
Research Article
A PSO-Based Hybrid Metaheuristic for Permutation Flowshop
Scheduling Problems

Le Zhang1,2 and Jinnan Wu1

1 School of Information Engineering, Shenyang University, Shenyang 110044, China
2 School of Information Science and Technology, Tsinghua University, Beijing 100084, China

Correspondence should be addressed to Le Zhang; snowise@126.com

Received 4 August 2013; Accepted 5 November 2013; Published 29 January 2014

Academic Editors: S. Berres and W.-C. Lee

Copyright © 2014 L. Zhang and J. Wu.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper investigates the permutation flowshop scheduling problem (PFSP) with the objectives of minimizing the makespan and
the total flowtime and proposes a hybridmetaheuristic based on the particle swarmoptimization (PSO). To enhance the exploration
ability of the hybrid metaheuristic, a simulated annealing hybrid with a stochastic variable neighborhood search is incorporated.
To improve the search diversification of the hybrid metaheuristic, a solution replacement strategy based on the pathrelinking is
presented to replace the particles that have been trapped in local optimum. Computational results on benchmark instances show
that the proposed PSO-based hybrid metaheuristic is competitive with other powerful metaheuristics in the literature.

1. Introduction

Due to the strong industrial background, the permutation
flowshop scheduling problem (PFSP) has attracted consid-
erable attention from researchers all over the world. In this
problem, a set of jobs 𝐽 = {1, 2, . . . , 𝑛} needs to be processed
through a set of machines 𝑀 = {1, 2, . . . , 𝑚}. Each job 𝑖 ∈
𝐽 should be processed through these 𝑚 machines with the
same machine order, that is, starting from machine 1 and
finishing on the last machine𝑚. The processing time of each
job 𝑖 ∈ 𝐽 on machine 𝑗 ∈ 𝑀(𝑝

𝑖𝑗
) is nonnegative and known

before scheduling. It is assumed that all the jobs are available
before processing and once started the processing cannot be
interrupted. It is required that each job can only be processed
by only one machine at any time, and at the same time each
machine cannot processmore than one job.The processing of
a job cannot start on the next machine 𝑗 + 1 until this job has
been completed on the current machine 𝑗 and machine 𝑗 + 1
is idle. The objective is to determine the sequence of these 𝑛
jobs so that a certain performancemeasure can be optimized.
The most commonly studied performance measures are the
minimization of makespan (𝐶max) and the minimization of
total flowtime (TFT). Let 𝜋 = (𝜋(1), . . . , 𝜋(𝑛)) denote a
permutation of the 𝑛 jobs, in which 𝜋(𝑘) represents the job

arranged at the kth position, and the completion time of each
job 𝜋(𝑘) on each machine 𝑗 can be calculated as follows:

𝐶
𝜋(1),1

= 𝑝
𝜋(1),1

,

𝐶
𝜋(1),𝑗

= 𝐶
𝜋(1),𝑗−1

+ 𝑝
𝜋(1),𝑗

, 𝑗 = 2, 3, . . . , 𝑚,

𝐶
𝜋(𝑘),1

= 𝐶
𝜋(𝑘−1),1

+ 𝑝
𝜋(𝑘),1

, 𝑘 = 2, 3, . . . , 𝑛,

𝐶
𝜋(𝑘),𝑗

= max {𝐶
𝜋(𝑘),𝑗−1

, 𝐶
𝜋(𝑘−1),𝑗

} + 𝑝
𝜋(𝑘),𝑗

,

𝑘 = 2, 3, . . . , 𝑛; 𝑗 = 2, 3, . . . , 𝑚.

(1)

Then the makespan can be defined as 𝐶max(𝜋) = 𝐶𝜋(𝑛),𝑚, and
the total flowtime can be defined as the sum of completion
times of all jobs TFT(𝜋) = ∑𝑛

𝑘=1
𝐶
𝜋(𝑘),𝑚

.
Since the first introduction of the PFSP [1], considerable

attention of researchers has been paid to this problem
and many kinds of algorithms have been proposed in the
literature. According to the comprehensive review of Ruiz
and Maroto [2] and Framinan et al. [3] for PFSP, these
solutionmethods can be classified into three categories: exact
methods, heuristics methods, and metaheuristic methods.

Since it has been proven that the PFSP with makespan
minimization is NP-complete in the strong sense when 𝑚 ≥

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 902950, 8 pages
http://dx.doi.org/10.1155/2014/902950

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/192750223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 The Scientific World Journal

3 and the PFSP with total flowtime minimization is NP-
complete in the strong sense when 𝑚 ≥ 2 [4], few exact
methods have been proposed for PFSP in the literature
due to their unacceptable computation time. These exact
methods include the mixed integer linear programming
method [5] and the branch and bound algorithms ([6–8] for
the makespan minimization and [9–11] for the total flowtime
minimization). However, these exact methods are feasible for
only small size problems because they cannot solve large size
problems in reasonable computation time.

