American University in Cairo

AUC Knowledge Fountain

Theses and Dissertations

2-1-2012

Feature-based generation of pervasive systems architectures
utilizing software product line concepts

Mostafa Ahmed Hamza

Follow this and additional works at: https://fount.aucegypt.edu/etds

Recommended Citation

APA Citation

Hamza, M. (2012). Feature-based generation of pervasive systems architectures utilizing software product
line concepts [Master’s thesis, the American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/1198

MLA Citation

Hamza, Mostafa Ahmed. Feature-based generation of pervasive systems architectures utilizing software
product line concepts. 2012. American University in Cairo, Master's thesis. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/1198

This Thesis is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of AUC Knowledge Fountain. For more
information, please contact mark.muehlhaeusler@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F1198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1198?utm_source=fount.aucegypt.edu%2Fetds%2F1198&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1198?utm_source=fount.aucegypt.edu%2Fetds%2F1198&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mark.muehlhaeusler@aucegypt.edu

THE AMERICAN UNIVERSITY IN CAIRO

SCHOOL OF SCIENCES AND ENGINEERING

Feature-based Generation of Pervasive Systems’
Architectures Utilizing Software Product Line

Concepts

Thesis Document submitted to

Department of Computer Science and Engineering

In partial fulfillment of the requirements for the degree of
Master of Computer Science

by Mostata Hamza
B.S., Computer Science

The American University in Cairo

September /2011

The American University in Cairo

Feature-based Generation of Pervasive Systems’

Architectures Utilizing Software Product Line Concepts

A Thesis Submitted by Mostafa Hamza

To Department of Computer Science and Engineering

September/2011

In partial fulfillment of the requirements for the degree of Masters of
Science

Has been approved by

Thesis Committee Chair / Adviser

Affiliation

Thesis Committee Reader / examiner

Affiliation

Thesis Committee Reader / examiner

Affiliation

Department Chair/ Date Dean Date

Program Director

&

Acknowledgments

I would like to thank all the people who helped me in order to bring this research up to
that level by their advice, guidance, contribution, technical and informational support,
and criticism. There were many people who were involved in this research work from

various areas.

From AUC, my advisor, Dr. Sherif Gamal Aly, who had major contribution and
significance in this research. His guidance, ideas and suggestions have been invaluable
throughout the bachelor and master’s theses. He supplied me with unlimited support and
was very generous with his time and devotion to this project. Dr. Hoda Hosny, who
guided me in the proposal and the evaluation; she was generous in her time and ideas for
this research work to succeed; Dr. Sherif El-Kassas, who provided valuable criticism in
the proposal and validated the idea. 1 would like also to thank those who contributed in
the experiments and had valuable input in order to verify the correctness of the work.
They dedicated time and effort for this project to succeed Sarah Nadi, Karim Hamdan,
Ahmed Rizk, Amr Gouda, and Daniah Mohktar.

I would like to thank all my family members; my wife, Daniah Mokhtar, My mother,
Zakeya EI-Memey, My Father, Ahmed Hamza, and my sister, Rania, and brother
Mohamed. They have provided me with invaluable and unlimited support that this work

would not have been possible without their help.

&

Abstract

As the need for pervasive systems tends to increase and to dominate the computing
discipline, software engineering approaches must evolve at a similar pace to facilitate the
construction of such systems in an efficient manner. In this thesis, we provide a vision of
a framework that will help in the construction of software product lines for pervasive
systems by devising an approach to automatically generate architectures for this domain.
Using this framework, designers of pervasive systems will be able to select a set of
desired system features, and the framework will automatically generate architectures that
support the presence of these features. Our approach will not compromise the quality of
the architecture especially as we have verified that by comparing the generated
architectures to those manually designed by human architects.

As an initial step, and in order to determine the most commonly required features that
comprise the widely most known pervasive systems, we surveyed more than fifty existing
architectures for pervasive systems in various domains. We captured the most essential
features along with the commonalities and variabilities between them. The features were

categorized according to the domain and the environment that they target.

Those categories are: General pervasive systems, domain-specific, privacy, bridging,
fault-tolerance and context-awareness. We coupled the identified features with well-
designed components, and connected the components based on the initial features
selected by a system designer to generate an architecture. We evaluated our generated
architectures against architectures designed by human architects. When metrics such as
coupling, cohesion, complexity, reusability, adaptability, modularity, modifiability,
packing density, and average interaction density were used to test our framework, our
generated architectures were found comparable, if not better than the human generated

architectures.

Table of contents

ACKNOWLEDGMENTS ...cootiiiittiiiieserissssesrssssmssssssssssssssssnsssssssssssesssnssssassnsss sassnnsssessanssssasen II1
75 8 3 3 O IV
LIST OF ABBREVIATIONScocccircmemrrrrrmsssssssssssssessssssssssssssssssssssssssnmmsssssesssssssnsmnssssnenss XVI
O 5 172 8 S 4 18
INTRODUCTIONccccciicemmeerrrrssssssssmsmsssrsessssssssssssssssssssssssnsssssssesssssssnsssssssesssssssnnnnnnssssnssssnns 18
1.1. BaCKBrOUNMccuueeeeeennnnnnnnnnnnnnnnennnnnnnnmnnmnmmnsssnnnnnne 18
1.1. Problem Definitionccoovveeiiiiiiiiiininiiiiiiinnnenernn s aan e s s s s 19
1.2. BT S T =T 0 1= N 19
1.3. [oY o ToTY=Yo IV 0T 0] o Y- ol o 0N 20
08 5 2 Sl 1 D1 22
LITERATURE REVIEW......cccoiiimmitnienmisesissnsisssssssssssssssssssssssssssssssssssasssssnssssans snsanssnnans 22
2.1, Features Of PErvasive SYStEMS.........eeeeeeeeemmmmmmmmnmmnmnnmnsmnnnnnsnnssnnnnne 22
2.1.1. U DI QUITOUS ACCESS .. uvvvrreierrererereessssssssssssssssssssssesessnnnns 22
2.1.2. (000] 01 0= A Y T €= 1= S TSP OPP TP PPTPN 22
2.1.3. LaNueY LT Fed Y A LY (=] r=Yotu o] s IR PP PPPPPPPPRS 23
2.1.4. LU =Y W T a Y=Y Lot o] o FOU PP PPPPPPPRE 23
2.2. Software Architecture Definition.......cccccceeeiiiiiiiiiiiiiiciccrrrrrrrereree e eeee e eeeseeseseeeens 24
2.3. Software Product LINE (SPL).....cccciieiiiiiiiiiiiiieiiiececceeseseesesesessesseseesssesssessssssssssssssssssssesessssssssssansen 25
2.3.1. SPL NISTONY e 25
2.3.2. FUNAAMENTAIS OF SPL....uiiiiiiiiiiiiiiiiiiiiiitteeeteeteeeeteaeaeeseeeseesssrssnnns 26
2.3.3. Y o B N O o P PUPPR R PPPPPR 27

2.3.4. DOMAIN ENGINEEIING....uttiiiiiiiiiiiiiiiiiiiiit ettt et e e e e e e e e seeeeee s e eeesaaesaessesssassassrsnsees 27
2.3.5. APPIICatioN ENGINEEIING «...ueeieeeiiee ettt ettt ettt et e e eabt e e sttt e e s sabbe e e s abee e s eanees 30
2.3.6. Variability and Commonality Management.........cccoouiiiiieiieiiniiiiieeee e 31
2.4 Dynamic Software Product LiNe (DSPL)........ccccccccmeertiriicrrssnneeeieesessssnnnenssssssssssnnnessssssssssssnnssssssas 31
2.4.1. The DeCISION MAKET ... e e e e e e s e e e e e s s eanbeeeeas 33
2.4.2. The SPL CONFIGUIATON...cciiiiiiiiiiiieeieeeeeeeeee ettt ee e et et eeeeeeeeeaeeaeeeeseeeeaeeeeeesesessensennnssnnnnnes 34
2.4.3. DSPL AFCRITECTUIE ..ot 35
2.5. SPL in DOMain SPCIfiC....ccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinissnsnssssse s se s essssssssaseans 40
2.5.1. Distributed and Embedded SYStEMS.........uuuiiiiiieiiiiiiiiiieeeeeieeeeeeeeerrrrereeerrreereerererrrrrrrrrrrraaee 40
2.5.2. Data-iNTENSIVE SYSTEIMS ..eiiiiiiiiiee et e e e e e e e e e s e e e e e e eaab e e e e e eeenrraanes 41
2.5.3. AdAPLIVE SYSLEMIS. ...ceeieeeiiieeeeeeieeeeeee et ee e e e e e e e e e et e e e eee e e eeeeeeseeeeeeeaasaeeaeeeeaaeeasrareeasssesresssnnnnnnnnnnns 44
2.5.4. T Y I VI VS =T o o U PPTPR 45
2.6. Software Engineering Approaches used With SPLS........ccccccciiiiiiiiiiiiiiiiininnnncnnnnncncsssssssseseeseeeeenn 48
2.6.1. Aspect-0Oriented ProgrammMiNg........ceeeeeeeeeeeieieeeeeeeeeeeeeeeeeereeerreeeerereeerrrerrrere.. 49
2.6.2. Feature Oriented Programming..............euueeierereeeeseesrereereerrreeeereeerererrersree———————————. 49
.2.6.2.1 FEATUIE MOTEIS ...ttt sttt ettt ebe e 49
2.6.3. Model Driven ArChit@CtUIEciiiuiiiieeiiiee ettt e s e s e e e 52
2.6.4. Feature Oriented Model Driven DevelOpmMEeNt..........uuuviiiiiiiiiiiriiiiieieiieiieerrrreseeerererer—.. 53
2.6.5. Component-based Architecture ... 54
2.7. Reference Architecture EValuationcceeiiiiiiiiiiiieiiiiineiinieccnneecenseee e ssaee s 54
2.7.1. Architecture Evaluation and MEetricscccceveiiiiiveeiiinieiiiiiiieinieeeiscee e sane e 55
0 0 0t R o YU o 11 Y= 55
2.7.0.2. CONBSION. .ttt ettt ettt e et e e s a bt e e s bt e e e b be e e e an b bt e e e b beeeeabbeeesanbeeeeaan 55
2.7.0.3. COMPIEXITY.uuuuuuiueiiiiiiiiii i nnnannn 56

