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Abstract:  

Simultaneously localization and mapping (SLAM) is a fundamental topic in robotics 

and mobile computing communities. Owning to low cost and relatively accurate 

measurement, ultrasonic sensors are widely used in range only SLAM applications. 

But these applications are challenging to accurately obtain an initial position given to 

the SLAM algorithm, and robustly localize the targets in a highly dynamic 

environment. The traditional approaches to solve these problems are Extended 

Kalman Filter (EKF) and Particle Filter (PF) algorithms. However, EKF approach 

suffers from the data association problem and map consistency, PF approach is 

limited by the highly computational complexity. This paper addresses an improved 

particle filter algorithm to solve the ultrasonic sensor based 2D range-only 

simultaneously localization and mapping (SLAM) problem with relatively good 

accuracy and robustness. A technique called Map Adjustment is proposed to 

increase the accuracy and efficiency of the algorithm. Using Map Adjustment, the 

proposed particle filter algorithm can either achieve improved localisation accuracy, 

or maintain the same accuracy but lower computational complexity. The feasibility 

and robustness of this algorithm is shown by experiments. The results demonstrate 

that the proposed algorithm can provide relatively good accuracy and robustness for 

ultrasonic sensor based 2D range SLAM applications. 
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1. Introduction:  

Simultaneous Localisation and Mapping (SLAM) problem [1-3] refers if it is possible 

for a mobile robot at an unknown location in an unknown environment, to 

incrementally build a consistence map of the environment while simultaneously 

determining its location within this map. In order to know the information about robot 

environment, the sensor measurements deliver information about the bearing, 

distance, appearance etc. of nearby features in the environment. There have been 

various mobile computing systems providing in-door localization, using sensors like: 

Ultrasonic, Infrared, Laser or Radio frequency. Of the above sensors, due to the low 

cost and relatively accurate distance measurement, ultrasonic sensors are widely 

used in various range-only SLAM applications [4-9]. However, there are two major 

challenges for these ultrasonic localization systems, the first one is that the initial 

position of the transmitters needs to be known, or should be within a certain range of 

error; the second one is the strong tolerance ability to errors, which requires the 

system robust enough in a dynamic environment where many uncertainties might 

arise.  

In order to overcome the above shortcomings, many researchers have attempted 

different approaches to solve them, which can be mainly classified into two 

categories, which are hybrid-sensor approaches or advanced localisation algorithms. 

Hybrid-sensor approaches attempted to hybrid other sensors with ultrasonic sensors 

to aid the localisation, so that the initial position of the transmitters can be determined, 

and the position errors can be corrected. Muller [9] developed an indoor localisation 

system by using a combination of ultrasonic and radio frequency, with one RF 

transmitter and four ultrasonic transmitters fixed on the ceiling.  While this system 

can provide good accuracies as well as a fairly low cost, the setup of RF transmitters 

in this system is complicated, and the locations of the transmitters need to be 

measured manually. Peterllis [5] used infrared patterns to assist the ultrasonic 

sensors for the estimation of short distances observations. This approach can solve 
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some cases where the distance under test are too short for ultrasonic sensors and 

the extension of the area covered. But localisation accuracy and system robustness 

of this approach have not been actually improved. Errington [10] proposed a Least-

Squares approach to provide the initial position of the stationary vehicle to the SLAM 

algorithm, by using an array of RF identification tags placed at known positions. 

Whilst this approach illustrates the possibility to use RFID to provide relatively 

accurate and low-cost initial position estimation for SLAM applications, the practically 

achieved accuracy is low and instable, up to 20 centimetres.  

