
Requirements and Tools for Variability Management
Marco Aiello, Pavel Bulanov, Heerko Groefsema

Distributed Systems Group
University of Groningen

The Netherlands
Email: {m.aiello, p.bulanov, h.groefsema}@rug.nl

Abstract—Explicit and software-supported Business Process
Management has become the core infrastructure of any medium
and large organization that has a need to be efficient and
effective. The number of processes of a single organization can
be very high, furthermore, they might be very similar, be in
need of momentary change, or evolve frequently. If the ad-
hoc adaptation and customization of processes is currently the
dominant way, it clearly is not the best. In fact, providing tools for
supporting the explicit management of variation in processes (due
to customization or evolution needs) has a profound impact on
the overall life-cycle of processes in organizations. Additionally,
with the increasing adoption of Service-Oriented Architectures,
the infrastructure to support automatic reconfiguration and
adaptation of business process is solid.

In this paper, after defining variability in business process
management, we consider the requirements for explicit variation
handling for (service based) business process systems. eGovern-
ment serves as an illustrative example of reuse. In this case study,
all local municipalities need to implement the same general legal
process while adapting it to the local business practices and IT
infrastructure needs. Finally, an evaluation of existing tools for
explicit variability management is provided with respect to the
requirements identified.

I. INTRODUCTION

Tools for Business Process Management (BPM) are becom-
ing more and more a utility of any medium and large scale
enterprise. The emergence of Service-Oriented Architectures
and standards such as Web Services has accelerated the trend
and opened a wide range of automation and integration pos-
sibilities. Though, with the adoption of new tools, new needs
emerge [1]. Designed to support rigid and repetitive units of
work, like production processes, business process models offer
little in the area of flexibility [2], [3]. Consider, for instance,
the issue of customizing a process for a given product or to
implement changes for a set of similar products. The current
common practice is to branch a process model into many very
similar instances. As a result, redundancy is introduced and
maintainability is set at mostly unacceptable levels.

The recurrence of the need to adapt processes to instances
and changes become concrete with the notion of variability,
which first emerged in software engineering. Variability refers
to the possibility of changes in software products and models.
The changes are normally explicitly defined via appropriate
variability modelling languages and are managed with semi-
automatic tools. An example is the COVAMOF framework [4]
used in product families to manage the different requirements
and constraints of similar, but not equivalent products. In [5],

the example of the Intrada product family of intelligent traffic
systems (from Dacolian B.V.) is used as the running example,
being a code base of approximately 11 million lines of code
adapted to products which will be deployed in different traffic
conditions.

Product lines are a prototypical example of software vari-
ability, but not the only one. In [6], two examples from
health care and the automotive industry are proposed. The
case of moving from a nationally defined law to hundreds of
implementations in local government bodies is the object of
the SAS-LeG project [7]. Broadening the view, flexibility has
received a wider attention. Aalst et al. [8] describe the set
of patterns to cover requirements of business process models.
Weber et al. [6] discuss patterns related to change in business
process models. In [9], a number of approaches to flexibility in
process models are surveyed. A different approach is taken in
[10], [11] by focusing on what needs to be done instead of how
things are done. Finally, a number of tools have been proposed
for flexibility in BPM and supporting SOA techniques.

This paper addresses the subject of variability in BPM by
providing a definition of variability and its key related concepts
(Section II). Using an example from variability in eGov-
ernment (Section III), the set of requirements for variability
management is presented in Section IV. Tools and frameworks
are compared based on the requirements in Section V.

II. VARIABILITY ENGINEERING

In this section the area of variability Engineering is ex-
plored. First, the general idea of variability and how it applies
to business processes is discussed. Next, the impact on the
BPM lifecycle is addressed, and finally a number of techniques
to support the variability are given.

