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ABSTRACT 

To achieve the high coding efficiency the H.264/AVC standard offers, the encoding process quickly becomes 

computationally demanding. One of the most intensive encoding phases is motion estimation. Even modern CPUs 

struggle to process high-definition video sequences in real-time. While personal computers are typically equipped with 

powerful yet cost-effective Graphics Processing Units (GPUs) to accelerate graphics operations, these GPUs lie dormant 

when encoding a video sequence. Furthermore, recent developments show more and more computer configurations come 

with multiple GPUs. However, no existing GPU-enabled motion estimation architectures target multiple GPUs. In 

addition, these architectures provide no early-out behavior nor can they enforce a specific processing order. We 

developed a motion search architecture, capable of executing motion estimation and partitioning for an H.264/AVC 

sequence entirely on the GPU using the NVIDIA CUDA (Compute Unified Device Architecture) platform. This paper 

describes our architecture and presents a novel job scheduling system we designed, making it possible to control the 

GPU in a flexible way. This job scheduling system can enforce real-time demands of the video encoder by prioritizing 

calculations and providing an early-out mode. Furthermore, the job scheduling system allows the use of multiple GPUs 

in one computer system and efficient load balancing of the motion search over these GPUs. This paper focuses primarily 

on the execution speed of the novel job scheduling system on both single and multi-GPU systems. Initial results show 

that real-time full motion search of 720p high-definition content is possible with a 32 by 32 search window running on a 

system with four GPUs.  
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1. INTRODUCTION 

Today, the high-pace business of the videogame market keeps pushing graphics card production and performance levels 

higher and higher. With memory bus widths of up to 512 bit, high speed memory chips delivering up to 141 gigabytes 

per second, and high processor clock speeds, graphics cards deliver specifications never seen in consumer-level 

hardware before. Graphics cards these days hold a Graphics Processing Unit, called the GPU. This is a powerful 

processor predominantly used in videogames to render realistic 3-D environments. Because of the very high parallelism 

and floating-point computational capability, performance levels are impressive. Along with these GPUs, the graphics 

bus, now PCI-Express version 2, has evolved to a high-performance bus capable of delivering eight gigabytes of data per 

second in full duplex, a number that approaches the speed of the system memory bus. 

While the first graphics cards provided a fixed function pipeline with no programmability at all, today’s cards can be 

programmed either using a 3-D graphics API with so-called shaders or by using a vendor-specific API. Shaders are small 

programs running on the GPU, processing geometrical data or rasterizing 3-D scenes. OpenGL and Microsoft’s Direct3D 

are examples of 3-D graphics APIs. These APIs are difficult and not transparent in use for general purpose applications. 

Therefore, the vendor-specific APIs came as an answer to these so called General-Purpose GPU (GPGPU) applications. 

Examples are the ATI CTM (Close To the Metal) and NVIDIA CUDA (Compute Unified Device Architecture) 

platforms. These general-purpose computing platforms allow users to directly address the GPU, without the need for 

extensively rewriting the algorithms for a graphics context. 
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H.264/AVC
1
 is the latest international video coding standard developed by the Joint Video Team (JVT) and successor to 

MPEG-2 Video and MPEG-4 Visual. The standard comes with a set of new tools to enable high compression efficiency. 

These tools include tree-structured Motion Compensation (MC), multiple reference pictures, and quarter-sample motion 

compensation accuracy. To achieve a high compression efficiency using these tools, the encoding process becomes 

computationally-demanding, making it difficult on modern CPUs to encode in real-time
2
.  

A number of publications have targeted the powerful GPU architecture to accelerate motion estimation
3-9

. Most of these 

address the GPU using a 3-D graphics library such as OpenGL. Because of this, algorithms need to be translated to 3-D 

operations such as rendering a vertex grid
4
. While functional, the limited flexibility of the OpenGL library in the context 

of General Purpose GPU applications does not allow straightforward and flexible implementations.  

Furthermore, except for Chen et al.
6
, no system targets the H.264/AVC macroblock partitioning scheme. It is up to the 

CPU to determine the best partitioning. However, local best motion vectors for 4x4 blocks cannot simply be merged to 

determine the best motion vector for the parent macroblock or macroblock partitions. Therefore, a partitioning scheme 

has to be included in the actual search, and therefore, executed by the GPU. Also, all implementations target full search. 

No early-decision behavior is supported when a motion vector with low cost is quickly found. This causes coding 

complexity to be fixed. Another feature of the H.264/AVC standard, motion vector prediction, is also not considered in 

the current state-of-the-art. 