The advanced localisation algorithms attempt to use probabilistic based localisation 

approaches [14] to overcome the uncertainty of a highly dynamic environment for 

ultrasonic range-only SLAM applications. Current advanced localisation algorithms 

mostly rely on a probabilistic framework: Bayesian Filter [15]. Extended Kalman Filter 

(EKF) [16] and Particle Filter [11] are two common and well-known approaches to the 

integration and implementation of Bayesian Filter. The major advantages of EKF 

based SLAM approaches are its capability of providing accurate non-linear 

estimation in some practical problems and easily implemented. However, EKF based 

SLAM approaches suffer from Data Association problem [17], which refers that the 

robot cannot identify each feature practically, especially when the mapping process is 

complicated. Another problem of EKF based SLAM approaches is the linear 

approximation of motion and observation model, which would produce the errors 

affecting the map consistency [18]. Compared to EKF based SLAM approaches, 

Particle Filter based SLAM approaches [11] have been shown to be more robust. 

The main strength of particle filter is its ability to solve non-linear problems and its 

robustness in dynamic environment. These strengths make it particularly suitable for 

the ultrasonic range-only SLAM applications because the observation model of the 

ultrasonic sensor is non-linear and not invertible due to the noisy of ultrasonic sensor 

reading. Another advantage of particle filter is that the initial system states do not 
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need to be known, since the position errors would be converged by continuous 

sampling data.  

However, there are still three major difficulties of applying particle filter into ultrasonic 

sensor based range-only SLAM applications: the first one comes from the nature of 

the ultrasonic sensors: the observation model is non-linear and not invertible. The 

second difficulty is the fact that the motion model of the mobile device or robot is very 

un-deterministic and without directional information. Great ambiguities arise because 

of the non-linearity. Finally, the computational complexity of Particle Filter has been a 

barrier that makes it intractable for SLAM. In localization the state space usually has 

just 3 or 4 dimensions, while in SLAM the number of features can easily be an order 

of hundreds. The number of particles needs to rise rapidly with the dimension of the 

state space, in order to achieve a satisfactory result. Consequently, for the 

standalone ultrasonic sensor based range-only SLAM applications, the efficient 

advanced localisation approach with good accuracy and robustness to dynamic 

environment is still a challenging task.   

This paper proposed a particle filter algorithm to solve the ultrasonic sensor based 

2D range-only SLAM problem. This algorithm uses the distance based straight 

observation model and 2D Gaussian based motion model to predict and update the 

state of localisation system with the capability of reducing the ambiguities at 

initialisation step. A novel approach called “Map Adjustment” is presented to reduce 

ambiguities and increase accuracies in this particle filter algorithm. This method 

exploits a structural property of the SLAM problem by simultaneously maintaining an 

estimation of the location information and map features in each particle. Hence when 

given enough sensor reading this approach can effectively estimate the path and the 

map features. The results demonstrate that the proposed algorithm can provide 

relatively good accuracy and robustness for ultrasonic sensor based 2D range SLAM 

applications. The main contributions of this paper are as follow:  
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(a) . An efficient particle filter algorithm with the distance based straight 

observation model and 2D Gaussian based motion model is build and 

implemented to solve the ultrasonic sensor based 2D range-only SLAM 

problem. 

(b) . A technique called Map Adjustment is proposed to increase the accuracy 

and efficiency of the algorithm. Using Map Adjustment, the proposed particle 

filter algorithm can either achieve improved localisation accuracy, or maintain 

the same accuracy but lower computational complexity.  

The rest of the paper is organized as follows. Section 2 describes the definition of 

system state and models. Section 3 present the proposed particle filter based 

approach, and section 4 shows their experimental validation results. Section 5 gives 

a summary of the conclusions and future work. 

 

2. System State and Model:  

This section provides a comprehensive description of the definition of system states 

and system models for ultrasonic sensor based 2D range SLAM applications.  

 

2.1 System State:  

In terms of the dimensions of 2D range-only SLAM, the state space where this SLAM 

algorithm operates is two-dimensional. Hence all the features in the map as well as 

the location of the targeted object can be represented by Cartesian coordinates. 

Several ultrasonic transmitters are assumed to be mounted around the surrounding 

of the robot or human carrying a mobile device equipped with an ultrasonic receiver. 

