
Proceedings of the First International Workshop on Sustainable
Ultrascale Computing Systems (NESUS 2014)

Porto, Portugal

Jesus Carretero, Javier Garcia Blas
Jorge Barbosa, Ricardo Morla

(Editors)

August 27-28, 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/30277084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


NESUS
Network for Sustainable Ultrascale Computing

IC1305

First NESUS Workshop • October 2014 • Vol. I, No. 1

Efficient Parallel Video Encoding on
Heterogeneous Systems

Svetislav Momcilovic, Aleksandar Ilic, Nuno Roma, Leonel Sousa

INESC-ID / IST-TU Lisbon, Rua Alves Redol, 9, 1000-029 Lisboa, Portugal
{Svetislav.Momcilovic, Aleksandar.Ilic, Nuno.Roma, Leonel.Sousa}@inesc-id.pt

Abstract

In this study we propose an efficient method for collaborative H.264/AVC inter-loop encoding in heterogeneous CPU+GPU systems. This method
relies on specifically developed extensive library of highly optimized parallel algorithms for both CPU and GPU architectures, and all inter-loop
modules. In order to minimize the overall encoding time, this method integrates adaptive load balancing for the most computationally intensive,
inter-prediction modules, which is based on dynamically built functional performance models of heterogenous devices and inter-loop modules. The
proposed method also introduces efficient communication-aware techniques, which maximize data reusing, and decrease the overhead of expensive
data transfers in collaborative video encoding. The experimental results show that the proposed method is able of achieving real-time video
encoding for very demanding video coding parameters, i.e., full HD video format, 64×64 pixels search area and the exhaustive motion estimation.

Keywords video coding, divisible load theory, load-balancing, CPU+GPU computing

I. Introduction

The newest video coding standards, such as H.264/AVC [17] and
HEVC/H.265 [16], achieve high compression efficiencies, by rely-
ing on advanced encoding techniques (e.g. multiple partitioning
modes, large search ranges, quarter-pixel precision). On the other
hand, all these techniques dramatically increase the computational
requirements, and make real-time encoding of High Definition (HD)
video sequences hard to be achieved on any individual device avail-
able on modern desktops, such as multi-core Central Processing
Units (CPUs) and Graphics Processing Units (GPUs).

To simultaneously employ several heterogeneous devices avail-
able on modern desktops for real-time video encoding, an efficient
method for collaborative H.264/AVC inter loop on CPU+GPU sys-
tems is proposed herein. A unified execution environment was
designed to ensure efficient cross-device execution and to guarantee
the correctness of the video encoding process. It includes an exten-
sive library of highly optimized parallel algorithms for all inter-loop
video encoding modules, which are developed using the device-
specific programming models and tools (e.g. CUDA, OpenMP, etc.).
In order to minimize the over inter-loop encoding time, the proposed
collaborative environment also integrates different scheduling, load
balancing and data access management routines.

Highly efficient parallel algorithms are developed for both CPUs
and GPUs and for all inter-loop modules, namely Motion Estimation
(ME), Sub-Pixel ME (SME), Interpolation (INT), Motion Compensa-
tion (MC), Transform and Quantization (TQ), Inverse TQ (TQ−1) and
Deblocking Filtering (DBL). The integrated scheduling and load bal-
ancing routines allow efficient distribution of the workloads for these
modules over all processing devices. For the most computationally
intensive modules (i.e., ME, SME and INT), the proposed load bal-
ancing, based on Divisible Load Theory (DLT) [20], relies on realistic
and dynamically built Functional Performance Models (FPMs) [7,10]
of both communication and computation system resources. The
workloads of the remaining modules are distributed at the module

level by applying the optimal Dijkstra algorithm [4]. Furthermore,
the proposed method also includes specific, communication-aware
techniques to maximize data reuse, and to decrease the data trans-
fers overhead. Because of a similar algorithmic structure of the video
encoding inter-loop, many solutions provided herein can also be
applied to HEVC/H.265 encoders.

The obtained experimental results show that the proposed method
achieves a real-time inter-loop video encoding for full-HD (1080p)
video sequences, when applying exhaustive ME and 64×64 pixels
search area (SA) on a commodity desktop platform equipped with a
multi-core CPU and two GPUs. To the best of the authors’ knowl-
edge, this is one of the first approaches that applies adaptive load
balancing with dynamically built partial estimations of the FPMs
to tackle efficient collaborative execution of complex multi-module
problems, such as video encoding, in heterogenous environments.

