
November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

Journal of Circuits, Systems, and Computers
c© World Scientific Publishing Company

VLSI IMPLEMENTATION OF WiMax CONVOLUTIONAL TURBO

CODE ENCODER AND DECODER

MAURIZIO MARTINA, MARIO NICOLA, GUIDO MASERA∗

Dipartimento di Elettronica, Politecnico di Torino, Corso Duca degli Abruzzi 24,

Torino I-10129, Italy

maurizio.martina@polito.it, mario.nicola@polito.it, guido.masera@polito.it

Received (Day Month Year)
Revised (Day Month Year)

Accepted (Day Month Year)

A VLSI encoder and decoder implementation for the IEEE 802.16 WiMax convolutional
turbo code is presented. Architectural choices employed to achieve high throughput,
while granting a limited occupation of resources, are addressed both for the encoder and
decoder side, including also the subblock interleaving and symbol selection functions
specified in the standard. The complete encoder and decoder architectures, implemented
on a 0.13 µm standard cell technology, sustain a decoded throughput of more than 90
Mb/s with a 200 MHz clock frequency. The encoder has the complexity of 9.2 kgate of

logic and 187.2 kbit of memory, whereas the complete decoder requires 167.7 kgate and
1163 kbit.

Keywords: VLSI architecture; Convolutional Turbo Code Encoder and Decoder; High
throughput parallel architecture

1. Introduction

Modern wireless communication standards are facing the growing demand for high

throughput imposed by nomadic fruition of multimedia services and applications.

However, harsh conditions of wireless channels impose to employ channel codes

to grant reliable data delivery. As a significant example, the IEEE 802.16 WiMax

standard for broadband wireless access 1 employs convolutional codes (CC) 2, block

turbo codes (BTC) 3, convolutional turbo codes (CTC) 4 and low density parity

check codes (LDPC) 5.

CTCs are among the most powerful error correcting codes, but the iterative

BCJR algorithm 6 required to decode these codes exhibits a high computational

complexity. As a consequence, when high throughput ought to be achieved, as in the

WiMax standard, dedicated hardware implementation (ASIC, Application Specific

∗This work is partially supported by the MEADOW (MEsh ADaptive hOme Wireless nets)
project, funded by the Italian government.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PORTO Publications Open Repository TOrino

https://core.ac.uk/display/11410632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

2 M. Martina, M. Nicola, G. Masera

Integrated Circuit) is mandatory. Even if several works address CTC implementa-

tion, it is still a major subject of interest in the scientific literature. In fact, modern

communication systems, such as 1, impose throughputs of many tens of Mb/s: con-

sequently, a clock frequency of several hundreds of MHz must be employed for the

decoder. Though current scaled CMOS technologies allow to reach clock frequencies

of several hundreds of MHz, such high clock frequencies can increase ASIC unrelia-

bility and nonrecurrent costs. Parallelization is an effective methodology to achieve

high throughputs while keeping low the clock frequency (few hundreds of MHz in

this case) 7. However, as pointed out in several works, e.g. 8, 9, 10, 11, 12, the design

of parallel CTC decoder architectures has to deal with the problem of collisions

in memory access. The collision problem is often exacerbated by the need for sup-

porting several block size values that imply multiple interleaving laws: in this case,

the parallel decoding architecture is requested to avoid, or at least limit, collisions

for all supported interleavers. As a significant example Almost regular permuta-

tions (ARP) are proposed in 10: these permutations are similar to those adopted in

WiMAX and enable the implementation of parallel interleaving architectures.

Since the DVB-RCS and WiMax standards employ double binary CTC 13, some

recent works address CTC double binary decoders implementation both as dedi-

cated solutions 14, 15, 16, 17 and programmable architectures 18, 19, 20.

The aim of this paper is twofold: i) to give general guidelines to design a com-

plete double binary CTC encoder and decoder VLSI architecture; ii) to detail the

VLSI architecture of all the blocks involved in the WiMax CTC, namely, as de-

picted in Fig. 1 1, CTC encoder, subblock interleaver and symbol selection, on the

transmitter side, and symbol deselection, subblock deinterleaver and CTC decoder

on the receiver side. The rest of the paper is structured as follows: in Section 2

the main CTC principles are briefly recalled. Section 3 details the proposed VLSI

architectures; in particular Section 3.1 deals with the CTC encoder, the subblock

interleaver and the symbol selection architectures, whereas Section 3.2 describes the

symbol deselection, the subblock deinterleaver and the CTC decoder architectures.

Finally in Section 4 guidelines to design a complete double binary CTC encoder

and decoder architecture are presented, the gate count and the amount of mem-

ory required by the different blocks are discussed and compared with other works

available in the literature; in Section 5 conclusions are drawn.

2. Theory of operation

The WiMax CTC encoder is based on the parallel concatenation of two 8-state, dou-

ble binary, circular recursive systematic CCs 1, where CC1 receives the information

symbols in natural order and CC2 receives the information symbols in a scrambled

order according to the interleaver Π. Each CC receives an information symbol u

made of a couple of bits (Ai, Bi) and produces two parity bits (Yi, Wi). Thus, a

CC coded symbol c is made of four bits (Ai, Bi, Yi, Wi), whereas a complete CTC

coded symbol is made of six bits (A, B, Y1, W1, Y2, W2), where index 1 represents

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

WiMax CTC VLSI Implementation 3

Code (CC)

Code (CC) symbol selection

symbol deselection

Constituent

2

k

s (e)

s (e)
e
u(e),c(e)S

E

Y
W

A

B

i

i

i

i
CCi

A subblock

B subblock

Y subblock1

Y subblock2

W subblock2

W subblock1

Constituent

1

SISO1

SISO2

subblock interleaver

subblock interleaver

subblock interleaver

subblock interleaver

subblock interleaver

subblock interleaver

W subblock2

A subblock

B subblock

Y subblock1

W subblock1

Y subblock2subblock interleaver

subblock interleaver

subblock interleaver

subblock interleaver

subblock interleaver

subblock interleaver

W

2

2

modulator
to

A

B

W

A

B

Y

A

B

Y 1

W1

Y

exex

ex

in

in exout

out
W

Π Π
−1

0
0

B
AA

B

Y

interleaver
CTC

(Π)

demodulator

from

Figure 1. WiMax CTC complete encoder and decoder chain.

the output of the in-order CC and 2 represents the output of the interleaved one.

Interleaved uncoded bits (A2, B2) are not sent. As a consequence, a frame made of

N couples of bits becomes a frame of 6N CTC coded bits. The 6N bits of the CTC

coded frame are scrambled and arranged as an array by the subblock interleaver.

Finally, the symbol selection allows to match the actual encoder rate to the channel

condition by sending: a proper slice out of the 6N bits (puncturing), all the 6N

bits (no puncturing), more than 6N bits (repetition).

At the decoder side the symbol deselection receives soft values produced by

the demodulator, usually in the form of log-likelihood ratios (LLRs) and arranges

them for the subblock deinterleaver. If the encoder performs puncturing, the symbol

deselection sets to zero the punctured LLRs, whereas if repetition is performed the

symbol deselection combines the multiple LLRs values to increase the information

reliability.

In the CTC decoder, the SISO (Soft In Soft Out) module executes the BCJR

algorithm, in its logarithmic form 21,22. Each SISO module receives the intrinsic

log-likelihood ratios (LLRs) of coded symbols c from the channel and outputs the

LLRs of information symbols u. The two SISO modules exchange extrinsic LLRs

(λk[u]) by means of interleaving memories Π and Π−1 (Fig. 1). The output extrinsic

LLRs of symbol u at the k-th step (λk[u;O]) are computed as:

λk[u;O] =
∗

max
e:u(e)=u

{b(e)} −
∗

max
e:u(e)=ũ

{b(e)} − λk[u; I] (1)

where ũ is an input symbol taken as a reference (usually ũ = 0), e represents a

certain transition on the trellis, u(e) is the uncoded symbol u associated to e and

b(e) is a transition metric detailed in the next paragraph. The
∗

max{xi} function

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

4 M. Martina, M. Nicola, G. Masera

21,23 is implemented as max{xi} followed by a correction term stored in a small

Look-Up-Table (LUT) 23; this solution is named Log-MAP. The correction term,

usually adopted when decoding binary codes, can be omitted for double binary

turbo codes 13 with minor error rate performance degradation. As a consequence,

in the following of this paper, we will refer to max{xi} instead of
∗

max{xi} (Max-

Log-MAP).

