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Abstract Powerful ideas recently appeared in the litera-
ture are adjusted and combined to design improved sam-
plers for doubly intractable target distributions with a focus
on Bayesian exponential random graph models. Different
forms of adaptive Metropolis–Hastings proposals (vertical,
horizontal and rectangular) are tested and merged with the
delayed rejection (DR) strategy with the aim of reducing the
variance of the resulting Markov chain Monte Carlo estima-
tors for a given computational time. The DR is modified in
order to integrate it within the approximate exchange algo-
rithm (AEA) to avoid the computation of intractable nor-
malising constant that appears in exponential random graph
models. This gives rise to the AEA + DR: a new methodology
to sample doubly intractable distributions that dominates the
AEA in the Peskun ordering (Peskun Biometrika 60:607–
612, 1973) leading to MCMC estimators with a smaller
asymptotic variance. The Bergm package for R (Caimo and
Friel J. Stat. Softw. 22:518–532, 2014) has been updated to
incorporate the AEA + DR thus including the possibility of
adding a higher stage proposals and different forms of adap-
tation.

Keywords Adaptive Metropolis–Hastings proposal ·
Delayed rejection · Doubly-intractable target · Intractable
likelihoods · Markov chain Monte Carlo · Exponential
random graphs
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1 Introduction

In this paper we combine the approximate exchange algo-
rithm (AEA) proposed in Caimo and Friel (2011), which has
been proven to be particularly efficient in estimating expo-
nential random graph models (ERGMs), with the delayed
rejection (DR) introduced in Tierney and Mira (1999), a
strategy to reduce the asymptotic variance of the resulting
MCMC estimators. In particular we focus on the adaptive
direction sampling approximate exchange algorithm (ADS-
AEA) which is based on the idea of running, in parallel,
multiple chains that, at each fixed simulation time, interact
with each other to allow the construction of a distribution
that selects the proposal direction of the candidate move by
picking at random a pair of chains.

We also suggest an alternative to ADS-AEA based on an
adaptive random walk proposal distribution. Three different
adaptation strategies will be studied to design a good proposal
variance-covariance matrix: the first one is based on the past
history of each single chain (vertical adaptation); the second
is based on the current population of all chains at the given
simulation time (horizontal adaptation), and finally global
adaptation takes into account the past history of all chains
(rectangular adaptation).

The three ingredients (ADS, DR and Adaptive proposal)
are combined in various ways and compared to obtain the
most effective strategy. Optimality is measure by the effective
sample size (ESS) and the performance (defined as ESS per
simulation time) and the focus is on estimating ERGMs.

The novel methodological contribution consists in the
new second (and higher stage) acceptance probability of
the approximate exchange algorithm with delayed rejection
(AEA + DR) that does not require the calculation of the likeli-
hood normalising constant and can thus be used to generate a
Markov chain having a general doubly intractable posterior
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target as its stationary distribution. The DR strategy leads,
by construction, to MCMC estimators that have a smaller
asymptotic variance. Indeed the AEA-DR dominates, in the
Peskun sense (Peskun 1973), the regular AEA.

2 Exponential random graph models

Exponential random graph models (see Robins et al. (2007)
for a recent review) assume that the topological structure
in an observed network y can be explained by the relative
prevalence of a set of overlapping sub-graph configurations
s(y) also called graph or network statistics.

Each network statistic has an associated unknown para-
meter. A positive value for a certain parameter θ(i) indicates
that the edges involved in the formation of the corresponding
network statistic si (y) are more likely to be observed relative
to edges that are not involved in the formation of that network
statistic, and vice versa.

Network statistics and parameters are at the core of
ERGMs and the challenge is to estimate the parameters for
each statistic such that the model is a good fit for the given
data. From a statistical point of view, networks are relational
data represented as mathematical graphs. A graph consists
of a set of n nodes and a set of m ties which define a relation-
ship between pairs of nodes called dyads. The connectivity
pattern of a graph can be described by an n × n adjacency
matrix y encoding the presence or absence of a tie between
node i and j : yi j = 1 if the dyad (i, j) is connected, yi j = 0
otherwise. The likelihood of an ERGM represents the prob-
ability distribution of a random network graph and can be
expressed as:

p(y|θ) = q(y|θ)

z(θ)
= exp{s(y)T θ}

z(θ)
(1)

where q(y|θ) is the unnormalised likelihood. This equation
states that the probability of observing a given network graph
y is equal to the exponent of the observed graph statistics s(y)

multiplied by parameter vector θ divided by a normalising
constant term z(θ). The latter is calculated over the sum of all
possible graphs on n nodes and it is therefore extremely diffi-
cult to evaluate for all but trivially small graphs since this sum
involves 2(n

2) terms (for undirected graphs). The intractable
normalising constant makes inference difficult for both fre-
quentist and Bayesian approaches. This problem does not
only occur in ERGMs, but in many other statistical models
including, for example, the autologistic model (Besag 1974)
in spatial statistics. Given the similarities among these mod-
els from a computational tractability point of view, we envis-
age that the MCMC simulation strategies proposed in this
paper are amenable of successful application in these other
contexts as well.

3 Bayesian methods for ERGMs

Bayesian methods are becoming increasingly popular as
techniques for modelling social networks. In the ERGM con-
text recent works on using the Bayesian approach for infer-
ring ERGMs have been proposed by Koskinen et al. (2010)
and Caimo and Friel (2011, 2013).

Following the Bayesian paradigm, a prior distribution is
assigned to θ . The posterior distribution of θ given the data
y is:

p(θ |y) = p(y|θ)p(θ)

p(y)
. (2)

Direct evaluation of p(θ |y) requires the calculation of both
the likelihood p(y|θ) and the marginal likelihood p(y) which
are typically intractable. For this reason posterior parameter
estimation for ERGMs has been termed a doubly-intractable
problem.