II. Related Work

There are only few state-of-the-art approaches that deal with the
efficient parallel implementation of the entire video encoder (or its
main functional parts), namely, for multi-core CPU [21], GPU [22],
or CPU+GPU [14, 15] environments. In CPU+GPU systems, these
approaches either i) simply offload a single inter-loop module in its
entirety (mainly the ME) to the GPU, while performing the rest of
the encoder on the CPU [9,19], or ii) exploit simultaneous CPU+GPU
processing at the level of a single inter-loop module [15, 23].

These approaches have a limited scalability (only one GPU can
be employed) and cannot fully exploit the capabilities of CPU+GPU
systems (since the CPU is idle, while the GPU processes the entire
offloaded module) [19]. In [9] the pipelining granularity is decided
through a large set of experiments, while in [23] the cross-device load
distribution is found by intersecting the experimentally obtained
fitted full performance curves. However, both approaches impose
limited scalability over the number of processing devices and coding

1

Svetislav Momcilovic, Aleksandar Ilic, Nuno Roma, Leonel Sousa 37



First NESUS Workshop • October 2014 • Vol. I, No. 1

Motion Compensation 
(MC)

Motion Estimation (ME)
Sub-pixel Motion 
Estimation (SME)

Interpolation (INT)

Transform & Quantization 
(TQ)

Dequantization & Inverse 
Transform (TQ-1)

Deblocking Filtering 
(DBL)

En
tr

op
y 

C
od

in
g

In
tr

a 
P

re
di

ct
io

n

Current 
Frame
(CF)

Reference 
Frames
(RFs)

interpolated frame

motion vectors

intra

inter
predicted MB residual

reference macro-block (MB)

MB
R* Modules

Figure 1: H.264/AVC encoder.

parameters, and, also, introduce huge preprocessing scheduling
overheads. The method proposed in [15] use a single GPU and
constant compute-only performance parametrization, while in [18] a
simple equidistant data partitioning is applied for video encoding
in multi-GPU systems, since the CPU is only used to orchestrate the
execution across a homogenous set of GPUs.

The methods proposed herein span over three load balanc-
ing/scheduling classes for heterogenous environments, namely: si-
multaneous multi-module load balancing, static DAG-based schedul-
ing and dynamic iterative load balancing. The proposed load bal-
ancing method relies on DLT [20] and there are only a few studies
targeting the DLT scheduling in CPU+GPU systems either for gen-
eral [7] or application-specific [1] problems. In [11], the authors
apply DLT scheduling for a single-module load distribution in CPU-
only cluster environments for a custom video encoder. In [5, 13], we
proposed load balancing methods that rely on constant performance
models and linear programming for determining the cross-device
load distributions, while in [12], only the inter-prediction modules
were considered.

In this work, for the first time, the real-time video encoding on
commodity CPU+GPU platforms is investigated for a complete
H.264/AVC inter-loop, where the adaptive iterative load balancing
with on-the-fly update of partial FPMs [6,7] is applied at the level of
inter-prediction modules. The dynamically built partial estimations
of the full FPMs allow realistic and simultaneous modeling of capa-
bilities for communication links and heterogeneous devices during
the execution of several inter-loop modules. Moreover, the proposed
approach also considers the replication of certain computationally
inexpensive encoding modules (i.e., INT) over several processing
devices in order to reduce the communication overheads and achieve
significant performance gains.

III. Parallel Inter-loop video encoding on CPU
and GPU devices

In order to allow an efficient parallelization and collaborative
CPU+GPU execution, the inherent data dependences of H.264/AVC
inter-loop encoder and the computational requirements of differ-
ent encoding modules, must be considered. According to the
H.264/AVC standard [17], current frame (CF) is divided in multiple
square-shaped Macroblock (MB), which are encoded using either an
intra- or an inter-prediction mode (see Fig. 1). This standard allows
a further subdivision of the MB by considering 7 different partition-
ing modes, namely 16×16, 16×8, 8×16, 8×8, 8×4, 4×8 and 4×4

pixels. In the most computationally demanding and most frequently
applied inter-prediction mode, the prediction of each MB is obtained
by searching within already encoded Reference Frames (RFs). This
procedure, denoted as ME, is then further refined with previously in-
terpolated Sub-pixel Frames (SFs) from INT module by applying the
SME procedure. In the MC module, the residual signal is computed
according to the selected MB subdivision mode, which is found as
the best trade-off between the size of data required to encode the
residual signal and the motion vectors (MVs). The residual is sub-
sequently transformed and quantized in TQ modules, and entropy
coded (alongside with the MVs and the mode decision data), before
it is sent to the decoder. The decoding process, composed of the
TQ−1 and DBL, is also implemented in the feedback loop of the
encoder, in order to locally reconstruct the RFs.

