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Abstract— Real-time, accurate, and robust localisation is 

critical for autonomous vehicles (AVs) to achieve safe, efficient 
driving, whilst real-time performance is essential for AVs to 
achieve their current position in time for decision making. To date, 
no review paper has quantitatively compared the real-time 
performance between different localisation techniques based on 
various hardware platforms and programming languages and 
analysed the relations among localisation methodologies, real-time 
performance and accuracy. Therefore, this paper discusses the 
state-of-the-art localisation techniques and analyses their overall 
performance in AV application. For further analysis, this paper 
firstly proposes a localisation algorithm operations capability 
(LAOC)-based equivalent comparison method to compare the 
relative computational complexity of different localisation 
techniques; then, it comprehensively discusses the relations among 
methodologies, computational complexity, and accuracy. Analysis 
results show that the computational complexity of localisation 
approaches differs by a maximum of about 𝟏𝟏𝟏𝟏𝟕𝟕 times, whilst 
accuracy varies by about 100 times. Vision- and data fusion-based 
localisation techniques have about 2–5 times potential for 
improving accuracy compared with lidar-based localisation. 
Lidar- and vision-based localisation can reduce computational 
complexity by improving image registration method efficiency. 
Data fusion-based localisation can achieve better real-time 
performance compared with lidar- and vision-based localisation 
because each standalone sensor does not need to develop a complex 
algorithm to achieve its best localisation potential. Vehicle-to-
everything (V2X) technology can improve positioning robustness. 
Finally, the potential solutions and future orientations of AVs’ 
localisation based on the quantitative comparison results are 
discussed. 
 

Index Terms— Autonomous vehicle, localisation, sensor fusion, 
real-time performance, computational complexity, vehicle-to-
everything 
 

I. INTRODUCTION 
UTONOMOUS vehicles (AVs) are expected to play a key 
role in future intelligent transportation systems due to their 

potential in ensuring safe driving, relieving traffic pressure and 
reducing energy consumption. Current research on AVs has 
entered the road test phase. For example, Baidu has tested its 
Apollo 5.0 system in complex road scenarios, such as curves or 
intersections without special markings [1]. The Google Waymo 
project has also completed over 10 million miles on U.S. public 
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roads and 7 billion miles in simulation [2]. Nevertheless, the 
industry still needs to address several critical challenges before 
the commercialisation of AVs. These challenges include a) 
coming up with real-time, accurate, and low-cost self-
localisation solution, b) achieving real-time and accurate 
environmental perception model, and c) achieving smart, safe, 
and efficient decision making in complex scenarios. 
Meanwhile, the environmental perception and decision-making 
module significantly rely on the real-time and accurate self-
localisation for AVs to achieve safe driving. Thus, Self-
localisation is one of the core elements of AV. Moreover, safe 
driving, such as collision avoidance, can only be guaranteed 
when self-localisation achieves millisecond-level real-time 
performance and centimetre-level accuracy [3]. 

As a typical approach, map-matching algorithm is widely 
used in many localisation solutions equipped with lidar [4], 
radar [5], camera [6], or vehicle-to-everything (V2X) [7]. One 
of the map matching methods is to use an existing map to match 
the detected environment feature (e.g., corner and road 
marking) and thereby obtain vehicle location information. 
Another technique is simultaneous localization and mapping 
(SLAM) used in the application without a priori map. It 
achieves the vehicle position by simultaneously building an 
environment model (the map) for sequential mapping. The 
mapping algorithms mainly focus on abstract data extracted 
from various sensors, such as lidar, radar, camera, or their 
combination. In terms of sensor-based localisation techniques, 
it relies on on-board vehicle sensors to estimate the absolute or 
relative position of AV. It was discussed in detail by previous 
survey [8]. In many sensor-based localisation research, 
“sensor” was regarded as the main localisation sensors that 
authors tried to explore an innovative method mainly based on 
its measurements and aim to solve the positioning challenges in 
some special scenarios. It does not mean the localisation system 
only uses a single sensor to achieve vehicle location. As an 
example explaining this concept, for IMU-based localisation, 
reference [9] proposed an interacting multiple model (IMM) 
method by using IMU and odometer sensor data to eliminate 
the system drift caused by global positioning system (GPS) 
outage or GPS signal block, thereby improved the localisation 
robustness and integrity performance in such driving scenarios. 
The sensor-based localisation techniques can guide the 
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deployment of AV localisation system, which includes how to 
select sensors, localisation algorithms, fusion algorithms, and 
computational resources that can meet real-time performance. 
Moreover, focusing on the localisation input (sensor hardware) 
can allow the readers to better understand the advantages and 
disadvantages of different system deployments in terms of 
accuracy, real-time, robustness, and cost. Therefore, this survey 
will be organised starting from on-board sensors, to discuss 
different sensor-based localisation techniques, then discuss the 
V2X localisation techniques, and finally discuss the data 
fusion-based localisation. 

Fig. 1 shows the different self-localisation techniques for 
AVs including on-board sensor-, V2X-, and data fusion-based 
techniques. The on-board sensor-based localisation system, 
which includes active and passive sensor-based technologies, 
relies on on-board sensors to perceive the surrounding 
environment and then estimate the vehicle position. The V2X-
based localisation approach communicates with surrounding 
environment nodes (e.g., neighbour vehicles or infrastructures) 
to receive their pose information, including vehicle-to-vehicle 
(V2V)- and vehicle-to-infrastructure (V2I)-based technologies, 
which can provide several reference coordinates for the 
localisation algorithm. Data fusion is not a method of directly 
sensing position but of post-processing positioning sensing 
technologies. Its goal is to fuse the measurement results of 
various sensors to obtain better results than individual sensors. 

Active sensor-based localisation actively perceives the 
surrounding environment to estimate vehicle positions through 
on-board sensors, including lidar, radar, and ultrasonic sensors. 
Their ranging principle is the same, which is based on the time-
of-arrival (TOA) method. Their difference lies in the signal 
carriers, namely, laser, radio, and ultrasonic for lidar, radar, and 
ultrasonic sensors, respectively. The difference in signal carrier 
wavelengths results in considerable variations in the cost and 
accuracy of these sensors. For example, lidar usually has the 
highest cost but also the best precision amongst them; the 
converse is true for ultrasound [10]-[13]. 

Passive sensor-based localisation passively receives 
environmental information, from which it calculates the vehicle 
position. Sensors include GPS, IMU, and vision (e.g., 
monocular or binocular cameras). GPS needs three or more 
satellites in the open sky area to obtain vehicle position (2–
10m) according to the spatial triangulation method. The 
advantage of GPS is its low cost, but it often suffers from 

multipath and non-line-of-sight (NLOS) errors in a city 
environment as well as the slow location update rate. IMU uses 
a high-frequency sampling rate (>100Hz) to measure the 
vehicle acceleration and rotation rate. Hence, the position and 
direction of the vehicle can be derived through dead reckoning 
by the given initial pose [14]. Although IMU has a fast location 
refresh rate and high reliability, it is also prone to substantial 
cumulative errors. Vision-based localisation estimates the 
vehicle position by using images from the monocular or 
binocular camera as inputs. This is similar to the vision system 
of humans that determines the position of obstacles according 
to plane triangulation. Rich environmental information in the 
image can provide satisfactory localisation performance under 
adequate illumination conditions but consumes substantial 
memory and computing resources. 

V2V-based localisation refers to AVs under a vehicular ad 
hoc network (VANET), using dedicated short-range 
communication (DSRC) or long-term evolution technique to 
determine the pose of other vehicles and thus improve position 
accuracy of AVs. V2I-based localisation refers to the 
communication between the target vehicle and static 
infrastructures using their exact known location to determine 
the target vehicle position. The types of infrastructure include 
magnetic markers, radio-frequency identification (RFID) tags, 
roadside units (RSUs), and GPS base stations. V2X-based 
localisation has a broad global sensing range (~300m [15]) but 
may suffer from network latency and congestion in the city. 

Many surveys have been published summarising existing 
self-localisation techniques and have comprehensively 
discussed their advantages and disadvantages as well as the 
potential applications of each sensor-based method. However, 
most recent review papers only focus on the following aspects 
in evaluating various localisation methods: 

a) economic and reliable localisation techniques [16], where 
economic corresponding to the cost of localisation system and 
reliable corresponding to how localisation performance 
(includes accuracy and reliability) those techniques can achieve 
in various driving scenarios (e.g., snow weather); 

b) accuracy, reliability and availability [17], where 
availability corresponding to the localisation system should be 
available in different environments, such as a GPS-based 
positioning system in tunnels, a V2V approaches in situation 
with communication latency; and 

c) robustness and scalability [18], [19], where robustness 
corresponding to the localisation system operates with low 
failure rate for long time in different seasons and traffic 
conditions, scalability corresponding to the capacity of the 
vehicle to handle large-scale autonomous driving. 