3.1 Exchange algorithm

Markov chain Monte Carlo (MCMC) algorithms (Tierney
1994) are general simulation methods for sampling from
posterior distributions and computing posterior quantities
of interest. The most widely used MCMC sampler is the
Metropolis–Hastings (MH) that, under easy to verify regu-
larity conditions, constructs an ergodic Markov chain having
the posterior p(θ |y) ∝ p(y|θ)p(θ) as its unique stationary
and limiting distribution.

A naïve MH update, proposing to move from the cur-
rent state θ to θ1, would require calculation of the following
acceptance probability at each sweep of the algorithm:

α(θ, θ1) = 1 ∧ q(y|θ1)p(θ1)h(θ |θ1)

q(y|θ)p(θ)h(θ1|θ)
× z(θ)

z(θ1)
(3)

where q(·) represents the unnormalised likelihood and h(·) is
a proposal distribution used to generate the candidate move
θ1. For doubly intractable target distributions, the ratio in (3)
is unworkable due to the presence of the normalising con-
stants z(θ) and z(θ1) (note that, on the other hand, the mar-
ginal likelihood cancels and thus one source of intractability
is resolved).

A special case of the MH algorithm is the random-walk
MH, where the proposal (typically a Gaussian distribution) is
centred at the current position of the Markov chain and thus
θ1 = θ + σ ε where ε is, usually, a standard Gaussian dis-
placement. Since this proposal h is symmetric i.e. h(θ |θ1) =
h(θ1|θ), it cancels in the acceptance ratio. A typical diffi-
culty in the MH algorithm is the proper tuning of the pro-
posal distribution that translates, for the random-walk MH
in the choice of the tuning parameter σ . Off-line tuning aim-
ing at achieving the optimal (in some high dimensional con-
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text) acceptance rate of approximately 0.234 (Roberts et al.
1997; Roberts and Rosenthal 1998, 2001) is possible but
time consuming. A recent better alternative is adaptive on-
line design of the proposal: when tuning the proposal at sim-
ulation time t the whole past history of the chain can be
taken into account. Different forms of adaptations are possi-
ble but since these adaptive strategies destroy the Markovian
properties of the sampler, careful rules should be followed in
on-line adaptation procedures (Andrieu and Atchadé 2006;
Andrieu and Moulines 2006; Roberts and Rosenthal 2007;
Atchadé and Rosenthal 2005). Another possibility is to run
in parallel more Markov chains, all having the same target
distribution, and when designing the proposal for one of the
chains learn from the current position of the other ones. This
strategy does not destroy the Markovian property of the chain
being updated and thus it is easier to adopt and gives more
freedom in designing adaption strategies, but has additional
computational costs. This is the reason why, when compar-
ing alternative adaptation strategies, simulation time should
be taken into account.

To get around the issue related to the intractability of the
likelihood and thus of the MH acceptance probability, Mur-
ray et al. (2006) proposed to estimate z(θ)

z(θ1)
directly, by con-

sidering the following augmented distribution:

p(θ1, y1, θ |y) ∝ p(y|θ)p(θ)h(θ1|θ) × p(y1|θ1) (4)

where y1 are auxiliary data generated from the distribu-
tion p(·|θ1) which is the same distribution from which the
observed data y are assumed to have been sampled from.
Notice that the original target is a proper marginal of the
augmented distribution thus, running a Markov chain on the
augmented state space and marginalising over θ , returns an
ergodic sample from the proper posterior of interest.

Using this augmented distribution has the advantage that
the acceptance probability in (3) can be written as:

1 ∧ q(y|θ1)p(θ1)h(θ |θ1)

q(y|θ)p(θ)h(θ1|θ)
× q(y1|θ)

q(y1|θ1)
× z(θ)

z(θ1)
× z(θ1)

z(θ)
. (5)

All intractable normalising constants cancel above and below
the ratio making the acceptance probability (5) of the
Metropolis–Hastings algorithm on the enlarged state space,
computable.

3.2 Adaptive direction sampling approximate exchange
algorithm (ADS-AEA)

The exchange algorithm of Murray et al. (2006) requires
exact simulation of new data y1 from the likelihood p(·|θ1).
However in the ERGM context, and more generally in Gibbs
random fields, exact sampling from the likelihood is difficult.
Caimo and Friel (2011) proposed to approximate the exact

θh2

θh1
θh

θh
1

Fig. 1 The move of θh is generated from the difference θh1 − θh2 plus
a random term ε

simulation of y1 from p(·|θ1) using MCMC. A theoretical
justification for the validity of this approach has been given
by Everitt (2012).

In order to improve mixing Caimo and Friel (2011) use
an adaptive direction sampling (ADS) method (Gilks et al.
1994; Roberts and Gilks 1994) similar to that of Braak and
Vrugt (2008). The approach consists in running in parallel a
collection of H chains which interact with one another. The
ADS move (Fig. 1), as illustrated in Caimo and Friel (2011),
can be described as follows. Set a scalar value for γ (ADS
move factor), for each chain h:

(1) Sample two current states θh1 and θh2 without replace-
ment from the population {1, . . . , H} \ h

(2) Sample ε from a symmetric proposal distribution
(3) Propose θh

1 = θh + γ
(
θh1 − θh2

) + ε

(4) Sample y1 from p(·|θh
1 )

(5) Accept the move from θh to θh
1 with probability

α(θh, θh
1 ) = 1 ∧ q(y|θh

1 ) p(θh
1 ) q(y1|θh)

q(y|θh) p(θh) q(y1|θh
1 )

. (6)

Note that, since the ADS proposal distribution is symmetric,
it does not appear in the acceptance probability.