Heuristic methods can be classified into two categories:
constructive heuristics and improvement heuristics. Con-
structive methods start from an empty solution and try to
build a feasible solution in a short time. Johnson’s algorithm
[1] is the earliest known heuristic for PFSP, which can
obtain optimal solutions for 𝑚 = 2. Campbell et al. [12]
proposed the CDS heuristic, and Koulamas [13] proposed a
two-phase heuristic for PFSP, which were both extensions
of Johnson’s algorithm. Palmer [14] proposed a slope index
heuristic for PFSP, and then Gupta [15] and Hundal and
Rajgopal [16] extended Palmer’s heuristic and proposed two
simple heuristics. Nawaz et al. [17] proposed a so-called
NEH heuristic based on the idea that jobs with high total
processing times on all machines should be scheduled as
early as possible, and this NEH heuristic is regarded as the
best heuristic for PFSP with makespan minimization (Ruiz
and Maroto [2], Taillard [18]). Recently, complex heuristics
have been proposed for PFSP, for example, Liu and Reeves
[19] and Framinan and Leisten [20]. As far as the solution
quality is concerned, the FL heuristic proposed by Framinan
and Leisten [20] was the best one among simple heuristics
(Framinan et al. [3]). Contrary to constructive heuristics,
improvement heuristics start from an existing initial solution
and try to improve it by a given procedure, for example, a local
search. Fan and Winley [21] proposed a heuristic named the
intelligent heuristic search algorithm for the PFSP. Suliman
[22] proposed a two-phase improvement heuristic, in which
an initial solution is generated by theCDSheuristic in the first
phase and then improved by a pair exchange neighborhood
search in the second phase. Framinan et al. [23] proposed a
new efficient heuristic for the PFSP with no-wait constraint.

Metaheuristics are high-level strategies that combine and
guide other heuristics in the hope of obtaining a more
efficient or more robust procedure so that better solutions
can be found.Themain procedure ofmetaheuristics generally
starts from an initial solution or a set of solutions generated
by heuristics and iterates to improve the initial solution or
solutions until a given stopping criterion is reached. The
metaheuristics proposed for PFSP are mainly the genetic
algorithm (Chang et al. [24], Ruiz et al. [25]), the simulated
annealing (Hooda and Dhingra [26], Nouri et al. [27]),
the tabu search (Gao et al. [28]), the ant colony algorithm
(Rajendran and Ziegler [29]), the iterated greedy algorithm
(Ruiz and Stützle [30]), and the particle swarm optimization
(PSO) (Tasgetiren et al. [31], Wang and Tang [32]). These
metaheuristics use the benchmark problems proposed by
Taillard [33] to evaluate their performance. The ant colony
algorithms proposed by Rajendran and Ziegler [29], named
M-MMAS and PACO, obtained much better solutions than

constructive heuristics of Framinan and Leisten [20]. The
iterated greedy algorithm proposed by Ruiz and Stützle
[30] improved the best known results for some instances
of PFSP with makespan minimization. The particle swarm
optimization (PSO) named PSOVNS, which incorporates
variable neighborhood search (VNS) into PSO, proposed by
Tasgetiren et al. [31] improved 57 out of 90 best known solu-
tions reported by Framinan and Leisten [20] and Rajendran
and Ziegler [29] for the total flowtime criterion.

In this paper, we propose an improved PSO for the PFSP.
To enhance the exploration ability of PSO, the path relinking
and the hybrid simulated annealing with stochastic VNS
are incorporated. To improve the search diversification of
PSO, a population update method is applied to replace the
nonpromising particles. The rest of this paper is organized as
follows. Section 2 is devoted to describe the proposed PSO
algorithm. The computational results on benchmark prob-
lems are presented in Section 3. Finally, Section 4 concludes
the paper.

2. PSO Algorithm for PFSP

2.1. Brief Introduction of PSO. PSO algorithm is a population
based metaheuristic method introduced by Kennedy and
Eberhart [34, 35] based on the social behavior of bird flocking
and fish schooling, as well as the means of information
exchange between individuals, to solve optimization prob-
lems. In the PSO, a swarm consists of 𝑚 particles and these
particles fly around in an 𝑛-dimensional search space. The
solution of a problem is represented by the position of a
particle; that is, the 𝑖th particle at the 𝑡th generation is denoted
as 𝑋𝑡
𝑖
= [𝑥
𝑡