The real-time performance of self-localisation is one of the 
key indicators to evaluate AV’s safe driving. The above surveys 
also mentioned that researcher should carefully consider the 
computing load and real-time performance of different 
techniques when they design a localisation system. However, 
up to now, no survey has compared and discussed in depth the 
real-time performance of different self-localisation techniques. 
By comparing the reaction time of driver’s behaviour on 
decision-making process [29]. We did literature review for 

 
Fig. 1.  Overview of different self-localisation techniques for AVs. 
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displaying the reaction time of AV’s behaviour from the 
moment of perceiving obstacles to the moment of executing 
control action, as shown in TABLE I. According to computer 
simulation and practical test, the reaction time of whole 
decision-making process for AV is usually cut to 0.5s to meet 
safe driving. However, in extreme cases, detection and 
recognition module, planning and decision-making module and 
execution module will take up nearly 0.5s, which results in the 
execution time reserved for localisation module being very 
limited. Hence, a fast real-time localisation solution can save 
the computing resources for other modules of the AV system, 
such as decision-making, to implement complex strategies to 
ensure safe driving. At present, the real-time performances of 
different localisation solutions are presented on various 
hardware platforms and programming languages. Comparing 
the real-time performance directly using the data provided by 
each self-localisation research paper makes no sense and cannot 
reflect the relative consumption of memory and computing 
resources in an AV. There is also no survey quantifying 
computational complexity of various positioning solutions 
under the same benchmark, which is related to the real-time 
performance and deployment cost of the localisation system. 
This paper aims to investigate existing the state-of-the-art 
localisation techniques and focuses on the proposed innovative 
algorithms or approaches of each solution and overall 
localisation performance in terms of real-time performance, 
accuracy, and robustness; propose an equivalent method to 
quantitatively compare the relative real-time performance 
between different localisation solutions based on various 
hardware platforms and programming languages; and finally 
conclude existing localisation techniques and discuss the 
potential solutions and future orientations based on the 
quantitative comparison results in an AV. The relation and 
difference between our survey and the recent existing surveys 
are summarised in TABLE II. 

The rest of the paper is organised as follows: active sensor-, 
passive sensor-, V2X-, and data fusion-based localisation are 
discussed in Sections II, III, IV, and V, respectively. The 
accuracy and real-time performance of different solutions are 
discussed in Section VI. The conclusions are presented in 
Section VII. 
 

II. ACTIVE SENSOR-BASED LOCALISATION 

A. Lidar-based Localisation 
Lidar-based localisation generally needs to pre-build a 

reference map for matching with point cloud data or lidar 
reflection intensity data. But in the situation of no prior map, it 
will use SLAM technique to construct a rea-time map to match 
with the previous generated map. In AVs’ application, a high-
dimensional map contains rich feature information, which 
improves position estimation accuracy but reduces memory 
efficiency and increases processing time [30], [31]. 

Im et al. [32] established a 1D corner map based on the 
vertical corner of buildings on both sides of the city road for 
matching and positioning. They used the iterative-end-point-fit 
to extract the features of the vertical corner and built the corner 
feature map by the length and direction of the vertical lines. 
Then, they applied feature matching with point cloud data to 
calculate vehicle position. This method reduces matching time 
and the map data file size (~14KB/km) due to less extracted 
feature information. However, the maximum horizontal 
position error reaches 0.46m; moreover, this method is not 
suitable for a region without buildings. Reference [33] 
constructed a 2D occupancy grid map composed of a road 
marking-based road reflective dense map and a vertical 
structure-based probabilistic occupancy grid map. First of all, 
they built a 1D extended line map (ELM) by extracting line 
features of the road marking and corner. The features contained 
only the latitude and longitude information of two endpoints of 
the line. Then, they converted the ELM into a 2D grid map for 
matching during positioning. Compared with [32], [33] added 
the road marking feature to improve the accuracy performance, 
but this method increases ELM data size to 134KB/km. 

The 2D planar map matching for lidar-based localisation is 
very popular in current research. For example, Levinson et 
al.[4] obtained vehicle positioning by using a SLAM-style 
relaxation algorithm to build a flat ground reflective map 
without any potential moving object and then using the partial 
filter (PF) for correlating lidar measurements. In order to further 
improve the robustness, reference [34] used a probabilistic map 
represented as Gaussian distribution over remittance values 
instead of the previous ground map represented as fixed 
infrared remittance values. It enables the stationary objects and 
consistent angular reflectivity in the map to be quickly 

TABLE II 
THE RELATION AND DIFFERENCE BETWEEN OUR SURVEY AND THE RECENT 

EXISTING SURVEYS 

Year  Reference  Relation and difference 

2016 [18] SLAM techniques in industrial robots and AVs 

2017 [19] The SLAM approaches of AVs 

2017 [17] The relative positioning in vehicles 

2018 [16] The advantages and disadvantages of AV 
localisation techniques 

- Our survey 

The innovative algorithms or approaches of AV 
localisation solutions and the real-time 
performance comparison between different 
solutions 

 

TABLE I 
REACTION TIME OF AVS’ BEHAVIOUR FROM OBSTACLE PERCEPTION TO 

ACTION EXECUTION 

AVs’ behaviour Reaction time 
(second) 

Total expected 
reaction time for 
AVs’ behaviour 

(second) 

Perception 

Detection and 
recognition 

~0.1-0.2 [20]-
[22] 

~0.5 [23], [24] 
Localisation 

Expected 
millisecond-

level [3] 

Judgement Planning and 
decision making 

~0.1-0.2 [25], 
[26] 

Reaction Execution ~0.1 [27], [28] 
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identified by Bayesian inference. Then they used offline SLAM 
to align the overlapping trajectories in previous sequential map, 
which makes the localisation system keep learning and 
improving maps. Compared with the method in reference  [4], 
reference [34] improved the localisation accuracy and 
robustness of AV in dynamic urban environments. However, 
the map data size of these two methods has increased to about 
10MB per mile. Reference [35] built a road surface reflective 
intensity map by extracting lane marking. This technique uses 
a curve approximation algorithm to represent roads as a set of 
piecewise parametric polynomials; thus, the pre-built map only 
contains line features. Both methods can reduce memory usage 
and computational complexity. The challenge is that they need 
apparent features of the ground, snow-covered roads, for 
example, can lead to positioning failure. In response to that 
problem, [36] and [37] reconstructed the incomplete lidar image 
of the snow-covered road surface with principal component 
analysis (PCA) to enhance the texture and structure of the road 
representation and obtain the vehicle position. These methods 
can obtain 0.2m lateral position accuracy. References [30] and 
[38] proposed a SLAM technique with matching the Gaussian 
hybrid maps to calculate the location, thus improving the 
robustness of lidar-based localisation. The highlight of the 
hybrid map is adding a z-height distribution to each cell in a 2D 
grid map. This method can achieve lateral position errors within 
10 cm. Although the map data volume is quite large 
(44.3MB/km), it can achieve 0.1–0.2s positioning refresh rate 
with the help of graphics processing unit (GPU) acceleration. 
Other studies were dedicated to reducing the data size of the 
plane map and addressing the trade-off between real-time 
performance and positioning accuracy. For example, Hu et al. 
[39] calculated vehicle positioning in the loose constraint area, 
such as intersections, by building a topological-metric hybrid 
map, whilst a simple topological map was built for the lane-
following driving scene. The data volume of the hybrid map 
was reduced by 50% compared with that of traditional metric 
maps. The pre-built maps mentioned only consider extracting 
the typical static features. However, positioning would fail if 
lidar cannot detect these typical static features due to obstacles 
or scattering surface. In addition to static features, considerable 
research has been proposed to improve position performance 
through tracking dynamic objects with machine learning 
methods of the random forest classifier [40], [41] - e.g., [41] 
achieved successful vehicle positions in about 93% of 
confidence values, or SLAM approach based on a deep learning 
approach of multiple hypothesis trackers with an adaptive IMM 
[42]. By contrast, [43] proposed a method, namely, multi-layer 
random sample consensus (RANSAC), which did not need to 
detect static or dynamic features during registration to iterate 
and update registration results. Experiments for this method 
achieved horizontal and vertical root mean square errors 
(RMSE) of less than 0.076m and 0.15m, respectively. 

The 3D map-based matching can achieve a more accurate 
position because it contains height information of 
environmental objects. Reference [44] built a 3D map by 
extracting road marker features. Then, the system used normal 
distribution transform (NDT) to process uncertain information, 

after which robustness and accurate positioning were derived 
based on PF. The 3D NDT method, however, may require a 
large amount of memory for keeping ND voxel (total 3D ND 
voxels for matching is up to 100MB [31]), which results in a 
positioning time that is as high as that of the second level [45]. 
Li et al. [46] proposed building a 3D occupancy grid map and 
then used a hybrid filtering framework (i.e., a combination of 
cubature Kalman filter and PF) to calculate large-scale outdoor 
localisation and reduce the map data size. Although the amount 
of data was reduced, experiments showed that this approach 
could maintain stable, reliable positioning performance, which 
means the positioning error is less than 0.097m. 
 

B. Radar-based Localisation 
Compared with lidar- and vision-based localisation, radar-

based localisation can meet real-time performance 
requirements because of its memory-efficient and low 
computing load [47], [48]. However, radar-based simultaneous 
localisation and mapping (SLAM) faces the risk of data 
registration errors in map matching due to insubstantial features 
that are sometimes extracted, thus leading to the risk of low 
positioning accuracy [5]. The trajectory-oriented extended 
Kalman filter (EKF)-SLAM technique uses the Fourier–Mellin 
transform to register radar images sequentially and calculates 
vehicle position without matching the features to avoid the risk 
brought about by such features. The disadvantage is that the 
positioning error reaches 13m (Mean) [47]. Reference [49] 
aimed to extend a semi-Markov chain by a Levy process to 
improve robustness in a long-term change environment, and 
83% of the estimated position error was less than 0.2m. For rain 
and snow situations, [50] built a reference map by modelling 
the uncertainties of error propagation and then matched radar 
images to achieve reliable positioning. Reference [51] proposed 
a cluster-SLAM technique that used a density-based stream 
clustering algorithm to cluster radar signals in a dynamic 
environment. An environment scan without measurement noise 
was presented for map matching. PF was applied to use this 
match result for calculating the vehicle position. The size of the 
map used in this technique was only 200KB. 