Since the double binary CTC works on couples of bits, each SISO produces three

extrinsic LLRs; thus, in general, the terms λk[u;O] and λk[u; I] are vectors. The

term b(e) in (1) is defined as:

b(e) = αk−1[s
S(e)] + γk[e] + βk[sE(e)] (2)

αk[s] = max
e:sE(e)=s

{

αk−1[s
S(e)] + γk[e]

}

(3)

βk[s] = max
e:sS(e)=s

{

βk+1[s
E(e)] + γk[e]

}

(4)

γk[e] = πk[u(e); I] + πk[c(e); I] (5)

where sS(e) and sE(e) are the starting and the ending states of e, αk[sS(e)] and

βk[sE(e)] are the forward and backward metrics associated to sS(e) and sE(e)

respectively 6 (see Fig. 1). The πk[c(e); I] term in (5) is computed as a weighted

sum of the λk[c; I] terms:

πk[c(e); I] =

nc
∑

i

ci(e)λk[ci(e); I] (6)

where ci(e) is one bit of the coded symbol associated to e and nc is the number of

bits forming a coded symbol. For a double binary CTC nc = 4, ci(e) ∈ {A,B, Y,W}

and the πk[u(e); I] terms are piece wise functions:

πk[u(e); I] =



















0 if u(e) = (‘0’, ‘0’)

λAB
k [u(e), I] if u(e) = (‘0’, ‘1’)

λAB
k [u(e), I] if u(e) = (‘1’, ‘0’)

λAB
k [u(e), I] if u(e) = (‘1’, ‘1’)

(7)

As suggested in 24, Max-Log-MAP performance can be improved by introducing a

scaling factor δ in the computation of λk[u;O].

λk[u;O] = δ

(

∗

max
e:u(e)=u

{b(e)} −
∗

max
e:u(e)=ũ

{b(e)} − λk[u; I]

)

+ (1 − δ)πk[cu(e); I] (8)

where

πk[cu(e); I] =



















0 if u(e) = (‘0’, ‘0’)

λABY W
k [c, I] if u(e) = (‘0’, ‘1’)

λABY W
k [c, I] if u(e) = (‘1’, ‘0’)

λABY W
k [c, I] + λABY W

k [c, I] if u(e) = (‘1’, ‘1’)

(9)

is the systematic contribution of the intrinsic information (channel LLRs). For

further details on the decoding algorithm, the reader can refer to 13 and 22.

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

WiMax CTC VLSI Implementation 5

3. Proposed Architecture

As stated in Section 1, the iterative nature of the CTC decoding algorithm makes

the CTC decoder the system bottleneck. In fact, even if the input data for SISO1 are

the output of SISO2 and viceversa, the CTC interleaver and deinterleaver scramble

the data order creating a data dependency in the processing of the two SISOs. As a

consequence, usually CTC VLSI architectures reuse the same hardware to perform

the two SISOs operations. Alternatively, shuffling has been proposed as an effective

method to introduce parallelism at the SISO level 25, 26.

In order to maximize the throughput, all the BCJR metric level parallelism

strategies 26 can be employed to simultaneously compute all the branch metrics

(BM) and all the state metrics (SM), namely the γk[e] and αk[s] or βk[s] values.

Thus, a step in the trellis is performed in a clock cycle. As a consequence, the number

of clock cycles required to complete the decoding of a WiMax frame made of N

couples of bits (corresponding to N trellis steps) can be estimated as D = 2(N +

SISOl)I, where SISOl is the SISO latency and 2I is the number of half iterations.

Given a certain clock frequency fclk, the CTC decoder throughput TCTC−D, defined

as the number of decoded bits over the time required to complete the decoding

process, for large values of N is approximately:

lim
N→∞

TCTC−D = lim
N→∞

2N · fclk

2I(N + SISOl)
=

fclk

I
(10)

Given the number of iterations required to obtain satisfactory performance (I ∈

[6, 10] as suggested in 17 and 22), we can evaluate the throughput TCTC−D as a

function of the clock frequency. As a significant example let us consider the WiMax

HUMAN(-OFDM) profile for 10 MHz channelization 1: in the worst case, the down-

link maximum throughput is T̂dl ≃65 Mb/s. Thus, a clock frequency of about 400

MHz is required when only six iterations are performed. In order to ease ASIC

backend design and to combat chip unreliability problems, the adoption of lower

frequency parallel architectures is usually preferred. As a case of study we consider

a target clock frequency fclk = 200 MHz. Stemming from these requirements in the

following subsections the architectures of the blocks depicted in Fig. 1 are detailed.

3.1. Encoder-side Architecture

The complete encoder architecture is obtained cascading the CTC encoder, the sub-

block interleaver and the symbol selection with memory buffers. The high through-

put imposed by the WiMax standard is sustained by the use of double buffers

(shaded memories in Fig. 2) that grant a pipeline processing through the encoding

chain. In Fig. 2 a high level block scheme of the complete encoder architecture is

shown.

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

6 M. Martina, M. Nicola, G. Masera

12bitsj−cnt

N

mod N i

A

W
Y
B

ABSIPO−A
SIPO−B
SIPO−Y
SIPO−W

8

CU

8

up−counter

m−J LUT

up−counter

Fk L k

up−counter

left
shift

NSCHk

L k

mk

b
i
t
s

c
o
d
e
d

8

SPIDk

<N

N

Tk Fk

CU

uncoded
bits

memory
PISO

8

local
buffer

CC

A

B

0 LUT
CU

A

B

A B

CC

generator
address

address
generator

Pj

17x37bits

’

N

generator

N

1

CTC output buffer

address

LUT

A

B

Y

W

symbol selection interface
subblock interleaver

CTC encoder Subblock interleaver

J
mod J

<<3

k

mN

shifter

BRO

6N

<<1

<<3

mk

<<2

Symbol selection

<<1

N

0address
generator

valid

s

<<1

c

sc sN

Y W1 1 Y W2 2

P0

mod N

Figure 2. WiMax encoder block scheme.

3.1.1. CTC encoder

The WiMax CTC encoder is based on the parallel concatenation of two circular

recursive systematic CCs; it receives a couple of input bits and outputs a six bit wide

symbol. As a consequence, the CTC encoder architecture must be able to achieve

a throughput of at least 3T̂dl ≃ 200 Mb/s. Since each CC is circular recursive, a

tailbiting strategy where the ending state matches the starting state 27 is employed.

This state, usually referred to as circulation state sc, depends on N , namely

sc = (I + GN)−1sN G =





1 0 1

1 0 0

0 1 0



 (11)

where I is the identity matrix, G is the matrix defining the WiMax constituent CC

and sN is the ending state obtained encoding the current N couples starting from

the s0 = [000]T state (in the following we will refer to this encoding as dummy

encoding).

For each frame the CTC encoder ought to perform:

• the dummy encoding of the in-order data to discover the corresponding

circulation state

• the encoding of the in-order data starting the CC encoder from the circu-

lation state

• the dummy encoding of the scrambled data to discover the corresponding

circulation state

• the encoding of the scrambled data starting the CC encoder from the cir-

culation state.

In order to reduce as much as possible the CTC encoder complexity, the reuse

of the same CC encoder to perform both CC1 and CC2 is advisable. Even if the

complexity of a single CC encoder is negligible, as detailed in section 4.2.1, the use

of two or more CC encoders implies to at least double the CTC encoder memory

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

WiMax CTC VLSI Implementation 7

requirements. Given that the CTC encoder can process a couple per clock cycle,

after 4N clock cycles a frame is coded. Thus, the CTC encoder output throughput

is

TCTC−E =
6N · fclk

4N
= 1.5fclk (12)

In order to grant TCTC−E ≥ 200 Mb/s, we need fclk ≥ 133 MHz. This value is

compatible with the target clock frequency (fclk = 200MHz) reported in Section 3;

then, the CTC encoder can be implemented as a single CC architecture managed

by a simple control unit (CU), as shown in Fig. 2.

Since the uncoded bits are stored as bytes, a parallel to serial (PISO) register

is employed to load the data from the memory and to properly feed the CTC

encoder. The CC encoder is implemented as a simple linear feedback shift register

(see the CC block in Fig. 1). As suggested in 1, all possible circulation states can be

precalculated and stored into a LUT. The address to access this LUT is obtained

using N mod 7 as the most significant bits and sN as the least significant bits.

