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Abstract— This paper addresses the problem of Camera 

Tracking in virtual studio environment. The traditional 

camera tracking methods are vision-based or sensor-based. 

However, the Chroma Keying process in virtual studio 

requires the color cues, such as blue screen, to segment 

objects from images and videos. It limits the application of 

vision-based tracking methods in virtual studio since the 

background could not provide enough feature information. 

Therefore, in our research, we would try to apply the SLAM 

(simultaneously localization and mapping) methodology 

from mobile robots to the camera tracking area. We 

describe a sensor-based SLAM extension algorithm for 2D 

camera tracking in virtual studio. Also a technique call Map 

Adjustment is proposed to increase the accuracy and 

efficiency of the algorithm. The simulation results would be 

given in the conclusion.      

Keywords-SLAM, Particle Filter, Chroma Keying, Camera 

Tracking 

 

I. INTRODUCTION 

Camera tracking in unprepared scenes is a hot research 
topic recently since it could be applied into various areas, 
etc augmented reality, virtual reality. In virtual studio 
environment, it is difficult to obtain a system, which is 
sufficiently accurate, fast and robust for effective camera 
tracking and also suitable for chromakeying process in 
video or movie production. The chromakeying is the 
process of segmenting objects from images and video 
using color cues. A blue screen placed behind an object 
during recording is used in special effects and in virtual 
studios. The blue color is later replaced by a difference 
background. 

The existing camera tracking techniques are classified 
into vision-based tracking methods and methods based on 
sensors tracking. The vision-based tracking approaches [1] 
[2] are based on image information, they track position 
and rotation of a camera by using the information 
contained in images sequences, such as fiducial marker or 
feature points. Though SLAM have been applied into the 
pure vision-based tracking method, the high input data 
rate, the inherent 3D quality of visual data and the 
difficulty in extracting long-term features to map limit the 
range of its possible applications of vision-based tracking 
system. 

The sensor-based tracking methods are based on active 
sensors, which incorporate powered signal emitters and 
sensors placed in a prepared and calibrated environment, 
such as magnetic [3], optical[4], radio, and ultrasound-

guided. However, most of the active (sensor-emitter) 
tracking systems directly observe the position or 
orientation parameters of camera so that it is easy to be 
inaccurate due to the drawback of sensor system. 
Magnetic tracking suffers in terms of jitter; optical 
tracking is computationally expensive and slow. 

In the last several decades, SLAM technology has 
been of great interest for mobile computing and robotic 
researchers. In the field of mobile computing, by 
providing the location information of a user, it can be 
applied to build others application. In order to know the 
information about robot environment, the sensor 
measurements deliver information about the bearing, 
distance, appearance etc. of nearby features in the 
environment. There have been various mobile computing 
systems providing in-door localization, using sensors like: 
Ultrasonic, Infrared, Laser or Radio frequency. Some of 
these systems are commercial and have achieved 
impressive success, e.g. the Active Badge System [5] by 
AT&T lab in Cambridge University, the RF transmitter 
and ultrasonic transmitter system in Bristol University by 
Randel and Muller [6]. 

    In our research for virtual studio, the chromakeying 
process limits the application of vision-based methods in 
virtual studio since the blue screen would not give enough 
feature information for tracking. So our work would is 
highly focused on the application of the SLAM 
methodology from mobile robot to the camera tracking 
area. Since the SLAM methodology does not depend on 
the individual character of sensor system, it would use the 
statistic and probabilistic algorithms to track the camera 
by only using simple 

     In this paper, Section 2 gives a basic literature 
review of virtual studio and SLAM methodology. Section 
3 presents sensor-based SALM algorithm for camera 
tracking. Section 4 describes the simulation results and 
analysis. Section 5 draws some conclusions and future 
work.  