Moreover, references [52] and [53] proposed a joint spatial 
and Doppler-based optimisation framework to further improve 
the speed of positioning. This framework expresses the 
reference scan by building a sparse Gaussian mixture model, 
which is a sparse probability density function that can reduce 
computational complexity. The positioning refresh rate of this 
method can reach 17Hz. Reference [48] used the radar scanning 
data of the same roads to construct the reference map. Then, 
iterative closest point (ICP) was used to match the radar image 
to estimate the vehicle location. Finally, EKF was applied to 
smooth the estimates. This technology reduces the calculation 
load of map matching due to the small size of the mapping data 
required. However, the challenge is that it requires the latest 
data out from the same model of the sensor and sample from the 
same roads as the reference to perform the matching. 

Furthermore, reference [54] designed an under-vehicle-
mounted localising ground-penetrating radar (LGPR) system to 
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build the road subsurface map. This system can resist signal 
interference by complicated weather because its radar is 
mounted under the chassis to scan the ground. Moreover, it can 
achieve high accuracy (RMSE of 12.7cm) and excellent real-
time performance (~126Hz refresh rate). However, the authors 
also mentioned that the height of LGPR array needed to be 
reduced further for fitting under more passenger vehicles. 
 

C. Ultrasonic-Based Localisation 
Ultrasonic-based localisation is widely used for the 

application of indoor robot localisation due to the low-cost 
ultrasonic sensor. However, short detection distance and 
sensitivity to environmental temperature, humidity and dust all 
limit the wide application of ultrasonic sensor in AV 
positioning [55], [56]. Moussa et al. [57] used the EKF 
algorithm to achieve an ultrasonic-based assisted navigation 
solution. This solution uses the ultrasonic sensor as the primary 
sensor for positioning when GPS fails to limit the drift of the 
vehicle position and enhances the robustness of the system. It 
can achieve excellent real-time performance (~92Hz refresh 
rate), but the position error is up to 7.11m. Jung et al. [13] used 
ultrasonic sensor, encoder, gyro, and digital magnetic compass, 
and together with a SLAM method to estimate vehicle absolute 
position. The average position update time of this method is up 
to 10.65s.  Also, the long-time SLAM calculation process can 
lead to some accumulated errors for the localisation system 
caused by IMU before the position update Therefore the 
average driving distance that can meet the position accuracy 
requirement is only about 5.2m.  In summary, ultrasonic-based 
localisation technique can achieve a low-cost and low-power 
positioning system. However, its localisation accuracy and 
robustness performance still cannot meet the requirements of 
autonomous driving.  
 

D. Discussion 
Accurate and robust feature detection approach in lidar-

based map matching techniques can improve the accuracy and 
robustness performances of AV localisation [58]. In summary, 
in terms of lidar-based 1D map matching techniques, the 
computational load and memory usage in feature registration is 
low since this method only takes a few special-shaped lines as 
features, such as vertical corners shown in reference [32] and 
[33].  However, this method needs to address the challenges in 
the scenarios where there are no vertical buildings on roadsides. 
Compared with 1D map, 2D map contains rich types of features 
but increases the map storage. The intensity-based 2D map 
method can enhance the road representation in snow-covered 
road surface scenarios. And the hybrid map-based algorithm 
can reduce the memory usage and address the trade-off between 
real-time performance and positioning accuracy, such as a 
topological-metric map shown in reference [39]. The 3D map-
based matching algorithms can achieve an accurate and robust 
position which benefit from the 3D features. However, it takes 
the largest computational resource compared with 1D map- and 
2D map-based methods, which will increase the deployment 

cost of AV localisation system. Compared with high-cost lidar-
based localisation, radar is a cost-efficient solution, but the low 
resolution of the environment model obtained by millimetre-
wave radar and the lack of object’s height information make the 
localisation system difficult to achieve robustness and accuracy 
performance. At present, radar is widely used as an auxiliary 
localisation sensor to detect the distance from the vehicle to 
obstacles. The ultrasonic sensor detection range (~3m) decides 
the ultrasonic-based localisation is mainly used in short-
distancing localisation applications, such as automatic parking, 
in which several reference objects are at a close range. 
 

III. PASSIVE SENSOR-BASED LOCALISATION 

A. GPS -based Localisation 
GPS can provide a low-cost, efficient positioning solution for 

an AV. However, GPS is often affected by NLOS, multipath or 
signal block in an urban canyon, all of which pose challenges 
to the goal of providing a reliable vehicle localisation [59], [60]. 

Current mainstream GPS-based localisation improves 
accuracy and reliability by position correction technologies, 
including fusing measurements from different sources [61], 
filtering abnormal signal [62], and map aid [63]. Reference [64] 
improved GPS-based localisation by fusing measurements from 
other sources, including GPS, RFID, and V2V. The authors 
analysed the accuracy of different data sources and filtered out 
redundant connections. They only retained connections with the 
desired accuracy to achieve the robustness requirements in a 
GPS-degraded environment. The position accuracy of the 
proposed method is about 2.9m, and computational complexity 
is about 0.8% of [65]. Reference [62] proposed a GPS abnormal 
signal discrimination processing framework to improve the 
robustness for GPS-based localisation. This framework can 
decide to output original GPS, estimated GPS or GPS with 
removed the abnormal signal according to the quality of 
original GPS. Unlike the two previous technologies, Lu et al. 
[66] improved GPS accuracy by matching a low-precision 
open-source map. However, the limitation of this method is that 
extracting the lane marking features in road junctions is 
difficult. Meanwhile, [67] proposed a global navigation satellite 
system (GNSS)-based localisation method by removing 
abnormal GPS signals and combining with terrain height aiding 
of a digital map. Reference [68] improved GNSS accuracy by 
matching the NLOS signal delays. Despite the effort, the 
position RMS error for [67] and [68] remain as high as about 
10m in an urban canyon scenario. In conclusion, achieving a 
reliable, accurate vehicle location using a standalone GPS 
receiver is difficult. 
 

B. IMU-based Localisation 
IMU, a component of the inertial navigation system (INS), 

can measure the acceleration and pitch rate and has a strong 
anti-interference capability [69]. However, an autonomous 
system cannot use IMU to calculate the position for a long 
distance due to the disadvantage of cumulative errors. In this 
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case, IMU is widely used as a backup sensor or one of the fusion 
sources for guaranteeing continuous localisation when the 
primary positioning sensor is short-time interrupted [70].  

Reference [71] proposed using a dead reckoning (DR)-based 
tightly coupled (TC) scheme to improve accuracy performance 
in urban canyons. Reference [72] used modified TC with 
abnormal GPS measurement rejection to achieve continuous 
positioning under GPS denial environment. Wang et al. [73] 
proposed a scheme based on a set of autoregressive, moving 
average predictive models and occupancy grid constraints to 
improve positioning accuracy further; the scheme can also 
reduce cumulative error of the DR system and multipath 
interference on GPS. Xiao et al. [74] eliminated the effects of 
abnormal signals by using PF smoothing algorithm, which 
considered non-Gaussian noise and process noise from sensor 
measurements. They achieved a cost-effective positioning for 
AVs, although real-time performance requires further 
improvement. Similarly, Belhajem et al. [75] proposed using 
machine learning to determine and compensate the deviations 
of IMU-based localisation during GPS failure. However, they 
only achieved metre-level positioning accuracy. For 
intersection regions, DR error and distance from the stop line to 
the AV were used as the input states of EKF to achieve the high-
precision position in [76]. The DR error in this research was 
calculated by matching curved lanes with waypoints.  To 
further improve the localisation robustness, Ndjeng et al. [9] 
proposed a DR-based IMM by using constrained probabilistic 
models, which improved the robustness and integrity of AV 
localization in the driving scenarios of GPS outage or GPS 
signal block. Gruyer et al. [77] proposed a DR-based credibility 
IMM approach based on Transferable Belief Model (TBM). 
Compared with the reference [9], this method further improves 
the positioning accuracy and robustness. 

In addition to the DR method, pattern recognition for pitch 
rate signal output by IMU can also be used to calculate vehicle 
position. The principle of this method is that the patterns of 
vibration and motion of a vehicle are extracted by analysing 
pitch rate signals. Then, pattern matching is performed with the 
pre-built indexed map for position estimation. This technology 
has no cumulative errors and thus has achieve reasonable 
accuracy (~5m). The disadvantage, however, is that it can be 
easily affected by measurement noises [69], [78], [79]. 
 

C. Vision-based Localisation 
Vision-based localisation can typically achieve reasonable 

accuracy. The popularity of multi-core CPU and GPU and the 
improvement in their powerful parallel image processing 
capabilities alleviate the pressure from high computational 
complexity for this type of localisation methods [80], [81]. 