3.3 Florentine marriage network

Let us consider, as a toy example, the 16-node Florentine
marriage network data concerning the marriage relations
between some Florentine families in around 1430 (Padgett
and Ansell 1993). The network graph is displayed in Fig. 2.

We propose to estimate the posterior distribution of the
following 3-dimensional ERGM:

q(y|θ) = exp
{
θ(1)s1(y) + θ(2)s2(y) + θ(3)s3(y)

}
(7)

where

s1(y) = ∑
i< j yi j number of edges

s2(y) = ∑
i< j<k yik y jk number of 2-stars

s3(y) = ∑
i< j<l<k yik y jk ylk number of 3-stars.
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Fig. 2 Florentine marriage network graph

Table 1 Florentine marriage network—Posterior parameter estimates
and effective sample size (ESS)

θ(1) (edges) θ(2) (2-stars) θ(3) (3-stars)

Post. mean −1.57 0.08 −0.07

Post. sd 1.93 0.71 0.34

ESS 736 743 760

A vague multivariate Normal prior p(θ) = N (0, 100Id) is
chosen, where Id is the identity matrix with dimensions equal
to that of the model (the same prior setting will be used for
all the examples in this paper). The Bergm package for R
(Caimo and Friel 2014) allows to carry out inference with
the approximate exchange algorithm described above.

We set the ADS move factor γ = 0.8 and ε =
N (0, 0.025Id). The auxiliary chain used to simulate auxil-
iary network data from the model consists of 50 iterations
and the main chain of 4,000 iterations for each of the 6
chains of the MCMC population so that we have a total of
24,000 main iterations. The tuning parameters were chosen
so that the overall acceptance rate is around 21 %. Table 1
shows the posterior estimates and effective sample size (ESS)
(Kass et al. 1998) which is calculated for each parameter θ(i),
i = 1, . . . , d:

E SS
(
θ(i)

)
= S

(
1 + 2

∑
k ρk(θ(i))

) ,

where S is the number of posterior samples and ρk(·) is the
autocorrelation at lag k. The infinite sum is often truncated
at lag k when ρk(θ

(i)) < 0.05.
The results indicate the tendency to a low number of edges

as expressed by the edge parameter θ(1) and null parameter
values for θ(2) and θ(3). These estimates are consistent with
the ones obtained using a frequentist approach (Hunter et al.
2008) as expected given the fairly vague prior.

4 Delayed rejection strategy

Delayed rejection (DR) is a modification of the Metropo-
lis-Hastings MCMC algorithm introduced in Tierney and
Mira (1999) and generalized in Green and Mira (2001);
Mira (2001a), aimed at improving efficiency of the result-
ing MCMC estimators relative to asymptotic variance order-
ings introduced in Peskun (1973) and generalized by Tierney
(1998); Mira (2001b). The basic idea is that, upon rejection
in a MH, instead of advancing simulation time and retaining
the same position of the Markov chain, a second stage move
is proposed. The acceptance probability of the second stage
candidate preserves reversibility of the Markov chain with
respect to the target distribution of interest (the posterior, in
a Bayesian setting). This delaying rejection mechanism can
be iterated for a fixed or random number of stages.

The higher stage proposal distributions can be designed in
a very flexible way (using our intuition on the target at hand)
and are allowed to depend not only on the current position of
the Markov chain but also on the candidates so far proposed
and rejected (within each sweep). In some sense we can learn
from our earlier mistakes. But notice that this form of local
adaptation does not destroy the Markovian property since,
as soon as a candidate move is accepted, the rejected val-
ues are disregarded. Thus DR allows partial local adaptation
of the proposal within each time step of the Markov chain
still retaining reversibility and Markovianity. The advantage
of DR over alternative ways of combining different MH pro-
posals or kernels, such as mixing and cycling (Tierney 1994),
is that a hierarchy between kernels can be exploited so that
kernels that are easier to compute (in terms of CPU time) are
tried first, thus saving in terms of simulation time. Or moves
that are more “bold” (bigger variance of the proposal, for
example) are tried at earlier stages thus allowing the sampler
to explore the state space more efficiently following a sort of
“first bold” versus “second timid” tennis-service strategy.

Suppose the current position of the Markov chain is Xt =
θ . As in a regular MH, a candidate move θ1 is generated from
a proposal h1(θ, ·) and accepted with probability

α1(θ, θ1) = 1 ∧ p(θ1, y)h1(θ1|θ)

p(θ, y)h1(θ |θ1)
= 1 ∧ N1

D1
. (8)

Note that the subscript in h1 and α1 indicate that this is the
first stage proposal and acceptance probability. Upon rejec-
tion, instead of retaining the same position, Xt+1 = θ , as we
would do in a standard MH, a second stage move θ2 is gen-
erated from a proposal distribution that is allowed to depend,
not only on the current position of the chain, but also on what
we have just proposed and rejected: h2(θ2|θ, θ1). The second
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stage acceptance probability is:

α2(θ, θ1, θ2)

= 1 ∧ p(θ2, y)h1(θ1|θ2)h2(θ |θ2, θ1)[1 − α1(θ2, θ1)]
p(θ, y)h1(θ1|θ)h2(θ2|θ, θ1)[1 − α1(θ, θ1)]

= 1 ∧ N2

D2
. (9)

This process of delaying rejection can be iterated and the i-th
stage acceptance probability is, following Mira (2001a):

