.2. Appendix II

5.2.1. Requirements

5.2.1.1. Retail with context awareness

Brief Description:

This is a pervasive system. While waking in a mall or in supermarket, you should be

notified with the surrounding people if they have common interests. The system

should detect if you are going alone or with someone and according to that choice it

notifies you with your common interests. It provides the user with different

promotions and reviews once he chooses a good and places it in the shopping cart.

The user also could have access to the Internet to check the reviews for such goods if

he/she needs to.

Pervasive systems are characterized by actors, sensors, context and actuators. You

are required to develop a component diagram that reflects the following high-level

requirements.

High Level Requirements:

1. Actors are users. They are represented by their handheld device which contain

the user's profile.

2. The profile contains the actor‟s identity, customizations and preferences and other

general information.

3. The application tier subsystem is used for managing the different applications.

4. The devices interaction subsystem is used for managing the different handheld

devices, routing, hand-over, communication and service discovery.

5. A shopping cart for holding the goods. It could be utilized by the Internet and

screen for displaying different information about the selected products.

6. Actors should be notified with the promotions and the other information about the

store.

7. The system should detect if you are going alone or with someone.

8. The system should notify you with common interests for your companions.

184

9. The user could utilize the Internet for checking the reviews for a certain product.

He/she can change his/her preferences for either displaying the information on his

handheld device or on the shopping cart screen.

10. The mall or the supermarket has a back-end system that is connected to a

database.

11. The store database contains all the related information about each product such as

the expiry date, the count of items currently available ... etc.

12. The shopping cart is connected to the back-end system and calculates the cost of

the selected goods in a shopping cart and calculates the total amount of payment

due for the products in the shopping cart. Once a product is removed from the

shopping cart, its price is deducted from the total amount.

13. Users are tracked in the mall or the shopping cart. When they pass by a section

and the shopping list contains an item from that section, the user is notified by its

existence along with the different promotions in that section.

185

5.2.1.2. Health

Brief Description:

This is a pervasive system for elders and people with unstable health conditions. The

patient is walking in a store or a mall, and he/she needs to have his health condition

monitored. According to the health condition, the patient should be notified with the

nearest pharmacy, clinic or hospital according to the criticality of the situation. The

physician monitoring the case gets notified with the health status.

Pervasive systems are characterized by actors, sensors, context and actuators.

You are required to develop a component diagram that reflects the following high-

level requirements.

High Level Requirements:

1. Actors are patients and they are represented by either handheld device or sensors,

and they contain the user's profile.

2. The profile contains the actor‟s identity, customizations and preferences and other

general information.

3. A user‟s location is retrieved through a tracking subsystem. The location is

cached and updated regularly.

4. The application tier subsystem is used for managing the different applications. It

is connected to the Actor component to send/receive the customizations and

preferences.

5. The devices interaction subsystem is used for managing the different handheld

devices, routing, hand-over, communication and service discovery.

6. A health database for each patient is used to store all his/her information such as

health status, readings from sensors...etc.

7. A monitoring subsystem is used for managing the sensors and verifies their

correctness and operability. Also, it gets data from indoor and outdoor

monitoring about the health status for the patient.

186

8. Health sensors are attached to the patients and they collect different readings

about their health condition and the readings are saved in the health database for

him/her.

9. Patient conditions are monitored by the health sensors indoors and outdoors.

10. Indoor monitoring subsystem is responsible for collecting the different readings

from the indoor sensors and utilizes the existing network connection to feed the

database.

11. The outdoor monitoring subsystem is responsible for collecting the different

readings about the health outdoor condition and checks the Actor‟s handheld

device to utilize its network to feed the database with the readings.

12. The indoor and outdoor hand-over is managed by the surrounding wireless

networks, such as Wi-Fi, Bluetooth, GSM ...etc.

13. A drug manager is attached to the patient, and contains a quantity manager for

managing the dosage, and a frequency manager for managing how often the drug

should be supplied to the patient.