A. Variability

In software engineering, variability refers to the possibility
of changes in software products and models [4]. In the context
of BPM, variability indicates that parts of a business process
remain variable, or not fully defined, in order to support
different versions of the same process depending on the
intended use or execution context. Such variability is often
included through the introduction of so-called variation points,
that is, elements of a business process where change may
occur. A process in which variability is included is called a
reference or generic process. Processes where choices have
been made deriving from the reference process are called

2010 34th Annual IEEE Computer Software and Applications Conference Workshops

978-0-7695-4105-1/10 $26.00 © 2010 IEEE

DOI 10.1109/COMPSACW.2010.50

271

2010 34th Annual IEEE Computer Software and Applications Conference Workshops

978-0-7695-4105-1/10 $26.00 © 2010 IEEE

DOI 10.1109/COMPSACW.2010.50

245

variants. The strategies in order to come to a reference process
can differ greatly, and ranges from drafting a simple template
based on commonalities between variants to using a single
variant as a reference process. Variability management is the
set of activities aimed to cover the creation and support of
differences in versions of reference processes.

The advantage of explicit variability treatment to modelling
and managing business processes resides in the reuse of the
reference processes and in the handling of evolutions and
customizations. Instead of creating entirely different processes
for each variant and thus introducing redundancy and the
possibility of errors, variability offers the introduction of these
variants through explicit traversal choices, thus eliminating
duplication of work and a source of inconsistencies across
versions. Another paramount advantage lies in the readability
and maintainability of the processes. Instead of using BP
constructs within a process to model the variations in cir-
cumstances explicitly, and thus introducing readability and
maintainability problems, variability offers a clean solution
through the introduction of variants.

Finally, we remark that variability is very closely related
to flexibility. Flexibility offers adaptation and change of a
process, whereas variability deals with different versions of
a process. Of course, in order to support different versions,
a certain amount of flexibility and change management is
required. Two approaches to flexibility exist: imperative and
declarative flexibility. The former of these focuses on how
a task is performed, where the latter focuses on what tasks
should be performed. The last of these two approaches is
generally considered to be more flexible to changes but less
strictly defined [9].

B. Variability management

Variability management is an extension of the typical ac-
tivities involved in business process management. We give a
general depiction in Figure 1. On the left can be seen how
requirements drive the definition of the design processes. Once
the designer has a first design of the process, then it moves on
to the deployment and run-time phases. In case of errors, un-
predictable situations and changes in requirements, the whole
procedure must be repeated, starting from the design stage.
During execution, information on normal and exceptional
execution is collected (Monitoring and Diagnose phases), thus
allowing for more flexible process support and feedback for
process evolution. Variability management complements these
general BPM phases by introducing a set of parallel stages, on
the right in the figure. First, a decision is made on the types
of variability, and at which stage of the lifecycle they should
be introduced. In this context, there are two main categories:
design-time and run-time variability.

Design–time variability deals with the definition of vari-
ations in processes at design–time. Similar processes are
implemented using a reference process and applying different
variations in order to support all variants. Often this means
finding the commonalities between similar processes being
implemented and introducing variations where differences

Fig. 1. Process lifecycle and variability management.

occur. Dually, it may mean taking a process and foreseeing
all possible customization and changes that different context
may require. The next step is designing the variations for the
generic process in such a way that they cover all variants
identified in the requirements through the flexibility offered by
the variability. New variants are added by reuse of the existing
reference process or patching existing variants. The source
of such changes might be either changes in requirements or
propagation of a change at a different level.

Run–time variability is responsible for managing variation
of processes in execution. The major issue it addresses is
handling redesigns of running processes. Such redesigns can
range from skipping/deleting a single activity to moving to a
whole different variant. The source of changes might be either
changes in requirements, responding to an erroneous situation
(via analysing run–time data) or a propagation of a change at
a higher variability level (design–time or evolution).

A cross-cutting element of variability management is the
evolution that generic processes go through. Evolution vari-
ability management, in black on the right of Figure 1, repre-
sents the changes introduced not by customization but rather
by changes occurring over time.