Parallelization at the level of entire inter-loop imposes several
hard-to-solve challenges, which must be explicitly taken into account
to ensure the correctness of the overall video encoding procedure.
In detail, an efficient parallelization requires the observance of data
dependencies at several levels: i) between consecutive frames, ii)
within a single video frame, and iii) between the inter-loop modules.

In the H.264/AVC inter-loop, the encoding of the CF can not start
before the previous frames are encoded and the required RFs are
reconstructed. Such a dependency prevents the encoding of several
frames in parallel. Moreover, the inherent data dependencies be-
tween the neighboring MBs in certain inter-loop modules (such as
DBL) also limit the possibility to concurrently perform the entire
encoding procedure on different parts of a frame. Hence, efficient
module-level pipelined schemes can hardly be adopted, either for
parts of the frame or for the entire frame. Furthermore, the output
data of one module is often the input data for another (e.g., the
MVs from ME define the initial search point for the SME), which
imposes additional data dependencies between the inter-loop mod-
ules. Hence, the data-dependent inter-loop modules have to be
sequentially processed (within a single frame). The only exceptions
are ME and INT modules, which can be simultaneously processed,
since both of them use the CF and/or the RFs.

Architecturally different devices in modern CPU+GPU systems
impose additional challenges to the parallelization of individual
inter-loop modules. For example, GPUs require to exploit the fine-
gained data-level parallelism suitable for simultaneous processing on
hundreds of cores, while for CPU architectures with several general
purpose cores the parallelism can be exploited at coarser-grained
level. Therefore, it is required to parallelize the modules for each
device in the system according to both per-module parallelization
potentials and architectural characteristics of devices. For each inter-
loop module, the detailed description of parallel algorithms and
parallelization techniques applied herein can be found in [13, 15].

In what concerns the ME, efficient CPU and GPU parallelizations
and collaborative processing the Full-Search Block-Matching (FSBM)
is adopted, since the execution pattern of adaptive algorithms highly
depends on the video content, which makes the achievable perfor-
mance hard to be predicted and prevents efficient load balancing.
Moreover, the dependency on the video content causes branch di-
vergence for matching candidates examined on different GPU cores,
resulting in attaining very poor GPU performance. In fact, even the
state-of-the-art approaches dealing with the GPU parallelization of
the adaptive algorithms [3] (namely UMHexagonS [2]) were unable
of achieving better performance than CPU implementations.

2

38 Efficient Parallel Video Encoding on Heterogeneous Systems



Remaining 
Modules

4.4%

Motion 
Estimation 

(ME)
63.3%

Interpolation 
(INT)
1.5%

Sub-pixel 
ME (SME)

30.7%

(a) Quad-core Intel i7 950 (CPU_N).

Remaining 
Modules

2.7%
Motion 

Estimation 
(ME)

81.5%

Interpolation 
(INT)
3.7%

Sub-pixel 
ME (SME)

12.1%

(b) NVIDIA GeForce GTX580 (GPU_F).

Figure 2: Execution share of H.264/AVC inter-loop modules in the total
encoding time for 1080p HD sequences, 4 RFs and SA of 32×32.

Motion 
Compensatio

n (MC)
29.8%

Transform & 
Quantization 

(TQ)
8.5%

Inverse TQ 
(TQ-1)
6.8%

Deblocking 
Filtering 

(DBL)
54.9%

(a) Quad-core Intel i7 950 (Nehalem).

Motion 
Compensatio

n (MC)
19.8%

Transform & 
Quantization 

(TQ)
12.1%

Inverse TQ 
(TQ-1)
8.6%

Deblocking 
Filtering 

(DBL)
59.5%

(b) NVIDIA GeForce GTX580 (Fermi).