\

2.7 004, SIZBi ettt ettt e e bttt e e ata e e e e b bt e e e e bteeeeabbe e e e ahbaeeeabbeeeeabaeeeea 57
2.7.0.5. REUSADIIIEY ..ttt ettt ettt e et et e e st a e e e s bbe e e e sbeeeeaaa 58
2.7.1.6. AdAPtability coooeeeeeeieeee e e e e e e e e e s 59
2.7.2. Evaluation Frameworks and Metric SUIteS.......cccceruiiiiiiniiiiiinniiiiinniiiiinieiieinieseeesessee 60
2.7.2.1. Narasimhan and Hendradjaya’s Evaluation SUIte.........c.cccceevriiiiiiniieeiiniee e 60
2.7.2.2. Zayaraz and Thambidurai’s Measurement Techniquescccccevvvviiii, 64
2.7.3. EValuation TOOI (SDIMIELIICS) ..ccceerreieerrrunmeerireiessssnnneeeeeessssssnnneessssssssssansessssssssssssnnsssssssssssssnnssssanns 67
2.8.] o I T T T o 68
08 5 2 Sl I D3 72

A STUDY AND CATEGORIZATION OF PERVASIVE SYSTEMS ARCHITECTURES .72

3.1. General Pervasive Systems (Non-environment SPecific).......cccceevviiciiiveeie e, 72
3.2 Privacy and SECUNITY ...ccoee e 73
3.3. Domain-specific ArchiteCtures.........coooeeeiiiiie e 83
3.3.1. LEAINING SYSTEIMS ..ttt e e e e ettt e e e e e e e etb s e e e e e eeneba s e eeeeeennsnaseeaaanes 83
3.3.2.) (o L Vot 1Y I o T Lol L PPN 91
3.3.3. HEAITN e e s 97
3.3.4. L= 0 0= PSP PP PPPPPPPPPPPPPPPPI 100
3.3.5. 1 To] o 11 [T PP PP PPPUP PPN 101
3.3.6. Retail SYSTEMS ..., 106
3.3.7. EMergency Management. ... i e ee 107
3.3.8. B a1 oo o = L o] o H PSPPI 110
3.3.9. BIIOEIN G e 111
3.3.10. FAUIE TOIEIANCE ..eeeee ettt et e st e st e e s bt e e e e e e eabees 114
3.3.11. (0o T o) {2y 1Y = PP PP PP P PP PP PP PP PP PP PPPPPPPPPPPPPPPPPPPR 115

Vil

3.3.12. File MHGIation c.ueeeiee ettt ettt ettt ettt e ettt e et te e e e bbb e e e s abee e e ebbee e e eabes 119
3.3.13. DOoCUMENT EAItiNG ..eeeeeieeeeeeeee e e 120
08 3 72 N o 09 122

FEATURE-BASED GENERATION OF PERVASIVE SYSTEMS’ ARCHITECTURES
METHODOLOGYoociiniimininmnnismsmsssmssssssssssssss s s sssssssssssssssssssssssssssssssnsas 122

4.1. Discussion and Classification of Common and Variable Features in Pervasive System

o 11 Tt PP 122
4.2, The Methodology for Generating Pervasive Architecturesccccccceeeeeeennnennennneennsnnsssesssssnnnnes 138
4.3. L30T o (=14 0 T=T 1 - 1 o o TN 139
4.4, The Evaluation Criteriacccciiiieeeiiiiitiiinieiiiiinnieiieteiiceneiinseeiissseesenssessesstesssseessssseesens 144
4.4.1. (oL 10 T=] 4] =Yoo] o PP 144
4.4.2. RESUIES ...ttt et et s e e s e s e s e e e e 151
4.4.2.1. Component Packing DenSity (CPD)c.uuveeeeeeeiiiiiiiiieeeeeeeieiiireee e e e e s ssevrreee e e e e e ssnnrraeeeaeeeas 155
4.4.2.2. Component average interaction density (CAID)ceceeevieeiireeeeeeeiiiciieeeee e e e ssciirreeeee e 158
Ly T O 1 N PP PP PR 160
A.4.2.4, COUPINE ettt aan 162
B.4.2.5. CONESION ettt ettt et e s e e e s e s e e e 166
A.4.2.6. MOAUIGITTY..uuuenieiiiiiiii s 168
4.4.2.7. REUSADIIITY ...uueeiiiiiiii s 170
4.4.2.8. COMPIEXITY .uvvrrrrnnniiiiiiiiiiiii e nnnnnnn 172
4.4.2.9. MOIfiability .oooeeeiiiiieie e e e e e e s 174

4.5, Results analysis and highlightsuiiiiiiiiiiiiiiiiiiiieeiieeerereereee e eeereereeerearaererearaarrar——.. 175
CHAPTER 5 ..siiiinisenssnissssnisss ssnsssssssssssssssssssssnssnnnns 178
CONCLUSION ...utiiitiisanissnmsssnssssmsssssssssssssssssssssssssssssssasssssssssssssssssssssassssssssssssassssssssssssansssnns 178

Vi

List Of CONLHDULIONScciiiieiiiiiiiiiiitiinir s sans s an s s e san e s ssssan e sessannass 178
Directions for fUtUIe WOIK.........ccciiiieiiiiiiiniiiiiinienniners s sass s sas s s as s s s san s ssssann e s 179
5. 1Y 0 o X< 0 T o= 3t 182
5.1. APPENAIX Lttt e e ettt e e e e s s e e e e e e e e s e bt rr e et e e e e s e anbbaeeeeeeeaaaane 182
5.2 FAY oo 1<To Lo 11 | OO PP PP PP OPPPPPPPPPPN 183
5.2.1. 0=To LT =T 0 V=T o} TP PPPTTPRT 183
5.2.1.1. Retail with cONtext aWarenesscccevviiiiiiiiiiiiiii e 183
5.2.1.20 HEAIH oo 185
5.2.1.3. Transportation and MODIIEeuieiiiiiiiiiiiiiieieeiieeeeeeeeeee e eeeeeeeeeeeeeeeeeeaeenrnnnes 187
5.2.2. Architectures designed by SUDJECESevviiiiiiiiiiiiieieceeeeeeeeeeee e 189
REFERENCES ...ttt isssssssssssssssssssssssssssssss snsass snssssnssss snssns snsannsssannnss 204

FIGURE 1:

FIGURE 2:

FIGURE 3:

FIGURE 4:

FIGURE 5:

FIGURE 6:

FIGURE 7:

FIGURE 8:

FIGURE 9:

FIGURE 10

FIGURE 11

FIGURE 12:

FIGURE 13

FIGURE 14:

FIGURE 15:

FIGURE 16:

FIGURE 17:

FIGURE 18:

FIGURE 19:

FIGURE 20:

FIGURE 21:

FIGURE 22:

FIGURE 23:

List of Figures

IMIXED SPL OVERVIEW [12] ..o eeeeeeeee e sees e seeseeseeessese e s seseeseeeseee s s seeessesene. 36
EVOLUTIONARY SOFTWARE PRODUCT LINE ENGINEERING PROCESS [30]cevererreereererenene. 38
CONCEPTUAL OVERVIEW OF DCAC APPROACH [34]veoeeveeeeveeeeeeeeeeseeeeseseeesseeseeeseseeenen 40
MODEL-DRIVEN MULTI-LAYER ARCHITECTURE FOR SPL DEVELOPMENT [78] ...vvveverereerennnn. 44
ASSOCIATIONS AMONG THE ASSETS IN PRODUCTS OF WEB-BASED SYSTEMS [9]........vveunene. 44
SPL FOR PERVASIVE SYSTEMS FOLLOWING THE MDD APPROACH [13]....eeveveeeeeeeeeeseeneennne. 46
GLOBAL ARCHITECTURE FOR PERVASIVE SYSTEM FRAMEWORK [44] ..., 48
DEPENDENCY TREE FOR MAINTINABILITY.......oveveeeeeeeeeeeesse e seeessess s sneenee 66
THE FAMILY EVALUATION FRAMEWORK (FEF) [26]....vuveeveeeeeeseeeeesseeeseeseesseseess s sseeneas 70
: ARCHITECTURE FOR PERVASIVE SYSTEMS [92]ooveoveeeeeeseeeeeeseeseeeseess e seeesse s sseessssennens 73
: CASA HIGH LEVEL ARCHITECTURE [55]veoveeeeeeeeeeeeeeseeseesseeseeseesee s s seeesse s ssess s sseesnens 74
PRIVACY MANAGEMENT PLATFORM ARCHITECTURE [85].........vveveeeeeeeeesseeeessessesseessennens 75
: CONFAB INFOSPACES [39]......veoeeeeeeeoeeeseeeeseesee e eees e ss e ssees e seee s sseesse s esesn e 76
ATRUSTED ARCHITECTURE [15]veoeoveeeeeeeeeeseeeseesseeeeeessesseessess e sseesee s sse s seeesse s ssesnnes 77
DOMAIN EXTENSION FOR MODELING ACCESS CONTROL IN PERVASIVE COMPUTING [71] 79
P3P ARCHITECTURE [11] ovooeoveeeeeeeeeeeeeeeeeee e eee e se s se s ese s 80
A PERVASIVE SERVICE PROTECTED BY PSIUM [36]ooeeveeereeseeseeeeeeeseseeeseeseeeese e seesneen. 81
LOCATION-AWARE SYSTEM ARCHITECTURE WITH ANONYMITY ENHANCER [36]........coe......... 82
PRIVACY SYSTEM ARCHITECTURE AS PRESENTED IN [63]euveeeeeeereeeeeeeseeeesseeeeeseesseenens 83
A MODEL OF PERVASIVE LEARNING [87] ..evveeveeeeeeeeeeeeeeeeseeeeeeseeeseeseeesseseeeseseeeesess e ssesnnes 84
MOBILEARN SYSTEM DATAFLOW ARCHITECTURE [32]....euveeeeeeeeeeeeeeeeeeeeseeseeesseesseesesseeeenn 85
OVERVIEW OF THE PROPOSED INFRASTRUCTURE AT [32]...e.eeeveeeeeeeeeeeeeseeeeeeseeeeeeesesseseeen. 87
MAS-BASED SYSTEM ARCHITECTURE FOR PERVASIVE LEARNING [32]coveevreeeeeeereeeseenene 88

file:\\vboxsrv\Vm-Shared\Mostafa%20Hamza%20Masters%20Thesis%20-%20Feature-based%20Generation%20of%20Pervasive%20Systems%20Architectures%20Utilizing%20Software%20Product%20Line%20Concepts.docx%23_Toc309860936

FIGURE 24:

FIGURE 25:

FIGURE 26:

FIGURE 27:

FIGURE 28:

FIGURE 29:

FIGURE 30:

FIGURE 31:

FIGURE 32:

FIGURE 33:

FIGURE 34:

FIGURE 35

FIGURE 36:

FIGURE 37:

FIGURE 38:

&

CLUE SYSTEM CONFIGURATION [B5] ...uvvieiiieiieiiieeiieeeiecesiee ettt 90

HIGH LEVEL ARCHITECTURE FOR PERVASIVE COMPUTING SERVICES IN SMART SPACES [46] .. 92

SENSOR VIRTUALIZATION [A6]......eeeeeveeeeeeeeeeesseeseeseeeeseeeesseessessessesesessesesese e sseeesessessesene. 93
PERCEPTUAL COMPONENTS VISUALIZATION AND APIS [46] «...eoeeeeeeeeeeeeeeseeeeeeseeeseesseesseeeens 93
GAIA ARCHITECTURE [L] cerveeeeeeeeeeeeeeeeseeeesese s seesee s eseeesesseeesese e sseseeesseeesese e seeeeseeeessesenes 94
ITRANSIT ARCHITECTURE AND DATA MODEL [69].......veeveveeeeeeeeeeeeeeeseeeseeseseeeeeseeesenesneeens 95
SMEET ARCHITECTURE [64]....v..veoveeeeeeeeeeeeeeessesee s seees s s s sses s ssess s snesnees 97
GENERIC ARCHITECTURE FOR HEALTHCARE PERVASIVE SYSTEM [18]....cevreereeeeeeereeererenenn. 98
HANDOVER FROM INDOOR TO OUTDOOR [18]coveveeeeeeeeeseeseeseeeseese s ssesseeseneens 98
HANDOVER FROM OUTDOOR TO INDOOR [18]veveieeeeeeeseeeeesseeeeeseeseeesee s s 99
TELE-HEALTH SYSTEM [74] ..o ene s 100
: THE PEGASUS COORDINATION INFRASTRUCTURE [14] ... 101
MOBE OVERALL ARCHITECTURE [66].........veoveveeeeseeeeeeesesseeseessesseessesseesseese s e 103
MOBIPADS ARCHITECTURE [7] ...veveoeeeeeeeeseeesseeseesseeeeeeseees s ssees s sse s 105

OVERALL ARCHITECTURE FOR A NETWORK SERVICE FRAMEWORK FOR MOBILE PERVASIVE

COMPUTING [23] ettt a e s sb e s b e s e sba e sane s 106
FIGURE 39: MOBIDIS ARCHITECTURE [B0].......cciiuiiiiiiiiiiiiiieiiiieniie et 108
FIGURE 40: ESCAPE ARCHITECTURE [38]....cciciiiiiiiiiiiiiieiiie ittt 109
FIGURE 41: CIMIS ARCHITECTURE [38]cviiiiiiiiiiiiie ittt 109
FIGURE 42: ITRANSIT ARCHITECTURE [20]uviiiiiiiiiiiiieiiieniic et 111
FIGURE 43: BASIC BRIDGING ARCHITECTURE [17]..c.ctiiiiiiiiiiiiiiiiii et 113
FIGURE 44: UMIDDLE ARCHITECTURE [45]....uviiiiiiiiiiiiiieniieetet et 114
FIGURE 45: FAULT MANAGER ARCHITECTURE [81]ceiviiiiiiiiiiiiii et 115
FIGURE 46: CONTEXT-AWARE PERVASIVE ARCHITECTURE [48] ...c.vviiiiiiiiiiiiiciiie e 117
FIGURE 47: FUNCTIONAL BLOCKS FOR CONTEXT MANAGEMENT FRAMEWORK (CMF) [35]....ccccevuiennnen. 119

Xl

file:\\vboxsrv\Vm-Shared\Mostafa%20Hamza%20Masters%20Thesis%20-%20Feature-based%20Generation%20of%20Pervasive%20Systems%20Architectures%20Utilizing%20Software%20Product%20Line%20Concepts.docx%23_Toc309860959

FIGURE 48:

FIGURE 49:

FIGURE 50:

FIGURE 51:

FIGURE 52:

FIGURE 53:

FIGURE 54:

FIGURE 55:

FIGURE 56:

FIGURE 57:

FIGURE 58:

FIGURE 59:

FIGURE 60:

FIGURE 61:

FIGURE 62:

FIGURE 63:

FIGURE 64:

FIGURE 65:

FIGURE 66:

FIGURE 67:

FIGURE 68:

FIGURE 69:

FIGURE 70:

FIGURE 71:

NODE LAYOUT [A0] ...ttt ettt ettt ettt sttt ettt et s e snae s e sare e sree e seneesaneeeas 120
TENDAX ARCHITECTURE [B4]....cceuttiiiiiitieiiie ettt ettt ettt et s 121
PERVASIVE ARCHITECTURES.......ootiiiiiiiiiiiiiiicciiiicc e 123
PRIVACY FEATURESooiiiiiiiiiiiiii e 124
LEARNING FEATURES ...ooiiiiiiiiiiiiii it 125
SMART ACTIVE SPACES’ FEATUREScotiiiiiieiiiiiee ettt 126
HEALTH FEATURES ..ottt 127
GAMES’ FEATURES. ..c..eeiiiiieee ettt ettt e e e e st e e s sraee e 128
MOBILE FEATURES ..ottt 129
RETAIL FEATURES.... .ottt 130
EMERGENCY SYSTEMS' FEATURESciiiiiiiiiiiiiiiiic it 132
TRANSPORTATION FEATURES......coiiiiiitiiiiiic et 133
BRIDGING FEATURES.....ooiiiiiiiiicc e 134
CONTEXT-AWARE FEATURES ...t 135
FAULT TOLERANCE FEATURESotiiiiiiiiiiiieinc et 136
FILE MIGRATION FEATURES......ettiiiiiiiiiiitiiinc et 137
DOCUMENT EDITING FEATURES.....coiiiiiiiiiiii et 137
PERVASIVE CATEGORIZATION USING ECLIPSE AND FMP PLUGIN..........cccuvrviiiiiiiiiiiiieen, 140
CONFIGURATION OF RETAIL WITH CONTEXT-AWARENESSoooiiiiiiiiiiiiiiiie, 140
IMPLEMENTATION PROCESSoiiiiiiiiiiiiiiiiiiicctitiin e 141
LOOKUP TABLE SAMPLE ..ottt 142
GENERATED ARCHITECTURE FROM RA GENERATOR.......cutviiiiiiiiiiiiiiii i, 143

GENERATED ARCHITECTURE FOR HEALTH PERVASIVE SYSTEM FROM THE RA GENERATOR .. 146

GENERATED ARCHITECTURE FOR RETAIL PERVASIVE SYSTEM FROM THE RA GENERATOR.... 147

Xl

FIGURE 72:

FIGURE 73:

FIGURE 74:

FIGURE 75:

FIGURE 76:

FIGURE 77:

FIGURE 78:

FIGURE 79:

FIGURE 80:

FIGURE 81:

FIGURE 82:

FIGURE 83:

FIGURE 84:

FIGURE 85:

FIGURE 86:

FIGURE 87:

FIGURE 88:

FIGURE 89:

FIGURE 90:

FIGURE 91:

FIGURE 92:

FIGURE 93:

FIGURE 94:

FIGURE 95:

&

GENERATED ARCHITECTURE FOR TRAFFIC PERVASIVE SYSTEM FROM THE RA GENERATOR.. 148

CPD FOR CASE L.ttt a s 156
CPD FOR CASE 2.ttt a e a s 157
CPD FOR CASE 3.ttt a e e a s 157
CAID FOR CASE L.ttt aa s 158
CAID FOR CASE 2.ttt 159
CAID FOR CASE 3.t 160
CRITALL FOR CASE L.ttt 161
CRITALL FOR CASE 2.t 161
CRITALL FOR CASE 3. . 162
CASE 1 COUPLINGuutiiiiittiic ettt 163
CASE 1 COUPLING COMPUTATION PARAMETERSeeiiiiiiiiiiiiiiiie e, 164
CASE 2 COUPLING ...ttt 164
CASE 2 COUPLING COMPUTATION PARAMETERS ...ttt 165
CASE 3 COUPLING ...ttt 165
CASE 3 COUPLING COMPUTATION PARAMETERSccvviiiiiiiiiiiiiiiieie e, 166
COHESION FOR CASE ..ottt 167
COHESION FOR CASE 2.ttt 167
COHESION FOR CASE 3.ttt 168
MODULARITY FOR CASE 1 ...ttt 169
MODULARITY FOR CASE 2.ttt 169
MODULARITY FOR CASE 3. .t 170
CASE 1 REUSABILITY ..ttt 171
CASE 2 REUSABILITY ...ttt 171

Xl

FIGURE 96: CASE 3 REUSABILITY ...ciiiiiiiiiiiiiiiiii ittt 172
FIGURE 97: CASE 1 COMPLEXITY ..oiiiiiiiiiiiiiiii ittt 173
FIGURE 98: CASE 2 COMPLEXITY ..eiiiiiiiiiiiiiii ittt saara s e e e 173
FIGURE 99: CASE 3 COMPLEXITY ..eiiiiiiiiiiiiiiiii ittt siaba s e e e 174
FIGURE 100: POSITIVELY MONOTONIC METRICSooviiiiiiiiiiiiiiiiiiiiiiiiciiincc e 176
FIGURE 101: NEGATIVELY MONOTONIC METRICS-1....ccciiiiiiiiiiiiiiiiiiiiiinicccciiine e 176
FIGURE 102: NEGATIVELY MONOTONIC METRICS-2.....cccciiiiiiiiiiiiiiiiiiiiiiiccciiince e 177
FIGURE 103: PERVASIVE FEATURES VS DOMAINcotiiiiiiiiiiiiiiiccciiininne s 180
FIGURE 104: RA GENERATOR CLASS DIAGRAMcutiiiiiiiiiiiiiic i 182
FIGURE 105: SUBJECT 1 - CASE 1 = RETAIL ..ottt 189
FIGURE 106: SUBJECT 1 - CASE 2 = HEALTH......utiiiiiiiiiiiiii i 190
FIGURE 107: SUBJECT 1 - CASE 3 — TRANSPORTATIONcooiiiiiiiiiiiicieiiieincc e 191
FIGURE 108: SUBJECT 2 - CASE 1 = RETAIL c.evviiiiiiiiiiiiie ettt 192
FIGURE 109: SUBJECT 2 - CASE 2 = HEALTH...oiiiiiiiiiiiiee e 193
FIGURE 110: SUBJECT 2- CASE 3 — TRANSPORTATIONcoiiiiitiiiiiiiiiiiiiiiien e 194
FIGURE 111: SUBJECT 3 - CASE 1 = RETAIL c.eviiiiiiiiiiiiiiic ettt 195
FIGURE 112: SUBJECT 3 - CASE 2 = HEALTH..cooiiiiiiiiiiiiic et 196
FIGURE 113: SUBJECT 3 - CASE 3 — TRANSPORTATIONcooiiiiiiiiiiiiiiiiiiiicc s 197
FIGURE 114: SUBJECT 4 - CASE 1 = RETAIL c.vvviiiiiiiiiiiiiiicceitiin et 198
FIGURE 115: SUBJECT 4 - CASE 2 — HEALTH...ooiiiiiiiiiiiiii i 199
FIGURE 116: SUBJECT 4 - CASE 3 — TRANSPORTATIONcooiiiiiiiiiiiiiiiiiiiiicii s 200
FIGURE 117: SUBJECT 5 - CASE 1 = RETAIL ..evviiiiiiiiiiiiiic it 201
FIGURE 118: SUBJECT 5 - CASE 2 — HEALTH....coiiiiiiiiiiiiiiciciii e 202
FIGURE 119: SUBJECT 5 - CASE 3 — TRANSPORTATIONcooiiiiiiiiiiiiiiiiiiiiciiien e 203

XV

List of Tables
TABLE 1: ZAYARAZ AND THAMBIDURAI’S NOTATIONcoeveeeeeeeeeeeeeeesseseeeseeseeseeseessesseeseeseeseessssesneeeons 64
TABLE 2: THE ELEMENTS OF THE FRAMEWORK AND THE QUESTIONS USED IN THE ANALYSIS [58]........... 69
TABLE 3: COMPARISON BETWEEN ONE BIG RA AND SMALL RAS.....ovoeoieeeeeeeeeeseeseeeeeesees e seessesnesnnns 138
TABLE 4: ALL METRICS WE USED IN EVALUATING THE GENERATED ARCHITECTURESvrvevererrereenns 149
TABLE 5: SOMETRICS DIAGRAM OUTPUT FOR CASE L....c.eoveeeeeeeeeeeesseeesesseeseeesse e e s 151
TABLE 6: SOMETRICS DIAGRAM OUTPUT FOR CASE 2....c.coveeeeeeeeeeeesseeeessee s snesneens 151
TABLE 7: SODMETRICS DIAGRAM OUTPUT FOR CASE 3eovoeeeeeeeeeeesseeeessee e sse oo 152
TABLE 8: NARASIMHAN AND HENDRADJAYA’S EVALUATION SUITE FOR CASE 1......o.oovvevereeeesersreneene. 152
TABLE 9: NARASIMHAN AND HENDRADJAYA’S EVALUATION SUITE FOR CASE 2.....o.ooveovereeeesrrseeenaene. 153
TABLE 10: NARASIMHAN AND HENDRADJAYA’S EVALUATION SUITE FOR CASE 3ooveeeeieeeeseseeeeeenn. 153
TABLE 11: ZAYARAZ AND THAMBIDURAI’S MEASUREMENT TECHNIQUE FOR CASE 1o.eovvnereeennnn. 154
TABLE 12: ZAYARAZ AND THAMBIDURAI’S MEASUREMENT TECHNIQUE FOR CASE 2c.oovoereeennenn. 154
TABLE 13: ZAYARAZ AND THAMBIDURAI’S MEASUREMENT TECHNIQUE FOR CASE 3co.oovonverreeeennn. 155
TABLE 14: MODIFIABILITY FOR CASE L....veoveeeoeeeeeeeeseeeeeeeseeeseesess s seeseesseesee s sse s ssees s ss e ese s sseensens 174
TABLE 15: MODIFIABILITY FOR CASE 2.....ooveveoeeeeeeeeseeeeeeeseeesees s seeeseese s ss s s s s s sseenses 174
TABLE 16: MODIFIABILITY FOR CASE 3.....ooeoveeeeeeeeeseeeseeeseeesees s se s sseesee e se e sseesee s ese s sseennens 175

XV

VVVYYY

List of Abbreviations

4SRS: Four Step Rule Set

ADSA: Adaptability Degree of Software Architecture
BAPO: Business, Architecture, Process and Organization
BL: Business Logic

CASA: Context-Aware Security Architecture

CBSE: Component-based Software Engineering

CFFP: COSMIC Full Function Points

CFOs: Context Feature Objects

CID: Component Interaction Density

CIID: Component Incoming Interaction Density
CIMS: Context Information Management Services
CMC: Component Management Core

CMF: Context Management Framework

CMS: Context Management Service

COID: Component Outgoing Interaction Density

CP: Configurable Product

CPD: Component Packing Density

DCAC: Dynamic Client Application Customization
DSPL: Dynamic Software Product Line

ERAS: The Environment Role Activation Service

FEF: Family Evaluation Framework

FMP: Feature Modeling Plug-in

FODA: Feature-Oriented Domain Analysis

FOMDD: Feature Oriented Model Driven Development
FOP: Feature Oriented Programming

IOSA: Impact on Software Architecture

JAPELAS: Japanese Polite Expressions Learning Assisting System
LCOMA4: Lack of Cohesion in Methods

MADAM: Mobility and Adaptation-enabling Middleware
MAS: Multi-Agent System

MDA: Model Driven Architecture

MDD: Model Driven Development

OMG: Object Management Group

OSGI: Open Service Gateway Initiative

OSGi: Open Service Gateway Interface

P3P: Privacy Preferences Project

PAN: Personal Area Networks

PIM: Platform Independent Model

PL: Pervasive Learning

PSIUM: Privacy Sensitive Information Diluting Mechanism
PSM: Platform Specific Model

QoS: Quiality of Service

RDF: Resource Description Framework

XVI

VVVVVVVVVYVYY

SCV: Scope, Commonality and Variability Analysis
SMS: Security Management Service

SPE: Secure Persona Exchange

SPL.: Software Product Line

SPLE: Software Product Line Engineering
TANGO: Tag Added learning Objects
TeNDaX: Text Native Database Extension
TPM: Trusted Platform Module

Ul: User Interface

VMM: Virtual Machine Monitor

XMI: XML Metadata Interchange

XV

&

Chapter 1

Introduction

1.1. Background

A newly founded domain is pervasive systems. A pervasive system is a new trend of
systems that shifts away from the one person, one computer paradigm to the era where
human interaction is explicit. In other words, pervasive systems are the systems that exist
everywhere around the users and provide them with a variety of personalized services
according to their needs. We discuss the characteristics of pervasive systems in more details
in section 1. There are numerous challenges facing the design of successful pervasive
systems. Some of the major challenges are power management, wireless discovery, user

interface adaptation and context aware computing.