The CTC interleaver permutation algorithm specified in the WiMax standard

is structured in two steps. The first step switches A and B stored at odd addresses.

The second step provides the interleaved address i of the j-th couple as

i = (P0 · j + P
′

j) mod N j = 0, 1, . . . , N − 1 (13)

where

P
′

j =















1 when j mod 4 = 0

1 + N/2 + P1 when j mod 4 = 1

1 + P2 when j mod 4 = 2

1 + N/2 + P3 when j mod 4 = 3

(14)

P0, P1, P2 and P3 are constants taken from a table 1 and depend only on the

number of couples N . It is worth pointing out that the two steps can be swapped.

This allows to perform the first step on-the-fly, avoiding the use of an intermediate

buffer to store switched couples.

The implementation of the CTC encoder interleaver can be derived as follows:

if x ∈ [0, 2 · N − 1], x mod N can be implemented by means of a subtracter and a

multiplexer. Unfortunately, P0 · j + P
′

j is not granted to belong to [0, 2 ·N − 1]. As

a consequence, several x mod N blocks ought to be cascaded to obtain i. However,

the interleaver architecture can be simplified by rewriting (13) as

i = {[(P0 · j) mod N] + (P
′

j mod N)} mod N = [i
′

j + (P
′

j mod N)] mod N (15)

where

i
′

j =

{

i
′

0 = 0 when j = 0

i
′

j = (i
′

j−1 + P0 mod N) mod N when j = 1, 2, . . . , N − 1
(16)

A small Look-Up-Table (LUT) is employed to store P0 mod N and the P
′

j mod

N terms; then, (15) is implemented by two parts as depicted in Fig. 2 (address

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

8 M. Martina, M. Nicola, G. Masera

generator unit in the left side). The first part accumulates P0 to implement the

P0 ·j term and the mod N block produces the correct modulo N result. The second

part employs the two least significant bits of a counter (j−cnt) to select the proper

P
′

j mod N value, which is added to the (P0 · j) mod N term. A further modulo N

operation is performed at the output. Since in this architecture both the first and

the second part work on data belonging to [0, 2 ·N − 1], all the mod N operations

are implemented by means of a subtracter and a multiplexer.

3.1.2. Subblock interleaver

The CTC encoder produces six subblocks of N bits (A, B, Y1, W1, Y2, W2). The

subblock interleaver treats each subblock separately and scrambles its bits accord-

ing to Algorithm 1, where m and J are constants specified by the standard 1,

and BROm(y) is the bit-reversed m-bit value of y. As a consequence, the number

Algorithm 1 Subblock interleaver address generation

1: k ← 0

2: i ← 0

3: while i < N do

4: Tk ← 2m(k mod J) + BROm(⌊k/J⌋)

5: if Tk < N then

6: i ← i + 1

7: else

8: discard Tk

9: end if

10: k ← k + 1

11: end while

of tentative addresses generated, NM , can be greater than N . Exhaustive simu-

lations show that the worst case is NM = 191 that occurs with N = 144. Since

191/144 = 1.326, a conservative approximation is NM = 4N/3. The whole subblock

interleaver architecture is obtained with one single address generator implementing

Algorithm 1 to simultaneously read one bit from each of the six subblock memories.

In particular, as imposed by the WiMax standard, the interleaved bits belonging to

the A and B subblocks are stored separately, whereas the interleaved bits belonging

to Y1 and Y2 are stored as a symbol-by-symbol multiplexed sequence, creating a

“macro-subblock” made of 2N bits. Similarly a macro-subblock made of 2N bits is

generated storing a symbol-by-symbol multiplexed sequence of interleaved W1 and

W2 subblocks.

The throughput sustained by the proposed architecture, defined as the number

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

WiMax CTC VLSI Implementation 9

of bits output over the time required by the computation, can be estimated as:

TSI =
6N · fclk

4N

3

= 4.5fclk (17)

In order to grant TSI ≥ 200 Mb/s, we need fclk ≥ 44 MHz which is compatible

with the target clock frequency fixed in Section 3.

To implement line 4 and 5 in Algorithm 1, three steps are required, namely

the calculation of k mod J and ⌊k/J⌋, the calculation of 2m(k mod J) and

BROm(⌊k/J⌋), the generation of Tk while checking Tk < N . It is worth point-

ing out that k mod J can be efficiently implemented as an up-counter followed by

a mod J block (see Fig. 2). Moreover, each time the mod J block detects k = J ,

a second counter is incremented: the final value in the second counter is ⌊k/J⌋.

Since m ∈ [3, 10] the 2m(k mod J) term is implemented as a programmable

shifter in the range [0, 7] followed by a hardwired three position left shifter. The

BROm(⌊k/J⌋) term is obtained by multiplexing eight hardwired bit reversal net-

works. Finally, a valid Tk address is obtained with an adder and is validated by a

comparator as shown in Fig. 2 (central part).

3.1.3. Subblock interleaver - symbol selection interface

The subblock interleaver processes six bits in parallel, one for each subblock. On

the other hand, the symbol selection works on eight bit wide slices, as described in

section 3.1.4. As a consequence, the interface between the subblock interleaver and

the symbol selection must pack the bits into eight bit wide slices (see the central

part of Fig. 2). Unfortunately several N values are not integer multiples of eight.

Since every N is an integer multiple of four, the Y and W macro-subblocks are

straightforwardly split in eight bit wide slices by means of two eight bit serial-to-

parallel (SIPO) registers, followed by two output registers that are loaded when the

SIPO registers have completed a slice, as depicted in Fig. 3. On the other hand,

the A and B subblocks are managed with two SIPO registers and three output

registers. The first register loads slices coming from the SIPO register labeled with

A, the second register from the SIPO labeled B and the third from both. Thus,

the AB output register contains the A and B subblocks fragments. A multiplexer

selects the proper output register and stores the slices in the symbol selection input

buffer. The correct scheduling of these blocks is managed by a simple CU. Y and

W slices are ready to be loaded into the output registers every four clock cycles,

whereas new A and B slices are loaded every eight clock cycles: this results in the

scheduling reported in the timing diagram in Fig. 3. Every four clock cycles three

cases are possible: i) only Y and W slices are in the output registers; ii) AB, Y and

W slices are in the output registers; iii) A, B, Y and W slices are in the output

registers. In the third case four clock cycles are required to store all the data in

the output buffer, simultaneously new Y and W slices are prepared by the SIPOs,

leading to a full throughput architecture.

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

10 M. Martina, M. Nicola, G. Masera

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

CU
��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

output registersSIPO registers

and W ready
SIPO A,B,YOutput registers

Y and W ready

first symbols
enter in SIPO

SIPO Y
and W ready

Output registers

and W ready
A,B,Y SIPO Y

and W ready

Output registers
Y and W ready

registers

A

B

Y2

Y1

W2

W1

A

AB

B

Y

W

data to

symbol selection
input buffer

1

1

1

1

1

1

8

4

4

8

8

8

8

8

8

8

8

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

data to

CLK

input buffer
symbol selection Y W Y W A B Y W

Figure 3. Subblock interleaver - symbol selection interface block scheme: most significant bit is on
the right.

3.1.4. Symbol selection

The symbol selection (SS) chooses among the 6N coded bits the ones to be sent to

the receiver. These bits are read from the subblock interleaver output buffer and

the i-th address is

Sk,i = (Fk + i) mod 6N i = 0, 1, . . . Lk − 1 (18)

Thus, the symbol selection reads

Lk = 48mk · NSCHk (19)

bits, starting from the location

Fk = (SPIDk · Lk) mod 6N (20)

where NSCHk, mk and SPIDk are parameters specified by the standard for the

k-index subpacket when HARQ is enabled, namely NSCHk is the number of con-

catenated slots, mk is the modulation order and SPIDk is the subpacket ID 1.

Since NSCHk ∈ [1, 480] and mk ∈ {2, 4, 6}, (19) can be rewritten as

Lk =







(2NSCHk + NSCHk) · 25 when mk = 2

(2NSCHk + NSCHk) · 26 when mk = 4

(8NSCHk + NSCHk) · 25 when mk = 6

(21)

The efficient implementation of (21) is obtained with an adder whose inputs are

NSCHk and the selection between two hardwired left shifted versions of NSCHk

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

WiMax CTC VLSI Implementation 11

(one position and three positions), followed by a programmable left shifter (five-six

positions) as shown in Fig. 2.