Additionally, to the best of authors’ knowledge, no GPU-enabled motion estimation algorithm inherently supports 

multiple GPUs. Latest developments show more and more systems having two GPUs: an on-board GPU integrated in the 

mainboard, and an additional discrete GPU. Furthermore, some state-of-the-art graphics cards are actually two GPUs on 

one board. Finally, because a computer system can be far more easily expanded with additional GPUs than CPUs, multi-

GPU systems become an interesting computing platform.  

With multiple GPUs, possibly each having its own processing speed, it becomes important to be able to steer these GPUs 

in a flexible way. While a discrete state-of-the-art GPU could be able to process two slices real-time, an on-board device 

could hardly be able to finish a single slice in time. Therefore, the platform must be able to steer the arithmetic intensity 

of the motion estimation process per device. 

In this paper, we propose a GPU-based motion search architecture designed for encoding H.264/AVC video bitstreams. 

We essentially introduce a motion estimation algorithm using a GPU job scheduling system capable of performing 

motion search and macroblock partitioning for encoding an H.264/AVC bitstream on one or more GPUs. The 

architecture uses the recently introduced NVIDIA CUDA programming framework to steer the GPUs. 

The remainder of this paper is organized as follows. Section 2 provides an introduction to the H.264/AVC standard with 

an emphasis on the encoding phases we plan to execute on the GPU. The NVIDIA CUDA platform is introduced in 

Section 3. Section 4 presents our GPU-based motion estimation platform based on our job scheduling system. Section 5 

extends the previous section by discussing the addition of multi-GPU support to the platform. In Section 6, initial 

performance measurements are compared and discussed. Finally, Section 7 concludes this paper and addresses future 

work. 

2. H.264/AVC MOTION ESTIMATION OVERVIEW 

In this section, a short introduction to some of the coding tools available in the H.264/AVC standard is given, 

emphasizing the computational complexity of the respective encoder phases. For a detailed overview of the H.264/AVC 

standard, the reader is referred to Sullivan et al.
1
. 

2.1 H.264/AVC Overview 

At the time of writing, H.264/AVC is the latest international video coding standard developed by the Joint Video Team 

(JVT), a collaboration of the Video Coding Experts Group (VCEG) of the ITU-T and the Moving Picture Experts Group 

(MPEG) of ISO/IEC. By using state-of-the-art coding techniques, the standard provides enhanced coding efficiency and 

flexibility of use for a wide range of applications. A trade-off between coding efficiency and implementation complexity 

was considered. The accomplished compression efficiency has seen an average improvement of at least a factor two 

compared to MPEG-2 Video
1
. However, the state-of-the-art coding techniques used in this standard require a significant 

amount of processing power
2,3
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2.2 Slice Prediction Modes 

H.264/AVC divides pictures into slices, which are areas of the picture that can be decoded independently. Slices contain 

macroblocks with different macroblock subdivisions, determined using three iterative steps (tree-structured MC). First, 

slices are divided into macroblocks of 16x16 pixels. These macroblocks can be further divided into macroblock 

partitions of 8x16, 16x8, or 8x8 pixels. Finally, 8x8 macroblock partitions can in turn be divided in sub-macroblock 

partitions of 4x8, 8x4, or 4x4 pixels. It is clear that this tree-structured MC increases coding complexity over MC 

techniques of previous video coding standards. For instance, a high-definition video sequence of 1920 by 1080 pixels 

may consist of 129,600 sub-macroblock partitions, which all have to be predicted. Decoding is done on a macroblock-

by-macroblock basis, where the decoding process of a macroblock is dependent on previously decoded macroblocks. 

This is reflected in the encoder, where typically each macroblock in a slice is handled serially. 

To eliminate redundancy, macroblock sample values can be predicted either by intra or inter prediction. Intra prediction 

predicts sample values by using neighboring samples from previously-coded blocks in the current slice, located to the 

left and/or above the block that is to be predicted. Macroblocks predicted using intra prediction are called I macroblocks.  

Inter prediction uses decoded pictures present in the Decoded Picture Buffer (DPB) to predict macroblocks. A first 

possibility is to predict the macroblock based on one or two of up to 16 previously decoded reference pictures. An index 

is used to choose the desired reference picture from the Reference Picture List (RPL), together with a motion vector to 

retrieve the correct prediction. Each macroblock or macroblock partition may have its own reference picture. Sub-

macroblock partitions inherit the reference picture index from its parent macroblock partition. The macroblock predicted 

with this type of prediction is called a P macroblock. A slice containing only P and I macroblocks is called a P slice. A 

second possibility is to predict the macroblock based on the weighted average of two motion-compensated prediction 

values. Slices that contain macroblocks with this type of prediction are called B slices. MC can be performed at integer 

pixel level and sub-pixel level (e.g., half-pel and quarter-pel), hence different pixel interpolation strategies are needed. 