Software development is still a difficult engineering process as the level of complexity is
increasing day after day especially for the newly found domains and technologies, such as
Pervasive systems. The convolutions of software lead both researchers and practitioners
towards exploring the software engineering challenges concentrating mainly on
manufacturing individual products. Nowadays, the attention shifted from engineering stand-
alone products into producing mass-customizable families of similar products, namely the
Software Product Lines (SPL). Instead of starting from scratch for every developed product,

a software product line targets the utilization of reusable core assets.

SPL is mainly based on reusability. It targets the development of software components that
share a common and managed set of features. SPL is divided into three engineering
processes: domain engineering, application engineering and variability and commonality
management. Domain Engineering is for developing core assets in the product line, while
application engineering is for building the final products on top of the product line
infrastructure. Above these two processes comes variability and commonality management
to configure the SPL, add new core assets, or enhance existing ones. SPL is discussed in

more details in section 2.3.

18

&

Current implementations of pervasive systems are based on ad-hoc implementations through
the adoption of frameworks. One major drawback however, is that developed pervasive
systems are not very scalable and are unable to evolve easily. Also, when dealing with large
and complex pervasive systems, the approaches presented in the related work, seem
insufficient. Pervasive systems are now moving from research to production which requires
the produced artifact to be more complex and to be of higher quality than the prototypes
produced by the research [44]. The heterogeneity of such systems and their management by
the traditional techniques of software development is hectic. This calls for a methodology

that accelerates their development.

1.1.Problem Definition

Many attempts were made to build product line specifications for various kinds of
application domains. Product lines have mainly been specified for application families that
are characterized by their multi-layer systems, for their data intensive usage [79], and for
specific domains such as embedded and distributed systems. two basic attempts for product
line specifications for pervasive systems found in [45] and [14]. Our literature review leads
us to conclude that the idea of Software Product Lines has not yet been maturely adopted in
the domain of Pervasive Systems. There is a clear lack of quasi-comprehensive reference
architectures for pervasive systems development, primarily due to the limited research efforts
made to analyze existing pervasive systems architectures and to create a suitable enough
reference architecture that can be used as a guide for building such systems. The existing
pervasive product lines do not contain reference architecture and do not accommodate for
many features of pervasive systems applications which include but are not limited to: context

identification and reaction, sensor intensity, the presence of actors, and event dissemination.
1.2. Thesis Statement

Our objective in this work was to perform a detailed review of existing pervasive systems
architectures, and to capture a semi-comprehensive set of features that would be
accommodated in the specification of a reference architecture to be used in the development

of a Software Product Line for pervasive systems. Our review will focus on gathering the

19

&

features that should be present in any pervasive systems. Subsequently, and instead of
creating an extremely sizable reference architecture for pervasive systems, we automatically
generate architectures for pervasive systems by allowing designers to select a set of features
for pervasive systems. Our automatically generated architectures were compared to human
generated architectures based on a set of pre-determined metrics used in the evaluation of
systems architectures.

1.3. Proposed Approach

The research was divided into four phases. The first phase was to define pervasive systems
and the main characteristics for achieving ubiquity and pervasiveness. The second phase was
to group the different features from the various architectures of pervasive systems and
categorize them. The third phase was to generate component-based architectures, and the

fourth phase was to evaluate them.

The first phase was initiated by investigating the pervasive systems’ characteristics from
previous work. We narrowed down our related work collection to focus on approaches that
were adopted for defining pervasive systems. Perhaps the most prominent definition is Mark
Wieser’s definition of pervasive systems in which he states: “The most profound
technologies are those that disappear. They weave themselves into the fabric of everyday life
until they are indistinguishable from it” [92]. The settled characteristics are ubiquitous
access, context awareness, intelligent Interaction and natural interaction. They are all

discussed in details in section 1.

In the second phase, we surveyed the literature for the most prominent architectures in the
domain, while capturing commonalities and variances in each. We then categorized them
according to their usage and operating environment as explained in section 4.1. The third
phase was to generate component-based architectures for a specified set of features. All the
collected pervasive features are first presented to the system designer and he/she selects the
features he/she wishes wanted to include in the system. The selected features are then passed
to our developed tool to generate a component-based architecture that best matches the

selected features. The final task was to compare the results from the evaluation metrics,

20

&

(presented in sections 2.7.1, 2.7.2 and 2.7.3), for the generated architectures against a
professionally-made architecture (as presented in section 4.4.2).

This document is organized as follows: Chapter 2 discusses the related work and literature
review on pervasive systems and SPLs. It also discusses the current software engineering
approaches used with SPL processes and the evaluation frameworks and metrics we came
across in order to analyze the generated architectures. Chapter 3 includes the study we
performed for more than fifty pervasive architectures to extract the features and components
from them. Chapter 4 is the core part of the thesis, which discusses the categorization we
carried out, our implementation to generate the pervasive systems’ architectures, the
experiments we did to evaluate the generated architectures and the results of the experiments.
Chapter 5 is the conclusion for our thesis and finally the appendices.

21

&

Chapter 2

Literature Review

In this chapter we present our findings from the related work. We show the features for
pervasive systems that we extracted. Also, we highlight the SPLs and other software
engineering approaches. Finally, we present the evaluation methods we found to evaluate
both the architectures and the SPL.
2.1. Features of Pervasive Systems
The optimization of quality is crucial for pervasive systems as they require invisible
operation which causes them to be small in size and work with limited memory. In order
to have a pervasive computing environment, it is necessary to have the following:

ubiquitous access, context awareness, intelligent interaction and natural interaction [26].

2.1.1. Ubiquitous Access

Ubiquitous access is the sensors and the actuators that transfer input and output between
the real world and the virtual world based on wireless communication infrastructures.
There are many media that data could be sent over such as broadband satellite systems,
cellular radio communications, personal and local area radio communications, infrared
and ultrasonic communications. Due to the variety of hardware and software capabilities,
a communication infrastructure is required for maintaining knowledge about device
characteristics and managing coherent device interactions. The challenge is in keeping
the different connections live while moving between the different network types and
technologies. The routing and handing over can be managed at the network level.
Ubiquitous access also includes service discovery and registration, lookup services, self-

configuration and caching.

2.1.2. Context awareness

It refers to the ability of the system to recognize and localize objects as well as people
and their intentions. Also, it includes tracking other objects and coordinating the
activities with respect to and relative to other objects. Examples of such systems are:

voice and vision based systems, biometrical systems (fingerprint, retina, face recognition)

22

&

In a study mentioned in [26], a framework is to be proposed for building context-aware
applications. It utilizes a set of software components that work as wrappers for collecting
low level sensor data. Such data are then transformed into high level context
information. Context information is a time index that is represented in a metadata model
named Resource Description Framework (RDF). It is represented over the instances of
the abstract object classes as follows: person, thing and place and their contextual
interrelatedness. A context prediction system is used for predicting the future sensor data.

It assumes a stationary time series underlying the sensor data process.

2.1.3. Intelligent Interaction
It is the ability of the technology-rich environment in the pervasive systems to adapt to

people dealing with it [81].

2.1.4. Natural interaction
Natural Interaction refers to the interaction between the humans and the surrounding
environment and how the surrounding environment receives inputs from the user and acts
upon it, such as natural speech and gesture recognition. Rami et al. describe [95] the
characteristics of pervasive systems as follows:
1. Heterogeneity: Variety of software and hardware components that work with each
other to produce users’ goals.
2. Presence of small devices: In order to be invisible to the users. They should be
small in size, memory, and power consumption.
3. Limited network facilities: Most of the network protocols are limited in
connection such as GPRS and Bluetooth.
4. High mobility: Handheld devices that can accompany the user everywhere.
5. User-oriented: Presented services should target the user and not a specific device
or location.
6. Dynamic environment: Users keep moving, and the environment should keep
track of them in order to deliver their services.
7. Adaptation to diversity: Pervasive applications should adapt themselves to the

device requirements, networks, etc.

23

&

8. Interaction with peers: The applications should have the ability to form ad-hoc
networks between others in order to exchange information.