αi (θ, θ1 . . . θi ) =
= 1 ∧ Ni

Di

= 1 ∧
{

p(θi , y)h1(θi−1|θi )h2(θi−2|θi , θi−1) . . . hi (θ |θi , θi−1 . . . θ1)

p(θ, y)h1(θ1|θ)h2(θ2|θ, θ1) . . . hi (θi |θ, θ1 . . . θi−1)

×[1 − α1(θi , θi−1)][1 − α2(θi , θi−1, θi−2)] . . . [1 − αi−1(θi , . . . , θ1)]
[1 − α1(θ, θ1)][1 − α2(θ, θ1, θ2)] . . . [1 − αi−1(θ, θ1, . . . , θi−1)]

}

(10)

If the i-th stage is reached, it means that N j < D j for j =
1, . . . , i−1, therefore α j (θ, θ1 . . . θ j ) is simply N j/D j , j =
1, . . . , i − 1 and a recursive formula can be obtained: Di =
hi (θ . . . θi )(Di−1 − Ni−1) which leads to:

Di = hi (θi |θ . . .)[hi−1(θi−1|θ . . .)[hi−2(θi−2|θ . . .) · · ·
[h2(θ2, |θ, θ1)[h1(θ1|θ)p(θ, y) − N1] − N2]
−N3] . . . − Ni−1]. (11)

Since reversibility with respect to p is preserved separately
at each stage, the process of delaying rejection can be inter-
rupted at any stage. The user can either decide, in advance, to
try at most, a fixed number of times to move away from the
current position or, alternatively, upon each rejection, toss a
π -coin (i.e. a coin with head probability equal to π ), and if the
outcome is head move to a higher stage proposal, otherwise
stay put.

Tierney and Mira (1999) prove that the DR strategy pro-
vides MCMC estimators with smaller asymptotic variance
than standard MH. This better performance holds no mat-
ter what is the function f whose expectation relative to the
target posterior we want to estimate (provided f is squared
integrable with respect to the target). The performance of
the approach has to be evaluated by weighting the improved
asymptotic variance against the increased computational cost
of the delayed rejection approach.

5 Approximate exchange algorithm with delayed
rejection (AEA + DR)

The idea is to combine the DR strategy with the approximate
exchange algorithm. We name this new algorithm the AEA
+ DR and different instances of it will be specified in subse-
quent sections depending of the (adaptive) proposal distrib-

ution used. For the AEA + DR algorithm a theoretical modi-
fication of the i-th stage acceptance probability is needed to
take into account the fact that the target normalising constant
depends on the parameter of interest. This is a novel method-
ological contribution that gives rise to an efficient MCMC
sampler that can be used in general for doubly intractable
problems. Efficiency is measure by the asymptotic variance
of the resulting estimators. Indeed the AEA + DR domi-
nates, in the Peskun sense (Peskun 1973), the original AEA
in that the probability of moving away from the current posi-
tion is higher. Indeed, the intuition behind Peskun ordering is
that, every time a Markov chain, used for MCMC purposes,
retains the same position, it fails to explore the state space
and the autocorrelation along its path increases, leading to a
larger asymptotic variance of the sample path ergodic aver-
ages (the MCMC estimators). In a Metropolis–Hastings type
algorithm the Markov chain stays put every time a candidate
move is rejected. Thus, upon rejection, instead of advancing
simulation time and retaining the same position, a second
stage move is proposed. This attempt, by itself, increases
the probability of moving away from the current position
and thus the resulting AEA+DR algorithm achieves higher
efficiency as measured by the effective sample size. Since
the mechanism of delaying rejection is time consuming, a
fair comparison should be made taking simulation time into
account and thus considering the performance defined as ESS
divided by simulation time.

The first stage acceptance probability is unchanged rela-
tive to the standard AEA, and (recalling (5)) is given by:

α1(θ, θ1) = 1 ∧ q(y|θ1) p(θ1) h1(θ |θ1) q(y1|θ)

q(y|θ) p(θ) h1(θ1|θ) q(y1|θ1)
(12)

The second stage acceptance probability that preserves the
detailed balance condition is:

α2(θ, θ1, θ2)

= 1 ∧ q(y|θ2) p(θ2) h1(θ1|θ2) h2(θ |θ2, θ1) q(y2|θ) [1−]

q(y|θ) p(θ) h1(θ1|θ) h2(θ2|θ, θ1) q(y2|θ2) [1 − α1(θ, θ1)]

(13)

where y2 are auxiliary data generated from the distribution
p(·|θ2) which is the same likelihood distribution from which
the observed data y are assumed to have been sampled from.
Higher stage acceptance probabilities are modified accord-
ingly. The second stage proposal of the delayed rejection ver-
sion of the adaptive direction sampler (named ADS + DR) is
designed to be negatively correlated with the first stage pro-
posal following the idea of antithetic second stage suggested
in Bédard et al. (2010).
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6 Adaptive approximate exchange algorithm (AAEA)

Three forms of adaptation of the Metropolis–Hastings pro-
posal distribution (alternative to the ADS-AEA) are consid-
ered: vertical, horizontal and rectangular. At simulation time
t there is a rectangular t × H family of particles available:
θi, j , i = 1, . . . , t; j = 1, . . . , H . Suppose we are interested
in updating the position of particle θt,h (in the previous for-
mulas this particle was simply indicated as θ with no sub-
scripts). To this aim a random walk Metropolis–Hastings
proposal is designed by taking a Gaussian distribution with
mean equal to θt,h and variance-covariance matrix, given by
the empirical variance (multiplied by 2.382/d where d is the
model dimension, following Roberts and Rosenthal (2009))
of either:

AAEA-1 all past particles along the same chain h (vertical
adaptation): θi,h, i = 1, . . . , t − 1;

AAEA-2 all particles at the current time t for all chains (hor-
izontal adaptation): θt,i , i = 1, . . . , H ;

AAEA-3 particles from all chains and all past simulations
(rectangular adaptation, aka inter-chain adaptation
from Craiu et al. 2009) : θi, j , i = 1, . . . , t −1; j =
1, . . . , H .

