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ABSTRACT

This thesis contains a treatise on residential indoor localisation for pervasive health
monitoring. Contained therein, are all of the aspects to consider, when developing
an indoor positioning system. This work encompasses the evaluation of various

popular sensor modalities, which are currently popular amongst the community. In
addition, it considers the possible space for fusion combinations between said sensors,
clearly displaying the current preferences of said community with respect to pressing
application challenges, which include accuracy, efficiency and robustness. It also presents
a novel dataset, which aims to address the lack of high resolution localisation data
in the wider literature. The dataset comprises of a number of real residential houses,
parametrised and prescribed using popular methods relating to Radio Frequency fin-
gerprinting. Following this dataset, the thesis focuses on various issues pertaining to
training and parametrisation, especially in relatively constrained spaces of residential
abodes. It proposes a novel system which alleviates all of the above issues and provides
an improvement on the overall data collection and training tasks, through Simultaneous
Localisation and Mapping in the service of Radio Frequency fingerprinting.

The thesis then addresses the most important community challenges, by suggesting
novel algorithms and methodologies aiming to mitigate their effects. In order to improve
robustness and accuracy, a study is performed, which fuses Radio Frequency and Ac-
celerometer data. Results demonstrate, that activity information is beneficial in face
of network adversity, in addition to accuracy improvement and information about the
well-being of the participant. The following study of adaptive sensor utilisation tech-
niques through Reinforcement Learning, focuses on accuracy and efficiency of Wireless
Sensor Networks. This work shows, that when presented with sensors of varying degree
of efficiency, such as wearables and cameras, the system is able to perform weak training,
over the lifetime of the infrastructure, whilst at the same time making the system energy
aware. This helps the system to remain relatively maintenance free and unobtrusive for
potential patients. Finally, in order to alleviate the issues concerning robustness and
efficiency, this thesis will present an examination of efficient sensor selection methods in
a Wireless Sensor Network environment. It confirms, that there exist a finite number
of sensors which provide near-optimal service for indoor localisation. The results also
suggest that data from real world measurements is best to benchmark this type of
challenges, as opposed to toy examples. The thesis then summarises all of the above
work, and provides indicators for possible future research avenues.
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1
INTRODUCTION

Due to the steadily improving performance and decreasing cost of wearable devices,

the innovative use of various on- and off-body sensors, along with novel methods

for their networking, has become widely prevalent. In the domain of pervasive

health monitoring, the space of sensor-driven applications is vast [46, 154, 155, 210, 225].

Some examples include pervasive sensor networks [225] bespoke sociometric wearables,

[154] and IoT-specific applications [46]. The utilisation of numerous sensors, either

exclusively or in unison, serves to monitor the health status of patients from their own

comfort zone [46, 225]. Amongst the many healthcare-centric applications of wireless

sensor networks, indoor localisation has been cited as an important indicator of recovery

in patients [206]. The tracking and positioning of patients in their own abode can

provide valuable information for clinicians, which would be difficult to obtain, even

under constant hospital care. More importantly however, the patients are able to return

to their homes, alleviating the burden on the health service, and depending on the

case, minimising the risk of post-procedural complications stemming from the hospital

environment.

In this thesis, the challenge of indoor localisation is approached from the perspective

of sensor networks for residential environments. The scope covered by this work ranges

from system training and deployment through robustification and efficiency to network

streamlining. All of the above is constrained by the question of whether Indoor Positioning

Systems (IPS) can be robustified cheaply, reliably and without overhead, by utilising

diverse sensor modalities in a novel way. We aim to identify the possible shortcomings
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associated with residential localisation and propose numerous improvements to said

networks and their governing algorithms, all underpinned by the context of pervasive

health and recovery monitoring.

1.1 Problem Statement

Indoor localisation is frequently addressed in wireless networking literature. There exist

numerous implementations dedicated to tracking and positioning a participant in an

indoor environment [24, 73, 157, 230]. Each implementation uses a unique combination

of sensors and state-of-the-art algorithms, in order to estimate position in Euclidean

space. This is done, either by training an automated model which later provides a

prediction, so called fingerprinting, or by calculating the position of the participant

outright, based on previous estimate route and the current sensor reading.

The application space of localisation systems is broad. Examples of few such applica-

tions range from, but are not limited to, residential abodes [24], commercial shopping

malls [216], industrial halls and factories [94], hospitals [83] and natural formations,

such as underwater caves [131]. In this thesis, the main function of the localisation

system is to estimate the location of occupants of residential abodes as part of their

recovery efforts and general monitoring of their well-being.

1.1.1 Motivating Example

Consider an example of a patient exhibiting signs of early-onset dementia. An immediate

symptom of this disease includes a decrease in overall cognitive function [211]. Early-

onset implies its emergence in people below 65 years of age. In addition to a cause

for major concern for the sufferer, diagnosis of early-onset dementia can also yield far-

ranging societal consequences, as they are still within the working age bracket of the

population. This illness would prevent them from leading a ’normal’ life and would

instead force them to rely on either the health service or their close relatives for care. As

time progresses, the cognitive function of the sufferer would rapidly diminish [211].

Clinicians can utilise indoor localisation technology to obtain information about the

progression of the illness, while simultaneously analysing the same data to care for

their patients [22, 206]. Studying patterns of indoor navigation was found to be a good

metric to use, when inferring or determining health status in patients, as it can provide

information about the patient’s habits and their inconsistencies. This is especially true
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if the patient has been involved in a longitudinal monitoring study, where long-term

patterns are analysed and extracted. By recognising these patterns in learned behaviour

from various sensor sources, the anomalies can be quickly uncovered and flagged for

further analysis [22]. This can directly notify the clinician of the progress of the illness

and help choose the appropriate treatment measures.

Localisation can also be used as a quick alert system, especially when coupled with

various other sensor modalities [22]. With decreasing cognitive function, the patient

would additionally exhibit confusion, forgetfulness and inattention [211]. In an environ-

ment where the patient is well cared for, the consequences of these symptoms can be

directly rectified by the carers. However, in the case where the patient is alone, these

type of issues can have a dire outcome. With anything from gas stoves, heating and open-

ing front doors, dementia sufferers remain at risk of injury, harm or outside adversity.

Through pervasive health localisation and monitoring system, these problems can be

alleviated, by either notifying a caregiver or acting to redress them directly.

These types of implementations would therefore help care for the patient by helping

them to retain a degree of autonomy in their everyday life with developing dementia.

However, in order to make this system viable, it would have conform to a number of design

decisions. Most importantly, it would have to be tailored to fit an individual’s nature,

making it as unobtrusive as possible [225]. With recent advances in MEMS fabrication

and cost, the sensors which are used for this type of monitoring are becoming increasingly

more affordable. These sensors, when coupled with current interests and trends of

machine learning and automation community, are already creating implementations of

these systems at a cheap cost and proven reliability [43, 225].

Out of many possible infrastructures fit for a pervasive sensing system, the one that

is conformant to the above design choices is a Wireless Sensor Network (WSN). In this

thesis we consider an implementation which relies on Received Signal Strength (RSS)

indication, as a measure of relative ’distance’ between network nodes. There exists a body

of literature dedicated to this particular sensing domain [11, 24, 30, 195]. In terms of

WSNs, the nodes are usually referred to as Access Points (AP), which, normally, remain

undisturbed over the lifetime of the system. The participant carries a transmitter node

on their body, which registers the signal strength as they move through the environment.

The relative difference in signal strength from numerous Access Points as seen in

different positions in the environment, is then used to perform a position estimation task

[30, 100]. Figure 1.1 shows how signal strength, from a single AP, can vary in different

locations in the house.
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Using Fig. 1.1 as example, consider how signal is able to propagate through a resi-

dential environment. The colour gradient specifies the signal strength. The blue square

is the Access Point, using which the strength is measured. The black squares show

the tessellated environment. Notice how the gradient decreases, approximately with

distance.

1.1.2 Challenges

Whilst indoor positioning and navigation methods remain a very popular topic amongst

researchers [11, 24, 100], the fundamental question of a reliable and accurate indoor

positioning system in a GPS-denied environment has not been fully addressed yet. There

exist implementations spanning from purely inertia-driven, such as Pedestrian Dead

Reckoning (PDR) [213], through to intricate infrastructures of various sensors, such as

radio, inertia and ambient magnetic fields strength devices working in unison [26]. This

relatively broad range of applications and implementations is, in part, due to an equally

large application space in which these systems are used. The systems relying on WSN

are also known to be subject to a variety of trade-offs. These are summarised below:

• Wireless Sensor Networks can experience gaps in service, rendering network

nodes inoperable. This can happen due to noise, environment obstacles or outside

adversity.

• Approaches which utilise popular machine learning models, whilst very popular,

are notoriously difficult to train. This can be shown in Figure 1.2, where the

author is pictured wearing specialised labelling hardware. Additionally, without

periodic re-training, they remain susceptible to environment dynamicity causing

performance degradation.

• Sensors generate inherent noise. In order to reduce this noise, corresponding in-

crease in power is needed. The trade-off between noise and accuracy is particularly

evident in low-power applications.

• Many implementations reporting very good results rely on elaborate infrastruc-

tures, which in turn draw considerable power. This is especially true when these

systems are deployed to last over long periods of time.
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Figure 1.1: Above: Example of a resulting RSS heat map in a two-storey house discretised into
states. Below: Corresponding floor plan.

5



CHAPTER 1. INTRODUCTION

Figure 1.2: Author during data collection.

• Some of the systems found in literature can be considered obtrusive and unrealistic

in terms of their implementation, depending instead on sterile conditions of a

laboratory [21, 241].

• The costs associated with the system deployment are often omitted from localisation

literature. These costs can be related to labour, energy consumption or simply the

commercial cost of the hardware.

Through novel utilisation techniques of various sensors available in a specially

adapted pervasive sensor network, this thesis aims to address the above shortcomings.

Firstly, we identify the gaps in literature of sensor-driven indoor localisation and their

fusion. We then evaluate existing datasets, and provide our own localisation set for

residential indoor localisation using cheap, off-the-shelf hardware. We also consider the

use of specially adapted hardware as well as state-of-the-art optimisation techniques as

a way of reducing the overhead associated with training. Finally, we aim to reduce the

dependence on single sensor modalities through fusion, and make the system energy-

aware as to cut down on the power expenditure over the system’s lifetime.

1.2 Thesis Outline and Contributions

The thesis is outlined as follows:
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In Chapter 2 we give a detailed overview of the state-of-the-art methods, popular

within the current literature. We consider various sensor modalities, and their fusion, in

the service of indoor localisation. The importance of accurate and efficient location esti-

mation and tracking is widely understood. Robustification of indoor localisation systems

is an important consideration, especially if a given system’s design necessitates steady

performance under adverse conditions. However, localisation-specific sensor choices,

utilisation and fusion methods are seldom reviewed. Localisation is largely case-specific

and as such, the taxonomy of sensors used by the community is broad. The intent of this

review is to take account of this taxonomy and to provide a wider understanding of the

current state-of-the-art methods. In addition, we outline the popular fusion and integra-

tion techniques and discuss how their combinations can help in various environments.

We scrutinise the sensor choice under a number of metrics, such as energy efficiency,

resilience and ease of deployment.

Then, in Chapter 3, we consider the novel data collected as part of this thesis.

Firstly, we outline the infrastructure and system which makes the collection possible.

This infrastructure was thoroughly tested by the author. We present the raw data, as

produced directly from the type of sensors included in this infrastructure. Then, we

present a pervasive indoor localisation dataset collection, performed in a number of

different residential abodes around Bristol. This particular dataset considers Received

Signal Strength and accelerometer sensor readings, with high resolution location and

activity labels. This dataset serves as the foundation for the analysis and algorithms

within this thesis. This chapter also takes account of the encountered challenges and

problems, which render this type of collection arduous.

Chapter 5 aims to compliment the above methods through novel data collection

hardware. Learning from the challenges posed by fingerprinting, we consider a low-cost

system designed to cut down on the labour by utilising an off-the-shelf Light Detection

and Ranging device. This system performs Simultaneous Localisation and Mapping,

providing the user with an accurate pose estimation and map of the environment. The

high-resolution location estimation can then be used to train a localisation scheme where

Received Signal Strength data is acquired from a wearable device. We examine the

usefulness of this method by relating it to the camera-based fingerprinting methods from

previous work by testing both ground-truthing approaches using a novel dataset. We

find that the new algorithm is comparable in performance, whilst removing the need for

time-consuming labour associated with with registering the participant location.

Continuing in Chapter 6, we outline methods of robustification and resilience of
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the localisation performance. The study proposes a method, whereby semantic informa-

tion about the location is learned from an additional source. This method deals with

the question of robust indoor localisation prediction by extracting additional activity

information available from a wrist worn acceleration sensor. A number of different fu-

sion models are considered, before choosing and validating the model which provides

highest improvement in accuracy and robustness over the baseline example. Then, we

consider the energy-awareness of wireless sensor networks, by finding an optimal sensor

utilisation scheme. It achieves this by utilising other sensors available in the environ-

ment. These other sensors provide weak labels, which are then used to employ the

State-Action-Reward-State-Action algorithm and train the model over time.

Chapter 7 shows the need for optimal sensor selection, from the perspective of indoor

localisation. Deriving the location of participating individuals using these sensors is

the key to determining their behavioural patterns and, in-turn, their health. There is,

however, a limit on the amount of salient information that these sensors can provide. In

the case of residential indoor localisation using Received Signal Strength, there exists

a saturation point, where any additional sources of information will not provide any

meaningful information. In this chapter, we present a sensor selection method based

Kullback-Leibler divergence and compare it to a variety of state-of-the-art algorithms. We

motivate this problem by considering the variations of signal in a 2-dimensional Wireless

Sensor Network-based state space. First, we confirm the findings using a simulated

environment, before validating the methods on measurement data from four residential

dwellings. We also highlight how each algorithm performs using additional contextual

sensors, with algorithms outlined in previous chapters. This chapter proves that our

novel methods are able to provide improvement to the localisation accuracy and that the

sensor networks in different environments and with distinct coverages reach saturation

using comparable amount of nodes.

Finally, we conclude the thesis in Chapter 8 and provide investigation avenues for

future research. We scrutinise our contributions as part of a wider localisation literature.

The purpose of this summary is to provide a viable starting point to the reader, and to

solidify the contributions made by this thesis in the perspective of the community. We do

this by addressing the challenges set out in this Chapter, paying close attention to the

extent of how much the contributions of this thesis provided a solution to said challenges,

and how much work remains.
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2
BACKGROUND AND PRELIMINARIES

The primary aim of this chapter is to provide in-depth motivation for residen-

tial indoor localisation for the remainder of the thesis. This chapter has been

published in [102]. However, we aim to extend the review beyond the confines

of residential localisation, and into more broad application spectrum, as to show the

true urgency of a viable indoor positioning system, which is easily generalisable and

compact. Additionally, we aim to use this chapter to describe the fundamental algorithms

which will be used throughout the thesis. These algorithms include the basic structure

prediction and modelling methods which have been extensively employed here. We will

also discuss the various fusion methodologies and outline their theory in detail. At the

heart of every successful implementation of an IPS lies effective sensor data utilisation

and analysis. In this chapter, we aim to provide a taxonomy of more and less popular

sensing modalities currently preferred by the experts in the field. These sensors are used

to achieve target tracking and localisation, either on their own, or in unison with other

modalities.

First, we review every sensor and its internal operation, exhaustively examining

the literature pertaining to each. Then, the modalities will be scrutinised against an

evaluation framework, in order to provide the reader with an overview of their suitability.

Later, we provide an extensive review of the typical fusion combinations, which can be

found in the literature, paying close attention to the objective which that fusion serves.

Specifically, we explore fusion for robustness, accuracy and energy efficiency. Using these

formulations of various techniques, we additionally provide the outline of the preliminary
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theory which underpins this entire thesis.

2.1 Motivation

Indoor localisation has been regularly cited as an important ambition of many fields

in both, academia and industry. The use cases include pervasive health monitoring

[24, 100], targeted advertising [12], factory vehicle tracking [92] and robotics [26, 119],

amongst others. However, implementations of localisation methods and algorithms differ,

depending on the need, deployment methods, available utilities, resources and sensors

[73, 239].

Whilst the survey literature pertaining to localisation systems and methods is large

[73, 230, 239], there exists very little in the way of localisation-centric sensor utilisation.

This encompasses the use of bespoke [55] or off-the-shelf [24, 160] sensors, specifically

for the use of location estimation, robustification and optimisation. This area is extensive

[33, 49, 76, 110, 187, 198], yet very often bundled along with localisation technology

surveys, without subsequent scrutiny. We aim to close this gap, by reviewing sensors,

their fusion and utilisation as applied to localisation, in contrast to localisation methods,

technologies and implementations themselves.

Most of the existing localisation surveys include technology-specific reviews [42,

73, 121, 239]. They concentrate upon the methods and algorithms related to indoor

localisation [42, 121], techniques and technologies [239]. Some work also addresses

localisation from the perspective of the device itself, such as smart-phones [230]. Xiao

et al. study [230] is the most closely related work to our proposed examination. The

main difference is, that instead of reviewing the devices as sensor clusters, we review

the sensor modalities themselves. We also offer a more comprehensive review of fusion

methods and provide exhaustive examples for each case.

The main contribution of this chapter is the inventorisation of the popular types

of sensors used to provide location estimation and their respective advantages and

disadvantages. We also provide the detailed description of their fusion methods with

respect to their benefits and drawbacks. Finally, we show how these sensors are likely

to fare in the future, paying close attention to the current community preference and

trends surrounding each modality.

In Section 2.2 we outline the problem of localisation and provide a brief synopsis

of the review process, concentrating on the most important indoor localisation-centric

challenges found in literature. We then outline the evaluation criteria in Section 2.3.
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Then, in Section 2.4, we consider various sensors which are used in the service of

localisation. In Section 2.5 we outline how the sensor fusion is performed, and review the

state-of-the-art literature pertaining to effective sensor fusion and combination methods.

Finally, we conclude in Section 2.6.

2.2 Underlying Objective of Indoor Localisation

There exist various interpretations of positioning, navigation and tracking under the

umbrella term indoor localisation. For example, Van Haute et al. [206] stipulates that

tracking and positioning are not comparable. Whereas positioning implies establishing

the location of an agent, either at real time or offline, tracking would involve performing

localisation based on previous known location data, effectively storing the entire navi-

gational history of an agent. This carries an additional risk of privacy intrusion, as the

historical data would expose an agent’s habits and previous locations [206]. We intend to

adopt a similar mindset in this chapter.

In addition to the above assertion, we consider it necessary to address a common

misconception with regards to the semantic meaning of indoor localisation. A catch-all

term, it grew to signify localisation inside, regardless of whether the environment is

accessible by doors or not. In this thesis, we understand indoor localisation to be an

epitome of technologies and implementations for localisation in an enclosed environment.
Examples of few such environments range from, but are not limited to, residential abodes

[24], commercial shopping malls [216], industrial halls and factories [94], hospitals

[83] and natural formations, such as underwater caves [131]. Here we consider sensor

combinations stemming from the necessities imposed by these environments.

Simply put, an agent traversing an enclosed environment is being localised if its

location, position or navigational history is estimated with respect to their previous

position or performed actions. This is normally estimated in 2- or 3-dimensional space.

The agent is assumed to be able to access the entirety of the surveyed environment. The

model, or algorithm, performing the estimation also has access to the description of said

environment as well as the features explaining the agent’s actions. In the domain of

sensor-driven estimation, agent’s actions and locations are described through the use of

sensors, which the agent either bears on itself or is subjected to, when travelling.

Localisation task can be further explained through an example. Consider a wheeled

robot moving along the corridor. Being able to access every area in that corridor, it is

allowed to move freely across the environment. The corridor resides inside a building
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where GPS-based services fail to provide a viable position. In order to localise itself, the

robot intermittently takes pictures of the surroundings as it moves. In order to perform

effective exploration, the robot is programmed to favour the unexplored locations over

explored ones. It realises this by comparing the photos of the immediate surroundings

to the collected library of pictures. As it drives along, the output from its wheels give it

the approximate location, as seen from previous location, so called Dead Reckoning (DR).

Moving freely through the corridor, it visits all possible locations and creates a map, with

respect to the DR location it estimated and approximate locations of the taken pictures.

Simultaneous Localisation and Mapping (SLAM) is just one of the open problems in

localisation literature, but it clearly and succinctly explains the challenge. In a perfect,

noiseless world, the robot would be able to localise itself based on the DR alone. Then, by

using the pictures, it would map out the environment, effectively solving the problem, by

providing a map, and a vector of locations it visited. However, due to various conditions

it is subjected to, noiseless localisation is so far unattainable. Its wheels will drift,

adding noisy readings to the model. Camera pictures can be subjected to occlusion and

lighting effects, making direct comparison difficult. The environment itself can also be

dynamic, which adds to the complexity of the problem, as, in the case of this example, the

photogrammetric features used by the robot can be shifted, moved or otherwise removed

from the corridor.

The motivation of using various sensor modalities, and their fusion, stems from the

above mentioned issues. So far, there is no one definite way of performing localisation, as

various sensors present different advantages and disadvantages. Whilst camera is known

as a very accurate tool for feature extraction, it does so at the cost of high dimensionality

and complexity of the data it collects. There exist modalities, which reduce the need for

such high dimensionality, but in turn provide coarser location estimation. This implies

that leveraging computational cost and estimation potential, across all modalities is,

at the present moment, key to a successful implementation of an IPS in GPS-denied

settings.

2.3 Evaluation Criteria

The existing surveys of current localisation literature usually scrutinise the research

through the use of a evaluation framework. Here we list the most popular criteria

established either through literature [42, 73, 121, 239] or the author’s own experience.

This list is not exhaustive and is only provided to encapsulate the issues faced by the
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present-day implementations.

2.3.1 Accuracy

The most prevalent of metrics regarding localisation. Accuracy is usually calculated

as Euclidean distance in 2D or 3D space [127]. Formal example is provided in Eq. 4.2.

While effective, this metric is not infallible - there exist sensors and systems where a

direct comparison of location accuracy (alternatively accuracy error) would not capture

all necessary information required to examine any two given sensing systems. This point

also considers whether certain sensors make it possible to scale the system to include

more than one tracking node at a time.

2.3.2 Noise resilience

Sensing, in any form, will suffer from noise. This noise can be inherent in the sens-

ing modality [116], environment [222], can be introduced during the manufacturing

process[21, 151], or as a consequence of other factors, such as striving for improved en-

ergy efficiency [54]. Resilience of a sensor can also dictate whether drift and quantisation

affect the location estimation and whether dependence on other sensor modalities can

reduce it.

2.3.3 Cost

The costs associated with specific sensors are varied. These can be simple hardware

costs, upkeep costs, deployment costs or maintenance costs. Hardware and upkeep

costs encompass the initial expense of creating the infrastructure. Deployment and

maintenance costs are related, in that they describe the value of labour associated with

aforementioned tasks. Since different sensors will be comprised of different concessions

regarding their performance and operation, they will all enjoy various advantages unique

to their topology.

2.3.4 Energy efficiency

Efficiency has been cited as an important aspiration of a sensor-based system [53].

Deploying any system will come at a cost of establishing a number of trade-offs. Energy

is often traded for accuracy/resilience to noise, as they tend to be mutually exclusive

[170]. It is also important to recognise how easy is it to control the energy expenditure as
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part of a positioning system, and also whether the sensors make the system adaptable

for energy-aware operation.

2.3.5 Popularity

The systems present within the literature rarely exhibit the same taxonomy of sensors,

share the same evaluation environment or training methods. There exist implemen-

tations of positioning systems which consider various sensor modalities, and various

fusion combinations. As it was mentioned above, currently, localisation relies on objective-

specific sensor fusion as to ensure appropriate redundancy during its operation. The

trends in literature are also greatly influenced by the relative costs and availability of

hardware.

2.4 Sensor Modalities for Indoor Localisation

2.4.1 Inertial sensors

Inertial sensors use the relative change in their frame of reference to provide an output.

They are commonly employed in motion tracking [37] and detection systems [58]. In

relation to robotic or human localisation and tracking, they mostly comprise of Micro-

Electro-Mechanical Systems (MEMS) accelerometers and gyroscopes, embedded within

Inertial Measurement Unit (IMU) chipsets [224].

Accelerometers calculate the acceleration in 3-dimensional space given by units in

g or alternatively in m/s2. Their electro-mechanical design is relatively simple [184]

making them easy to produce. An example of the data they produce can be noted in Fig.

2.2. The manufacture of MEMS gyroscopes on the other hand, is much more involved

[184]. This is due to the nature of the sensing paradigm they provide. By measuring the

vibration of a proof mass relative to the axis (also known as Coriolis effect), they provide

the angular rate of rotation, given by °/s. One other important difference between the

two sensors is the power expenditure. Due to the method of operation, gyroscopes are

known to draw more power (sometimes in orders of magnitude) when compared directly

to accelerometers at the same sampling rates [124].

They are both, however, prominently used as part of Inertial Navigation Systems

(INS) , which constitute the focus of many localisation-centric research enquiries. There

is a large body of literature pertaining to inertial sensing for localisation [5, 21, 41, 73,

16



2.4. SENSOR MODALITIES FOR INDOOR LOCALISATION

100, 133]. They are particularly popular as part of the Pedestrian Dead Reckoning (PDR)

applications [21, 86, 243].

In an early implementations of PDR, the authors strived to complement the short-

comings presented by GPS systems by including a sensing module designed to perform

pedometry [60, 91]. In 2005, Foxlin [60] presented a system dubbed NavShoe, where the

accelerometer and gyroscope, along with a magnetometer, were mounted on foot-gear.