C. Variability techniques

Frameworks for variability management should support
different techniques to produce and manage variants.
Techniques of this kind are called variability techniques. The
following list of techniques is reworked from the list provided
in [12]. The list divided between design–time and run–time
techniques. The following variability techniques are specific
to design–time variability:
1) Patching of existing processes in order to support specific
conditions, must be facilitated. This technique is related
to arbitrary modifications which were not or could not be
anticipated at design time.
2) Blueprinting or design from template, indicates the
possibility to define a template and then extend it with

272246

variation expressions.
3) Process inheritance is a special form of template reuse,
where all variants are derived from the template process by
extension, specification or substitution [13].
4) Late modelling requires that parts of the template process,
called placeholders, may be left unspecified.

The following techniques are specific to run–time variability:
1) Adhoc changes requires the possibility to make a variation
for an executing instance of a variant.
2) Runtime settings requires the possibility of changing the
execution of a set of variants based on the setting of some
preferences.
3) Late binding is closely related to Late modelling with the
only difference being that it is done at run–time.
4) Run-time case selection: processes may allow the
expression of non–deterministic choices. The variation
management tool should allow the expression of cases, but
also their run–time execution (e.g., by random choice or
prompting the user).

III. CASE STUDY: VARIABILITY IN EGOVERNMENT

In the Netherlands there are 441 municipalities that have to
implement the same national laws, though, they are different in
size, business models, IT infrastructures and so on. Recently
the WMO law (Wet maatschappelijke ondersteuning, Social
Support Act, 2007) was approved that mandates, for instance,
the rules for providing publicly subsidized wheel chairs to
needing citizens. There are two roads to manage the translation
from national law to “instance of giving out a wheel chair in
municipality X to citizen Y.” [7]. One way is to give the inter-
pretation document and let each municipality to implement the
law, as it is done today with no reuse. The other possibility is to
provide a formalized and generic process including variability
describing the law and let the municipalities to customize it
according to their organizational and IT structure.

Fig. 2. Generic process for obtaining a subsidized wheel chair.

Figure 2 illustrates the second. From left to right, we have
the initial activity of registering for obtaining a subsidized
wheelchair. Next there is a place–holder for amongst others a
“Home Visit” activity where an expert from the municipality
visits the home of the requesting actor in order to asses
the situation. Then there is a gate requiring a choice being
made by an authorized civil servant. Based on this choice
three further activities are possible. These three activities all
cover some sort of indication, an assessment of the requesting
party on their rights of getting the wheelchair. The three

options (from the bottom up) cover the options of doing the
indication themselves as the municipality, having an indication
from for example a doctor, and having a national third party
known as the CIZ (Centrum indicatiestelling zorg) handling
the indication. These three options then rejoin in an accepting
the request activity. Now a further check is performed on the
age of the requesting party. At the end, one will receive a
wheelchair having to pay for it himself or having it subsidized.
Furthermore, in one municipality the minimum age for getting
a wheelchair may be fixed at say 70, and in another one it may
depend not only on the age.

Fig. 3. Case study. A variant.

Now consider the process of Figure 2 to be a generic
process. Departing from the precess of this generic process,
one can derive a variant that explicitly deals with the wishes of
various municipalities. A possible variant is shown in Figure 3.
The changed regions are outlined with dotted rectangles. In
the resulting variant of Figure 3 the choice has been made
to include the “Home Visit” activity. One could imagine the
reason for this being that most cases in the municipality are
not well known beforehand and hence there is a need in home
visit in order to asses the situation. The second variation made
is one in the choice for the indication. In the Netherlands it
is possible for a municipality to outsource the indication to
an organisation known as the CIZ. This however is optional
and the municipality of Figure 3 has chosen not to use their
expertise. The last change was made to the age requirement,
which was decreased from 70 to 65.

