
4205 1

Parallel Deblocking Filtering in MPEG-4
AVC/H.264 on Massively-Parallel Architectures

Bart Pieters, Charles-Frederik J. Hollemeersch, Jan De Cock, Member, IEEE, Peter Lambert, Member, IEEE,
Wesley De Neve, and Rik Van de Walle, Member, IEEE.

Abstract—The deblocking filter in the MPEG-4 AVC/H.264
standard is computationally complex because of its high content
adaptivity, resulting in a significant number of data dependencies.
These data dependencies interfere with parallel filtering of
multiple macroblocks on massively-parallel architectures. In this
paper, we introduce a novel macroblock partitioning scheme
for concurrent deblocking in the MPEG-4 AVC/H.264 standard,
based on our idea of Deblocking Filter Independency, a corrected
version of the Limited Error Propagation Effect proposed in
the literature. Our proposed scheme enables concurrent mac-
roblock deblocking of luma samples with limited synchronization
effort, independently of slice configuration, and is compliant
with the MPEG-4 H.264/AVC standard. We implemented the
method on the massively-parallel architecture of the Graphics
Processing Unit (GPU). Experimental results show that our GPU
implementation achieves faster-than real-time deblocking at 1309
frames per second for 1080p video pictures. Both software-based
deblocking filters and state-of-the-art GPU-enabled algorithms
are outperformed in terms of speed by factors up to 10.2 and
19.5 respectively for 1080p video pictures.

Index Terms—deblocking, GPU, MPEG-4 AVC/H.264, in-loop
filtering, massively-parallel

I. INTRODUCTION

THE in-loop deblocking filter in the MPEG-4 AVC/H.264
video coding standard [1] is designed to reduce blocking

artifacts caused by quantization. The filter is highly content-
adaptive, resulting in increased filter efficiency, but also in
increased computational complexity [2]. This computational
complexity is mainly due to the conditional processing of
block edges and the interdependencies of successive filtering
steps. Edge filtering modifies samples by complex filters using
up to five taps. These can occur over slice and macroblock
boundaries, introducing dependencies between filtered edges
which interfere with parallel execution. Therefore, most de-
blocking algorithms proposed in the literature are aimed at
pipelined [3] or serial [4]–[6] processing of macroblocks.

Manuscript received March 16, 2010; revised May 20, 2010. Accepted for
publication July 24, 2010.

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

The research in this paper was funded by Ghent University, the IBBT, the
IWT, FWO-Flanders, BFSPO, and the European Union.

All authors but Wesley De Neve are with Multimedia Lab, ELIS,
Ghent University — IBBT, Belgium (e-mail: Bart.Pieters, CharlesFred-
erik.Hollemeersch, Jan.DeCock, Peter.Lambert, Rik.VandeWalle@ugent.be).
Wesley De Neve is with the Image and Video Systems Lab, Department of
Electrical Engineering, Korea Advanced Institute of Science and Technology
(KAIST), Republic of Korea (e-mail: Wesley.DeNeve@kaist.ac.kr).

In this paper, a novel parallel processing algorithm for
the deblocking filter in MPEG-4 AVC/H.264 is presented,
facilitating concurrent filtering of the luma component of mac-
roblocks on the massively-parallel architecture of the GPU,
while staying compliant with the standard. Specifically, we
propose a newly discovered macroblock independency that
is denoted as Deblocking Filter Independency (DFI). It is
based on our corrected and improved version of the Limited
Error Propagation Effect introduced by Wang et al. in [8]. By
removing the inaccuracies for intra-coded slices that caused
lossy filtering by Wang et al., correct filtering results according
to the MPEG-4 AVC/H.264 standard can be achieved. Next, a
novel macroblock partitioning scheme is presented making use
of our idea of DFI, enabling parallel processing at macroblock
level with limited synchronization and no recalculation over-
head. The proposed scheme is implemented on the massively-
parallel architecture of the GPU using the NVIDIA CUDA
platform [7] and is evaluated.