Reference [82] used four fisheye cameras, a pre-built map 
and the current vehicle pose to detect symmetric park markings 
within a given range in autonomous parking scene. Then, 
detections were taken as orientation marks to match with the 
pre-built map. This method can achieve the vehicle position 
with a parallel position error of 0.3m and positioning time of 
0.04s. Du et al. [83] developed an improved sequential 

RANSAC algorithm to extract lane lines from images 
efficiently for feature matching; they achieved about 0.06m 
position error and a 0.12s positioning refresh rate in a scenario 
with lane lines. Reference [84] built a road landmark-based 
lightweight 3D semantic map for feature matching and then 
minimised the residual registration error to estimate the vehicle 
position. This map can reduce the memory usage, which results 
in just four iterations for image matching. The weakness of this 
method, however, is that it still needs further testing when used 
in a curved road scenario.  

Reference [6] proposed building a planar feature map to 
reduce positioning time. Each planar feature includes its 
position, orientation, texture and observation and is projected to 
a camera view for matching with captured images during 
positioning. The position refresh rate of this method is about 
0.09s. To improve the accuracy and real-time performance of 
vision-based localisation further, [85] and [86] matched the 
captured image with the predefined orthogonal map to obtain a 
correlation distribution, and the correlation distribution is used 
to update a probability distribution of the vehicle pose. Then, 
they estimated the vehicle position using this probability 
distribution. The position accuracy of this approach is less than 
0.14m (RMS), and its real-time performance is about 0.057s. 
However, their proposed approach needs apparent surface 
information of the road. Reference [87] designed a coarse-
grained semantics (e.g., flat terrain, shrubs, or tree) to match 
with a ground image and a satellite map and achieved 
reasonable vision-based localisation performance across 
seasons. Reference [88] combined a semi-dense image 
description based on a histogram of oriented gradient features 
and global descriptors from deep convolutional neural networks 
trained on ImageNet for image matching. These two techniques 
can achieve robust localisation, but their positioning accuracy 
needs to be improved further.  

Meanwhile, reference [89] developed a topological model to 
obtain a set of possible nodes from a reference map that were 
close to a captured image. Then, they matched the extracted 
holistic features with the possible nodes for a closest node. 
Finally, they achieved reliable vehicle positioning with position 
accuracy of 0.45m by associating features from this node with 
local features from an image. This method, however, is subject 
to illumination sensitivity, which may result in positioning 
failure. Reference [90] proposed an extended hull census 
transform method for semantic description and feature 
extraction from an omni-directional image dataset to build a 
topological map. By combining content- and feature-based 
image retrieval methods for scene recognition, that work 
achieved a robust positioning in about 85.5% confidence value 
in changing lightness and dynamic obstacles scenarios by 
matching recognition results with a topological map. The 
challenge of this technique, however, is that its position refresh 
period is up to 2s. 
 

D. Discussion  
To sum up, the analysis in passive sensor-based localisation 

techniques has shown the significant advantages for obtaining 
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low-cost AV localisation. However, it is noted that a standalone 
passive sensor cannot meet the accuracy and robustness 
requirements. GPS is often affected by NLOS, multipath or 
signal block in urban canyons, which pose challenges to 
localisation consistency and integrity. GPS-based localisation 
can be improved through fusing GPS measurements from 
different sources, imperfection signal bounding and map aid. 
The DR system can provide a real-time consistent vehicle 
position when GPS signal is unavailable. For example, the DR-
based IMM method reduced the system drift and improved 
localisation robustness and integrity in the environments of 
GPS outage or GPS signal block, as shown in [9]. However, 
both of GPS-based and IMU-based localisation still need to 
further improve the accuracy, consistency, and integrity 
performance in the situations of long-time abnormal GPS-IMU 
signals occur. Vison-based localisation can achieve a positional 
RMSE of 0.14m. but a reasonable localisation time usually 
requires the system to be equipped with GPU for acceleration. 
Moreover, the reliability of the camera in the conditions of 
inadequate illumination or bad weather (e.g., fog and rain) still 
need to further study. The foregoing discussions show that data 
fusion techniques will be the trend to achieve a cost-efficient 
localisation solution by fusing multiple low-cost sensors. 
Meanwhile, the recent works about sensor fault detection and 
identification approaches in reference [91]-[94] have shown 
significant advantages for improving localisation robustness 
performance, such as IMM-based fault identification method, 
multi-model and fuzzy logic-based fault detection approach etc. 
Future research is required to focus on these techniques and the 
imperfection data modelling methods. 
 

IV. V2X-BASED LOCALISATION 

A. V2V-based Localisation 
V2V-based localisation does not require vehicles to be 

equipped with high-precision sensors for achieving an accurate 
position under a VANET. Instead, it can achieve reasonable 
position accuracy by fusing the coarse pose information from 
other connected vehicles [95]. However, its disadvantage is that 
the insufficient or non-uniform distribution of participating 
vehicles on a road may result in inadequate positioning 
accuracy [96], [97].  

Liu et al. [98] proposed a weighted least square–double 
differences method to calculate inter-vehicle distances based on 
sharing GPS pseudo-range measurements with other vehicles. 
They used a distributed location estimate algorithm to fuse the 
sharing data and achieved a positioning accuracy of about 4m. 
This solution reduces the effects of random noise and improves 
the accuracy of calculating inter-vehicle distances. Reference 
[99] proposed using the Bayesian method to fuse the 
information of GPS position from target vehicle GPS positions 
from other vehicles and inter-vehicle distances for vehicle 
localisation. This method can considerably degrade positioning 
uncertainty. To eliminate the challenge of participating vehicles 
that need a predefined dynamic motion model to implement 
data fusion, reference [100] calculated a belief about vehicle 

current position, which is a probability that can infer vehicle 
position and broadcast it in VANET. Then, they used the angle 
of arrival and TOA techniques to measure inter-vehicle 
distances, which presented the relative position of neighbour 
vehicles. Finally, the vehicle position was estimated by 
calculating a weight sum over locations by its neighbour; the 
location includes a relative position and a belief. The position 
accuracy of this method is about 1.95m, but the refresh rate is 
up to 1.4s (7 vehicles access the network). Reference [101] 
proposed to use fuzzy logic method to achieve an accurate 
vehicle localisation in VANETs. The authors first obtained a 
weight to each nearby inter-vehicle using fuzzy logic. Then, a 
weighted centroid localisation method was applied to assign 
weights to neighbour vehicles, such as vehicles that were closer 
had higher weights, thereby achieve estimated position using all 
vehicles’ weighted coordinates. The simulations results show 
that this method can obtain a sufficient localisation accuracy 
(MSE < 30cm) when the network sizes increase to about 100 
cars. Both reference [100] and [101] allocated confidence 
values to each received position estimation by assigning the 
beliefs or weights to neighbour vehicles and then improved 
localisation accuracy.  

 Reference [7] proposed using a cooperative map matching 
(CMM) method and a dynamic base station differential GPS 
(DDGPS) to improve vehicular positioning. The authors of that 
work implemented a road constraint of nearby vehicles to 
reduce positioning uncertainty and a DDGPS for pseudo-range 
correction. Then, Rivoirard et al. [102] proposed a Chain-
Branch Leaf (CBL) clustering scheme to guarantee that the 
vehicle in reference [7] can exchange its state and pose and 
error correction. Meanwhile, this scheme can provide an 
accurate V2V communication service to the vehicles under a 
VANET. Soatti et al. [103] proposed an ICP approach that uses 
passive physical features (e.g., pedestrian and traffic light) as 
common noisy reference points to improve positioning 
accuracy. This method achieved sub-meter accuracy for 75% of 
confidence level. Both techniques do not need the calculation 
of inter-vehicle distances. Reference [104] proposed a 
detection–rejection approach to eliminate GNSS multipath bias 
and used Rao–Blackwellised particle filter-based map matching 
method to improve position accuracy. This solution can achieve 
the positioning accuracy of about 0.9m in GNSS multipath 
scene, but it is subject to low-frequency noise errors from the 
GNSS receiver. Reference [105] achieved a fast-positioning 
solution by deploying multi-type sensors to identify nearby 
vehicles and cooperating with a local map to quickly achieve 
accurate relative positions. The challenge of this solution is that 
it increases the deployment cost, although its position refresh 
rate is less than 0.1s. 
 

B. V2I-based Localisation 
V2I-based localisation infers the vehicle position based on 

the locations of nearby infrastructure. It can achieve an 
accurate, real-time and robust localisation performance. The 
advantages of V2I technique include high-accuracy locations of 
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infrastructure, stable data sources independent of time and low 
computational complexity.  

References [106] and [107] proposed a magnetic marker-
based V2I localisation. First of all, magnetic markers with 
unique Gaussian distribution of polar array are arranged on a 
road at a certain interval, and the position and distribution of 
each marker are stored in the database. Then, each marker is 
detected, and its Gaussian distribution is calculated during 
vehicle driving. Finally, vehicle position is determined by 
searching this distribution in the database. This method 
minimises the effects of distortion and achieves a centimetre 
level (<10cm) positioning accuracy. RFID techniques, which 
include low-cost RFID reader and RFID tags, are also used for 
localisation. RFID tags are deployed on the road surface, and a 
vehicle equipped with an RFID reader can determine 
positioning from the tags [108], [109]. As for the disadvantages, 
these techniques require high-density infrastructure and easily 
suffer from blocked infrastructure. 