The study then confirmed that the pedometry-based system can compliment a GPS. This

was also one of the earliest papers to coin the phrase Pedestrian Dead Reckoning
As the manufacturing costs of MEMS devices reduced over years, their usage and the

quality of their output has correspondingly increased. Lately, implementations feature

smartphone devices which have these sensors readily embedded. One such study by

Strozzi et al. [192] utilises a number of different hand held smartphones as a proxy to

estimating step and its length. Similarly, Yin et al. [236] considers smartphone-based

sensing, albeit as a tool for walking and running detection using accelerometers and

gyroscopes embedded within.

While smartphones remain the favourite platform for sensing in many cases, there

exist dedicated devices, so called wearables, which can provide acceleration and angular

rotation from different parts of the body [13, 54]. Signatures from different sections

of the human body were found to differ both, in the way they are exerted and their

own estimation potential as per Bao et al. [13]. In our own study [100] we considered

wrist-worn accelerometer as a complimentary source of information in indoor location

estimation. This method aimed to robustify the localisation performance by assuming

that humans have a tendency of performing similar tasks in similar places in a house.

This type of sensing is not without its challenges however, as there has also been

some advances in residential user identification. McConville et al. [137] showed that due

to uniqueness of each person’s gait patterns, it is possible to recognise them directly from

the inertial signals. The authors argued, that even though this was useful in pervasive

health environments, it posed a significant privacy intrusion risk [137]. Off-body inertial

sensor usage has also been investigated. Dang et al. [41] used different walking canes

with attached IMUs to establish gait of the users, and consequently the distance travelled.

This however relied on the participant using the cane with no abnormal deviations.

2.4.2 Ultrasonic and Acoustic Sensors

Ultrasound has also been explored for indoor localisation applications [75, 148, 165, 166,

245]. The basic implementation considers a number of speakers in the environment,
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Figure 2.1: Domain of accelerometer (black) and gyroscope (blue) sensing.

which exert ultrasonic vibration [75] or frequency chirping [148]. The sensor designs

themselves do not differ much from generic transducer-based microphones and speakers.

In fact, this is done by using a piezo-ceramic or piezo-film transmitter, excited to generate

a response at frequencies in [148] or over the human audible range [75], which is

subsequently registered by a receiver.

The bulk of the localisation estimation is done through lateration schemes, such

as Time-of-Arrival (ToA) [165, 167] and Time-Difference-of-Arrival (TDoA)[148, 156] or

angulation, like Angle-of-Arrival (AoA) [166]. They can be further categorised into Active

and Passive [148]. Due to their physical nature, the sound waves experience similar

shortcomings as electro-magnetic (EM) waves, in that they are limited by the Line-of-

Sight (LoS) conditions However, when not experiencing multi path fading effects and

Non-Loss-of-Sight (NLoS) conditions, the localisation based on acoustic signal reportedly

outperforms radio frequency (RF) based methods [148].

Early approaches, such as Cricket [165] used a combination of an ultrasound and

RF to obtain a cheap localisation system. The experiments included static and mobile

performance of the algorithm in an indoor office environment. This was late expanded into

Cricket Compass [166] aimed at using angle of arrival in order to perform localisation.

More recently, Murakami et al. [148] used a smartphone-based mixture of active and

passive signals. They were able to track the target along an open corridor. Qi et al. [167]

used a number of ultrasonic receiver and transmitter modules in an Wireless Sensor

Network environment. The aim was to establish a viable method for localisation under

Non-Line-of-Sight conditions. This was tested by using a mobile robot, traversing in

circles.

In their paper, Khyam et al. [96] used orthogonal ultrasonic chirping to utilise the

wider part of the spectrum and facilitate multi-transmitter positioning in a passive
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(a)

(b)

Figure 2.2: Example of tri-axial Accelerometer (above) and RSS (below) time series data from
an indoor localisation ’living’ experiment. Courtesy of Byrne et al. [24]
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context. Their experiments were carried out in largely noise-saturated environments.

In the domain of robotics for indoor localisation Ogiso et al. [153] used a robot-mounted

microphone array to attain positioning information of a pre-defined track. The robot

would move in an 6m × 6m arena enclosed by four sources of sound, achieving sub-meter

performance.

2.4.3 Visible Light Sensors

Visible Light Communication (VLC) is a subset of optical telecommunications concen-

trating on the visible light spectrum, or 380 to 780 nm wavelengths [172]. It supports

faster transmission speeds [89], and offers a relief to congested radio frequency spectrum

communication schemes [179]. Its fundamental operation relies on a source of light,

such as a Light Emitting Diode (LED), modulated to flicker at a specific frequency, often

to obfuscate the flickering. A light sensor is then used at the other end to receive and

demodulate the transmission [179].

VLC is often used as part of the Visual Light Positioning (VLP) systems, whereby

the modulated LEDs are used to estimate an object’s position, relative to lighting bea-

cons [109, 178]. Much like Ultrasound, the schemes used to perform lateral or angular

positioning rely on extraction of light signal strength [215] or relative AoA [109].

In their recent work, Rátosi et al. performed a real-time positioning based on LED

anchor points [178]. In their work, they localised an object with a fish-eye lens camera

extracting the positions and IDs of the LED beacons. They concluded that this approach is

viable, even at relatively fast velocities of the object. Wang et al. [215] was able to extract

the beam strength of each uniquely-blinking LED through Fast Fourier Transform. Their

LIPOS system was able to localise to within 2 meters Euclidean error in 3 dimensions.

Kuo et al. used a smartphone-based system to perform localisation, attempting to

simulate the conditions usually found in retail spaces [109]. Their system considered

using the lights mounted on the ceiling as beacons and smartphone’s front-facing camera

as a capture method. Qiu et al. [168] used a kernel-based method to estimate the

modulated light intensities. The authors noted, that due to the relative low-cost of the

system and re-usability of an already existing lighting infrastructure, it could be used as

a practical and efficient localisation implementation in the future.
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2.4.4 Radio Frequency Sensors

This is undoubtedly the most examined area of indoor localisation implementations. RF-

based sensing and location estimation have been the cutting edge methods of positioning

due to their relatively low cost, off-the-shelf sensor availability and solid performance.

This, coupled with the recent advances in Internet-of-Things (IoT) and ever-decreasing

costs of maintenance have made this type of sensing a go-to for many researchers

[11, 15, 24, 68, 100, 101, 136].

Whilst the number of technologies and standards within this group is vast, the basic

idea of localisation remains the same. Generally, there exist a number of static anchor

nodes, or APs which are able to transmit signals to a sensor traversing an environment

of interest. They are comparable with ultrasound and visible light in the way that they

are able to utilise similar schemes such as ToA and TDoA. Traditionally, RSS between a

transmitter and a receiver was used as a metric to obtain information about the relative

distance between the two nodes. This is made possible, as signal strength, assuming

perfect propagation medium and lack of multi-path fading, will follow a steady decrease

as a function of distance and is more formally described in terms of a path-loss equation

[234]:

(2.1) PL(b)[dB]= PL0(b0)+10nlog
b
b0

+Xσ

where b is the measured distance, n is the path loss exponent, PL0(b0) is a measured

average path loss at a reference distance b0 and Xσ is a zero-mean Gaussian random

variable, with σ denoting the variance of shadowing [234], simulating the fading effect.

In this work, the values for this simulation are as follows: b0 was kept as 1.2m, PL0(b0)

as -49.4dBm [139], σ as 5 and n as 3 [174]. This model is only an approximation of

an indoor environment however, as the signal will vary in different surroundings and

even different users [43]. A more realistic example is provided in Fig. 2.2. There, the

actual signal is obfuscated in noise, brought on by shadowing effects and fading. Recently,

there have been some work done using Channel State Information (CSI) [200, 234].

Using newer standards, such as IEEE 802.11, one can extract the amplitude and phase

information from the channel directly, offering better performance [200].

The actual performance of RF localisation is deep-rooted in the technologies which

are utilised to achieve it. Wi-Fi [57, 196] has been cited as one of the more popular

approaches. Increasingly, the Bluetooth Low Energy (BLE) based sensors have been

used, which leverage the low-power consumption with cheap cost and ubiquity [24, 204].
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Radio Frequency Identification (RFID) [43] and Ultra Wide-band (UWB) [63] have also

been used for location estimation, with UWB achieving sub-metre accuracy.

These schemes often rely on fingerprinting to achieve its performance. This consists

of users visiting all fiducial locations in the environment, in order to build up an RF

map [24, 237]. Whilst effective, fingerprinting has been recognised as difficult to obtain

and maintain [24, 100, 101]. There have also been some work done, with multi-user

environments, where it was confirmed that fingerprinting from one user is unlikely to be

optimal on a different user [43]. There are however approaches designed to mitigate this

difficulty [101].

The work done on RF localisation by Bahl and Padmanabhan [11] is widely regarded

as the seminal paper on the subject. There, the authors outlined basic procedure for

fingerprinting, where each required sector of the environment was characterised before

outlining their algorithm for signal strength localisation. They used a specially fitted

wireless adapters. Since then, the literature pertaining to sensor-based RF localisation

steadily grew and so did the availability of off-the-shelf- implementations.

Byrne et al. [24] presented a data collection of four different residential houses in

Bristol. Each house was parametrised using approximately 1m × 1m states, which

permeated the living space. Then, a thorough fingerprinting of each abode took place.

The dataset also included living experiments, and was performed using the SPHERE-

in-the-box infrastructure [160]. This included Raspberry Pi-based access points and a

bespoke SPHERE wearable sensor [55].

Wireless fingerprinting was also tackled by Yiu et al. [237]. They provide a compre-

hensive overview of fingerprinting methods, noting the online and offline phases of the

radio map generation. Offline phase specifies the actual map generation, as in [24], and

online phase is the location inference given current sensor output, which in their case

was a Google Nexus tablet. They then outline different fingerprinting modalities, such as

parametric (using path loss models) and parameter-free (based on Gaussian Processes).

2.4.5 Magnetometer Sensors

Ambient Magnetic Field (AMF) Localisation was inspired by the migration tendencies of

certain animals [74]. Many species sense the Earth’s magnetic field and use it to navigate

[74]. This method uses the extraction of a varying magnetic field inside buildings, in

order to build a map of the environment, i.e. fingerprint. These distortions in magnetic

field come from ferromagnetic fluctuations caused by the building’s metal construction

and general topology [74, 232].
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(a)

(b)

Figure 2.3: Example of discretised floor plan, for the use with fingerprinting. Figure above shows
the corresponding floor plan. Below, each discretised state is 1 meter apart. Different colours of
the grids signify different rooms. These approaches have been proven to be notoriously arduous
in labour, especially in large industrial and commercial spaces. Image courtesy of Byrne et al.
[24]
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Figure 2.4: Schematic of a basic MEMS implementation of Lorenz Force-based magnetic field
sensor in a single dimension. Adapted from Herrera-May et al. [77].

MEMS magnetometers [36, 194] are the most commonly used sensors in service of

indoor localisation, due to their relatively low cost and high sensitivity [78]. They are

generally used along with accelerometers and gyroscopes as part of PDR implementations

[86, 91] where they act as directional sensors. However, they can also be used to estimate

the ambient magnetic field in a given location inside a building [74]. They work by

estimating the Lorenz force [78], measured as a function of current and magnetic field,

given by [117]:

(2.2) FW = I ×BX ×WZ

where BX is the magnetic field in T, WZ is the length of the loop or a wire in m, and I
is the current through the wire, in A. This force generates a displacement of a suspended

control weight [117], which can be measured through piezo-resistive or capacitive means.

The magnetic field induces current in the wire, which in turn forces the loop to move.

The red piezo-resistors at the end of the loop in Fig. 2.4 are used to calculate the relative

deflection and in turn, the causing magnetic field strength. Comprehensive outline is

given in [78] and [117].

Haverinen and Kemppainen [74] stipulated that these anomalies in a magnetic field

could be utilised for localisation. A subject wearing a magnetometer on their chest would

walk along a corridor, measuring the field. Whilst they first proved its viability in a

single dimension, this was later extended to 2 dimensions by Navarro and Benet [149].

However, the latter study was not directly comparable, as it was done using a wheeled

robot as opposed to a human subject.

The popular approach of fingerprinting was appropriated to magnetic fields by Chung

et al. [36]. In their work, the researchers used an offline map against which the obser-

vations were compared. The magnetometer was again worn on the chest, and proved
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comparable to other approaches, such as WLAN and RADAR. Similar fingerprinting was

done by Subbu et al. [194], who published a smartphone-based localisation technique

called LocateMe. The authors exploited the mobile phone’s magnetic sensor in order to

gather fingerprinting maps of the environment and stipulated that this approach is also

able to distinguish corridors with high precision.

2.4.6 Camera-based Sensors

When discussing camera-based localisation, it is important to distinguish between

approaches where the localisation is a priority [220], and methods which render location

information as a consequence of other inference, such as personalised silhouette detection

[72, 204]. Whilst wide-scale indoor localisation with cameras is yet to be attempted, there

are plenty of vision based tracking methods which consider smaller spaces [25, 207, 220].

There are many implementations of camera sensors on the market today. Digital

cameras are most frequently based on CMOS technology [59] or obtained through charge-

coupled devices (CCD) [173]. They are analogue devices, in the way they produce a lattice

of pixels excited by the visible light to produce electrical signals, which are subsequently

amplified and processed. Owing to its topology, this data is high in resolution and di-

mensionality [207]. This, in the context of indoor localisation, necessitates a streamlined

and latency-free connection to a reference database to compare against a calibration set

[207, 220] or a thorough dimensionality reduction study [72] in order to become viable.

Early studies consider localisation through stereo vision. By using a stereo vision

sensor, Bahadori et al. [10] presented a method of tracking multiple people in crowded

environments, by modelling the background and the people themselves. This work

outlined the basic principle of multi-person tracking in an indoor environment and noted

issues with tracking identification.

Numerous approaches consider smartphone-based indoor localisation [207, 220].

Werner et al. [220] proposed MoVIPS, a visual positioning system. In their work, the

authors used a smartphone to take pictures of the environment and compare them to a

training set, with server-side feature extraction based on Speeded Up Robust Features

(SURF). Similar approach was attempted by Van Opdenbosch et al. [207], albeit with a

larger emphasis on efficient data analysis, with comparisons between lossless and lossy

compression.

As the depth-sensitive cameras became more cost effective, the research enquiry

shifted to RGB-depth (RGB-D) sensors. Using RGB-D cameras for tracking has been

established for some time [191]. In their work, Song et al. provided a large public dataset
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of RGB and RGB-D based videos for object tracking. RGB-D cameras are also widely

used for SLAM implementations [51, 193]. In these dataset papers, the consecutive

depth-perceiving images are compared in order to evaluate location and at the same time

produce a map. For example, in [147], Munoz et al. uses cameras in order to real time

landmark-based visual SLAM.

2.4.7 LiDARs

Light Detection and Ranging (LiDAR) devices are used as part of popular data association

methods in order to obtain the position of the agent. They perform tracking by detecting

the immediate vicinity of the agent and comparing it to previous readings [228]. LiDARs

used in context of indoor localisation are most commonly found in robotics [79, 99]. There,

the LiDARs are used most commonly utilised to perform SLAM [99].

Figure 2.5: Example of a bird’s eye view of a room (left) with 2-dimensional laser ranging device.
The noisy LiDAR ’returns’ are shown on the right.

Whilst theoretically, any part of the light spectrum can be utilised to perform ranging,

laser are most popular [80]. The working principle is rather simple, and relies on ToA

schemes - a beam of laser is sent out from the sensor and is reflected off the environment.

Then, the time it takes to return is calculated from that beam, establishing likely distance

between the LiDAR and the environment [39].

The data produced by a LiDAR can be either 2- or 3-dimensional [80]. This data is

most commonly referred to as point clouds, due to discrete granularity of the environment

it produces. These point clouds are later used as descriptors of the indoor environment

and most commonly used to perform SLAM [79], usually as part of scan matching

techniques [79, 219]. This data is however high dimensional and requires large reserves

of computational power to optimise [99]. As shown in Fig. 2.5, point clouds are also

susceptible to environment noise and jitter, which additionally creates scan matching

issues.
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Some early approaches to LiDAR localisation used robots in indoor positioning

scenarios [34, 176]. Chmelař et al. used a laser range finder sensor in order to localise

a robot in an indoor office environment. They used a compensation method in order to

reduce the aggregated error. Rekleitis et al. was one of the first to propose a multi-agent

localisation with LiDARs. Whilst the mapping was performed using a sonar, the robot

agents were tracking each other using the LiDAR, in order to compensate for odometry

errors.

Modern approaches enjoy better LiDARs and more computing power, allowing for

faster processing and more resolute mapping [158, 219]. Peng et al. used a novel scan

matching technique to achieve robot localisation in an indoor environment. Based on

this work, Wang et al. [219], performed a similar study. Note that the robot used in both

of the above papers was a ground-based device. Lee et al. [112] has used a LiDAR, along

with a Virtual Reality (VR) headset, to obtain high resolution positioning using a drone.

This experiment was in part inspired by disaster management and designed for first

responders as an aid for finding survivors.

Accuracy Noise Resilience Cost Current Consumption References

Inertial 1m-10m Low Low 100µA - 3500µA [41, 84]
[55, 213, 223]

Ultrasound 0.01m-0.1m Medium Medium Varies with application [148, 167]

RF 1m-10m Low Low Varies with protocol [11, 63, 100]
∼ 20µA per packet [223]

Camera 0.01m Mid to high Mid to high Usage & processing [10, 113]
À 1A

Magnetometer 3m-5m Mid to high Low ∼ 300µA [36, 194, 223]
[74, 117]

Visible Light 0.2m-5m Low (LoS) Medium ∼ 5100µA [82, 168, 215]

LiDAR 0.01m-0.1m Medium High ∼ 300µA - 1A [79, 80, 189]

Table 2.1: Table of sensor modalities, evaluated using the criteria from Section 2.3

2.4.8 Other modalities

The above list is by no means exhaustive. In the literature, there exist various other

implementations of IPS, which utilise less popular modalities. An example of one such

implementation include Seo et al. [183], which used an ultrasonic anemometer to com-

pliment the IMU on a mobile robot. Anemometers measure relative velocity of air. In
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the above study, the robot was moving through static air, which ensured no erroneous

readings.

Some research has also included pyroelectric infrared (PIR) sensors. Luo et al. [126]

used a lattice-like sensor, in order to track an agent through the environment, at the

same time performing activity recognition. The study motivated the use of PIR sensors,

by noting that they are relatively infrastructure-free, and are easy and cheap to deploy.

There also exist some data sets, where the PIR sensors are included, such as Twomey et

al. [204].

There also exist studies using the piezo-electric effect in order to obtain the location

and activity information of the users. The study of ’smart carpets’ done by Chaccour et al.

[31] does not cite indoor localisation as its main objective. However, this implementation

could be used for very coarse location estimation as well. In their work, the authors have

considered fall detection using specially adapted carpets with piezo-resistive pressure

sensors embedded within them. Similar study was also done by Contigiani et al. [38],

which used piezo-electric wire lattice, inside the carpet, as a tracking modality.

2.4.9 Drawbacks and Modality Evaluation

The presented modalities all differ in terms of the data that is being captured, and they

way they obtain these readings. All of their topologies offer advantages and disadvantages

in the domain of indoor localisation. In this subsection we will discuss the shortcomings

of each modality.

Inertial sensors, whilst cheap and relatively energy efficient, often suffer from degrad-

ing noise [21, 151]. This noise is usually rectified by the researchers, though meticulous

planning and closely controlled experiments [21, 86, 241]. Results ’from-the-wild’ indi-

cate that these sensors, are much more effective when used as part of a wider family of

activity recognition tasks [24, 43, 44].

Ultrasound and acoustic sensors offer great precision but only at short ranges and

in LoS laboratory conditions [153, 167]. Interestingly, most of the studies included in

this survey have indicated that aside from these shortcomings, ultrasound is mostly

preferred due to its low-cost and ability to reuse already existing sensor infrastructure,

such as smartphones [148].

The biggest issue with RF sensing for localisation is the labour associated with

training and the unpredictable nature of RF signals in the environment. The topology of

this sensor make it great for tailored applications [100, 160], but often fail to generalise to
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other environments, and even users [43]. In addition, whilst fingerprinting is a powerful

training technique, it is often cited as a drawback in any RF implementation [24, 115].

One of the major drawbacks of camera-based systems is the large computational

complexity [207, 226]. Additionally, these sensors suffer performance degrading occlusion

and lighting effects [25]. High dimensionality has also been cited as an important

consideration [72]. These type of sensors are likely to be omitted in favour of other

modalities in IPS settings.

Magnetic field sensing has been proven to be effective, but only in confined spaces,

taking advantage of ferromagnetic effects brought on by buildings [232], and under

controlled conditions [71, 74]. This type of localisation also suffers from fingerprinting

issues [36, 214]. Localisation based on an AMF could still be considered emerging, leaving

plenty of opportunity for further work.

Visible light sensors provide a very accurate 3-dimensional positioning results at

the cost of big infrastructures and controlled experimental testbeds [178]. Additionally,

NLoS conditions are difficult to negotiate with this type of sensors [8, 116]. Modulation

of the light beam is an another issue - it requires frequencies large enough as to prevent

visible flickering, which has been proved to be detrimental to the user experience [116].

LiDARs are a great intermediary between high dimensional data and reliable effi-

ciency. However, the sizes and cost of these devices are still considerable. They are also

prone to environment noise and, since scan matching relies on dead reckoning and will

aggregate error over time, requires additional optimisation steps to become viable [79].

These modalities have been tabulated in Table 2.1, and scrutinised against the

evaluation criteria provided earlier in this section.

2.5 Sensor Fusion

The above sensors are popular within indoor localisation literature. There exist numerous

reasons for using these particular sensors on their own. However, by introducing an

additional modality, one can obtain more information about the environment or its

dynamics [100, 110]. By not relying solely on a single modality, an IPS can enjoy a

number of advantages, ranging from resilience [26], accuracy improvement [33] or

energy-awareness [101, 110].

Whilst, theoretically, fusion of any sensors is possible, not every combination is

feasible. The most popular combination in the domain of inertial sensing, for example,

is the consolidation of accelerometer and gyroscope with magnetometers, in order to
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produce robust PDR systems [107]. Nowadays, the relative energy output of these type

of inertial sensors is negligible, which makes these sensors a popular choice in low-power

applications [43].

RF-centric localisation has also been improved with fusion [26, 76, 198]. The com-

bination of sensors in this context is usually performed for location improvement, as

realistically, pure RF can only provide coarse location estimation. Mostly this involves

either predicting or compensating the RF prediction with an inertial measurement

[76, 100, 187]. Fusion of RF and magnetic field strength for performance improvement

has also been explored [141].

In terms of robotic LiDAR SLAM applications, the fusion is also performed using the

robot’s own IMU and magnetometer, in addition to the LiDAR [108]. VLC positioning

has also been complimented by an IMU [248], as has ultrasound [64]. In each case this

provides accuracy improvement to the system.

The relative fusion between different sensor modalities are visualised in Fig. 8.1.

These sensor fusion combinations are by no means exhaustive. They were picked on

the condition of being current examples of fusions between these types of modalities.

Likewise in Fig. 8.1, the fusion was visualised only to help expose gaps in the literature

pertaining to sensor fusion for indoor localisation. The intention of these is to give the

reader a good starting point for their own investigations.

In the following sections we will review the studies which used fusion for a specific

purpose.

2.5.1 Objective-specific Fusion Combinations

2.5.1.1 Fusion for Robustness

Fusion for robustness entails combining different sensor modalities in order to make the

performance more resilient to outside adversity. Considering indoor localisation as our

main motive, this adversity can come in the form of network-wide interruptions [100],

dynamicity of the environment [130] or hostile agents [177].

By utilising Particle Filtering (PF), Canedo-Rodriguez et al. [26] was able to fuse

a number of different modalities together for a robot-based indoor localisation system.

These systems included LiDAR, Wi-Fi signal strength, cameras and magnetic signals

from inside a museum. This robustification ensured a steady performance even in the

event of dynamic environment, such as body shadowing. Li et al. [119] presented a

technique for the fusing of UWB and IMU signals. This was done in the context of robotic
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indoor localisation using a Kalman Filtering (KF) . The authors tested the algorithm

against Gaussian noise, where their fusion method proved to be a viable safeguard.

Elbakly et al. [49] considered the fusion of a barometric sensor with Wi-Fi signal

strength to provide a reliable prediction of floor transitions. It was tested thoroughly

across three different environments, using 4 participants, and was proven to provide a

robust performance across users. He et al. [76] used a Bayesian Network approach to

fuse Wi-Fi and IMU signals. The authors arrived at the conclusion that the IMU was

able to robustify the positioning based on a smartphone application.

In the domain of robotics for indoor localisation, Paredes et al. [156] used a hybrid

of an ultrasonic and camera-based sensing to achieve 3D positioning for a Unmanned

Aerial Vehicle (UAV) . The study concluded that purely ultrasonic localisation result is

improved when using a ToA depth information from a camera.

2.5.1.2 Fusion for Accuracy

Accuracy in indoor localisation is most often calculated through the Euclidean error

metric, as shown in Eq. 4.2 and [127] and given in meters. Improvement of accuracy

is the main ambition of many positioning studies. The fusion in this context would

entail pin-point estimation of position based on a number of modalities. Over the years,

many fusion attempts have achieved substantial reduction of positioning error, however

no consensus among the community regarding the optimal way this fusion has to be

attempted.