Figure 3: Execution share of remaining H.264/AVC inter-loop modules on
different device architectures.

Furthermore, to exploit the fine-grained data-level parallelism
required for efficient GPU parallelization and collaborative video
encoding in CPU+GPU platforms, it is also required to provide a
sufficient amount of data-independent computations that can be
simultaneously processed on hundreds of GPU cores. Accordingly,
to relax spatial data dependences imposed by the definition of SA
center, a set of temporary dependent predictors was analyzed in [12].
It was observed that the best MV found for the 16×16 partitioning
mode in the previous frame for the collocated MB represents a good
compromise for the SA center predictor. In fact, this predictor is
only used herein to compute the SA center, while the selected MVs
are then post-computed according to real median vectors of the
neighboring MBs.

In order to experimentally assess the contributions of individual
modules to the overall video encoding time, the initial inter-loop
encoding was performed for an 1080p HD video sequence on two
different device architectures, namely on quad-core Intel i7 950 pro-
cessor (Nehalem) and NVIDIA Fermi GeForce GTX580 (Fermi). Dur-
ing the initial evaluation on each device architecture, the parallelized
modules were used and the inter-loop encoding was performed with
4 RFs, the SA size of 32×32 pixels, and FSBM. As it can be observed
in Fig. 2, the inter-prediction modules (i.e., ME+INT+SME) participate
with more than 95% in overall encoding time, for both CPU and
GPU parallel implementations. Consequently, their efficient execu-
tion is crucial to achieve real-time video encoding on target desktop
systems. It is worth noting that the participation of the ME in the
overall inter-loop share highly depends on the selected encoding
parameters, such as the number of RFs, SA size, and the search
algorithm. However, the conclusions provided herein can be equally
applied to any selected parameters, considering the clear dominance
of the inter-prediction modules.

For simplicity, the Remaining Modules, i.e., MC, TQ, TQ−1 and

Algorithm 1 Collaborative Inter-loop video encoding for heteroge-
neous CPU+GPU systems

1: define the initial distributions
2: for all inter frames do
3: perform inter-loop for the defined distributions
4: initialize/update the performance models
5: define module-level distribution for R* modules
6: perform the load balancing for inter-prediction modules
7: end for

DBL, are referred herein as R* modules and their share in the overall
encoding time is typically less than 5% (see Fig. 2). In addition, Fig. 3
depicts the breakdown of the computational requirements for each
R* module. As it can be observed, in both CPU and GPU parallel
implementations the DBL represents the dominant module, with
more than 50% in overall computational share.

IV. Collaborative Inter-loop Video Encoding

The collaborative inter-loop video encoding for heterogeneous
CPU+GPU systems, proposed herein, provides unified execution
environment that dynamically instantiates the parallel CPU and GPU
algorithms for individual inter-loop modules. It is implemented
in OpenMP and CUDA programming models in order to attain
high execution control and to maximally exploit the parallelization
potential of CPU+GPU system.

According to the analysis provided in Section III, the collaborative
inter-loop video encoding is performed at a frame level in several
steps. As presented in Algorithm 1, in the first step (Algorithm 1
line 1) the initial cross-device load distributions are defined for all
inter-loop modules. In detail, for the ME, SME and INT modules,
the equidistant data partitioning is performed, while the R* mod-
ules are assigned for execution on all processing devices in their
entirety. This evaluation is conducted in order to build the initial
FPMs for each device/inter-prediction module pair, as well as to
assess the performance disparity among heterogeneous devices for
each R* module. Based on this characterization, for each subsequent
inter-frame, the inter-loop video encoding is performed on the target
CPU+GPU system according to newly determined load distribu-
tions (line 3). Afterwards, the execution and data transfer times
are recorded for each device/module pair and the corresponding
performance models are updated (line 4).

In the proposed method, different scheduling approaches are
applied for the inter-prediction (ME, SME and INT) modules and for
the R* modules. For the R* modules, the cross-device distribution
of entire modules is determined with Dijkstra algorithm [4], such
that the overall encoding time is minimized (line 5). On the other
hand, the computational load of the inter-prediction (ME+SME+INT)
sequence is distributed among all the processing devices according
to the dynamically built partial estimations of the full FPMs (line 6).

