1,145 research outputs found

    Modelling of a dynamic multiphase flash: the positive flash. Application to the calculation of ternary diagrams

    Get PDF
    A general and polyvalent model for the dynamic simulation of a vapor, liquid, liquid-liquid, vapor-liquid or vapor-liquid-liquid stage is proposed. This model is based on the -method introduced as a minimization problem by Han & Rangaiah (1998) for steady-state simulation. They suggested modifying the mole fraction summation such that the same set of governing equations becomes valid for all phase regions. Thanks to judicious additional switch equations, the -formulation is extended to dynamic simulation and the minimization problem is transformed into a set of differential algebraic equations (DAE). Validation of the model consists in testing its capacity to overcome phase number changes and to be able to solve several problems with the same set of equations: calculation of heterogeneous residue curves, azeotropic points and distillation boundaries in ternary diagrams

    Heterogeneous Batch Distillation Processes: Real System Optimisation

    Get PDF
    In this paper, optimisation of batch distillation processes is considered. It deals with real systems with rigorous simulation of the processes through the resolution full MESH differential algebraic equations. Specific software architecture is developed, based on the BatchColumn® simulator and on both SQP and GA numerical algorithms, and is able to optimise sequential batch columns as long as the column transitions are set. The efficiency of the proposed optimisation tool is illustrated by two case studies. The first one concerns heterogeneous batch solvent recovery in a single distillation column and shows that significant economical gains are obtained along with improved process conditions. Case two concerns the optimisation of two sequential homogeneous batch distillation columns and demonstrates the capacity to optimize several sequential dynamic different processes. For such multiobjective complex problems, GA is preferred to SQP that is able to improve specific GA solutions

    Single- and multi-objective optimisation of hybrid distillation-pervaporation and dividing wall column structures

    Get PDF
    The separation of azeotropic mixtures is often energy intensive, thus process intensification (PI) becomes an attractive route to enhance energy efficiency. Two of the most commonly used separation intensifications are dividing wall columns and hybrid distillation-membrane processes. In this work, three typical hybrid distillation structures, distillation followed by pervaporation (D-P), pervaporation followed by distillation (P-D), and distillation followed by pervaporation then by distillation (D-P-D), are considered and compared with a hybrid dividing wall column (H-DWC) structure, which is a highly integrated process combining a dividing wall column and a pervaporation membrane network. The four structures are compared by both single-objective and multi-objective optimisation. It is shown that the D-P-D and H-DWC structures require significantly lower total annualized costs than the other two designs due to requiring smaller membrane area, as these two structures use the membrane only to help the mixture composition cross the azeotropic point

    Особенности ректификационного разделения многокомпонентных смесей

    Get PDF
    Objectives. To improve the process of developing energy-efficient flowsheets for the distillation separation of multicomponent aqueous and organic mixtures based on a comprehensive study of the phase diagram structures, including those in the presence of additional selective substances.Methods. Thermodynamic-topological analysis of phase diagrams; modeling of phase equilibria in the AspenTech software package using the equations of local compositions: Non-Random Two Liquid and Wilson; computational experiment to determine the column parameters for separation flowsheets of model and real mixtures of various nature.Results. The fractionation conditions of the origin multicomponent mixture due to the use of sharp distillation, pre-splitting process, extractive distillation with individual and binary separating agents were revealed. The columns operation parameters and the energy consumption of the separation flowsheets ensuring the achievement of the required product quality with minimal energy consumption were determined.Conclusions. Using the original methods developed by the authors earlier and based on the generalization of the results obtained, new approaches to the synthesis of energy-efficient multicomponent mixtures separation flowsheets were proposed. The provisions that form the methodological basis for the development of flowsheets for the separation of multicomponent mixtures and supplement the standard flowsheet synthesis plan with new procedures were formulated.Цели. Совершенствование процесса разработки энергоэффективных схем ректификационного разделения многокомпонентных водных и органических смесей на основе комплексного исследования структуры фазовой диаграммы, в том числе в присутствии селективных дополнительных веществ.Методы. Термодинамико-топологический анализ фазовых диаграмм; моделирование фазовых равновесий в программном комплексе AspenTech с использованием уравнений локальных составов Non-Random Two Liquid, Вильсона; вычислительный эксперимент по определению параметров работы колонн схем разделения модельных и реальных смесей разной природы.Результаты. Выявлены условия фракционирования исходной многокомпонентной смеси за счет использования промежуточного заданного разделения, предварительного расслаивания, экстрактивной ректификации с индивидуальными и бинарными разделяющими агентами. Определены параметры работы колонн и энергозатраты схем разделения, обеспечивающие достижение требуемого качества продуктов при минимальных энергозатратах.Выводы. С использованием разработанных ранее авторами оригинальных методик и на основе обобщения полученных результатов предложены новые подходы к синтезу энергоэффективных схем разделения многокомпонентных смесей. Сформулированы положения, которые составляют методологическую основу разработки принципиальных схем разделения многокомпонентных смесей и дополняют типовой план синтеза схем новыми процедурами