The remainder of this paper is organized as follows. Sec-
tion II briefly describes the in-loop deblocking filter as de-
fined in the MPEG-4 AVC/H.264 standard and approaches to
parallel deblocking in the literature are analyzed. Section III
proposes the DFI while Section IV introduces our novel
macroblock partitioning scheme to enable concurrent filtering
using the DFI. Section V subsequently shows the experimental
results of our implementation and a number of comparisons
and is followed by our conclusions in Section VI.

II. DEBLOCKING FILTERING IN THE MPEG-4 AVC/H.264
DESIGN AND RELATED WORK

With the in-loop deblocking filter, each macroblock is
filtered in raster-scan order with optional filtering over slice
boundaries. The edge filtering order for the luma component
in the current macroblock is shown in Fig. 1, starting with fil-
tering four vertical edges, followed by filtering four horizontal
edges. The evaluation of each filter for the luma component
may require up to four samples (p0−3, q0−3), whereas each
filter may update up to three samples (p0−2, q0−2) on both
sides of an edge. This makes the deblocking filter an in-place
filter as the filtered sample values are used in the filtering of the
next edge. All of the edges in Fig. 1 are conditionally filtered
based on a Boundary-Strength (BS) parameter and the sample
gradient across the boundary. The BS parameter is calculated
using information about quantization parameters (QPs), coded
residuals, motion vectors, and reference frames of the current
and adjacent blocks. In case of intra coding, the BS parameter

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55713521?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


4205 2

16

1 2 3 4

16

p3 p2 p1 p0 q0 q1 q2 q3

(a)

6

5

8

7

p3

p2

p1

p0

q0

q1

q2

q3

(b)

Fig. 1. Filtering of luma macroblock edges. (a): horizontal filtering
of vertical edges, (b): vertical filtering of horizontal edges.

can be equal to 4 at macroblock edges, indicating the use of a
strong filter that filters four samples (p0−3 and q0−3 ) at each
side of a macroblock edge. The resulting three samples p0−2
and q0−2 are written back at their side of the edge. When the
BS parameter is equal to 3, 2, or 1, the normal filter is selected
reading three samples at each side of the edge, p0−2 and q0−2,
and filtering samples p0−1 and q0−1. Two additional threshold
functions are used to determine whether each set of samples
from both sides of the edge need filtering. These functions are
dependent on the QP and offset values conveyed within the
slice header as well as samples p0−1 and q0−1. Finally, when
the BS parameter is equal to 0, the edge is not filtered.

As stated in the literature [4]–[6], [11], both BS parameter
calculations and chroma edge filtering can be executed in
parallel on a macroblock basis because of limited interde-
pendencies. Luma deblocking however shows a high number
of interdependencies between filtered luma samples: filtered
samples are used in subsequent filtering steps and filtering also
occurs across macroblock and slice boundaries. Therefore, sev-
eral techniques for deblocking rely on sequential calculations
[4]–[6]. Conventional parallel approaches involve parallel pro-
cessing of rows or columns of samples in a macroblock, either
with a pipelined design [3] or without a pipelined design [4],
[11], [12]. As macroblocks measure 16 by 16 luma samples,
a maximum of 16 sample rows or columns can be processed
concurrently. One suggested method to increase parallelism
is the use of wavefront techniques [4], [11], [12]. However,
only a limited amount of parallel processing is possible as
the number of macroblocks per wave vary. Additionally, these
techniques require a high number of synchronization points,
i.e. one per wave. On many massively-parallel architectures,
the overhead associated with a synchronization point decreases
the performance gain benefit from parallel processing.

Wang et al. [8] have shown that not all samples of a given
macroblock are dependent on previously-filtered samples. As
previously stated, the strong filter may alter three samples at
each side of macroblock edge S: pS2 , pS1 , pS0 , and qS2 , qS1 , qS0
as illustrated in Fig. 2. The next normal filter is dependent
on these filtered samples, however, only partially. The last
filtered sample qN1 is only dependent on qS3 of the previously-
filtered edge. This sample is unaffected by the strong filter
and therefore an original unfiltered sample. Further, the result
of the next normal filter only depends on sample qN1 , the
filtered sample independent of the strong filter. Consequently,
this implies that all samples starting from qN1 are supposed to
be independent of the previously-filtered macroblock. Wang