Similarly, since SPIDk ∈ {0, 1, 2, 3}, the multiplication in (20) is avoided as

Fk =















0 when SPIDk = 0

Lk mod 6N when SPIDk = 1

2Lk mod 6N when SPIDk = 2

(2Lk + Lk) mod 6N when SPIDk = 3

(22)

Exhaustive simulations show that the implementation of mod 6N as a cascade

of subtracters requires in the worst case twelve stages. Since this operation has

to be performed only once at the beginning of the symbol selection procedure, a

folded solution is adopted to save hardware resources. In order to better choose the

proper trade-off between the number of clock cycles and the amount of resources,

a throughput analysis is required. In the worst case, the symbol selection performs

repetition and outputs up to 4 × 6N bits, leading to a throughput of nearly 800

Mb/s. As a consequence, a one bit per cycle architecture is not feasible. Since both

Fk and Lk are integer multiples of eight, the symbol selection is performed on slices

of eight bits.

Let’s consider a folded solution that produces Fk within twelve clock cycles: the

proposed architecture outputs up to 24N bits in 24N/8+12 clock cycles, achieving

a maximum throughput

TSS =
24N · fclk

(

24N

8
+ 12

) (23)

In the worst case (N = 24) TSS = 6.85fclk: in order to grant TSS ≥ 800 Mb/s we

need fclk ≥ 117 MHz which is lower than the target clock frequency.

3.2. Decoder-side Architecture

The symbol deselection, the subblock deinterleaver and the CTC decoder are con-

nected together by means of memory buffers in order to guarantee that the non

iterative part of the decoder (namely symbol deselection and subblock deinterleaver)

and the decoding loop work simultaneously on consecutive data frames. In Fig. 4,

a high level block scheme of the complete decoder architecture is shown.

3.2.1. Symbol deselection

Depending on amount of data sent by the symbol selection (puncturing or repe-

tition), the throughput sustained by the symbol deselection (SD) can rise up to

nearly 800 millions of LLRs per second. When the encoder performs repetition,

the same symbol is sent more than once. Thus, the decoder combines the LLRs

referred to the same symbol to improve the reliability of that symbol. As shown

in Fig. 4 this can be achieved partitioning the symbol deselection input buffer into

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

12 M. Martina, M. Nicola, G. Masera

0

λk

in−order

address
scrambled

in−order

address
scrambled

[u;I]λk [u;O]λkλΑΒ λΑΒ λΑΒ

A B Y W Y W1 1 2 2

Fk L k

up−counter

4 LLRs

6N/4

6N/4

6N/4

6N/4

CU

SISO

uk
packetizer

hard
decision
memory

address
generator

A

B

Y

W

Subblock deinterleaver CTC decoderSymbol deselection

0

0

[c;I]

Figure 4. WiMax decoder block scheme.

four memories, each of which containing up to 6N LLRs. Since the proposed symbol

deselection architecture can read up to four LLRs per clock cycle, it reduces the in-

coming throughput to about 200 millions of LLRs per second. However, the symbol

deselection has to compute (20) and (19) to find the output buffer starting address

and the number of elements to be written. Furthermore, in order to support the

puncturing mode, the output memory locations corresponding to unsent bits must

be set to zero. To ease the proposed architecture implementation, all the output

memory locations are set to zero while Lk and Fk are computed. As a consequence,

about two clock cycles per sample are required to complete the symbol deselection,

namely 6N LLRs are output in 12N clock cycles. So that the symbol deselection

throughput can be estimated as

TSD =
6N

12N
fclk = 0.5fclk (24)

Unfortunately TSD < 200 Millions of LLRs with fclk=200 MHz. To overcome this

problem we impose not only to partition the input buffer into four memories, but

also to increase the memory parallelism, so that each memory location contains p

LLRs. The throughput sustained by this solution is approximately

TSD =
6N · fclk

12N

p

=
p · fclk

2
(25)

A conservative choice is p = 4. Thus, the proposed symbol deselection architecture

processes simultaneously up to sixteen LLRs.

3.2.2. Subblock deinterleaver

The subblock deinterleaver is implemented resorting to the same address generator

described in Section 3.1.2, where Tk output is used as the write address. Since all the

subblocks can be processed simultaneously, the proposed architecture deinterleaves

six LLRs per clock cycle. As a consequence, the subblock deinterleaver sustains a

throughput of 4.5fclk LLRs per second, namely up to 900 Millions of LLRs per

second with fclk=200 MHz.

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

WiMax CTC VLSI Implementation 13

3.2.3. CTC decoder

The analysis presented at the beginning of Section 3 can be exploited to derive

the degree of parallelism required by the CTC decoder to sustain a maximum

throughput T ≥ T̂dl. As suggested in 26, each frame of received LLRs can be divided

into P slices that are independently processed by P SISOs working in parallel. As

a consequence, the number of clock cycles required to completely decode a frame

made of N couples of bits is D = 2(N/P +SISOl)I and the achievable throughput

is

TCTC−D =
2N · fclk

2I(N
P

+ SISOl)
(26)

Since we adopt a sliding window based approach 28, where boundary metrics are

inherited from an iteration to the next one, as proposed in 15 and 29, we obtain

SISOl=W + ∆ where W is the window size and ∆ is the pipeline depth of the

λ − O processor in Fig. 8. In fact, as it can be inferred from Fig. 8, we adopt the

following scheduling where the forward and backward recursions are pipelined over

consecutive windows 30. The SISO performs the forward recursion and stores the

results in the α-MEM temporary buffer; then it performs the backward recursion

and the computation of λk[u;O].

Assuming W=32 29, ∆=5, I=8, fclk=200 MHz, we can estimate the throughput

of the decoder for the 17 possible values of N 1. As shown in Fig. 5, P=3 allows to

achieve T̂dl (horizontal solid line) only for N ≥960, whereas with P=4 the target

throughput can be reached for N > 250 (i.e. N ≥480, which is the next specified

size).

Interleaver-Deinterleaver (Π, Π−1) As pointed out in Section 1, a parallel

CTC decoder can lead to memory collisions during scrambled half iterations. In fact,

in in-order half iterations, the n-th SISO accesses only the n-th memory, whereas in

scrambled half iterations the n-th SISO reads from and writes to different memories.

A collision occurs when two or more SISOs try to simultaneously access the same

memory. The rule employed by the SISOs to access the memories is imposed by the

interleaver, which is devoted to maximize input symbols distance 31. Thus, given

the set of interleaver laws to be supported, the memory collision has to be studied

case by case. For this reason concurrent interleaving 8, 9, 32 is a distinguishing

feature of parallel turbo decoders.

Exhaustive simulations for the WiMax CTC show that collisions occur for P=2

and P=4 only with N=108. As a consequence, we select P as a function of N to

simultaneously obtain a monotonically increasing throughput as a function of N

and to avoid collisions. It is worth pointing out that, when collisions are avoided,

the resulting parallel interleaver is a circular shifting interleaver 33: the address

generation is simplified with all SISOs simultaneously accessing the same location

of different memories. Said idx0
t the memory accessed by SISO-0 at time t during

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

14 M. Martina, M. Nicola, G. Masera

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

10

20

30

40

50

60

70

80

90

100

N

T
 [M

b/
s]

P=1
P=2
P=3
P=4
Proposed

Figure 5. Parallel CTC decoder throughput as a function of the block size N for different paral-
lelism degree values P . The horizontal line represents the target throughput.

t
0

idx t

idx t

idx t

i

adxt

idx

3

1

00

01

10

11

>>1

>>2
N

serial
WiMax

Interleaver
3

2

1

2

Figure 6. WiMax parallel interleaver address generator architecture.

a scrambled half iteration, the memory concurrently accessed by SISO-k is

idxk
t = (idx0

t ± k) mod P (27)

Thus, the parallel CTC interleaver-deinterleaver system is obtained as a cas-

caded two stage architecture (see Fig. 6). The first stage efficiently implements

(13), whereas the second one extracts the common memory address adxt and the

memory identifiers idxk
t from the scrambled address i. The implementation of the

first stage is described in Section 3.1.1.

