247 research outputs found

    Skalabilna implementacija dekodera po normi MPEG korištenjem tokovnog programskog jezika

    Get PDF
    In this paper, we describe a scalable and portable parallelized implementation of a MPEG decoder using a streaming computation paradigm, tailored to new generations of multi--core systems. A novel, hybrid approach towards parallelization of both new and legacy applications is described, where only data--intensive and performance--critical parts are implemented in the streaming domain. An architecture--independent \u27StreamIt\u27 language is used for design, optimization and implementation of parallelized segments, while the developed \u27StreamGate\u27 interface provides a communication mechanism between the implementation domains. The proposed hybrid approach was employed in re--factoring of a reference MPEG video decoder implementation; identifying the most performance--critical segments and re-implementing them in \u27StreamIt\u27 language, with \u27StreamGate\u27 interface as a communication mechanism between the host and streaming kernel. We evaluated the scalability of the decoder with respect to the number of cores, video frame formats, sizes and decomposition. Decoder performance was examined in the presence of different processor load configurations and with respect to the number of simultaneously processed frames.U ovom radu opisujemo skalabilnu i prenosivu implementaciju dekodera po normi MPEG ostvarenu korištenjem paradigme tokovnog računarstva, prilagođenu novim generacijama višejezgrenih računala. Opisan je novi, hibridni pristup paralelizaciji novih ili postojećih aplikacija, gdje se samo podatkovno intenzivni i računski zahtjevni dijelovi implementiraju u tokovnoj domeni. Arhitekturno neovisni jezik StreamIt koristi se za oblikovanje, optimiranje i izvedbu paraleliziranih segmenata aplikacije, dok razvijeno sučelje \u27StreamGate\u27 omogućava komunikaciju između domena implementacije. Predloženi hibridni pristup razvoju paraleliziranih aplikacija iskorišten je u preoblikovanju referentnog dekodera video zapisa po normi MPEG; identificirani su računski zahtjevni segmenti aplikacije i ponovno implementirani u jeziku StreamIt, sa sučeljem \u27StreamGate\u27 kao poveznicom između slijedne i tokovne domene. Ispitivana su svojstva skalabilnosti s obzirom na ciljani broj jezgri, format video zapisa i veličinu okvira te dekompoziciju ulaznih podataka. Svojstva dekodera  su praćena u prisustvu različitih opterećenja ispitnog računala, i s obzirom na broj istovremeno obrađivanih okvira

    Efficient Parallel Video Encoding on Heterogeneous Systems

    Get PDF
    Proceedings of: First International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2014). Porto (Portugal), August 27-28, 2014.In this study we propose an efficient method for collaborative H.264/AVC inter-loop encoding in heterogeneous CPU+GPU systems. This method relies on specifically developed extensive library of highly optimized parallel algorithms for both CPU and GPU architectures, and all inter-loop modules. In order to minimize the overall encoding time, this method integrates adaptive load balancing for the most computationally intensive, inter-prediction modules, which is based on dynamically built functional performance models of heterogenous devices and inter-loop modules. The proposed method also introduces efficient communication-aware techniques, which maximize data reusing, and decrease the overhead of expensive data transfers in collaborative video encoding. The experimental results show that the proposed method is able of achieving real-time video encoding for very demanding video coding parameters, i.e., full HD video format, 64×64 pixels search area and the exhaustive motion estimation.This work was supported by national funds through FCT – Fundação para a Ciência e a Tecnologia, under projects PEst-OE/EEI/LA0021/2013, PTDC/EEI-ELC/3152/2012 and PTDC/EEA-ELC/117329/2010

    Parallel scalability of video decoders

    No full text
    An important question is whether emerging and future applications exhibit sufficient parallelism, in particular thread-level parallelism, to exploit the large numbers of cores future chip multiprocessors (CMPs) are expected to contain. As a case study we investigate the parallelism available in video decoders, an important application domain now and in the future. Specifically, we analyze the parallel scalability of the H.264 decoding process. First we discuss the data structures and dependencies of H.264 and show what types of parallelism it allows to be exploited. We also show that previously proposed parallelization strategies such as slice-level, frame-level, and intra-frame macroblock (MB) level parallelism, are not sufficiently scalable. Based on the observation that inter-frame dependencies have a limited spatial range we propose a new parallelization strategy, called Dynamic 3D-Wave. It allows certain MBs of consecutive frames to be decoded in parallel. Using this new strategy we analyze the limits to the available MB-level parallelism in H.264. Using real movie sequences we find a maximum MB parallelism ranging from 4000 to 7000. We also perform a case study to assess the practical value and possibilities of a highly parallelized H.264 application. The results show that H.264 exhibits sufficient parallelism to efficiently exploit the capabilities of future manycore CMPs.Peer ReviewedPostprint (published version