Similar approach to Canedo-Rodriguez et al. was attempted by Shi et al. [187]. The

authors fused LiDAR and Wi-Fi, to robustify the accuracy of the location estimate. They

compare a simple PF approach to their own, achieving considerable accuracy boost in

a controlled environment. By using a KF, Chen et al. [33] fused Wi-Fi with landmark

information on a smartphone sensor. In this study, the landmarks were found through

unique locations of signature traces, such as elevators, stairs and steps. The authors

were able to reduce the error of a single Wi-Fi based system by approximately 5m.

Zhang et al. [241] considered the fusion of a variety of sensors to achieve improvement

on localisation using PDR, where the user was asked to take a challenging route up

and down the stairs. Knauth also considered a PDR application [97] using the fusion of

inertial, magnetic and RF sensors through a particle filter. It was again proven, that

an inertial-based sensor fusion with Wi-Fi is able to outperform simple Wi-Fi-based

positioning. Xing et al. [231] used the fusion of inertial, ultrasonic and optical flow

sensors, along with ArUco markers in order to improve the positioning of a small drone.

31



CHAPTER 2. BACKGROUND AND PRELIMINARIES

2.5.1.3 Fusion for Energy Efficiency

In order to ensure continued operation of an IPS, the system itself has to be made aware

of its energy usage. This is because the use cases of IPS usually necessitate them being

operational for prolonged periods of time. Some of the implementations use smartphones

as the computational foundation of their systems [97, 148]. Smartphones have been

found to be less efficient than tailored implementations [110], which would suggest that

there exists an optimal balance between their computational power and efficiency.

Kwak et al. [110] presented a system, based on the fusion of various inertial sensors

and magnetic fingerprinting in order to achieve energy efficient IPS. The authors claimed

a lifetime of almost a year on a single coin battery, at the same time reporting an error

of 1.6m in a controlled office environment. Sung et al. [198] considered a smartphone-

based inertial and RF fusion. In this work, the efficiency comes from the novel fusion

implementations provided by the authors, and is validated with a thorough study of

computational complexity between algorithms.

In our own work [101], we considered the utilisation of various sensor modalities for

energy efficiency, using a Reinforcement Learning approach. Here, we were able to fuse

BLE RSS with passive infrared and camera sensing to provide performance improvement

over time, whilst retaining energy-awareness at all times.

2.5.2 Methods of Fusion

Having established possible reasons for fusion, we now consider the theoretical interpre-

tations of the fusion methods which were previously mentioned. This sub-section covers

various generative and discriminative algorithms which make the fusion possible. They

are listed in the order of their relative complexity.

2.5.2.1 Bayesian Networks

Bayesian Networks are often used in order to obtain a fusion of sensors [3, 190]. In

a broad sense, Bayesian Networks are a subset of directed acyclic Graphical Models.

The nodes of the graph represent random variables which are being modelled. In a

multi-sensor setting we can assume that the connections between the nodes in the graph

represent their conditional dependencies. In other words, given a set of nodes v, the

general form of the joint probability distribution between variables is given by [190]:
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(2.3) p(x1, ..., xN)=
N∏

i=1
p(xi|Pa(xi))

where Pa(xi) are the parents of the node.

There are many examples of Bayesian Fusion in sensor fusion literature [76, 81, 100].

He et al. [76] considered an HMM approach to fusion of multiple modalities on a mobile

device using different graph structures for online and offline processing phases. Our own

work, also based on HMM [100] involved scrutinising a number of different data flow

models, which fused RSS and accelerometer data for robustness.

Hoang et al. [81] used a Bayesian approach to fuse RSS and steps detection signals for

indoor localisation. The fusion proved superior to methods based solely on RSS. Similarly,

Han et al. [69] used a novel approach to Viterbi coding to fuse RSS, Magnetic field and

IMU traces to obtain an improvement on positioning accuracy.

2.5.2.2 Particle Filters

Particle Filters or Sequential Monte Carlo (SMC) are a subset of Bayesian Estimation

methods. The basic algorithm relies on recursive estimation of the posterior probability

of the state xk given some sensor observation zk at step k. The objective of this algorithm

is to estimate a probability density function associated with state xk, taking into account

all sensor observations up to step k, given by z1:k [9]. This is done by first providing the

prediction about our belief of p(xk|z1:k−1) and then updating the probability using Bayes’

Theorem. More formally [9]:

(2.4) p(xt|z1:t−1)=
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1

which is the prediction given by the Chapman-Kolmogorov equation [9]. The update

can then be given by:

(2.5) p(xt|z1:t)= p(zt|xt)p(xt|z1:t−1)
p(zt|z1:t−1)

Simply put, particle filters approximate probability density function of an unknown

state as a recursive function of sensor observations which were observed up to some time.

This particular approach has found applications in sensor fusion literature ranging from

robotics [145], to activity recognition [182].
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In the field of indoor localisation, they are most popular among the fusion of inertial

sensors, especially when applied to PDR [6, 85, 171]. Hsu et al. [85] considered the fusion

of a foot-mounted IMU and GPS signals to rectify noise drift. A similar approach was

proposed by Akiyama et al. [6], albeit without the use of a GPS. There, the PF was

scrutinised against energy efficiency, in addition to positioning accuracy. Racko et al.

[171] also used particle filtering in service of PDR. They did this by predicting steps and

heading from an IMU.

2.5.2.3 Kalman Filters

Kalman Filters are intimately related to recursive Bayesian filtering [48]. The popu-

larity of KF was mostly thanks to its formulation, which allows many different sensor

modalities to be arbitrarily modelled by the filter [61]. It is also preferred for its ability to

obtain the result in real time. The usual KF formulation follows a pattern of state-space

modelling, and their subsequent prediction and update [48].

Formally, the Kalman filter equation for state space input and output responses, in

continuous time, are given by [48]:

(2.6) ẋ(t)= F(t)x(t)+B(t)u(t)+v(t)

(2.7) z(t)= H(t)x(t)+ω(t)

where ẋ is the state vector, z is the output vector, u is the control input, v stipulates

the response of the process noise and ω is the noise due to measurement. Additionally, F
specifies system state matrix, B is the input matrix and H is the matrix specifying the

observations. The usual KF approach has two phases, prediction and update, which we

will omit in our formalisation and instead refer the reader to [48, 61].

KF can also be used as part of Extended Kalman Filtering (EKF), which is the

nominal method used in literature. There exists a body of work dedicated to EKF for

indoor localisation [28, 108, 183, 233]. Kumar et al. used a KF to provide a 3D localisation

of an indoor UAV, by integrating a LiDAR and an IMU. Here, the authors used KF to

fuse the output of two LiDARs together to achieve 3-dimensional localisation.

There is also a dedicated SLAM approach called EKF-SLAM [202]. In their paper,

Vivet et al. [212] used a line-based EKF-SLAM for a robot based application. D’Alfonso
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et al. [40] also used an EKF-based approach to SLAM for a robotic indoor navigation

tasks, supporting their simulated results with subsequent real life experimental work.

By using EKF, Alatise et al. [7] performed fusion of a 6 degrees of freedom (DoF) IMU

sensor. They fused accelerometer and gyroscope to obtain the pose of the robot, i.e. the

heading and its location. Kaltiokallio et al. [93] compared the relative performance of PF

and EKF. The study concluded that for indoor positioning based on RSS, they are largely

similar with the exception of the computational overhead, which favours the EKF.

2.5.2.4 Neural Networks

Due to the emergence of Artificial Neural Networks (ANN) in the recent years, a number

of researchers have considered the use of a tailored network for sensor fusion. Most of the

approaches use Deep Neural Networks (DNN) [111, 123, 218]. While there exists a body of

literature dedicated to objective-specific fusion methods using ANN [205, 208, 209, 235],

there is an evident lack of standarisation between the positioning methods, and it still

remains largely unexplored.

Interestingly, ANN has often been used as a pre-processing step before actual fusion

[208, 209, 218]. Whilst not strictly related to indoor positioning application, Vargas-

Meléndez et al. [208, 209] used an ANN to estimate the pseudo roll angle of a vehicle,

before performing fusion based on a PF. Wang et al. [218] performed indoor localisation,

using CSI and deep learning. They were able to extract the location features by weighting

them, using an ANN. This was later fused together during an online phase of their

algorithm.

Liu et al. [123] proposed using deep learning for scene recognition and fingerprinting

tasks. Using a smartphone, they were able to perform scene recognition from pictures

using deep learning. Based entirely on the deep learning architecture, Lee et al. [111] per-

formed localisation based on ambient magnetic field. They extracted magnetic features,

as well as odometry and fed them to the network to obtain a robot’s position.

2.6 Conclusion

In this chapter, we have reviewed the popular sensor modalities which are currently being

used for indoor localisation. First, we have detailed each sensor modality and have given a

thorough literature overview for each. The modalities were then scrutinised under widely

accepted evaluation criteria. Then, we outlined the recent attempts at fusion and the

most popular combination of sensors, considering context-specific consolidations. Among
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them were Robustness, Accuracy and Energy Efficiency. Finally, we have considered the

popular sensor fusion methods, which range from Particle to Kalman Filters. We have

also considered the basic modelling and inference methods for the work contained in this

thesis.
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3
DATA GATHERING AND DEPLOYMENT TECHNIQUES

This chapter will consider the methods, techniques and approaches for data set

collection for residential indoor localisation. The data described in this chapter

will be used extensively (but not exclusively) throughout this thesis. Chapter

will begin by outlining the related research, with a specific focus on localisation-specific

datasets and the sensors used therein. The first half of the chapter will outline the under-

standing behind indoor localisation using WSNs as applied to residential environments,

and provide the reasons why the existing, available datasets fall somewhat short to the

main ambition of this thesis.

The remainder of this chapter will concentrate on the author’s own data collections.

Firstly, we will outline the sensor infrastructure used, as well as methods of ground-

truthing of the data. This will be followed by the typical output for sensors used in

this study, as well as a rudimentary classification method for indoor localisation. The

final section of this chapter will embark on a much more extensive collection spanning

numerous houses and participants. This collection can be considered as one of the main

contributions of this thesis. We will close by discussing the challenges faced during the

collection campaigns, and give novel approaches to mitigate these shortcomings.
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3.1 Related Work and Contributions

Collection of data pertaining to indoor localisation, in itself, is not a novel task. There

exist various studies which are concerned with indoor data gathering involving various

robotic [56] and human tasks [135, 197, 203, 204]. Fallon et al. [56] produced a compre-

hensive dataset containing RGB-D, LiDAR and proprioceptive sensing, in the service

of indoor mobile robotic training. Torres-Sospedra et al. [203] created a database of

fingerprints for WLAN applications using handheld smartphone devices, across multiple

buildings. Sun et al. [197] used LiDARs and Cameras to obtain a thorough dataset for

camera-based localisation.

The above datasets, however, are not all suited for the testing of models for residential

applications. This either due to the fact that their intended application did not consider

human participants [56] or the target environment does not resemble residential abodes

[203]. Acquiring and modelling data from real residential environments using real hu-

man residents is, understandably, difficult. However, there exist some dataset which

have tackled this problem. Twomey et al. [204] produced a SPHERE Challenge dataset,

comprising of various environmental and on-body sensors in a residential environment.

This dataset included as many as 20 participants performing scripted activities. Mc-

Conville et al. [135] performed similar residential study, using novel method of sensor

calibration for activity and localisation estimation.

The above methods are most closely related to the work undertaken in this chapter.

We aim to alleviate some of the challenges and issues which presented themselves

during the collection and subsequent analysis of the above datasets, by reusing the

same house as Twomey et al. [204] and same infrastructure as McConville et al. [135]

and Pope et al. [160]. We show that the residential environment can be modelled with

granular resolution and that the proposed structure prediction algorithms are viable.

The contributions of this chapter include:

1. We present the infrastructure which is used to perform data collection, as published

in [135, 160].

2. Then, we show the raw data which is to be expected from this sensor infrastructure,

by outlining a brief infrastructure testing study.

3. Later, we outline a new dataset, as published in [24].

4. Finally, we illustrate the viability of this dataset and provide the theory behind

modelling of the above data for the subsequent analysis in this thesis.
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3.2 Indoor Localisation with RF Sensors

3.2.1 On Residential Environment in Indoor Localisation

Residential localisation is just one of possible application areas pertaining to an IPS. As

it was mentioned in chapter 2, there exist various other environments where obtaining

a viable positioning result is important [83, 94, 131, 216]. Indeed, with such a broad

application area, the space for algorithmic design tailored to a specific function is corre-

spondingly large. As an emerging field of study, the area of residential localisation has

enjoyed a steady increase in published literature, with methods ranging from simple

path loss models [20] to fine-grained probabilistic algorithms [100]. Continuing with

this trend, we aim to show how residential localisation can be utilised in the context of

healthcare, and how its utilisation can benefit those in society, which require the most

assistance.

The main beneficiaries of a residential indoor localisation system vary, from the

dwellers themselves, to clinicians who would be analysing their progress. Assuming

a non-intrusive nature of a given IPS, the system itself can fit seamlessly around

the lives of its users, possibly used in a longitudinal setting. Having access to this

information, the users can in turn adjust other aspects of the house to fit their needs, for

example automated location-centric heating providing energy savings over time. As it

was mentioned in the introductory example, clinicians are able to monitor their patients

relatively non-intrusively, showing them a real picture of their patients in their home

environment.

At first glance residential localisation might appear a simple problem, when compared

to, for example, localisation in industrial halls and hospitals. However, even though

smaller on average, residential environment rarely enjoys concessions attributed to

these examples. The main difference is the granularity of the possible space, which the

algorithm has to negotiate in order to become viable. Taking hospitals as an instance,

the main objective of its localisation system is to keep track of patients which might for

example, be confused and lost in the building. In this case, the granularity of room, or

even floor level would suffice. This is not the case in a residential setting, where the user

can be performing different tasks in different areas of the same room. The resolution of

available locations would need to be correspondingly small, as to account for the large

space of typical household activities.

However, while the residential aspect of localisation brings numerous advantages,

it also suffers from various challenges which have either not been addressed yet in the
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literature. One of the central issues surrounding these methods is their continuing inva-

siveness. Thus far, there exist very few implementations which address this particular

theme. The other issues with residential IPS include the need for it to become generally

applicable. Houses, even when built on similar plans, cannot be assumed to sustain

localisation models in the same way, that is, expecting the models to perform at the same

level of performance. Current applications require arduous fingerprinting, the method

and challenges for which were outlined in chapter 2. This method however, cannot be

realistically generalised to other abodes, if only due to the furniture in different house

almost guaranteed to differ in shape, material and placement. The adaptability of an

IPS remains a crucial, yet relatively unexplored, section of the literature.

Residential localisation also suffers from signal occlusion and shadowing effects.

Whilst this is also true for other application areas, such as hospitals, the sources of

shadowing in residential localisation are mostly the users themselves. This, coupled

with the fact that they traverse much smaller spaces, makes the environment much

more dynamic and, accordingly, less predictable. Finally, there exist numerous examples

of adversaries which, under some conditions, are able to not only obtain the tracking

information of a house dweller, but also would be able to identify them outright. Attacks

can also come through spoofing attacks and injection of noisy and erroneous data. This

can be very detrimental to the recovery efforts of a patient if targeted by such an attacker.

3.2.2 Wireless Sensors in Networks for Residential Dwellings

The current state-of-the-art solution for indoor localisation is concentrated around WSNs.

These networks offer an infrastructure solution, which can provide a relatively seamless

integration into a user’s life. Their non-intrusive nature has been studied before in

residential settings [160, 225, 226], and have been proven to perform well in this context.

The recent influx of literature pertaining to pervasive network for monitoring of health

can be attributed to decreased cost of sensors, as well as their ubiquitous availability, as

addressed in chapter 2.

Localisation in WSNs follow the method outlined in chapter 2. The popular way of

utilising RSS ranges from deterministic [20] to probabilistic [100], in that the locations

can be estimated with respect to some confidence metric or can be established by cal-

culating the position exactly, relative to path loss models [20]. Both avenues offer their

unique advantages and disadvantages.

Ordinarily, residential location based purely on probabilistic models is difficult to

estimate exactly. This is because no one general model exists, and each model would have
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to be tailored to each unique house. Exemption to these, are models designed specifically

with generalisation in mind. Path loss models, especially ones considering in-depth

propagation, can offer a much more fine grained localisation result. However, parameters

and coefficients will not be transferable between houses. That is, radio propagation

characteristics are as unique as the house they describe. This makes deterministic

localisation difficult to generalise. In the context of residential localisation, the method

would have to be easy to implement and easy to train, due to the uniqueness of each

individual house, as well as due to speed and efficiency of infrastructure deployments.

In this thesis, we will use the SPHERE-in-the-box infrastructure developed as part

of the EurValve project [160]. This particular infrastructure leverages ease of use, avail-

ability of the hardware and quality of data. It is based on a widely available hardware,

as well as bespoke sensors produced as part of the SPHERE project [55]. The main aim

of this infrastructure was to make it simple enough for non-technical users to deploy and

use effectively, whilst at the same time collecting fine-grained sensor data about the user.

This thesis’ main contribution to the method outlined in this particular section is

the validation and testing of the deployment kit. This kit has been provided as part of

the study, in order to test the viability of this infrastructure. It was tested throughout a

weekend in 2017. The second contribution is the subsequent pre-processing and analysis

of the collected data, including the classification, as seen in Figs. 3.2 and 3.3.

The user carries a wearable sensor on their body at all times. This particular wearable

sensor [55] was designed to be worn on the wrist, in order to remain as unobtrusive as

possible. The wearable uses a ADXL362 accelerometer sensor processed by a CC2650-

based system-on-chip Cortex M3 processor. The accelerometer samples the acceleration

of the user’s wrist at the rate of 25Hz in 3-dimensional space [55]. The infrastructure

also includes a number of AP nodes, which act as signal anchors and main processing

plants of the infrastructure. In this implementation, a number of Raspberry Pis (3 Model

B) have been used. These particular models include a PCB chipset BCM43438 antenna.

The node utilises BLE protocols to transmit data between the wearable and the AP at

the rate of 5Hz [24, 160]. The entirety of the system is then connected, via Wi-Fi, to

a TP-Link modem, which enables the analyst to access individual Raspberry Pis and

extract encrypted data and information.

From this implementation, two unique sensor modalities are monitored. Firstly, the

acceleration of the user’s wrist as the user performs every day activities. The output of

this sensor has be used to perform activity recognition [160] and used as a complimentary

modality in location inference [100]. Acceleration can also be an indicator of the relative
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Figure 3.1: Block diagram showing the links in the SPHERE-in-a-box system. Courtesy of Pope
et al. [160].

level of activity in the house, and serve as a measure of calibration quality during

training [136]. Secondly, the wearable send the data directly to each available AP via

BLE. As mentioned previously in this thesis, the calculation of received signal strength

from a wearable is a good indication of relative distance between the transmitter and the

receiver. As the user traverses the environment, the signal strength from APs located

further away, or occluded by obstacles, will be small or non-existent (so called dropped

packets). Interestingly, the measure of packet drop, as a function of all packets sent in a

given time interval, is also a good indicator of location [100].

Figures 3.2 and 3.3 show an example of raw RSS and accelerometer data. This data

was collected by the author, over two days, using the aforementioned SPHERE-in-a-Box

infrastructure. They are provided to acclimatise the reader with the raw readings which

the infrastructure produces. In Fig. 3.2, the Received Signal Strength Indicator (RSSI)

measure shows the radio strength in dB from 3 unique APs placed in prescribed locations

in the author’s house, that is Living Room, Bedroom and the Kitchen. This figure also

shows the output of the location classifier, which works by estimating the location based

on the highest signal strength at a given time.

This basic classifier assumes direct mapping from sensors to locations and as such

can only provide a very coarse estimation of location. This is possible due to path loss

characteristics [20], where signal strength will be largest in LoS conditions. This can

usually provide acceptable performance [20, 100] at so called ’room-level’. Figure 3.3

shows the magnitude of the acceleration, and the output of a binary activity classifier

as seen across the same time scale as Figure 3.3. The k-NN classifier was trained on
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Figure 3.2: Example of RSS Indicator data, with a basic room-level location classifier, as collected
by the author over a weekend in Feb. 2017. Courtesy of Pope et al. [160].

Figure 3.3: Example of accelerometer magnitude data, with a basic activity classifier, as collected
by the author over a weekend in Feb. 2017. Courtesy of Pope et al. [160].
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the author’s own data which included 10 minutes of walking and 10 minutes of sitting,

effectively providing a binary classification between movement activity and no activity.

From the classified activities and locations, the patterns governing a normal day are

quite evident. The kit was installed at 17.00pm on a Friday, signifying the beginning of

collection on the graph. Immediately after installation, dinner was being cooked. This

is shown on Fig. 3.2 by classifying the location as kitchen, and increased accelerometer

activity on Fig. 3.3. These types of patterns are actually evident throughout the entirety

of the experiment. Note, that there are visible spurs of kitchen location with an increased

wrist activity, during breakfast, lunchtime and dinner time. Additionally, the activity

classifier was able to show how well or poorly the author has slept, by correctly identifying

that the user has an increased activity at 3am on a Saturday morning (which was

confirmed by dairies kept the author throughout the experiment). The grey labels show

the time when the author left the house.

The previous figures show, that even the most rudimentary classification can show

valuable information about the user. It also served to motivate WSN in the context of

residential IPS. Clinicians with access to such data could have a small, approximate,

picture of their patient’s lives. This in turn would enable them to provide valuable

feedback regarding their recovery, as well as be able to tailor the treatments using their

unique data.

The purpose of this analysis was to show how this data can be presented and what

conclusions can be drawn from it. This analysis is not exhaustive, and served only to

illustrate the capabilities of this infrastructure. In order to obtain a much larger picture

of a patient’s well-being, the localisation should be more resolute. By having a system

with a larger resolution, it is theoretically possible to uncover a much larger space of

behaviours, as the rooms themselves can be split into smaller segments where patient’s

dwell and perform different activities. Additionally, the activity classifier was only able

to show a binary output. By obtaining a larger space of user-specific data pertaining to

activities, it would also be possible to uncover a wider range of possible actions taken by

the participants.

3.3 High Resolution Residential RSS Measurements
with Activity Labels

In this section, we outline data collected between April 2017 and January 2018, which

included high resolution labels, as well as activity information for a range of different
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users. This collection utilised the same infrastructure, described in 3.2.2. This collection

was performed across 4 different residential abodes in the Bristol area [24]. This dataset

will henceforth be referred to as High Resolution Localisation (HRL) 1 dataset. There

are a number of aims which this novel dataset will address:

• Show the impact of high resolution labels for residential indoor localisation.

• Demonstrate the difficulty with generalising IPS across different residential envi-

ronments.

• To provide high resolution activity data, and show its usefulness in the context of

localisation.

3.3.1 Methodology and Scale of the Collection

To start, we will discuss the issues with collection of high resolution localisation data

from residential houses. Then, we will outline the procedure followed to solve this

challenge. After briefly describing the types of data collected, as well as the labels

contained therein, we will proceed to showcase and analyse this dataset, as to prove

its viability and highlight specific issues found when performing this type of collection,

using the described infrastructure, across various residential environments.

When considered as a localisation test bed, the 2-dimensional floor plan of a residen-

tial house can be thought as continuous, in that there exist infinitely many descriptions of

locations in that plan. Estimating location in such a space would not be tractable, in that,

given an infinite space, its description is also infinite. In order to approximate this space,

we perform discretisation of the floor plan into specific states, as a representation of a

small section of the living area. The floor plan of all 4 houses was therefore discretised

into 1m × 1m states. Here, it is important to note, that the sizes of the states are also

not exact. The topology of the house plan often disallowed perfectly sized states, and so

they have been rendered to the best of the authors’ knowledge and experience.

The house is outfitted with the same aforementioned wireless infrastructure. The

states are then labelled with a specially adapted fiducial markers, with their label clearly

encoded. These fiducial markers are all directed toward the same relative direction in

the house, as to preserve the direction of movement, when traversing the house. The

participants are then asked to wear the wearable sensor, like before, however in addition,

1Available at: https://figshare.com/articles/Residential_Wearable_RSSI_and_
Accelerometer_Measurements_with_Detailed_Annotations/6051794/1
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Figure 3.4: Example of a camera still from the data collection. The fiducial tags are visible, all
pointing to the same direction. This picture was taken after the processing, and the estimated
location coordinates and orientation are visible in the upper left corner.

they also have to wear a Panasonic HX-A500E-K camera on their abdomen area, as to

ensure clear visibility of the floor.

The experiments begin when the user flashes the clock in front of the the camera,

synchronised with an Network Time Protocol (NTP) server, to ensure proper coordination

between infrastructure timestamps and the camera footage. This is assured through

ELAN Software [1]. The same is then done at the end of each experiment. The user

is then free to roam, performing experiments inside the parametrised area. After the

experiment, the relative location and orientation of the user at specific times can be

extracted by estimating the distance of the camera to various tags within the Field of

View (FOV). Note here, that the tags are all coordinated, relative to ’Tag 0’. Figure 3.4

shows the example screen capture from the processed footage from House 1.

The users perform various experiments in the houses. The variability of experiments

ensures that the collection in each house is as thorough as possible. We will now discuss

their viability. First and foremost, the houses were carefully fingerprinted. Fingerprinting

is the mechanism of acquiring the description of the state space, by visiting all prescribed

locations. Each house was provided with two different fingerprints:

1. Slow Fingerprint, where the user spent 80 seconds in each state, turning towards
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each cardinal orientation. This type of fingerprint took 16 minutes on average.

2. Fast Fingerprint, where the user would ’fly-through’ each state, spending only a

few seconds in each location. This would take 7 minutes on average.