14. When health sensors read critical readings, the physician gets a notification

message in order to take the necessary precautions.

187

5.2.1.3. Transportation and Mobile

Brief Description:

This is a pervasive system for transportation. Users are notified with the alternative

routes while driving in case of traffic congestion. They register their destination once

they get in the vehicle. All these data are collected from all the drivers and according

to the streets capacity; drivers are re-routed with the most efficient path. Users can

use their mobile devices for registering their position and their destination. The

system integrates with the legacy transportation systems (such as cameras, radars …

etc.) for collecting regular updates about the status in the streets.

Pervasive systems are characterized by actors, sensors, context and actuators. You

are required to develop a component diagram that reflects the following high-level

requirements.

High Level Requirements:

1. Actors are users and they are represented by their handheld device, which contain

the user's profile and identity.

2. The profile contains the actor‟s identity, customizations and preferences and other

general information.

3. A user‟s location is retrieved through a tracking subsystem. The location is

cached and updated regularly.

4. The application tier subsystem is used for managing the different applications that

can be used for transportation. It is connected to the Actor component to

send/receive the customizations and preferences.

5. The mobile manager subsystem is responsible for receiving the traffic updates,

gets customizations and preferences from the application tier subsystem, and

displays them through either mobilets or surrogates.

6. The devices interaction subsystem is used for managing the different handheld

devices, routing, hand-over, communication and service discovery.

7. The registration manager is responsible for registering the new users or new

devices for existing users. It sends the registered data to the device interaction

subsystem.

188

8. The transportation management tier is used for gathering traffic data and updates.

It sends the collected information after filtering it to the mobile manager

subsystem.

9. The legacy tier integrator is used for integrating the system with the existing

traffic systems. It converts the collected data to be processed by the

transportation management tier.

10. Users can use their mobiles to manage their routes and check the optimum routes.

11. Updates are propagated to the registered users through the event manager

subsystem which manages the surrounding resources and updates the user with

them.

Designed architectures arranged by subjects and cases are:

189

5.2.2. Architectures designed by Subjects

Subject 1:

Figure 105: Subject 1 - Case 1 – Retail

190

Figure 106: Subject 1 - Case 2 – Health

191

Figure 107: Subject 1 - Case 3 – Transportation

192

Subject 2:

Figure 108: Subject 2 - Case 1 – Retail

193

Figure 109: Subject 2 - Case 2 – Health

194

Figure 110: Subject 2- Case 3 – Transportation

195

Subject 3:

Figure 111: Subject 3 - Case 1 – Retail

196

Figure 112: Subject 3 - Case 2 – Health

197

Figure 113: Subject 3 - Case 3 – Transportation

198

Subject 4:

Figure 114: Subject 4 - Case 1 – Retail

199

Figure 115: Subject 4 - Case 2 – Health

200

Figure 116: Subject 4 - Case 3 – Transportation

201

Subject 5:

Figure 117: Subject 5 - Case 1 – Retail

202

Figure 118: Subject 5 - Case 2 – Health

203

Figure 119: Subject 5 - Case 3 – Transportation

204

References

[1] “Active Spaces for Ubiquitous Computing”. University of Illinois. Webpage:

http://gaia.cs.uiuc.edu/ . Last visited November 2011.

[2] “Can we measure architecture? ” interview with Anja Fiegler. Enterprise and Solution

Architect Certification & Resources.

http://grahamberrisford.com/15%20Scale%20and%20Change/Can%20we%20measure%

20architecture.htm

[3] “IEEE Recommended Practice for Architectural Description of Software-Intensive

Systems”. IEEE Computer Society. IEEE Std 1472000. 2000.

[4] A. R. Beresford and F. Stajano. “Location Privacy in Pervasive Computing”. PERVASIVE

computing, IEEE CS and IEEE Communications Society, (1):46–55, 2003.

