127 research outputs found

    A computational evaluation of constructive and improvement heuristics for the blocking flow shop to minimize total flowtime

    Get PDF
    This paper focuses on the blocking flow shop scheduling problem with the objective of total flowtime minimisation. This problem assumes that there are no buffers between machines and, due to its application to many manufacturing sectors, it is receiving a growing attention by researchers during the last years. Since the problem is NP-hard, a large number of heuristics have been proposed to provide good solutions with reasonable computational times. In this paper, we conduct a comprehensive evaluation of the available heuristics for the problem and for related problems, resulting in the implementation and testing of a total of 35 heuristics. Furthermore, we propose an efficient constructive heuristic which successfully combines a pool of partial sequences in parallel, using a beam-search-based approach. The computational experiments show the excellent performance of the proposed heuristic as compared to the best-so-far algorithms for the problem, both in terms of quality of the solutions and of computational requirements. In fact, despite being a relative fast constructive heuristic, new best upper bounds have been found for more than 27% of Taillard’s instances.Ministerio de Ciencia e Innovación DPI2013-44461-P/DP

    A beam-search-based constructive heuristic for the PFSP to minimise total flowtime

    Get PDF
    In this paper we present a beam-search-based constructive heuristic to solve the permutation flowshop scheduling problem with total flowtime minimisation as objective. This well-known problem is NP-hard, and several heuristics have been developed in the literature. The proposed algorithm is inspired in the logic of the beam search, although it remains a fast constructive heuristic. The results obtained by the proposed algorithm outperform those obtained by other constructive heuristics in the literature for the problem, thus modifying substantially the state-of-the-art of efficient approximate procedures for the problem. In addition, the proposed algorithm even outperforms two of the best metaheuristics for many instances of the problem, using much lesser computation effort. The excellent performance of the proposal is also proved by the fact that the new heuristic found new best upper bounds for 35 of the 120 instances in Taillard’s benchmark.Ministerio de Ciencia e Innovación DPI2013-44461-PMinisterio de Ciencia e Innovación DPI2016-80750-

    Iterated-greedy-based algorithms with beam search initialization for the permutation flowshop to minimize total tardiness

    Get PDF
    The permutation flow shop scheduling problem is one of the most studied operations research related problems. Literally, hundreds of exact and approximate algorithms have been proposed to optimise several objective functions. In this paper we address the total tardiness criterion, which is aimed towards the satisfaction of customers in a make-to-order scenario. Although several approximate algorithms have been proposed for this problem in the literature, recent contributions for related problems suggest that there is room for improving the current available algorithms. Thus, our contribution is twofold: First, we propose a fast beam-search-based constructive heuristic that estimates the quality of partial sequences without a complete evaluation of their objective function. Second, using this constructive heuristic as initial solution, eight variations of an iterated-greedy-based algorithm are proposed. A comprehensive computational evaluation is performed to establish the efficiency of our proposals against the existing heuristics and metaheuristics for the problem.Ministerio de Ciencia e Innovación DPI2013-44461-PMinisterio de Ciencia e Innovación DPI2016-80750-

    An iterated greedy heuristic for no-wait flow shops with sequence dependent setup times, learning and forgetting effects

    Full text link
    [EN] This paper addresses a sequence dependent setup times no-wait flowshop with learning and forgetting effects to minimize total flowtime. This problem is NP-hard and has never been considered before. A position-based learning and forgetting effects model is constructed. Processing times of operations change with the positions of corresponding jobs in a schedule. Objective increment properties are deduced and based on them three accelerated neighbourhood construction heuristics are presented. Because of the simplicity and excellent performance shown in flowshop scheduling problems, an iterated greedy heuristic is proposed. The proposed iterated greedy algorithm is compared with some existing algorithms for related problems on benchmark instances. Comprehensive computational and statistical tests show that the presented method obtains the best performance among the compared methods. (C) 2018 Elsevier Inc. All rights reserved.This work is supported by the National Natural Science Foundation of China (Nos. 61572127, 61272377), the Collaborative Innovation Center of Wireless Communications Technology and the Key Natural Science Fund for Colleges and Universities in Jiangsu Province (No. 12KJA630001). Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness(MINECO), under the project "SCHEYARD - Optimization of Scheduling Problems in Container Yards" with reference DPI2015-65895-R.Li, X.; Yang, Z.; Ruiz García, R.; Chen, T.; Sui, S. (2018). An iterated greedy heuristic for no-wait flow shops with sequence dependent setup times, learning and forgetting effects. Information Sciences. 453:408-425. https://doi.org/10.1016/j.ins.2018.04.038S40842545