Each feature of the map actually represents an ultrasonic transmitter, as shown in 

Fig.1.  
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                    Fig. 1 ultrasonic sensor based 2D range SLAM applications 

 

Each feature of the map actually represents a node of ultrasonic sensor transmitter, 

which are denoted as fn , where n is an index of ultrasonic sensor transmitters. The 

location state represents the position of targeted object, is defined as S: where n is 

index of transmitters: 
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The system state, at time t, is then defined as xt :  
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Given the above overview of system state, the targeted object starts moving from an 

initial position 0S  without prior knowledge of the sensor nodes 1, 2... nf f f . As the 

targeted object keeps moving it receives relative range data from the ultrasonic 

sensor transmitters. By using these sensor data, the particle filter based SLAM 

algorithm tries to estimate the path , ,....0 1S S St of the targeted object. 

 

2.2 System models:  

There are two models that need to be implemented, namely the observation model 

and motion model. Their specific implementation is characterized by the nature of the 

ultrasonic sensor system and the motion kinematics. Bayesian filter can be defined 

as a probabilistic distribution: Pr( | )t td s , where ,t td s  are the targeted object location 

state and ultrasonic sensor reading over time t respectively. 

The observation model tells the probability of obtaining a mobile robot position at a 

certain location state. Unlike most other SLAM problems that use range-bearing 

sensors, the characteristic of the ultrasonic sensor is that it can only provide relative 

distance information but not bearing information. Also the distance information 

contains some noise which is caused by errors of transmitters. Reflection of the 

ultrasonic on walls or other obstacles will also bring noise. In this paper, it only 

considers the major error caused from ultrasonic sensor transmitters, the external 

noise like reflections and obstacles is concerned for future development. The straight 

observation model is given by the following equation: 
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2 2( , ) ( ) ( )s s f s f sd g f s x x y y w     
          (3) 

 

Where:  ( , )f fx y  is the coordinate of a feature  

             ( , )s sx y  is the coordinate of the targeted object 

             
nd  is the relative distance from the targeted object to a feature n 

              w  is the Gaussian noise characterizing the errors of the sensors  

 

At each time step, the sensor attached to the targeted object receives observation 

information from all features.  

 

The motion model characterizes the targeted object location states over time. It helps 

to predict the next targeted object location state given the most current one. When 

implementing the motion model, the target mobile object trajectory is associated with 

direction or speed of the movement that is random. 2D Gaussian model is used to 

approximate the motion regarding as its ability to cover all possible motion directions. 

When given the location state St  at the time step t, to predict the location state 1St  

at the time t+1, a number of particles are randomly distributed from a 2D Gaussian 

distribution with zero-mean. These particles form a circle with origin at St   and its 

radius is determined by the standard deviation of the 2D Gaussian distribution.  

 

3. Algorithm description:  

This section would represent the proposed particle filter algorithm in this SLAM 

solution, which is based on the similar mathematical framework of FastSLAM [18]. 

The estimation of the system states is factorized into the estimation of the location 

state and the estimation of the feature states conditioned on the targeted object’s 
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path, also the estimation of every feature is independent of each other; the location 

state estimation is calculated using a particle filter. By exploiting the fact that each 

feature is conditions on the path, each particle requires maintaining its own 

estimation of the whole map. Based on above the framework, the data structure of M 

particles is illustrated in Fig.2: 

                       

                                               Fig.2 Data structure of Particles 

 

Each particle has 2 (n + 1) states: 2 location states and 2n feature states. In a 

mathematical form, each particle is: 
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          (4) 

 

Where:  m is the index of the particle 

             t  indicates the time step  

           
m

ts  is the location of the targeted object (mobile robot)  

          
m

tnf ,  represents feature n.  
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The particle filter algorithm operates on a set of particles
m

tx . Each iteration of the 

algorithm can be divided into the following stages: [1] Initialization [2] Apply motion 

model and apply observation model and weight all the particles [3] Map Adjustment 

[4] Resampling.  