et al. suggest a parallel technique based on this finding.
Specifically, they propose to divide a video picture in a
number of rectangular parts, either horizontally or vertically,
in which macroblocks are processed in raster-scan order. Left
or top edges of a part are filtered incorrectly because of
macroblock sample interdependencies, introducing an error.
However, this error propagates only for a limited amount of
samples because of the observed limited dependencies. Wang
et al. call this the Limited Error Propagation Effect. After
processing all rectangular parts, the left and top edges of the
parts are recalculated using the correctly filtered samples from
the adjacent part, thus correcting the previously-introduced
errors. With this technique, synchronization is minimized but
concurrency is not maximized.

III. PROPOSED DEBLOCKING FILTER INDEPENDENCY

Wang et al. introduced the notion of Limited Error Propaga-
tion in [8]. The authors however ignore the fact that filtering of
the second block edge only occurs when the threshold function
using p0 and p1 is true as shown in Fig. 2 and as described
in the standard. These sample values, here pN1 and pN0 , make
qN1 dependent on pN0 and pN1 . As pN1 is the previously-filtered
value qS2 , the sample qN1 , claimed independently filtered is still
dependent on the filtered results by the strong filter. Further
examining qS2 , we see that the value of this sample is calculated
using samples as far as p0 of the strong filter (column p′ in
Fig. 2), a sample filtered in the previous macroblock. This
implies that the sample claimed independently filtered, is
actually dependent on previously-filtered macroblock samples.
When the normal filter is used to process the macroblock
edge instead of the strong filter, qS2 is unaffected by the filter.
Therefore, pN0 and pN1 can be evaluated using unfiltered values
and the decision of filtering the second block edge can be made
correctly. Consequently, this observed dependency makes it
impossible to filter samples of column f to n in Fig. 2 in
parallel over different macroblocks when the strong filter is
used. Therefore, the method proposed by Wang et al. does
not provide correct results when deblocking video picture
rectangles in parallel. We simulated results of the method of
Wang et al. showing errors introduced in columns f -i causing
errors in the decoded output. This shows that the method of
Wang et al. is not compliant with the standard.

We propose a necessary modification of the idea of Limited
Error Propagation to enable correct filtering on parallel archi-
tectures according to the MPEG-4 AVC/H.264 standard. This
modification is based on what we call the Deblocking Filter
Independency (DFI), which is also visualized in Fig. 2. When
the third block edge between column h and i is investigated,
we notice that for this edge the decision to filter the edge can
be evaluated without additional dependencies. This is because
the pM0 and pM1 used are samples unaffected from the normal
filter executed on the second block edge. Whether qM1 is
filtered or not is independent from previously-filtered values
– qM1 only depends on unfiltered samples pM0 , qM0 , qM1 , and
qM2 . Therefore, all samples starting from qM1 , or column j can
be filtered independently on a macroblock basis.

Because the deblocking filter in MPEG-4 AVC/H.264 is a
two-dimensional filter, we studied the DFI in two directions,



4205 3

m' n' o' p' a b c d e f g h i j k l m

p3
S

p2
S

p1
S

p0
S

q0
S

q1
S

q2
S

q3
S

p2
N

p1
N

p0
N

q0
N

q1
N

q2
N

Strong filter

First normal filter

p2
M

p1
M

p0
M

q0
M

q2
M

q1
M

Second normal filter

|p1
N 

-
 
p0

N
| < β

|p1
M 

-
 
p0

M
| < β

n o p

Previous MB Current MB

Boundary S Boundary MBoundary N

Actual samples independently filtered using the proposed DFI

Filtered sample

Read sample

Sample calculation dependency

Edge filtering dependency

Samples independently filtered according to Wang et al.

Fig. 2. Limited Error Propagation Effect proposed by Wang et al.
and the proposed Deblocking Filter Independency.