IV.1 Distribution for the R* modules
In this procedure, each of the least computationally intensive R*
modules (MC, TQ, TQ−1 and DBL) is mapped to a processing device,
such that the overall encoding time is minimized. This procedure
also reflects the device-module execution affinities and the required

Svetislav Momcilovic, Aleksandar Ilic, Nuno Roma, Leonel Sousa 39



MCCP
U 

GP
U

TQ TQ-1 DBL

MC TQ TQ-1 DBL

Kernel Time Host to Device Transfers Device to Host Transfers

tphd trhd

trdh

tqhd

tqdh

trfhd

trfdh

tffhd

tffdhtpdh

tMC
g

tMC
c

tTQg

tTQc tTQ
−1

c

tTQ
−1

g tDBL
g

tDBL
c

Figure 4: Data-flow diagram and weighted DAG structure of H.264/AVC
encoding procedure for mapping the remaining R* modules.

data transfers for possible migration of the encoding procedure
among the processing devices.

The implementation of this procedure is illustrated in Fig. 4 for
a typical CPU+GPU system. Initially, a data-flow diagram is con-
structed, such that both processing and data transfer times (in each
direction) are included for each R* module and for each devices
in the system. In fact, such data-flow diagram is a weighted DAG
that encapsulates all possible communication paths between the
accelerators and the CPU. In detail, tMC , tTQ, tTQ−1

and tDBL rep-
resent the time required to process each R* module, i.e. MC, TQ,
TQ−1 and DBL, respectively, on different device architectures (where
index c designates CPU and index g GPU device). In Fig. 4, the
edges represent the input/output data transfers to/from a certain
device, namely: i) tp is the transfer time of needed MVs from SME
and/or SFs from INT to perform the MC; ii) tr is the transfer time
of produced residual data to initiate TQ; iii) tq is the time required
to transfer quantization coefficients for TQ−1; and iv) tr f and t f f

represent the transfer times of reconstructed and filtered frames,
respectively. The transfer direction is designated by hd or dh indices
to represent the transfers occurring from the CPU (host) to the GPU
(device) or from the GPU to the CPU, respectively.

As soon as the DAG is constructed, the minimal path between
the first and last node is found. This path represents the optimal
mapping of the modules to the processing devices in the CPU+GPU
system. On the other hand, the sum of the weights of the edge within
the path represents the prediction for the smallest R* encoding time
achievable by applying the proposed method. Considering the
fixed and limited number of DAG nodes, the optimal Dijkstra’s
algorithm [4] is applied to find the minimal path.

As it can be observed in Fig. 2, individual R* modules might
have different device affinities, according to their data dependen-
cies and parallelization potential, as well as the characteristics of
target devices (number of cores, memory hierarchy etc.). However,
the migration of R* sequence among devices rarely compensate the
imposed data transfers, thus the entire R* sequence is usually per-
formed on a single (fastest) device. For simplicity, in the remaining
text, it will be assumed that the R* modules are processed on a
single device. According to the selected device/architecture, the ap-
plied scheduling will be considered as GPU-centric and CPU-centric.
However, it is worth emphasizing that this simplification is only
introduced for presentation purposes and it does not influence the
generality of the proposed load balancing approach.

IV.2 Load balancing for inter-prediction modules

The load balancing for inter-prediction (ME+INT+SME) sequence
proposed herein relies on data parallelism at the level of the parts of
the frame. In detail, it considers that each of the k CPU cores and w
GPU accelerators (i.e. pi processing devices, where i={1, .., k+w})
performs the same algorithm on different parts of the input buffers.

CF RF

ME INT

MVm SF

SME

MVs

mi

si

si
mi

si

Figure 5: Data access management for collaborative processing of
ME+SME+INT sequence.

As it is depicted in Fig. 5, the CF is partitioned among all CPU and
GPU devices, such that the ME is collaboratively performed on the
assigned CF portions, in order to produce the respective parts of
MVm buffer. The MVm buffer is further partitioned among devices,
to collaboratively perform the SME module. The simultaneously
produced MVs by SME on different devices, are then collected in the
MVs buffer in the CPU main memory. It is worth noting that while
the CPU can directly access the buffers from the main memory, for
the GPUs explicit data transfers need to be performed.