[5] Alastair R. Beresford, Frank Stajano, "Mix Zones: User Privacy in Location-aware

Services" percomw, pp.127, Second IEEE Annual Conference on Pervasive Computing

and Communications Workshops, 2004.

[6] Alexandre Bragança and Ricardo J. Machado. "Model Driven Development of Software

Product Lines." Sixth International Conference on the Quality of Information and

Communications Technology. IEEE Computer Society, 2007. Pages: 199 - 203.

[7] Alexandre Bragança, Ricardo J. Machado. "Deriving Software Product Line’s

Architectural Requirements from Use Cases: an Experimental Approach." Proceedings of

the 2nd International Workshop on Model-Based Methodologies for Pervasive and

Embedded Software - MOMPES’05 (within the 5th IEEE/ACM International Conference

on Application of Concurrency to System Design - ACSD 2005). Rennes, France: UCS

General Publication no. 39, Turku, Finland, June, 2005. Pages: 77-91.

[8] Alvin T. S. Chan , Siu-Nam Chuang, MobiPADS: A Reflective Middleware for Context-

Aware Mobile Computing, IEEE Transactions on Software Engineering, v.29 n.12, p.1072-

1085, December 2003.

http://gaia.cs.uiuc.edu/
http://grahamberrisford.com/15%20Scale%20and%20Change/Can%20we%20measure%20architecture.htm
http://grahamberrisford.com/15%20Scale%20and%20Change/Can%20we%20measure%20architecture.htm

205

[9] Antti Syvanen , Russell Beale , Mike Sharples , Mikko Ahonen , Peter Lonsdale.

“Supporting Pervasive Learning Environments: Adaptability and Context Awareness in

Mobile Learning”. Proceedings of the IEEE International Workshop on Wireless and

Mobile Technologies in Education, p.251-253, November 28-30, 2005.

[10]Balzerani, L., Ruscio, D. D., Pierantonio, A., and De Angelis, G. "A product line

architecture for web applications". In Proceedings of the 2005 ACM Symposium on

Applied Computing (Santa Fe, New Mexico, March 13 - 17, 2005). L. M. Liebrock, Ed. SAC

'05. ACM, New York, NY. P. 1689-1693.

[11]Braganca, Alexandre and Ricardo J. Machado. "Adopting Computational Independent

Models for Derivation of Architectural Requirements of Software Product Lines." Fourth

International Model-Based Methodologies for Pervasive and Embedded Software, 2007.

MOMPES 07. March 2007. Pages:91 - 101.

[12]Brar A., Kay J. “Privacy and Security in Ubiquitous Personalized Applications”. UM 2005

Workshop on Privacy-Enhanced Personalization, 2005.

[13]C. Cetina, P. Trinidad, V. Pelechano, A. Ruiz-Cortés. "An architectural discussion on

DSPL". 2nd International Workshop on Dynamic Software Product Lines (DSPL 2008).

2008

[14] Carlos Cetina, Joan Fons, Vicente Pelechano, "Applying Software Product Lines to Build

Autonomic Pervasive Systems" 12th International Software Product Line Conference

(SPLC 2008), pp. 117-126.

[15]Carsten Magerkurth , Timo Engelke , Dan Grollman, A component based architecture for

distributed, pervasive gaming applications, Proceedings of the 2006 ACM SIGCHI

international conference on Advances in computer entertainment technology, June 14-

16, 2006, Hollywood, California.

[16]Chen Li, Ye Zhang, Lijuan Duan. "Establishing a Trusted Architecture on Pervasive

Terminals for Securing Context Processing". PerCom 2008: 639-644.

[17]Chiyoung Seo, Sam Malek, George Edwards, Daniel Popescu, Nenad Medvidovic, Brad

Petrus, Sharmila Ravula, "Exploring the Role of Software Architecture in Dynamic and

206

Fault Tolerant Pervasive Systems," sepcase, pp.9, First International Workshop on

Software Engineering for Pervasive Computing Applications, Systems, and Environments

(SEPCASE '07), 2007.