 

3.1 Initialization:  

In EKF-based SLAM, its task is to initialize the mean and covariance matrix for the 

state vector, while in this particle filter based SLAM it is to initialize the location state 

and feature states in each particle. The initialization process can be quite difficult 

when a single measurement is not enough to constrain a feature’s location in all 

dimensions. This problem leads to great ambiguities about the feature states at the 

beginning of this algorithm. In this paper, an approach is employed to reduce 

ambiguities by using the first two measurements to obtain a rough idea of where the 

next location states should be, i.e. in which quadrant the state is. Then a random 

point is chosen in that quadrant to be the next location state, as shown in Fig.4.  

                

                                     Fig. 3  The initialization process.  
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In Fig.4, at the beginning (time step 1), the distance measurement (here it is 20cm) of 

feature A is received. Hence we put feature states of all particles on a circle (the grey 

points) with a radius of 20 to approximate feature A, and put location state of 

particles on the origin to be the initial location state (the grey triangle). At time step 2 

we put a random point to be the next location state (the black triangle) and based on 

this point to estimate feature A (the black points). The ambiguity about feature A is 

reduced from a circle to some points. 

 

3.2 Weighting 

After the initialization, the motion model is applied to all particles. The location state 

of each particle will be replaced with a new one generated from the motion model 

while the feature state of each particle will remain unchanged. Fig.4 illustrates an 

example showing one particle being applied the motion model. Before applying the 

motion model, the particle has an estimation of the mobile robot location state at 

( , )s sx y  and estimation of Feature 1 at 1 1( , )f fx y . After applying the motion model 

the location state is replaced with 
'( , )s sx y  while the estimation to Feature 1 remains 

unchanged. Only applying the motion model to all particles does not represent the 

true posterior of the path and features since it does not incorporate the observation. 

Therefore the weighting process is required which gives individual particle a weight to 

reflect the observation. Before describing how to implement the weighting process, 

we need to define some terms: At time step t, before receiving the observation, each 

particle has its estimation to the location state and feature states. Then it defines 

‘predicted location state’ as the location state after being applied the motion model, 

and defines ‘predicted observation’ as the distance measurement from the predicted 

location state to a feature.     

 



12 

 

         

                                      Fig.4  The weighting process. 

 

Regarding as Fig.4, ( , )s sx y is the predicted location state and d is the predicted 

observation. Then the weight of each particle should be determined by the difference 

of the predicted observation and real observation. If the predicted location state 

'( , )s sx y  and feature state 1 1( , )f fx y  is very close to the real states. Then the 

predicted observation d will be very close to the real observation. Hence this particle 

will have a high weight. In a probabilistic math form, the weight of each particle is 

given by: 

 

                           0: 1 0: 1( | , )Pr( | , )m m m

t n t n t t nw Pr d f s f s d df          (5) 

 

Where:   m is the index of the particle,  

               t is time step,  

              nf  is feature n,  

              td  is the observation.  
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Equation 5 is implemented to calculate the real observation 
td under a Gaussian 

with mean 
'

td and standard deviation   determined by the observation noise. The 

weight of each particle is calculated using the following equation: 

                            

' 2( )

1/ 2 2(2 )

d d

allfeatures

w e





  
                              (6) 

 

3.3 Map Adjustment 

Map Adjustment is novel techniques invented in this paper. The basic idea of Map 

Adjustment is: For each particle, after applying the motion model and weighting, 

when the observation is received, each feature’s state is then adjusted so that the 

difference between the predicted observation and real observation becomes smaller. 

Fig.5 shows one particle example of the Map Adjustment: 

                      

                       Fig. 5 Illustration of the Map Adjustment  
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At the beginning, a distance measurement of feature A is received hence we put its 

estimation (the grey circle) on a circle (with a radius of the distance r). Then the 

motion model is applied which moves the location state from ),( ss yx  to 
'),( ss yx  (the 

grey triangle). If the black circle is the real location of feature A, then a new 

observation d  will be received. Then we compare the real observation d  with the 

predicted observation
'd . Typically, d  is larger then 

'd so the estimation to feature A 

is moved to the dashed circle. By doing so the estimation to feature A will be closer 

to the real one. How far the grey circle should be moved depends on the difference 

between 
'd and d , and the radius r. In this implementation, the following equation is 

used to calculate the movement: 

                                      

'( )
*

d d
movement p

r




                     (7) 

 

Where p is a parameter which must be specified manually based on experiments. By 

using the Map Adjustment, the accuracy of the estimation to features can be greatly 

improved, or can be maintained but fewer particles are required. 