IV. REQUIREMENTS

The case of eGovernment is not an isolated one, in many
domains one wants to describe a generic process for a given
service or product and then manage a possibly infinite number
of variants. But what are the common traits of processes
with explicit variability management? Next we provide a
systematization of these features in the form of requirements.
We organize the requirements in four categories: (A) those that
deal with the expressive power for expressing variability, (B)
requirements for service based processes with variability, (C)
run–time requirements connected with consistency and fault
handling, and (D) requirements stemming from the need of
managing evolution of processes with variability.
A. Expressive Power

Explicit variability management means the ability to express
the possible variations. The expressive power requirements

273247

provide an indication of what must be possible to express for
a variation in a process.
1) Structural variation: a variability system must be able to
express atomic structural changes of the reference business
process. Compiled from [6], the following changes are the
most common ones and should be self–explanatory: (a)
Insert Process Fragment, (b) Delete Process Fragment, (c)
Move Process Fragment, (d) Replace Process Fragment,
(e) Swap Process Fragment, (f) Copy Process Fragment,
(g) Extract Sub–process, (h) Inline Sub–process, (i) Embed
Process Fragment in Loop, (j) Parallelize Activities, (k)
Embed Process Fragment in Conditional Branch, (l) Add
Control Dependency, (m) Remove Control Dependency, and
(n) Update Condition.
For example, in Figure 3 one process fragment is deleted
(1b), one added (1a) , and one condition updated (1n) in
order to move from the reference process to the variant. A
variability management framework should allow the process
designer to express the above imperative structural changes,
possibly via graphic tools.
2) Constraint expressions: consists of expressing variations
by declaring the borders which limit the possible process
modifications. Unlike structural changes which indicate
imperatively what can vary, a constraint one limits the
borders of changes explicitly. Most common constraint
expressions are the following ones (extended from [10], [11]):
Selection constraints: force the selection of activities during
the execution of the variation. Most notable examples are: (a)
Mandatory: specify which activities which must be included;
(b) Prohibitive: specify which activities which must never be
included; (c) Prerequisite: specify the dependency between
two specific activities, such as, if activity A is included then
activity B must also be included in the process; (d) Exclusion:
specify the dependency between two specific activities, such
as, if activity A is included then activity B must not be
included into the process; (e) Substitution: specify the implied
substitution, such as, if activity A is not included then activity
B must be included; (f) Corequisite: specify the tight relation
between two specific activities, such as, they both must
be either included or excluded; and (g) Exclusive–Choice:
specify two activities as mutually exclusive.
Scheduling constraints: force the temporal relation among
the execution of activities of the process. Most notably: (h)
Mandatory: specify that a specific activity must be executed;
(i) Order: specify that two specific activities must be executed
in certain order; (j) Parallel: specify that two specific activities
must be executed in parallel only; (k) Exclusive–Execution:
specify that two activities cannot be executed in the same
process; and (l) Repetition: specify how many times a specific
activity might be executed (min,max).
For example, a local business rule stating that the process
in Figure 2 must include either a home visit or a referral
to the CIZ is expressed by a constraint stating that there is
a bilateral substitution (e) relationship between the “Home
Visit” and “Referral to CIZ” activities, that is, at least one of
those activities must be included into the result process.

3) Variation Relations: requires a tool to be able to express
the dependencies between activities and variations as well as
projection of such dependencies into domain requirements.
For example, there might be a package option called “Small
city” which means the removal of “Referral to the CIZ” and
“Indication” activities; but this option is only available when
the “Home visit” activity is included.

B. Service Requirements

BPM and service–orientation are becoming more and more
synergistic in IT infrastructure. Thus, some requirements for
variability are specific of service based systems.
4) Late Service Discovery by indicating interfaces or
behaviour of activities to be bound to services must be
supported. One can think of using registries or flooding
techniques to discover the appropriate variant at run–time in
a service-oriented architecture.
5) Variable Quality of Service: one could have variants of
a process whose only difference is the quality of execution,
e.g., the process of reserving a seat for a gold member of an
airline company executes faster than that of an unregistered
client.