The second stage of the proposed parallel interleaver address generator archi-

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

WiMax CTC VLSI Implementation 15

tecture works as follows. Since adxt ∈ [0, N/P − 1], it can be obtained from the

scrambled address i produced by the first stage as

adxt =















i when i ∈ [0, N
P

− 1]

i − N
P

when i ∈ [N
P

, 2N
P

− 1]

. . .

i − (P − 1)N
P

when i ∈ [(P − 1)N
P

, N − 1]

(28)

The straightforward implementation of (28) needs to calculate N/P and to allocate

P −2 multipliers, P −1 subtracters, a P -ways multiplexer and few logic for selecting

the proper adxt value. The N/P division can be simplified by choosing the possible

P values as powers of two. Thus, the proposed CTC decoder architecture exploits

throughput/parallelism scalability to avoid collisions, namely we employ: P=1 when

N ≤ 180, P=2 when 192 ≤ N ≤ 240 and P=4 when 480 ≤ N ≤ 2400. Moreover, as

it can be inferred from Fig. 6, multiplications are avoided resorting to simple shift

operations (x >> i = x/2i). The sign of the subtractions (dashed lines in Fig. 6)

allows not only to select the proper adxt but also to find idx0
t . Then, with P − 1

modulo P adders the other idxk
t values are straightforwardly generated according

to (27). As it can be observed, choosing P as a power of two reduces the modulo

P adders to simpler, binary adders. We also impose the condition N/(P · W) ∈ N,

which implies that each SISO processes the same number (NWP) of windows in

a data frame. This guarantees not only a 100% hardware utilization, but also full

synchronization of SISOs, which results in a simpler control unit.

The proposed architecture is employed to implement the interleaver reading

part. Since idxk
t identifies the memory accessed by SISO-k at time t, the parallel

interleaver architecture ought to signal to the memory which SISO is requiring

the data. This operation is accomplished by a 4 × 4 crossbar switch (radx-switch)

controlled by idxk
t with 2 bit wide fixed inputs, as shown in Fig. 7. When the idxk

memory (EI-MEM idxk) is read, it sends back the corresponding λ[u] triplet to

SISO-k, through a 4 × 4 crossbar switch (rdata-switch). This crossbar switch is

controlled by the output of the radx-switch. Since each SISO outputs its data in

reverse order 22, during the reading operation idxk
t and adxt are stored into a LIFO;

idxk
t and adxt are read from the LIFO during the writing operation to configure

a 4 × 4 crossbar switch (wdata-switch). The LIFO stores W words, each of which

contains the four configurations for the crossbar, 4 × 2 = 8 bit, and the common

memory location whose size depends on NWP and W , so the number of bit required

to correctly represent the common memory location address is ⌈log2(W · NWP)⌉.

Parallel SISO architecture The global architecture of the designed parallel SISO

is given in Fig. 8. Each SISO contains several processors devoted to compute the

different metrics required by the BCJR algorithm; namely the α processor imple-

ments (3) and the β processor implements (4) on two consecutive windows of data.

In order to perform a trellis step in one clock cycle, both the α and β processors

compute in parallel all the eight new State Metrics (SMs) (see the SM proc. block

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

16 M. Martina, M. Nicola, G. Masera

rdata−switch SISO−3

SISO−2

SISO−1

SISO−0EI−MEM0

EI−MEM1

EI−MEM2

EI−MEM3
wdata−switch

switch
couple

radx−switch

0 2 31

LIFO

generator

parallel
address

adxN
t

idxk
t

Figure 7. WiMax parallel CTC interleaver architecture.

in Fig. 8). Since the α processor works in direct order on the input data (BCJR

forward recursion), whereas the β processor updates them in reverse order (BCJR

backward recursion), two Branch Metrics Units (BMUs), are placed before the α

and β processors. Each BMU is devoted to combine the three λk[u; I] and the four

λk[c; I] and obtains in parallel the BMs γk associated to the k-th trellis section. As

a consequence, a local buffer (BMU-MEM) is required to store W words each of

which is made of three λk[u; I] and four λk[c; I]. The λ−O processor generates the

λk[u;O] values according to (8), receiving the βk values directly from the β pro-

cessor and loading the αk values from a local buffer (α-MEM). We fixed δ = 0.75

in (8) to ensure both good performance of Max-Log-MAP algorithm (see Fig. 12)

and simplified hardware implementation. In fact, the scaling factor multiplication

(scal. fact. in Fig. 8) is implemented by two adders and two hardwired shifters as

[(2a + a) + b]/4. Moreover, the λ − O processor includes the logic to calculate the

hard decision bits.

The use of the sliding window approach implies that the BMU-MEM contains

W words, each word being made of four channel LLRs (λk[c; I]) represented on

nλc bits and three extrinsic LLRs (λk[u; I]) represented on nλu bits. Similarly, the

α-MEM contains W words, each word being made of 8 SMs (αk[s]) represented

on nSM bits. However, the implementation of the β metrics inheritance strategy

(intra SISO SMs inheritance) comes at the expenses of additional memory. In fact,

since each SISO processes NWP windows, an NWP -1 words local memory (β-LOC-

MEM) is required to store the SMs at the boundary of two consecutive windows

(βprv). Each word is made of eight SMs, each of which is represented on nSM

bits. Moreover, at every half iteration, each SISO requires to properly initialize its

trellis portion (αin and βin). The correct initialization of each trellis portion is

obtained by inheritance: each SISO employs the boundary SMs calculated at the

previous iteration by its neighboring SISOs (inter SISO SMs inheritance). This can

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

WiMax CTC VLSI Implementation 17

α/βk

k−1β

α/β k α/βk α/βk

α

k−1β

k+1 β

k+1α

γk

k−1α

γk

k+1

γkγk

8 9 10 117654γ γ γ γ3210 γ γ γ γ γ γ γ γ 12 13 14 15γ γ γ γ
k k k k k k k k k k k k k k k k

[e]
(1)

i[e]
(2)

i[e]
(3)

i

max

max

(3)

i[s]
(2)

i[s]
(1)

i[s]
(0)

i[s]

i[s]i[s]

[e]
(0)

i

α out

α in

α out

α in

α out

α in

α out

α in

[u;I]λk

[c;I]λk

[c;I]λk+NWP

λ k+2NWP[c;I]

[u;I]λk+NWP

λ k+2NWP[u;I]

λk+3NW [u;I]P

λk+3NW [c;I]P

uk+3NWP

λ k+3NW [u;O]P

uk+2NWP

λ k+2NW [u;O]P

k+NWλ [u;O]P

λ k[u;O]

uk

uk+NWP

λ k [c;I]

norm

βk
norm

α k−1

−Oλ processor

max
λk[T]

k[u;I]
ABλ

uk

γk

λk[u;O]
AB

λk[u;O]
AB

λk
AB

[u;O]

b

a

b

a

b

a

a

b

<<1

>>2

λk[u;I]
AB

λk
AB

[u;I]

AB

AB

AB

α −BMU
γk

processor
α

α in

α k−1
kα

−BMUβ

β
processor

γk

βk

β −LOC−MEM

βin

βk−1 βprv

β −EXT−MEM

βout

−Oλ

λ k [u;O]uk

processor−MEMα−EXT−MEMα

αout

[0][0] [7][7]
λ
A

[c,I]k

λ
B

[c,I]k λ
W
k [c,I]

λ [u,I]
AB
k λ [u,I]

AB
k

λ
Y

[c,I]k

λ [u,I]
AB

0

00 01 10 11

k[c;I]π

πk[c;I]

πk[c;I]

λ k [u;I]
BMU−MEM

SISO

PE0 PE7

(α/β,γ) (α/β,γ)k k

processor
α/β

0

k
BMU

max

PE

SISO−0

outβ

β out

in

SISO−2

SISO−3
β out

in

SISO−1
β out

in

β

β

β

β

in

last_SISO

last_SISO

last_SISO

max
fact.

scal.
fact.

tree

max

tree

tree

scal.max

max

tree fact.

scal.

Figure 8. WiMax CTC parallel SISO architecture.

be achieved by inserting two 2-position shift registers, one for each half iteration

(α-EXT-MEM and β-EXT-MEM in Fig. 8) to exchange the αout and βout SMs with

the neighboring SISOs. Furthermore, inter SISO SMs inheritance between SISO-0

and SISO-3 allows to obtain a reliable estimation of the circulation state avoiding

training operations 15. The simple network required to implement inter SISO SMs

inheritance for the variable parallelism architecture is depicted in Fig. 8 on the left

side.