MFP

16

16

(a)

16

16

(b)

Fig. 3. The DFI in two dimensions. Light-gray: vertical or horizontal,
dark-gray: vertical and horizontal, circled: definitive state. (a): DFI
within a macroblock; (b): after filtering of neighboring macroblocks.

shown in Fig. 3(a). In the figure, the bottom and right light-
gray areas represent samples independently filtered from the
adjacent upper and left macroblock respectively. The two areas
in Fig. 3(a) overlap. This overlapping part contains samples
where the filtering process can start independently from the
left and upper macroblock and can therefore be filtered for all
macroblocks in parallel. In this paper, these filtered parts of
a macroblock are called Macroblock Filter Partitions (MFPs).
Essentially, MFPs are spatial clusters of samples that after
macroblock-parallel filtering of their corresponding edges go
into the same filtered state as if filtered by the raster-scan
order algorithm at a given time. For a CIF video picture,
an MFP would consist out of 396 sample clusters, one for
each macroblock. However, only part of the MFP shown in
Fig. 3(a) contains definite correctly-filtered values. Indeed,
Fig. 3(b) shows the influence of filtering of the macroblock to
the right and bottom of the current macroblock when filtering
in raster-scan order. It is possible that a strong filter is used
for edge 1 (see Fig. 1) of the macroblock to the right and
for edge 5 of the macroblock to the bottom of the current
macroblock, effectively influencing part of the overlapped
area. The samples of the MFP that cannot be influenced are
therefore in their final filtering state, showed in Fig. 3(b)
circled. If macroblocks were to be filtered independently of
adjacent filtered macroblocks, only this small part of the MFP
would be filtered correctly. Therefore, in order to filter an
entire macroblock correctly, a specific processing order of
MFPs is required.

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

a b c d e f g h i j k l m n o p

MFP1:

vertical edges

a

(a)

a b c d e f g h i j k l m n o

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

p

MFP2: 

horizontal edges

(b)
a b c d e f g h i j k l m n o p

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

MFP3:

 horizontal edges

(c)

a b c d e f g h i j k l m n o

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

p

MFP4:

 vertical edges

(d)
a b c d e f g h i j k l m n o p

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

MFP5:

horizontal edges

(e)

a b c d e f g h i j k l m n o
a

b

c

d

e

f

g

h

i
j

k

l

m

n

o

p

MFP6:

 vertical edges

p

(f)
a b c d e f g h i j k l m n o p

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

MFP7:

horizontal edges

(g)

a b c d e f g h i j k l m n o p

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

MFP8:

horizontal edges

(h)

Fig. 4. Proposed macroblock partitioning over successive passes.
White: unfiltered samples, light-gray: previously-filtered samples,
dark-gray: filtered in current pass, circled: samples in their final state.

IV. PROPOSED MACROBLOCK PARTITIONING SCHEME FOR
MACROBLOCK-PARALLEL PROCESSING

By partitioning a macroblock, data-independent samples are
gathered together, forming an MFP. Samples of this MFP,
together with original unfiltered samples, can then act as the
basis for filtering of samples of the next MFP. When an MFP is
based on the filtered output of another MFP, a synchronization
point is introduced as processing of the previous MFP must
be finished for all macroblocks in the picture. MFPs of
subsequent steps are numbered, with MFPn based on original
unfiltered samples and samples of MFPm,m<n.

Fig. 4 shows the proposed partitioning scheme. The entire
video picture is divided into eight different MFPs, independent
of slice configuration. We call filtering of an MFP with a sub-
sequent synchronization point a pass. Each sub picture shows
the effect of a pass on a single macroblock of the video picture
after filtering the MFP. The effects of filtering of surrounding



4205 4

macroblocks in the same MFP on the current macroblock is
also indicated on each sub figure. We distinguish five types
of samples in Fig. 4: white, unfiltered samples; light-gray,
previously-filtered samples; dark-gray, samples filtered in the
current pass; circled, filtered samples in their final state.

