141 research outputs found

    Augmenting Sensorimotor Control Using “Goal-Aware” Vibrotactile Stimulation during Reaching and Manipulation Behaviors

    Get PDF
    We describe two sets of experiments that examine the ability of vibrotactile encoding of simple position error and combined object states (calculated from an optimal controller) to enhance performance of reaching and manipulation tasks in healthy human adults. The goal of the first experiment (tracking) was to follow a moving target with a cursor on a computer screen. Visual and/or vibrotactile cues were provided in this experiment, and vibrotactile feedback was redundant with visual feedback in that it did not encode any information above and beyond what was already available via vision. After only 10 minutes of practice using vibrotactile feedback to guide performance, subjects tracked the moving target with response latency and movement accuracy values approaching those observed under visually guided reaching. Unlike previous reports on multisensory enhancement, combining vibrotactile and visual feedback of performance errors conferred neither positive nor negative effects on task performance. In the second experiment (balancing), vibrotactile feedback encoded a corrective motor command as a linear combination of object states (derived from a linear-quadratic regulator implementing a trade-off between kinematic and energetic performance) to teach subjects how to balance a simulated inverted pendulum. Here, the tactile feedback signal differed from visual feedback in that it provided information that was not readily available from visual feedback alone. Immediately after applying this novel “goal-aware” vibrotactile feedback, time to failure was improved by a factor of three. Additionally, the effect of vibrotactile training persisted after the feedback was removed. These results suggest that vibrotactile encoding of appropriate combinations of state information may be an effective form of augmented sensory feedback that can be applied, among other purposes, to compensate for lost or compromised proprioception as commonly observed, for example, in stroke survivors

    The Promise of Stochastic Resonance in Falls Prevention

    Get PDF
    Multisensory integration is essential for maintenance of motor and cognitive abilities, thereby ensuring normal function and personal autonomy. Balance control is challenged during senescence or in motor disorders, leading to potential falls. Increased uncertainty in sensory signals is caused by a number of factors including noise, defined as a random and persistent disturbance that reduces the clarity of information. Counter-intuitively, noise can be beneficial in some conditions. Stochastic resonance is a mechanism whereby a particular level of noise actually enhances the response of non-linear systems to weak sensory signals. Here we review the effects of stochastic resonance on sensory modalities and systems directly involved in balance control. We highlight its potential for improving sensorimotor performance as well as cognitive and autonomic functions. These promising results demonstrate that stochastic resonance represents a flexible and non-invasive technique that can be applied to different modalities simultaneously. Finally we point out its benefits for a variety of scenarios including in ambulant elderly, skilled movements, sports and to patients with sensorimotor or autonomic dysfunctions.Multisensory integration is essential for maintenance of motor and cognitive abilities, thereby ensuring normal function and personal autonomy. Balance control is challenged during senescence or in motor disorders, leading to potential falls. Increased uncertainty in sensory signals is caused by a number of factors including noise, defined as a random and persistent disturbance that reduces the clarity of information. Counter-intuitively, noise can be beneficial in some conditions. Stochastic resonance is a mechanism whereby a particular level of noise actually enhances the response of non-linear systems to weak sensory signals. Here we review the effects of stochastic resonance on sensory modalities and systems directly involved in balance control. We highlight its potential for improving sensorimotor performance as well as cognitive and autonomic functions. These promising results demonstrate that stochastic resonance represents a flexible and non-invasive technique that can be applied to different modalities simultaneously. Finally we point out its benefits for a variety of scenarios including in ambulant elderly, skilled movements, sports and to patients with sensorimotor or autonomic dysfunctions

    An investigation into the utility of wearable sensor derived biofeedback on the motor control of the lumbar spine