 

3.4 Resampling 

Resampling is the last step in each iteration. This step is very much the same as the 

one in Particle Filter Localization. In this process, those particles with large weight 

will be duplicated while those with small weight will be deleted.  

The summary of the whole particle filter localization algorithm for ultrasonic sensor-

based 2D range-only SLAM program, as shown in Fig.6: 
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                         Fig. 6  The flow chart of proposed algorithm. 
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4 Experimental Validation 

A number of experiments have been carried out, using different ultrasonic datasets 

from both practical observation and system simulation, different numbers of particles 

and other various settings. The goal of these experiments is to evaluate the accuracy, 

robustness and efficiency of this particle filter based SLAM solution, and to 

investigate if this algorithm has been successfully implemented for ultrasonic sensor 

based mobile robot 2D range position estimation and tracking.  

 

4.1 Experiments with Different Ultrasonic Datasets  

In this experiment, ultrasonic datasets are observed within some continuous time 

steps which reflect the sensor noise and the motion kinematics of a human walking at 

normal speed are used. In particular, in the following datasets, a Gaussian with zero 

mean and a standard deviation of 0.6 is used as the noise in the observation model. 

In both of the two datasets there are four simulated features in the map with the 

following states: Feature A: (10 dm,10 dm) Feature B: (21.92 dm, -0.65 dm) Feature 

C: (-11.95 dm, -16.6 dm) Feature D: (-5 dm, 15 dm) The above feature states are 

called real feature states in the following sections. 

In the first dataset, the real path of the mobile robot is tested deliberately to avoid 

ambiguities and should have some varieties in all directions. The experiment results 

in Fig. 8 show that: at the beginning the path estimation is not correct, and neither do 

the feature estimations. This is due to the fact that there are a lot of ambiguities 

about each feature. For instance, at time step 3, there are several estimations to 

feature C, which are distributed quite depressively (the grey circles). These 

ambiguities cause the path estimation to be ‘twisted’ (the blue line). However as the 

mobile robot keeps moving, at time step 60, both the feature estimations and path 

estimation converge to the real ones. Fig.8 (b) shows the errors of the location 

estimation over time. 
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            Fig. 8 (a) Regular Dataset Experiment Results 

 

        Fig. 8 (b)   Errors of the location estimation over time 

 

Fig.8 illustrates the errors of the path estimation from time step 0 to 60. At time step 0 

since it assumes that the estimated location and the real location are both at the 
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origin, there are only small errors at the beginning. As the algorithm keeps iterating, a 

significant error occurs at about time step 20. Compared to Fig.9, it concludes that 

this is because the mobile robot changes its direction at that time. Nevertheless, as 

the mobile robot keeps moving, the errors get smaller and smaller and finally 

converge. Fig.8 (b) also shows that compared with the real feature state, the errors 

are very little. At time step 60 the estimations to each feature are (calculated using 

the mean of the corresponding feature estimation of all particles): 

Estimation of feature B: (22 dm, -0.074 dm)        real: (21.92 dm,-0.65 dm) 

Estimation of feature C: (-12.25 dm, -16.23 dm)  real: (-11.95 dm,-16.6 dm) 

Estimation of feature D: (-4.336 dm, 15.29 dm)   real: (-5 dm, 15 dm) 

Compared with the real feature state the errors are very little. 

