889 research outputs found

    Efficient particle filter algorithm for ultrasonic sensor-based 2D range-only simultaneous localisation and mapping application

    Get PDF
    Owing to low cost and relatively accurate range measurement, ultrasonic sensors are widely used in various simultaneous localisation and mapping (SLAM) applications. In spite of the abundance of ultrasonic sensor based SLAM applications, a simple and efficient algorithm for an ultrasonic sensor based positioning system with good accuracy and low computational complexity has not yet emerged. The major difficulty is the trade-off between localisation accuracy and computational complexity in most SLAM algorithms, such as extended Kalman filter (EKF) and particle filter. Typically, they improve localisation accuracy by increasing the density of the landmarks, as a result leading to high computational complexity of algorithms and limiting the utilisation of algorithms into online SLAM systems. This study addresses an improved particle filter algorithm to solve ultrasonic sensor based 2D range-only SLAM problem with relatively good accuracy and low computational complexity. This algorithm uses a simple four fixed features based system model to limit the density of the landmarks. A technique called map adjustment is proposed to increase the accuracy and efficiency of the algorithm. Using map adjustment, the proposed particle filter algorithm can improve localisation accuracy and lower computational complexity. The experiment results demonstrate that this algorithm has a better performance than conventional particle filter localisation algorithm

    Real-time performance-focused on localisation techniques for autonomous vehicle: a review

    Get PDF

    Contributions to autonomous robust navigation of mobile robots in industrial applications

    Get PDF
    151 p.Un aspecto en el que las plataformas móviles actuales se quedan atrás en comparación con el punto que se ha alcanzado ya en la industria es la precisión. La cuarta revolución industrial trajo consigo la implantación de maquinaria en la mayor parte de procesos industriales, y una fortaleza de estos es su repetitividad. Los robots móviles autónomos, que son los que ofrecen una mayor flexibilidad, carecen de esta capacidad, principalmente debido al ruido inherente a las lecturas ofrecidas por los sensores y al dinamismo existente en la mayoría de entornos. Por este motivo, gran parte de este trabajo se centra en cuantificar el error cometido por los principales métodos de mapeado y localización de robots móviles,ofreciendo distintas alternativas para la mejora del posicionamiento.Asimismo, las principales fuentes de información con las que los robots móviles son capaces de realizarlas funciones descritas son los sensores exteroceptivos, los cuales miden el entorno y no tanto el estado del propio robot. Por esta misma razón, algunos métodos son muy dependientes del escenario en el que se han desarrollado, y no obtienen los mismos resultados cuando este varía. La mayoría de plataformas móviles generan un mapa que representa el entorno que les rodea, y fundamentan en este muchos de sus cálculos para realizar acciones como navegar. Dicha generación es un proceso que requiere de intervención humana en la mayoría de casos y que tiene una gran repercusión en el posterior funcionamiento del robot. En la última parte del presente trabajo, se propone un método que pretende optimizar este paso para así generar un modelo más rico del entorno sin requerir de tiempo adicional para ello

    Sensor-Based SLAM for Camera Tracking in Virtual Studio Environment

    Get PDF
    This paper addresses the problem of Camera Tracking in virtual studio environment. The traditional camera tracking methods are vision-based or sensor-based. However, the Chroma Keying process in virtual studio requires the color cues, such as blue screen, to segment objects from mages and videos. It limits the application of vision-based tracking methods in virtual studio since the background could not provide enough feature information. Therefore, in our research, we would try to apply the SLAM (simultaneously localization and mapping) methodology from mobile robots to the camera tracking area. We describe a sensor-based SLAM extension algorithm for 2D camera tracking in virtual studio. Also a technique call Map Adjustment is proposed to increase the accuracy and efficiency of the algorithm. The simulation results would be given in the conclusion. Keywords-SLAM, Particle Filter, Chroma Keying, Camera Trackin