For instance, the calculation of half-pels uses a 6-tap interpolation filter.  

To eliminate redundancy between the motion vectors of successive macroblocks, motion vectors in H.264/AVC are 

predicted using up to three previously decoded motion vectors from surrounding blocks, as shown in Figure 1. Because of 

this, macroblocks are interdependent and the encoding process needs to be completed in raster-scan order. 

2.3 Motion Estimation 

The sheer possibilities and number of inter prediction modes prove the flexibility of the H.264/AVC standard. However, 

this flexibility also introduces additional implementation complexity and extra requirements concerning processing 

power. To achieve an optimal encoding rate, each partitioning type has to be handled, all sub-sample motion paths have 

to be searched, and this process is to be repeated for all reference frames. Furthermore, inter macroblock dependencies 

prohibit efficient parallel encoding of macroblocks disabling the use of multiple threads per slice. With the increasing 

popularity of high-definition video sequences, computational complexity even further increases. 

Various authors
2-5

 conclude that motion estimation is the most demanding of all encoding tools. This is because of the 

large number of motion vectors that need to be searched within the search window. For each motion vector, the cost of 

that vector is determined using either the Sum of Absolute Differences (SAD) or another cost function. For a search 

window of 128 by 128 samples, this means that the cost function is used to compare each of these 16,384 positions to the 

current macroblock. Enabling 16 possible sub-sample positions per vector increases the number of comparisons by a 

factor of 16.  

Advanced search algorithms are typically used to limit search positions, possibly combined with early-decision or early-

out. In a typical video sequence, it can be seen that lots of motion vectors are predictable, either pointing to the current 

position plus a very small vector (e.g. {[-1,1],[-1,1]}), or a vector following the motion of the picture content according 

to previously found motion vectors. In order not to waste any processing power, motion search can best be started at 

these positions. When the cost of the found motion vector is lower than a certain threshold, the motion search can be 

aborted for that block. 
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Figure 1: Motion vector prediction using motion vectors of surrounding blocks A, B, and C. If C is not available, D is used. 



 

 
 

 

3. INTRODUCTION TO THE NVIDIA CUDA PLATFORM 

Our GPU-driven motion estimation platform for H.264/AVC encoding relies on the NVIDIA CUDA computing 

architecture to steer the GPU. CUDA is a new computing architecture from graphics card manufacturer NVIDIA, 

targeted at using the GPU to accelerate the execution of computational problems. It enables the user to deliver a large 

amount of computations to the GPU, which is seen as a dedicated super-threaded co-processor in the CUDA 

programming model.  

3.1 NVIDIA CUDA Programming Model 

In the NVIDIA CUDA computing architecture
10

, the GPU, which has its own DRAM, is viewed as a dedicated co-

processor to the CPU or host. In this model, the GPU runs many jobs in parallel, called threads. Though the name 

suggests a similarity with traditional CPU threads, there are a number of differences, the most important one being the 

lightweight nature of the GPU threads. The GPU can manage a significant number of such threads simultaneously 

because GPU threads come with little overhead (i.e., little creation time). Consequently, context switching can be done 

fast. This enables the GPU to execute thousands of threads in parallel while the CPU typically processes only a dozen of 

threads, not necessarily in parallel. Consequently, to fully utilize the power of the GPU, the user has to provide a 

sufficient number of jobs to be processed in threads. 

To use the GPU in calculations, data-parallel portions of an application are executed on the device as kernels which run 

many threads in parallel. NVIDIA has chosen to structure and group together threads in entities called blocks. A kernel is 

executed as a grid of thread blocks. Figure 2(a) shows this model. All threads in a thread block share data through low-

latency shared memory and can cooperate by synchronizing execution with each other. Threads from two different 

blocks cannot communicate with each other. 
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Figure 2: From left to right as stated in the CUDA Programming Guide
10

: (a) CUDA Programming Model; (b) CUDA Hardware 

Model; (c) CUDA Memory Model.      