 

In the second experiment, a dataset observed with longer time steps (120 time steps) 

is used, to test the stability of this algorithm. Result is shown in Fig 10 path 

estimation with long time steps. Fig 9 illustrates the estimation error on path over 

time. From Fig.9, the limitation of X and Y axis are separately (-20 dm, 10 dm) and (-

10 dm, 20 dm), thus we would get the max X and Y error on unit percentage is about 

1/30.  
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                      Fig.9 (a) Path estimation with long time steps 

 

                     Fig. 9 (b) Error on path estimation over time 

Fig.9 shows that after time step 40, the error converges to a stable level and remains 

relatively small.  
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4.2 Map Adjustment Improvement the accuracy 

Map Adjustment technique proposed in this paper can help to improve the accuracy, 

or can maintain the same accuracy but fewer particles are required. Fig 10 illustrates 

a comparison of two experiments using 200 particles. The Figure 10 (a) is the error of 

the path estimation over time without the Map Adjustment, while the Figure 10 (b) is 

with Map Adjustment. Clearly after applied the Map Adjustment the estimated path 

converges more quickly to the real path. The reason is that the map adjustment gives 

a limitation on the predicted particle estimation, and shortens the time of mobile robot 

tracking from unstable state to stable state.  

 

                      Fig. 10(a) Algorithm without Map Adjustment 

      

                           Fig. 10 (b)    Algorithm with Map Adjustment  
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4.3 Performances with different Number of Particles  

The number of particles used in this algorithm will significantly affect its performance. 

Few experiments are carried out using 100, 200, 300, 400, 800 and 1000 particles, 

respectively. Fig.11 and 12 show the performance of this algorithm in difference 

number of particles. (CUP 2.4 GHz, RAM 1GB). The platform of algorithm running is 

the common experiment environment on windows XP and Visual C++. Based on the 

above experiments, it appears see that the time this algorithm takes is linear to the 

number to particles, and is also linear to the number of features in the map. However, 

as the number of particles reach about 400, the position error would be not improved 

and remain a stable level. 

 

                     Fig.11  Processing time with increasing number of particles  
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                      Fig.12 Position error with increasing number of particles. 

 

Base on results from the above experiments, it can conclude that:  

1. The real path and the number of time steps will affect the robustness of this 

algorithm. Adding more varieties along the path, and increasing the time steps will be 

helpful in terms of accuracy. In some circumstances where the path is too symmetric 

and the number of time steps is too small the algorithm may fail.  

2. The estimated path and map are ‘relative’. There is no fixed orientation of the 

estimated map and path, i.e., their orientation is determined by how the first observed 

feature is initialized. 

3. The number of particles has a great impact on the performance. More particles will 

bring better accuracy but worse efficiency. Whereas using fewer particles can 

improve efficiency but then this algorithm may not be able to obtain accurate 

estimation. Overall using 400 particles is fairly enough to achieve the balance 

between spend and accuracy in the above experiments. 
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5. Conclusion and Future Work 

SLAM has been a fundamental topic during the last decade as it allows the 

deployment of mobile systems within an unknown or partially unknown environment. 

Ultrasonic based SLAM application yields great potentials in various fields like robotic 

navigation, mapping, and mobile computing localization.In this paper; an efficient 

particle filter algorithm has been designed and implemented to solve the problem of 

ultrasonic sensor based  2D range only SLAM for mobile robot tracking. The particle 

filter approach can improve the efficiency by factoring the high-dimensional SLAM 

problem into a product of several low-dimensional estimation problems. Thus the 

high-dimensional SLAM problem is possible to be solved using particle filter. The 

experiment results show that the algorithm would achieve the good accuracy and 

robustness to dynamic environment, with the capable of dealing with noisy 

observations on ultrasonic sensors. The strengths and limitations that arise 

throughout the progress of this work will lead to the following issues that warrant 

future research. Firstly, the current implementation of the motion model only makes 

use of previous location state and totally ignores the past states. Possible 

improvements can be made to consider the historical location states so that we can 

obtain some directional information. Secondly, it would be interesting if this algorithm 

can be extended to solve a 3D range mobile robot tracking. The estimation of 

orientation of mobile robot would be considered in further research.  
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