C. Consistency & Fault Handling

A variability management framework should not only
provide the modelling facilities, but also support for the
run-time of process variants. Next are a set of requirements
that affect the run–time.
6) Business Rules are basically constraints (Requirement 2)
which are used within imperative–based framework. Such
constraints help to check for the soundness of the variants as
well as to introduce complementary limitations which come
from law or business requirements.
7) Unreachable States must not be introduced by a variability
expression. The variability should never create paths in such
a way that states can not be reached. A variation which
changes the guard of the process in Figure 2 to “AGE < 0”
should be refuted.
8) Variable Fault Handlers should be able to be designed
with and attached to different variants. Fault handling should
react differently with different variants. Each variation should
therefore include its own fault handling mechanism.
9) Variable Roll Back Procedures should be able to
be designed with and attached to different variants. Each
variation should include its own roll back mechanism which
is called when the variation was included and the resulting
variant needs to roll back.
10) Data Flow must not be broken by variability. This means
all modifications made to business process must be apprised
according to the data flow in this process.

D. Evolution Requirements

From the variability management point of view, a set of
changes made to a business processes is an evolution if such
changes are (i) permanent and (ii) must be propagated to all
variants. This translates into the following requirements.

274248

11) Variants must be updated when changes to the reference
process or rules (for example through law) have been made.
For example, consider a change made to the reference process
of Figure 2 where the option of the “Referral to CIZ” must
be formally considered for each case by law. This change
must then be propagated to the variant shown in Figure 3 in
such a way that this task is enforced and must be included.
12) Running instances of variants should be updated when
changes to the reference process or rules (for example through
law) have been made. All changes to the reference process
or rules should be propagated to all running instances of
the modified variants. Consider again the case where the
“Referral to CIZ” must be formally considered for each case.
Now also assume that there exists a running instance of the
variant shown in Figure 3. Such running instances should
also be adopted in such a way that it includes the “Referral
to CIZ” activity if possible.
13) Updates made to variants must be apprised with respect
to the reference process and business rules.

V. TOOLS & FRAMEWORKS

Let us now turn to existing tools and frameworks proposed
in the past to address explicitly issues of variability, mostly
in connection to BPM. We look at these through the just
provided lenses of the requirements of Section IV. Table I
summarizes the satisfaction or not of a requirement by a given
tool. The table is divided into tools that allow the expression of
variability in an imperative way and those that use a declarative
one. First, we introduce tools and frameworks and then we
discuss their relation to the presented variability requirements.

Provop [14], or Process Variants by Options, is a framework
designed by he researchers at the University of Ulm and
Daimler AG. Developed to address issues in the domains of
automotive and healthcare, it introduces variability through
defining options (variations) which modify a generic process.
These options can either modify the generic process through
the use of element identifiers (tasks, gates, etc) or so called
adjustment points, which are included in the generic process.
It also includes the option to declare relationship between
different adjustment points.

Variability extension to Business Process Execution Lan-
guage (VxBPEL) [15] is an extension to the BPEL stan-
dard [16] that we proposed previously. It introduces a number
of new keywords into BPEL that allow for variability to be
included within one of its processes. VxBPEL is based upon
the COVAMOF [4] variability modelling framework and as
such allows the inclusion of information about variation points,
variations, and realization relations into BPEL.

The ADEPT [17] project provides a framework for handling
of different kinds of run–time variability. This framework has
a strong support for the propagation of manual changes, thus
providing evolutionary support.

The configurable workflow models [18] utilizes a blueprint-
ing (design from template) technique to handle variability.
It also supports a link between requirements and variations

Imperative Declarative

Req Pr
ov

op

V
xB

PE
L

A
D

E
PT

C
W

M

Req D
E

C
L

A
R

E

B
PC

N
&

PV
R

Expressive Power
1a + + + + 2a – +
1b + + + + 2b – +
1c + – + + 2c – +
1d + + + + 2d – +
1e – – + – 2e – +
1f – – – – 2f – +
1g – – – – 2g – +
1h – – – – 2h + –
1i – – – – 2i + +
1j – – – – 2j + +
1k + – – + 2k + –
1l – – – – 2l + –
1m – – – –
1n + – – +
3 + + – + 3 – ±

Service Requirements
4 – + – – 4 – –
5 – – – – 5 – +

Consistency & Fault Handling
6 + – – + 6 + +
7 – – + + 7 + –
8 – + – – 8 – –
9 – + – – 9 – –
10 – – + + 10 – –

Evolution
11 – – – – 11 – +
12 – – + – 12 + –
13 + – – + 13 + +

TABLE I
COMPARING TOOLS AND FRAMEWORK ON THE BASIS OF THE IDENTIFIED

VARIABILITY REQUIREMENTS.

as well as dependencies between individual variations. As a
result, links provide a flexible model which allows to create
automatically an appropriate business process modification
based on the system requirements.