In the proposed method, the per-device load distributions are de-
termined at the level of MB-rows. The major rationale behind adopt-
ing such granularity lies in the fact that it provides low scheduling
overheads, while efficiently exploiting bandwidth of communication
lines and device performance. In contrast, at the finer-grained level,
the latency might dominate the execution, and the inevitable repack-
ing is required of the original frame format from a matrix/array of
pixels (in raster scan order) to an array of structures (MBs).

In order to eliminate the cost of expensive data-transfers for the
SF (16 times larger than CF and RF), the execution of INT module is
replicated on all devices. In fact, since the INT procedure is much
faster than the corresponding data transfers, this replication also
allows minimization of the overall inter-prediction time. Hence,
the list of complete SFs is kept updated on each processing device.
Accordingly, the distribution of the SME workload, considers only
the input and output transfers of the full-pixel and quarter-pixel
MVs, respectively. In order to minimize the memory requirements,
both lists of SFs and RFs are updated in the form of FIFO circular
buffers, where the newest SF/RF replaces the oldest one.

In Fig. 6, the proposed scheduling method is presented in two
variants, i.e., CPU-centric (Fig. 6(a)) and GPU-centric (Fig. 6(b)). In

INTME SME

CF ME INT MVsSMERF

CP
U 

Co
re

GP
U 

i

τtot

Kernel Time Host to Device Transfer Time Device to Host Transfer Time

R*

τb

(a) CPU centric.

INTME

CF ME INT

SME

SME

CF ME INT MVsSMERF

CP
U 

Co
re

GP
U 

1
GP

U 
i

τtot

Kernel Time Host to Device Transfer Time Device to Host Transfer Time

MVs R*

τb

RF+1

(b) GPU centric.

Figure 6: Scheduling strategy for collaborative inter-loop video encoding.

40 Efficient Parallel Video Encoding on Heterogeneous Systems



Figure 7: Performance of the proposed method for different SA sizes, single
RF and 1080p resolution.

both cases, there are only two synchronization points for video en-
coding inter-loop, namely: i) τb at the end of collaborative processing
of inter-prediction sequence; and ii) τtot at the end of inter-loop.

For both variants, the inter-prediction processing on the GPU that
does not perform R* modules (i.e., GPUi) also requires the initial
transfer of the CF and RF input buffers, and the output transfer of
the produced part of MVs buffer (see Fig. 6 and 5). However, for
the GPU that processes the R* modules (i.e., GPU1 in Fig. 6(b)), the
output transfer of the MVs buffer is not required, since the MVs are
only needed on the device that performs the MC module. However,
since the MVs produced on the other devices must be collected, the
input transfer for the remaining part of the MVs buffer is required
after the τb point. At the end of R* sequence, the produced RF
must be returned to the CPU, in order to allow processing of the
next inter-frame on other devices. Due to the replication of the INT
module, the transfer of SF buffer is not required.

In each iteration (inter-frame), the distribution vectors m={mi}
and s={si} are determined, where the mi and si represent the num-
ber of MB-rows assigned to the ME and SME, respectively, for each
processing device pi . The m and s distribution vectors are deter-
mined by the application of the MSLBA algorithm [7] and by relying
on dynamically built FPMs for each device-module pair. The partial
estimations of the full FPMs are constructed by applying piece-wise
linear approximation on a minimum set of points, i.e., by considering
the performance obtained in previous iterations, and the asymmetric
bandwidth of communication lines. In this algorithm the distribu-
tions are firstly found in the real domain, while the final integer
distributions (m and s) are obtained in a refinement procedure [7].

V. Experimental Results

For the evaluation purposes, the proposed method is integrated
in JM 18.6 reference coder [8]. The Baseline Profile was applied,
and two different quantizer values (28 and 33). Also, two different
1080p sequences are tested, namely RollingTomatoes and Sun f lower.
Presented values are the average performance obtained for these
parameters/sequences. However, it is worth noting that the obtained
performance does not significantly depend on the video content.
The tests were executed on different desktop platforms composed of
the following devices: Intel i7 4770K (Haswell) CPU, Intel Core i7
950 (Nehalem) CPU, NVIDIA Tesla K40c (Kepler) GPU and NVIDIA

Figure 8: Performance of the proposed method for different number of RFs,
32×32 pixels SA and 1080p resolution.