Wang et al. [110] proposed using two cooperation multiple-
input multiple-output (MIMO) radar with direction-of-arrival 
(DOA) method for vehicle localisation. They applied the 
unitary sparse Bayesian learning method to degrade mutual 
coupling and noise of MIMO radar. The advantage of this 
technique is that it improves the robustness of DOA estimation. 
Reference [111] combined an RSU and an INS system to assist 
in vehicle localisation in GPS denial environments. Reference 
[112] used a Bayesian approach to fuse RSS data from two 
RSUs and improve GPS position accuracy. This method 
considers the effects of two-type RSU deployment (e.g., same 
or opposite sides) on vehicle positioning. Reference [113] 
estimated the carrier frequency offset of received DSRC signals 
from two RSUs for vehicle positioning and achieved a 
positioning error of less than 2m. Reference [114] used a pair 
of RSUs on either side of the road and implemented a two-way 
reciprocal TOA to achieve a position accuracy of about 3.3 m. 
However, this technique requires strict deployment of RSU, 
such as height, signal broadcast angle and transmit power [115], 
and it has challenges related to signal latency. Real-time 
kinematic (RTK)-GPS can achieve centimetre-level position 
accuracy. It uses a dual-frequency receiver to obtain GPS base 
station position and then calculates the position by using the 
carrier measurement technique. Differential GPS (DGPS) can 
improve GPS positioning accuracy to a centimetre level by 
using the fixed, known position of the GPS base station [8]. The 
challenges of using the RTK-GPS or DGPS techniques, 
however, are that they require deployment of expensive GPS 
base stations and they are subject to multipath or NLOS errors 
in an urban area. 
 

C. Discussion  
From the review of V2X localisation techniques, both V2V 

and V2I solutions do not require expensive dedicated hardware. 
For V2V-based solution, the sufficient and uniform distribution 
of participating vehicles on a road can enhance positioning 
accuracy and robustness. However, the continuous increasing 
vehicles may result in high system computational overhead but 

the accuracy has not improved much. An efficient clustering 
architecture for creating a hierarchy between the nodes can 
provide accurate V2V communication service under a VANET 
with long distancing. The challenges of accurate information 
exchange between inter-vehicles can be overcome by further 
studies on such architectures. CMM method can provide a 
potential way to discard the multipath errors between antennas, 
but the issues of propagation signal latency still need to be 
further addressed. The signal latency to V2X systems was 
suggested within 10ms  [3]. The signal degradation and packet 
loss can be solved by optimising the network parameters (e.g., 
data baud rate, broadcast frequency, and antenna power etc.), 
which have been discussed in detail by previous survey [16]. 
RFID-based V2I systems can achieve a cost-efficient AV 
localisation. However, these methods require high-density 
infrastructure and easily suffer from blocked infrastructure. The 
RFID-based techniques are very suitable for the applications 
which AV driving on the fix routes, such as sightseeing bus in 
zoo or container handling vehicle in port. Optimising the 
relations between RSU height, propagation angle, and 
transmission power can ensure a wide range of signal strength 
and network coverage for achieving accurate and robust RSU-
based V2I localisation. Though the signal latency still needs to 
be further addressed to improve localisation accuracy. 
 

V. DATA FUSION-BASED LOCALISATION 

A. Multi-sensor-based Data Fusion Localisation 
The previous discussion presented that no standalone sensor 

could meet the accuracy, real-time and reliability requirements 
for AV localisation. Data fusion of multiple sensors shows 
substantial potential for achieving an accurate, real-time and 
reliable self-localisation. 

Reference [116] developed an interacting multiple model 
(IMM) filter, which consists of a vehicle dynamic model and a 
vehicle kinematics model, to achieve cost-efficient AV 
localisation by using low-cost sensors. GPS data and in-vehicle 
sensor (i.e., wheel speed sensor and steering angle sensor) data 
are used in this filter. The IMM filter could weigh an 
appropriate model for data fusion implement based on various 
driving scenes. This method can achieve a reasonable 
positioning performance in a 32-bit embedded processor. 
Reference [117] proposed building a model with three IMM-
based UKFs to fuse low-cost sensor data, such as GPS and 
inertial sensors. This model reduces most of the uncertain noise 
from inertial sensors, predicts and compensates the positioning 
errors and could achieve a position accuracy of 1.18m during 
GPS outages. To dynamic manoeuvres situations, such as 
strong acceleration, high-speed turning, and START and STOP, 
Ndjeng et al. [118] showed that the IMM-based localisation 
system using low-cost sensors (e.g., IMU, odometer, and GPS) 
outperformed EKF-based. They concluded that IMM-based 
positioning robustness performance is better than EKF-based in 
high variability in the vehicle dynamics manoeuvres through 
practical experiments. In terms of combining with DR system, 
Vivacqua et al. [119], [120] built a back lane marking registry 
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(BLMR) model for localisation. This model recorded the lane 
marking detection of the last 240m driven and continuously 
updated their relative position by a DR system. For the first 
step, pose measurement was implemented by matching BLMR 
lane markings with reference map lane markings. Then, robust 
positioning was calculated through the data fusion of pose 
measurements and DR. This method achieved position 
accuracy of about 0.3m and real-time performance of about 
0.008s. Bak et al. [121] proposed a low-cost multi-sensor 
localisation solution for the scenarios with disturbance. They 
used a cheap visual odometry (VO) to bound the cumulative 
error caused by low-cost DR system and achieved a similar 
performance than an expensive INS sensor. Moreover, the 
authors also defined a median retro-projection error calculated 
for all inliers in image pairs data as the confidence indicator. 
This confidence value can offer real-time reliability assessment 
to system. The result showed that the robustness of this VO 
system is similar to that of the high-end INS system. The 
authors also mentioned this indicator can be used as either 
abnormal data filter or adapted noise model. Moreover, the bio-
inspired methods are currently applied for AV localization. For 
example, particle swarm optimization (PSO) is an optimization 
method inspired by the behaviour of biological social group 
such as bee colonies or bird flocks [122], [123]. Godoy et al. 
[122] proposed to use particle swarm localization (PSL) 
algorithm to obtain AV position by fusing low-cost sensors data 
– e.g., GPS, IMU, odometer and a digital map. This method can 
achieve the localisation update time in less than 0.05s and the 
position accuracy is better compared with the EKF method 
when the swarm size is set to around 250 particles. 
Furthermore, Bacha et al. [124]-[126] proposed an optimized 
Kalman particle swarm (OKPS) fusion approach to achieve 
vehicle localisation by fusing the data from low-cost sensors 
(e.g., GPS, INS, and Odometer). This approach combined the 
advantages of different filters (such as EKF, PF, and PSO) to 
solve the swarm particle filter’s premature convergence 
challenge of and traded-off the localisation reactivity and 
robustness issues of AV in dynamic environments. Compared 
to other PSO aided algorithms, this approach can meet the real-
time localisation and improve the localisation accuracy and 
robustness performance in various scenarios (e.g., GPS failure 
scenarios). Furthermore, the bounded-error state estimation 
methods were applied to vehicle localisation in outdoor 
environments, such as set inversion via interval analysis 
(SIVIA) algorithm [127] and constraints propagation approach 
[128]. Kueviakoe et al. [129], [130] introduced a real-time 
interval constraint propagation algorithm for on-road vehicle 
orientation correction using GPS, gyro, and odometer sensor 
data. Wang et al. [131], [132] proposed to use interval 
constraint propagation technique to achieve localisation 
consistency and accuracy of a car-like robot by fusing DR, 
camera and map data. Both solutions considered the localisation 
problem as an interval constraint satisfaction problem. And then 
used the constraint propagation approach to solve this problem. 
Moreover, Xu et al. [133] combined an empirical mode 
decomposition interval threshold filter (EITF) with a least-
squares support vector machine-based nonlinear autoregressive 

with an exogenous input model (LSSVM-NARX)/KF hybrid 
strategy for cost-efficient localisation. They adopted EITF to 
filter the noises from INS and applied LSSVM-NARX/KF to 
predict and compensate the INS position error. This approach 
achieved reasonable positioning accuracy in GPS outages and 
provided navigation at 20Hz.  
 