[18]Cristian Hesselman , Hartmut Benz , Pravin Pawar , Fei Liu , Maarten Wegdam , Martin

Wibbels , Tom Broens , Jacco Brok, Bridging context management systems for different

types of pervasive computing environments, Proceedings of the 1st international

conference on MOBILe Wireless MiddleWARE, Operating Systems, and Applications,

February 13-15, 2008, Innsbruck, Austria.

[19]D. Vassis , P. Belsis , C. Skourlas , G. Pantziou, A pervasive architectural framework for

providing remote medical treatment, Proceedings of the 1st international conference on

PErvasive Technologies Related to Assistive Environments, July 16-18, 2008, Athens,

Greece

[20]Dahl, Y. Ubiquitous Computing at Point of Care in Hospitals: A User-Centered Approach.

Doctoral thesis. Norwegian University of Science and Technology (2007).

[21]Deirdre Lee, Rene Meier, "Primary-Context Model and Ontology: A Combined Approach

for Pervasive Transportation Services," percomw, pp.419-424, Fifth IEEE International

Conference on Pervasive Computing and Communications Workshops (PerComW'07),

2007.

[22]Eduardo S. Almeida, Eduardo C. R. Santos, Alexandre Alvaro. "Domain Implementation

in Software Product Lines Using OSGi." IEEE Computer Society, 2008.

[23]Edward B. Allen , Sampath Gottipati , Rajiv Govindarajan, Measuring size, complexity,

and coupling of hypergraph abstractions of software: An information-theory approach,

Software Quality Control, v.15 n.2, p.179-212, June 2007.

[24]Enyi Chen, Yuanchun Shi, Guangyou Xu. A Network Service Framework for Mobile

Pervasive Computing. Proc. International Conference on Communication Technology

(ICCT) 2003, pp. 839-845.

[25] Feature Modeling Plug-in (FMP). An Eclipse plug-in for editing and configuring feature

models. http://gsd.uwaterloo.ca/fmp

http://gsd.uwaterloo.ca/fmp

207

[26]Ferscha, A. "Coordination in pervasive computing environments." Proceedings of the

Twelfth International Workshop on Enabling Technologies: Infrastructure for

Collaborative Enterprises (WETICE’03). Washington, DC: IEEE Computer Society, June

2003. Pages: 3 - 9.

[27]Frank Van der Liden, Klaus Schmid, Eelco Rommes. Software Product Lines in Action, The

Best Indsutrial Practice in Product Line Engineering. Springer, 2007.

[28]G. Zayaraz and P. Thambidurai, “COSMIC FFP Based Quality Measurement and Ranking

Framework for Software Architectures,” Software Quality Professional Journal,

American Society for Quality, USA, March 2008.

[29] George Roussos , Panos Kourouthanasis , Diomidis Spinellis , Eugene Gryazin , Mike

Pryzbliski , George Kalpogiannis , George Giaglis, Systems architecture for pervasive

retail, Proceedings of the 2003 ACM symposium on Applied computing, March 09-12,

2003, Melbourne, Florida.

[30]George T. Heineman , William T. Councill, Component-based software engineering:

putting the pieces together, Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

2001.

[31] Gomaa, H. and Hussein, M., "Dynamic Software Reconfiguration in Software Product

Families", In Proc. of the 5th Int. Workshop on Product Family Engineering (PFE), Lecture

Notes in Computer Science, Springer-Verlag, 2003.

[32]Gonzalez, Salvador Trujillo. "Feature Oriented Model Driven Product Lines." PhD thesis,

School of Computer Sciences, University of the Basque Country, March 2007.