It is worth pointing out that the choice of the window size W , discussed in

the previous paragraph, impacts not only on the decoder performance, but also on

the decoder complexity. In fact, even if N/(P · W) ∈ N allows to simplify SISOs

synchronization, other requirements ought to be taken into proper account:

• the converge speed of the iterative decoding is not reduced significantly by

choosing the minimum window size to be at least (preferably more than)

six times (Wfact) the CC constraint length (CCl)
34: W ≥ Wfact · CCl =

6 · 4 = 24

• the throughput (26) is maximized keeping W as small as possible

• the window size W impacts on the amount of memory required by each

SISO.

The total amount of memory needed for a SISO is a function of W and it is composed

by the total number of bits required by each SISO memory buffer, namely the BMU-

MEM, the α-MEM and the β-LOC-MEM: MSISO = MBMU + Mα + Mβ where

MBMU = (3nλu + 4nλc)W (29)

Mα = 8nSMW (30)

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

18 M. Martina, M. Nicola, G. Masera

Mβ = 8nSM

(

N

P · W
− 1

)

(31)

The optimal W value to minimize MSISO is

Wopt =

√

8nSMN

P (3nλu + 4nλc + 8nSM)
(32)

Input/Output interface The CTC decoder input interface is simple as it is based

on a double buffer. In fact one buffer stores the currently decoded frame LLRs

(λ[c; I]), whereas the other acts as the subblock deinterleaver output buffer. In

order to grant parallel access to the input buffer, it is partitioned into P independent

memories. Furthermore, to simplify the access to the input buffer, λ[c; I] are read

only in natural order. On the contrary, the CTC decoder output buffer is more

complex. Since the proposed CTC decoder starts the decoding process from SISO2

(scrambled order), during the last half iteration the hard decision bits produced by

the SISOs (in-order) must be stored in the output memory. However, each SISO

generates windows of hard decisions where the couples into each window are in

reverse order (according to the backward recursion). Moreover, the number of active

SISOs depends on the current frame size N . As a consequence, given the current

number of active SISOs, a packetizer is devoted to collect the hard decisions and

store them into the output memory. Since each WiMax frame contains an integer

number of bytes (i.e. 2N/8 ∈ N), we implemented the packetizer as four SIPO

registers, each of which can accommodate eight bits. Depending on the current

number of active SISOs, the proper shift registers are enabled. In the worst case

(P = 4), during the last half iteration four bytes of hard decisions ought to be stored

every four clock cycles. When the SIPO0 register data is ready, it is stored into

the output memory. Simultaneously, the SIPO0 register is ready to accommodate

the first couple of bits of the next byte. On the other hand, to make the other

SIPO registers ready to accommodate new bits, their content is moved into three

output registers, as depicted in Fig. 9. Thus, within the next three clock cycles, a

multiplexer selects the output register values that are stored in the output memory

while the SIPO registers are ready with four new bytes.

As far as the output memory address is concerned, since every SISO produces

the same amount of hard decisions, given N and P , we precalculate the starting

addresses and store them into a LUT, namely the k-th SISO starting address is

adxs = k
N

4P
= k

W · NWP

4
(33)

In particular, if W/4 ∈ N, every window contains an integer number of bytes and

W/4 is the offset between two consecutive windows of bytes. A simple architecture

to calculate the output memory address is obtained adding together a base address

and an offset. The base address is implemented as four up-counters (one for each

SISO) that start from adxs and are updated adding W/4 each time a window of

bytes is stored in the output memory. A multiplexer selects the k-th base address

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

WiMax CTC VLSI Implementation 19

when the byte to be written in the output memory comes from the k-th SISO. Since

the hard decision are output according to the backward recursion order, the offset

is implemented as mod W/4 down-counter. A simple CU is devoted to properly

drive the multiplexer selectors and reset the down-counter.

memory

CU

=0

down
counter

mod W/4

offset

up−counter

up−counter

up−counter

up−counter

0

1

2

3

W/40

LUT
adxs

base

address

to output
memory

SISO0

SISO1

SISO2

SISO3

SIPO0

SIPO1

SIPO2

SIPO3

reg1

reg2

reg3

valid

valid

valid

valid

2

2

2

2

A,B

A,B

A,B

A,B

8

8

8

8 8

8

8

8

data

to output

Figure 9. CTC decoder packetizer architecture.

4. General guidelines, implementation results and comparison

Stemming from the architectural choices employed in Section 3 for the WiMax CTC

encoder and decoder design, we derive some general guidelines and then we show

the actual results obtained for the WiMax standard.

4.1. General guidelines

Several considerations detailed in Section 3 have been discussed for the double

binary WiMax encoder and decoder architecture. However, they can be extended

to the design of a general double binary CTC system.

To reduce the amount of resources required by the CTC encoder we employ

a folded architecture where one CC is reused to implement both the in-order and

the scrambled coding. The use of a folded architecture is driven by a throughput

based analysis, namely (12) can be rewritten for a general case to understand if

a folded architecture is suited for a given application. Said R the code rate of a

single CC, the number of bits output in a frame by a double binary CTC encoder

is 2N(2/R − 1). An architecture that performs one trellis step per cycle, as the

one detailed in this work, requires 2N clock cycles to perform both in-order and

scrambled coding operations and 2N clock cycles for the two dummy encodings.

Thus, said T̂CTC−E the throughput required by the application, the clock frequency

can be obtained as

fclk ≥
2R

2 − R
T̂CTC−E (34)

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

20 M. Martina, M. Nicola, G. Masera

On the other hand, the throughput of the CTC decoder can be increased by

introducing parallelism. As detailed in Section 3, choosing P as a power of two

grants a significant simplification in the decoder design. Said T̂CTC−D the through-

put required by the application, the clock frequency can be obtained as

fclk ≥
I

N
· T̂CTC−D ·

(

N

P
+ W + ∆

)

(35)

It is known that in binary turbo code decoders LLRs are commonly used. On the

contrary, in double binary turbo decoders the use of logarithmic probabilities (LP)

instead of LLRs allows to save a certain amount of logic in the SISO architecture
15. However, the use of 4 LPs instead of 3 LLRs has a negative impact on both the

interleaver memory and the SISO memory footprint. In order to select the most

suitable approach, we implemented both the LLR based SISO (SISO-LLR) and the

logarithmic probabilities based SISO (SISO-LP) in VHDL and synthesized them on

a 0.13 µm standard cell technology considering the worst case for the window size

W = 48. Moreover, we generated the dual port SRAMs to implement the interleaver

memory both for the SISO-LLR (2p-LLR) and the SISO-LP (2p-LP) and the single

port SRAMs to implement SISO memory as a “ping-pong” buffer for both the cases

(1p-LLR and 1p-LP). Fig. 10 shows the complexity growth of SISO-LLR, SISO-LP,

4 5 6 7 8
0

5

10

15
x 10

5

bit

µm
2

SISO−LLR
SISO−LP
2p−LLR
2p−LP
1p−LLR
1p−LP
decoder−LLR
decoder−LP

Figure 10. Complexity growth [µm2] of a double binary turbo decoder building blocks as a function

of the number of bits (bit) to represent the input data.

2p-LLR, 2p-LP, 1p-LLR and 1p-LP in µm2 as a function of the number of bits

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

WiMax CTC VLSI Implementation 21

(bit) used to represent the LLRs or the LPs. The range explored in this analysis

(bit ∈ [4, 8]) shows that the SISO-LLR complexity is slightly larger than that of the

SISO-LP. However, the amount of memory required by a SISO-LP based decoder

increases more than that of a SISO-LLR based one. In Fig. 10 the complexity of a

single SISO decoder, including the interleaver, is also shown. Further experiments

show that increasing P , the overhead required by the LP based decoder with respect

to the LLR based one decreases from 7.6% (P = 1) to 2.2% (P = 8). However, the

LLR based decoder is still less complex.