B. Map-based Data Fusion Localisation 
The map-based data fusion technologies are based on multi-

sensor measurement and improve the localisation performance 
by adding map information. For example, Suhr et al. [134] 
proposed fusing low-cost sensors with a digital map to improve 
real-time performance. They expressed the lanes and road 
marking features as a set of key points and used a front-end 
camera module to process captured images. This solution can 
reduce memory usage and computational overhead; moreover, 
its position refresh rate is about 100Hz, and its position 
accuracy is about 0.5m. Cai et al. [135] proposed a data-driven 
motion model without using inertial sensors to eliminate the 
challenge of integration errors. They corrected GPS positions 
and lateral distances from the camera by using an HD map, after 
which they used these two types of information as fusion data. 
The position error of this method is reduced by 1/3 compared 
with that of pure GPS-based localisation. Gruyer et al. [136], 
[137] proposed a map-aid data fusion method based on an 
accurate digital map, GPS, IMU, and two cameras to obtain a 
sub-decimetre accuracy AV lateral position. They first 
estimated the distance from the vehicle to road markings of the 
vehicle’s right and left sides through two lateral cameras. Then, 
they used EKF to estimate vehicle position by using GPS and 
IMU sensor measurements. Finally, they combined the 
previously estimated vehicle position and matching segment 
position obtained by the point-to-segment-based map-matching 
algorithm to further improve the localisation accuracy and 
reliability. Bresson et al. [138] proposed a cooperative fusion 
architecture based on a laser-based SLAM algorithm and a lane 
marking detection and tracking algorithm to achieve robust 
localisation. This framework can select the best position output 
according to the state of two fusion methods and driving 
environment, thereby improve the accuracy and robustness 
performance of the localisation system. For the localisation 
solutions that require a map, reference [139] proposed using 
high-precision lidar to build a Gaussian mixture map (GMM) 
in order to improve positioning accuracy and robustness. Each 
grid-cell in GMM consisted of laser intensity and altitude, 
which made the matching results against challenging scenes. 
Error-state Kalman filter was adopted to fuse data of matching 
results, GNSS localisation and INS measurements. This method 
achieved a positioning accuracy of about 5–10cm.  In terms of 
SLAM-based fusion techniques, Zhang et al. [140] have 
compared some SLAM-based fusion methods through 
theoretical analysis and have shown that the right invariant error 
EKF (RI-EKF) -SLAM can achieve better accuracy and 
consistency performance compared with special orthogonal 
group SO (3)-EKF-SLAM. Bounini et al. [141] proposed a 
SLAM-based real-time collaborative AV localization approach. 
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In this method, the extended information filter (EIF)-SLAM 
was used to fuse vehicle sensor measurements to obtain the 
local fusion node (LFN) (includes vehicle status, information 
vectors, covariance and other information, etc.). Then, the LFN 
was broadcasted to its neighbours. Finally, a track-to-track 
fusion was applied to integrate LFN information to achieve the 
final vehicle position. This solution can reduce the 
computational complexity of cooperative localisation and 
improve the accuracy and consistency performance. 
 

C. Discussion  
The analysis has shown that the low-cost multi-sensor (e.g., 

GPS, IMU, camera, and odometer etc.) data fusion-based 
techniques can provide a cost-efficient commercial localisation 
solution for AV. Multi-sensor data fusion techniques fusing 
with GPS measurements still need to address the issues of GPS 
integrity. The IMM-based fusion methods can reduce most of 
the uncertain noise from inertial sensors and improve the 
localisation accuracy and robustness during GPS outage or GPS 
signal block. Nevertheless, the positioning error of the IMM is 
still up to the meters level.   The interval method can achieve 
the vehicle localisation with high level of integrity and 
consistency through modelling the imperfection data as 
intervals. The position RSSE and update time of this approach 
can be about 15cm, about 170ms, respectively. The interval 
technique can offer a potential fusion-based localisation 
solution to the market. However, the overall localisation 
performance in different complex environments still need to 
further validation for fully AVs. The cooperative approach 
fusing with a map can also obtain an accurate and robust 
localisation solution. For example, reference [138] shown a 
cooperative approach that can enhance the localisation accuracy 
and robustness by fusing with multi-sensors (e.g., GPS, camera 
etc.), SLAM and a map. Furthermore, the different sensors’ 
fault detection and identification techniques can also be focused 
to guarantee a more robust AV localization. To sum up, the 
foregoing discussions show that data fusion-based technique 
has significant potential to trade-off commercial AVs’ 
localisation performances between economy, rea-time, 
accuracy, and robustness. 
 

VI. ACCURACY AND REAL-TIME PERFORMANCE DISCUSSION 

A. Related Work of Localisation Performance Evaluation 
A real-time, accurate and robust AV localisation is one of the 

key elements to guarantee safe driving. The performances of 
different localisation techniques comparison can guide the 
sensor selection of AV system and research purpose. Many 
works related to the accuracy and robustness performance 
comparison of different localisation algorithms have been 
published. Zhang et al. [140] theoretically analysed the 
convergence and consistency properties of RI-EKF-SLAM and 
compared its localisation performances with SO (3)-EKF-
SLAM. The accuracy and consistency performance of RI-EKF-
based SLAM and optimization-based SLAM were compared 

through 1-D, 2-D and 3-D simulations by Zhang et al. [142]. 
Moreover, Mourllion et al. [143] showed the performances of 
Kalman filter variants-e.g., EKF, UKF, and the Divided 
Differences of first and second order (DD1 and DD2) in 
predicted steps in vehicle localisation. Gruyer et al. [144] 
compared the overall localisation process (predictive and 
corrective step) of these KF variants using criteria based on 
accuracy and filters’ uncertainty and consistency and multi-
sensor experimental measurements. Ndjeng et al. [118] 
evaluated the accuracy and robustness performances of IMM-
based and EKF-based low-cost localisation systems under 
dynamics manoeuvre scenarios. Up to now, few works have 
compared the localisation real-time performance. Reference [6] 
and [151] compared the same solution’s localisation time based 
on CPU and GPU platforms. Reference [145] run a filtering 
algorithm on CPU and GPU to compare their execution time. 
However, the foregoing real-time performance comparisons are 
only running the same algorithm on various platforms. The real-
time performances of different localisation solutions are 
presented on various hardware platforms and programming 
languages. Moreover, the localisation time of the overall 
solution is affected by the step of data extraction and primitive 
search, core localisation algorithm execution, map storage and 
update (if the map was used). To apply a fast real-time 
performance comparison between different solutions without a 
real test, firstly, we assume that the localisation time shown in 
different research papers was relative to a complete localisation 
solution rather than just the algorithm. Secondly, we assume 
that the code running in each solution has made full use of all 
computational sources. Therefore, the localisation time of 
different solutions can be converted to the same benchmark 
based on different hardware computational power and 
programming language execution efficiency. Then, the real-
time performance of different solutions can be approximately 
and quantitatively compared. 
 

B. Equivalent Comparison Method  
The discussion of different localisation techniques shows 

that AV localisation mainly relies on CPU and GPU as the 
hardware platforms and MATLAB and C/C++ as the 
programming languages. As is well known, different hardware 
has different computing capabilities. For example, GPU is 52 
times faster than CPU when the filtering algorithm is used to 
process lidar 3D point cloud data [145]. For the programming 
language, C/C++ is a compiled language that is translated into 
machine language before execution. MATLAB is an interpreted 
language wherein each line of code must be read and interpreted 
by the interpreter during execution, which makes it much 
slower than a compiled language [146], [147]. Therefore, the 
factor of which hardware and programming language is used 
must be considered when comparing the real-time 
performances of different localisation techniques. 

As the first step, the localisation algorithm operations 
capability (LAOC) equivalent conversion factors between 
CPU/GPU families and between CPU and GPU must be 
determined. All CPUs/GPUs in CPU/GPU families are derived 
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from the hardware platform of different localisation techniques. 
In this paper, the single-precision floating-point (SPFP) peak 
performance was used to determine the LAOC equivalent 
conversion relations of GPU/CPU families, because a 
localisation algorithm often involves SPFP operations. In CPU 
families, the SPEC CPU® 2006 benchmark [148] is designed 
for comparing the compute-intensive performance of different 
CPUs at hardware level. This depends on the factors of 
processor, memory architecture, and bus. This benchmark can 
comprehensively evaluate and compare the hardware 
performance of different CPUs [149]. Therefore, the LAOC 
equivalent conversion relations between CPU families are 
based on the SPECfp2006 [150], where CPU relative peak 
floating-point operations per second (FLOPS) performances are 
presented. For normalisation, the minimum value of the relative 
peak FLOPS performance shown in this paper was taken as the 
baseline, and its LAOC equivalent conversion factor was 
determined as 𝜀𝜀ℎ𝑐𝑐 = 1 . The LAOC equivalent conversion 
factors between CPU families were obtained by using 𝜀𝜀ℎ𝑐𝑐 =
 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹/ 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, as shown in TABLE III.  

For GPU families, the factors affecting the FLOPS 
capabilities include frequency 𝑓𝑓, number of cores 𝑁𝑁 and single-
precision fused multiply-add operation (FMA) per cycle of each 
core 𝐹𝐹𝐹𝐹𝐹𝐹. 𝐹𝐹𝐹𝐹𝐹𝐹 can be found in the official website of the 
selected GPU. Theoretical single-precision peak performance 
can be estimated by using the following equation. 
 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑏𝑏𝑏𝑏𝑝𝑝  ≈  𝑓𝑓 ×  𝑁𝑁 × 𝐹𝐹𝐹𝐹𝐹𝐹                      (1) 
 

For the same data transfer and copy,  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑏𝑏𝑏𝑏𝑝𝑝  can 
represent the actual SPFP computing capabilities of a GPU, and 
the transformation relations amongst GPU families are based 
on 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑏𝑏𝑏𝑏𝑝𝑝 . For normalisation, we defined the 
minimum 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑏𝑏𝑏𝑏𝑝𝑝  performance presented in this paper as 
the baseline and its LAOC equivalent conversion factor as 
𝜀𝜀ℎ𝑔𝑔 = 1 . The LAOC equivalent conversion factors between 
GPU families were calculated by using εhg =  FLOPS/
 FLOPSbaseline , as shown in TABLE IV.  

For the LAOC equivalent relations between CPU and GPU, 
Charmette et al. [6], [151] conducted many representative 
works in comparing CPU and GPU computing performance in 
localisation application. In our paper, the conversion factor 
between CPU and GPU was based on their latest research 
conclusion [6]. The conclusion shows that the localisation time 
of a same methodology, GPU, is about 45 times faster than that 
of CPU. The authors mentioned that only one core was used for 
localisation in a dual-core CPU. Therefore, we considered that 
the peak FLOPS performance of CPU in [6] was half of the 
same dual-core CPU, as shown in TABLE III. The LAOC 
equivalent conversion factor between CPU and GPU in [6] is 
determined as 𝜀𝜀ℎ𝑡𝑡 = 45. 