    Sensors, SLAM and Long-term Autonomy: A Review

    Get PDF
    Simultaneous Localization and Mapping, commonly known as SLAM, has been an active research area in the field of Robotics over the past three decades. For solving the SLAM problem, every robot is equipped with either a single sensor or a combination of similar/different sensors. This paper attempts to review, discuss, evaluate and compare these sensors. Keeping an eye on future, this paper also assesses the characteristics of these sensors against factors critical to the long-term autonomy challenge

    Ultrasonic sensor platforms for non-destructive evaluation

    Get PDF
    Robotic vehicles are receiving increasing attention for use in Non-Destructive Evaluation (NDE), due to their attractiveness in terms of cost, safety and their accessibility to areas where manual inspection is not practical. A reconfigurable Lamb wave scanner, using autonomous robotic platforms is presented. The scanner is built from a fleet of wireless miniature robotic vehicles, each with a non-contact ultrasonic payload capable of generating the A0 Lamb wave mode in plate specimens. An embedded Kalman filter gives the robots a positional accuracy of 10mm. A computer simulator, to facilitate the design and assessment of the reconfigurable scanner, is also presented. Transducer behaviour has been simulated using a Linear Systems approximation (LS), with wave propagation in the structure modelled using the Local Interaction Simulation Approach (LISA). Integration of the LS and LISA approaches were validated for use in Lamb wave scanning by comparison with both analytical techniques and more computationally intensive commercial finite element/diference codes. Starting with fundamental dispersion data, the work goes on to describe the simulation of wave propagation and the subsequent interaction with artificial defects and plate boundaries. The computer simulator was used to evaluate several imaging techniques, including local inspection of the area under the robot and an extended method that emits an ultrasonic wave and listens for echos (B-Scan). These algorithms were implemented in the robotic platform and experimental results are presented. The Synthetic Aperture Focusing Technique (SAFT) was evaluated as a means of improving the fidelity of B-Scan data. It was found that a SAFT is only effective for transducers with reasonably wide beam divergence, necessitating small transducers with a width of approximately 5mm. Finally, an algorithm for robot localisation relative to plate sections was proposed and experimentally validated

    A review of sensor technology and sensor fusion methods for map-based localization of service robot

    Get PDF
    Service robot is currently gaining traction, particularly in hospitality, geriatric care and healthcare industries. The navigation of service robots requires high adaptability, flexibility and reliability. Hence, map-based navigation is suitable for service robot because of the ease in updating changes in environment and the flexibility in determining a new optimal path. For map-based navigation to be robust, an accurate and precise localization method is necessary. Localization problem can be defined as recognizing the robot’s own position in a given environment and is a crucial step in any navigational process. Major difficulties of localization include dynamic changes of the real world, uncertainties and limited sensor information. This paper presents a comparative review of sensor technology and sensor fusion methods suitable for map-based localization, focusing on service robot applications

    Device Free Localisation Techniques in Indoor Environments

    Get PDF
    The location estimation of a target for a long period was performed only by device based localisation technique which is difficult in applications where target especially human is non-cooperative. A target was detected by equipping a device using global positioning systems, radio frequency systems, ultrasonic frequency systems, etc. Device free localisation (DFL) is an upcoming technology in automated localisation in which target need not equip any device for identifying its position by the user. For achieving this objective, the wireless sensor network is a better choice due to its growing popularity. This paper describes the possible categorisation of recently developed DFL techniques using wireless sensor network. The scope of each category of techniques is analysed by comparing their potential benefits and drawbacks. Finally, future scope and research directions in this field are also summarised

    Hierarchical-map Updating Approach for Simultaneous Localization and Mapping of Mobile Robots

    Get PDF
    For the tremendously increasing of system state in wild field, the computational complexities of mobile robot system should be taken into account. This paper proposes a hierarchical-map updating approach for simultaneous localization and mapping of robots. The basic idea of hierarchical-map is defining two kinds of maps during the recursive updating process, namely local map (upper map) and global map (lower map). The system states will be updated by the preset maps. The hierarchical-map updating process is just for the upper map and the lower map is updated after a certain running term. In the calculation, the state data of the upper map is far less than that of the lower map. It is validated by the experiments that, the approach is more optimal than others in computational complexities while ensuring the consistency estimate
    corecore