    The distributed assembly permutation flowshop scheduling problem

    Full text link
    Nowadays, improving the management of complex supply chains is a key to become competitive in the twenty-first century global market. Supply chains are composed of multi-plant facilities that must be coordinated and synchronised to cut waste and lead times. This paper proposes a Distributed Assembly Permutation Flowshop Scheduling Problem (DAPFSP) with two stages to model and study complex supply chains. This problem is a generalisation of the Distributed Permutation Flowshop Scheduling Problem (DPFSP). The first stage of the DAPFSP is composed of f identical production factories. Each one is a flowshop that produces jobs to be assembled into final products in a second assembly stage. The objective is to minimise the makespan. We present first a Mixed Integer Linear Programming model (MILP). Three constructive algorithms are proposed. Finally, a Variable Neighbourhood Descent (VND) algorithm has been designed and tested by a comprehensive ANOVA statistical analysis. The results show that the VND algorithm offers good performance to solve this scheduling problem.Ruben Ruiz is partially supported by the Spanish Ministry of Science and Innovation, under the project 'RESULT - Realistic Extended Scheduling Using Light Techniques' with reference DPI2012-36243-C02-01. Carlos Andres-Romano is partially supported by the Spanish Ministry of Science and Innovation, under the project 'INSAMBLE' - Scheduling at assembly/disassembly synchronised supply chains with reference DPI2011-27633.Hatami, S.; Ruiz García, R.; Andrés Romano, C. (2013). The distributed assembly permutation flowshop scheduling problem. International Journal of Production Research. 51(17):5292-5308. https://doi.org/10.1080/00207543.2013.807955S529253085117Basso, D., Chiarandini, M., & Salmaso, L. (2007). Synchronized permutation tests in replicated designs. Journal of Statistical Planning and Inference, 137(8), 2564-2578. doi:10.1016/j.jspi.2006.04.016Biggs, D., De Ville, B., & Suen, E. (1991). A method of choosing multiway partitions for classification and decision trees. Journal of Applied Statistics, 18(1), 49-62. doi:10.1080/02664769100000005Chan, F. T. S., Chung, S. H., Chan, L. Y., Finke, G., & Tiwari, M. K. (2006). Solving distributed FMS scheduling problems subject to maintenance: Genetic algorithms approach. Robotics and Computer-Integrated Manufacturing, 22(5-6), 493-504. doi:10.1016/j.rcim.2005.11.005Chan, F. T. S., Chung, S. H., & Chan, P. L. Y. (2006). Application of genetic algorithms with dominant genes in a distributed scheduling problem in flexible manufacturing systems. International Journal of Production Research, 44(3), 523-543. doi:10.1080/00207540500319229Liao, C.-J., & Liao, L.-M. (2008). Improved MILP models for two-machine flowshop with batch processing machines. Mathematical and Computer Modelling, 48(7-8), 1254-1264. doi:10.1016/j.mcm.2008.01.001Framinan, J. M., & Leisten, R. (2003). An efficient constructive heuristic for flowtime minimisation in permutation flow shops. Omega, 31(4), 311-317. doi:10.1016/s0305-0483(03)00047-1Gao, J., & Chen, R. (2011). A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem. International Journal of Computational Intelligence Systems, 4(4), 497-508. doi:10.1080/18756891.2011.9727808Hansen, P., & Mladenović, N. (2001). Variable neighborhood search: Principles and applications. European Journal of Operational Research, 130(3), 449-467. doi:10.1016/s0377-2217(00)00100-4Hariri, A. M. A., & Potts, C. N. (1997). A branch and bound algorithm for the two-stage assembly scheduling problem. European Journal of Operational Research, 103(3), 547-556. doi:10.1016/s0377-2217(96)00312-8Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C., & Zhang, Y. F. (2002). Web-based Multi-functional Scheduling System for a Distributed Manufacturing Environment. Concurrent Engineering, 10(1), 27-39. doi:10.1177/1063293x02010001054Jia, H. Z., Nee, A. Y. C., Fuh, J. Y. H., & Zhang, Y. F. (2003). Journal of Intelligent Manufacturing, 14(3/4), 351-362. doi:10.1023/a:1024653810491Jia, H. Z., Fuh, J. Y. H., Nee, A. Y. C., & Zhang, Y. F. (2007). Integration of genetic algorithm and Gantt chart for job shop scheduling in distributed manufacturing systems. Computers & Industrial Engineering, 53(2), 313-320. doi:10.1016/j.cie.2007.06.024Kass, G. V. (1980). An Exploratory Technique for Investigating Large Quantities of Categorical Data. Applied Statistics, 29(2), 119. doi:10.2307/2986296Lee, C.-Y., Cheng, T. C. E., & Lin, B. M. T. (1993). Minimizing the Makespan in the 3-Machine Assembly-Type Flowshop Scheduling Problem. Management Science, 39(5), 616-625. doi:10.1287/mnsc.39.5.616Morgan, J. N., & Sonquist, J. A. (1963). Problems in the Analysis of Survey Data, and a Proposal. Journal of the American Statistical Association, 58(302), 415-434. doi:10.1080/01621459.1963.10500855Pan, Q.-K., & Ruiz, R. (2012). Local search methods for the flowshop scheduling problem with flowtime minimization. European Journal of Operational Research, 222(1), 31-43. doi:10.1016/j.ejor.2012.04.034Potts, C. N., Sevast’janov, S. V., Strusevich, V. A., Van Wassenhove, L. N., & Zwaneveld, C. M. (1995). The Two-Stage Assembly Scheduling Problem: Complexity and Approximation. Operations Research, 43(2), 346-355. doi:10.1287/opre.43.2.346Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033-2049. doi:10.1016/j.ejor.2005.12.009Ruiz, R., Şerifoğlu, F. S., & Urlings, T. (2008). Modeling realistic hybrid flexible flowshop scheduling problems. Computers & Operations Research, 35(4), 1151-1175. doi:10.1016/j.cor.2006.07.014Ruiz, R., & Andrés-Romano, C. (2011). Scheduling unrelated parallel machines with resource-assignable sequence-dependent setup times. The International Journal of Advanced Manufacturing Technology, 57(5-8), 777-794. doi:10.1007/s00170-011-3318-2Stafford, E. F., Tseng, F. T., & Gupta, J. N. D. (2005). Comparative evaluation of MILP flowshop models. Journal of the Operational Research Society, 56(1), 88-101. doi:10.1057/palgrave.jors.2601805Tozkapan, A., Kırca, Ö., & Chung, C.-S. (2003). A branch and bound algorithm to minimize the total weighted flowtime for the two-stage assembly scheduling problem. Computers & Operations Research, 30(2), 309-320. doi:10.1016/s0305-0548(01)00098-3Tseng, F. T., & Stafford, E. F. (2008). New MILP models for the permutation flowshop problem. Journal of the Operational Research Society, 59(10), 1373-1386. doi:10.1057/palgrave.jors.260245