In addition to these fingerprints, the users also performed ’living’ experiments. These

types of studies originated from the need to provide a viable picture of a living participant

in their house. The basic principle was that the users would perform every day activities,

such as cooking or watching TV, but whilst monitored by our infrastructure. Additionally,

these types of experiments would associate accelerometer signatures (and consequently

activities) with specific locations in the house.

Living activities varied from house to house, as to best provide a range of possible

‘candid’ scenarios of everyday life. Some specific activities during these experiments

would include, for example, watching television, or making a cup of tea. Some data has

also been collected for house-specific activities. This could have been because this house

included a special room (such as a study or living room/kitchen combo), or included a

specific piece of furniture.

The fiducial tags would also serve as labels for activities during living experiments.

These activities would be labelled by unique integers as to ensure no ambiguity between

activities and states. Each user would again ’flash’ the fiducial tag in front of the camera

to signify the beginning of the activity and ’flash’ again to signify its conclusion. These

labels would later be used to timestamp specific accelerometer traces, corresponding

to high-level activities like ’Living Room Activity’, ’Bedroom Activity’ and ’Bathroom

Activity’.

The dataset includes 4 unique houses. Each of the house would also include new

participants. There are varying amounts of living experiments across the houses, as

this was not standardised. The collection of fingerprints and activity labels was however

necessitated from all of the participants. This ensured, that at the very least the dataset

consisted of viable training data, for both location and activity recognition, in each house.

The floor plans, presented as the quantised ‘tile’ structure outlining the positions of

the states, rooms and APs, are given in Figs. 3.5, 3.7, 3.8 and 3.9. Note that these floor

plans also include the location density derived from the camera post-processing step.

Additionally, the description of all experiments performed in these four houses, including

their duration, users and brief descriptions can be found in Tables 3.2, 3.3, 3.4 and 3.5.

The high level description is given in Table 3.1.
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Figure 3.5: Example of the discretised state space of House 1, with extracted locations. The
colours intensity signify the frequency of occurrence in these locations. Courtesy of Byrne et al.
[24]

Figure 3.6: The author performing ’Living Room Activity’.
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3.3.1.1 Cross-validation and Data Stratification

This chapter introduces the reader to the scope of the available data. This data included

experiments, which were specifically designed for the training phase of the algorithm,

as well as more candid living observations. The relatively varied spectrum of these

experiments allowed for the choice of the training and testing data to be equally varied.

Fingerprinting experiments have been used to train the data where applicable.

While these experiments would describe the entirety of the state space in detail, they

would, for example, fall short when describing the acceleration of the user as they

traverse the environment and perform various tasks. This is with the exception of the

fingerprint_activity, which exists for this particular reason, and which could be used in

conjunction to fingerprint_location in order to train the algorithm.

Living experiments would also be used to train the model if required. However, since

living experiments were much less structured than fingerprinting, they covered a larger

(and more realistic) space of state transitions, as opposed to fingerprinting. Therefore,

the use of living experiments for training would be warranted in cases where the model

is being tested for robustness.

Additionally, the model could be trained on a cross-validation scheme. In order to

obtain a viable picture of the environment, the training strata could include a subset

of the living experiments, which prescribe the realistic training scenario, as well as

fingerprint data, which populates the state space model with data in every state.

The strategy of cross-validation and subsequent stratification of the data would be

dictated mostly by the problem which they are set to solve. As such, the training and

testing splits will be described in the forthcoming chapters.

3.3.2 Collected Data

The timestamped and labelled accelerometer and RSS data was then associated with

the locations extracted from the video. Each state would therefore be described in terms

of this data. By acquiring data in such a high resolution, the dataset ensures that the

granularity of each descriptor is high. For the fingerprinting experiments, for every

existing state in the environment, there are at least 80 seconds of RSS signals. However,

in terms of free ’living’ experimentation, the users would not visit certain states for the

duration of the experiment. This was done to closely simulate the possible consequences

of daily life, as there exist spaces where the participants are less likely to visit.

The RSS data itself has to be modelled in terms of arriving signals. When projected
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House Type APs Floors Rooms Duration (minutes)
1 Apartment 1 Bed 8 1 4 89
2 Terraced 2 Bed 11 2 11 171
3 Terraced 3 Bed 11 2 9 319
4 Terraced 2 Bed 11 2 10 250

Table 3.1: Outline of the houses used in the data collection study. Courtesy of Byrne et al. [24]

Experiment Duration(minutes) Type User
fingerprint 32.6 Four orientations of floor tags a

walking_rapid 3.0 walking hastily a
walking_natural 3.4 walking naturally a

living_1 8.5 living b
living_2 9.2 living a
living_3 26.5 living a
living_4 5.4 living a

Table 3.2: Outline of the experiments in House 1. Courtesy of Byrne et al. [24]

Experiment Duration(minutes) Type User
fingerprint_floor 107.0 Four orientations of floor tags b

fingerprint_activity 5.2 Activity training a
fingerprint_rapid 5.6 Rapid training of floor tags a

walking_rapid 3.0 walking hastily a
walking_natural 3.0 walking naturally a

living_1 14.4 living b
living_2 7.4 living b
living_3 14.2 living a
living_4 11.2 living a

Table 3.3: Outline of the experiments in House 2. Courtesy of Byrne et al. [24]

into histograms, the data follows, approximately, a Gaussian distribution. This is best

visualised by plotting the distributions of each AP in each room. Note, that the resolution

of these labels was increased, to help visualise how the data differs in different areas of

the house. The corresponding house plan is available in Fig. 3.5.

Regarding accelerometer data, the actual modelling would follow extraction of feature

traces with respect to required model. For example, real time tracking application

would favour extraction of acceleration and velocity from the data, whereas offline

modelling would consider various activity traces as performed in various locations.
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Figure 3.7: Example of the discretised state space of House 2, with extracted locations. The
colours intensity signify the frequency of occurrence in these locations. Courtesy of Byrne et al.
[24]
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Figure 3.8: Example of the discretised state space of House 3, with extracted locations. The
colours intensity signify the frequency of occurrence in these locations. Courtesy of Byrne et al.
[24]
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Figure 3.9: Example of the discretised state space of House 4, with extracted locations. The
colours intensity signify the frequency of occurrence in these locations. Courtesy of Byrne et al.
[24]
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Experiment Duration(minutes) Type User
fingerprint_floor 71.4 Four orientations of floor tags c

fingerprint_activity 4.6 Activity training c
fingerprint_rapid 6.0 Rapid training of floor tags c

living_1 30.7 living c
living_2 5.4 living c
living_3 22.1 living c
living_4 8.0 living c
living_5 9.7 living c
living_6 60.0 living c
living_7 30.8 living c
living_8 8.4 living c
living_9 8.6 living c

living_10 53.3 living c

Table 3.4: Outline of the experiments in House 3. Courtesy of Byrne et al. [24]

Experiment Duration(minutes) Type User
fingerprint_floor 62.9 Four orientations of floor tags b

fingerprint_activity 4.8 Activity training b
fingerprint_rapid 4.0 Rapid training of floor tags b

living_1 29.8 living b
living_2 58.7 living b
living_3 16.9 living b
living_4 30.0 living b
living_5 43.0 living b

Table 3.5: Outline of the experiments in House 4. Courtesy of Byrne et al. [24]

The actual modelling of this topology will follow later in this thesis. Here we will only

demonstrate how well this data can differ between various locations in a residence. Here,

we consider the variance of accelerometer magnitude. We will initially examine the

data as prescribed to a ’walking/standing’ activity, before considering the more granular

activities themselves.

Note here, that the traces seen in the above Figures are generated from high level

labels of ’walking/standing’. As such, there exist many underlying activities which

compound into said labels. This describes why these traces are not wildly different.

Regardless, the extracted variance clearly shows that walking generates more varied

signal traces than standing. Additionally, it is evident that the traces behave differently
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Figure 3.10: House 1 Figure 3.11: House 2

Figure 3.12: House 3 Figure 3.13: House 4

across different houses. For example, House 3 in 3.12 provides a less ’vigorous’ stationary

action than other houses.

The low-level activity labels provide a more in-depth insight into the differing ac-

celerometer signals in each house. Consider Figs. 3.14, 3.15, 3.16, 3.17. The plots again

represent the extracted variance of the accelerometer magnitude for various labelled

tasks. The graphs have been colour coded in order to show similarities and differences

between similar tasks across all of the houses. It is evident, that where available, the

’Sink Activity’ in the bathroom provides most varied signals. This is largely due to the

actions performed in that location, i.e. brushing teeth. A more vigorous teeth brushing

provides large acceleration in all three dimensions. ’Kitchen Activity’, also where avail-

able, follows closely after that. Clearly, describing kitchen through washing-up traces

shows largely varied signals across various residences.

The above Figs. 3.10, 3.11, 3.12, 3.13 and 3.14, 3.15, 3.16, 3.17 are calculated using the
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Figure 3.14: House 1

Figure 3.15: House 2
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Figure 3.16: House 3

Figure 3.17: House 4
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calculation of empirical cumulative distribution function of the variance of the magnitude

of the accelerometer signal. The window of calculation was set at 6.4s. Formally, if ||x|| is

the magnitude of x, y and z, then the variance is given by:

(3.1) V ar(||x||)= E[(||x||−µ)2]

We conclude this section by noting that whilst wrist-worn accelerometer data might

not be optimal in terms of ’dead-reckon’ navigation, it can paint the picture of various

activities which are being performed in the house. Considering the likely location of these

activities, one can use this data to further robustify the location estimate. Additionally,

any dynamic model of localisation can use this data in order to establish likely transition

mechanics for a given house, and a given user.

Presented data serves to illustrate the type of sensor signal trace to be expected as

part of a high resolution localisation. We have outlined the RSS data and provided a

viable model which can be used in order to approximate the generating source. We backed

up this model by showing the distributions of RSS in various places in the house, and its

relationship to APs. We also described how to deal with missing data, in the context of

dropped packets, and stipulated that simply by knowing the total expected number of

packets, we can calculate the drop rate for specific locations in the house. Additionally,

we presented the accelerometer trace data, and demonstrated how its dynamics across

houses. Firstly, we showed that there exists a difference in what accelerometer traces

we can expect from different houses, suggesting that the topology of the house has a

direct impact on the amount of activity. Then, we outlined more granular activities, and

established that even across different residential houses some activities are comparable.

3.4 Conclusions and Challenges

This chapter outlined current trends in indoor localisation test beds, provided reasons

due to which this thesis required a collection of novel data, presented a method for

the collection of indoor localisation data using a pervasive monitoring infrastructure

and showed methods of modelling of the sensor output of said infrastructure. Whilst

considered state-of-the-art, this type of methodology of collection still presents numerous

obstacles, which will be outlined shortly. These challenges should not, however, decry the

potential of this method for residential deployments. The following observations were
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made after the data was collected, and should serve as motivation for further chapters in

this thesis, where they were addressed.

Firstly, in order to correctly measure out the states, APs and the rooms themselves, a

very precise manual measurement needed to be performed. This often involved measuring

the x, y coordinates of each state, relative to ’Tag 0’. Even though this collection was

performed in 2-dimensional space, some of the houses were multi-level. This necessitated

the encoding of an additional dimension in our measurements. There is also a possibility

of noise associated with manual measuring, which in turn would skew the location error,

as this depends entirely on accurate spatial coordinates of corresponding ground-truth

states.

Despite the fact, that the camera is objectively accurate in establishing the location

based on fiducial tags, the high-dimensional output from the camera can cause the

processing times to be long and the required compute to be large. As such, the training

of such system could not be considered for real-time deployments simply due to the

relatively long, off-line computing time needed to process the locations. Additionally,

the house plans which were collected from these residences were made entirely off-line,

based on the prior measurements of the states and available plans. This can increase

the possible measurement error further.

Finally, we consider the problem with per-user training scheme. Due to the relative

arbitrarity of RF signals in a constrained environment, the model which is trained on a

specific user is unlikely to perform well on other users. This is because every human body

would exhibit different propagation characteristics. This would translate to different

signal strengths for different people in the same areas of the house. This implementation

stipulates that the primary user of this system would perform the training themselves.

In terms of localisation for healthcare, this would necessitate patients to perform the

arduous ground-truthing themselves. Furthermore, the model would only realistically

show the picture of the signal propagation on the day of its training. However, signals

drift, along with propagation characteristics of their medium. This additionally suggests

that a system of this kind would require some kind of ’lifelong’ training scheme to

mitigate these effects.
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METRICS AND METHODS

In the previous chapters, the thesis covered a literature review of the subject matter,

as well as a comprehensive overview of the data collection and system deployment

methods. Here, we outline the metrics and methods which will be employed here.

The forthcoming chapters all share the underlying inference approaches and evaluation

metrics. These metrics are used in order to evaluate the indoor localisation methods and

approaches and require a rigorous mathematical formalisation. The aim is to include

the most important concepts in a single, easy to parse chapter. It will serve, as a general

overview of the most prominent approaches used in this text.

First, the chapter will give a mathematical introduction to the metrics used as part of

the evaluation of the results in the forthcoming chapters. However, since these chapters

set to solve different challenges, not all of the metrics of evaluation can be considered as

applicable and therefore not all of the metrics are used for every chapter. The reasons for

the use of the metrics and their suitability for the problem of indoor localisation will be

discussed in this section. The preceding chapter has outlined the environments in which

the experiments used in this thesis were carried out. Small subset of this characterisation

will be used in this chapter as an overarching application example. It will be used to

introduce the notion of Bayesian Networks and provide their subsequent extension into

Hidden Markov Models. Typical inference methods used in the forthcoming methodical

chapters will be addressed. We will conclude by formalising the typical training methods

of Hidden Markov Models.
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4.1 Metrics

There exist a variety of metrics which serve to quantify the performance of an indoor

localisation model. The most common of these metrics take into account the spatial

discrepancy between a label and its corresponding ground truth [127]. However, while

effective in measuring the performance of the localisation algorithm, this method might

not be useful when evaluating the performance of the underlying machine learning

model [100]. In this section, we aim to outline the metrics which were used to scrutinise

the performance of the indoor localisation and machine learning models alike. We also

formalise novel metrics which we believe to be advantageous in upcoming experimental

scenarios.

First, let us outline the formal mathematical notion of a ’state’ in this work. From

chapter 3 we define a ’state’ as an enumerated 1m×1m section of the floor plan. We

will denote each ground truth state l, which contains a tuple of information about its

coordinate location. In this work, the location is calculated predominantly in 2 dimensions

(unless specified otherwise), such that l = {x, y}. The vector representing ground truth

states will be denoted as L and we will assume that predicted location is given by L̂,

with each individual state as l̂. Note that the states can be quantised as numerical labels,

and that the correspondence between their spatial position and given enumeration is an

arbitrary choice.

4.1.1 Accuracy

Accuracy is one of the most popular performance metrics for machine learning mod-

els. The stipulation here is that the model performance is assessed, subject only to

enumerated labels. It follows the basic idea behind the calculation of model accuracy,

namely:

(4.1) Accuracy= Number of correctly predicted locations
Total number of predicted locations

×100

Whilst useful for the calculation of relative model performance, this metric should

not be used exclusively when considering an indoor localisation model. This is because

this metric is invariant to the discrepancy between the locations of predicted and ground

truth locations; in other words, it provides no penalty for performance, even if the relative

distance between two examined states is large.
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4.1.2 Distance Error

Distance error, or euclidean error, is a popular metric for evaluation of indoor localisation

models [127]. This metric incorporates the coordinate system into its metric calculation,

such that the relative discrepancy is calculated as a function of distance in d-dimensional

space. If the location in d dimensions is given by L ∈Rd , and its prediction L̂ ∈Rd, then:

(4.2) Distance Error=
√√√√ d∑

i=1
(l i − l̂ i)2

At any time t, the euclidean distance between two examined states is calculated,

using their x and y. This distance is then averaged across all time, and the absolute

value of this distance is used to provide performance evaluation.

4.1.3 Path Error

Path Error’s genesis is a consequence of the environments used as part of this thesis. The

basic stipulation of path error is to improve upon the distance error’s ‘obstacle blindness’

in order to account for environmental obstruction and interference.

The basis of this metric lies in Dijkstra’s Algorithm [45], which aims to find the

shortest path between two points in a connected graph. Formally, the path error is

calculated as a sum over the shortest route between the prediction and ground truth.

More succinctly, if L∗ (with |L∗| as its length) is the sequence vector of states, which

specify the shortest route link between state l and its prediction l̂, then assuming l ∈ L∗,

and l̂ ∈ L∗:

(4.3) Path Error=
|L∗|∑
h=2

√√√√ d∑
i=1

(l∗i,h − l∗i,h−1)2

The difference between path and distance errors, is that the former introduces further

penalisation if two states are not in direct contact. This penalty aims to contain the error

within the boundaries of the parametrised state space, as opposed to assuming that the

space between any given two states is free of obstacles. This is illustrated using the

example in Fig. 4.1.
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4.1.4 Suitability of Metrics

The above metrics aim to evaluate the performance and accuracy of indoor localisation

models. However, their usefulness is not always justified. Adopting one or more of those

metrics is subject to the challenge that the evaluated algorithm is posed to solve.

Accuracy, for example, can be misleading when compared directly to distance error.

Due to the stringent nature of accuracy, it may come to pass, that the model yields a high

percentage error, yet is able to maintain a viable distance discrepancy. This can happen

if the model predicts states close to the ground truth, but not ground truth itself. The

distance error can therefore be maintained at low value, whilst accuracy might be low.

Alternatively, consider how the error is calculated using the above formulations of

distance and path. Distance error disregards the obstacles, opting instead to calculate

the error using a uninterrupted ‘straight line’. The path error first calculates the shortest

path between the two states, and then sums the distances of each ’hop’. In this work, this

error was utilised to scrutinise whether the models are able to perform well in residential

environments with large number of rooms and multiple floors.

As an additional example, consider how distance error can be misleading when

considering states, which share similar x and y coordinates, but lie on different floors of

the same house. While distance is simply the height of the room, the actual traversal

between the two states would yield a much larger error. In this case, the path error

would actually be the true indication of a problem, as opposed to distance.

The choice of metrics in the following chapters will be dictated by the problem

formulation, as well as the appropriateness of each metric related to the problem. If any

single above metric is deficient, their combination will serve as a viable set of evaluation

mechanisms, properly scrutinising the performance of the algorithm.

4.2 Example of Sensor Model

In this section we introduce an example of a sensor model which will serve as a foundation

for further explanation of the methodology. In the interest of brevity, we will only consider

House 1 as the experiment environment. The modelling, methods and metrics however

can be generalised for the use with each of the remaining three houses. The objective of

this example, is to project the general methodology used in this thesis into the problem

at hand. By explaining how the indoor localisation problem can be formalised using these

methods, we aim to clarify how the remaining methodical chapters have been designed,

and what kind of methods and algorithms were used to evaluate them. This example
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Figure 4.1: Simple grid world example showing the differences between Distance (left) and Path
(right) error metrics. The states, whose discrepancy is being calculated are shown in green. Gray
block specifies an arbitrary, impassable obstacle. Arrows show how the error is calculated.

will also serve as a platform for outlining the use of the nomenclature associated with

the problems contained in this thesis.

The ideas relating to the resolution of the states should also be mentioned. In this

thesis, we consider the use of two, distinct levels of granularity, in order to evaluate

the performance of models. These levels include ’room-level’ and ’tile-level’. They can be

visualised in Fig. 4.2. The visible tiles are additionally separated into distinct sets, which

constitute physical rooms inside the house, as seen by different colouring of the tiles in

the figure. The average of the euclidean coordinates of the tiles in a given room subset

specify the x, y centre of the ’room-level’ state. The ’tile-level’ state is accordingly the use

of the more granular, individual tile states, and their euclidean coordinates.

Recall from chapter 3, that the given residential environments are tessellated into

(approximately) 1m × 1m states. This is given by Fig. 4.2, where the result of tessellation

of one of the houses, is provided. Note, that the number of these states varies from house

to house and each state is given by l, enumerated such that 1≤ l ≤ L, where L = |L| is

the total number of states. Note also, that each house contains a finite number of APs.

Each AP is given by k, their indices given by 1≤ k ≤ |G|, where |G| is the total number of

APs.

As seen in Figs. 4.3 and 4.4, the description of each state, in terms of its signal trace

distribution, differs. We can describe these signals more formally, by assuming that they

have been generated by a Gaussian distribution:
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Figure 4.2: Discretised state space of a residential abode. Each of the enumerated states repre-
sent an approximately 1m2 square in physical floor plan space of the house.

(4.4) p(RSSt|l,k) ~ N (µlk,σ2
lk)

With the signals described, we aim to clarify an additional problem of packet drop.

This problem was outlined in detail in Section 3.2.2. Inherent to wireless networking,

packet drop can occur due to, for example, extending out of range of the transmitter

or environment signal fading. Interestingly however, packet drop can also be used to

describe specific location in the house. Consider the probability of observation given the

location and AP, p(RSSt|l,k). For freely arriving symbols the above formulation holds.

However, if the observation contains no information i.e. dropped packet, we can calculate

the probability using a Bernoulli distribution:

(4.5) p(RSSt|l,k)

Bin(1,1− r lk
qlk

) if RSSt = -120dBm

N (µlk,σ2
lk) if RSSt ~= -120dBm

where r specifies number of packets with ’information’ (as opposed to number of

symbols specifying dropped packets, which in the dataset is set as -120dBm) and q is the

total number of packets, arriving from specific location l from specific AP k.
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Figure 4.3: Example of the distribution of signal from all 8 APs in a few discerning states. The
difference between RSSI signal traces can be used to establish location.

4.2.1 Supervised Learning through Label Frequency Counting

The parameters of the models in this thesis were predominantly trained on the available

training data. The estimation of parameters from data uses the provided training set only,

in order to infer the values of parameters, upon which the models are later evaluated.

Supervised learning approaches allow the user to provide a good approximation of the

underlying model, based on the available data. However, one of the shortcomings of this

method is the amount of data required to build up a viable model of the environment

and prevent under- or over-fitting.

The most basic approach, employed in this thesis, is the counting of available state

transitions/state emissions as a way of parameter approximation. This relies on the

frequency of either state transitions, or symbol emissions conditioned on particular states

[23]. Emission probability of observations given states was calculated by aggregating

the vector of all of symbols arriving at a certain prescribed state, as described by ground

truth labels. The mean, standard deviation and packet loss rate would then be extracted

from this vector (Note that the ‘hats’ above the mean and standard deviation represent

that the respective parameters are merely approximations of underlying distributions):
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Figure 4.4: Example of the packet loss rate of signal from all 8 APs in a few discerning states.

(4.6) µ̂lk =
Σqlk RSS

qlk

(4.7) σ̂lk =
√
Σqlk RSS− µ̂lk

qlk −1

where qlk = |RSS|, the total number of RSS observations in a given vector, in location

l from AP k. These calculations take place iff ∀ RSS ~= -120dBm. The estimation of

dropped packets is trivial, and its calculation involves symbols which ∀ RSS = -120dBm:

(4.8) r lk =
Σqlk1−120(RSS)

qlk

where 1−120(RSSt) is an indicator function.

The use of fingerprinting data for training would indeed yield a good description of

sensor traces in the corresponding states, but would not be a faithful description of the

transition potential between states. Consider, that in order to build up a viable transition

matrix, a lot more ’free-living’ data would be required, as to capture these movements
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between states. The synthetic movements produced by fingerprinting would therefore

not be used, and the transitions would be engineered separately using the adjacency

matrices between states.

4.3 Methods

This section will outline the methods which are employed in the remainder of this thesis.

Note here, that the notation of the formalisation of the established algorithms was kept

standardised to the literature as to maintain readability.

The algorithms which are presented in this chapter, and form the basis for the

algorithms developed in the later part of this thesis have are not in real time. This

effectively means, that the algorithms and methods contained therein are validated on

data which has been previously collected off-line.

4.3.1 Bayesian Networks and Graphical Models

Bayesian Networks have been mentioned in Sec. 2.5.2 as a method of fusion of sensor

modalities. BNs are a way of modelling conditionality between variables in a Directed

Acyclic Graph (DAG). The basic idea involves modelling the variables as nodes in a

directed graph. If a generic Bayesian node is given by n, then the general form of joint

probability of all variables is:

(4.9) p(n1, ...,nN)=
N∏

i=1
p(ni|Pa(ni))

U

VW

Figure 4.5: Example of a graphical model with three variables. In this example, the conditionality
of variables stems from their ’parent’ node, or U .

Consider the example in Fig. 4.5. The variables U , V and W are given as nodes in a

connected graph. From Eq. 4.9 we can derive the joint probability between them as such

[14]:
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(4.10) p(U ,V ,W)= p(U)p(W |U)p(V |U)

That is, the prior probability of variable A, multiplied by the conditional probability

of the remaining variables, given the parent node. In order to infer information about any

of the variables, the model can be marginalised over the ‘nuisance’ variables. Consider,

that we want to condition the model on variable C. The marginalisation would then be:

(4.11) P(W |U ,V )= p(U ,V ,W)
ΣW p(U ,V ,W)

= p(U)p(W |U)p(V |U)
ΣW p(U)p(W |U)p(V |U)

In this work, the BNs are used as a mechanism for fusion of different sensor modali-

ties. These sensor modalities include RSSI, Accelerometer and Video, amongst others.

They serve as a modelling tool, in order to find the causal correspondences between a

variety of sensors. This particular approach is well resourced in the literature [3, 190]

and provides a solid basis for the formulation of the problems contained herein.