The sample covariance matrix used in AAEA-1 and
AAEA-3 is computed recursively following the Eq. (3) in
Haario et al. (2001). Roberts and Rosenthal (2007) provide
two conditions (“Containment” and “Diminishing Adap-
tation”) that guarantee that a generic adaptive MCMC is
ergodic with respect to the proper stationary distribution.
In order to meet these conditions we follow the algorithm
suggested in Roberts and Rosenthal (2007) that, with a
small probability β (set equal to 0.01 in our simulation
study), instead of using the adaptive proposal described
above, uses the following static proposal: Normal distri-
bution with variance-covariance matrix equal to 0.0025Id

where Id is the identity matrix of size d, the model
dimension.

We note that, when designing adaptive algorithms, it
is usually not difficult to ensure directly that “Diminish-
ing Adaptation” holds, since adaption is user controlled
one can always adapt less and less as the algorithm pro-
ceeds. However, “Containment” is a technical condition that
avoids “escape to infinity”. It always holds, for example,
if the target has sub-exponential tails, or if the state space
is finite or compact. The latter requirement is easily met
by using a prior with compact support which is more than
justified in the context of ERGM given the interpretation
of the parameters. The “Containment” condition, in gen-
eral settings, may be more challenging to check. A careful
review of sufficient conditions that ensure it can be found
in Bai et al. (2009). We note that the horizontal adapta-

tion scheme described above does not destroy the Markov-
ian property since the covariance matrix is updated only
based on information available at the current simulation
time.

More sophisticated forms of MCMC adaptive strategies
could be used in the context of doubly intractable targets.
We have not explored them further since, in the context of
ERGMs, the adaptation procedures used, despite being sim-
ple are quite effective. We refer the interested reader to the
tutorial by Andrieu and Thoms (2008) for a general frame-
work of stochastic approximation which allows one to sys-
tematically optimise generally used criteria for designing
adaptive MCMC algorithms, such as targeting a user speci-
fied acceptance probability.

As also discussed in Craiu et al. (2009), a question of inter-
est in adaptive MCMC is whether one should wait a short or a
long time before starting the adaptation. Based on our simu-
lation experience we found that the most effective strategy is
to use the ADS approach during the burn-in phase and then
switch to one of the adaptive algorithm mentioned above.
Furthermore, the simulation results presented use intensive
adaptation (Giordani and Kohn 2010) i.e. adaptation is per-
formed at every iteration.

We believe that more sophisticated forms of adaptations
such as regional or tempered adaptation (Craiu et al. 2009)
are not needed in our setting.

7 Adaptive approximate exchange algorithm with
delayed rejection (AAEA + DR)

The three adaptation schemes outlined in the previous sec-
tion could be combined within the DR mechanism. For
example at first stage horizontal adaptation can be used
since the resulting proposal is typically less computation-
ally intensive to obtain (because H is usually smaller than
t especially after the burn-in phase), at second stage we
can try vertical adaptation and resort to rectangular adap-
tation only at third stage. The intuition behind this combi-
nation is to use simple proposals first and resort to more
refined proposals (typically more computationally inten-
sive to construct, as rectangular adaptation) only if really
needed.

In the examples considered we follow a different rationale
when combining the adaptive approximate exchange algo-
rithm with the delayed rejection, namely, the second stage
proposal is equal to the first stage one with the variance-
covariance matrix rescaled by a factor of 0.5. In other words
a more timid move is attempted at second stage. This is a
very naïve form of delayed rejection but it is often quite
effective (see for example Green and Mira (2001); Haario et
al. (2006)).
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8 Examples

8.1 Introduction to the results

In this section we compare the adaptive direction sampler
(ADS-AEA) with three alternative forms of adaptation as
defined in Sect. 6.

For each one of the four adaptive algorithms considered
we have also implemented the corresponding two stage DR
version as explained in Sect. 5. For vertical, horizontal and
rectangular adaptation this is done by simply adding a second
stage proposal which is identical to the first stage one except
that the variance-covariance matrix is multiplied by 0.5.
For the DR version of the adaptive direction sampler, upon
rejection of the first stage candidate move θh

1 = θh +
γ1

(
θ

h1
1 − θ

h2
1

)
+ ε1, the second stage proposal is deter-

ministically obtained from the first one by simply going in
the opposite direction relative to the current position: θh

2 =
θh − γ1

(
θh1 − θh2

) + ε1 or, in other terms, θh
2 = 2θh

0 − θh
1 .

This strategy follows the idea of second stage antithetic pro-
posal which has been proved in (Bédard et al. 2010) to be
generally highly effective.

We thus have a total of eight different algorithms under
comparison. To our surprise the horizontal adaptation
approach AAEA-2 outperforms all other adaptive algorithms
(we were expecting rectangular adaptation to have a better
performance given that more particles are used to learn the
variance-covariance structure of the target distribution that
is then used in the random walk Metropolis–Hastings sam-
pler). The performance of the horizontal adaptive algorithms
is then further enhanced when combined with the delayed
rejection strategy.