9. Flexible computation model: Users are interested in different types of data.
Therefore, the need for constructing a flexible computation model will help

pervasive systems to evolve rapidly and smoothly.

Another approach presented in [81] divides the pervasive systems into five features that
should be present in order to name an application as a pervasive one. It should contain
the support for context, location, actors, sensors and events. The difference between the
previous approach and the current one is splitting the location from the context. Context
has a broader view than the user’s location. There are other interesting things about the
user which are variable. Context includes lighting, noise level, network connectivity,
communication costs, communication bandwidth, and social situation, e.g. with your

boss, co-workers [77].

Now, we will be discussing the different definitions of what is software architecture.
2.2.Software Architecture Definition

In this section, we will be showing the definition for software architectures. The most
formulated and standardized is the definition presented by IEEE Standard 1472000 [3]. It
states that the “Architecture is the fundamental organization of a system embodied in its
components, their relationships to each other, and to the environment, and the principles
guiding its design and evolution”. In other words, the architecture is a design or a set of
designs for a certain system which targets accomplishing a task or more in the environment.
The Standard defines the system as “a collection of components organized to accomplish a
specific function or set of functions”. Also, the environment defined by the Standard as the
situation and conditions of developmental, operational, political, and other manipulations
upon that system. The architecture defines the structure and the behavior of the system. The
structure includes the different ingredients that build the system up. For example, class

diagram from UML can describe the structure of a system. The behavior of a system is

24

&

defined by the interactions inside the system according to inputs given to it. Sequence
diagram from UML is used to describe such behavioral attitude of a system.

Now, we will be showing SPL’s definition, history, fundamentals and life cycle of SPLs in the

following section.

2.3.Software Product Line (SPL)

In this section we will be talking about SPL history, fundamentals, SPL life cycle,
engineering processes: domain engineering, application engineering and variability and

commonality management.

2.3.1. SPL history
Although not new in concept, the idea of Product Lines was adopted in the domain of
software engineering. Computer scientists paid much attention recently to explore software
product line engineering (SPLE) in response to the growing need for methodologies that cut
development costs and take much less time to market than what is currently in place. The
move towards applying SPLE is always motivated by economic concerns. The key feature
behind SPLE is the application of reusability; and SPLE is not the first approach to reuse
software. Previous reusability attempts for developing core assets lacked an organized
analysis of future variability [22].
Now, we will be giving a glimpse about SPLs’ history. In the 1990s, the concept of product
lines was introduced, and the first methodology that was applied was Feature-Oriented
Domain Analysis (FODA). Concurrently, many companies started to investigate product
lines such as Philips which introduced the building-block method.
Later, many companies and scientific projects in Europe started exploring SPLE [27] such as:
e Architectural Reasoning for Embedded Systems (ARES) between 1995 and
1998.
e Product-Line Realization and Assessment in Industrial Settings (Praise) from
1998 to 2000.
e Engineering Software Architectures, Process and Platforms (ESAPS) from
1999 to 2001.

25

&

e From Concepts to Application in system-Family Engineering (CAFE) from
2001 to 2003.

e FAct-based Maturity through Institutionalization, Lessons-learned and
Involved Exploration of System-family Engineering (FAMILIES) from 2003
to 2005.

2.3.2. Fundamentals of SPL

Studies have shown that applying the SPL approach can result in a shorter time-to-market
and improved productivity. SPL is different from single system development. There is a
huge change in perspective between the traditional way of developing software products
and SPLs. The former is based on ad-hoc next-contract vision while the latter is based on
a strategic view of a field of business. SPL is dependent on the concept of reusability
but, not in the traditional meaning. Reusability is for building assets that are to be used in
the product line [51]. SPL works on the development of software components that share
a common, managed set of features and they are developed using the same set of core
assets.

The fundamentals of the SPL Engineering Approach are divided between Domain
Engineering, Application Engineering and variability and commonality management.
Domain Engineering is the development of core assets to be used in the product line,
while application engineering is concerned with building the final products on top of the
product line infrastructure. They are loosely coupled and are synchronized by platform
releases. Domain engineering addresses development for reuse while application
engineering addresses development with reuse. Variability and commonality
management is for configuring the SPL, adding new core assets, or enhancing existing
ones.

Two major techniques are used when dealing with requirements in the SPL.: use cases and
feature models, and they can be used together. The former is used when dealing with
user orientation in the sense of focusing on the functionalities that should be used by the

product line. Consequently, it is considered the driving force for guiding the

26

&

development. The latter has a re-use orientation and is used to address better
functionality for the product line members [7].

2.3.3. SPL Life Cycle

In order to deliver a successful product, the management process should capture the life
cycle of the product starting from the inception phase until delivery. Three essential
activities are carried out during the SPL life cycle, the core asset development, product
development and management. The domain engineering or core asset development and
the application engineering or product development are considered two separate life-
cycles [27]. The product management is the phase at which the scope of the product line
and its market strategy are defined. The management of common and variable features
and the change in the market could affect the product line life cycle. For example, the
introduction of new features or the elimination of outdated ones should be monitored by
the product management. Each life-cycle contains four stages which are: requirements

engineering, design, realization and testing.

2.3.4. Domain Engineering

Domain engineering is the process of developing core assets that will be used in the
product line. In other words, it is the process of saving the previous experience in
building systems or components from a certain domain in the form of assets. The
activities in the domain engineering start with product management, with the aim of
capturing the commonalities and variabilities among the products. Followed by domain
requirements engineering which targets getting the requirements, identifying the
commonalities and variabilities and constructing a variability model. The third phase is
the domain design phase which is responsible for the development of the product line
architecture that is going to be the basic infrastructure. Domain realization is where the
detailed design and reusable components are implemented with the realization of the
variabilities. During domain testing, the reusable components that were implemented in
the previous activity as well as the constructed reusable test assets can be reused in

testing.

27

&

The organization of the assets is dependent on how they will be used to produce different
products. The organization of such assets is the key for successful product lines.
Industrial experience has shown that having the right assets is not enough for easy
assembly. The choice of the right asset should be done in less time than developing it.
The evaluation of the asset organization as suggested by Hunt [42] is based on three
approaches which are: key domain abstractions, architecture, and features. Such
approaches are evaluated against the criteria of: natural division, ease of finding, general

applicability, reasonably sized groups and similarly sized groups.

Natural division: it evaluates if the grouping of the components is understandable and
related to some set of concepts to the project. The selection should be a single category
for each component because multiple categories could lead to ambiguity.

Ease of finding component: the product developer is given some product description and
s/he will choose a component to derive the product. The evaluation here is based on
examining the organizational map to the product description to ensure that the description

is easily understood by the product developer.

General applicability: checks if the approach can be applied to a wide range of problem

domains.

Reasonably sized groups: each group should be in a range of manageable size for the ease

of searching.

Similarly sized groups: this is to maximize the average amount of information provided

by each choice.

Organization Approaches: These approaches as suggested by Hunt in [42] for organizing

the asset base are:

1- Key Domain Abstraction Organization: which starts by creating a group under
the root for each domain identified followed by the identification of the top level

abstractions in each domain.

28

&

2- Architectural Organization: it is applied by mapping the architecture onto a
tree — similar to what is done in single product projects. Grouping the
components into reasonably sized groups besides having a layered architecture
helps in organizing the assets.

3- Feature Based Organization: This approach works by organizing the asset
base as features. Features are identified at the early stages in the development
process which is the foundation for having an early organization of assets.
Moreover, features give the glimpse of having a clear vision of the problem and
the solution domain. Converting the feature model into an architectural model is
also easy because the former is in the form of a tree.

The implementation and documentation of the domain software components needs a
systematic way to accomplish. A methodology called Open Service Gateway Interface
(OSGi) helps the developer during the implementation and documentation [22]. OSGi is
a java-based interface, framework and computing environment that is used to manage,
develop and deploy software components. The main motive to use OSGi is the flexibility
in adding, removing and editing components without recompiling the whole system.
Moreover, OSGi is a dynamic environment, i.e. an application can easily migrate to an
updated software component dynamically. Concerning its architecture, it is divided into
four layers. The first layer is the Security Layer and it is used in signing its assets. The
second layer is the Module Layer and it is responsible for managing the bundles — java
classes and other sources that bring functionalities to the end user. Thirdly, the Lifecycle
Layer, is the layer responsible of controlling the security and life cycle operations of the
bundle. Finally, the Service Layer which is used to register services, search for them and
receive notifications whenever their state changes.

Almeida et al. [22] define some rules that should be followed in order to have proper
domain implementation which are:

e A component must have interfaces.

e A component should have a transparent life cycle mechanism.

29

&

e A component should be configurable.

e A component must have a third-party integration mechanism.

e Context independence.

e Documentation.

e Evolvabiltiy.

e Version compatibility.
Their methodology [22] is divided into two steps, component implementation and
component documentation.
The Component Implementation is divided into seven activities. The activities from 1 to
4 are responsible for developing a reusable component, while the rest are for using a
service from a reusable component.
Activity 1: Defining the component and describing the general-purpose information is the
first activity. Such data is stored in a manifest file to be used by the OSGi framework to
install and activate it properly.
Activity 2: The software engineer specifies the provided services which are similar to
specifying an interface that consists of operation and attribute definitions.
Activity 3: At this stage, the services and the code to register them are implemented.
Activity 4: In this activity, the component is built and installed which requires compiling
and packaging it in a suitable form for deployment.
Activity 5: Similar to activity 1, the software engineer describes the components that will
reuse other services.
Activity 6: The required services and the rest of the code are connected at this activity.
Activity 7: The last activity, similar to activity 4, is for building and installing the

component that reuses the services.