[33]Graf, S. et. al. "An Infrastructure for Developing Pervasive Learning Environments". IEEE

Computer Society, 2008, 389-394

[34]Gunnar Brataas, Svein Hallsteinsen, Romain Rouvoy, Frank Eliassen. "Scalability of

Decision Models for Dynamic Product Lines.". In International SPLC Workshop on

Dynamic Software Product Line (DSPL'07). 10 pages. Kyoto, Japan. September 10, 2007.

http://sec.ipa.go.jp/SPLC2007/dspl.php

208

[35]H. Gomaa and M.Saleh, “Software Product Line Engineering and Dynamic Customization

of a Radio Frequency Management System”, AICCSA. Proceedings of the IEEE

International Conference on Computer Systems and Applications. Volume 00, pages:

345-352. March 2006.

[36]H. van Kranenburg, M. S. Bargh, S. Iacob, and A. Peddemors, "A Context Management

Framework for Supporting Context-Aware Distributed Applications", IEEE

Communications Magazine, August 2006, pp. 67-74.

[37]Heng Seng Cheng, Daqing Zhang , Joo Geok Tan. “Protection of Privacy in Pervasive

Computing Environments”. Proceedings of the International Conference on Information

Technology: Coding and Computing (ITCC'05) - Volume II, p.242-247, April 04-06, 2005.

[38]Hiroaki Ogata, Yoneo Yano. “Context-Aware Support for Computer-Supported

Ubiquitous Learning”. Proceedings of the 2nd IEEE International Workshop on Wireless

and Mobile Technologies in Education (WMTE'04), p.27, March 23-25, 2004.

[39]Hong Linh Truong, Lukasz Juszczyk, Atif Manzoor, Schahram Dustdar: ESCAPE - An

Adaptive Framework for Managing and Providing Context Information in Emergency

Situations. EuroSSC 2007: 207-222.

[40] Hong, Jason I. and Landay, James A., "An Architecture for Privacy-Sensitive Ubiquitous

Computing" (2005). Human-Computer Interaction Institute. Paper 75.

[41]Hudson A., Kummerfield B. and Quigley A., "A File Migration Architecture for Pervasive

Systems", Adjunct Proceedings, The Sixth International Conference on Ubiquitous

Computing, Sept 7-10, Nottingham, England.

[42]Hunt, John M. "Organizing the asset base for product derivation." 10th International

Software Product Line Conference. IEEE Computer Society, 21-24 August, 2006. Pages:

65 - 74.

[43]Jacqueline Floch , Svein Hallsteinsen , Erlend Stav , Frank Eliassen , Ketil Lund , Eli

Gjorven, “Using Architecture Models for Runtime Adaptability”, IEEE Software, v.23 n.2,

p.62-70, March 2006

209

[44]Javier Munioz, Vicente Pelechano, Carlos Cetina. "Software Engineering for Pervasive

Systems. Applying Models, Frameworks and Transformations." IEEE International

Conference on Pervasive Services. Istanbul, July 2007. Pages: 290-294.

[45]Javier Muñoz, Vicente Pelechano. “Building a Software Factory for Pervasive Systems

Development”. CAiSE 2005, pages 342-356

[46]Jin Nakazawa, Hideyuki Tokuda, W. Keith Edwards, Umakishore Ramachandran, "A

Bridging Framework for Universal Interoperability in Pervasive Systems," icdcs, pp.3,

26th IEEE International Conference on Distributed Computing Systems (ICDCS'06), 2006.

[47]John Soldatos, Nikolaos Dimakis, Kostas Stamatis, Lazaros Polymenakos, "A Breadboard

Architecture for Pervasive Context-Aware Services in Smart Spaces: Middleware

Components and Prototype Applications”. Personal and Ubiquitous Computing Journal

(Springer), Vol. 11, No.3, pp. 193-212 (2007).

[48]Judith Barnard, A new reusability metric for object-oriented software, Software Quality

Control, v.7 n.1, p.35-50, 1998.