The DR version of each algorithm is always better than
the corresponding single stage proposal in terms of ESS.
This simply confirms the fact that the DR dominates the cor-
responding single stage Metropolis–Hastings sampler in the
Peskun ordering i.e. in terms of asymptotic variance of the
resulting MCMC estimators (for a given number of sweeps).
If the additional simulation time of the DR is also taken into
account in the comparison (i.e. if we consider the ESS per
unit computational time), the DR still outperforms the corre-
sponding single stage proposal in all cases but for the adaptive
direction sampler (this is because the second stage proposal
of the adaptive direction sampler, ADS + DR, has a very
small acceptance probability due to the structure of the first
stage proposal and the antithetic move implemented at sec-
ond stage).

In the next three subsections we present three examples
of increasing complexity. The Florentine Marriage Network
has 16 nodes and the proposed ERGM has three parameters;
the Karate Club network has 34 nodes and three parameters;
while the Faux Mesa High School Network has 208 nodes

and nine parameters. We anticipate that, as the dimensions
and the complexity of the model increase, the efficiency of
the three proposed adaptive strategies with delayed rejection
(that turn out to be the winning strategies) becomes more
and more comparable in terms performance while, in terms
of ESS (a more neutral measure in that it is not affected by
coding ability), the best algorithm is rectangular adaptation
with delayed rejection.

Horizontal adaptation performs better because calculat-
ing the covariance of a small set of points is cheaper than
calculating the covariance matrix in vertical and rectangu-
lar adaptation where more points enter in the estimation of
the covariance. Indeed the CPU time needed to run the three
adaptation scheme follows, in general, this ordering CPU-
horizontal < CPY-vertical < CPU-rectangular and this is
because, when computing the variance-covariance matrix,
there and increasingly more particles entering the computa-
tion for vertical versus horizontal and for rectangular versus
vertical. Furthermore, the number of particles used in vertical
and rectangular adaptation increases with simulation length
while it is a static value (equal to the number of chains) for
horizontal adaptation. Of course the intuition is that more par-
ticles lead to a better estimate and thus more efficient sampler
resulting in larger ESS. There is thus a trade-off that leads
to a competitive advantage of horizontal adaptation in small
and simple models. This advantage washes out for larger and
more complex models.

Horizontal adaptation performs better for targets of small
dimension, because calculating the covariance matrix of a
small set of points turns out to be cheaper (in terms of CPU
time) than computing the covariance in vertical and rectan-
gular adaptation. There is, of course, an interplay between
the number of chains and the number of iterations used. In
horizontal adaptation, the number of chains has to be “large
enough” in order to have the population points spread about
the target distribution. As a rule of thumb, in horizontal adap-
tation, the number of chains should grow with the square of
the dimension of the target since we need to estimate its d
dimensional covariance matrix. Thus we conjecture that the
better performance of horizontal adaptation will wash out
as d grows (more network statistics) and the computational
complexity of the problem increases (more nodes), indeed
our simulation results agree with this intuition (see results in
the last example).

8.2 Florentine marriage network

Let us consider again the Florentine marriage network and
model defined in Eq. 7. We use a total number of 24,000 iter-
ations for estimating the posterior density and four different
approaches:

– ADS-AEA consists of six chains of 4,000 iterations each;
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Table 2 Florentine marriage network—Posterior parameter estimates
and effective sample size (ESS) for model 7

θ(1) (edges) θ(2) (2-stars) θ(3) (3-stars)

AAEA-2 (horizontal adaptation)

Post. mean −1.47 0.05 −0.06

Post. sd 1.86 0.69 0.36

AAEA-2+DR (horizontal adaptation + DR)

Post. mean −1.61 0.08 −0.06

Post. sd 1.55 0.53 0.25
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Fig. 3 Florentine marriage network. MCMC diagnostics for the overall
chain. The 2 plot columns are: estimated marginal posterior densities
(left), and autocorrelation plots (right)

– AAEA-1 (vertical adaptation) consists of six chains of
4,000 iterations each;

– AAEA-2 (horizontal adaptation) consisting of 24 chains
of 1,000 iterations each;

– AAEA-3 (rectangular adaptation) consisting of six chains
of 4,000 iterations each.

In Table 2 are displayed the posterior parameter estimates
and effective sample size calculated for the AAEA-2 and
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Fig. 4 Florentine marriage network—MCMC diagnostics for the
AAEA-2 + DR

AAEA-2 + DR which turned out to be the best approaches
in terms of performance. In particular the AAEA-2 + DR
yields a variance reduction of about 83 % compared to the
ADS-AEA.

In Fig. 3 it can be seen that the autocorrelations of the
parameter estimates returned by the ADS-AEA decay slower
than the autocorrelations of the AAEA-2 + DR displayed in
Fig. 4. The AAEA-2 algorithm outperforms the ADS-AEA
in terms of both ESS (20 %) and performance (20 %). The
AAEA-2 + DR outperforms the AAEA-2 in terms of ESS
of about 60 % and performance of about 15 % (Table 3).
Computing times can be calculated as ESS / Performance.

In Table 4 it is possible to observe the correlation matrix
between the parameters in the posterior distribution. There is
a very strong negative correlation between all the parameters
of the model.

8.3 Karate club network

This example concerns the karate club network (Zachary
1977) displayed in Fig. 5 which represents friendship rela-
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Table 3 Florentine marriage network—effective sample size (ESS) and
performance for each algorithm for model 7 based on 100 simulations

ADS-AEA AAEA-1 AAEA-2 AAEA-3

ESS 755 753 896 833

Performance
(per sec)

33 27 38 28

ADS-AEA
+ DR

AAEA-1
+ DR

AAEA-2
+ DR

AAEA-3
+ DR

ESS 771 1,478 1,385 1,201

Performance
(per sec)

33 33 41 34

Table 4 Florentine marriage network—Posterior correlation matrix
between the parameters in the distribution for model 7

θ(1) θ (2) θ (3)

θ (1) 1.00 −0.94 −0.80

θ(2) – 1.00 −0.94

θ(3) – − 1.00

tions between 34 members of a karate club at a US university
in the 1970.