2.3.5. Application Engineering

Application engineering is the process of building up the final product with the core
assets developed in the domain engineering as presented in [51]. The activities in the
application engineering are almost the same like domain engineering. The difference is
that the application engineering is intended for the development of a certain product on

top of the platform developed in the domain engineering. The activities start with

30

&

application requirements engineering that capture the requirements of a certain product
with the least possible deviation from the existing commonalities and variabilities defined
in the product line infrastructure. The application design is where an instance of the
reference architecture is instantiated with the requirements defined in the previous
activity. The application architecture should be consistent with the reference architecture
as long as we are dealing with reusable component i.e. plug-and-play reuse. Application
realization is a stage where the product is implemented based on the available
requirements and architecture by reusing and configuring existing components and
developing new product-specific ones. Application testing is the final activity before
delivering the product. The product is validated against the application requirements.

2.3.6. Variability and Commonality Management
Modeling the variability is usually produced using the concept of variation points. Such
variation points identify where the location of product variations will occur [7].
In domain engineering, the domain requirements commonality and variability are
developed for producing a set of well-defined reusable assets of SPL. Dependencies
among the requirements of a domain help in getting the requirements set, however, they
could lead to requirements conflict and inconsistencies. A feature oriented approach for
managing domain requirements dependencies suggests using features to reflect the
requirements dependencies. Features are tightly-related requirements from the
stakeholder’s perspective and they could not be independent in a system. This approach
uses the directed graph for the representation and analysis of the domain requirements
dependencies. The directed graph is better than the tree structure because a tree structure
cannot capture feature dependencies.
2.4. Dynamic Software Product Line (DSPL)
Newly introduced technologies such as ubiquitous computing, service robotics, unmanned
space and water explorations, are facing pressure in producing economically high quality
software on time. Such technologies are dependent on collecting the inputs through sensors
that change dynamically and adapting themselves to changes in requirements at runtime.
Therefore, there is a need for a DSPL that gets software done with a high capability in

adapting itself according to the users’ needs and resource limitations [87]. A static or

31

&

traditional software product line is mainly targeting the variability at the development time.
On the other hand, a dynamic software product line targets the variability at the runtime of a
system by binding variation points at runtime according to the changes in the environment.
In other words, for the generated products in a SPL, binding features could be accomplished
at any time, either at design time, compile time, configuration time or runtime. The main
difference between the DSPL and SPL is that product functionalities could change

automatically without any human intervention.

As mentioned earlier, SPL is proposed in order to cut down the costs and reduce the time-to-
market. By the use of commonalities and variability management, products are selected
from a set of features. These features are selected at different binding times. The features
that will be used at runtime will be postponed till the end of the product cycle to get bound.
Once the product is released from the SPL, it has no connection with it, i.e. no automated
activity is specified in the SPL in order to keep the features updated.

On the contrary, DSPL aims to create products that are configurable at runtime. The
products also will have the capability to reconfigure themselves and gain advantage from
constant updates. A configurable product (CP) is that produced from a DSPL and it is
similar to the one produced from a traditional SPL [13]. The difference is in the two added
components to the CP to enable reconfiguration which are: the decision maker and the
reconfigurator. The decision maker's task is to retrieve the environmental changes that
suggest modification such as external sensors or users. Such information is then analyzed
and the appropriate actions are chosen to be carried out. The reconfigurator's mission is to

execute such changes by the use of the standard SPL runtime binding.
DSPL has the following properties which are not in the traditional SPL [78] and [13]:

o Adaptability: It is the ability to adapt to the change in the requirements and surrounding
environment.
e Change in binding several times as well as variation points during the lifetime of the

software.

32

&

Automatic capabilities: CP should be able to take decisions about the features that should
be activated or deactivated at runtime according to the collected environmental or user
requirements changes, i.e. it works under unexpected changes from the surrounding
environment.

Product updates: Ease of updating the product features at runtime.

It is dependent on the individual desires and the situation not on the “Market” as the

driving force for it.

In the following two sub-sections, we will be discussing the decision maker and the SPL

configurator.
2.4.1. The Decision maker

The decision maker is responsible for taking the decisions of which features to be
activated/deactivated. In order to allow the decision maker to take decisions, some

information should be taken into account [13]:

e The available features in the CP along with their states.

e The features' dependencies.

e The information about an involution scenario or required features that are present in
the adaptation triggers.

e The user requests for features activation/deactivation.

The decision maker generates decision models. The decision models are
important for SPLs as they direct the derivation of the product variations specified by the
change in requirements. In DSPL, the varying requirements at runtime require the

decision models to support automatic reconfigurations in response to such changes.

Three main approaches have been proposed for the description of decision models for
DSPL in order to allow the product to self-adapt itself according to the change in the

requirements during runtime. The three approaches are [34]:

33

&

o Situation-action approaches: configurations are specified as to exactly what
actions to perform in certain situations.

o Goal-based approaches: high-level goals and objectives are defined so that the
system self-adapts itself to fulfill them.

o Utility functions-based approaches: application properties, context and goals are
assigned to a utility value for each application.

Utility functions-based approaches are advised because they have many advantages [34]

which are:

1. Achieving the best configuration is a complex process, and requires reasoning
on the dependencies between the context elements, adaptation forms and
concurrent forms.

2. It is better than the situation-action approaches because the situations are not
explicitly described. They result from the middleware at runtime.

3. In order to adopt the application at runtime, a decision model for shared
resources applications can be built from the model fragments accompanied by

the components.

The study by Brataas et. al [34] suggests applying the utility function over their MADAM
(Mobility and Adaptation-enabling Middleware) approach. The MADAM approach is a
self-adaptation approach that uses the architecture models to control variation at runtime.

This approach was developed for the mobile computing environment [43].

A mathematical formula is implied to solve the resulting scalability problem due to the
increase in the variants that lead to poor performance [34]. The algorithm works by
going through all the alternatives, then choosing the one with the peak utility. This cuts
down the performance from the exponential number of computational power to find a

variant in a number of variant points to a linear number.

2.4.2. The SPL Configurator
The SPL configurator is responsible for the following [13]:

34

&

o Computing the required configurations in either scenarios — involution and
evolution — and sending them to the CP configurators.
o Generating a variability model for the CP derived from the SPL variability model

according to the selected features.
There are two types of DSPL [13] which will be presented in the following section.

2.4.3. DSPL Architecture

2.4.3.1. Connected DSPL

The DSPL is responsible for the product adjustments. Updates are the task of the
DSPL to be sent to the products attached to it. It works when the CP senses new
environmental changes [13]. It sends such collected data to the DSPL in charge,
which in turn starts processing the sent information and calculates the variations
that could be done. If the changes do not apply to any variant, the process fails
and the adaptation may not be completed. If the changes are applicable, the
updates and the configurations are sent to the CP after they get generated. Finally
the CP updates itself.

2.4.3.2. Disconnected DSPL

The CP is in charge of the adaptation once the product is released. The DSPL
produces artifacts that have the capability to configure themselves to deal with
contextual changes. It works when the CP senses changes. This time the CP
calculates the changes that are required to be done without contacting the DSPL.
If there is no configuration that suits the requirements, the adaptation process
fails. The CP reconfigures itself to the new adaptations if there is a generated

configuration [13].

Cetina et al. [13] proposes a mixed approach as shown in Figure 1. It solves the problem
that may be caused from connected and disconnected DSPLs. Connected ones produce

products that must always be connected with the responsible DSPL. On the other hand,

35

&

disconnected ones produce automatic CPs that are shorter in range. The mixed approach
produces CPs that are scenarios aware. In involution scenarios, CPs behave as in D-
DSPL while in the evolution ones they behave as in C-DSPL. These are the steps carried

out when there are changes in the requirements at runtime:

1. The CP senses the changes in the environment and it activates the adaptation
process.
2. The CP computes the configurations that are required to deal with the
situation.
a. If there is no configuration that suits the environmental changes, the
CP contacts the SPL in charge. The SPL generates the required
configurations and then sends them to the CP. If there are no relevant
updates to the situation the operation fails.
b. If there are matching configurations that can be generated. The CP
performs the task and reconfigures itself

l There is not @
O o ¢
Decision <, I-c— configuration Decision -\
"\ f Adaptation
] Trigger
22 Valid comfiguration =
There is not a valid E Active
—— H<&
Valid product —
m RS | —
Comnponents
_ @ O
FR) s e —
peration U
@ 26)
- l\._ 2.6 Adaptation /
1 |
1
Dyvmamic Software Product Line : Configurable Product

Figure 1: Mixed SPL Overview [13]

36

&

A study about a transition from static to dynamic software product line was conducted by
Klaus and Holger [78]. It targets having minimal transitional steps, and it does not
recommend having a middleware as a form of migration. Its goal is to have features allowed
to be removed and added during runtime of a system, i.e. runtime variability. Such
transition could lead to many difficulties and complexities. An example of such complexities
is how the system could handle a certain feature and then what should happen when the
feature is called and during the processing the behavior of the system is changed by

removing this feature.

