583 research outputs found

    Efficient computational strategies for doubly intractable problems with applications to Bayesian social networks

    Get PDF
    Powerful ideas recently appeared in the literature are adjusted and combined to design improved samplers for Bayesian exponential random graph models. Different forms of adaptive Metropolis-Hastings proposals (vertical, horizontal and rectangular) are tested and combined with the Delayed rejection (DR) strategy with the aim of reducing the variance of the resulting Markov chain Monte Carlo estimators for a given computational time. In the examples treated in this paper the best combination, namely horizontal adaptation with delayed rejection, leads to a variance reduction that varies between 92% and 144% relative to the adaptive direction sampling approximate exchange algorithm of Caimo and Friel (2011). These results correspond to an increased performance which varies from 10% to 94% if we take simulation time into account. The highest improvements are obtained when highly correlated posterior distributions are considered.Comment: 23 pages, 8 figures. Accepted to appear in Statistics and Computin

    Bayesian model selection for exponential random graph models via adjusted pseudolikelihoods

    Get PDF
    Models with intractable likelihood functions arise in areas including network analysis and spatial statistics, especially those involving Gibbs random fields. Posterior parameter es timation in these settings is termed a doubly-intractable problem because both the likelihood function and the posterior distribution are intractable. The comparison of Bayesian models is often based on the statistical evidence, the integral of the un-normalised posterior distribution over the model parameters which is rarely available in closed form. For doubly-intractable models, estimating the evidence adds another layer of difficulty. Consequently, the selection of the model that best describes an observed network among a collection of exponential random graph models for network analysis is a daunting task. Pseudolikelihoods offer a tractable approximation to the likelihood but should be treated with caution because they can lead to an unreasonable inference. This paper specifies a method to adjust pseudolikelihoods in order to obtain a reasonable, yet tractable, approximation to the likelihood. This allows implementation of widely used computational methods for evidence estimation and pursuit of Bayesian model selection of exponential random graph models for the analysis of social networks. Empirical comparisons to existing methods show that our procedure yields similar evidence estimates, but at a lower computational cost.Comment: Supplementary material attached. To view attachments, please download and extract the gzzipped source file listed under "Other formats

    Noisy Hamiltonian Monte Carlo for doubly-intractable distributions

    Full text link
    Hamiltonian Monte Carlo (HMC) has been progressively incorporated within the statistician's toolbox as an alternative sampling method in settings when standard Metropolis-Hastings is inefficient. HMC generates a Markov chain on an augmented state space with transitions based on a deterministic differential flow derived from Hamiltonian mechanics. In practice, the evolution of Hamiltonian systems cannot be solved analytically, requiring numerical integration schemes. Under numerical integration, the resulting approximate solution no longer preserves the measure of the target distribution, therefore an accept-reject step is used to correct the bias. For doubly-intractable distributions -- such as posterior distributions based on Gibbs random fields -- HMC suffers from some computational difficulties: computation of gradients in the differential flow and computation of the accept-reject proposals poses difficulty. In this paper, we study the behaviour of HMC when these quantities are replaced by Monte Carlo estimates

    Bayesian exponential random graph modelling of interhospital patient referral networks

    Get PDF
    Using original data that we have collected on referral relations between 110 hospitals serving a large regional community, we show how recently derived Bayesian exponential random graph models may be adopted to illuminate core empirical issues in research on relational coordination among health care organisations. We show how a rigorous Bayesian computation approach supports a fully probabilistic analytical framework that alleviates well-known problems in the estimation of model parameters of exponential random graph models. We also show how the main structural features of interhospital patient referral networks that prior studies have described, can be reproduced with accuracy by specifying the system of local dependencies that produce – but at the same time are induced by – decentralised collaborative arrangements between hospitals

    Noisy Monte Carlo: Convergence of Markov chains with approximate transition kernels

    Get PDF
    Monte Carlo algorithms often aim to draw from a distribution π\pi by simulating a Markov chain with transition kernel PP such that π\pi is invariant under PP. However, there are many situations for which it is impractical or impossible to draw from the transition kernel PP. For instance, this is the case with massive datasets, where is it prohibitively expensive to calculate the likelihood and is also the case for intractable likelihood models arising from, for example, Gibbs random fields, such as those found in spatial statistics and network analysis. A natural approach in these cases is to replace PP by an approximation P^\hat{P}. Using theory from the stability of Markov chains we explore a variety of situations where it is possible to quantify how 'close' the chain given by the transition kernel P^\hat{P} is to the chain given by PP. We apply these results to several examples from spatial statistics and network analysis.Comment: This version: results extended to non-uniformly ergodic Markov chain
    corecore