Moreover, to properly design the CTC decoder architecture the size of the win-

dow is extremely important as it impacts not only on the decoder throughput but

also on the complexity. As discussed in Section 3, a good choice is Wm ≤ W ≤ WM

with

Wm = min{Wfact · CCl, N} (36)

WM = max{W ∗,Wopt} (37)

W ∗ = min
W

{

N

P · W
∈ N : W ≥ Wm

}

(38)

Wopt =

√

#s · nSM · N

P (#λu · nλu + #λc · nλc + #s · nSM)
(39)

where #s is the number of states, #λu is the number of extrinsic information

LLRs and #λc is the number of channel LLRs. However, to have the throughput

T monotonically increasing with N , W values are chosen as shown in Table 1

Of course this choice satisfies the worst case maximum throughput T̂dl only for

N ≥ 480, whereas for N < 480 graceful throughput reduction is achieved.

For the WiMax CTC (39) becomes (32) and, according to the literature 23, 35,

we choose nλu = 6 and nλc = 8. As a consequence, eleven bits are required for the

BMs representation. Moreover, resorting to the SM wrapping technique proposed

in 36, we obtain nSM = 12. Fig. 11 shows that MSISO as a function of W has

a greater slope for W < Wopt than for W > Wopt. As a consequence, if other

conditions impose to select W 6= Wopt our analysis suggests that W ≥ Wopt is

preferred. Since Wopt ∝
√

N
P

, Fig. 11 shows the curves obtained for all the different

N/P values.

4.2. VLSI architecture implementation results and comparison

The complete encoder and decoder architectures, described as parametric VHDL

modules, have been synthesized with Synopsys Design Compiler on a 0.13 µm stan-

dard cell technology.

4.2.1. Encoder side

Post synthesis results show that the CTC encoder requires 3.5 kgate of logic and

2N = 4.8 kbit of memory for its local buffer, whereas the subblock interleaver, the

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

22 M. Martina, M. Nicola, G. Masera

5 10 15 20 25 30 35 40 45 50 55 60
1000

10000

60000

W

M
S

IS
O

 [b
it]

N/P=24
N/P=36
N/P=48
N/P=72
N/P=96
N/P=108
N/P=120
N/P=144
N/P=180
N/P=240
N/P=360
N/P=480
N/P=600

Figure 11. Amount of memory required by each SISO (MSISO) in the proposed parallel CTC
decoder as a function of the window size (W) for different N/P ratios.

symbol selection and their interface block require 1.7 kgate, 2.2 kgate and 1.8 kgate

respectively. In order to accommodate the maximum frame (N = 2400), the double

input buffer requires 2 × 2N = 9.6 kbit of memory. Similarly, the CTC encoder

double output buffer requires 2 × 6N = 28.8 kbit. The same amount of memory is

required to store the data after the subblock interleaver. Further 2×(4·6N) = 115.2

kbit of memory are required for the symbol selection double output buffer. Thus,

as summarized in Table 2 the complete encoder architecture requires 9.2 kgate of

logic and 187.2 kbit of memory.

4.2.2. Decoder side

As pointed out through Section 3, the CTC decoder is the most critical part of the

design as it requires a noteworthy amount of resources. In particular the choice of

P and W has a significant impact on both performance and complexity. Of course,

proper P and W must be selected for each frame size (17 cases for WiMax 1), as

reported in Table 1, where NWP and the resulting throughput TCTC−D (bold line in

Fig. 5) are also given. For the sake of completeness Table 1 also shows the Wopt value

obtained from (32). It is worth pointing out that the actual window size W has been

selected considering not only Wopt but also the other conditions discussed in Section

3. As detailed in Table 2 the complete decoder architecture requires 167.7 kgate of

logic and nearly 1.2 Mbit of memory, where 11 kgate are devoted to the symbol

deselection, 1.7 kgate to the subblock deinterleaver and the parallel CTC decoder

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

WiMax CTC VLSI Implementation 23

Table 1. Parallelism degree (P), actual window size (W), the optimal window size (Wopt) obtained
from (32), number of windows per SISO (NWP) and throughput (TCTC−D) achieved by the
WiMax CTC decoder parallel architecture for the 17 N values.

N P W Wopt NWP T [Mb/s]

24 1 24 4 1 11.3

36 1 36 5 1 11.7

48 1 48 6 1 11.9

72 1 36 7 2 15.9

96 1 48 8 2 16.1

108 1 36 9 3 18.1

120 1 40 9 3 18.2

144 1 36 10 4 19.5

180 1 36 11 5 20.4

192 2 48 8 2 32.2

216 2 36 9 3 36.2

240 2 24 9 5 40.3

480 4 24 9 5 80.5

960 4 24 13 10 89.2

1440 4 24 16 15 92.5

1920 4 24 18 20 94.3

2400 4 24 20 25 95.4

requires 155 kgate and 116.2 kbit. The complete decoder memory requirement takes

into account: the symbol deselection double buffer (2 × (4 · 6N · nλc) = 691.2

kbit), the buffer between the symbol deselection and the subblock deinterleaver

(2 × (6N · nλc) = 172.8 kbit), the CTC decoder input buffer (172.8 kbit) and the

CTC decoder output buffer (2 × 2N = 9.6 kbit)

Each SISO requires about 37 kgate for the logic and 14.2 kbit (2 × MSISO)

for its local “ping-pong” buffers (BMU-MEM, α-MEM, β-LOC-MEM). The serial

address generator to produce the interleaved addresses requires about 1.5 kgate,

whereas the complete parallel interleaver depicted in Fig. 7 requires 2.8 kgate for

the logic, 1728 bit for the LIFO (2 × [8 + ⌈log2(W · NWP)⌉] · W) and 57.6 kbit

(3N · nλu) for the extrinsic information memory (EI-MEM); the CTC packetizer

requires 4.2 kgate.

Even if in the literature several works deal with the design of VLSI architectures

for turbo decoders, few of them concern the implementation of double binary CTC

decoders. Significant examples are 14, 17 and 18. The proposed architecture shows

excellent performance and complexity figures compared both to a custom imple-

mentation 14 and to a programmable solution 18; (18-I refers to the single processor

solution, whereas 18-II is related to the 16 processor architecture). Moreover, each

SISO in the proposed architecture is slightly less complex than the one described

in 17 in terms of logic even taking into account the resources required by the serial

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

24 M. Martina, M. Nicola, G. Masera

Table 2. Architectures comparison: CMOS technology process (TP), logic (L),
memory (M), clock frequency (fclk) and throughput (T). The proposed archi-

tectures results are highlighted in bold.

Architecture TP L M fclk T

[µm] [kgate] [kbit] [MHz] [Mb/s]

Enc.

CTC, our 0.13 3.5 4.8 200 300

SI/D, our 0.13 1.7 0 200 900

SS, our 0.13 2.2 0 200 1600

Enc. our 0.13 9.2(a) 187.2(b) 200 1600

Dec.

SD, our 0.13 11 0 200 400(c)

CTC 14 - 480 713 200 -

CTC 18-I 0.09 97 - 335 7.4

CTC 18-II 0.09 1552 - 335 100

CTC 17 0.18 51 11.7 200 24.26

CTC Π 17 0.18 1.2 - 200 24.26 (d)

SISO, our 0.13 37 14.2 200 95.39(d)

CTC Π, our 0.13 2.8 59 100 95.39(d)

CTC, our 0.13 155 116.2 200 95.39

Dec. our 0.13 167.7 1163(b) 200 95.39

(a) Including the 1.8 kgate required by the subblock interleaver -

symbol selection interface.
(b) Including all the input/output buffers required.
(c) The throughput is in Millions of LLR per second.
(d) The throughput is referred to the complete decoder.

address generator. On the other hand, as the architecture proposed in 17 uses SMs

quantization, it has better memory requirements figure.

Finally, in Fig. 12 (star-dashed curve) we show as a significant example the Bit

Error Rate (BER) at different Signal to Noise Ratios (SNR) for the case N = 2400,

P = 4, W = 24, nλu = 6, nλc = 8, δ = 0.75 using the Max-Log-MAP algorithm. The

circle-dashed curve represents the results obtained from our floating point software

model for N = 2400, P = 4, where each SISO processes a single window, namely

W = 600 and NWP = 1, with the Log-MAP algorithm. As it can be inferred,

the proposed architecture features extremely reduced SNR loss (less than 0.15 dB)

compared with the floating point Log-MAP case.