4.3.2 Hidden Markov Models

Hidden Markov Models (HMM) are a popular example of dynamic Bayesian Networks,

which are used to evaluate temporal processes. The models play an important role in

this thesis, as all of the forthcoming chapters utilise this method as a validation step for

the proposed approaches.

l1 l2 l3

k1 k2 k3

... lT

kT

Figure 4.6: Example of a Hidden Markov Model. The observable emissions are shaded blue,
the hidden states are white. The basic idea behind HMMs is to evaluate the joint probability
p(l1:T ,k1:T ), given the knowledge of a prior distribution, symbol emissions and state transitions.

HMMs can be encapsulated using a tuple of parameters:

(4.12) λ= {A,B,π}
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where the parameters are described as follows:

(4.13) π= p(l0), A = p(l t|l t−1), B = p(kt|l t)

The equation below formalises the evaluation of joint probability between the afore-

mentioned symbols:

(4.14) p(l1:T ,k1:T)= p(l0)
t∏

i=1
p(kt|l t)p(l t|l t−1)

The equation 4.14 above describes the overall process of evaluating joint probability

between state l and emission k as a function of prior probability p(l0), emissions (i.e.

likelihood) p(kt|l t) and transition dynamics p(l t|l t−1). For further reading, we refer to

[169].

In our application example, the use of states and hidden observation symbols can

be outlined in terms of physical states in a residential abode, as well as the discretised

RSSI readings, observed at certain times. The evaluation of the joint probability would

then mean, that the indoor localisation would be performed with respect to the initial

starting conditions, as well as the inference of the subsequent location state sequence,

given RSSI observations.

4.3.3 Inference and Learning

Assume, that given the observation sequence RSS = RSS1,RSS2, ..., the model was

asked to obtain the probability of said sequence given the model parameters λ, p(RSS|λ).

As proven by Rabiner in [169], the computation of said probability becomes intractable

for problems with large enough state spaces [169]. One solution to p(RSS|λ) is an approx-

imation algorithm called the Forward-Backward. On the basis of the Forward-Backward,

we also outline the use of Baum-Welch algorithm, an Expectation Maximisation (EM)

algorithm used to iteratively learn the model parameters from the observed data.

4.3.3.1 Forward-Backward Algorithm

The Forward-Backward approximates the posterior marginal probability of p(RSS|λ).

The algorithm calculates the probability of a forward as well as a backward pass for

temporally governed processes. In this thesis, the Forward-Backward algorithm is used to
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predict the log-likelihood of the most likely states which would emit a certain observation

at time t, i.e. the distribution over all states at time t.
Consider the possible sequences between states in a given state space. The combina-

tions between states can be written as a sequence of states in time:

(4.15) Ξ= ξ1,ξ2, ...,ξT

More formally, assume that the Forward and Backward variables are given respec-

tively by [169]:

(4.16) αT(i)= p(RSS1RSS2...RSST ,ξT = l i|λ)

(4.17) βt(i)= p(RSSt+1RSSt+2...RSST |ξt = l i,λ)

The approximate solution to the Forward-Backward algorithm allows for the estima-

tion of p(RSS|λ) with much less computation than exact inference. The Forward part of

the algorithm is therefore initialised by:

(4.18) α1(l)=πlB1(RSS1), 1≤ l ≤ L

The following probability is then induced through:

(4.19) αt+1( j)=
[ N∑

l=1
αt(l)Al j

]
B j(RSSt+1)

with 1≤ j ≤ L and 1≤ t ≤ T −1.

Similarly, the Backward pass performs a similar induction, albeit in the reverse order

of the provided sequence, i.e. t = T −1,T −2, ...,1. For its initialisation, the final state of

the sequence is given as certain, βT( j)= 1. The induction is, then:

(4.20) β1(l)=
N∑

l=1
Al jB j(RSSt+1)βt+1( j)

where, again, 1≤ j ≤ L.
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4.3.3.2 Baum-Welch Algorithm

The Baum-Welch algorithm is a widely utilised parameter learning method for HMMs

[201]. The algorithm utilises a lot of the previously outlined implementations from Sec-

tion 4.3.3.1. The aim is to re-estimate parameter values given a sequence of observations.

Initialisation of parameters plays an important role in correct convergence of this

algorithm. The most popular way of initialising the parameters is either random or

pseudo-random [169]. Alternatively, the parameters can be estimated with respect to the

method in Section 4.2.1 and later iteratively converged using the observations.

The method follows from Equation 4.12 and Section 4.3.3.1, we can initialise the

parameters as required, and later iteratively improve them, by increasing the log-

likelihood of the result. The algorithm is capable of re-estimating the parameters of the

model (including the distributions of the signal) in each state.

After calculating the likelihood of the observation sequence using the Forward-

Backward procedure, the re-estimation is subject to an iterative Expectation Maximi-

sation. Using α and β from section 4.3.3.1, we can re-estimate the prior, transition

and emission probabilities. Note, that for continuous emissions, we re-estimate the

parameters of the Gaussian distribution, µ and σ [201].

Beginning with the prior probability, the re-estimation follows the simple normalisa-

tion over all states:

(4.21) π̂l =
α1(l)β1(l)

N∑
j=1

α1( j)β1( j)

The algorithm would re-estimate the parameters of a normal distribution, given the

set of available observations. The re-estimations make use of a temporary variable γt

given by:

(4.22) γt(l,k)= αt(l)βt(l)
N∑

j=1
αt( j)βt( j)

N (RSSt|µlk,σ2
lk)

G∑
m=1

N (RSSt|µlm,σ2
lm)

The parameters (µ and σ) would then be re-calculated:

(4.23) µ̂lk =

T∑
t=1

γt(l,k)RSSt

T∑
t=1

γt(l,k)
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(4.24) σ̂lk =

T∑
t=1

γt(l,k)(RSSt − µ̂lk)(RSSt − µ̂lk)T

T∑
t=1

γt(l,k)

The exit state of the algorithm tests for convergence of the parameters. This is usually

done through a step-increase condition of log likelihood. Effectively if |λ̂−λ| = θ, where θ

is the threshold, the algorithm is stopped. Otherwise λ = λ̂, and iterated again.

4.4 Conclusion

This chapter has outlined the use of methods and metrics, best suited for the task of

indoor localisation. The use of above-mentioned metrics show how indoor localisation

models can be evaluated both, in terms of their model performance, as well as the

discrepancies between states in physical navigation space. The chapter introduced the

notion of Distance error, as well as Path error, which was designed to mitigate some of

the shortcomings stemming from Distance’s rigid state disparity calculation.

Thanks to the highly structured environment the use of well established structure

prediction methods, such as HMMs, as well as their approximation algorithms was

proven and was shown to be warranted. The models can provide a viable base for a

variety of different algorithms, as proven in later chapters.
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5
EFFICIENT FINGERPRINTING USING SLAM-DERIVED

MAP AND POSES

As it was mentioned in the previous chapter, one of the main shortcomings of RSS

based indoor localisation is the need for arduous radio-frequency fingerprinting

of the surroundings. In order to mitigate most of the presented challenges, we

present ‘H4LO’ (Helmet for Localisation Optimisation) [103] , a low-cost system designed

to cut down on the labour by utilising an off-the-shelf Light Detection and Ranging

device. This system performs Simultaneous Localisation and Mapping, providing the

user with an accurate pose estimation and map of the environment. The high-resolution

location estimation can then be used to train a localisation scheme where RSS data is

acquired from a wearable device. We examine the usefulness of this method by relating

it to the camera-based fingerprinting methods from previous chapter by testing both

ground-truthing approaches using a novel dataset. We find that the new algorithm

is comparable in performance, whilst removing the need for time-consuming labour

associated with with registering the participant location.

The utilisation of this system, in tandem with the SPHERE-in-the-box architecture,

allows the user to perform extremely quick fingerprints, by cutting down on the logistical

overhead associated with transferring and processing highly dimensional video data.

Instead, LiDAR data, which produces data of lower resolution is used. It extracts the

locations at the fraction of required labour of the previous method, whilst at the same

time providing a map of the environment.
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5.1 Related Work and Contributions

The aim of the proposed system is to improve upon the method used to gather HRL from

chapter 3, by utilising a LiDAR device to obtain the users position and pose directly

related to RSS signatures during fingerprint training. However, the literature relating

laser range finders and RSS fingerprinting is sparse and not entirely comparable. We

evaluate the need and motivation behind this system in this section.

As it was stated in the previous chapter, the procedure for RSS fingerprinting is

notoriously arduous to perform, having to acquire an accurate spatial location of the

user position. A floor plan is often required to derive a list of training locations which are

subsequently annotated in space. Then, depending on the use case, a tailored method

is devised to accurately denote when the participant visits these predefined locations

[24, 136].

Another major shortcoming of this technique is that it suffers from performance

deterioration over time and requires periodical re-training [115]. This can happen due to

various environmental dynamics [130], or through deliberate hostile action [177]. It is

therefore in the best interest of the system for the fingerprinting method to be as simple

as possible, in order to be easily performed when required.

The literature relating laser range finders and RSS fingerprinting is sparse [114,

144, 162] and not entirely comparable. The presented literature indeed collects the

RSS fingerprints and LiDAR data, but through the use of trolleys and rigs, specifically

designed to be traversed through the environment by a technician or on its own. In our

implementation, we use a human user which collects their own unique fingerprints in a

residential environment.

The use of human participants performing the fingerprinting can be motivated

by considering the uniqueness of each person’s walking gait and radio propagation

characteristics. It was shown that the performance of the algorithms differ, depending

upon the training which was received from the participants [136]. This is especially

true in the case of residential indoor localisation, where the environment is small

but saturated with various obstacles, as outlined in chapter 3. It is therefore likely,

that trolley-based fingerprinting methods are unable to capture each user’s unique

propagation characteristics.

Some applications of LiDARs use human handlers [125, 180]. These implementations

assume that the LiDAR device is not used as part of a robot’s perception sensor, but

rather as a mapping tool [125, 180]. We aim to exercise a similar operation of the LiDAR
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in this chapter, by attaching the device on the participants themselves. However, our

implementation uses the entirety of SLAM pipeline, as in order to be effective, the

fingerprinting method requires reliable ground-truth locations and corresponding map

to be available.

There exist implementations which utilise SLAM for sensor signal-based localisation

through Gaussian Process (GP) regression [57]. For example, WiFi-SLAM appropriates

the SLAM pipeline of localisation and mapping in a setting of RSS modelling, as opposed

to spatial features. Work by Liang et al. used various ambient background sensor traces

to perform PDR which was subsequently optimised through SLAM techniques.

As is evident, there exist a need for reliable, automated indoor localisation ground-

truthing platform. This platform would be worn by the users themselves as they perform

RSS fingerprinting of the environment. Furthermore, it has to be robust enough as to

capture each user’s unique gait and propagation characteristics, and at the same time

flexible enough to be able to deal with various environmental obstacles which the users

can encounter, such as stairs and doorways.

The ‘H4LO’ system therefore combines the need for cheap and accurate RSS finger-

printing with proven reliability of 2D SLAM. In this chapter we present the hardware

used, recent experimental findings, and show the viability of this method as compared to

previous work. The main contributions of this chapter therefore are:

• We outline the proposed hardware for ‘on-the-cheap’ LiDAR scan acquisition,

utilising popular ‘off-the-shelf ’ devices.

• Then, we present the exhaustive ‘free-living’ and fingerprinting experiments gath-

ered to prove its viability, using different users and different scenarios.

• We introduce a novel dataset, which associates corresponding RSS symbols to

location and point cloud data.

• Lastly, we compare the performance of this method to the HRL data from previous

chapter, where floor tags were used to provide location labels.

In Section 5.2 we outline all of the methods which are utilised by our system. Section

5.3 will detail the pipeline of the system, from the hardware setup to map generation

and localisation. In Section 5.4 we reflect on the experiments performed and present the

results, comparing our approach to fingerprinting method used in previous work. We

conclude and provide points for future work in Section 5.5.
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5.2 Map Generation and Pose Estimation

The map, along with the approximate location is provided by 2-dimensional SLAM. The

algorithm used in this chapter utilises the MATLAB Robotics Toolbox, based on [79].

Here, we will outline the basic interpretation.

SLAM in two dimensions is formalised by considering the LiDAR returns as scan

point clouds C = {ct}t=1,...,T ∈ IR2. Each scan is recorded as a set of polar coordinates

in a corresponding location, given by R = {rt}t=1,...,T , such that each rt specifies a pose

estimate in SE2:

(5.1) r t = {x, y,θ}

The locations are constrained within the boundaries of a map M. SLAM aims to

extract p(rt, M|C0:t−1), or the location rt and the map M simultaneously by matching

consecutive scans C0:t−1 together. The procedure of scan matching attempts to find a

rigid transformation of the scan at t−1 into the frame of scan at t, given by [18, 79, 99]:

(5.2) Ct(ξ)=
[

wx

wy

]
+

[
cosφ −sinφ

sinφ cosφ

][
x
y

]

where ξ = (wx,wy,φ) is the transformation vector. In terms of a global map, this

transformation aims to minimise the non-linear least squares error between the current

map and the transformation of the most recent scan [79]:

(5.3) argmin
ξ

T∑
t=1

(1−M(Ct(ξ))2

The mapping of our environment is done through an occupancy grid. Occupancy map-

ping is a technique of probabilistic modelling of the environment. Basic interpretation of

this method entails calculating the posterior distribution over the map, given available

sensor measurements and prior estimated locations. More formally [202]:

(5.4) p(M|C0:t−1, l0:t−1)

The environment can be parametrised into grid squares, which themselves carry

information about the immediate surroundings of the sensors. This information is

encoded in the form of integer probability of cell occupancy, where ’0’ specifies that the
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Figure 5.1: Bird’s eye view of an arbitrary map, which specifies 3 distinct locations in time. The
green point shows the location, the blue arrow is the orientation, and together they constitute r t.

Figure 5.2: Corresponding point clouds C from the map example in Fig. 5.1. They all differ, in
that they have been gathered in point cloud reference frame.
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x

y

p(v) = 0.5 p(v) ~1 p(v) ~0

Figure 5.3: Simple grid world example showing the color gradients between occupied and
unoccupied spaces. This is an illustration of a log-odds model of occupancy grid mapping employed
in this chapter.

grid is an empty space, and ’1’ suggests that the grid is an obstacle. In terms of a LiDAR,

this can mean that at some t the beam of laser has returned a certain distance from the

sensor to the obstacle. This distance can then not only be used to establish the position

of the obstacle, but also show the available ’free space’. This is specified by taking the

log-odds probability of occupancy:

(5.5) v = log
p(M|C0:t−1,r0:t−1)

1− p(M|C0:t−1,r0:t−1)

The use of log-odd probabilities prevents the instabilities associated with probabil-

ities near 0 and 1 [202]. The actual map can be separated into grids, each containing

probability of being occupied. The color gradient shifts from black (unoccupied space) to

white (occupied space).

Due to the unpredictability in data collection and the environment, the scans, even if

collected at the same location, might not be precisely the same. A method relying purely

on scan matching will therefore accumulate error and make the location and the map drift

over time. To rectify this, the accumulated error is minimised when visiting previously

unveiled locations, as in GraphSLAM [66] and Google’s Cartographer [79]. This aims to

minimise the squared error between the expected and relative measurements of a scan

and an underlying sub-map [79].
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Figure 5.4: The ‘H4LO’

Figure 5.5: Downstairs Ground-truth. Figure 5.6: Upstairs Ground-truth.

5.3 The ‘H4LO’ System

5.3.1 RSS and Ground-truth Acquisition

The system makes use of the SPHERE-in-the-box infrastructure, described in [161] and

in chapter 3. Note, that this infrastructure, on its own, does not provide labels.

The ground-truth labelling method which we will use as a reference baseline in this
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Figure 5.7: Downstairs area map recovered from User 1.

Figure 5.8: Downstairs area map recovered from User 2.

Figure 5.9: Downstairs area map recovered from User 3.
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Figure 5.10: Upstairs area map recovered from User 1.

Figure 5.11: Upstairs area map recovered from User 2.

Figure 5.12: Upstairs area map recovered from User 3.
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study is exactly the same as the method from previous work, detailed in chapter 3. This

method is based on a abdomen-mounted camera, and relies on floor-mounted fiducial

tags, specifying empirically created state space. The synchronisation between the labels

and the RSS is done through the extraction of floor tag labels [62] from the camera video.

Whilst accurate, this method requires manual distribution of the floor tags, measuring of

the tag position and lengthy processing of the camera data.

‘H4LO’ relies on the LiDAR scan collection from head-worn helmet, shown in Fig. 5.4.

During data collection, the user performs fingerprinting much like before, by walking

around the environment and collecting the RSS measurements. In our system however,

the helmet also provides the corresponding LiDAR point clouds, representing different

areas in the environment. This ensures that the data from both RSS and LiDAR collected

is user-centric and unique across all participants.

The helmet comprises of a bike helmet, a power bank, Raspberry Pi 3 and RoboPeak

RP1 LiDAR device mounted on top of plywood. The LiDAR collected scans at 10Hz,

within a 6m range [186]. A 9-DOF BNO055 IMU [19] is present in the resulting data

set but was not used in this study. Timestamps are acquired through NTP from the

SPHERE-in-the-box infrastructure [161] to match with the RSS data. This entire system

was designed with cost in mind and comprises a total of £200 worth of hardware at the

time of writing.

As described in Section 5.2, the sequential nature of the scans make it straight-

forward to recover the map and the pose simultaneously. After obtaining both, the

system recovers the RSS signals corresponding to the locations in the environment. By

segmenting the map into states using spatial constraints, the system assigns the data

to each state and learns the dynamics governing each state using an adjacency matrix,

which is later used to acquire the state transitions.

5.4 Experiments and Dataset

In order to compare the two methods fairly, the environment was parametrised into

states at exactly the same positions as in HRL data, in chapter 3, shown in Figs. 5.5 and

5.6. This dataset only included residence described as House 4 from the previous work.

There were 3 unique users performing fingerprinting using the ‘H4LO’ and the

camera based approach at the same time. Each user traversed the same environment

at a different rate, taking different routes. They performed two types of fingerprinting -

one longer (16 minutes on average), staying at each state for a few seconds, and also a
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Figure 5.13: Results of the fingerprint experiments.

quicker ’fly-through’ fingerprint (7 minutes on average).

In addition to the fingerprinting experiments, two of the users also performed ‘free-

living’ experiments, performing everyday routines. These ‘free-living’ experiments did

not utilise the ‘H4LO’ system and instead relied solely on the infrastructure described in

chapter 3. These candid experiments can be further separated into ‘single free-living’,

where only one user took part and ‘dual free-living’ where both users participated at the

same time.

The resulting dataset comprises of the data from the wearable and the ‘H4LO’ 1. The

wearable data includes the wrist-worn acceleration and RSS, both sampled at 25Hz. The

‘H4LO’ primarily provides data from the LiDAR device, with the scans arriving at an

average rate of 10Hz. Additionally, the IMU attached to the ‘H4LO’ provides data for roll,

pitch, accelerometer and gyroscope, sampled at 100Hz, and heading and magnetometer

sampled at 50Hz.

The map was then stored locally on the Raspberry Pi. The pre-processing was minimal,

in that the scans were only downsampled, as to help reduce the computational cost

of the SLAM algorithm. After the pre-processing, the point clouds were fed to the
1Available at: https://github.com/mkoz71/h4lo_fingerprint_automation_system
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Figure 5.14: Results of the single living experiments.

Figure 5.15: Results of the dual living experiments.
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MATLAB Robotics Toolbox for SLAM, where their locations and map were extracted.

After extraction, the maps were rotated, as to face the same way, and the locations were

used to parametrise the floor space into states. The algorithm used to parametrise can

be found below:

Input: {R} = Extracted poses, {L} = Location state vector, {bl} = Buffer distance of
specific state l, {RSS} = Sensor readings

while t available do
if L ==; then

l ← {r t,x, r t,y} // Input x and y from extracted poses at t.
l ← RSSt // Assign sensor readings and store in the new state.
L ← l // Create new location state in global state vector and store.

else
for all available states in L do

if r t within bl then
l ← RSSt

else
l ← {r t,x, r t,y}
l ← RSSt
L ← l

end
for all available states in L do

l ← assign possible adjecent states from L
end

end
end

end
Algorithm 1: State creation algorithm

The algorithm begins by establishing the initial state at the pose extracted at t = 1.

The location of this pose will serve as the center point of the state, which is then assigned

‘hard’ boundary, visible as yellow squares in Figs. 5.7, 5.8, 5.9 and 5.10, 5.11, 5.12 and

also ‘soft’ boundary, so called buffer, which acts as a decision border of whether or not

to create a new state. If passed, new state is created. If not, the sensor readings are

assigned to that state. At any time t > 1, the algorithm iteratively searches whether the

given poses fall into an already assigned state. If so, the sensor readings are updated, as

is the adjecency between states. If not, a new state is created.

The results of the SLAM run for a single user are shown in Figs. 5.7, 5.8, 5.8 and 5.10,

5.11, 5.12. The green and red ‘×’ specify the beginning and end of the SLAM run. The

states are given as yellow squares, and are enumerated as such. The cyan dots signify

the locations extracted from the LiDAR scans. To make the comparison between the

methods fair, when running SLAM, the data was manually segmented into downstairs
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and upstairs areas.

Type User Experiment Train Test

Fingerprint b 1 ‘fingerprint_1’ ‘fingerprint_1’

b 2 ‘fingerprint_2’ ‘fingerprint_2’

a 3 ‘fingerprint_1’ ‘fingerprint_1’

a 4 ‘fingerprint_2’ ‘fingerprint_2’

d 5 ‘fingerprint_1’ ‘fingerprint_1’

d 6 ‘fingerprint_2’ ‘fingerprint_2’

Single a 1 ‘fingerprint_1’ ‘living_1_single’

a 2 ‘fingerprint_1’ ‘living_2_single’

a 3 ‘fingerprint_1’ ‘living_3_single’

b 4 ‘fingerprint_1’ ‘living_1_single’

Dual a 1 ‘fingerprint_1’ ‘living_1_dual’

a 2 ‘fingerprint_1’ ‘living_2_dual’

a 3 ‘fingerprint_1’ ‘living_3_dual’

a 4 ‘fingerprint_1’ ‘living_4_dual’

b 5 ‘fingerprint_1’ ‘living_1_dual’

b 6 ‘fingerprint_1’ ‘living_2_dual’

b 7 ‘fingerprint_1’ ‘living_3_dual’

b 8 ‘fingerprint_1’ ‘living_4_dual’

Each model was trained on the same fingerprint in two ways - one on the camera

labels and the other using the ‘H4LO’. Then, both of the models were tested against

specific subsets of all the experiments. The results from these tests are separated into the

fingerprinting, single and dual living results, seen in Figs. 5.13, 5.14, 5.15 respectively.

They are averaged across all participating users. Note, that there were only four dual

living experiments - results for both participants result in 8 test sets.

As described before, the metric used to test the performance of this system is the

Euclidean error, found in Eq. 4.2 in chapter 3. As is evident from the graphs, ‘H4LO’

has a comparable performance to the method used to gather HRL in chapter 3, in some

instances even outperforming the baseline. It is important to note here, that the expected

results were not supposed to outperform the fingerprinting method outlined in chapter 3.

These results, even if not entirely superior to the HRL, come at a fraction of the labour.

A possible reason for the results could also lie in the way the labels from both of the

ground-truthing approaches are gathered and quantised. Camera-based approach has
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an inherent advantage, in that it is considered as the ground truth when gathering the

data, considering only a single x, y position on the floor plan. The error for H4LO was

calculated from the available extracted poses on the map R. Extending the Euclidean

distance error from Eq. 4.2:

(5.6) Distance Error=
√√√√ d∑

i=1
(l i − r i)2

That is, the error is calculated between the quantised camera-based labels and much

more resolute poses, extracted from the SLAM process. Inherently, this will yield more

error, as the poses are spread across a larger area of the map, and thus would generate

more uneven and unfair, discrepancy between the prediction and label.

5.5 Conclusions and Challenges

This chapter has shown, that the efficient ‘H4LO’ system can be used to generate a

fingerprint training dataset with comparable results to the time-consuming camera ap-

proach [24]. Through the utilisation of head-worn robotic rig, the ‘H4LO’ system performs

mapping and localisation simultaneously. This solves a number of challenges which were

set out in Section 5.1, specifically regarding the arduousness of the fingerprinting method.

In addition to providing automation to the entire process, the system also ensures a

very reliable location estimation. Whilst the labelling system in chapter 3 did provide

similar localisation performance, it relied heavily on the fiducial tags and their annotated

coordinates within a house plan, both of which must be known a-priori. ‘H4LO’ removes

the need for floor plans, tags, human coordinate measurements and costly processing of

high dimensional camera data.

Since 2-dimensional SLAM is often sensitive to well-controlled topology and dynamics

(e.g. the extraction plane is assumed to be at a constant height), the relative freedom

of data capture in our setting is unusual and could be considered to be detrimental to

the quality of the model’s outputs. This includes each user’s unique traits such as body

build, gait, walking speed and having to negotiate various environmental challenges

like stairs and door thresholds. Despite this, our system is capable of collecting good

quality data which can be subsequently processed by existing state-of-the-art SLAM

implementations.

The relative space of application of this system presents a number of interesting

challenges. This includes typical human characteristics. Each user in this study was
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of differing height, weight and overall build. Combining this with unique, individual

attributes of each participant’s gait, creates substantial ambiguity between users, making

this system difficult to generalise across various users. Yet, even in these challenging

circumstances, data from each participant produced accurate maps, even with particular

human traits and habits (e.g. stooping under door thresholds).