    The Distributed and Assembly Scheduling Problem

    Full text link
    Tesis por compendio[EN] Nowadays, manufacturing systems meet different new global challenges and the existence of a collaborative manufacturing environment is essential to face with. Distributed manufacturing and assembly systems are two manufacturing systems which allow industries to deal with some of these challenges. This thesis studies a production problem in which both distributed manufacturing and assembly systems are considered. Although distributed manufacturing systems and assembly systems are well-known problems and have been extensively studied in the literature, to the best of our knowledge, considering these two systems together as in this thesis is the first effort in the literature. Due to the importance of scheduling optimization on production performance, some different ways to optimize the scheduling of the considered problem are discussed in this thesis. The studied scheduling setting consists of two stages: A production and an assembly stage. Various production centers make the first stage. Each of these centers consists of several machines which are dedicated to manufacture jobs. A single assembly machine is considered for the second stage. The produced jobs are assembled on the assembly machine to form final products through a defined assembly program. In this thesis, two different problems regarding two different production configurations for the production centers of the first stage are considered. The first configuration is a flowshop that results in what we refer to as the Distributed Assembly Permutation Flowshop Scheduling Problem (DAPFSP). The second problem is referred to as the Distributed Parallel Machine and Assembly Scheduling Problem (DPMASP), where unrelated parallel machines configure the production centers. Makespan minimization of the product on the assembly machine located in the assembly stage is considered as the objective function for all considered problems. In this thesis some extensions are considered for the studied problems so as to bring them as close as possible to the reality of production shops. In the DAPFSP, sequence dependent setup times are added for machines in both production and assembly stages. Similarly, in the DPMASP, due to technological constraints, some defined jobs can be processed only in certain factories. Mathematical models are presented as an exact solution for some of the presented problems and two state-of-art solvers, CPLEX and GUROBI are used to solve them. Since these solvers are not able to solve large sized problems, we design and develop heuristic methods to solve the problems. In addition to heuristics, some metaheuristics are also designed and proposed to improve the solutions obtained by heuristics. Finally, for each proposed problem, the performance of the proposed solution methods is compared through extensive computational and comprehensive ANOVA statistical analysis.[ES] Los sistemas de producción se enfrentan a retos globales en los que el concepto de fabricación colaborativa es crucial para poder tener éxito en el entorno cambiante y complejo en el que nos encontramos. Una característica de los sistemas productivos que puede ayudar a lograr este objetivo consiste en disponer de una red de fabricación distribuida en la que los productos se fabriquen en localizaciones diferentes y se vayan ensamblando para obtener el producto final. En estos casos, disponer de modelos y herramientas para mejorar el rendimiento de sistemas de producción distribuidos con ensamblajes es una manera de asegurar la eficiencia de los mismos. En esta tesis doctoral se estudian los sistemas de fabricación distribuidos con operaciones de ensamblaje. Los sistemas distribuidos y los sistemas con operaciones de ensamblaje han sido estudiados por separado en la literatura. De hecho, no se han encontrado estudios de sistemas con ambas características consideradas de forma conjunta. Dada la complejidad de considerar conjuntamente ambos tipos de sistemas a la hora de realizar la programación de la producción en los mismos, se ha abordado su estudio considerando un modelo bietápico en la que en la primera etapa se consideran las operaciones de producción y en la segunda se plantean las operaciones de ensamblaje. Dependiendo de la configuración de la primera etapa se han estudiado dos variantes. En la primera variante se asume que la etapa de producción está compuesta por sendos sistemas tipo flowshop en los que se fabrican los componentes que se ensamblan en la