[49]Karen Henricksen, Jadwiga Indulska, "A Software Engineering Framework for Context-

Aware Pervasive Computing," percom, pp.77, Second IEEE International Conference on

Pervasive Computing and Communications (PerCom'04), 2004

[50]Kathrin D. Scheidemann. "Optimizing the Selection of Representative Configurations in

Verification of Evolving Product Lines of Distributed Embedded Systems." 10th

International Software Product Line Conference (SPLC'06). splc, 2006. Pages: 75-84.

[51]Klaus Pohl , Günter Böckle , Frank J. van der Linden, Software Product Line Engineering:

Foundations, Principles and Techniques, Springer-Verlag New York, Inc., Secaucus, NJ,

2005

[52]Krzysztof Czarnecki, Chang Hwan Peter Kim, Karl Trygve Kalleberg. "Feature Models are

Views on Ontologies." Proceedings of the 10th International on Software Product Line

Conference. IEEE Computer Society, 2006. Pages: 41-51.

[53]L. Briand, S. Morasca, V. Basili. "Property-based Software Engineering Measurement",

IEEE Transactions on Software Engineering, 1996.

210

[54]Lankoski, Petri; Heliö, Satu; Nummela, Jani; Lahti, Jussi; Mäyrä, Frans & Ermi, Laura

(2004) "A Case Study in Pervasive Game Design: The Songs of North". In Hyrskykari,

Aulikki (ed.) Proceedings of the Third Nordic Conference on Human-Computer

Interaction, 413-416. New York, ACM Press.

[55]M. Hitz and B. Montazeri, "Measuring Coupling and Cohesion In Object-Oriented

Systems," Proc. Int'l Symp. Applied Corporate Computing (ISACC '95),Monterrey, Mexico,

Oct.25-27, 1995.

[56]M.J.Covington, et al., “A Context-Aware Security Architecture for Emerging

Applications”. In Proc. of the 18th Annual Computer Security Applications Conferences

(ACSAC’02), 2002. pp. 249-258.

[57]Machado, R.J. Fernandes, J.M. Monteiro, P. Rodrigues, H. "Transformation of UML

models for service-oriented software architectures." 12th IEEE International Conference

and Workshops on the Engineering of Computer-Based Systems, 2005. ECBS '05. April

2005. Pages: 173-182.

[58]Manuel Román, Christopher K. Hess, Renato Cerqueira, Anand Ranganathan, Roy H.

Campbell, and Klara Nahrstedt. "Gaia: A Middleware Infrastructure to Enable Active

Spaces". In IEEE Pervasive Computing, pp. 74-83, Oct-Dec 2002.

[59]Mari Matinlassi. "Evaluation of Product Line Architecture Design Methods". Seventh

International Conference on Software Reuse, Young Researchers Workshop. Austin,

Texas, April 15-19, 2002.

[60]Mark S. Ackerman. “Privacy in pervasive environments: next generation labeling

protocols”. Personal and Ubiquitous Computing. v.8 n.6, p.430-439, November 2004.

[61]Massimiliano de Leoni, Fabio De Rosa, Massimo Mecella, "MOBIDIS: A Pervasive

Architecture for Emergency Management," wetice, pp.107-112, 15th IEEE International

Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises

(WETICE'06), 2006.

[62]Mostafa Hamza and Sherif G. Aly. “A Study and Categorization of Pervasive Systems

Architectures Towards Specifying a Software Product Line.” Software Engineering

211

Research and Practice (SERP 2010). July 12-15, 2010. Las Vegas, Nevada, USA. Pages:

635-641.

[63]Mostafa Hamza, Sherif G. Aly and Hoda Hosny. “An Approach for Generating

Architectures for Pervasive Systems from Selected Features”. Software Engineering

Research and Practice (SERP 2011). July 18-21, 2011. Las Vegas, Nevada, USA.

[64]Myles, G., Friday, A., Davies, N. “Preserving Privacy in Environments with Location-Based

Applications”. IEEE Pervasive Computing 2(1), January-March, 2003.