Filtering starts with the first two passes, representing the
discussed case in Fig. 3. Vertical edges 3 (partially) and 4
are filtered in pass 1 (Fig. 4(a)) because of the DFI stating
that these columns are independent of previously-filtered mac-
roblocks. The filtered results (MFP1) are subsequently used for
the filtering of horizontal edges 7 and 8 in pass 2 (Fig. 4(b)),
again according to the DFI. As stated before, part of this MFP
already contains filtered samples in their final state, shown
circled in Fig. 4(b). In pass 3, samples in MFP3 are filtered
and written. Here, the top macroblock edge is possibly filtered
by the strong filter, influencing up to three rows (n, o, p) of
samples at the bottom of the macroblock above the macroblock
in question. This is shown by the three rows of influenced
samples at the bottom of Fig. 4(c). Note that part of row n is
filtered for the third time. This corresponds with the filtering
of column n′ in Fig. 2. The resulting filtered samples are found
correct and in their final state because the filtering of horizontal
edges in MFP3 only depends on correctly filtered samples
from MFP2 of the macroblock above. Note that filtering of the
bottom-left samples of the macroblock located to the top-right
of the current macroblock prohibits us to filter columns n, o,
and p. The next pass filters samples of vertical edges starting
from row j in MFP4 (Fig. 4(d)). The DFI states that these
samples can be filtered independently from the macroblock
above the current macroblock. Results of MFP4 depend on up
to four columns of samples from the macroblock to the left,
i.e. filtered results from MFP1-2. Next, the remaining horizontal
edges in columns n-p are filtered in pass 5 (Fig. 4(f)) as part
of MFP5, making it possible to filter vertical edges 1 to 3
in pass 6 (Fig. 4(f)). Now the process can be repeated again
for MFP7 (Fig. 4(g)) because of the DFI and the presence of
correctly-filtered samples for horizontal edges 7 and 8. Finally,
all remaining horizontal edge samples based on samples of
MFP7 can be filtered in pass 8 (Fig. 4(h)).

Looking at MFP2 and MFP3 of Fig. 4, it is clear that these
MFPs can be merged into one MFP as horizontal edges are
filtered from top to bottom. Likewise, MFP7 and MFP8 can
be merged. Hence our partitioning scheme allows an entire
video picture to be filtered using six synchronization points.
This way, parallel execution benefits outweigh synchronization
overhead. Concurrency over macroblocks is maximized as all
macroblocks in each MFP of the video picture can be filtered
in parallel, independent of slice configuration.

V. EXPERIMENTAL RESULTS AND DISCUSSION

We implemented our proposed macroblock-parallel de-
blocking algorithm next to the state-of-the-art wavefront al-
gorithm and a serial method on the massively-parallel ar-
chitecture of the GPU using the NVIDIA CUDA platform
(version 3.0b1). We compared the GPU implementations to
the highly-optimized CPU filter present in libavcodec [10].
Both luma and chroma component filtering was measured. For

the performance tests, progressive video sequences of different
resolutions were used with YUV4:2:0 sampling and for each
resolution, results for three video sequences were averaged.
Each video picture consisted of one or four intra-coded slices
using either a QP of 27 or 45. Performance tests were done
on a system running Windows 7, an AMD Q9950 CPU and
an NVIDIA 8800GTX (G80), GTX280 (G200), and GTX480
(GF100) graphics card. These cards have respectively 128,
240, and 480 Stream Processors (SPs). Output of the GPU-
enabled filters was compared to that of the reference decoder
and was found bit-accurate. Indeed, as mentioned before, the
proposed MB-parallel filter deblocks according to the MPEG-
4 AVC/H.264 specification and therefore introduces no error.

Three scenarios were simulated, i.e., a decoder scenario and
two encoder scenarios encoding video pictures using an I and
IPPP GOP structure. For the decoder scenario, scenario 1, the
bitstream is uploaded to the GPU, simulating decoding on the
GPU. As all information is resident in GPU memory, there
is no synchronization required between GPU and CPU. Our
measurements showed that GOP structure and QP have only
limited influence on processing speed for the GPU algorithms
because of the use of predicated execution instructions for
filtering. Therefore, we included results for the worst-case QP
and slice configuration for these algorithms. Table I compares
our proposed GPU algorithm to the GPU wavefront and serial
filtering method, showing the number of frames filtered per
second (frames per second; fps). It can be seen how our
proposed MB-parallel method outperforms both serial and
wavefront methods by a factor of 187.0 and 19.5 respectively
for 1080p on the GF100. Both serial and wavefront filters
show consistently low fps as they require a high number of
synchronization points and exploit limited parallelism. Our
algorithm minimizes synchronization points and maximizes
parallelism. The table clearly shows how performance scales
linearly with the amount of streaming processors for the
proposed MB-parallel method. For example, the GF100 (480
SPs) filters with a factor of 2.1 faster than the G200 (240 SPs)
for 1080p. This is not the case for small resolutions where
there are not enough edges available to be filtered on each SP.