    Get PDF
    Lower back pain (LBP) is a disability that affects a large proportion of the population and treatment for this has been shifting towards a more individualized, patient-centered approach. There has been a recent uptake in the utilization and implementation of wearable sensors that can administer biofeedback in various industrial, clinical, and performance-based settings. The overall aim of this Master’s thesis was to investigate how wearable sensors can be used in a sensorimotor (re)training approach, including how sensory biofeedback from wearable sensors can be used to improve measures of spinal motor control and proprioception. Two complementary research studies were completed to address this overall aim. As a systematic review, Study #1 focused on addressing the lack of consensus surrounding wearable sensor derived biofeedback and spine motor control. The results of this review suggest that haptic/vibrotactile feedback is the most common and that it is administered in an instantaneous real-time manner within most experimental paradigms. Further, study #1 identified clear gaps within the research literature. Specifically, future research would benefit from more clarity regarding study design, and movement instructions, and explicit definitions of biofeedback parameters to enhance reproducibility. The aim of Study #2 was to assess the acute effects of wearable sensor-derived auditory biofeedback on gross lumbar proprioception. To assess this, participants completed a target repositioning protocol, followed by a training period where they were provided with auditory feedback for two of four targets based on a percentage of their lumbar ROM. Results suggest that mid-range targets benefitted most from the acute auditory feedback training. Further, individuals with poorer repositioning abilities in the pre-training assessment showed the greatest improvements from the auditory feedback training. This suggests that auditory biofeedback training may be an effective tool to improve proprioception in those with proprioceptive deficits. Collectively these complimentary research studies will improve the understanding surrounding the ecological utility of wearable sensor derived biofeedback in industrial, clinical, and performance settings to enhance to sensorimotor control of the lumbar region

    Musical Haptics

    Get PDF
    Haptic Musical Instruments; Haptic Psychophysics; Interface Design and Evaluation; User Experience; Musical Performanc

    Musical Haptics

    Get PDF
    Haptic Musical Instruments; Haptic Psychophysics; Interface Design and Evaluation; User Experience; Musical Performanc

    Behavioral Impact of Unisensory and Multisensory Audio-Tactile Events: Pros and Cons for Interlimb Coordination in Juggling

    Get PDF
    Recent behavioral neuroscience research revealed that elementary reactive behavior can be improved in the case of cross-modal sensory interactions thanks to underlying multisensory integration mechanisms. Can this benefit be generalized to an ongoing coordination of movements under severe physical constraints? We choose a juggling task to examine this question. A central issue well-known in juggling lies in establishing and maintaining a specific temporal coordination among balls, hands, eyes and posture. Here, we tested whether providing additional timing information about the balls and hands motions by using external sound and tactile periodic stimulations, the later presented at the wrists, improved the behavior of jugglers. One specific combination of auditory and tactile metronome led to a decrease of the spatiotemporal variability of the juggler's performance: a simple sound associated to left and right tactile cues presented antiphase to each other, which corresponded to the temporal pattern of hands movement in the juggling task. A contrario, no improvements were obtained in the case of other auditory and tactile combinations. We even found a degraded performance when tactile events were presented alone. The nervous system thus appears able to integrate in efficient way environmental information brought by different sensory modalities, but only if the information specified matches specific features of the coordination pattern. We discuss the possible implications of these results for the understanding of the neuronal integration process implied in audio-tactile interaction in the context of complex voluntary movement, and considering the well-known gating effect of movement on vibrotactile perception