3.2 NVIDIA CUDA Hardware Model 

Figure 2(b) shows the NVIDIA CUDA hardware model. The underlying hardware model differs from the programming 

model. Here, a number of multiprocessors are available, each having a fixed number of processors. Each multiprocessor 

is characterized by a Single Instruction, Multiple Data architecture (SIMD). Each processor of the multiprocessor 

executes the same instruction at a given clock cycle, but operates on different data. This concept is known as lock-step 

execution. Consequently, when different processors follow different execution paths, processors not following the same 

branch are suspended. Different execution paths are consecutively executed until the threads can converge back to the 

same execution path. This means control flow instructions, and therefore heterogeneous program execution paths, have 

to be avoided or an optimal computational throughput cannot be reached.  

Each multiprocessor executes one or more blocks using time slicing. On a multiprocessor, each block is split into SIMD 

groups of threads called warps. At any given time, a single warp is executed over all processors in the multiprocessor. A 

thread scheduler periodically switches from one warp to another. This happens in a smart way, for example, when all 



 

 
 

 

threads from the warp execute a memory fetch and have to wait several clock cycles for the result. For the GeForce 280 

GTX graphics card, the warp size is 32. This implies that, at any given time, 32 threads are executed simultaneously on a 

single multiprocessor. The GeForce 280 GTX has 30 multiprocessors. Consequently, at a given time, 960 threads are 

executed in parallel. 

3.3 Memory Model 

Figure 2(b) and Figure 2(c) show the CUDA memory model from respectively the hardware model and the programming 

model viewpoint. This memory model complicates programming CUDA because of its many layers but increases 

flexibility. On a given multiprocessor, each processor or thread has a number of registers available. Shared Memory, a 

very fast type of DRAM, is shared between processors in a multiprocessor. This memory is typically 16 KB in size. 

Global Memory is high-latency memory, available from all threads, but it is not cached. Constant Memory is a portion of 

the Global Memory to store constants accessible from threads. Texture Memory is a high-latency memory with some 

extra features specifically designed for texture filtering. Texture Memory offers for example bilinear filtering, as well as 

automatic texture address cropping. Both Constant Memory and Texture memory have a small cache enabling faster 

memory access for recurrent memory locations. It is up to the user to select the most appropriate kind of memory. CUDA 

supports atomic operations since architecture version 1.1, enabling inter-thread global memory access without 

introducing race conditions. 

3.4 Addressing Multiple GPUs 

Addressing multiple GPUs using NVIDIA CUDA can be done using dedicated run-time API calls. Multiple host threads 

are set up, with each thread launching its own CUDA kernel using its own CUDA context. Using the cudaSetDevice()-

command, a GPU can then be selected and data can be communicated per host thread. Unfortunately, the current 

NVIDIA CUDA implementation (version 2.1) cannot copy GPU memory directly over different graphics cards.  

4. SINGLE-GPU MOTION SEARCH USING CUDA 

In this section, first, the general methodology of the architecture is discussed. Then, the proposed motion search 

architecture is described for use with a single GPU. A new job scheduling system is proposed for use with the NVIDIA 

CUDA platform, as well as a way to perform macroblock partitioning in the CUDA threads. 

4.1 Methodology 

Because they are independent of each other, slices can be processed in parallel in a GPU thread. However, because 

typically a low number of slices are used in a video picture, concurrency is low, and therefore, execution speed on 

CUDA hardware. In order to exploit the available GPU processing power, multiple macroblocks need to be processed in 

parallel per slice. However, because of inter-macroblock dependencies, drift can be introduced this way. Therefore, the 

proposed motion search architecture processes macroblocks serially in the CPU thread, but uses data calculated in 

advance in parallel on the GPU. Before starting the encoding process of a video picture, the input video sequence is 

analyzed and the results are passed to the encoder. By isolating bottleneck calculations and doing these calculations in 

advance in parallel, faster encoding times and/or better rate distortion can be achieved. Special care needs to be taken 

that the pre-calculations do not introduce drift at the macroblock encoder. For motion estimation, possible pre-

calculations include motion search, macroblock partitioning, and motion vector cost calculations. 

Figure 3 shows this method. Here, three CPU or host encoding threads encode three slices in parallel. Within each host 

thread, macroblocks are processed serially using the available motion information provided by the GPU motion 

estimation thread or device thread, running parallel to the host threads. The device thread will be implemented using 

NVIDIA CUDA kernel operations. Each CUDA thread will handle a certain amount of macroblocks of the video picture. 