5. Conclusions

In this paper design criteria for double binary CTC encoder and decoder archi-

tectures have been presented. Moreover, the VLSI implementation of optimized

architectures for the WiMax complete encoder and decoder are described. The pro-

posed architectures sustain a decoded bits throughput of more than 90 Mb/s with

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

WiMax CTC VLSI Implementation 25

0 0.2 0.4 0.6 0.8 1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

SNR [dB]

B
E

R

floating point
proposed

Figure 12. Proposed WiMax CTC decoder performance: BER as a function of the SNR

a clock frequency of 200 MHz requiring 9.2 kgate of logic and 187.2 kbit of memory

for the complete encoder and 167.7 kgate and 1163 kbit for the complete decoder.

Bibliography

1. “IEEE Std 802.16, part 16: air interface for fixed broadband wireless access systems,”
Oct. 2004.

2. G. D. Forney, “The Viterbi algorithm,” Proceedings of the IEEE, vol. 61, no. 3, pp.
268–278, Mar 1973.

3. R. M. Pyndiah, “Near-optimum decoding of product codes: block turbo codes,” IEEE

Transactions on Communications, vol. 46, no. 8, pp. 1003–1010, Aug 1998.
4. C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error correcting

coding and decoding: Turbo codes,” in IEEE International Conference on Communi-

cations, 1993, pp. 1064–1070.
5. R. G. Gallager, “Low density parity check codes,” IRE Transactions on Information

Theory, vol. IT-8, no. 1, pp. 21–28, Jan 1962.
6. L. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for

minimizing symbol error rate,” IEEE Transactions on Information Theory, vol. 20,
no. 3, pp. 284–287, Mar 1974.

7. A. Giulietti, B. Bougard, V. Derudder, S. Dupont, J. W. Weijers, and L. V. der Perre,

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

26 M. Martina, M. Nicola, G. Masera

“A 80 mb/s low-power scalable turbo codec core,” in IEEE Custom Integrated Circuits

Conference, 2002, pp. 389–392.
8. M. J. Thul, N. Wehn, and L. P. Rao, “Enabling high-speed turbo-decoding through

concurrent interleaving,” in IEEE International Symposium on Circuits and Systems,
2002, pp. 897–900.

9. F. Speziali and J. Zory, “Scalable and area efficient concurrent interleaver for high
throughput turbo-decoders,” in IEEE Euromicro Symposium on Digital System Design,
2004, pp. 334–341.

10. C. Berrou, Y. Saouter, C. Douillard, S. Kerouedan, and M. Jezequel, “Designing
good permutations for turbo codes: towards a single model,” in IEEE International

Conference on Communications, 2004, pp. 341–345.
11. A. Tarable and S. Benedetto, “Mapping interleaving laws to parallel turbo decoder

architectures,” IEEE Communications Letters, vol. 8, no. 3, pp. 162–164, Mar 2004.
12. A. Tarable, L. Dinoi, and S. Benedetto, “Design of prunable interleavers for parallel

turbo decoder architectures,” IEEE Communications Letters, vol. 11, no. 2, pp. 167–
169, Feb 2007.

13. C. Berrou, M. Jezequel, C. Douillard, and S. Kerouedan, “The advantages of non-
binary turbo codes,” in IEEE Information Theory Workshop, 2001, pp. 61–63.

14. A. Bartolazzi, G. Cardarilli, A. Del-Re, D. Giancristofaro, and M. Re, “Implementa-
tion of DVB-RCS turbo decoder for satellite on-board processing,” in IEEE Interna-

tional Conference on Circuits and Systems for Communications, 2002, pp. 142–145.
15. C. Zhan, T. Arslan, A. T. Erdogan, and S. MacDougall, “An efficient decoder scheme

for double binary circular turbo codes,” in IEEE International Conference on Acous-

tics, Speech and Signal Processing, 2006, pp. 229–232.
16. S. Papaharalabos, P. Sweeney, and B. Evans, “Constant log-MAP decoding algorithm

for duo-binary turbo codes,” IET Electronics Letters, vol. 42, no. 12, pp. 709–710, Jun
2006.

17. J. H. Kim and I. C. Park, “Double-binary circular turbo decoding based on border
metric encoding,” IEEE Transactions on Circuits and Systems II, vol. 55, no. 1, pp.
79–83, Jan 2008.

18. O. Muller, A. Baghdadi, and M. Jezequel, “ASIP-baser multiprocessor SOC design for
simple and double binary turbo decoding,” in Design, Automation and Test in Europe

Conference and Exhibition, 2006, pp. 1330–1335.
19. T. Vogt and N. Wehn, “A reconfigurable application specific instruction set processor

for Viterbi and Log-MAP decoding,” in IEEE Workshop on Signal Processing Systems

Design and Implementation, 2006, pp. 142–147.
20. M. C. Shin and I. C. Park, “SIMD processor-based turbo decoder supporting multiple

third-generation wireless standards,” IEEE Transactions on VLSI, vol. 15, no. 7, pp.
801–810, Jul 2007.

21. P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and sub-optimal maximum a
posteriori algorithms suitable for turbo decoding,” European Transactions on Telecom-

munications, vol. 8, no. 2, pp. 119–125, Mar-Apr 1997.
22. S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Soft-input soft-output mod-

ules for the construction and distributed iterative decoding of code networks,” European

Transactions on Telecommunications, vol. 9, no. 2, pp. 155–172, Mar/Apr 1998.
23. G. Montorsi and S. Benedetto, “Design of fixed-point iterative decoders for concate-

nated codes with interleavers,” IEEE Journal on Selected Areas in Communications,
vol. 19, no. 5, pp. 871–882, May 2001.

24. J. Vogt and A. Finger, “Improving the max-log-MAP turbo decoder,” IEE Electronics

Letters, vol. 36, no. 23, pp. 1937–1939, Nov 2000.

November 20, 2008 13:25 WSPC/INSTRUCTION FILE martinaJCSC08

WiMax CTC VLSI Implementation 27

25. J. Zhang and M. P. C. Fossorier, “Shuffled iterative decoding,” IEEE Transactions

on Communications, vol. 53, no. 2, pp. 209–213, Feb 2005.
26. O. Muller, A. Baghdadi, and M. Jezequel, “Exploring parallel processing levels for

convolutional turbo decoding,” in IEEE International Conference on Information and

Communication Technologies: from Theory to Applications, 2006, pp. 2353–2358.
27. J. Sun and O. Y. Takeshita, “Extended tail-biting schemes for turbo codes,” IEEE

Communications Letters, vol. 9, no. 3, pp. 252–254, Mar 2005.
28. S. Benedetto, D. Divsalar, G. Montorsi, and F. Pollara, “Algorithm for continuous

decoding of turbo codes,” IET Electronics Letters, vol. 32, no. 4, pp. 314–315, Feb
1996.

29. A. Abbasfar and K. Yao, “An efficient and practical architecture for high speed turbo
decoders,” in IEEE Vehicular Technology Conference, 2003, pp. 337–341.

30. E. Boutillon, C. Douillard, and G. Montorsi, “Iterative decoding of concatenated
convolutional codes: Implementation issues,” Proceedings of the IEEE, vol. 95, no. 6,
pp. 1201–1227, Jun 2007.

31. A. Giulietti, L. V. der Perre, and M. Strum, “Parallel turbo coding interleavers:
avoiding collisions in accesses to storage elements,” IET Electronics Letters, vol. 38,
no. 5, pp. 232–234, Feb 2002.

32. J. Kwak and K. Lee, “Design of dividable interleaver for parallel decoding in turbo
codes,” IET Electronics Letters, vol. 38, no. 22, pp. 1362–1364, Oct 2002.

33. S. Dolinar and D. Divsalar, “Weight distributions for turbo codes using random and
nonrandom permutations,” TDA Progress Report, vol. 42-122, pp. 56–65, Aug 1995.

34. A. J. Viterbi, “An intuitive justification and a simplified implementation of the MAP
decoder for convolutional codes,” IEEE Journal on Selected Areas in Communications,
vol. 16, no. 2, pp. 260–264, Feb 1998.

35. H. Michel and N. Wehn, “Turbo decoder quantization for UMTS,” IEEE Communi-

cations Letters, vol. 5, no. 2, pp. 55–57, Feb 2001.
36. A. P. Hekstra, “An alternative to metric rescaling in Viterbi decoders,” IEEE Trans-

actions on Communications, vol. 37, no. 11, pp. 1220–1222, Nov 1989.