An example of declarative approach is the DECLARE
framework [11], which provides variability via a special way
of process definition. Instead of introducing variation points,
a process is defined as a set of activities linked by constraints.
These constraints act as a flexible process definition, which
allow users to follow the process in an arbitrary way as long
as it does not violate the process constraints.

Business Process Constraint Network (BPCN) and Process
Variant Repository (PVR) [19], [10] are another examples of
declarative approach. Together they define a set of activities
and a set of constraints over activities that force the process
to behave in a certain way.

Consider Table I, where the mentioned frameworks are rep-
resented as columns and where rows are the requirements for
explicit variability management proposed in Section IV. Using
the information provided in the published articles and available
white papers for the tools and frameworks, we evaluate their
satisfaction or non-satisfaction of the requirements. The table
is divided in two parts: The left half lists the imperative–

275249

based tools whereas the right half lists the declarative–based
tools. This division affects the first section of the table, where
the expressive power has a different meaning depending on
which approach was used. Therefore the imperative–based
tools include only the expressive power regarding to change
from requirement one, and the declarative–based tools only
include the constraints–based expressive power requirements.
Both halves do include the third expressive power requirement
describing variation relations. A plus indicates the satisfaction
of the requirement, the minus the non–satisfaction and the
plus/minus together indicate a borderline case.

First, we remark that none of the imperative approaches
covers all the requirements of “Expressive Power” proposed
by [6]. On the declarative side, the situation is similar:
DECLARE lacks selection constraints (which are related to
design–time and therefore not needed for a framework oriented
on run–time customizations). Instead, this tool has richer
scheduling constraints which makes it more powerful in terms
of run–time customizations. BPCN relies on selection con-
straints, making it more suitable for design–time variability.

In general, both DECLARE and BPCN have better support
with regard to evolution requirements than the imperative–
based competitors. This is mainly because of the nature of
the declarative approach which is initially more flexible and
allows to sustain the link between the reference process and
its variants via constraints validation. The variation relation
(Req 3) is also a weak point of declarative based frameworks.
This can be explained with the absence of explicitly defined
variability points. In must be noted, though, that selection
constraints might work as a substitution for variation relations.

The handling of data flow is neglected in most cases, and
only ADEPT and CWM have means to sustain data flow
consistency. Variable fault handling and rollback processing
was specified only for VxBPEL. In contrast, many tools sup-
port the detection of unreachable states and rules application.
Service–specific requirements are also not widely adopted.
Only VxBPEL provides an implicit service discovery, since
WS-BPEL does support late service discovery. As for variable
QoS, only BPCN does support it by taking into account QoS
attributes while searching business process variants. Finally,
evolution is a difficult task to handle, though declarative ones
have better possibilities. For example, change propagation can
be done via constraint validation, and validation of manual
changes naturally fits constraint–based process.

VI. CONCLUDING REMARKS

Explicit variability management is becoming an increasing
need in BPM, especially with the shift towards Service–
Oriented Architectures. A number of tools and frameworks
have been proposed that address some of the issues. Con-
sidering these past experiences, we define and classify a
fundamental set of requirements of such systems. In this way,
we notice that none of the existing frameworks address all or
even most of the requirements, thus leaving space for extensive
research and development in the area of frameworks for the
explicit management of variability.

Acknowledgements

The research is supported by the NWO SaS-LeG project,
http://www.sas-leg.net, contract no. 638.000.000.07N07. We thank
the anonymous reviewers for their suggestions and P. Avge-
riou, N. van Beest, F. van Blommestein, A. Lazovik, D. Tofan,
and H. Wortmann for fruitful discussion.