segunda etapa (Distributed Assembly Permutation Flowshop Scheduling Problem o DAPFSP). En la segunda variante se considera un sistema de máquinas en paralelo no relacionadas (Distributed Parallel Machine and Assembly Scheduling Problem o DPMASP). En ambas variantes se optimiza la fecha de finalización del último trabajo secuenciado (Cmax) y se contempla la posibilidad que existan tiempos de cambio (setup) dependientes de la secuencia de trabajos fabricada. También, en el caso DPMASP se estudia la posibilidad de prohibir o no el uso de determinadas máquinas de la etapa de producción. Se han desarrollado modelos matemáticos para resolver algunas de las variantes anteriores. Estos modelos se han resuelto mediante los programas CPLEX y GUROBI en aquellos casos que ha sido posible. Para las instancias en los que el modelo matemático no ofrecía una solución al problema se han desarrollado heurísticas y metaheurísticas para ello. Todos los procedimientos anteriores han sido estudiados para determinar el rendimiento de los diferentes algoritmos planteados. Para ello se ha realizado un exhaustivo estudio computacional en el que se han aplicado técnicas ANOVA. Los resultados obtenidos en la tesis permiten avanzar en la comprensión del comportamiento de los sistemas productivos distribuidos con ensamblajes, definiendo algoritmos que permiten obtener buenas soluciones a este tipo de problemas tan complejos que aparecen tantas veces en la realidad industrial.[CA] Els sistemes de producció s'enfronten a reptes globals en què el concepte de fabricació col.laborativa és crucial per a poder tindre èxit en l'entorn canviant i complex en què ens trobem. Una característica dels sistemes productius que pot ajudar a aconseguir este objectiu consistix a disposar d'una xarxa de fabricació distribuïda en la que els productes es fabriquen en localitzacions diferents i es vagen acoblant per a obtindre el producte final. En estos casos, disposar de models i ferramentes per a millorar el rendiment de sistemes de producció distribuïts amb acoblaments és una manera d'assegurar l'eficiència dels mateixos. En esta tesi doctoral s'estudien els sistemes de fabricació distribuïts amb operacions d'acoblament. Els sistemes distribuïts i els sistemes amb operacions d'acoblament han sigut estudiats per separat en la literatura però, en allò que es coneix, no s'han trobat estudis de sistemes amb ambdós característiques conjuntament. Donada la complexitat de considerar conjuntament ambdós tipus de sistemes a l'hora de realitzar la programació de la producció en els mateixos, s'ha abordat el seu estudi considerant un model bietàpic en la que en la primera etapa es consideren les operacions de producció i en la segona es plantegen les operacions d'acoblament. Depenent de la configuració de la primera etapa s'han estudiat dos variants. En la primera variant s'assumix que l'etapa de producció està composta per sengles sistemes tipus flowshop en els que es fabriquen els components que s'acoblen en la segona etapa (Distributed Assembly Permutation Flowshop Scheduling Problem o DAPFSP). En la segona variant es considera un sistema de màquines en paral.lel no relacionades (Distributed Parallel Machine and Assembly Scheduling Problem o DPMASP). En ambdós variants s'optimitza la data de finalització de l'últim treball seqüenciat (Cmax) i es contempla la possibilitat que existisquen temps de canvi (setup) dependents de la seqüència de treballs fabricada. També, en el cas DPMASP s'estudia la possibilitat de prohibir o no l'ús de determinades màquines de l'etapa de producció. S'han desenvolupat models matemàtics per a resoldre algunes de les variants anteriors. Estos models s'han resolt per mitjà dels programes CPLEX i GUROBI en aquells casos que ha sigut possible. Per a les instàncies en què el model matemàtic no oferia una solució al problema s'han desenrotllat heurístiques i metaheurísticas per a això. Tots els procediments anteriors han sigut estudiats per a determinar el rendiment dels diferents algoritmes plantejats. Per a això s'ha realitzat un exhaustiu estudi computacional en què s'han aplicat tècniques ANOVA. Els resultats obtinguts en la tesi permeten avançar en la comprensió del comportament dels sistemes productius distribuïts amb acoblaments, definint algoritmes que permeten obtindre bones solucions a este tipus de problemes tan complexos que apareixen tantes vegades en la realitat industrial.Hatami, S. (2016). The Distributed and Assembly Scheduling Problem [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/64072TESISCompendi