4.2 Scheduling System 

Note that the motion information provided by the device controller thread in Figure 3 is only available when the device 

thread has finished, as a CUDA kernel finishes when all CUDA threads of that kernel are finished. Because of the 

hardware overhead of initializing the GPU, it would be inefficient to start a motion search for each macroblock. Then 

again, scheduling all macroblocks on the hardware could mean that the host thread is waiting while encoding the first 

macroblock, and precious CPU resources are not used. For this reason, it can be useful to enforce a certain order of 

calculations in the GPU thread. Furthermore, to ensure real-time processing, flexibility increases if the motion search can 



 

 
 

 

iterate from fast, but inaccurate, to slow but complete results, depending on the available time. For these reasons, we 

developed a scheduling system for motion estimation on top of the NVIDIA CUDA platform. 
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Figure 3: CPU and GPU encoding threads. 

One important target of establishing a processing order is to use an efficient early-out strategy as explained in Section 

2.3. The early-out behavior partially conflicts with the CUDA architecture. In CUDA, the hardware is occupied until all 

threads of the current kernel are finished. This means that the motion search for a set of macroblocks takes as long to 

process as the slowest search. So while all other threads are finished already with highly-predictable motion vectors, the 

hardware is still occupied for a few motion vectors. So in order to achieve an early-out behavior and make the results 

available for the host thread to process, the motion search is explicitly cut into several sub-parts.  

To describe a sub-part, we introduce a description of a motion search task including its (intermediary) results. We call 

this a Motion Search Job or MSJ. This description can contain information about the macroblock position, the motion 

vectors already searched, the best motion vectors found so far, etc. Previous work in motion estimation on the GPU 

exploits the processing structure to describe the current work description for a certain pixel shader
3,7,8

 or CUDA thread
6
. 

For example, the pixel position in the 3-D world defines the macroblock position. In our architecture, instead, we let 

each thread load the next MSJ, retrieve the process parameters from the MSJ, execute it, and update its status. This 

enables dynamic scheduling of jobs. 

To enforce a processing order, for example to achieve an efficient early-out behavior, we schedule a number of MSJs on 

the hardware in a kernel, called an MSJ Batch or MSJB. Each MSJ in the MSJB will perform a part of the motion search. 

Next, the results of that MSJ batch can be downloaded to the CPU and used by the CPU encoder thread while the GPU in 

parallel is processing the next job batch.  

Figure 4 shows this iterative process. In the figure, n job batches are scheduled. Each job iteration is processed and job 

descriptions are updated.  Note that the same MSJ can be scheduled with different parameters multiple times in one 

batch, as well as over multiple batches. For example, Figure 5 shows how the task of searching the search window of one 

macroblock can be split over two MSJs. This process is repeated until all MSJs are done, i.e. found a good motion 

vector. 

With this scheduling system in mind, Figure 3 can now be evolved to Figure 6.  Here, each host encoding thread can use 

the motion vector collection currently presented by the GPU. For example, the third slice encoding thread can use the 

best motion vectors available. This is in contrast to the first and second encoding thread, which each use intermediary 

results. 

4.2.1 Job loading and saving 

Each thread can load its job in CUDA shared memory reserved for that thread. After the job is finished, the thread can 

either update its job status in the busy list, or write out the results in the done list. As the number of threads already in the 

busy list is unknown to each thread, special CUDA atomic operations are used to retrieve an MSJ busy list index. Even 

though atomic writes are slow compared to normal writes
10

, the CUDA scheduler is still able to schedule additional ALU 

instructions in the mean time, hiding the large memory latency. To write results out in the done list, intermediate MSJ 

descriptions are dropped, and only relevant information is written out at a fixed position in global memory.  
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Figure 4: Iterative job scheduling process. A new MSJ batch is 

loaded and executed every iteration. 
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Figure 5: Two MSJs working together to process the search 

window of a single macroblock. 
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Figure 6: CPU encoding threads using each the latest available MSJ batch results from the GPU motion estimation kernel. 

4.3 Macroblock Partitioning 

As explained in Section 2, H.264/AVC uses tree-structured motion compensation where every macroblock can be 

divided into a number of macroblock partitions. The macroblock partitioning with the lowest cost is chosen by the 

encoder and coded in the output bitstream. For optimal results, all macroblock partitions need to be considered. 

Calculation of the partition costs by the CUDA threads is described in the following paragraph. 

Each thread processes the smallest unit possible, a 4x4 sub-macroblock partition. This way, each macroblock is 

processed by 16 threads. In order to calculate the costs of the different partitions of the macroblock, the threads work 

together by sharing memory and synchronizing their execution. This is shown in Figure 7. Threads are synchronized 

after establishing the next potential motion vector. Each thread starts the motion search for its sub-macroblock partition 

and updates its local minimum cost and matching motion vectors. Next, threads are synchronized again and the different 

costs per sub-macroblock partition are merged to get the cost of the merged partitions, e.g. an 8x16 block. Note that 

though this merge action is required on a macroblock basis, calculations are spread over the 16 threads to achieve the 

most efficient arithmetic throughput. Next, the process can start over for the next motion vector. When a good motion 

vector was found, or the maximum number of iterations per thread was reached, the MSJ is updated and written to either 

the done or the busy list. 