II. LITERATURE REVIEW 

A. Virtual Studio  

Virtual studios have long been in use for commercial 
broadcasting and motion pictures. Most of virtual studios 
are based on “blue screen” technology, and its two-
dimensional (2-D) nature restricts the user from making 
natural three dimensional (3-D) interactions. In general, 
virtual studio sets require “blue screen” (Chroma Keying) 
technology, high-end graphics workstations, camera 
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tracking technology and signal compositing for high 
realism, and exact mixing results [7].  The 2-D nature of 
current virtual studios as developed and used in the 
current broadcast industry limits its use to situations where 
the camera angle is fixed and there is minimal user 
interaction [8].  

Yamanouchi overcome the limitation of the cost and 
space for the conventional blue-screen setups in their “real 
space-based virtual studio” system [9]. This system 
combines the real and virtual space images. The real and 
virtual images are mixed using the depth information in 
real time, but their algorithms are limited only to indoor 
studio sets. The most straightforward method of extracting 
3-D information from a scene is to use multiple camera 
views and stereo correspondences. Scharstein and Szeliski 
gave a very good survey and taxonomy of the different 
algorithms and approaches to the stereo-correspondence 
problem [10]. Yang introduced a new method for using 
commodity graphics hardware to achieve real-time 3-D 
depth estimation by a plane-sweeping approach with 
multiresolution color-consistency tests [11]. These 
methods are the main approaches for the extraction of 
camera parameters.  

Meanwhile, Chroma Keying is a very important issue 
in virtual studio. Chroma Keying is used in video and 
movie production for replacing the background in special 
effects and in virtual studios applications and for hiding 
objects. It is a staple of video production, provides a good 
starting point for understanding the historical development 
of virtual studios. In traditional chromakeying, the subject 
is shot against a constant background such as a blue 
curtain or screen. This “blue screen “ shot then passes 
through a chromakeyer, where it is combined with a 
second shot containing the new background. Conceptually, 
chromakeyer operation is simple: replace the foreground 
with the background in those places where the foreground 
contains a particular color known as the key color. The 
chromakeyer itself may do so automatically. Despite of 
chromakey systems’ sophistication, their operation 
imposes a fundamental constraint: The foreground camera 
can not move- it must be “lock off” for the shot’s duration. 
The spatial relationships existing between the two layers 
are not consistently maintained.  

B. SLAM methodology  

SLAM stands for Simultaneous Localization and 
Mapping, which has been a fundamental topic in robotic 
and mobile computing communities. In our research work, 
we would extend the SLAM method from mobile robot to 
camera tracking. Since the existing techniques in the 
literature are mostly concerning about robot, the 
description of SLAM methodology is more based on 
robotics. SLAM stands for Simultaneously Localization 
and Mapping, and Localization deals with the problem of 
trying to find the location of the robot, given a map and 
some sensor reading data. Mapping is the process of 
building and maintaining a model of the surrounded 
environments. Localization and mapping have been under 
active development during the past several decades, the 
first paradigm is called model-based [12] in 1970s. In the 
1980’s, the Brook’s [13] behavior-based architecture 
becomes more popular. The last paradigm emerged since 

mid 1990s, which is still under rapid developing, is 
usually termed probabilistic robotics [14]. This method 
describes all the information in a probabilistic way, unlike 
the above methods which are deterministic. Recently, 
some vision researchers investigated SLAM algorithms 
[15] [16] in pure vision domain, however the vision-only 
SLAM systems suffer from the inherent 3D quality of 
visual data and the difficulty in extracting long-term 
features to map [17]. Thus, in this paper, the particle filter 
SLAM method is also based on the probabilistic 
techniques, but based on sensor instead of vision-based 
features. 

In a probabilistic camera tracking system, the aim of 
localization is to estimate the state of the camera and its 
environment, from some sensor measurements. So we 
need a mathematical representation which can help to 
represent and calculate the estimations. Bayes filtering [18] 
address such a problem.  