Next, we discuss results for scenarios 2 and 3 in Table I
where an encoder compresses video pictures using an I and
IPPP GOP structure respectively. These scenarios require
information processed by the encoder, such as quantization
parameters, reconstructed picture, etc. to be uploaded in GPU
memory. The communication cost required to provide the GPU
with input data was included in the measurements, as well as
the time needed to download a deblocked picture to system
memory. In case of an I GOP structure, perfect pipelining of
GPU and CPU communications is possible as encoding of the
next frame can start before deblocking of the previous ends.
Starting from the G200, communication costs can be hidden by
kernel execution. Furthermore, GPU performance is limited by
the communication speed between GPU and system memory.
Our measurements show this to be true for the GF100, leaving
some of its streaming processors idle. Note that results for the
G200 for scenario 1 and 2 converge for high resolutions as
for these video sequences, kernel execution time outweighs
transfer speed. For an IPPP GOP structure, perfect pipelining



4205 5

TABLE I
EXPERIMENTAL RESULTS FOR CPU AND GPU IMPLEMENTATIONS, INCLUDING THE PROPOSED MB-PARALLEL APPROACH (IN FRAMES

PER SECOND) USING AN AMD Q9950 CPU AND GEFORCE 8800GTX (G80), GTX240 (G200), AND GTX480 (GF100) GPUS.

Scenario Resolution

CPU GPU
libavcodec Serial Wavefront Proposed MB-parallel

Single-Core Quad-Core G80 G200 GF100 G80 G200 GF100 G80 G200 GF100
QP27 QP45 QP27 QP45

1 CIF 2501 3096 5409 5335 90 92 143 133 173 509 1984 2892 4762
1 480p 615 815 2091 2472 24 25 42 44 93 261 948 2129 4403
1 720p 279 390 949 1167 10 10 15 24 55 147 596 1204 2632
1 1080p 76 81 258 275 4 4 7 10 35 67 267 637 1309
2 CIF 1591 1569 5409 5335 90 92 143 129 173 504 1567 2588 2811
2 480p 499 474 1697 1612 22 25 42 42 92 262 668 1531 2702
2 720p 185 178 618 587 8 10 15 23 55 146 332 1201 1599
2 1080p 76 75 254 248 4 4 7 9 35 66 154 622 762
3 CIF 2501 3096 8503 10012 89 92 141 129 168 491 1443 2375 2717
3 480p 615 815 2091 2472 22 24 42 42 89 260 600 1472 1748
3 720p 279 390 949 1167 8 10 14 22 52 133 310 724 860
3 1080p 76 81 258 275 4 4 7 9 33 66 138 351 412

is not possible and CPU and GPU must synchronize execution
causing the GPU to idle.

For scenarios 2 and 3, we compared the proposed MB-
parallel method with the highly-optimized deblocking imple-
mentation in libavcodec. The table shows our proposed method
to outperform all CPU-based methods for both scenarios for
high-definition resolutions. For example, the GF100 estab-
lishes a speedup factor of 10.2 for 1080p over a single CPU
core for scenario 2. For comparisons with a multi-core version
of libavcodec, we disabled deblocking over slice boundaries
and used video sequences with four slices. In scenario 2, our
method shows a speedup of 3.0 compared to four CPU cores.
The table shows how performance of the proposed algorithm
lowers from 762 fps in scenario 2 to 412 fps in scenario 3 for
1080p sequences as the transfer and synchronization overhead
has increased. Furthermore, as less filtering is used with inter-
coded slices, performance of the CPU filter increases from
248 to 259 fps, causing GPU and CPU speed to converge.
For small resolutions, the GPU method is outperformed as
there are no communication costs for the CPU method and
the filtered image fits entirely in the CPU cache. The MB-
parallel implementation outperforms the multi-core version for
the highest resolution with a speedup factor of 1.7.