Another study found some concerns that should be taken care of during the change of
configuration throughout the runtime according to [31] which are:

e For the parts that are not affected by the reconfiguration, they must continue to work
without any impact on them.
e The reconfigured components must finish their current task before being configured.

e Reconfiguration concerns must not be intervened with the application concerns.

Gomaa and Hussein [31] describe a way for modeling all the possible configurations for an
application. The four configuration scenarios that are proposed for a product family to
evolve automatically are: Product Configuration, Product Reconfiguration, Feature
Reconfiguration and Component Reconfiguration. Product Configuration is for the initial
runtime configuration while, Product Reconfiguration is for reconfiguring a product to
another one at runtime. Feature and Component Reconfiguration are for dynamically adding,
removing or replacing features and components, respectively. Figure 2 shows the

reconfigurable process and life cycle for evolutionary SPL.

37

Product line use case model,
product line analysis model,
product line software architecture,

reusable components

Product line
requirements | gofiware Product Software Product Line
Line Engineering Repository

Product line
engineer
Application Executable
TEqUAEIDEDLS Software Application application
_— > . . —
Engineering
Application .
enginger Customer

Unsatisfied requirements, errors, adaptations

Figure 2: Evolutionary Software Product Line Engineering Process [31]

Trinidad et al. [68] proposes a process for generating component architectures from a feature
model for such systems. It works by activating or deactivating the features by the generated
architecture. Four steps are proposed to produce a component model from a feature model.

They were successfully applied to a real-time television SPL [68] as follows:

1. Defining the core architecture: By extracting the features that are common among the
products. Then, defining the component model by creating a component for each
feature. Finally, relationships between the features are added which will be reflected
in the component model. For example, a relation between a parent feature and a child
feature is a dependency from the parent component to the child one.

2. Defining the dynamic architecture: This step works by using the non-core features to
generate the dynamic architecture. It is the same as the first step but this time they
are generated to the non-core features. Then, the set of interfaces according to the

responsibilities of each component are added.

38

&

3. Adding the configurator: The configurator in the architecture is the one responsible
for taking the dynamic decisions for a product. It is also responsible for knowing the
feature model, handling activation and deactivation requests of features and checking
them in order to produce applicable configurations.

4. Defining the initial product: The last step is defining the initial product by choosing
the core features that will be primarily active.

Another study describes how product line engineering can be used for producing product
lines based on web services that can be dynamically customized at runtime [35]. The case
study was carried on a radio frequency management system to demonstrate the suggested
approach. The approach can be extended to work with client/server applications. It also
suggests using the Dynamic Client Application Customization (DCAC) as shown in Figure 3.
It is a proposed approach where at runtime the client user interface objects are customized

based on the features chosen for the application and the values of parameters.

39

Customizable SPL system architecture
Semver application
‘Web services
Client apphcation N
e —
Customizable U ; . -—
objeci Customizer object LDE“E hase
\\ sappul s
Software product line
emvironment
Application Enginearing
SPL engineering Feature
e, salactor o —
C ! C P
SPL featura s —
editor L rr?DF-,dl:al Consistency Cuslomlzat:ﬂ
e checker o file
PR BN
/ ¥
v | N Customization
rd | file generator
e : ™
& g \'_ ;
Feature - Analysis model Parameterizec Feature selection
dependency free - Design model variables &
- Components Walues of parameterized
wariables

Figure 3: Conceptual overview of DCAC approach [35]

2.5. SPL in Domain Specific
In this section, we focus on the SPL development for certain domains from both industry
and academia. Many attempts have been made for utilizing SPLs for specific domains
such as distributed and embedded systems, data-intensive systems, adaptive systems and

pervasive systems.

2.5.1. Distributed and Embedded Systems
An approach presented is SPLE for configurations of a vehicle control system [50]. The

number of possible configurations grows exponentially with the number of options

40

&

besides the growth of the configuration space as new features are introduced. This
approach uses a method for solving the optimization problem with the identification of
the minimal set of configurations and the verification of this small set to achieve the
correctness of the entire product family. An example of family of indicators systems is
used to illustrate the approach in [50]. The example goes through the requirements, the
logical architecture and the evolution of the product line.

Another approach in the research of [96] describes how mobile device limitations and
API fragmentation problems can be solved using aspect-oriented programming. Memory
usage and application footprint size are examples of such limitations. The research
suggests using AspectJ - an aspect oriented extension to java and assists in developing
modules for the crosscutting concerns - in implementing product lines for mobile device
applications [96]. It divides the optional features to be developed over the base ones into

aspects.

2.5.2. Data-intensive systems

The proposed approach in [79] uses component based and model driven development in
building a SPL for data-intensive systems. Data-intensive systems are the systems that
handle data processing, visualization and storage. They are often multi-tier architectures.
Designing such systems from scratch is a costly process. Improving productivity of such
systems as their complexity increases day after day can be achieved using reusability of
software components. The work done by Schmoelzer et al. [79] presents an approach
that combines the concepts of SPLE with component-based software engineering and
model-based development for data-intensive systems.

Data-intensive systems are usually developed in a multi-layered architecture. They
contain three layers which are the user interface (Ul), Business logic (BL) and Data
Access and persistency (DB).

Variability has influence over the three layers of multi-layer architecture. Any variability
in the data structure has effect on the three layers. The database layer is affected because
saving the data persistently is required. The BL layer variability consists of the

combination of control flow and data structure variability. The Ul layer variability is

41

&

affected by the change in the layout and the way of presenting the data depending on the
customers' needs.

Variability in the database layer: For each product, it has its data structure that has
different variant selections and data structures. Obtaining variability can be done by
combining different data models. It can be achieved by the analysis of the individual and
minimal data model for each variation point and variant. After producing data models for
variabilities, the mapping between variability space and data model space is defined. The
dependencies between variation points and variants are imported from the dependent
models to the variability model. The data model of all selected variants and variation
points are combined to a single model that is used for the generation of the database
structure for a certain product.

Variability in BL: The business layer contains a set of reusable components with
interfaces that are used for their connections. They are called interconnection points or
component assemblies, and they are used for obtaining larger components with more
functionality. In other words, these reusable components are loosely coupled. The
reused components and their way of interaction define the behavior of the component
assemblies. The general BL functions are stored in components that are designed for
variation points.

Variability in Ul: similar to the way BL components are handled. The Ul can be
described for example as a set of Ul controls that are built together to form the layout.
Combining the Ul components is the most crucial process in the SPL because it is the
visible part to the user. The behavior and the layout should be working properly to
achieve a single Ul. This is obtained by defining layouts in XML files which may define

extension points for other layouts.

42

The framework for model-based product line architecture is shown in Figure 4:

&

o
§ oy Account Type
B3 _ e b\h
==] G | B R \
g O | &
2
i
= & 'LCh-:cking Account Credit Card Accoum
[; . 1
User Interface I Business Logic 1 Database Access
= . = 1 1
m : ; i i
; %. — i.r_|h | | Il—j""\
3 & IL':I | | LI o ! { Dama. ||
= l.u.v ik Control | | 1 i | Model. | |
E 5 Ayour | | | | Def. |
= g h Flow : : | Def. Ll
§. | | 1
I I
———— | I '|I'
T omponent’Assembly | | \
= | Component/Assemhb S |
= il - L I | :
- = == = L
5z LI Beh. L1 Layout Azsembly I "
i = E 1 I - — I §
e | Transient Model Exi. LF_ ; Ifl;:nmp. [--.
= o e — =1 I s I I — ' 1
£E| - TSEC Ut Fw Iﬁ TSEC s DBAL |
LEl . y
E E i .r"_" i [E o \‘ [|z Dé__ H:; =1
el v EC - EC | : : <R 1
= . .] : {{gmj:':_-_‘:nc}t J= J 4 .
= ~ " geuseEx <CuseRE eSS i A CORBA - o
- - i - x
M 2 L - L p
cegenerless . . - \:1 = JE{E"'““'WTF = “wcconsists of >
-9
L
H
8
Data Model

43

&

Figure 4: Model-driven multi-layer architecture for SPL development [79]

i.{ Page }._~_‘ Bound Component)‘ ,»,[Bound Method __ Bound Yariation Point ‘
— 0..nl 0..ni O.ni

0.n 1 a.n o.n Tn
+childd +parent
derived from derived from resofved o

1
J— 1
Companent Method .| Varation Paint causes | Variability
0.n o.n .n 1n

Figure 5: Associations among the assets in products of web-based systems [10]

Web-based systems are a kind of data-intensive systems. Web applications are evolving
rapidly. They have turned from simple static pages to complicated applications that can
be accessed over the internet. Developing a product line for web-based systems helps in
sharing the common infrastructure between many of its services. Koriandol is a product
line architecture used to design, implement and maintain families of applications as
presented in [10]. It is used for developing product line for web-based systems. Figure 5
shows, the organizational representation of a web-based system by Koriandol. It also
contains a variability management mechanism to dynamically bind variation points to the

fitting variant in addition to the ability to manage the variability during run-time.
2.5.3. Adaptive Systems

Adaptation systems are the systems that adjust their properties and resources according to
the user needs and resource constraints at runtime. The approach presented in [74] uses
the SPL techniques in order to build adaptive systems. Adaptive systems are built as
“comp