Next, the LAOC equivalent conversion factors between 
C/C++ and MATLAB must be determined. MATLAB is 9–11 
times slower than C/C++ when it can be translated to the best 
C/C++ executable programme [152]. This perfect translation is 

unaffected by several factors, such as programming structure, 
style and language proficiency. It is only related to the 
execution efficiency of the programming language itself. 
Therefore, the LAOC equivalent conversion relations between 
C/C++ and MATLAB were based on the conclusion of a past 
work [152]. We considered taking C/C++ as the programming 
language benchmark, and its LAOC equivalent conversion 
factor was set as 𝜀𝜀𝑏𝑏 = 1 . Thus, the LAOC equivalent 
conversion factor of MATLAB was determined as 𝜀𝜀𝑏𝑏 = 0.1 
based on a previous work [152]. 

TABLE III 
SUMMARY OF CPU RELATIVE PEAK FLOPS PERFORMANCE AND ITS LAOC 
EQUIVALENT CONVERSION FACTORS BETWEEN DIFFERENT LOCALISATION 

TECHNIQUES 

Technique 
(Reference 

paper) 

CPU relative peak 
FLOPS performance 

between different 
localisation techniques 

CPU LAOC equivalent 
conversion factor between 

different localisation 
techniques 𝜀𝜀ℎ𝑐𝑐 

Lidar-based 
[36], [37] 93.8 11.7 

[41] 64.5 8.1 
[43] 16 2 

Radar-based 
[47] 42.5 5.3 

[52], [53] 111 13.9 
[54] 19.2 2.4 

Ultrasonic-based 
[57] 11.6 1.5 

IMU-based 
[73]  11.6 1.5 

Vision-based 
[82] 58.1 7.3 
[83] 83.2 10.4 
[6] 8 1.0 

[85], [86] 93.8 11.7 
V2X-based 

[100] 30.5 3.8 
[105]  110.4 13.8 

Data fusion-based 
[119], [120] 11.6 1.5 

[134] 56.9 7.1 
 

TABLE IV 
SUMMARY OF GPU PEAK FLOPS PERFORMANCE AND ITS LAOC 

EQUIVALENT CONVERSION FACTORS BETWEEN DIFFERENT LOCALISATION 
TECHNIQUES 

Technique 
(Reference 

paper) 

GPU peak FLOPS 
performance between 
different localisation 

techniques 
(Unit: Giga FLOPS) 

GPU LAOC equivalent 
conversion factor between 

different localisation 
techniques 𝜀𝜀ℎ𝑔𝑔 

Lidar-based 

[30], [38]  10974.21 12.1 

[46]  4372.5 4.8 

Vision-based 

[6] 907.2 1.0 

[88] 10974.21 12.1 
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Finally, we selected the baseline peak FLOPS performance 
as the hardware benchmark and C/C++ as the programming 
language benchmark. The positioning time based on different 
hardware and programming languages must be transferred to 
this benchmark for comparison. The transformation method is 
given by the following equation. 
 

𝑇𝑇𝐶𝐶 = 𝑇𝑇𝑅𝑅 × 𝜀𝜀ℎ × 𝜀𝜀𝑏𝑏  

𝜀𝜀ℎ = �
𝜀𝜀ℎ𝑐𝑐                  ,𝐶𝐶𝐹𝐹𝐶𝐶  
𝜀𝜀ℎ𝑔𝑔 × 𝜀𝜀ℎ𝑡𝑡     ,𝐺𝐺𝐹𝐹𝐶𝐶

             (2) 

 
where 𝑇𝑇𝑅𝑅  is the actual positioning time, and 𝑇𝑇𝐶𝐶  is the 

positioning time assumed to be run on this benchmark. 𝑇𝑇𝐶𝐶 
reflects the relative computational complexity of each 
positioning technique. 

 

C. Method Validation   
In this paper, reference [30] is used to assess the proposed 

LAOC-based equivalent comparison method. Reference [30] 
has compared localisation time of the same solution based on 
CPU and GPU platform. 𝑇𝑇𝑅𝑅  and 𝑇𝑇𝐶𝐶  of CPU and GPU, the 
LAOC equivalent conversion factor 𝜀𝜀ℎ and 𝜀𝜀𝑏𝑏 of hardware and 
software, respectively, are presented in TABLE V. TABLE V 
shows that, the difference in positioning times before 
conversion is due to the different hardware platform (CPU and 
GPU). The positioning time after conversion substantially 
increased because the peak FLOPS performance of the 
hardware benchmark is the lowest, and the programming 
language is the same. Moreover, the converted results show that 
𝑇𝑇𝐶𝐶_𝐴𝐴
𝑇𝑇𝐶𝐶_𝐵𝐵

= 61.587
62.073

= 0.99, which means the positioning time based 

on CPU and GPU are similar after conversion. This is because 
both solution A and solution B are the same solution but 
implemented in different hardware platform. Thus, the LAOC-
based equivalent comparison method is reasonable and can be 
used to approximately and quantitatively compared different 
localisation solutions. The relative computational complexities 
of different localisation techniques calculating by using 
Equation (2) are summarised in TABLE VI. 
 

D. Discussion 
1) Accuracy and Real-time Performance 

This section quantitatively compares the computational 
complexities and position errors of all localisation techniques 
mentioned above.  

Fig. 2 shows that, in lidar-based localisation, the 3D map-
based approach is better than the 2D map-based approach in 
terms of accuracy because it contains rich feature information. 
However, the 3D map-based technique increases the memory 
usage and computing load, resulting in high-computational 
complexity of the algorithm. Moreover, despite the less 
difference in accuracy between 2D map-based techniques, 
computational complexity varies greatly due to different 
methodologies. For example, computational complexity of the 
2D GMM matching technique in [30] is about 2,000 times that 
of the combination of multi-layer RANSAC registration and 2D 
map matching method in [43]. The radar- and ultrasonic-based 
localisation techniques have lower computational complexity 
compared with lidar-based ones because they emit low-density 
electromagnetic waves. Computational complexities and 
position errors of radar-based localisation are between lidar- 
and ultrasonic-based localisation; despite the combination of 
particle swarm optimisation and grid map matching method 
achieves reasonable positioning performance, this method 
requires strict sensor deployment. The position accuracy of 
ultrasonic-based technique position accuracy is about 10m as a 
result of the low precision of the ultrasonic sensor. 

Fig. 3 shows that, for pure GPS localisation in the open sky, 
the GPS receiver can output position information with 
frequency of 1Hz and accuracy of 2–10m without being 

TABLE V 
COMPUTATIONAL COMPLEXITIES OF THE VALIDATION EXAMPLE 

Solution  Hardware 
platform 𝑇𝑇𝑅𝑅 (s) 𝜀𝜀ℎ 𝜀𝜀𝑏𝑏 𝑇𝑇𝐶𝐶 (s) 

A CPU 4.562 13.5 1 61.587 

B GPU 0.114 544.5 1 62.073 

 
TABLE VI 

SUMMARY OF THE COMPUTATIONAL COMPLEXITY OF DIFFERENT 
LOCALISATION TECHNIQUES 

Technique 
(Reference 

paper) 

Hardware 
platform 𝑇𝑇𝑅𝑅 (s) 𝜀𝜀ℎ 𝜀𝜀𝑏𝑏 𝑇𝑇𝐶𝐶 (s) 

Lidar-based 
[30], [38]  GPU 0.2 544.5 1 108.9 
[36], [37] CPU 0.1 11.7 1 1.17 

[41] CPU 1 8.1 0.1 0.81 
[43] CPU 0.15 2 0.1 0.03 
[46] GPU 0.05 216 1 10.8 

Radar-based 
[47] CPU 1 5.3 1 5.3 

[52], [53] CPU 0.06 13.9 0.1 0.0834 
[54] CPU 0.008 2.4 1 0.0192 

Ultrasonic-based 
[57] CPU 0.01 1.5 1 0.015 

Pure GPS 
GPS - 1 - - 1 

IMU-based 

[73] CPU  5 ×
10−6 1.5 1 7.5

× 10−6 
Vision-based 

[82] CPU 0.045 7.3 1 0.3285 
[83] CPU 0.12 10.4 0.1 0.1248 
[6] GPU 0.09 45 1 4.05 

[85], [86] CPU 0.057 11.7 0.1 0.0667 
[88] GPU 0.133 544.5 1 72.419 

V2X-based 
[100] CPU 1.388 3.8 0.1 0.5274 
[105]  CPU 0.1 13.8 1 1.38 

Data fusion-based 
[119], [120] CPU 0.008 1.5 0.1 0.0012 

[134] CPU 0.01 7.1 1 0.071 
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restricted by the vehicle operating system. Compared with other 
sensor-based localisations, the IMU-based technique can 
achieve the lowest computational complexity due to its fast 
position refresh rate, but its cumulative error results in a 
positioning error of about 1m in only 10-minute of driving. In 
terms of vision-based localisation, rich environmental 
information contained in an image makes its computational 
complexity similar to that of the lidar-based approach. 
However, vision cannot accurately measure surrounding object 
ranges due to challenges of the image quality and lens 
distortion. Thus, its localisation accuracy is lower than that of 
the lidar-based technique. Moreover, its computational 
complexity decreases with the dimension of reference map, but 
its position accuracy does not change much. 