A motion search for one macroblock is described in one MSJ. This way, 16 threads work together to execute one MSJ. 

Once the entire part of the search window prescribed by the MSJ is done, the result is written to the busy or done list. 

Load and store operations to global memory are spread over the 16 threads. Because of this, CUDA’s coalesced memory 

access feature is enabled. When CUDA threads each access a memory word on successive addresses, the memory words 

can be loaded from global memory using a single instruction. NVIDIA calls this memory coalescing and it allows up to a 

factor 4 more memory throughput, according to NVIDIA
10

. A CUDA block now contains 256 threads laid out in a 

pattern shown in Figure 8. This way, each CUDA block processes 16 MSJs of the current MSJ batch, representing 16 

macroblocks laid out in a 4 by 4 pattern.   
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Figure 7: Sixteen CUDA threads work together to calculate the 

total cost of the macroblock and its partitions. 
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Figure 8: CUDA block mapping. 

 

4.4 Multiple reference frames 

By using a three-dimensional CUDA texture, a set of 2-D textures can be addressed using a reference picture index. This 

index is included in the MSJ description. This way, searching in multiple reference frames can be easily scheduled, 

either in one iteration, or, for example to respect real-time constraints, after the first few iterations on the first reference 

frame. This way, the more time available or the faster the encoding process is, the more reference frames can be tested. 

4.5 Motion Information Cost Function and Motion Vector Prediction 

The current implementation uses the Sum of Absolute Differences (SAD) as a distortion measure, due to its simplicity. 

Because of the modularity of the code, different cost functions can be implemented and inserted in the platform, using 

limited motion vector information from surrounding macroblocks. 

In H.264/AVC, the motion vector for each block is predicted using three previously decoded motion vectors from 

surrounding blocks, as stated in Section 2.2 and shown in Figure 1. Therefore, the cost of a motion vector depends on the 

similarity of it with the motion vector predictor. Because each macroblock is processed in parallel, surrounding 

macroblocks A, B, and C in Figure 1 are not available. Therefore, when possible, a rough estimation of the motion vectors 

used in (macro)blocks A, B, and C is used.  

At a given time, the best motion vectors since the last iteration of blocks A, B, and C are available. To access information 

over CUDA block boundaries, global memory write, read, and synchronization operations are necessary, making the 

rough estimation potentially slow. Because of this, only surrounding motion vectors within CUDA blocks are 

considered. As race conditions can occur when threads start reading shared memory of surrounding threads, 

synchronization operations are needed. However, because it is already a rough estimation, the impact of race conditions 

is believed to be minimal so synchronization operations can be omitted. In a worst case scenario, the prediction uses a 

mix of the previously best motion vector and the newly found best motion vector of macroblocks A, B, and C. Note that 

to avoid race conditions within motion vector components, the two vector components are written as a single 32-bit 

word.  

4.6 Sub-sample Interpolation 

Our current implementation only supports full sample motion search. A possible way to extend the motion search to sub-

sample positions is described here. Upscaling the reference picture in advance of the motion search is a possible solution 

to introduce sub-sample precision. However, it is clear to see that because of increased search window size, calculations 

and memory requirements, this solution would perform poorly. Therefore, a sub-sample refinement pass seems more 

applicable to the search platform.  This sub-sample refinement process starts with the current job list, and attempts to 

improve the found motion vectors by trying all sub-sample positions surrounding the motion vectors. In order to limit 

calculations, only sub-sample positions following the motion vector path are looked at.  



 

 
 

 

4.7 Search and Scheduling Strategies 

Multiple search patterns are possible, including raster-scan search, spiral search, diamond search, log search, etc. In the 

current implementation, spiral search
11

 is used to achieve a full search with an efficient early-out behavior. 

Because of the flexibility of our MSJ scheduler, multiple scheduling strategies can be used in order to achieve different 

encoder behavior. The early-out method can be used to enforce certain real-time constraints. By splitting the motion 

search in multiple MSJ batches, each host encoding thread in Figure 6 can access the currently available motion 

information results from those batches. While the first CPU encoding thread in Figure 6 only has collection 2 available at 

processing time, the second encoding thread can use the updated motion information from motion information collection 

3. This way, the more processing time available, the better the next motion vectors can be.  

An alternative scheduling can prioritize certain macroblock calculations as shown in Figure 9. Here, the search window 

of the top-left macroblocks of the slice are split over two MSJs each. This way, after the first iteration, these 

macroblocks will finish relatively quickly, while preserving a high hardware occupancy using the remaining MSJs in that 

batch. The next iteration, the remaining MSJs get full priority. Using this scheduling scheme, macroblocks located in the 

top-left of the slice, i.e. the macroblocks first encoded by the host encoder thread, have priority. 