Bayes Theroem: Let 1,... kB B  from a partition of 

space S  such that Pr( ) 0iB  , for , and A is 
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The key idea of Bayes filtering is to estimate a probability 
density over the state space conditional on the given 
sensor data. It is often called Belief. If denote the state of 

the robot at time t  by ts , and the sensor data from 0 to t  

by 0:td . The Belief of state s  at time t  can be written as: 

     0:( ) Pr( | )t t tBel s s d                    (2) 

Apply Bayes theorem (1) and Equation (2): 
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Where 
1

0: 1Pr( | )t td d 

  is a normalizing constant 

relative to ts  . (  is determined by the observation model 

and system noise). After applying Markov assumption, 
Equation (3) becomes:  
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The Bayesian filter is used in most probabilistic 
localization system. It is, however, only a theoretical 
framework for this estimation problem. The integration in 
Equation (4) is a vital problem. If the state space is 
continuous, the implementation of Equation (4) requires 
memory storage for the representation of the whole 
posterior distribution, which is an infinite dimensional 
vector. In cases where the state space is discrete and of 
high dimensionality, the integration is still extremely 
complicated and not practical to implement. 

III.  SENSOR-BASED SLAM ALGORITHM 

The aim of this algorithm is to achieve the sensor 
based 2D camera tracking in a virtual studio environment.  
This section provides a comprehensive description of the 
implementation of system states, system models and the 
particle filter in this algorithm. The particle filter in this 
SLAM algorithm is not exactly the same as the standard 
particle filter. In addition, the algorithm also has potential 
to be applied in different sensor network environment. 
The sensor-based SLAM for camera tracking could be as 
in Figure 1: 

 

 
Figure 1 the SLAM for camera  

A. Systen state and model 

In this research work, it is assumed that the 

observation system is based on a sensor network, to 

successfully obtain the range information.  Thus we just 

assume that there are several sensor transmitters mounted 

in the surroundings, and the camera is equipped with a 

sensor receiver. Actually, the system just only requires 

the distance between the camera point to the feature 

points over time. Hence, the sensor network could 

comprise active sensor or passive tags. Then each feature 

of the map actually represents a node of sensor 

transmitter, they are denoted as nf  , where n is an index 

of transmitters. The location state represents the position 

of camera, is defined as S : where n is index of 

transmitters: 
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Having defined the feature states and location states, the 

system state, at time t, is then:  
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Given the above overview of system state, the camera 

starts moving from an initial position 0s  without prior 

knowledge of the sensor node, 1 2, ,... nf f f . As the 

camera keeps moving it receives relative range data from 
the sensor transmitter. Using these sensor data the SLAM 

algorithm tries to estimate the path 0:ts  of the camera.  

    The observation model tells the probability of 
obtaining a camera position at a certain location state. The 
Bayesian filter can be defined as a probabilistic 

distribution: Pr( | )t td s , where ,t td s  are the location 

state and sensor reading, respectively. The straight 
observation model is given by the following equation:  

2 2( , ) ( ) ( )s s f s f sd g f s x x y y w        (8) 

Where fx  is the coordinate of a frame, sx is the 

coordinate of the robot, d is the relative distance from the 
robot to feature n and w is the Gaussian noise 
characterizing the errors of the sensors. At each time step, 
the sensor attached to the camera will receive observation 
information from all features.  

      The motion model characterizes the camera 
location states over time. It helps to predict the next 
camera location state given the most current one. When 
implementing the motion model, we have to consider the 
characteristics of the motion kinematics of the camera. We 
assumed the target camera trajectory is associated with 
direction or speed of the movement that is random. Thus 
we use a 2D Gaussian model to approximate the motion. 

More specifically, when given the location state ts  at the 

time step t , to predict the location state 1ts   at the 

time 1t  , we draw a number of particles randomly from 

a 2D Gaussian distribution with zero-mean. These 
particles will form a circle with origin at St and its radius 
is determined by the standard deviation of the 2D 
Gaussian distribution. 