This system also performs well when exposed to different routes taken by the users

through the environment. Recall from Section 5.2 and [79], that the algorithm relies

on the creation of local sub maps of the environment when minimising the aggregated

error. The rate at which this error aggregates is highly dependent upon the local spatial

features of the environment, or simply put, the routes taken by the user. All unique

users took different routes, which involved visiting specific rooms in specific order. We

have shown, that the hardware is robust enough to collect data from various users, from

challenging residential environments, traversing at different trajectories, and is able to

provide a viable result when applied to state-of-the-art algorithms.
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6
ROBUSTIFICATION AND RESILIENCE OF RESIDENTIAL

LOCALISATION SYSTEMS

This chapter presents two studies, where the localisation performance is scruti-

nised under a number of adverse conditions. As was stated in chapter 1, WSNs are

susceptible to various environment changes, noise and outside attacks [87, 177].

Range-based radio signals will be highly dependent on shadowing effects [88] and the

user’s current position indoors [11]. Understandably, with increased amount of noise in

the system, the accurate inference of position becomes correspondingly more challenging

[100].

In this chapter, we address these concerns by introducing two separate studies of

efficiency and resilience. Firstly, we tackle the robustification of the location estimation

through the use of additional information sources. The amalgamation of several passive

sensors can be used to provide an accurate location. This location often bears unique

signatures of activity, especially when considering residential environments. However, it

is only the basic human instincts, such as periodicity and routine, that make this possible.

The fact that behaviours and actions recur naturally is an important assumption in

this section. Secondly, using novel adaptive techniques, we introduce a new framework,

which continuously performs weak training in an energy-aware system. The method is

cheap in terms of work-hours, calibration and energy usage. It achieves this by utilising

other sensors available in the environment.
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6.1 Contributions

The initial study proposes a method, whereby semantic information about the location is

learned from an additional source. This method deals with the question of robust indoor

localisation prediction by extracting additional activity information available from a

wrist worn acceleration sensor. A number of different fusion models are considered, before

choosing and validating the model which provides highest improvement in accuracy and

robustness over the baseline example. The performance of the methods is examined on

different unique datasets, which closely resemble residential living scenarios [100].

Later, we approach the challenge of energy awareness and efficiency in WSNs. Our

implementation is evaluated on a simulated localisation environment and validated

on a widely available pervasive health dataset which facilitates realistic residential

localisation using RSS. We show that our method is cheaper to implement and requires

less effort, whilst at the same time providing a performance enhancement and energy

savings over time [101].

The majority of the hypotheses in this chapter are validated through the use of a

pervasive health dataset which was collected within the SPHERE project [204]. The

house which was used to perform this data collection is equivalent to House 4 in chapter

3 dataset, as well as the house of the H4LO dataset in Chapter 5. The experiments

performed as part of this dataset aim to resemble ‘natural’ residential behaviours as

closely as possible, by including numerous participants performing scripted and non-

scripted actions in a test bed environment. It includes data from bespoke sensors which

are popular within the pervasive health community. These include RGB-D cameras,

environmental sensors (ES), PIR and wearable accelerometer and RSS data. ES often

act as APs for the wearable RSS.

This dataset was deemed appropriate for use in this thesis, as in addition to using

the same rigorous, real-life environment as the other datasets, the context of indoor

localisation was approached in a similar way [204]. Whereas SPHERE Challenge dataset

lacks the resolution of HRL, it includes a variety of environmental and on-body sensors

not covered by HRL. Additionaly, the number of participants in the SPHERE Challenge

dataset is larger than HRL.

The contributions of this chapter include:

1. Novel data flow models, linking passive acceleration information to RSS using

unique data.
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2. A study on how an additional source of information is not only beneficial to location

inference, but can also safeguard against noise and loss of data.

3. Finding the limits of these models, in the context of pervasive activity monitoring,

and providing reasons as to why they exist.

4. Novel, energy-aware adaptive localisation algorithm: We create a simulated envi-

ronment, closely resembling a real-life localisation system and exhaustively test

our method in various simulated experiments.

5. Validation on true pervasive health dataset: We show that the algorithm is easy to

generalise to different environments, and can be adapted to various localisation

models. We do this using data of differing levels of calibration.

6. Effects of action selection: We compare the effects of different action selection mech-

anisms in terms of energy-efficiency, and discuss which method is best suited for

this purpose. We perform this test on both the simulated and real-life experiments.

6.2 Data Fusion for Robust Indoor Localisation in
Digital Health

This section presents a range-based probabilistic method of localisation and the fusion of

passive acceleration sensors. In chapter 2, we outlined the most popular fusion methods

for indoor localisation, showing that inertial sensors are very likely to be complimented

by an another modality of sensor, such as a BLE radio. In order to enrich the data in this

study, a wrist-worn accelerometer is used as an additional source of information about

the activity.

Processing the accelerometer data involves feature extraction and classification of

predefined tasks. The process of activity recognition using sensors has been noted as

difficult due to the human tendency to interleave concurrent tasks [67]. Also, considering

the activities themselves, the emphasis in various research avenues is to establish

how coarse the labels should be for optimal estimation performance. The position of

the accelerometer on the participant is also a subject of debate [13]. Wrist-mounted

accelerometer activity recognition is usually inferior to prediction from sensors mounted

on different parts of the body [132]. Regardless, the wrist remains the least intrusive and

most socially acceptable place to wear a sensor, especially in the context of monitoring

well-being [55].
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6.2.1 Method

The probabilistic models presented in this section will initially be analysed on SPHERE

Challenge Dataset [204]. The 4 APs available in the house were moved from their

nominal positions in-between experiments. This meant, that learning a model on two

affected experiments could produce different signatures of the RSS in the same locations.

In addition to this, an AP would occasionally be out of commission for a period of time

and would not be sending information about the signal strength. This dataset, however,

is a good platform to perform studies relating to real-life pervasive monitoring based on

WSNs. This is due to the fact that it will faithfully reproduce the possible shortcomings

often encountered whilst rolling out this kind of localisation system.

Out of the 20 activities labelled in the dataset, there are only a handful which could

help with localisation. A number of specific labels would be grouped together into a single

class. The reason for their groupings stems from the sparsity of RF coverage in the test

bed house. As the vast majority of the scripted experiments took place downstairs, the

SPHERE dataset study included only one AP upstairs. The rooms with poor coverage

included two bedrooms, a toilet and a corridor area. By distinguishing the activities

performed in the bedrooms, such as ’sit-to-lie’ and ’lie-to-sit’ transitions, it was easier

to predict the upstairs locations more accurately. This was because these particular

movements are more often performed in these rooms and could be used to aid the

RSS-only prediction of location.

The labels from SPHERE Challenge dataset were banded into 5 separate groups.

These are tabulated in Table 6.1. Group 1 helped with ambulation information. Group

2 was used to aid the localisation upstairs, as the tasks in that group were found to be

most prevalent there. Group 3 aided with the staircase determination, in order to make

the floor transitions more accurate. Group 4 only includes sitting, which was performed

in a variety of rooms, much like squatting in Group 5.

The SPHERE Challenge Dataset lacked the granularity required to examine perfor-

mance of localisation algorithms thoroughly. This was because only room-level labels

were available. This necessitated the generation of a more diluted dataset, which could

later be used for testing the robustness of the methods.

6.2.1.1 Feature Extraction

There are a number of studies concerned with time series feature extraction, and ac-

celerometer in particular. Common features include mean, mode and median, zero
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Table 6.1: Optimal label groups for activity recognition in SPHERE Challenge data

Group 1 Group 2 Group 3 Group 4 Group 5

Jump Bending Ascend Sitting Squatting
Walk-with-load Kneeling Descend

Walk Lying Stand-to-bend
Standing Kneel-to-stand
Lie-to-sit
Sit-to-lie

Sit-to-stand
Stand-to-kneel

Stand-to-sit
Straighten

Turn

crossing rate and first five values of Short Time Fourier Transform [164, 175].

In order to extract the features from SPHERE Challenge data, a window of 6.4s

as per Zhang et al. [240] was used. The windowing method was an overlapping rolling

window, producing K −N extraction samples, where K is the number of aggregated time

bins. It segmented the data, sampled at 20Hz, into vectors of length N = 128, from which

simple features were extracted based on direction-invariant magnitude. Each feature

was then recorded and a number of different classifiers were used. Those classifiers

were chosen on the basis of the state-of-the-art within the community [164, 175]. They

include k-Nearest Neighbours (k-NN), Decision Trees, Linear Discriminant Analysis

(LDA), Quadratic Discriminant Analysis (QDA) and HMM.

Not all of the features have the same relative impact over the classification accuracy.

Minimum-Redundancy Maximum-Relevance (mRMR) [159] was used to choose the most

effective subset of features based on the mutual information. The most dominant features

were also the simplest – full list is shown in Table 6.2.

For HRL data however, temporal aggregation was required. Temporal aggregation is

the accumulation and averaging of data points into respective temporal bins of specific

duration, effectively down-sampling the data. HRL was sampled at 5Hz, outputting 5

separate unique values at each sample. Data was then aggregated into 0.2s time bins.

It was found that a window of 1.2s performed best for feature extraction. This yielded

N = 6 data points in each window. The better performance was likely due to the quality

of data available.
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Table 6.2:
Ranking of accelerometer features.

Feature

1. Variance

2. Mean/Median/Mode

3. Sum

4. RMS

5. Standard Deviation

6. Range

7. Kurtosis

8. Skewness

9. Max/Min

10. Area

11. 25% Percentile

6.2.1.2 Models

The notation in this section is as follows: L denotes location, RSS is the observation of

the RSS, Y is the inferred activity and Acc are the observations of the accelerometer

features.

The model from Fig. 6.1 is be used as a Baseline. It only uses RSS as its location

observation. At a given time t, the trained model will compare the current observation

of the RSS against all the location states. This method is widely accepted in literature

[81, 150]. The stipulation in this model is that the distinctiveness of the signal in each

room/tile is enough to localise a user in a residential environment. This model does not

account for the user’s activity information, nor does it make any contextual assumptions

about the layout of the localisation environment.

Fig. 6.2 shows a first improvement on the Baseline. In addition to the previous RSS

observations, it assumes that the location is also determined by the current activity of

the user. This model came out of the belief that, for example, it would be more likely

to assume the user is in the kitchen because they are cooking, instead of inferring the

opposite. In order to infer the activity however, the feature observations are required.
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L RSS

Figure 6.1: Baseline

L

RSSAcc

Figure 6.2: Model 1

LY

RSSAcc

Figure 6.3: Model 2

L

RSSAcc

Y

Figure 6.4: Model 3

The second model in Fig. 6.3 ignores the activity information. It instead relies on the

fact that the user’s raw accelerometer features are enough to distinguish specific location

in the house. This model is the simplest of all three and only considers observations to

infer a single level network. This model is likely to be the most robust out of the three,

mainly due to lesser complexity.

The final model in Fig. 6.4 does not directly link activities to locations, but the two

nodes are nonetheless jointly dependent through observations. It is stipulated that the

extra activity information might have some influence on how the location is inferred.

The estimation of the Bayesian posterior using HMM and graphical models follows the

method given in chapter 4. Equation 2.3 specifies, that the calculation of the probability

of a hypothesis, given evidence is the product of the probability of a variable, given

its parents. In dynamic systems, inference can be approximated using the Forward-

Backward algorithm. This is also known as belief propagation.

The modelling of accelerometer signatures in this section follows a Gaussian distribu-

tion. Due to the granularity of the dataset, the relative range of accelerometer traces

in various locations in the house can be aggregated to represent a probability density

function over some variable, in this case the magnitude of the accelerometer. This is
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described as:

(6.1) p(Acc|L̂ j) ~ N (Acc|µ j,σ j)

where 1≤ j ≤ T are the location states.

6.2.2 Evaluation

The SPHERE Challenge Dataset was used to analyse how the models would perform

on low-resolution but well labelled data. The dataset was separated into 10 identical

experiments performed by different users. In order to test the model, 10-fold cross

validation was used across all experiments. Two experiments - 6 and 7 - were under-

performing. After removing those from the fold, the performance of the remaining bins

increased.

The relative performance of the algorithm was found to increase if those experiments

were removed from the fold. There are a number of reasons why this might happen. For

example, due to the large number of annotators involved during the labelling process

[204], the labels of the locations might have been erroneous. The performance of the

sensing systems could have also been at fault, as these experiments took place over a

number of days, with a number of sensor outages evident in the data [204]. Finally, the

positions of the AP nodes may have been disturbed, as the experiments took place in a

busy experimental test bed abode, with various experiments taking place concurrently.

Due to those reasons, they have been omitted from subsequent analysis.

The metrics of evaluation of these models have been previously outlined in chapter 4.

Here, we use all three metrics: Accuracy, Distance error and Path error, to evaluate the

performance.

Every enhancement model improved the nominal result, suggesting that the inclusion

of accelerometer data is advantageous. The small deviations between the models were,

in addition to their architectures, likely caused by their complexity. Model 3 is the most

complex of the remaining two. Fig. 6.5 shows that it performed similarly to Model 2,

never deviating for more than 5%. Those two models share similarities in the way they

infer the location, but the prediction coming from a less complex Model 2 is more accurate.

Model 1 did not follow any other method. It was more accurate when predicting the path

error than Model 2. However, it required more elaborate pre-processing and inference

methods, as it would be inferred on two levels. The increased number of inference steps
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Figure 6.5: Accuracy of each model. Experiments 6 and 7 were omitted due to under performance.

are more likely to harbour inaccuracies and false positive activity predictions. This in

turn translates into inaccurate location result. Table 6.3 shows the overall average result

of the SPHERE Challenge data analysis.

Model 2 was therefore chosen as the optimal network, by leveraging the result

obtained to the complexity of the system. It was used to validate the hypothesis set out

on the previous dataset. The data consisted of three separate ’free-living’ experiments.

Those experiments included ’everyday’ behaviours and tasks which are likely to be found

in any Digital Health data collection study. As with the SPHERE Challenge data, cross-

validation was used train and test the model. It is important to point out that the chosen

method did not require any activity labels. The results can be seen in Table 6.4.

This chapter will test the robustness of different models by presenting two exper-

Room-level Distance Path

Accuracy (m) (m)

(%)

Baseline 70.4 1.28 2.11

Model 1 74.2 1.05 1.47

Model 2 75.9 1.01 1.51

Model 3 73.3 1.09 1.61

Table 6.3: Results of testing the models on SPHERE Challenge data.

99



CHAPTER 6. ROBUSTIFICATION AND RESILIENCE OF RESIDENTIAL
LOCALISATION SYSTEMS

Room-level Tile-level Distance Path
Accuracy Accuracy (m) (m)

(%) (%)

Baseline 100 14.66 1.65 1.96
Model 100 15.88 1.54 1.95

Table 6.4: Results of Model 2 with HRL.

iments on the HRL data. Firstly, packet drop rate, (as explained in chapter 4), will

be iteratively increased. This is to see how the baseline and the enhanced model will

perform when faced with missing data. Secondly, the APs will be gradually removed.

This will mean that there will be fewer sources of information. The experiment will check

how the enhanced model will perform when faced with less data in a smaller indoor

environment.

When using the HRL data, the resolution was reduced to 1m × 1m. This meant that

the actual distance error could remain similar, whilst the tile-level accuracy metric would

fail to provide a viable result. The finer resolution increased the overall temporal error.

Consider Table 6.4, where the room-level accuracy is now perfect, but tile-level reduces

to 15.88% in the best case. Due to that fact, only the path error and the distance error

were considered during the robustness study.

6.2.3 Validation & Discussion

Our RSS-based system achieves comparable performance to the state-of-the-art RSS

implementations in the Microsoft Localisation Competition [127]. The average distance

error achieved by our method in Table 6.4 (1.59m) is similar to the error achieved by

Chen et al. [32, 127] (1.37m) using analogous infrastructure. However, our experimental

scenario and the testing environment differs from the competition setup and as such the

two cannot be directly compared.

Although the improvement over the Baseline is slight, one of the goals is to study

the robustness of the Model against different types of perturbations. Firstly, the packet

loss rate between the APs and the wearable, which is naturally present with a value

of 22.75%, was increased. Fig. 6.6 shows the path error of the Baseline and Model to

increasing packet loss rates. Similarly, Fig. 6.7 illustrates the distance error. Both of

graphs show the average performance of n = 57 random injections of noise into the

system together with the standard deviation. The Model’s path finds a minimum at
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Figure 6.6: Path error per increasing
packet drop rate.

Figure 6.7: Distance error per increasing
packet drop rate.

Figure 6.8: Path error given increasingly
fewer Access Points.

Figure 6.9: Distance error given
increasingly fewer Access Points.
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50% of dropped packets. It is at that point that the result shows an improvement of

10cm over the Baseline. This happens as the accelerometer values, originating in the

wearable, are invariant to range, whereas RSS are not. The former will appear the

same or similar at each AP, whereas the latter will vary with each AP. This makes

accelerometer information complementary and thus more immune to added noise. After

50% of noise however, the Baseline begins to outperform the Model. It appears that,

again, the complexity plays an important role in the prediction. Since the Model requires

the accurate estimation of more parameters than the Baseline, it is prone to overfit the

data. This can also be confirmed by the standard deviation of the error at high packet

drop percentage. Model’s error fluctuates more broadly than the error for the Baseline.

Additionally, the distance error confirms this, but to a lesser extent as it presents a much

smoother increase. This is due to less rigorous distance measurement – any deviation

from the label will be scaled linearly, as opposed to being a function of the layout of the

environment.

Secondly, an experiment was devised to understand how the Model performs when

APs are removed to simulate a scenario with reduced numbers of APs. This study involved

taking the RSS distributions for each AP and ranking them according to their pairwise

overlap, computed as the Weizman’s measure (also known as the overlap coefficient). The

APs were then removed one by one according to this criteria in order to reduce the total

number of APs removing as little information as possible. Figures 6.8 and 6.9 show the

performance for the Baseline and Model for both path and distance metrics. Similarly to

the previous experiment, the behaviour is consistent with the hypothesis that the Model,

given relatively noiseless data, will outperform the Baseline, even when faced with fewer

sources of information.

6.3 Energy Efficiency in Reinforcement Learning for
Wireless Sensor Networks

Aided by RL techniques, we propose a new method, designed to alleviate the need for

rigorous training and dependence on energy-consuming sensors. We do this by perform-

ing weak training across the entirety of the sensor network’s lifespan. Additionally, by

utilising more power-hungry sensors sporadically, we can achieve continuous improve-

ment of performance while at the same time reducing the need to use them. We aim

to provide a reliable and cheap indoor localisation solution capable of adapting to a

persistent environment. This adaptability is required because, as it was mentioned in
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previous chapters of this thesis, RSS-based localisation is notoriously arduous to deploy

and unforgiving in a dynamic environment [115]. The dynamics in this context can be

understood as constantly changing RF signatures due to human or non-human factors.

6.3.1 Related work

The problem in this section was inspired by the work done in [163]. Here, the authors

attempt to classify activities of the user by on-body sensors and video cameras. They

also consider the energy consumption of the camera, utilising a Markov Decision Process

(MDP) to decide whether to use weak, but efficient accelerometer and gyroscope, or

strong but inefficient video cameras.

Let us consider the above study in terms of indoor localisation. The idea of energy-

efficient localisation has been proposed before [4, 244]. These methods calculate the

energy efficiency directly - either by adapting the transmission power to the environment,

or by inherently using low-power devices. In this chapter we consider energy-efficiency

in terms of number of sensors. We aim to reduce the usage of different sensors, with only

a broad idea of their power consumption. This makes our method easy to generalise and

adapt to already existing sensor networks.

The available pervasive health monitoring sensors, such as PIR or ES [52] differ in

their usability and the quality of their readings. They also differ in how much energy it

takes to operate them and process their results [50]. Low-power wearable sensors [55]

are also popular within the community, providing not only the on-board acceleration

observations, but also acting as a RF anchor for an agent traversing the environment.

There is a clear need for an adaptive method of continuous weak learning. We can

alleviate the concerns of energy efficiency by making the system aware of its consumption,

even in the broadest of terms. Further, this model could be adapted to more complicated

energy studies. We can also remove the need for user-specific training by re-estimating

the model at certain intervals. The system would be thus indifferent to specific user

training, relying instead on weak re-estimation over time to tailor the model to specific

users.

6.3.2 Method

6.3.2.1 Markov Decision Processes and SARSA

MDPs are tuples of {S, A,P,R}, where S is the state-space, A is the action space, P is

the transition kernel, R the immediate reward function. Additionally, we recognise two
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parameters, γ and α – the discount factor and learning rate respectively. For any MDP,

there exists an optimal policy π∗ : S → A. The desired outcome of the MDP is to estimate

this policy. We utilise the SARSA algorithm defined as follows [199]:

(6.2) Q(st,at)←Q(st,at)+α[r(st,at)+γQ(st+1,at+1)−Q(st,at)]

where Q is the state-action value matrix, which is updated at each iteration, α is the

learning rate, γ is the discount factor, and r ∈ R is the immediate reward at state st and

action at. We assume that the dynamics P are equally likely for each state, given each

action.

We will now formalise our problem in terms of the above. The reinforcement state

space is given by S = {S1,S2}. These two states specify whether at time t we use ‘en-

hanced’ or ‘low-power’ sensing. We specify S1 to signify the ‘enhanced’ sensing, which

provides reliable labels at the cost of high-energy usage. This state also allows for the

system to perform the re-estimation of the parameters, using the labels which were re-

cently observed by these sensors. ‘Low-power’ sensors will be covered by S2. Accordingly,

each state will be able to perform one of two actions A = {A1, A2}, which in turn lead the

system to their respective states.

The reward function was designed to be simple and intuitive. It penalises the system

if it remains in S1 and rewards if in S2. More formally:

r(st,at)=


−1 if st = S1 and at = A1

+1 if st = S2 and at = A2

0 else

Additionally, at each time step the system is rewarded if the performance error is reduced

or remains the same, and penalised if it increases. This forces the system to continuously

seek performance improvement, even if in S2. The error in these iterations is only

calculated during S1 from the currently observed labels - in S2 the system retains the

value from t−1. We denote this boost as ψ and error as e:

ψt =
−1 if e(t)≥ e(t−1)

+1 if e(t)< e(t−1)
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This reward boost can be trivially added in (6.2) as follows:

(6.3) Q(st,at)←Q(st,at)+α[ψt + r(st,at)+γQ(st+1,at+1)−Q(st,at)]

The MDP environment is shown in Fig. 6.10. The states are given by circles, the actions

are the squares. The numbers next to the arrows specify the reward for each transition.

It is crucial to mention that the state space, parametrised by the MDP in Fig. 6.10 differs

from the inference state-space, which uses a Hidden Markov Model. The inference space

serves to represent physical surroundings, as in Fig. 2.3, whereas the MDP state-space

is an abstract representation of a system state machine.

S1

S2
A1

A2

−1
+1

0
0

0

0

Figure 6.10: Diagram of the MDP state space.

6.3.2.2 Action Selection

Selecting the appropriate action for each iteration is not trivial. There exist methods

ranging from completely random, pseudo-random and greedy. Greedy selection makes use

of the expected future rewards, and exploits them with no regard to any other alternative

trajectories, even if the chosen one is sub-optimal. In our approach, the trade-off between

exploration and exploitation should be leveraged, such that we converge quickly as to

preserve energy, but also retain a degree of exploration, to continue looking for an optimal

trajectory and ensure constant training. To do this, we use the ε-greedy algorithm.
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The difference between Greedy and ε-Greedy lies in the parameter ε. Where Greedy

chooses the next action as Q(st,at)= maxaQ(st,a), ε-Greedy selects an alternative action

with probability ε, ensuring that we explore the trajectories more thoroughly in the search

of the optimal policy π∗. This is because we no longer ‘exploit’ the reward, prioritising

quick convergence, but are open to ‘explore’ the policy space. The larger the parameter ε,

the broader the exploration, at the cost of higher energy consumption. It is stipulated,

that the added adaptability in the form of ε, will make ε-Greedy better when leveraging

efficiency and performance.

Softmax action selection differs from the above methods, in that sub-optimal choices

will be weighted as a graded function of their estimated value. It is likely to reach the

optimal policy quicker than Greedy or ε-Greedy, but at a cost of higher energy usage.

Formally, it chooses action a, with probability [199]:

(6.4) Pt = eQt(a)/τ∑n
b=1 eQt(b)/τ

In this study we will consider the above three selection methods: Greedy, ε-Greedy

and Softmax. The usefulness of these methods, given our use case, will be judged by how

well they perform in simulation and during validation.

6.3.2.3 Parameter Re-Estimation

When the system enters S1, it is allowed to access to labels from reliable ‘oracle’ sensors.

The labels from each ‘oracle’ can be considered as the real descriptor of location. Each of

these ‘oracles’ maps its output to a given location state. If the ‘oracles’ are activated at

time t, the system can re-estimate the old emission and transition probabilities with the

observations from this ‘oracle’, to which it currently has access. This is done with a single

iteration of Expectation-Maximisation (EM) of the previous Gaussian distribution and a

sample RSSt. The weighting in EM specifies how much we trust the ‘oracle’ reading – in

essence, it specifies how much of the old distribution should be retained. The optimal

weights were found empirically for both the simulation and validation.