VI. CONCLUSION

In this paper, we presented a novel parallel processing
algorithm for the deblocking filter in the MPEG-4 AVC/H.264
standard, enabling concurrent filtering of macroblocks. We
showed that the level of parallelism of state-of-the-art par-
allel deblocking algorithms is insufficient and the number of
synchronization points too high for use on massively-parallel
architectures. Therefore, a novel macroblock partitioning al-
gorithm was introduced, based on our corrected version of
the Limited Error Propagation Effect, that is compliant with
the MPEG-4 AVC/H.264 standard. It allows maximum parallel
processing concurrency for deblocking of video pictures on the
macroblock level, independent of slice configuration while re-
quiring only six synchronization points. The proposed parallel
technique was tested on the massively-parallel architecture of

the GPU and implemented using the NVIDIA CUDA platform.
Experimental results show that our deblocking method and its
implementation allow for faster than real-time deblocking at
1309 frames per second for 1080p video pictures on a GPU. In
particular, our implementation outperforms both an optimized
CPU-based filter and state-of-the-art parallel GPU methods in
terms of speed by a factor up to 10.2 and 19.5 respectively,
limited by the system bus communication overhead in today’s
computer systems.

REFERENCES

[1] Joint Video Team (JVT) of ITU-T and ISO/IEC JTC 1, “Advanced
Video Coding for Generic Audiovisual Services,” ITU-T Rec. H.264
and ISO/IEC 14496-10 (MPEG-4 AVC), Version 5, July 2007.

[2] P. List, A. Joch, J. Lainema, G. Bjøntegaard, and M. Karczewicz,
“Adaptive Deblocking Filter,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 13, no. 7, pp. 614–619, July 2003.

[3] K. Xu and C. Choy, “A Five-Stage Pipeline, 204 Cycles/MB, Single-Port
SRAM-Based Deblocking Filter for H.264/AVC,” IEEE Trans. Circuits
Syst. Video Technol., vol. 18, no. 3, pp. 363–374, March 2008.

[4] Z. Zhao and P. Liang, “Data Partition for Wavefront Parallelization of
H.264 Video Encoder,” in IEEE International Symposium on Circuits
and Systems, May 2006.

[5] J. Chong, N. Satish, B. Catanzaro, K. Ravindran, and K. Keutzer,
“Efficient Parallelization of H.264 Decoding with Macro Block Level
Scheduling,” in IEEE International Conference on Multimedia and Expo,
July 2007, pp. 1874–1877.

[6] G. Amit and A. Pinhas, “Real-Time H.264 Encoding by Thread-Level
Parallelism: Gains and Pitfalls.” in IASTED PDCS, September 2005, pp.
254–259.

[7] NVIDIA CUDA Compute Unified Device Architecture: Programming
Guide Version 2.0, NVIDIA Corporation, July 2008.

[8] S.-W. Wang, S.-S. Yang, H.-M. Chen, C.-L. Yang, and J.-L. Wu,
“A multi-core architecture based parallel framework for H.264/AVC
deblocking filters,” Signal Processing Systems, vol. 57, no. 2, pp. 195–
211, 2009.

[9] G. J. Sullivan and T. Wiegand, “Video Compression - From Concepts to
the H.264/AVC Standard,” Proc. the IEEE, Special Issue on Advances
in Video Coding and Delivery, vol. 93, no. 1, pp. 18–31, January 2005.

[10] libavcodec, Part of FFMPEG, version 1.0, July 2007. [Online].
Available: http://ffmpeg.mplayerhq.hu/

[11] J. C. A. Baeza, W. Chen, E. Christoffersen, D. Dinu, and B. Friemel,
“Real-Time High Definition H.264 Video Decode Using the Xbox 360
GPU,” in Proc. of SPIE: Applications of Digital Image Processing XXX,
vol. 6696, no. 1, 2007.

[12] F. H. Seitner, M. Bleyer, M. Gelautz, and R. M. Beuschel, “Evaluation of
data-parallel H.264 decoding approaches for strongly resource-restricted
architectures,” Multimedia Tools and Applications, pp. 1380–7501, 2009.