B. Particle Filter SLAM Algorithm  

Based on above the system model given above, the 
data structure of M particles is illustrated in Figure 2: 
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              Figure 2 Data structure of particles 

   Each particle has 2 (n + 1) states: 2 location states 
and 2n feature states. In a mathematical form, each 
particle is: 
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Where the superscript m is the index of the particle, 

the subscript t  indicates the time step,  
m

ts  is the location 

of the camera and , ,

m

n tf   represents feature n. The particle 

filter algorithm is then operating on a set of particles
m

tx  . 

Each iteration of the algorithm can be divided into the 
following stages: Initialization, Weighting all the particles, 
Map Adjustment, Resampling.  

Initialization is a most important stage in all SLAM 
algorithms. In EKF-based SLAM, its task is to initialize 
the mean and covariance matrix for the state vector, while 
in this particle filter based SLAM it is to initialize the 
location state and feature states in each particle. The 
initialization process can be quite tricky when a single 
measurement is not enough to constrain a feature location 
in all dimensions. This problem will bring great ambiguity 
about the feature states at the beginning of the algorithm. 
In this research work, an approach is employed to reduce 
ambiguity by using the first two measurements to obtain a 
rough idea of where the next location states should be, i.e. 
in which quadrant the state is. Then a random point is 
chosen in that quadrant to be the next location state. 

After the initialization, the motion model is applied to 
all particles. Figure 3 is an example showing one particle 
being applied the motion model. 

 

Figure 3: Before applying the motion model, the 

particle has an estimation of the location state at ( , )s sx y  

and estimation of Feature 1 at  1 2( , )f fx y  . After 

applying the motion model the location state is replaced 

with 
'( , )s sx y  while the estimation to Feature 1 remains 

unchanged.  Only applying the motion model to all 
particles does not represent the true posterior of the path 
and features since it does not incorporate the observation. 
Therefore the weighting process is required which gives 
individual particle a weight to reflect the observation. 
Before we describe how to implement the weighting 
process we need to define some terms: At time step t, 
before receiving the observation, each particle has its 
estimation of the location state and feature states. Then we 
define ‘predicted location state’ as the location state after 
being applied the motion model. We also define ‘predicted 
observation’ as the distance measurement from the 
predicted location state to a feature. In a probabilistic 
mathematical form, the weight of each particle is given by: 

0: 1 0: 1( | , )Pr( | , )m m m

t n t n t t nw Pr d f s f s d df     (10) 

The ‘Map Adjustment’ is a novel techniques invented 
in this paper. Its inspiration comes from the ‘landmark 
update’ in FastSLAM [15] where the landmark (feature) 
estimates are updated using EKF. The EKF approach is 
not suitable in this SLAM problem due to the non-linear 
and not invertible observation model. The basic idea of 
Map Adjustment is as follows: For each particle, after 
applying the motion model and weighting, when the 
observation is received, each feature’s state is then 
adjusted so that the difference between the predicted 
observation and real observation is smaller.  

 

Figure 4 Illustration of the Map Adjustment 

In this implementation we use the following equation to 
calculate the movement:    

'( )
*

d d
movement p

r


     (12) 

where p  is a parameter which must be specified manually 

based on experiments. By using the Map Adjustment, the 
accuracy of the estimation to features can be greatly 
improved, or can be maintained but fewer particles are 
required. 

Resampling is the last step in each iteration. This step is 
very much the same as the one in Particle Filter 

Particle 1 
x , y x , y x , y x , y 

Camera Location     feature 1    feature 2       feature n  

Particle M x , y x , y x , y x , y 

Particle 2 

x , y x , y x , y x , y 



Localization. In this process, particles with large weight 
will be duplicated while those with small weight will be 
deleted. The sum of all weights of all particles should 
remain unchanged. Therefore before the resampling a 
normalization operation is carried out which normalize the 
weight of all particles so that they sum up to 1. 