    Sensory Augmentation for Balance Rehabilitation Using Skin Stretch Feedback

    Get PDF
    This dissertation focuses on the development and evaluation of portable sensory augmentation systems that render skin-stretch feedback of posture for standing balance training and for postural control improvement. Falling is one of the main causes of fatal injuries among all members of the population. The high incidence of fall-related injuries also leads to high medical expenses, which cost approximately $34 billion annually in the United States. People with neurological diseases, e.g., stroke, multiple sclerosis, spinal cord injuries, and the elderly are more prone to falling when compared to healthy individuals. Falls among these populations can also lead to hip fracture, or even death. Thus, several balance and gait rehabilitation approaches have been developed to reduce the risk of falling. Traditionally, a balance-retraining program includes a series of exercises for trainees to strengthen their sensorimotor and musculoskeletal systems. Recent advances in technology have incorporated biofeedback such as visual, auditory, or haptic feedback to provide the users with extra cues about their postural sway. Studies have also demonstrated the positive effects of biofeedback on balance control. However, current applications of biofeedback for interventions in people with impaired balance are still lacking some important characteristics such as portability (in-home care), small-size, and long-term viability. Inspired by the concept of light touch, a light, small, and wearable sensory augmentation system that detects body sway and supplements skin stretch on one’s fingertip pad was first developed. The addition of a shear tactile display could significantly enhance the sensation to body movement. Preliminary results have shown that the application of passive skin stretch feedback at the fingertip enhanced standing balance of healthy young adults. Based on these findings, two research directions were initiated to investigate i) which dynamical information of postural sway could be more effectively conveyed by skin stretch feedback, and ii) how can such feedback device be easily used in the clinical setting or on a daily basis. The major sections of this research are focused on understanding how the skin stretch feedback affects the standing balance and on quantifying the ability of humans to interpret the cutaneous feedback as the cues of their physiological states. Experimental results from both static and dynamic balancing tasks revealed that healthy subjects were able to respond to the cues and subsequently correct their posture. However, it was observed that the postural sway did not generally improve in healthy subjects due to skin stretch feedback. A possible reason was that healthy subjects already had good enough quality sensory information such that the additional artificial biofeedback may have interfered with other sensory cues. Experiments incorporating simulated sensory deficits were further conducted and it was found that subjects with perturbed sensory systems (e.g., unstable surface) showed improved balance due to skin stretch feedback when compared to the neutral standing conditions. Positive impacts on balance performance have also been demonstrated among multiple sclerosis patients when they receive skin stretch feedback from a sensory augmentation walker. The findings in this research indicated that the skin stretch feedback rendered by the developed devices affected the human balance and can potentially compensate underlying neurological or musculoskeletal disorders, therefore enhancing quiet standing postural control

    Sensory Augmentation for Balance Rehabilitation Using Skin Stretch Feedback

    Get PDF
    This dissertation focuses on the development and evaluation of portable sensory augmentation systems that render skin-stretch feedback of posture for standing balance training and for postural control improvement. Falling is one of the main causes of fatal injuries among all members of the population. The high incidence of fall-related injuries also leads to high medical expenses, which cost approximately $34 billion annually in the United States. People with neurological diseases, e.g., stroke, multiple sclerosis, spinal cord injuries, and the elderly are more prone to falling when compared to healthy individuals. Falls among these populations can also lead to hip fracture, or even death. Thus, several balance and gait rehabilitation approaches have been developed to reduce the risk of falling. Traditionally, a balance-retraining program includes a series of exercises for trainees to strengthen their sensorimotor and musculoskeletal systems. Recent advances in technology have incorporated biofeedback such as visual, auditory, or haptic feedback to provide the users with extra cues about their postural sway. Studies have also demonstrated the positive effects of biofeedback on balance control. However, current applications of biofeedback for interventions in people with impaired balance are still lacking some important characteristics such as portability (in-home care), small-size, and long-term viability. Inspired by the concept of light touch, a light, small, and wearable sensory augmentation system that detects body sway and supplements skin stretch on one’s fingertip pad was first developed. The addition of a shear tactile display could significantly enhance the sensation to body movement. Preliminary results have shown that the application of passive skin stretch feedback at the fingertip enhanced standing balance of healthy young adults. Based on these findings, two research directions were initiated to investigate i) which dynamical information of postural sway could be more effectively conveyed by skin stretch feedback, and ii) how can such feedback device be easily used in the clinical setting or on a daily basis. The major sections of this research are focused on understanding how the skin stretch feedback affects the standing balance and on quantifying the ability of humans to interpret the cutaneous feedback as the cues of their physiological states. Experimental results from both static and dynamic balancing tasks revealed that healthy subjects were able to respond to the cues and subsequently correct their posture. However, it was observed that the postural sway did not generally improve in healthy subjects due to skin stretch feedback. A possible reason was that healthy subjects already had good enough quality sensory information such that the additional artificial biofeedback may have interfered with other sensory cues. Experiments incorporating simulated sensory deficits were further conducted and it was found that subjects with perturbed sensory systems (e.g., unstable surface) showed improved balance due to skin stretch feedback when compared to the neutral standing conditions. Positive impacts on balance performance have also been demonstrated among multiple sclerosis patients when they receive skin stretch feedback from a sensory augmentation walker. The findings in this research indicated that the skin stretch feedback rendered by the developed devices affected the human balance and can potentially compensate underlying neurological or musculoskeletal disorders, therefore enhancing quiet standing postural control
    • …
    corecore