6,107 research outputs found

    Simulation in manufacturing and business: A review

    Get PDF
    Copyright @ 2009 Elsevier B.V.This paper reports the results of a review of simulation applications published within peer-reviewed literature between 1997 and 2006 to provide an up-to-date picture of the role of simulation techniques within manufacturing and business. The review is characterised by three factors: wide coverage, broad scope of the simulation techniques, and a focus on real-world applications. A structured methodology was followed to narrow down the search from around 20,000 papers to 281. Results include interesting trends and patterns. For instance, although discrete event simulation is the most popular technique, it has lower stakeholder engagement than other techniques, such as system dynamics or gaming. This is highly correlated with modelling lead time and purpose. Considering application areas, modelling is mostly used in scheduling. Finally, this review shows an increasing interest in hybrid modelling as an approach to cope with complex enterprise-wide systems

    Utilizing ChatGPT to Enhance Clinical Trial Enrollment

    Full text link
    Clinical trials are a critical component of evaluating the effectiveness of new medical interventions and driving advancements in medical research. Therefore, timely enrollment of patients is crucial to prevent delays or premature termination of trials. In this context, Electronic Health Records (EHRs) have emerged as a valuable tool for identifying and enrolling eligible participants. In this study, we propose an automated approach that leverages ChatGPT, a large language model, to extract patient-related information from unstructured clinical notes and generate search queries for retrieving potentially eligible clinical trials. Our empirical evaluation, conducted on two benchmark retrieval collections, shows improved retrieval performance compared to existing approaches when several general-purposed and task-specific prompts are used. Notably, ChatGPT-generated queries also outperform human-generated queries in terms of retrieval performance. These findings highlight the potential use of ChatGPT to enhance clinical trial enrollment while ensuring the quality of medical service and minimizing direct risks to patients.Comment: Under Revie

    Literature Retrieval for Precision Medicine with Neural Matching and Faceted Summarization

    Full text link
    Information retrieval (IR) for precision medicine (PM) often involves looking for multiple pieces of evidence that characterize a patient case. This typically includes at least the name of a condition and a genetic variation that applies to the patient. Other factors such as demographic attributes, comorbidities, and social determinants may also be pertinent. As such, the retrieval problem is often formulated as ad hoc search but with multiple facets (e.g., disease, mutation) that may need to be incorporated. In this paper, we present a document reranking approach that combines neural query-document matching and text summarization toward such retrieval scenarios. Our architecture builds on the basic BERT model with three specific components for reranking: (a). document-query matching (b). keyword extraction and (c). facet-conditioned abstractive summarization. The outcomes of (b) and (c) are used to essentially transform a candidate document into a concise summary that can be compared with the query at hand to compute a relevance score. Component (a) directly generates a matching score of a candidate document for a query. The full architecture benefits from the complementary potential of document-query matching and the novel document transformation approach based on summarization along PM facets. Evaluations using NIST's TREC-PM track datasets (2017--2019) show that our model achieves state-of-the-art performance. To foster reproducibility, our code is made available here: https://github.com/bionlproc/text-summ-for-doc-retrieval.Comment: Accepted to EMNLP 2020 Findings as Long Paper (11 page, 4 figures

    Literature Retrieval for Precision Medicine with Neural Matching and Faceted Summarization

    Get PDF
    Information retrieval (IR) for precision medicine (PM) often involves looking for multiple pieces of evidence that characterize a patient case. This typically includes at least the name of a condition and a genetic variation that applies to the patient. Other factors such as demographic attributes, comorbidities, and social determinants may also be pertinent. As such, the retrieval problem is often formulated as ad hoc search but with multiple facets (e.g., disease, mutation) that may need to be incorporated. In this paper, we present a document reranking approach that combines neural query-document matching and text summarization toward such retrieval scenarios. Our architecture builds on the basic BERT model with three specific components for reranking: (a). document-query matching (b). keyword extraction and (c). facet-conditioned abstractive summarization. The outcomes of (b) and (c) are used to essentially transform a candidate document into a concise summary that can be compared with the query at hand to compute a relevance score. Component (a) directly generates a matching score of a candidate document for a query. The full architecture benefits from the complementary potential of document-query matching and the novel document transformation approach based on summarization along PM facets. Evaluations using NIST’s TREC-PM track datasets (2017–2019) show that our model achieves state-of-the-art performance. To foster reproducibility, our code is made available here: https://github.com/bionlproc/text-summ-for-doc-retrieval
    • …
    corecore