We propose to estimate the following 3-dimensional
model using the network statistics proposed by Snijders et
al. (2006):

q(y|θ) = exp
{
θ(1)s1(y) + θ(2)v(y, φu) + θ(3)u(y, φv)

}

(14)

where

s1(y) =
∑

i< j
yi j number of edges

v(y, φv) = eφv
∑n−2

i=1

{
1 − (

1 − e−φv
)i

}
E Pi (y)

geometrically weighted edgewise shared partners

(GWESP)

u(y, φu) = eφu
∑n−1

i=1

{
1 − (

1 − e−φu
)i

}
Di (y)

geometrically weighted degrees (GWD)

where E Pi (y) and Di (y) are the edgewise shared partners
and degree distributions respectively. We set φu = φv =
log(2) so that the model is a non-curved ERGM (Hunter and
Handcock 2006). The prior setting is the same as the one in
Sect. 3.3: p(θ) = N (0, 100I3). The tuning parameters for
the ADS proposal are: γ = 0.9 and ε = N (0, 0.0025Id) so
that the overall acceptance rate is around 21 %. The auxiliary
chain consists of 100 iterations and a total number of 24,000
main iterations is used. The number of chains used in the

Fig. 5 Zachary karate club network graph

Table 5 Zachary karate club network—Posterior parameter estimates
for model 14

θ(1) (edges) θ(2) (gwesp) θ(3) (gwdegree)

ADS-AEA

Post. mean −3.51 0.74 1.18

Post. sd 0.62 0.21 1.12

AAEA-2+DR (horizontal adaptation + DR)

Post. mean −3.44 0.72 1.01

Post. sd 0.59 0.21 1.07

various strategies is the same as in the previous example in
Sect. 8.2.

In Table 5 are displayed the posterior parameter estimates
obtained using the ADS-AEA and AAEA-2 + DR. In this
example, as happened in the teenage friendship network
above, the AAEA-3 outperforms the AAEA-2 in terms of
variance reduction of about 40 % but not in terms of per-
formance. For this reason AAEA-2 is still to be preferred
(Fig. 6).

In Fig. 7 it can be seen that the autocorrelations of the
parameters for the AAEA-2 approach decay quicker than
the autocorrelations given by the other methods as shown in
Fig. 6. The AAEA-2 outperforms the ADS-AEA of about
12 % in terms of performance whereas the AAEA-2 + DR
makes a further improvement of about 20 % with respect to
the AAEA-2 + DR (see Table 6).

As in the Florentine marriage network example, we can
observe (Table 7) that there is a strong negative posterior
correlation between parameters θ(1) and θ(2) and between
θ(1) and θ(3).

Generally a strong correlation between parameters in
the posterior distribution hampers the behaviour of vanilla
MCMC schemes. In fact high posterior correlation can slow
down the motion of the chain towards equilibrium distribu-
tion. It is in this case that the adaptive approximate exchange
algorithm with delayed rejection (AAEA-2 + DR) gives the
best performance compared to the adaptive direction sam-
pling approximate exchange algorithm.
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Fig. 6 Zachary karate club network—MCMC diagnostics for the
ADS-AEA

8.4 Faux Mesa high school network

In this example we revisit a well known network dataset
(Fig. 8) in social science concerning friendship relations in
a school community of 203 students (Handcock et al. 2007).
The vertex attributes x that we are interested in are “grade”
(it takes values 7 through 12 indicating each student’s grade
in school) and “sex” of each student.

The main focus is on the factor attribute effects (which
give information about the tendency of a node with a specific
attribute to form an edge in the network) and on the transi-
tivity effect expressed by the GWESP and GWD statistics
defined in Sect. 8.3 with φu = φv = 1.

The model we propose to estimate is defined by the fol-
lowing nine network statistics:

s1(y) =
∑

i< j
yi j number of edges

s2(y, x) =
∑

i< j
yi j (1(gradei =8) + 1(grade j =8))

node factor for “grade” = 8

s3(y, x) =
∑

i< j
yi j (1(gradei =9) + 1(grade j =9))
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Fig. 7 Zachary karate club network—MCMC diagnostics for the
AAEA-2 + DR

Table 6 Zachary karate club network—effective sample size (ESS) and
performance for each algorithm for model 14 based on 100 simulations

ADS-AEA AAEA-1 AAEA-2 AAEA-3

ESS 840 724 605 776

Performance
(per sec)

21 23 23 22

ADS-AEA
+ DR

AAEA-1
+ DR

AAEA-2
+ DR

AAEA-3
+ DR

ESS 850 1,410 1,306 1,418

Performance
(per sec)

20 26 27 25

Table 7 Zachary karate club network—Posterior correlation matrix
between the parameters in the distribution for model 14

θ(1) θ (2) θ (3)

θ (1) 1.00 −0.80 −0.75

θ(2) – 1.00 0.37

θ(3) – – 1.00
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Fig. 8 Faux Mesa High School friendship network graph

node factor for “grade” = 9

s4(y, x) =
∑

i< j
yi j (1(gredei =10) + 1(grade j =10))

node factor for “grade” = 10

s5(y, x) =
∑

i< j
yi j (1(gradei =11) + 1(grade j =11))

node factor for “grade” = 11

s6(y, x) =
∑

i< j
yi j (1(gradei =12) + 1(grade j =12))

node factor for “grade” = 12

s7(y, x) =
∑

i< j
yi j (1(sexi =M) + 1(sex j =M))

node factor for “sex = male”

s8(y) = v(y, φv) GWESP

s9(y) = u(y, φu) GWD

where 1(·) is the indicator function.
The tuning parameters for the ADS proposal γ = 0.3 and

ε = N (0, 0.0025Id) are chosen so as to obtain the overall
acceptance rate is around 21 %. 5,000 auxiliary iterations are

used for network simulation and 60,000 main iterations are
used for estimating the posterior density of model defined
above:

– ADS-AEA consists of 20 chains of 3,000 iterations each;
– AAEA-1 (vertical adaptation) consists of 30 chains of

2,000 iterations each;
– AAEA-2 (horizontal adaptation) consists of 20 chains of

3,000 iterations each;
– AAEA-3 (rectangular adaptation) consists of 20 chains

of 3,000 iterations each.