[65]Namgon Kim, Sangwoo Han, JongWon Kim, "Design of Software Architecture for Smart

Meeting Space," percom, pp.543-547, Sixth Annual IEEE International Conference on

Pervasive Computing and Communications, 2008.

[66]Ogata, H., and Yano, Y. “How Ubiquitous Computing can Support Language Learning”.

Proc. of KEST 2003, pp.1-6, 2003.

[67]P. Coppola et al,”Mobe: A Framework for Context-aware Mobile Applications,” In Proc.

CAPS’05, pp. 55–66, 2005.

[68] P. Trinidad, A. Ruiz-Cortés, J. Peña, D. Benavides." Mapping Feature Models onto

Component Models to Build Dynamic Software Product Lines". International Workshop

on Dynamic Software Product Line. 2007

[69] Pankaj Bhaskar and Sheikh Ahamed, “Privacy in Pervasive Computing and Open Issues”

Proceedings of The Second IEEE International Conference on Availability, Reliability and

Security (ARES 07), IEEE CS Vienna, Austria, April 10-13, 2007, pp. 147-154.

[70]René Meier, Anthony Harrington, Thomas Termin, Vinny Cahill. “A Spatial Programming

Model for Real Global Smart Space Applications”. DAIS 2006: 16-31.

[71]Roger S. Pressman, “Software Engineering: A Practitioner’s Approach”, fifth edition. The

McGraw-Hill Companies, Inc., New York

[72]Roshan K. Thomas, Ravi Sandhu. “Models, Protocols, and Architectures for Secure

Pervasive Computing: Challenges and Research Directions”. Proceedings of the Second

IEEE Annual Conference on Pervasive Computing and Communications Workshops,

p.164, March 14-17, 2004.

212

[73]S. Chetan et al., "A Middleware for Enabling Personal Ubiquitous Spaces," Proc. System

Support for Ubiquitous Computing (Ubisys), Springer, 2004, pp. 41–50.

[74]S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch. "Using Product Line Techniques to Build

Adaptive Systems". In SPLC’06: 10th Int. Software Product Line Conference, pages 141–

150, Washington, DC, USA, 2006. IEEE Computer Society.

[75]Sajid Hussain, Sadia MajidDar. "Architecture for Smart Sensors System for Tele-health".

IEEE International Workshop on Health Pervasive Systems (HPS'06), in conjunction with

IEEE International Conference on Pervasive Services (ICPS'06), IEEE Computer Society,

Lyon, France, June 26-29, 2006.

[76]Savolainen, J.; Oliver, I.; Myllarniemi, V.; Mannisto, T. "Analyzing and Re-structuring

Product Line Dependencies." Computer Software and Applications Conference, 2007.

COMPSAC 2007. Vol. 1. IEEE Computer Society. Pages: 569-574.

[77]Schilit, Bill, Norman Adams, and Roy Want. "Context-Aware Computing Applications"

Proceedings of IEEE Workshop on Mobile Computing Systems and Applications. Santa

Cruz, CA. December 1994. IEEE Computer Society Press.

[78]Schmid, Klaus and Eichelberger, Holger. "From Static to Dynamic Software Product

Lines". The International Software Product Line Conference (DSPL 2008).

[79]Schmoelzer, G., C. Kreiner and M. Thonhauser. "Platform Design for Software Product

Lines of Data-intensive Systems." Proceedings of the 33rd EUROMICRO Conference on

Software Engineering and Advanced Applications. 2007. Pages: 109 - 120.

[80]SDMetrics. The Software Design Metrics tool for UML. http://www.sdmetrics.com/

[81] Sherif G. Aly, Sarah Nadi, Karim Hamdan. “A Java-Based Programming Language

Support of Location Management in Pervasive Systems". International Journal of

Computer Science and Network Security (IJCSNS). Vol. 8 No. 6 pp. 329-336, June 2008.