When using multiple reference pictures, another strategy can choose to search a new reference pictures with each MSJ 

batch. The more processing time available, the more batches executed, the more reference pictures are searched. 

It is suggested by Zhao
3
 that encoding macroblocks in a wavefront pattern instead of using raster-scan order preserves 

macroblock dependencies. This processing order can again be reflected in the MSJ batch, prioritizing certain waves in 

each MSJB. 
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Figure 9: Using the MSJ scheduling system to enforce a calculation order. 

5. MULTI-GPU MOTION SEARCH USING CUDA 

The proposed job scheduling scheme presented in the previous section was designed with flexibility in mind, including 

addressing multiple GPUs to perform the motion search. Jobs can be scheduled on a specific GPU by extracting the 

required number of jobs from the host job list, uploading the jobs to the specific GPU, and executing the motion search. 

Each GPU on its own can then process the job list as described in the previous section. Figure 10 shows this for n GPUs. 

After each GPU has processed one MSJB from its part of the job list, the intermediary results can be downloaded from 

that GPU back to system memory. The more time available, the more MSJ batches can be processed on a single GPU (m 

in the figure). Naturally all GPUs require (part of) the current picture as well as (parts of) the reference pictures. 
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Figure 10: Scheduling the host job list on multiple GPUs. 



 

 
 

 

5.1 Multi-GPU strategies 

Multiple strategies are possible when addressing n GPUs, depending on the number of reference pictures, the real-time 

constraints, bus communication costs and GPU performance speed. The following subsections address two possible 

multi-GPU job scheduling strategies. 

5.1.1 High Reference Picture Count  

When the number of reference pictures is greater than or equal to the number of GPUs, it becomes interesting to use 

every GPU to process one or more reference pictures. The process duplicates the MSJs for each reference frame, sets up 

the proper reference picture index, and uploads the MSJ lists to the appropriate GPUs. Next, the motion search is started 

for all available GPUs. Each GPU will search its own reference picture.  

Communication costs for all GPUs include the current picture, and a number of reference pictures equal to 

referenceCount/n. Once a picture is encoded by the host thread, that picture is uploaded to one GPU. Total 

communication costs for a single 1080p video picture searched with 4 GPUs is 10MByte for all GPUs.  

5.1.2 Low Reference Picture Count  

When the number of reference pictures to search is smaller than the number of GPUs, each GPU is used to process a part 

of the current picture or slice. The host MSJ list is divided into n parts and each part is uploaded to a GPU. 

Communication costs for all GPUs include 1/n
th

 the current picture, and all reference pictures. For a 1080p video picture 

searched with 4 GPUs, this makes a total of 4MByte per frame for all GPUs. 

In order to maintain the real-time constraints, jobs can be placed in an interlaced pattern in the device job list, shown in 

Figure 11. This way, the raster-scan encoding order used by the host thread is reflected as much as possible by the device 

processing order. This way, the first job iteration process can complete the macroblocks of the upper-left region of the 

video picture, while the remaining iterations gradually complete the job list.   
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Figure 11: Job interlacing pattern example for processing 12 macroblocks on four GPUs. 

6. RESULTS AND DISCUSSION 

This section presents preliminary results of the motion search and partitioning platform.  

6.1 Job scheduling system overhead 

As can be expected, the job scheduling system introduces additional overhead as each MSJ has to be loaded from CUDA 

global memory into CUDA shared memory, and the updated MSJ needs to be written to CUDA global memory again. 

These writes put additional strain on the GPU memory bus. Also, the required shared memory is not available anymore 

for other threads, limiting the amount of CUDA blocks scheduled on a CUDA Multiprocessor at each time, therefore 

limiting the effects of the CUDA hardware scheduling.  

The overhead can be lowered by minimizing the amount of MSJ batches and letting each job iteration search as great a 

portion of the search window as possible. For example, if a search window of 128 by 128 samples is considered and no 

early out, a total of 16384 bytes are read in the current picture per macroblock for the motion search, 429 bytes are read 

for the job description, and 429 bytes are written to update the job description. The extra memory overhead in this case is 

5%. In case multiple reference pictures are searched in the same job description, the overhead percentage further drops to 

for example 1.25% for four reference frames. 