In Table 8 are displayed the posterior parameter estimates
obtained using the ADS-AEA and AAEA-2 + DR. In Table 9,
the adaptive algorithms with delayed rejection outperform
the ADS-AEA in terms of both variance reduction and per-
formance. All the adaptive algorithms with delayed rejection
deliver the same results in terms of performance.

As in the previous examples, we can observe (Table 10)
that there is a strong negative posterior correlation between
parameters θ(1) and θ(8) and between θ(1) and θ(9).

From the results displayed in Table 8 we can conclude that
the network is very sparse (θ(1) negative) and that students
having the same gender seem to create friendship connections
(θ(7) negative). The transitivity effect expressed by θ(8) and
the popularity effect expressed by θ(9) are important features
of the network.

9 Conclusions

The exchange algorithm of Murray et al. (2006) makes
the computation of the MH acceptance probability feasi-
ble even for target distributions whose normalizing con-
stant depends on the parameter of interest (doubly intractable
problems).

The approximate exchange algorithm, due to Caimo and
Friel (2011), modifies the original exchange algorithm and
makes it applicable also in settings where sampling from the
assumed data generating process is not feasible. This is the
case for exponential random graphs the model we focus on
in this paper.

Table 8 Faux Mesa High
School network—Posterior
parameter estimates

θ(1) θ (2) θ (3) θ (4) θ (5) θ (6) θ (7) θ (8) θ (9)

ADS-AEA

Post. mean −5.53 −0.15 −0.09 −0.04 −0.12 0.20 −0.18 0.28 1.53

Post. sd 0.33 0.15 0.17 0.21 0.18 0.23 0.12 0.25 0.12

AAEA-2 + DR (horizontal adaptation + DR)

Post. mean −5.48 −0.14 −0.09 −0.04 −0.11 0.19 −0.17 0.27 1.52

Post. sd 0.30 0.12 0.13 0.19 0.16 0.20 0.10 0.23 0.11
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Table 9 Faux Mesa High
School network—ESS and
performance for each algorithm
based on 10 simulations

ADS-AEA AAEA-1 AAEA-2 AAEA-3

ESS 667 1,041 1,008 1,094

Performance (per sec) 1.8 2.3 2.1 2.2

ADS-AEA+DR AAEA-1 + DR AAEA-2 + DR AAEA-3 + DR

ESS 873 1,376 1,320 1,440

Performance (per sec) 1.4 2.6 2.6 2.6

Table 10 Faux Mesa High School network—Posterior correlation matrix between the parameters

θ(1) θ (2) θ (3) θ (4) θ (5) θ (6) θ (7) θ (8) θ (9)

θ (1) 1.00 −0.04 −0.08 0.08 −0.18 −0.25 −0.16 −0.83 −0.80

θ(2) − 1.00 0.32 0.34 0.13 0.17 −0.10 −0.20 −0.13

θ(3) − − 1.00 0.23 0.15 0.23 −0.08 −0.21 −0.05

θ(4) − − − 1.00 −0.04 0.24 −0.13 −0.25 −0.17

θ(5) − − − − 1.00 0.05 −0.07 0.04 0.07

θ(6) − − − − − 1.00 0.03 0.01 0.08

θ(7) − − − − − − 1.00 −0.07 −0.08

θ(8) − − − − − − − 1.00 0.73

θ(9) − − − − − − − − 1.00

The delayed rejection strategy allows to locally adapt the
proposal distribution within each sweep of a MH algorithm
at the cost of additional computational time.

The adaptive random walk proposal of Haario et al. (2001)
revised by Roberts and Rosenthal (2009) allows for global
adaptation between MH iterations. This learning from the
past process is also expensive from a computational point of
view.

These three ingredients are combined in different ways
within the approximate exchange algorithm (AEA) to avoid
the computation of intractable normalising constant that
appears in exponential random graph models. This gives
rise to the AEA + DR: a new methodology to sample dou-
bly intractable target distributions which achieves variance
reduction relative to the adaptive direction sampling approx-
imate exchange algorithm of Caimo and Friel (2011) imple-
mented in the Bergm package for R (Caimo and Friel 2014),
which is our benchmark.

The 8 algorithms under comparison (seven of which are
original contributions) are tested on three examples. Consis-
tently, the best combination (in terms of ESS for fixed simu-
lation time), is given by the horizontal adaptive approximate
exchange algorithm with delayed rejection, which achieves a
variance reduction that varies between 55 and 98 % (relative
to the benchmark).

This translates into a better performance varying from 25
to 40 %, if the extra simulation time, due to the delayed
rejection mechanism and the adaptation procedure, is taken

into account. The strongest improvements are obtained in the
examples with highly correlated posterior distributions.

The applicability of the proposed methodology goes
beyond the social network context as it works for any doubly
intractable target.

The delayed rejection strategy and the form of adaptation
proposed in the present paper have been implemented in the
Bergm package.
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