    A PSO-Based Hybrid Metaheuristic for Permutation Flowshop Scheduling Problems

    Get PDF

    An efficient discrete artificial bee colony algorithm for the blocking flow shop problem with total flowtime minimization

    Get PDF
    This paper presents a high performing Discrete Artificial Bee Colony algorithm for the blocking flow shop problem with flow time criterion. To develop the proposed algorithm, we considered four strategies for the food source phase and two strategies for each of the three remaining phases (employed bees, onlookers and scouts). One of the strategies tested in the food source phase and one implemented in the employed bees phase are new. Both have been proved to be very effective for the problem at hand. The initialization scheme named HPF2(¿, µ) in particular, which is used to construct the initial food sources, is shown in the computational evaluation to be one of the main procedures that allow the DABC_RCT to obtain good solutions for this problem. To find the best configuration of the algorithm, we used design of experiments (DOE). This technique has been used extensively in the literature to calibrate the parameters of the algorithms but not to select its configuration. Comparing it with other algorithms proposed for this problem in the literature demonstrates the effectiveness and superiority of the DABC_RCTPeer ReviewedPostprint (author’s final draft

    Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study

    Full text link
    The permutation flowshop scheduling problem has been thoroughly studied in recent decades, both from single objective as well as from multi-objective perspectives. To the best of our knowledge, little has been done regarding the multi-objective flowshop with Pareto approach when sequence dependent setup times are considered. As setup times and multi-criteria problems are important in industry, we must focus on this area. We propose a simple, yet powerful algorithm for the sequence dependent setup times flowshop problem with several criteria. The presented method is referred to as Restarted Iterated Pareto Greedy or RIPG and is compared against the best performing approaches from the relevant literature. Comprehensive computational and statistical analyses are carried out in order to demonstrate that the proposed RIPG method clearly outperforms all other algorithms and, as a consequence, it is a state-of- art method for this important and practical scheduling problemThe authors thank the anonymous referees for their careful and detailed comments which have helped improve this manuscript considerably. This work is partially financed by the Spanish Ministry of Science and Innovation, under the projects "SMPA-Advanced Parallel Multiobjective Sequencing: Practical and Theorerical Advances" with reference DPI2008-03511/DPI and "RESULT-Realistic Extended Scheduling Using Light Techniques" with reference DPI2012-36243-C02-01 and by the Small and Medium Industry of the Generalitat Valenciana (IMPIVA) and by the European Union through the European Regional Development Fund (FEDER) inside the R+D program "Ayudas dirigidas a Institutos Tecnologicos de la Red IMPIVA" during the year 2011, with project numbers IMDEEA/2011/142 and IMDEEA/2012/143.Ciavotta, M.; Minella, GG.; Ruiz García, R. (2013). Multi-objective sequence dependent setup times permutation flowshop: A new algorithm and a comprehensive study. European Journal of Operational Research. 227(2):301-313. https://doi.org/10.1016/j.ejor.2012.12.031S301313227
    corecore