    Scheduling task dependence graphs with variable task execution times onto heterogeneous multiprocessors

    Get PDF
    ABSTRACT We present a statistical optimization approach for scheduling a task dependence graph with variable task execution times onto a heterogeneous multiprocessor system. Scheduling methods in the presence of variations typically rely on worst-case timing estimates for hard real-time applications, or average-case analysis for other applications. However, a large class of soft real-time applications require only statistical guarantees on latency and throughput. We present a general statistical model that captures the probability distributions of task execution times as well as the correlations of execution times of different tasks. We use a Monte Carlo based technique to perform makespan analysis of different schedules based on this model. This approach can be used to analyze the variability present in a variety of soft real-time applications, including a H.264 video processing application. We present two scheduling algorithms based on statistical makespan analysis. The first is a heuristic based on a critical path analysis of the task dependence graph. The other is a simulated annealing algorithm using incremental timing analysis. Both algorithms take as input the required statistical guarantee, and can thus be easily re-used for different required guarantees. We show that optimization methods based on statistical analysis show a 25-30% improvement in makespan over methods based on static worst-case analysis

    Motion estimation for H.264/AVC on multiple GPUs using NVIDIA CUDA

    Get PDF
    To achieve the high coding efficiency the H.264/AVC standard offers, the encoding process quickly becomes computationally demanding. One of the most intensive encoding phases is motion estimation. Even modern CPUs struggle to process high-definition video sequences in real-time. While personal computers are typically equipped with powerful Graphics Processing Units (GPUs) to accelerate graphics operations, these GPUs lie dormant when encoding a video sequence. Furthermore, recent developments show more and more computer configurations come with multiple GPUs. However, no existing GPU-enabled motion estimation architectures target multiple GPUs. In addition, these architectures provide no early-out behavior nor can they enforce a specific processing order. We developed a motion search architecture, capable of executing motion estimation and partitioning for an H.264/AVC sequence entirely on the GPU using the NVIDIA CUDA (Compute Unified Device Architecture) platform. This paper describes our architecture and presents a novel job scheduling system we designed, making it possible to control the GPU in a flexible way. This job scheduling system can enforce real-time demands of the video encoder by prioritizing calculations and providing an early-out mode. Furthermore, the job scheduling system allows the use of multiple GPUs in one computer system and efficient load balancing of the motion search over these GPUs. This paper focuses on the execution speed of the novel job scheduling system on both single and multi-GPU systems. Initial results show that real-time full motion search of 720p high-definition content is possible with a 32 by 32 search window running on a system with four GPUs

    Parallel deblocking filtering in MPEG-4 AVC/H.264 on massively parallel architectures

    Get PDF
    The deblocking filter in the MPEG-4 AVC/H.264 standard is computationally complex because of its high content adaptivity, resulting in a significant number of data dependencies. These data dependencies interfere with parallel filtering of multiple macroblocks (MBs) on massively parallel architectures. In this letter, we introduce a novel MB partitioning scheme for concurrent deblocking in the MPEG-4 AVC/H. 264 standard, based on our idea of deblocking filter independency, a corrected version of the limited error propagation effect proposed in the letter. Our proposed scheme enables concurrent MB deblocking of luma samples with limited synchronization effort, independently of slice configuration, and is compliant with the MPEG-4 H.264/AVC standard. We implemented the method on the massively parallel architecture of the graphics processing unit (GPU). Experimental results show that our GPU implementation achieves faster-than real-time deblocking at 1309 frames per second for 1080p video pictures. Both software-based deblocking filters and state-of-the-art GPU-enabled algorithms are outperformed in terms of speed by factors up to 10.2 and 19.5, respectively, for 1080p video pictures
    corecore