REFERENCES

[1] W. Bandara, M. Indulska, S. Sadiq, and S. Chong, “Major issues
in business process management: an expert perspective,” in European
Conference on Information Systems (ECIS), 2007.

[2] W. van der Aalst and S. Jablonski, “Dealing with workflow change: Iden-
tification of issues and solutions,” International Journal of Computer
Systems, Science, and Engineering, vol. 15(5), pp. 267–276, 2000.

[3] S. Rinderle, M. Reichert, and P. Dadam, “Correctness criteria for
dynamic changes in workflow systems: A survey,” Data and Knowledge
Engineering, vol. 50(1), pp. 9–34, 2004.

[4] M. Sinnema, S. Deelstra, and P. Hoekstra, “The covamof derivation
process,” in ICSR, 2006, pp. 101–114.

[5] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch, “Modeling de-
pendencies in product families with covamof,” in IEEE International
Symposium and Workshop on Engineering of Computer Based Systems
(ECBS ’06). IEEE Computer Society, 2006, pp. 299–307.

[6] B. Weber, M. Reichert, and S. Rinderle-Ma, “Change patterns and
change support features - enhancing flexibility in process-aware infor-
mation systems,” Data Knowl. Eng., vol. 66, no. 3, pp. 438–466, 2008.

[7] C. Sun, R. Rossing, M. Sinnema, P. Bulanov, and M. Aiello, “Modelling
and managing the variability of web service-based systems,” Journal of
Systems and Software, Elsevier, vol. 83, pp. 502–516, 2010.

[8] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros,
“Workflow patterns,” Distributed and Parallel Databases, vol. 14(3),
pp. 5–51, July 2003.

[9] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and W. M. P. van der
Aalst, “Process flexibility: A survey of contemporary approaches,” in
CIAO! / EOMAS, ser. LNBIP, J. L. G. Dietz, A. Albani, and J. Barjis,
Eds., vol. 10. Springer, 2008, pp. 16–30.

[10] S. W. Sadiq, M. E. Orlowska, and W. Sadiq, “Specification and vali-
dation of process constraints for flexible workflows,” Inf. Syst., vol. 30,
no. 5, pp. 349–378, 2005.

[11] M. Pesic, M. H. Schonenberg, N. Sidorova, and W. M. P. van der
Aalst, “Constraint-based workflow models: Change made easy,” in OTM
Conferences (1), 2007, pp. 77–94.

[12] S. Balko, A. H. M. ter Hofstede, A. P. Barros, and M. L. Rosa,
“Controlled flexibility and lifecycle management of business processes
through extensibility,” in EMISA, 2009, pp. 97–110.

[13] W. M. P. van der Aalst and T. Basten, “Inheritance of workflows: an
approach to tackling problems related to change,” Theor. Comput. Sci.,
vol. 270, no. 1-2, pp. 125–203, 2002.

[14] A. Hallerbach, T. Bauer, and M. Reichert, “Managing process variants
in the process life cycle,” in ICEIS (3-2), 2008, pp. 154–161.

[15] C. Sun and M. Aiello, “Towards variable service compositions using
VxBPEL,” in ICSR, 2008, pp. 257–261.

[16] Oasis, “Web services business process execution language version 2.0,”
Oasis, Tech. Rep., April 2007.

[17] P. Dadam and M. Reichert, “The adept project: a decade of research and
development for robust and flexible process support,” Computer Science
- R&D, vol. 23, no. 2, pp. 81–97, 2009.

[18] F. Gottschalk, W. M. P. van der Aalst, M. H. Jansen-Vullers, and M. L.
Rosa, “Configurable workflow models,” Int. J. Cooperative Inf. Syst.,
vol. 17, no. 2, pp. 177–221, 2008.

[19] R. Lu, S. Sadiq, and G. Governatori, “On managing business processes
variants,” Data Knowl. Eng., vol. 68, no. 7, pp. 642–664, 2009.

276250