C. Algorithm Summary  

The summary of the whole SLAM program, as shown in 
Figure 5: 

 

Figure 5 A flowchart of the algorithm 

IV. SIMULATION RESULTS 

In our research work, we simulate the camera moving 
trajectory in a virtual environment by using Maya and 
Matlab. The goal of these experiments is to evaluate the 
accuracy, robustness and efficiency of this particle filter 
based SLAM solution, and to investigate if this algorithm 
has been successfully implemented for 2D camera 
tracking. In all the simulated datasets, we assumed that 
there are four fixed features in the sensor network, since 
four fixed features are easy and simple, Feature A: (10, 
10), Feature B: (22, 0), Feature C: (-12, -16), Feature D: (-

5 ,15).  

A. Data with Time Steps 

 In an experiment a dataset simulated with time steps 
(120 time steps) is used, to test the stability of this 
algorithm. A Result is shown in Figure 6 Camera 
Trajectory estimation with 120 time steps. Figure 7 
illustrates the estimation error on path over time. Figure 6 
shows that the SLAM algorithm would successfully track 
the camera trajectory in 2D range with suitable time step 
successfully. Figure 7 illustrates the errors of the path 
estimation from time step 0 to 120. At time step 0 since 
we are assuming that the estimated location and the real 
location are both at the origin, there are only small errors 
at the beginning. As the algorithm keeps iterating, 

 

         Figure 6 Camera Trajectory  

 

Figure 7 Error on Camera Trajectory over time 

We can see there is a significant error at about time step 
20. Compare with the real path in Figure 6, we may 
conclude that this is because the robot changes its 
direction at that time. Nevertheless, as the camera keeps 
moving, the errors get smaller and smaller and finally 
converge. Figure 7 shows that compared with the real 
feature state, the errors are very little.  

B. Map Adjustment Improvement  

 The Map Adjustment technique proposed in this 
dissertation can help to improve the accuracy, or can 
maintain the same accuracy with fewer particles are 
required. Figure 8 illustrates a comparison of two 
experiments using 200 particles. The left figure is the error 
of the camera trajectory estimation over time without the 
Map Adjustment, while the right one is with Map 
Adjustment. Clearly after applied the Map Adjustment the 
estimated path converges more quickly to the real path. 

 

Figure 8 How the Map Adjustment improves the 
accuracy 

C. Maya Simulation results 

In order to evaluate the algorithm for camera tracking, we 

use Maya to simulate a virtual world and virtual camera. 

Based on the time step, we produce the short movie for 

2D camera trajectory estimation. The below pictures are 



the frames from original and estimation camera 

movement separately. The initial camera position are (0, 

0, 4), and the Z axis is instant. The distance of blue 

Screen from the camera is 20 , and the distance of the 

character from the camera is 15. The X, Y error of 

camera in 3D environment does not influence too much. 

The results show that the algorithm is efficient to 2D 

camera tracking in the virtual studio.  

 

       
      (a) Original Camera View position A 

 

       
      (b) Estimation Camera View Position B 

 

Figure 9 illustrates that one frame in the produced movie 

(frame 20), from original camera view, the position of 

camera is A (1.57538, -1.0592, 4 ) ; from the estimation 

camera view, the position of camera is B (1.48564, -

1.12632, 4). The results show that the error of the camera 

tracking in virtual studio is not visible for human.   

 

V. CONCLUSION AND FUTURE WORK 

Virtual studios have long been used in commercial 
broadcasting and are starting to evolve into the next level 
with improved technology in image processing and 
computer graphics. In this paper, a sensor based SLAM 
algorithm has been designed and implemented to solve the 
problem of camera tracking in virtual studio environment. 
The simulation results show that the algorithm would 
achieve the research aim successfully. The future work 
will focus on the extension of the algorithm on orientation 
estimation and high accuracy in virtual studio.       I  
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