GeForce GTX 580 (Fermi). The system composed of single Haswell
CPU and single Kepler GPU is assigned as Sys_HK, while the system
composed of the same CPU and two Kepler GPUs is Sys_HKK. On
the other hand, the system composed of a single Nehalem CPU
and a single Fermi GPU is assigned as Sys_NF, while the system
composed of the same CPU and two Fermi GPUs is Sys_NFF.

Figure 7 presents the average performance in frames per second
(fps) obtained with the proposed method, when considering different
SA sizes, single RF and full HD (1080p) video sequences. As it can be
observed, a real time encoding (more than 25 fps) was achieved in all
tested systems for 32×32 pixels SA. In SysHKK platform, a real-time
encoding (more than 33 fps) was achieved even for more demanding
64×64 pixels SA, while in SysHK a near real-time performance was
achieved (more than 22 fps) with the same coding parameters.

Figure 8 shows the experimentally achieved average performance
(in fps) with the proposed method in different systems and for
different number of RFs and 32×32 pixels SA. As it can be observed,
all the systems except the Sys_NF were able of achieving a real-time
performance of more than 25 fps for multiple RFs. Moreover, in
Sys_HKK a real-time performance for up to 5 RFs was achieved.

In addition to the ability of the proposed method to achieve a
real-time performance for very demanding coding parameters, Fig. 7
and 8 also show that the proposed method is scalable over both the
SA size and the number of RFs. This is achieved mainly due to the
high efficiency of the proposed load balancing approach and the
developed highly optimized parallel CPU and GPU algorithms.

VI. Conclusions

In this study, an efficient method for collaborative H.264/AVC inter-
loop in heterogeneous CPU+GPU systems was proposed. In order
to cope with the inherent data-dependencies and computational
complexity of inter-loop modules, a unified execution environment
was designed to ensure efficient cross-device execution and to guar-
antee the correctness of the video encoding process. It also includes
an extensive library of highly optimized parallel algorithms for
all inter-loop video encoding modules, which are developed using
the device-specific programming models and tools. The integrated
scheduling and load balancing routines allow efficient distribution
of the workloads for these modules across all processing devices.
For the most computationally intensive inter-prediction modules,

Svetislav Momcilovic, Aleksandar Ilic, Nuno Roma, Leonel Sousa 41



First NESUS Workshop • October 2014 • Vol. I, No. 1

the proposed adaptive load balancing relies on realistic and dynami-
cally built FPMs of both communication and computation system
resources. The workloads of the remaining modules are distributed
according to their module-device affinities by applying the opti-
mal Dijkstra algorithm. In order to minimize the overall inter-loop
encoding time, the proposed collaborative encoding method also in-
tegrates data access management and specific, communication-aware
replication techniques to maximize data reuse, while decreasing the
data transfers overheads. The experimental results shown that the
proposed method is able of achieving real-time video encoding for
full HD resolution, with a 64×64 pixels SA and exhaustive ME on
the state-of-the-art commodity CPU+GPU platforms. Moreover, the
scalability of the proposed method over the SA size, number of RFs
and number of processing devices was experimentally shown.

Acknowledgment
This work was supported by national funds through FCT
– Fundação para a Ciência e a Tecnologia, under projects
PEst-OE/EEI/LA0021/2013, PTDC/EEI-ELC/3152/2012 and
PTDC/EEA-ELC/117329/2010.

References

[1] G. Barlas, A. Hassan, and Y. Al Jundi. An analytical approach
to the design of parallel block cipher encryption/decryption:
A CPU/GPU case study. In Proceedings of the Int. Conf. on Par.,
Dist. and Network-Based Proc. (PDP), pages 247–251, 2011.

[2] Z. Chen, J. Xu, Y. He, and J. Zheng. Fast integer-pel and
fractional-pel motion estimation for H.264/AVC. In Journal of
Visual Communication and Image Representation, pages 264–290,
October 2005.

[3] N.-M. Cheung, X. Fan, O. C. Au, and M.-C. Kung. Video
coding on multicore graphics processors. IEEE Signal Processing
Magazine, 27(2):79–89, 2010.

[4] E. W. Dijkstra. A note on two problems in connexion with
graphs. Num. Math., 1(1):269–271, Dec. 1959.

[5] A. Ilic, S. Momcilovic, N. Roma, and L. Sousa. FEVES: Frame-
work for efficient parallel video encoding on heterogeneous
systems. In Proceedings of the International Conference on Parallel
Processing, pages 165–174, 2014.