6.3.2.4 Proposed Algorithm

Algorithm 2 starts by initialising the HMM and SARSA parameters. Note, that for HMM,

T represents the available state space, whereas L̂ is the inferred, most likely sequence

of states. It runs as long as there is data coming from the sensors, shown here as O . We
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Input: {λ,T} = HMM parameters, {S ,A ,P ,R,γ,α} = SARSA parameters
while O available do

O ← vector of sensor observations at t
L̂ ← infer location P(T|O ,λ)
if st == S1 then

Γ← vector of weak oracle labels at t
λ∗ ← estimate likelihood L (λ|Γ)
e(t)← compare T with Γ

else
if st == S2 then

λ∗ ←λ

e(t)← e(t−1)
end

end
if e(t)≥ e(t−1) then

ψt = -1
else

if e(t)< e(t−1) then
ψt = 1

end
end
at+1 ← next action based on Greedy, ε-Greedy or Softmax and dynamics P

st+1 ← at
Q(st,at)←Q(st,at)+α[ψt + r(st,at)+γQ(st+1,at+1)−Q(st,at)]
st ← st+1
at ← at+1
λ←λ∗

end
Algorithm 2: Proposed Algorithm

assume that the incoming data stream is vectorised. Each iteration of time t specifies

a new vector of incoming data, either collected from ‘oracle’ and RSS sensors, or just

RSS. This is dependent upon the state in which the system resided at t−1. Inference is

performed by running the Forward-Backward algorithm. Depending on the current state

of the MDP, the output of this could be compared with the weak labels provided by the

‘oracles’, and the HMM parameters λ could be re-estimated. If not, the error is retained

from the previous run. The reward boost assignment then follows, and is also dependent

upon the current state. After choosing next action, with respect to the selection method,

SARSA is used to calculate Q(st,at).

The algorithm will be evaluated on a simulated environment and validated on

SPHERE Challenge dataset. In the simulation, we aim to scrutinise the algorithm

under comprehensive set of changes in the environment, in order to confirm its capabil-

ities and demonstrate its effectiveness. The validation dataset will serve to verify its

107



CHAPTER 6. ROBUSTIFICATION AND RESILIENCE OF RESIDENTIAL
LOCALISATION SYSTEMS

usefulness under real-world conditions.

6.3.3 Evaluation

The simulation setup was created to closely resemble a real-life system. A state-space of

varying size was created. Each state j is described in terms of arriving symbols RSSt

from all G APs. Both the size of the simulation space and the number of simulated APs

were incremented. For the simulation space, this changed from 10 to 30, in increments

of 10. The size of every state was 1m × 1m. For APs, the number ranged from 5 to 8.

The distributions from each AP were simulated according to a BLE path loss model. The

parameters of the model were appropriated from [139], which was calculated in the same

test-bed environment as the SPHERE Challenge dataset. We also define ‘oracles’ in a

simulation environment as states, which we observe directly at all time. The amount of

‘oracle’ coverage of the state space was also incremented in 10% intervals from 10% to

100%.

The 3 curves presented in Figs. 6.11, 6.12, 6.13, 6.15, 6.17, 6.19, are dubbed Control,

Reinforced and Underlying. The Underlying curve shows the result of the fundamental

distributions which were generated when the synthetic state space was created. They

describe the underlying model of the simulated state space, and can be thought of as

a localisation result under optimal policy π∗. The Control curve show the result of

the the same fundamental distributions, albeit with 3dB of Additive White Gaussian

Noise (AWGN) added. This simulates a noisy channel in the indoor environment. The

Reinforced distribution is regulated by the presented method. The Control and Reinforced

models begin as one and the same. The objective to observe is the Reinforced curve

tending towards the Underlying curve as the number of plays is increased, effectively

showing how close the algorithm is to the optimal model.

The metric used to show the dependence on energy-inefficient sensors is the total

number of iterations where the system stayed in S1, divided by the total number of

iterations. The normalisation of this metric allows us to represent the dependence as a

variable between [0,1). The closer to 1, the more dependent the system is on multiple

sensors. The simulation MDP parameters of α and γ were set to 0.4 and 0.9 respectively,

and the oracle weight during each re-estimation is 0.7. All of the above were chosen

empirically, as they were found to provide best localisation results.

Considering the results of ‘oracle’ usage, the graphs in Figs. 6.11, 6.12, 6.13 show

the average performance of the algorithm as a function of ‘oracle’ coverage. These

graphs confirm that the algorithm is viable - the performance of the algorithm under
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Figure 6.11: Distance error per oracle coverage under Greedy regime.

Figure 6.12: Distance error per oracle coverage under ε-Greedy regime.

Figure 6.13: Distance error per oracle coverage under Softmax regime.
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Figure 6.14: Oracle Dependence, Greedy. Figure 6.15: Distance error, Greedy.

Figure 6.16: Oracle Dependence, ε-Greedy. Figure 6.17: Distance error, ε-Greedy.

Figure 6.18: Oracle Dependence, Softmax. Figure 6.19: Distance error, Softmax.
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different action selection regimes was compatible with the prediction. The improvement

in performance is a function of how much state space is covered by ‘oracles’. Depending

upon which action selection method is chosen, the improvement varies between 0.5m for

Greedy to 1.5m for Softmax.

We will now discuss the dependency results from the simulated environment. The

graphs are consistent with the hypothesised effect of the action selection method. The 3

Figures, 6.14, 6.16 and 6.18 show the results of Greedy, ε-Greedy and Softmax selections

respectively. Greedy selection exploits the rewards immediately, and converges to near

0 dependence on ‘oracles’. This in turn shows, that the closer we are to 0, the faster

the distance error converges in Fig. 6.15. The convergence here is sub-optimal, as the

trajectory of the system could be improved. This is visible in Fig. 6.19. The Softmax

method was used with a temperature of τ= 1. This is displayed with a dependence graph

in Fig. 6.18. A gradual roll-off improves the localisation performance. However, this

results in higher energy usage, as the energy-heavy senor usage converges to 0.2.

Figures 6.16, 6.17, 6.18 and 6.19 show the optimal trade-off between energy efficiency

and quickness of training. The ε-Greedy algorithm quickly reaches the mean of 0.1,

which is consistent with the parameter ε, set to the same value. The Softmax regime

provides less erratic reduction of the dependence, in turn providing a better localisation

performance.

The above results are consistent with the theoretical hypothesis. Figs. 6.11, 6.12, 6.13

confirm, that as the number of oracles increases, so does the improvement in performance.

The dependency in 6.14, 6.16 and 6.18 agree with the respective action selection methods.

The graphs in Figs. 6.15, 6.17 and 6.19 also conform to their respective regimes. All of

the methods will be tested on the SPHERE Challenge data for completeness – however

only two, that is ε-Greedy and Softmax are in contention to see which one is optimal for

the use with this algorithm.

6.3.4 Validation & Discussion

We use specific sensors, available in the SPHERE Challenge dataset to be treated as

‘oracles’. These sensors include RGB-D video cameras and PIR sensors. The version of

the dataset used in this study includes labels not available in public domain at the time

of writing of this thesis.

Along with the RSS information available from 4-unique APs scattered around the

house, we also have access to room-level location labels. The house includes a total of 9

labelled rooms. No cameras were placed in sensitive locations in the house which meant
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Figure 6.20: Oracle Sensors Dependence,
Greedy regime

Figure 6.21: Distance error results,
Greedy regime

Figure 6.22: Oracle Sensors Dependence,
ε-Greedy regime

Figure 6.23: Distance error results,
ε-Greedy regime

Figure 6.24: Oracle Sensors Dependence,
Softmax regime

Figure 6.25: Distance error results,
Softmax regime112
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that some states would lack descriptor ‘oracles’. The rooms which did include ‘oracles’

are the kitchen, the living room and the downstairs hallway. The PIR sensors however

are available in every room. Their usage was limited however, as their reliability was

poor. They were used to re-estimate, but were omitted from localisation inference.

The method follows as before. After training a weak model, the energy usage and the

relative performance are being scrutinised and leveraged. The data included 19 unique

scripted and labelled experiments. In order to obtain a fair result, the training and test

proportions were set at 15% to 85% respectively. At any one time, a uniform random

selection of 3 experiments were chosen to train the model. Testing was performed by

running the remainder of user data in a randomly permuted order. This method was

repeated n = 100 times.

The system was set up such that in S1 the system uses a fusion of RSS and camera

data. The fusion takes place using similar architecture to Model 1 from Fig. 6.2, albeit

with extracted camera data instead of accelerometer signatures. Again, in this state,

the parameters are re-estimated according to the labels provided by the ‘oracles’. As

was mentioned above, the PIR were used to re-estimate, but were omitted from location

inference. In S2, the system relies only on the RSS, with no parameter mixing. The graphs

again show the dependency on ‘oracle’ sensors, normalised to 1, and the localisation error

convergence graph. The latter further diverges into the control distribution, which is the

model trained on initial users and reinforced distribution, which is being continually

re-estimated. The localisation labels are room-level.

The results are presented in Tables 6.5 and 6.6. They show, that the method holds

when exposed to non-simulated data. Fig. 6.22 shows the dependency graph, with a steady

decline in energy-inefficient sensor usage. This can very closely correlate to lower energy

consumption. The variability of the dependence was likely caused by the dataset itself.

Table 6.5: SPHERE Challenge performance results

Selection Model 25% of Exp.(m) 50% of Exp.(m) 100% of Exp.(m)

Greedy Control 4.79 (± 0.41) 4.87 (± 0.43) 4.89 (± 0.43)
Reinforced 2.34 (± 0.90) 2.67 (± 1.05) 2.54 (± 1.00)

ε-Greedy Control 4.82 (± 0.45) 4.89 (± 0.42) 4.85 (± 0.41)
Reinforced 1.77 (± 0.45) 2.09 (± 0.84) 2.11 (± 0.77)

Softmax Control 4.83 (± 0.40) 4.80 (± 0.39) 4.84 (± 0.46)
Reinforced 2.24 (± 0.98) 2.03(± 0.85) 1.80 (± 0.55)
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Table 6.6: SPHERE Challenge dependence results

Selection 25% Iterated 50% Iterated 100% Iterated

Greedy 0.19 (± 0.39) 0.03 (± 0.17) 0 (± 0)

ε-Greedy 0.88 (± 0.33) 0.13 (± 0.34) 0.16 (± 0.37)

Softmax 0.53 (± 0.5) 0.36 (± 0.48) 0.35 (± 0.48)

The labels were room-level, which meant that even slight deviation would substantially

increase the error. The performance in Fig. 6.23 also shows a steady performance increase

from the control distribution, as the number of plays is being increased.

The data was also scrutinised under the other two action selection regimes. The re-

sults for Greedy and Softmax methods are shown in Figs. 6.21 and 6.25. The performance

of these methods is consistent with the simulated results. For Greedy in Figs. 6.20 and

6.21, the system reaches the maximum reward and remains in the ‘low-power’ state. It is

also for this method that the performance improvement, relative to the Control model, is

the smallest.

Softmax in Figs. 6.24 and 6.25, shows a volatile convergence of the dependence. This

however translates to a persistent improvement of localisation result. The dependence

might be due to the fact that the data used was not as consistent as in the simulation.

As it was noted in Section 6.3.1, training and calibration differs for each user. Since

this difference was not encoded in the simulation, it could explain the reason for the

behaviour of the Softmax method.

Due to this volatility, as well as higher relative sensor usage in Fig. 6.24, compared

with 6.22, the ε-Greedy method is the superior method in terms of action selection.

This selection method offers a good trade-off between the average sensor usage and the

improvement of performance. The parameter ε was set to 0.1 again, but it can be changed

depending on the need, allowing it to be more controllable than Greedy or Softmax.

Whilst ε-Greedy is the best method for this particular use, the other methods could

be advantageous in the context of other sensor applications. Softmax could perform

well when considering the amount of sensors used, as opposed to their type, in terms of

indoor localisation. In this case, more exploration could translate to better performance,

with less regard paid to energy efficiency [118]. On the other hand, applications where

efficiency is critical, could benefit most from Greedy selection. These applications could

include on-board feature extraction and activity recognition [50, 181] which would ideally

run for a prolonged period of time without recharging.
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6.4 Conclusions and Challenges

In this chapter, we considered novel techniques for robustification of residential indoor

localisation result. The first study added contextual information about the user, in an

attempt to make the result

This chapter proves that inferring the location of an individual in their own home

could be improved by incorporating additional data sources. To that end, a specific

accelerometer signature was associated with a specific location. By performing the same,

or similar tasks, in the same places, the signatures are comparable enough between

different free-living experiments, as to aid the RSS localisation technique. The results

show that the localisation is robust even when noise is added to the system and if the

sources of information are gradually being removed.

The second half of the chapter addressed a novel adaptive technique for energy-aware

indoor localisation. A simulated environment was built and scrutinised against different

methods of action selection. A widely available dataset was then used to validate the

hypothesised performance under data collected in a real pervasive health test bed.

This chapter shows that the algorithm can generalise well to non-simulated settings

and environments, even when using a dataset which was not inherently collected with

localisation in mind.
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7
EFFICIENT SENSOR SELECTION METHODS FOR

INDOOR LOCALISATION MEASUREMENT SCENARIOS

Having addressed indoor localisation with respect to novel techniques of robust-

ness and energy efficiency, we will now concentrate upon the third, and final,

over-arching theme of this thesis. In this chapter, we will concentrate upon

sensor selection methods with respect to optimal accuracy performance. When it comes

to WSN-based IPS, there exists a limit of useful information which the network can

either handle or provide. This chapter proves, that in the domain of residential indoor

localisation, there exists a finite number of sensor nodes, which can perform at least as

well as the entire deployed set.

To motivate this problem further, we also consider a novel method of estimating

greedy costs associated with sensor selection. It is dependent upon the inference method

which is used in this thesis, and stipulates that discrete state spaces can offer special

concessions, in terms of said inference, if appropriate sensors are chosen. The study

will consider simulated results, aimed at confirming various sensor selection methods,

before validating the results on real world measurements. As the validation will prove,

the studies which consider sensor selection for indoor localisation seldom confirm their

findings on data which was collected in real houses. What is even more convincing, is

that the methods are exhaustively scrutinised on four different residential abodes, with

data from chapter 3. The findings show, that the simulated results, even when following a

rigorous procedure, rarely will uncover the imperfections faced by IPS in the real world.
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7.1 Related Work and Contributions

Recent advances in low-power WSN, make it straightforward to design, prototype and

deploy large number of low-cost sensors [98]. These sensors can be used to monitor

human behaviours, actions and activities, for a prolonged period of time [225]. They can

be placed on the user’s body or within their living environment [225]. The data gathered

can be later used by clinicians to monitor, for example, recovery of their patients from

within their home [129].

With the increased ubiquity and pervasiveness of these devices come various con-

siderations, such as environmental impact [101], privacy [137] and user accessibility

[43]. To address these considerations, the main focus of indoor localisation literature is

likely to shift, as lack of access to computational power and large number of sensor nodes

no longer presents a viable challenge. In turn, methods are likely to consider optimal

placement, selection and utilisation of the available modalities under various processing

paradigms.

Indoor localisation has been cited as an important tool for recovery monitoring [206].

It provides clinicians with information on the exact locations in the house where, and

how long for, the patients dwell. From this data, one can deduce the current status of the

patient, the speed of recovery and even sound the alarm in case of abnormal behaviour

[129].

The main contributions of this chapter are:

• We outline and propose a new sensor selection method, inspired by signal propaga-

tion in a discrete state spaces for indoor localisation.

• We scrutinise the above mentioned algorithm against other methods accepted

in the literature, such as Mutual Information (MI) selection, and show that it is

comparable when evaluated using a simulated signal propagation model.

• We compare the simulated validation against a unique measurement dataset with

high resolution annotations form chapter 3.

• We reinforce this assertion by performing selection with respect to algorithms

found in previous chapter 6, which include contextual accelerometer information.

This chapter is structured as follows: This section will further discuss the work

related to this study, paying close attention to discrete sensor selection literature. In

Section 7.2 we outline the methods used in this study and propose our own new algorithm.
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Then, in Sections 7.3 and 7.4, the methods will be scrutinised and their performance

subsequently investigated against real world measurements. This includes localisation

based on simple RSS and a model which complements it using an accelerometer. Finally,

we conclude in Section 7.5.

Sensor selection can be formulated as a convex optimisation problem [2, 90]. Place-

ments can be estimated [246] with respect to utility score, such as coverage or information

gain [29]. Sensors can also be selected from a larger superset [27, 90] from discrete and

pre-defined locations. These approaches to sensor selection usually assign a utility cover-

age score, which is subsequently maximised. Methods which are used most often include

submodular and supermodular set functions [17, 106]. One of their major shortcomings

however, is the fact that sensor selection under certain supermodular constraints has

been proven to be NP-hard [17, 90].

Considering the above methods, the utilities comprise of information theoretic metrics,

such as conditional entropy [247] and MI [29]. The use of entropy constrains the system

to information content of a specific sensor only in its immediate environment without

the knowledge of its vicinity [106]. The extension of this formulation to MI showed, that

while the selection under MI did not suffer from the same issues, its effective solution

requires prior knowledge of joint distributions between variables [106].

There have been strides made in localisation-centric sensor placement and selection

where the authors consider optimal sensor geometry [217]. The location is chosen based

on minimisation of the difference between the received power and a path loss model, using

Maximum Likelihood Estimation. Still, the experiment environment is not comparable

to the environment in this thesis, as it does not resemble a residential setting. The

validation environment in a laboratory is an open space with few obstacles. A study done

by Ababneh [2] aimed to show the impact of sensor selection on RSS-based localisation.

The author presented two novel selection algorithms, before confirming their viability

through a simulation study.

In [242], the authors considered optimal sensor selection in the context of RSS-based

target localisation. A closed-form solution to the problem was presented and tested

on simulated 100m × 100m environment. By analysing the geometric structure of the

nearby environment, the authors were able to improve the simulated result error. Energy

consumption and sensor parsimony are then discussed. The above work is related to

our study, as we also perform localisation based on RSS. However, we consider our

experiment test bed to be more challenging to analyse from an RF perspective due to

relative volatility of the signals collected as part of our experiments, which would be
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difficult to approximate using a closed form solution.

Some work has also been done in optimal selection based on visual sensor networks

[118]. The target is tracked in a simulated and experiment environments using a number

of cameras. They then use utility-based sensor selection method, which outperforms the

baseline algorithm. The location error is minimised once the number of camera sensors

increases. The localisation method in this study fundamentally differs from ours as it

uses a different type of sensors, which require a direct line of sight. Selection methods,

as opposed to placement, only consider a discrete number of already placed sensors

[27, 90]. Instead of using the environment geometry and sensor output in order to obtain

a definite place in space [217], selection only considers the response from already placed

discrete sensors within that space [90]. In our study we will assume that the experiment

environment is filled with an abundant amount of APs, which can then be easily removed.

7.2 Method

In this section we outline the method used to perform the selection of optimal subsets of

sensor nodes. We will begin by outlining the basic principle behind submodular set func-

tions and their utilities. We then describe the novel approach of sensor selection based

on Kullback-Leibler divergence. To finish, we will summarise the baseline algorithms

which we will use to scrutinise our performance.

7.2.1 Mutual Information approach

Utility scores used in discrete sensor selection problems comprise mostly of information

theoretic approaches, such as Mutual Information (MI) [29]. MI is a popular entropy-

based metric, which considers the measure of relative information ‘gain’ of one variable

given another [106]. It is preferred over other metrics, such as conditional entropy, as it

is able to account for the entire instrumentation space. The use of conditional entropy

constrains the system to information content of a specific sensor only in its immediate

environment without the knowledge of its vicinity [106]. In the context of sensor selection,

MI can be used to estimate the amount of information presented to the system through

the addition of an arbitrary sensor [106].

Formulation of MI for use with submodular functions showed, that while the selec-

tion under MI did not suffer from the same issues, its effective solution requires prior

knowledge of joint distributions between variables [106]. The implementation in this
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chapter aims to exploit this, as due to the nature of RSS fingerprinting localisation, the

joint distributions are fully observable. This makes the MI approach directly applicable

to our example.

The monotonic nature of submodular functions, especially when employing a simple

greedy algorithm for its evaluation, can provide polynomial-time performance guarantees

for near-optimal solutions [106]. Additionally, this metric does not require expensive

computation of precise sensor positions, as it assumes that the sensor nodes are provided

as discrete variables [106, 247]. Consider a finite set C. We define a set function, such

that F : 2C →ℜ and assume F(;) = 0. This set function is considered submodular if it

satisfies the property of diminishing returns [104]:

(7.1) F(A∪ s)−F(A)≥ F(B∪ s)−F(B)

where s in both cases is an arbitrary addition to each set and A ⊆ B ⊆ C. This function is

strictly monotonically decreasing if F(A)≤ F(B).

MI can be defined as a metric of mutual dependence between two random variables

F and D:

(7.2) I(F;D)= H(F)−H(F|D)

where H(F) is a marginal entropy of variable F and H(F|D) is the conditional entropy

between the variables. Consider a superset V containing all possible discrete sensor

locations. We introduce B, which is defined as a subset of V , such that B ⊆V . It provides

the RSS information containing a selection of available APs. We also define variable

RSSB which specify the RSS symbols arriving from the APs contained in subset B.

Recall RSS from Eq. 4.5. For clarity we will drop the index specifying the state locations,

as we assume that given each subset B we observe the information from the entire state

space given sensors included in B.

In the context of submodular maximisation, MI between two variables RSSB and

RSSV aims to maximise the mutual dependence of information contained in subset B
given the knowledge of the remainder set V\B [106]:

(7.3) B∗ = argmax
V\B

H(RSSV\B)−H(RSSV\B|RSSB)

(7.4) F(B)= I(RSSB;RSSV\B)

where H(RSSV\B) specifies the entropy of variable RSS with sensor subset V\B and

H(RSSV\B|RSSB) is the conditional entropy of RSSV\B given RSSB. Equation 7.4

specifies the utility function for a subset B.
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Figure 7.1: 2-dimensional state space of House 1 with an overlaid average RSS intensity heat
map in dB for AP sensor 1. Blue diamond specifies the approximate position of the AP.

Despite the fact that MI approach is considered state-of-the-art, one of the major

shortcomings in this implementation is lack of knowledge of signal diversity across

adjoining states (spatial neighbours). The above utility in Eq. 7.4 calculates the step-wise

information gain between sensors which, as it was the case in literature [90, 106, 247],

will provide their optimal instrumentation.

7.2.2 Kullback-Leibler approach

Kullback-Leibler is a non-symmetric statistical distancing metric between two probability

distributions, calculated as a measure of relative entropy. Its use has been established

in the domain of localisation by RSS fingerprinting [16, 142, 143]. The authors in [16]

suggested that KL as a metric of divergence between two physical locations, defined by

RSS features, works well at leveraging the accuracy and latency of RSS symbols. This

makes this particular method well equipped for our use. In our implementation we use

KL as a metric which directly takes into account the above-mentioned signal diversity

into account.

To motivate the need for KL in our implementation, consider the state space in

Figs. 7.1 and 7.2. They represent the mean value of RSS in each state, given sensors
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Figure 7.2: 2-dimensional state space of House 1 with an overlaid average RSS intensity heat
map in dB for AP sensor 4. Blue diamond specifies the approximate position of the AP.

1 and 4 in House 1. The distribution of the received power from each state to each

sensor follows, approximately, a Gaussian, as in Eq. 4.5. Each distribution provides some

information about the user in each state. Due to the dynamics of radio propagation and

multi-path fading however, it may come to pass that any two adjacent states will share

information, making the distributions overlap. In the case of our inference, as in Eq.

4.14, the adjoining states would ideally share no information, i.e. the divergence between

two distributions from the two sensors in the same state would be as large as possible.

The aim in turn, is to make the ambiguity between any two states as small as possible.

In order to make the inference easier, the divergence between adjoining states will also

have to be taken into account. In the case of Figs. 7.1 and 7.2, this ambiguity is best

exemplified by observing the signal propagation across all states. Indeed, there are states,

in which the intensity of the signal is very similar, especially in the case of Fig. 7.2.

We extend its formulation to the context of greedy sensor selection. Using two arbi-

trary distributions f and d, it is defined as [47, 142]:

(7.5) DKL( f ||d)=
∫ ∞

∞
f (x)log

f (x)
d(x)

dx
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(7.6) DKL( f ||d)= H( f ,d)−H( f )

where H( f ,d) is the cross-entropy and H( f ) entropy of variable f . Thus, in a purely

KL setting, the algorithm would seek to maximise the divergence as a cost function [128]:

(7.7) B∗ = argmax
V\B

[∑
B

DKL(RSSB||RSSV\B)
]

The above equation will favour the sensors with most varied signal, as seen across

all states in the environment. However, in order to make this method aware of the

information gain at each sensor iteration step, we subtract the above equation from MI:

(7.8) B∗ = argmax
V\B

[
I(RSSB;RSSV\B)−∑

B
(DKL(RSSB||RSSV\B))

]
where the first term I(RSSB;RSSV\B) is the mutual information. It will henceforth

be labelled as KL-MI.

7.3 Evaluation

7.3.1 Baselines

In order to test the two sensor selection approaches, we compare them against an

exhaustive Brute Force (BF) approach as well as a Greedy Brute Force (GBF). The

difference between the two is that BF searches through all possible permutations of

sensors in order to find optimality, whereas GBF will select sensors based on their

performance, given only the previously selected sensors.

BF exhaustively iterates through all possible combinations of sensors, calculating

the accuracy and choosing the sensor set which yields the smallest error. After the set is

chosen, the search space is again recalculated, and a new set is selected. This happens

until no more sensors are available. This algorithm is used as a baseline, and as such

we assume access to ground truth labels. This method is also considered optimal in this

work and as such no other method will outperform it.