    Inherently Safer Design and Optimization of Intensified Separation Processes for Furfural Production

    Get PDF
    Currently furfural production has been the subject of increased interest because it is a biobased chemical able to compete with fossil-based chemicals. Furfural is characterized by flammability, explosion, and toxicity properties. Improper handling and process design can lead to catastrophic accidents. Hence it is of most importance to use inherent safety concepts during the design stage. This work is the first to present several new downstream separation processes for furfural purification, which are designed using an optimization approach that simultaneously considers safety criteria in addition to the total annual cost and the eco-indicator 99. The proposed schemes include thermally coupled configuration, thermodynamic equivalent configuration, dividing-wall column, and a heat integrated configuration. These are compared with the traditional separation process of furfural known as the Quaker Oats Process. The results show that because of a large amount of water present in the feed, similar values are obtained for total annual cost and eco-indicator 99 in all cases. Moreover, the topology of the processes has an important role in the safety criteria. The thermodynamic equivalent configuration resulted as the safest alternative with a 40% reduction of the inherent risk with respect to the Quaker Oats Process, and thus it is the safest option to purify furfural

    Evaluación de la eficiencia de procesos químicos: Reactor i separación

    Get PDF
    Treballs Finals de Grau d'Enginyeria Química, Facultat de Química, Universitat de Barcelona, Curs: 2017-2018, Tutors: Jordi Bonet Ruiz, Alexandra Elena Bonet RuizChemical sector is one of the big sectors in the world. The shortage of raw materials, the importance in the sustainability, as the environmental requirements, and the increased of competition make the necessity of investigation and application of more efficient and cost-effective processes (Recker et al, 2015). One tool in the search or optimization of process is the use of simulators, which allow us obtaining results quickly and easily in complex processes using simplified models, allowed us to do changes or variations in same process to compare with each other. However, rigorous simulations requires a great effort and therefore it is not suitable for process screening. Due to the shortage of methods that study the efficiency of the process at early process design stages, in this work has been developed a short cut method that allows obtaining the efficiency of the alternative process schemes considering reactor and separation jointly. This method is based on application of DSE (Distillation Sequence Efficiency), to which is added a correction factor to take into consideration the reactor. ETBE (Ethyl Tert-Butyl Ether) production process is used as case study. Analyzing the different alternatives of design of the chosen alternative, trough simulations in AspenPlus®, is determined the feasibility of each of the alternatives suggested. The DSE with the correction factors for the calculation of the efficiency is implemented using FORTRAN® in AspenPlus®

    Extractive distillation: recent advances in operation strategies

    Get PDF
    Extractive distillation is one of the efficient techniques for separating azeotropic and low-relativevolatility mixtures in various chemical industries. This paper first provides an overview of thermodynamic insight covering residue curve map analysis, the application of univolatility and unidistribution curves, and thermodynamic feasibility study. The pinch-point analysis method combining bifurcation shortcut presents another branch of study, and several achievements have been realized by the identification of possible product cut under the following key parameters: reflux ratio, reboil ratio, and entrainer-feed flow rate ratio. Process operation policies and strategy concerning batch extractive distillation processes are summarized in four operation steps. Several configurations and technological alternatives can be used when extractive distillation processes take place in a continuous or batch column, depending on the strategy selected for the recycle streams and for the main azeotropic feeds
    corecore