[6] A. Ilic and L. Sousa. Scheduling divisible loads on heteroge-
neous desktop systems with limited memory. In Proceedings of
the Euro-Par Workshops, pages 491–501, 2012.

[7] A. Ilic and L. Sousa. Simultaneous multi-level divisible load
balancing for heterogeneous desktop systems. In Proceedings
of the IEEE Int. Symposium on Parallel and Distributed Processing
with Applications (ISPA), pages 683–690, 2012.

[8] ITU-T. JVT Reference Software unofficial version 18.6.
http://iphome.hhi.de/suehring/tml/, 2014.

[9] Y. Ko, Y. Yi, and S. Ha. An efficient parallelization technique for
x264 encoder on heterogeneous platforms consisting of CPUs
and GPUs. Journal of Real-Time Image Proc., pages 1–14, 2013.

[10] A. Lastovetsky and R. Reddy. Distributed data partitioning for
heterogeneous processors based on partial estimation of their
functional performance models. In Proceedings of the Euro-Par,
pages 91–101, 2010.

[11] Ping Li, B. Veeravalli, and A.A. Kassim. Design and implemen-
tation of parallel video encoding strategies using divisible load
analysis. IEEE Trans. on Circuits and Systems for Video Technology,
15(9):1098 – 1112, September 2005.

[12] S. Momcilovic, A. Ilic, N. Roma, and L. Sousa. Collaborative
inter-prediction on cpu+gpu systems. In Proceedings of the IEEE
International Conference on Image Processing, 2014.

[13] S. Momcilovic, A. Ilic, N. Roma, and L. Sousa. Dynamic
load balancing for real-time video encoding on heterogeneous
CPU+GPU systems. IEEE Transactions on Multimedia, 16(1):108–
121, Jan 2014.

[14] S. Momcilovic, N. Roma, and L. Sousa. Multi-level paralleliza-
tion of advanced video coding on hybrid CPU+GPU platforms.
In Proceedings of the Euro-Par Workshops, pages 165–174, 2012.

[15] S. Momcilovic, N. Roma, and L. Sousa. Exploiting task and
data parallelism for advanced video coding on hybrid cpu+ gpu
platforms. Journal of Real-Time Image Proc., pages 1–17, 2013.

[16] J. Ohm and G.J. Sullivan. High efficiency video coding: the next
frontier in video compression [standards in a nutshell]. Signal
Processing Magazine, IEEE, 30(1):152–158, Jan 2013.

[17] J. Ostermann et al. Video coding with H.264/AVC: tools, per-
formance, and complexity. IEEE Circuits and Systems Magazine,
4(4):7–28, April 2004.

[18] B. Pieters, C. F. Hollemeersch, P. Lambert, and R. Van De Walle.
Motion estimation for H.264/AVC on multiple GPUs using
NVIDIA CUDA. In Proceedings of the Society Photo-Optical In-
strumentation Engineers, page 12, 2009.

[19] R. Rodríguez-Sánchez, J. L. Martínez, G. Fernández-Escribano,
J. L. Sánchez, and J. M. Claver. A fast GPU-based motion
estimation algorithm for H. 264/AVC. In Advances in Multimedia
Modeling, pages 551–562. Springer, 2012.

[20] B. Veeravalli, D. Ghose, and T. G. Robertazzi. Divisible load
theory: A new paradigm for load scheduling in distributed
systems. Cluster Computing, 6:7–17, 2003.

[21] H. Wei, J. Yu, and J. Li. The design and evaluation of hierar-
chical multi-level parallelisms for H.264 encoder on multi-core
architecture. Comput. Sci. Inf. Syst., 7(1):189–200, 2010.

[22] N. Wu, M. Wen, J. Ren, H. Su, and D. Huang. High-performance
implementation of stream model based H.264 video coding on
parallel processors. In Multimedia and Signal Processing, volume
346, pages 420–427. Springer Berlin Heidelberg, 2012.

[23] J. Zhang, J. F Nezan, and J.-G. Cousin. Implementation of Mo-
tion Estimation Based on Heterogeneous Parallel Computing
System with OpenCL. In Proceedings of the IEEE Int. Conf. on
High Perf. Comp. and Comm., pages 41–45, 2012.

6

42 Efficient Parallel Video Encoding on Heterogeneous Systems