GBF calculates the performance given the set of available sensors, and at each time

step, chooses the sensor which gives the best performance. This continues until no more

APs are available. We expect this method to be worse than BF, but to take correspondingly

less time. The GBF algorithm is outlined in Algorithm 3.
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7.3.2 Simulation

A simulation system, previously outlined in chapter 3, was used to check the viability

of the method in a basic, obstacle-free environment. We thoroughly expand on this

simulation framework by implementing bespoke sensor selection mechanics. The imple-

mentation makes use of the Submodular Function Optimization toolbox [105]. For the

simulation, the location state space varied between 50 to 250, 1m × 1m states, in incre-

ments of 50. The number of APs was incremented from 1 to 10. Each state contained a

probability distribution from every AP. The simulated distributions followed a BLE path

loss model with parameters taken from [139]. These parameters are meant to resemble

a residential environment. Results show the performance of the two algorithms, given

increasing size of the experimental test bed, and increasing number of sensor APs. The

metric used to measure the performance of the algorithms is the distance error. Distance

error is defined as the Euclidean distance between predicted tile and groundtruth [127].

This metric has previously been outlined in chapter 4.

The simulated results are shown in Figs. 7.3 and 7.4. As expected, the exhaustive

BF approach outperforms all of the proposed methods. This result can be considered

as optimal in terms of performance. In addition, the simulation showed that the two

methods, MI and KL-MI are comparable. This suggests, that the variability across states,

in a discrete state space test-bed has little to no effect on the choice of the sensor. It is

possible however, that the distinct divergences between states are simply too small to

provide any meaningful improvement.

Additionally, Fig. 7.5 shows the relative computational cost with respect to number of

information sources. As expected, the search for optimal solution increases exponentially

in complexity. Additionally, we argue that the superior performance of BF is not enough

to propose it as a viable method. Whilst both, MI and KL-MI exhibit higher relative error,

this can be leveraged for lesser complexity and quicker turnaround times.

The simulation also highlights the need for near-optimal algorithms in localisation

implementations much bigger than typical residential abodes. Understandably, indoor

localisation techniques are also popular in industrial or medical applications [83, 94],

where the spaces are much larger. Indeed, the methods contained therein are also much

more suited for deployments even outside of residential domain due to the complexity

associated with both, exhaustive and greedy brute force selection.
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Figure 7.3: Error per growing state space.

House APs States Experiments
House 1 8 23 living_1

living_2
living_3

House 2 11 76 living_1
living_2
living_3

House 3 11 52 living_1
living_2
living_3

House 4 11 45 living_1
living_2
living_3

Table 7.1: Table defining the experiments used in the validation and their parameters.
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Figure 7.4: Error per increasing number of AP sensors.

7.4 Validation & Discussion

Recall from chapter 3, that the experiments included an RF-fingerprinting example where

every node was visited in turn by the participant. The validation experiments are given

in Table 7.1. There were at least 3 unique living experiments available for each house.

The model was trained through three-fold cross validation across the experiments (so

called leave-one-out). The results were then averaged over those three living experiments

for each house. Since the algorithms rely on the information to be available about every

state, it was deemed appropriate to select the optimal sets of sensors for MI and KL-MI

using a thorough fingerprint, as described in chapter 3. This is due to the fingerprint

containing every state available in the environment, as opposed to living experiments

which could omit certain locations. In order to remain fair however, the BF and GBF

were optimised over the living experiments. This is because these particular metrics are

supposed to show the optimal or near-optimal performance of the available dataset.

The following discussion will evaluate the performance of the presented algorithms

using the data from those 4 houses. Here we will also provide an overview of the improved

localisation method outlined in chapter 6. Traces of data from accelerometer in each
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Figure 7.5: Time taken to calculate each method given number of AP sensors.

location state were recorded and their features extracted. These features can then be

used in conjunction with RSS to locate the user within their home. The two methods

are outlined in Figs. 6.1 and 6.2. We will describe the basic RSS location inference as

Method 1 and the accelerometer-enriched as Method 2. We define the notation as follows:

RSS are the RSS observation symbols at some time t from AP k at state j, Acc are the

accelerometer feature observations and L is the location state inference. For further

detail we refer to [100].

Let us firstly discuss the parallels between the simulated results and the validation.

Indeed, the performance improves with each additional sensor, as expected. Moreover,

BF again correctly shows the optimal sets at each iteration. Interestingly, the real life

validation seems to converge to near-optimality much quicker than the simulation. This

suggests, that for each unique abode there exists a certain amount of sensors, and their

discrete positions, which could be considered optimal.

This can be further substantiated by looking at Fig. 7.6, which shows an example of

selected sensors overlaid on the state space of House 1. Understandably, the selected

sensors differ between methods. However, there are a number of ‘dominant’ sensors
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Figure 7.6: Example of the selection of half of all available sensors overlaid on state space of
House 1 using each selection algorithm for Method 1. Diamonds specify AP sensors, coloured

diamonds are the selections per algorithm.

which are selected by every algorithm, and correspondingly sensors which are omitted

in each case. This, in conjunction with Fig. 7.7, suggests that there exist spaces in each

residence, from which the signal strength could be construed as optimal in terms of state

sequence inference. The remainder of the results of Method 1 are shown in Figs. 7.9,

7.11 and 7.13 for Houses 2, 3 and 4 respectively. They also confirm the quick sensor

saturation, achieving near optimal performance, roughly with half of all APs available.

The results of Method 1 are shown in Figs. 7.7, 7.9, 7.11 and 7.13 for Houses 1, 2,

3 and 4 respectively. As is evident, the real-world environment rarely provides states

with differing RSS signatures. Due to that fact, MI and KL-MI are comparable in nearly

every house. It is also noteworthy, that each house reaches its ’sensor saturation’ point

relatively quickly. As it is shown in the graphs, near-optimal performance of the sensors

could be achieved using fewer than a half of all APs available.

The graphs pertaining to Method 2, 7.8, 7.10, 7.12 and 7.14 show similar results. The

accelerometer trace from living experiments is not a viable representation of a specific

human participant due to relatively large space of possible interpretation between

various users, as described in chapter 3. Gaits and living patterns have been found to

differ between people [136]. This explains the large distance error of the initial AP choice
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Input:
{λ,X } = HMM Parameters, {Γ} = Labels,
{S} = Ground truth sensor set
Begin:
A∗ =;
n = |S|
repeat

k ← (n−|A∗|)
for 1 to k do

T ← P(V |XA,λ)
e(k) ← (|

√∑2
i=1(T −Γ )2|) // Euclid error

end
s∗ ← argmink e(k)
A∗ ←A∗∪ {s∗}

until |A∗|!= n;
Output:
{A∗} = Optimal set

Algorithm 3: Greedy Brute Force Algorithm for Method 1

across all houses when using this method, as the living experiments were performed by

various users, and that was not taken into account during selection. Models trained on

specific users were unlikely to work optimally on others. The figures also show how the

houses will ’saturate’ at different numbers of APs depending on their size, confirming

that size of the state space is proportional to the number of required APs to achieve well

performing localisation.

7.5 Conclusions and Challenges

Two methods of discrete sensor selection were presented and scrutinised using simulated

data. The simulation confirmed the viability of the methods as well as a baseline algo-

rithm. We proposed a new sensor selection objective, taking into account the diversity

of signal across states and inference mechanics. A unique dataset was then used to

scrutinise these methods on data collected in a number of residential houses.

This chapter confirmed that these particular algorithms are capable of selecting a

subset of sensors based on the quality of the signals from said sensors. It was shown that

the diversity between states, which was the main motivation of this method, provides

little to no improvement in sensor selection. The two algorithms were proven to be

comparable, when considered in the context of our localisation infrastructure. Both of

these methods were also investigated in relation to our previous work, through fusion to
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Figure 7.7: Error of Method 1 per increasing APs for House 1.

Figure 7.8: Error of Method 2 per increasing APs for House 1.
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Figure 7.9: Error of Method 1 per increasing APs for House 2.

Figure 7.10: Error of Method 2 per increasing APs for House 2.
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Figure 7.11: Error of Method 1 per increasing APs for House 3.

Figure 7.12: Error of Method 2 per increasing APs for House 3.
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Figure 7.13: Error of Method 1 per increasing APs for House 4.

Figure 7.14: Error of Method 2 per increasing APs for House 4.
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additional contextual sensors.
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8
CONCLUSIONS AND FUTURE WORK

This concluding chapter will serve to summarise all of the preceding work. Here,

we aim to provide an evaluation of the thesis and its overall contribution to

the field. We will also address various new avenues of investigation which were

uncovered through this work, or made themselves apparent only after the said work has

been performed. The latter point will also act as a platform for possible future endeavours

which are believed to of interest to the field and the community.

This thesis was predominantly concerned with robust and efficient approaches to

indoor localisation in residential environments. In this chapter we intend to continue

with the overarching trend of health care, the motivation of which underpinned the

incentive behind the novel data, methodologies and algorithms contained therein. How-

ever, that same objective also introduced a number of constraints which had to be taken

into account. Here, we will describe the work carried out, evaluating it in terms of

relative versatility, primarily (but not exclusively) with respect to the above use case.

Additionally, we will consider the entire field of indoor localisation and attempt to install

the contribution yielded by this thesis into existing field of research.

We will initially summarise all of the above chapters, focusing on the challenges

which they set out to address. We will then consider the degree to which these challenges

were addressed, specifically considering the use case of residential indoor localisation

for health care. This use case will not be exclusive however, as we will also focus on the

wider picture of the current state-of-the-art, and how it can be expanded. Finally, we will

close this thesis by exposing the shortcomings which are yet to be addressed and provide
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viable avenues for future research enquiries.

8.1 Thesis Summary

This thesis aimed to provide an clear picture of residential indoor localisation methodol-

ogy in a context of health care monitoring. This work has covered the main aspects of the

indoor localisation ’pipeline’. Initially, we provided a thorough, comprehensive outline of

the popular sensors used in literature. The overview also presented modalities which

could not be easily appropriated for use in residential indoor localisation, either due to

them being still considered emerging or due to excessive infrastructure they demand.

The thesis then narrowed the space of sensor selection by motivating the use of specific

sensors in our own infrastructure, explaining their appropriateness for our purpose in

terms of usability, robustness and efficiency. The above was demonstrated using novel

data, collected in residential environments. This demonstration showed the possible

ways to model the sensory output, produced during data collection. Additionally, the

data collection has uncovered various deficiencies associated with training and collecting

thorough high-resolution data. This was later improved upon using an automated system

for localisation and mapping. Finally, the thesis addressed various over-arching themes

of sensor-based fusion and localisation like efficiency, robustness and accuracy in two

technical chapters.

The novel contribution of this thesis began with a survey of the existing literature.

This chapter explored the space of currently popular sensor modalities, as used for

various indoor localisation applications. These modalities were found to offer unique

advantages and disadvantages in terms of tracking and positioning performance. They

were later evaluated using a framework, which scrutinised their relative usefulness

and value in said domain. This framework exposed their shortcomings and helped to

provide a clear picture of sensors deemed most appropriate for use in this thesis. Later,

the chapter explored important fusion paradigms and provided literature-based patterns

of sensor combinations in various application areas. After explaining the theory behind

popular fusion methods, as well as preliminary background for this work, the chapter

closed by exposing various unexplored avenues for future research.

The above chapter has tackled a topic seldom addressed by the wider localisation

community. Whilst the literature concentrates on algorithms, methods and standards

used for indoor localisation, there is a gap when considering the perspective of popularly

utilized sensor modalities and their fusion. This manuscript aimed to close this gap by
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taking thorough account of sensor utilisation and fusion taxonomy, with comprehensive

overview of seminal papers and existing data sets.

Chapter 3 concentrated on technical details the data collection methods, from the

choice of infrastructure, through to testing and validation. First, the chapter explained

the need for WSN in the space of residential healthcare monitoring. This included

describing the advantages and disadvantages provided by residential environments in

terms of radio signal propagation and their modelling. Later, it considered the WSN

infrastructure hardware, which was utilised to gather the data contained therein. The

example of the typical pervasive health care residential data then followed. This chapter

has also outlined novel collection of high resolution localisation data, which served as

basis for majority of the algorithms included in this thesis. Here, we additionally included

signal modelling techniques which this thesis has used throughout. This chapter has

closed by outlining the predominant challenges faced during the collection of said data

and possible countermeasures which are likely to alleviate them.

Th contribution of the above chapter is two-fold: Firstly, it presents an example

of a viable, low-cost, pervasive monitoring system. This system, including the sensors

contained therein, as motivated by the previous chapter, is explained, using an example

of data it produced. This data showed, that pervasive monitoring of a user in their own

environment is possible. Secondly, a larger collection of novel residential house data

was presented. This data has been used throughout this thesis, in order to confirm the

viability of various algorithms and methods. Since this data set spans various houses

and users, it sets a precedent which all of the algorithms have to follow to be proven

feasible.

In chapter 4, the methods and metrics, which were used in this thesis, have been

addressed. It firstly outlined all of the metrics which were used to validate the work

contained in this thesis, giving their mathematical formulations. Then, the chapter

continued to describe the modelling of the signals (and lack thereof), as well as the

temporal structure prediction methods which form the foundation of all of the novel

algorithms in this thesis.

The main objective of chapter 5 was to address the aforementioned challenges set

out in the previous chapter. It described a novel system for gathering data, which

removes the need for arduous labour experienced with the above mentioned collection.

Furthermore, this method proposes the user-based measuring to be ejected ’from-the-

loop’, helping to reduce bias and human error. The chapter begun with explaining

the theory behind SLAM, which simultaneously provided a motivation of its usage in
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this context. The chapter then explained an another data collection which took place,

specifically to validate the method contained in this chapter. The crucial contribution

was the confirmation of this new method of data collection and mapping.

The aim of this chapter was to prove that the ‘pipeline’ of data collection and training

outlined in the previous chapter can be substantially streamlined. This streamlining

came from presenting novel hardware, designed with data collection and training in mind.

Then, through the utilisation of localisation and mapping techniques, it was able to match

the performance of the method explained in the previous chapter. The contribution of

this chapter is self-evident, in that the labour required to perform fingerprinting training

in residential areas has been facilitated through automation.

The following chapter provided a concrete examples of improvement of indoor locali-

sation through various novel studies and methods. Initially, a study of data fusion was

provided, which explored how best to connect the model of causal relationships between

contextual data and localisation performance. After providing various data flow models

and confirming them on an adapted pervasive health dataset, the chapter confirmed

their viability by evaluating these models on the novel collected data. Additionally, it con-

sidered a study of robustness, and showed that contextual information from additional

sensors was advantageous in the face of usual adversity found in WSNs. Later, the same

chapter explored how the WSNs can be made aware of their energy efficiency. Through

the use of RL, a new method was devised, which explored the space of sensor utilisation

under energy constraints. This method was also used to perform life-long model training.

After validating the hypothesis using a novel simulator, the same pervasive health

dataset from the previous study was used to confirm the findings. The main contributions

of this chapter included the two studies, and their relative impact on residential indoor

localisation. This chapter has also addressed two of the three over-arching themes of

sensor fusion applications in this thesis, namely fusion for robustness and fusion for

energy efficiency. It should be, however, reiterated, that the energy efficiency in this work

is understood purely on the basis of sensor utilisation. This is a deliberate choice, as

to make the methods here easy to generalise to a variety of problems, even extending

outside of the indoor localisation use case. No explicit power measurements were made.

The addition of this chapter includes various novel methods of indoor localisation.

The viability of these methods has been shown, by constraining the algorithms by typical

impositions found in residential environments, health care monitoring and WSN. By

considering sensor fusion, adaptability and resilience, this chapter has shown that

indoor localisation, as well as health monitoring can be improved through contextual
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information, such as activity, and that the topology of acceleration sensors can guard

against network outages and service issues. Additionally, localisation systems can be

improved through more dependent sensors, such as cameras. This allowed the system to

perform weak training across time, as well as maintain energy-awareness. The findings

of this chapter have shown that indoor localisation systems, especially ones with access

to accelerometer data and other sensor modalities will have to maintain a degree of

adaptability and energy efficiency in the future.

The final technical chapter of this thesis explained a novel senor selection method for

residential indoor localisation. Initially, it explored the space of sensor selection in WSN,

before embarking on outlining the theory behind most common selection algorithms.

Then, it motivated the use of a new utilisation cost metric, inspired by signal propagation

and inference methods from our previous work. The algorithms were checked against

base line algorithms, and later confirmed on our own pervasive health care dataset. The

main contribution of this chapter was, in addition to providing an outline of selection

in WSN for residential indoor localisation, thorough validation study, which helped

narrow the gap in sensor selection literature. This chapter showed, that the selection

algorithms based on information theoretic and quantitative methods cannot simply be

evaluated using simulated results, and should additionally be scrutinised using real life

measurements.

Interestingly, practical sensor selection remains seldom featured in the literature

of residential indoor localisation using WSN, instead remaining the staple of more

theoretical contributions. The motivation behind this section is largely similar to the

previous chapter – it professes the need for adaptability and efficiency in WSN. By

proving that the localisation algorithms are able to maintain comparable performance,

whilst using a fraction of the sensor space, the contribution of this chapter is clear.

Furthermore, by examining the viability of these algorithms when applied to real data,

the chapter shows that practical sensor selection can be advantageous in relation to

residential indoor localisation.

8.2 Objectives for Further Research

8.2.1 Future Technologies for Indoor Localisation

It is important to note, that indoor localisation sensing through the paradigm of BLE

RSSI is not the exclusive way of solving this challenge. Whilst featured prominently in the
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literature, the new incoming communication technologies have the potential of disrupting

the current indoor localisation consensus, and bring the community closer to evermore

accurate positioning strategies. Currently, there exists a community preference to include

new localisation systems based on novel standards in communications including 5G,

mmWave, multiple-input multiple-output (MIMO) , Massive MIMO (MMIMO) and UWB.

There exist some work on indoor localisation approaches which use MMIMO [221].

Widmaier et al. showed that the use of CSI of a MMIMO system when feed to an

ANN is a practical method of achieving sub-meter accuracy. Indeed, there exist further

examples of utilising CSI for indoor localisation [234] and even activity recognition [200].

Interestingly, Wu et al. [229] provided a novel paradigm based on Time Reversal (TR) ,

and obtained reasonable accuracy in controlled environments.

Work from Mendrzik et al. [140] showed the viability of using mmWave MIMO for

localisation and mapping. In this work, the authors attempted a radio SLAM technique,

whereby the location of the user and the corresponding radio map was extracted simulta-

neously. Whilst the notion of context-specific semantic SLAM is not a novel concept, here

the authors exploit the 5G PHY layer, being able to estimate ToA, angle-of-departure

(AoD) and AoA and subsequently use it for SLAM. Similar approach was taken by Shah-

mansoori et al. [185]. We feel this work to be of interest here, mainly as it combines the

notion of indoor localisation and environment mapping, effectively performing training

online. This, along with the fact that these methods can be utilised to optimise some

of the work outlined in previously in this thesis, most notably chapters 5 and 7, can be

thought of as the starting point for future work.

8.2.2 Novel Methods of Localisation

Let us first address the possible space for future sensor fusion implementations, as

followed up from chapter 2. Figure 8.1 shows the fusion combinations and popular

approaches in sensor-driven indoor localisation in the last decade. This particular figure

is not exhaustive, and as it was noted before, is only attached as a starting point for

further investigation of a particular fusion combination. Indeed, there is an evident

community preference towards sensors which, either have a broad foundation on which

to build the algorithms such as RF, or are based on modalities which are easy to come

by, such as IMUs and magnetometers. While magnetometers have seen extensive use as

part of PDR applications where they usually establish direction, there is lack of recent,

comprehensive study of its viability with RF sensors. Both types utilise fingerprinting as
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part of its training phase. This type of data could be collected simultaneously, and can

often reuse already existing IMU chipsets reported in various studies.

Cameras have seen a large body of literature dedicated to localisation, mainly due to

the rise of camera-enabled smartphones. With easy access to smartphone sensor clusters,

and their processing plants, researchers can perform more in-depth fusion of the sensors

and collect more resolute data. Additionally, phones have good connectivity capabilities

making them well suited for applications with quick-transfer requirements such as

databases and for range-based RF localisation tasks. Interestingly, due to the recent

trend in smartphone photography, where in order to obtain more resolute images the

devices include two cameras, it could technically be possible to perform structure-from-

motion mapping using a single smartphone with two or more camera sensors.

In terms of modality fusion, Ultrasound and VLC could both be considered relatively

unexplored. Most of the literature, for both of these modalities, present implementations

in a sterile environment of a laboratory, reporting sub-meter accuracy. That would sug-

gest that these types of modalities are still in the proof of concept stage of research. There

is yet to be study which would use these modalities in a wide-scale positioning infrastruc-

ture or fusion campaign. On the other hand, the fusion of RF and Inertia/Magnetometers

is very widely explored, in both performance studies and their appearance in various

data sets. The aforementioned Ultrasound and VLC-based approaches are, however,

again underrepresented in this domain. This is not surprising due to the relatively

large infrastructures demanded by these modalities. Additionally, there exists space

for localisation-specific data set encompassing human-borne LiDAR for fingerprinting

applications. This could be used with AMF or RF.

Fusion methodologies are also likely to shift. Recent proliferation of DNN techniques

and ANN in general, is likely to drive the fusion into the deep learning domain. In-

deed, chapter 2 has shown that there have been strides made in that direction. Deep

Learning has, in particular, began to permeate the space of indoor localisation. With

an increased number of objective-specific hardware accelerators and portable networks,

such as NVIDIA Jetson [152] or Coral Accelerator [65] it would soon become easier to

run real-time, tailored networks allowing for precise localisation estimation. However,

when compared to Bayesian location estimation methods, this particular domain is still

lacking, in both proper theoretical formulation and exhausting comparison studies. This

is not to say, that the current state-of-the-art Bayesian methods will be completely ousted.

A more likely prediction is one of the two systems working together, either in unison, or

as compliments of each other, in order to make the prediction more accurate.
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With respect to the data collection methods and models, the majority of the proposed

challenges and issues have already been addressed by chapter 5. However, there exist

many other challenges which still remain overlooked. These are specifically related to

the topology of the training method. Fingerprinting, even if automated, still remains a

precarious exercise. Collecting ’one-off ’ data, using only a snapshot of possible model

parameters, at a high labour cost, still prohibits this technique from finding a good

industrial application and is so far confined to research implementations. However,

relatively little research have been done on improving this training technique.

Additionally, since the space of WSN is sensitive to radio propagation, the novel

training methods should focus on an added component of environment dynamics. So

far, there have not been a great lot of research in a way of a robust implementation

which would perform periodical re-training as to establish the most likely picture of

the signal propagation characteristics, in a given residence over long periods of time.

This is understandably difficult to obtain, but would open a new avenue of efficient

model re-estimation research. An interesting field of CSI-based estimation could also

be thoroughly expanded. There exist possibility of utilising passive radio signals, the

disturbance of which can be used to track users in the environment. This alleviates the

need for intrusive wearable sensors, theoretically allowing the users to traverse the

environment free of any unnecessary hindrance. Whilst it precludes the use of typical

on-body sensors, such as accelerometers, it could help popularise the field of indoor

localisation, as the algorithms would no longer be reliant on extensive infrastructures.

The chapter 5, outlining the ’H4LO’ system, could be used for early work on such re-

estimation. It is equipped to perform quick fingerprinting, and it relies on the sequential

map gathering to estimate its position. This problem can also be relaxed, in that if a

residence was mapped already and initial position is known, extracting pose estimates

is only the matter of matching current point cloud with already existing maps. This

reduces the overhead of having to perform careful fingerprinting, as the signals and

spatial features could be correlated to existing fingerprint maps of the environment,

updating it in the process, without the need for costly SLAM computation. In terms

of actual system, the future work would concentrate on improving the accuracy of the

results. Using the extensive IMU data, it is possible to distinguish and classify between

floors and improve on the quality of the maps, reducing the effects of obstacles, such as

laser reflections. Additionally, this dataset can help with interpretability of RSS data

with regard to spatial features, and vice versa.

The study of sensor fusion in chapter 6 could be improved in terms of performance
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and scale. The future work would involve incorporating additional sensors, including

gyroscope and magnetometer, together with complementing information pertaining to

the layout of the house. This would serve to explore how the layout complexity relates

to packet drop and the location accuracy. Additionally, implementing a more elaborate

accelerometer processing, such as a PDR implementation, would improve the quality of

future studies on this topic. Instead of relying on a purely RF setting localisation, having

a PDR as a back up implementation could also solve various ’null point’ problems with

existing RF localisation, such as floor ambiguity.

In relation to the energy efficiency study, further work would include generalising

this method to a different dataset, not necessarily concentrating on the localisation

performance. Whilst localisation offered advantages, such as predictable dynamics,

studying the effect of activity recognition, scrutinised under energy efficiency could offer

new routes of obtaining efficiency in a WSN. Additionally, a better simulation model

for these particular problems could also be developed - one which includes dynamic AP

selections and ‘oracles’ which are to some degree fallible.

Chapter 7 could be improved by including other metrics over which the sensor

selection will be optimised. These can include specific on-body and off-body sensors

and combination thereof, as opposed to simple RF data quality metrics. In addition

to quality of information, the optimisation could include a metric of energy efficiency

or accessibility to utilities, such as power sockets. There could also be a study which

determines whether the sensor selection problem is user-invariant, especially in relation

to digital health applications. Interestingly, the energy efficiency and sensor selection

studies could also be complimented by a combination of the two together. Considering

the space of adaptive sensor selection, the energy efficiency metric could be explored in

terms of optimal selection of sensors given the location in the house. Simply put, finding

an optimal set of sensors for every location in the house, and updating this selection in

terms of energy efficiency and/or localisation performance.
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