As shown in Fig. 4, compared with lidar- and vision-based 
localisation, the real-time performance of V2X-based is better, 
but its accuracy is not satisfactory due to challenges of signal 
latency or inadequate participating nodes. 

Fig. 5 shows that, compared with other sensor-based 
localisations, the data fusion-based technique can achieve a 
balance in terms of accuracy and real-time performance. This is 

because it uses the advantages of each sensor to reduce the 
effects of the disadvantages of other sensors, and each 
standalone sensor does not need to develop a complex 
algorithm to achieve its best localisation potential. 

In summary, the computational complexities of different 
sensor-based localisation techniques differ by a maximum of 
about 107 times, whereas the position errors vary by about 100 
times. TABLE VII summarises the performance of different 
sensor-based techniques in terms of accuracy and real-time 
performance.  
 
2) Application Scenarios 

The accuracy and real-time performance that satisfy the 
requirements of safe driving for AV applications are the 
position errors and the position output frequency require to be 
less than 30cm [3] and 100ms [153], respectively. The analysis 
shows that the lidar-, vision-, and data fusion-based localisation 
have the potential to meet the accuracy performance. The lidar- 
and vision-based techniques that use a powerful processor, such 
as high-performance GPU and multi-core CPU, can meet the 
real-time performance requirement. The computational 

  
Fig. 3.  Computational complexity and position error of passive sensor-based localisation 

 
Fig. 2.  Computational complexity and position error of active sensor-based localisation. 
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complexity of data fusion-based techniques fusing multiple 
low-cost sensors (e.g., camera, GPS, IMU, and in-vehicles) is 
lower than that of the lidar- and vision-based techniques. In 
summary, the fusion technique has considerable potential for 
achieving cost-efficient autonomous self-localisation.  

Furthermore, TABLE VII could also guide the localisation 
solution selection in different scenarios. For the urban 
environments where pedestrians and vehicles are highly 
involved in traffic, the localisation accuracy and real-time 
requirements are the highest compared with the other common 
driving environments. Although the lidar-, vision-based and 
lidar- or vision-based data fusion techniques may increase the 
cost of hardware deployment to achieve real-time performance, 

those techniques can obtain precise positioning accuracy. The 
highway and suburban scenarios have fewer pedestrians and 
vehicles around the AV. The accuracy requirement in these 
scenarios can be lower than that in the urban environments. 
However, AVs require long-distance detection sensors or 
means to perceive the surrounding obstacles and high-
frequency position output to meet high-speed driving. Thus, the 
localisation techniques with long-distance sensor perception 
and real-time performance could be a potential choice, such as 
data fusion-, radar- and V2V-based techniques. Since fewer 
obstacles in the dedicated-lane and low driving speed for AVs 
used as city bus or sightseeing bus, the accuracy and real-time 
requirements are lower than the situations mentioned above. In 

 
Fig. 4.  Computational complexity and position error of V2X-based localisation 

TABLE VII 
ACCURACY AND REAL-TIME PERFORMANCE OF DIFFERENT SENSOR-BASED TECHNIQUES 

Requirements High   →  →  Low 

Accuracy Lidar-based Vision-based Data fusion-
based Radar-based IMU-based V2X-based Pure GPS Ultrasonic-

based 

Computational 
complexity Lidar-based Vision-based V2X-based Pure GPS Radar-based Multi-sensor 

fusion-base 
Ultrasonic-

based IMU-based 

 

 
Fig. 5.  Computational complexity and position error of data fusion-based localisation 
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this case, the low-cost data fusion-, V2I- and radar-based 
localisation techniques could be the preferred options. In the 
automatic parking scenarios, the detection distance and 
positioning real-time performance do not need to be as high as 
in the above applications. Therefore, the low-cost ultrasonic- 
and radar-based techniques could be the most promising 
options. 
 

VII. CONCLUSION 
This paper has reviewed the state-of-the-art self-localisation 

techniques of active sensor-, passive sensor-, V2X-, and data 
fusion-based and quantitatively compared their accuracy and 
computational complexity performance. Lidar-based 2D map 
matching methods showed the most significant promise for 
balancing the localisation performance for commercial AVs 
between cost, accuracy, real-time and robustness compared 
with 1D map and 3D map matching approaches. However, 
lidar-based localisation is more expensive solution than the 
other sensor-based localisation, such as radar-based, vison-
based and V2X-based. Furthermore, the real-time performance 
of lidar-based (2D) solutions may suffer from the limitations of 
system computational ability and needs a powerful CPU/GPU 
acceleration, which can increase the deployment cost of AVs. 
Further improvement of the lidar-based (2D) solution is 
required to reduce the localisation update time with low-cost 
processors. Passive sensor-based localisation solution has 
shown the significant advantages in the low-cost of deployment. 
The challenges are that for the typical passive sensors, such as 
GPS-based and IMU, the localisation integrity and consistency 
make this technique still difficult to apply to AV. Vison-based 
localisation can achieve high-precision vehicle positions but 
may require GPU acceleration for proccing substantial image 
data. The reliability of the camera in inadequate illumination or 
lousy weather also needs to be further addressed. V2X 
techniques can offer a cost-efficient AV localisation solution 
under a wide range of signal strength and network coverage of 
VANET. The RFID-based techniques are very suitable for AV 
applications in the fix routes, such as a sightseeing bus in a zoo, 
container handling vehicle in port. However, the challenges of 
signal latency and packet loss in V2X systems need to be further 
optimised to improve localisation accuracy and consistency. 
Compared with other sensor-based localisation solutions, the 
data fusion-based technique has the most significant potential 
to trade-off commercial AVs’ localisation performances of 
economy, rea-time, accuracy and robustness. For example, 
interval theory-based technique can achieve vehicle localisation 
with a high level of integrity and consistency by fusing low-cost 
sensors data (e.g., GPS, IMU, and odometer). Further research 
and validation to this technique under different change 
environments and a variety of driving conditions such as long-
distancing driving will be essential before commercialisation.  

Furthermore, the comparative analysis between real-time and 
accuracy performance shows that the position errors of different 
sensor-based localisation techniques differ by a maximum of 
about 100 times. The lidar-, vision-, and data fusion-based 
localisation techniques have potential to meet the accuracy 

requirement (<30cm) for AV safe driving. The lidar-based 
techniques have achieved the best positioning accuracy 
compared with other sensor-based techniques, and the position 
accuracies achieved by different lidar-based methodologies are 
similar. Moreover, high-dimensional map matching or 
intensity-based matching approaches can reduce position error 
by about 2–3 times but can increase computational complexity 
by about 20–2,000 times. Vision- and data fusion-based 
localisation has about 2–5 times potential for improvement in 
position accuracy compared with lidar-based localisation.  

In terms of real-time performance, the computational 
complexity between different sensor-based techniques varies 
by a maximum of about 107 times. It has great space for 
improvement compared with accuracy. IMU-, ultrasonic-, 
multi-sensor fusion-, and radar-based self-localisation can meet 
the real-time performance requirement (<100ms) for safe 
driving with low-cost processors, whereas lidar- and vision-
based localisation can achieve real-time positioning by using 
powerful processors. However, the IMU-, ultrasonic- and radar-
based techniques have inadequate positioning accuracy and are 
often used as assisted positioning solutions in AVs. The lidar-
based techniques have the highest computational complexity 
and about 2,000 times maximum difference compared with 
different methodologies. The focus on improving the lidar 
image registration methods can enhance the real-time 
positioning performance of lidar-based techniques. The 
computing complexity of vision-based localisation is similar 
with that of lidar-based approach, which has about 1,000 times 
maximum difference compared with those of different 
methodologies. Improving the efficiency and accuracy of the 
captured image association can improve accuracy and real-time 
performance. Moreover, matching low-dimensional features 
can reduce computational complexity but has no substantial 
effects on accuracy. Compared with lidar- and vision-based 
localisations, data fusion-based localisation achieves a better 
real-time performance because each standalone sensor does not 
need to develop a complex algorithm to achieve its best 
localisation potential. In addition, it achieves the best balance 
between accuracy and real-time performance. In summary, 
lidar-, vision-, and data fusion-based techniques can still be 
greatly improved in terms of real-time performance.  

The discussion has shown that no single sensor can meet all 
localisation requirements for autonomous driving. Data fusion-
based techniques will be the research focus for achieving a cost-
efficient self-localisation for AV compared with other single 
sensor-based techniques.  In addition to traditional fusion 
information sources, such as GPS and IMU, V2X will be a 
promising solution mainly due to the excellent robustness 
against illumination and weather. It has a wide detection range 
(~300m), which can increase the data sources and improve their 
stability. However, the trade-off among accuracy, real-time 
performance, and robustness still needs to be researched 
further. Moreover, future research is required to focus on the 
sensors fault detection and identification techniques as well as 
the imperfection data modelling approaches to ensure robust 
and consistent AV localisation. With the rise of new emerging 
methods, such as machine learning and deep learning. The map-
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based localisation performance can be enhanced because the 
artificial intelligence algorithms have great potential to learn 
features automatically. And we refer the reader to the recent 
survey by Fayyad et al.  [154], which provides a comprehensive 
review of deep learning-based localisation. 
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