If desired, additional macroblock partitioning schemes can be dropped, so the job description takes less bytes, and 

therefore, requires less memory bandwidth, reducing the scheduling overhead.  



 

 
 

 

With each MSJB to process, the overhead further increases. Yet because results are available sooner, the CPU thread is 

not stalled. Therefore, the accomplished flexibility compensates the additional introduced overhead. Future work will 

focus on proving this once the motion search platform is integrated in an H.264/AVC encoder. 

6.2 Single-GPU results over multiple iterations 

Figure 12 shows the preliminary results for a motion search and partitioning process using three configurations, 

respectively using one MSJB with early-out disabled, two MSJBs with early-out disabled, and two MSJBs with early-out 

enabled. For the test, the job processing time in frames per second (fps) was measured including uploading to and 

downloading from the GPU. The search window was set to 32x32, and macroblock partitioning includes macroblock 

level or sub-macroblock partition level. Early-out behavior was enabled with a minimum SAD threshold of 30. 

Reference picture count was set to 1. A computer system with an AMD Phenom 4450 and a NVIDIA GeForce 280 GTX 

was used. 

The chart shows that splitting the motion search over two MSJ batches, lowers the results from 101 fps to 96 fps. This 

means that while the GPU roughly needs the same time to process the results, the H.264/AVC encoder has the results 

from the first batch already at its disposal after the first batch finishes. Therefore, the CPU encoding thread can start 

processing immediately. 

The results show the early-out mechanism to work, raising the processing speed from 101 to 119 fps when enabled. 

Further testing shows that the more batches are scheduled, the more impact the early-out mechanism has, therefore, 

making it useful for slow-performing hardware.  

The results presented here are similar with the results presented by Chen et al.
6
 for motion search and partitioning. The 

authors claim to reach a frame rate of 15.4 (4x4 SAD calculation plus variable block size generation) on an older 

GeForce 8800 GTX. Yet, because of the early-out behavior, our results are available sooner for the CPU encoding thread 

to process. The increased flexibility of the motion search platform also means that the CPU encoding thread can enforce 

its calculation order, which can result in better motion prediction and therefore better rate distortion. When early-out is 

disabled, the system offers true full search, where not only local best motion vectors for sub-macroblock partitions are 

merged, done by Chen et al., but the SAD’s of macroblock partitions are calculated for all possible motion vectors. 

6.3 Multi-GPU results 

Figure 13 shows the preliminary results for a motion search and partitioning process using the same computer 

configuration but with four NVIDIA GeForce 280 GTX graphics cards. Here, a single MSJ batch was used to search one 

reference frame. Again, the job processing time was measured including uploading to and downloading from the GPU. 

Macroblock partitioning includes macroblock level or sub-macroblock partition level. Early-out was disabled. Three 

configurations were tested with a search window of respectively 32 by 32, 64 by 64, and 128 by 128. Each macroblock is 

represented by four MSJs, one per GPU. 

The results show the execution times for the multi-GPU configuration to almost scale linearly with the available GPUs. 

Using a search window of 32 by 32, real-time motion search for high-definition 720p video sequence is achieved at 43 

frames per second. 
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Figure 12: Results for a single GPU system using a  

GeForce 280 GTX card with a 32x32 search window. 
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Figure 13: Results for a multi-GPU configuration using  

four GeForce 280 GTX cards. 



 

 
 

 

7. CONCLUSION AND FUTURE WORK 

A GPU-enabled motion search architecture was proposed capable of performing motion estimation and macroblock 

partitioning for H.264/AVC bitstreams. The architecture is built on the NVIDIA CUDA platform, and is capable of 

addressing multiple GPUs. To achieve this, a job scheduling system was introduced enabling early-out behavior on the 

SIMD architecture of the CUDA graphics cards. The job scheduling system shows increased overhead, yet, the available 

flexibility allows for multiple search strategies, including enforcing a calculation order, and using more than one 

graphics card. With this platform, real-time full motion search and macroblock partitioning for high-definition video 

(720p) on a PC with four NVIDIA GeForce 280 GTX graphics cards was accomplished using a search window of 32 by 

32 (43 fps).  

Future work will focus on optimizing the job scheduling system, adding sub-sample precision, and integrating the motion 

search platform in an H.264/AVC encoder. Next, the proposed scheduling strategies can be investigated and rate 

distortion ratios can be compared. Further work will also focus on investigating the feasibility of GPU-assisted encoding 

of scalable video content. 
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