[82]Shiva Chetan, Anand Ranganathan, Roy Campbell. Towards Fault Tolerant Pervasive

Computing. In IEEE Technology and Society, Volume: 24, No. 1, pp 38-44, Spring 2005.

http://www.sdmetrics.com/

213

[83]Shiva Chetan, Jalal Al-Muhtadi, Roy Campbell and M.Dennis Mickunas. "Mobile Gaia: A

Middleware for Ad-hoc Pervasive Computing". In IEEE Consumer Communications &

Networking Conference (CCNC 2005) , Las Vegas, Jan. 2005.

[84]ŠÍPKA, Miloslav. "Exploring the Commonality in Feature Modeling Notations."

Proceedings of IIT.SRC 2005: Student Research Conference in Informatics and

Information Technologies, Bratislava, 27 April 2005: Pages: 139-144.

[85]Stefania Leone, Thomas B. Hodel , Harald Gall, Concept and architecture of an pervasive

document editing and managing system, Proceedings of the 23rd annual international

conference on Design of communication: documenting & designing for pervasive

information, September 21-23, 2005, Coventry, United Kingdom.

[86]Steffen Ortmann, Peter Langendörfer, Michael Maaser. “A Self-configuring privacy

management architecture for pervasive systems”. MOBIWAC 2007: 184-187

[87]Svein Hallsteinsen, Mike Hinchey, Sooyong Park, Klaus Schmid, "2nd International

Workshop on Dynamic Software Product Lines DSPL 2008," splc, p. 381, 2008. 12th

International Software Product Line Conference, 2008

[88]Thomas, S. 2005. “Pervasive, Persuasive eLearning: Modeling the Pervasive Learning

Space”. In Proceedings of the Third IEEE international Conference on Pervasive

Computing and Communications Workshops (March 08 - 12, 2005). PERCOMW. IEEE

Computer Society, Washington, DC, 332-336.

[89]V. Lakshmi Narasimhan , B. Hendradjaya, Some theoretical considerations for a suite of

metrics for the integration of software components, Information Sciences: an

International Journal, v.177 n.3, p.844-864, February, 2007.

[90]Visual Paradigm for UML. http://www.visual-paradigm.com/product/vpuml/

[91] Visual Studio 2008. http://msdn.microsoft.com/en-us/vstudio/aa700830.aspx

[92]Weiser, M. (1991) “The computer for the 21st century”Scientific American”, vol. 265 (3),

pp. 94–104.

http://www.visual-paradigm.com/product/vpuml/
http://msdn.microsoft.com/en-us/vstudio/aa700830.aspx

214

[93]Wenshuan Xu, Yunwei Xin, Guizhang Lu, "A System Architecture for Pervasive

Computing" icnc, vol. 5, pp.772-776, Third International Conference on Natural

Computation (ICNC 2007), 2007

[94]Xia Liu, Qing Wang, "Study on Application of a Quantitative Evaluation Approach for

Software Architecture Adaptability," qsic, pp.265-272, Fifth International Conference on

Quality Software (QSIC'05), 2005.

[95] Yared , Rami and Défago , Xavier. "Software architecture for pervasive systems". In

Journées Scientifiques Francophones (JSF), Tōkyō, Japan, November 2003.

[96]Young, Trevor J. "Using AspectJ to Build a Software Product Line for Mobile Devices."

MSc dissertation, Univ. of British Columbia. 2005.

[97]Zhao, Yuqin Lee and Wenyun. "A Feature Oriented Approach to Managing Domain

Requirements Dependencies in Software Product Lines." First International Multi-

Symposiums on Computer and Computational Sciences. Vol. 2. IEEE Computer Society,

2006. Pages: 378-386.

	Feature-based generation of pervasive systems architectures utilizing software product line concepts
	Recommended Citation
	APA Citation
	MLA Citation

	tmp.1592580242.pdf.2W_xq