𝑖1
, 𝑥
𝑡

𝑖2
, . . . , 𝑥

𝑡

𝑖𝑛
]. At each generation, the flight of

each particle is determined by three factors: the inertia of
itself, the best position found by itself (𝑝best), and the best
position found by the whole swarm (𝑔best). Generally, 𝑝best
and 𝑔best are represented as 𝑃𝑡

𝑖
= [𝑝
𝑡

𝑖1
, 𝑝
𝑡

𝑖2
, . . . , 𝑝

𝑡

𝑖𝑛
] and 𝐺𝑡 =

[𝑔
𝑡

1
, 𝑔
𝑡

2
, . . . , 𝑔

𝑡

𝑛
], respectively. Then the velocity of the particle

𝑉
𝑡

𝑖
= [V𝑡
𝑖1
, V𝑡
𝑖2
, . . . , V𝑡

𝑖𝑛
] for the next generation can be obtained

from the following equation:

V𝑡+1
𝑖𝑗

= 𝑤 ⋅ V𝑡
𝑖𝑗
+ 𝑐
1
𝑟
1
⋅ (𝑝
𝑡

𝑖𝑗
− 𝑥
𝑡

𝑖𝑗
) + 𝑐
2
𝑟
2
⋅ (𝑔
𝑡

𝑗
− 𝑥
𝑡

𝑖𝑗
) ,

𝑥
𝑡+1

𝑖𝑗
= 𝑥
𝑡

𝑖𝑗
+ V𝑡+1
𝑖𝑗
,

(2)

where 𝑤 is called the inertia parameter, 𝑐
1
and 𝑐

2
are

the cognitive and social parameters, and 𝑟
1
, 𝑟
2
are random

numbers between (0, 1). Based on the above equations, the
particle can fly through search space toward𝑝best and𝑔best in a
navigatedwaywhile still exploring new areas by the stochastic
mechanism to escape from local optima.

2.2. Solution Representation. Since the PSO operates in the
continuous space, a job is represented by a dimension of a
particle and then the 𝑛 jobs can be denoted as a particle
𝑋
𝑡

𝑖
= [𝑥
𝑡

𝑖1
, 𝑥
𝑡

𝑖2
, . . . , 𝑥

𝑡

𝑖𝑛
] in the continuous space. Due to the

continuous characters of the position values of particles in
the PSO, the smallest position value (SPV) rule proposed by
Tasgetiren et al. [31] is adopted to transform a particle with
continuous position values into a job permutation. A simple



The Scientific World Journal 3

Table 1: Solution representation and the corresponding job permutation using SPV rule.

Dimension 𝑗 1 2 3 4 5 6 7 8 9
𝑥
𝑡

𝑖𝑗
0.35 −1.75 −0.02 −0.21 0.02 1.20 1.03 0.67 −1.21

Job, 𝜋𝑡
𝑖𝑗

6 1 4 3 5 9 8 7 2

Table 2: Interchange move on the job permutation and the corresponding position value adjustment.

Dimension 𝑗 1 2 3 4 5 6 7 8
Before interchange
𝑥
𝑡

𝑖𝑗
0.54 −0.75 −1.02 −0.41 0.92 −1.20 0.23 0.12

Job, 𝜋𝑡
𝑖𝑗

6 3 2 4 8 7 1 5
After interchange
𝑥
𝑡

𝑖𝑗
0.54 −0.75 0.23 −0.41 0.92 –1.20 −1.02 0.12

Job, 𝜋𝑡
𝑖𝑗

6 7 2 4 8 3 1 5
The bold and italic values are used to show the interchange move applied to jobs 3 and 7.

example is provided in Table 1 to show the mechanism of
the SPV rule. In this instance (𝑛 = 9), the smallest position
value is 𝑥𝑡

𝑖2
= −1.75, so job 2 is assigned to the first position

of the job permutation according to the SPV rule; then job
9 is assigned to the second position of the job permutation
because it has the second smallest position value 𝑥

𝑡

𝑖9
=

−1.21. With the same way, other jobs are assigned in their
corresponding position of the job permutation according to
their position values. Thus, based on the SPV rule, the job
permutation is obtained; that is, 𝜋𝑡

𝑖
= (2, 9, 4, 3, 5, 1, 8, 7, 6).

2.3. Population Initialization. The population with 𝑛pop solu-
tions is initialized with random solutions according to 𝑥0

𝑖𝑗
=

𝑥min + rand× (𝑥max −𝑥min), where rand is a uniform random
number in [0, 1], 𝑥min = −4.0, and 𝑥max = 4.0. Also, we
generate the corresponding velocity of each particle by a
similar way: V0

𝑖𝑗
= Vmin+rand×(Vmax−Vmin), where Vmin = −1.0

and Vmax = 1.0. In addition, another solution generated by
the NEH heuristic [18] is added to the initial population and
replaces a random selected solution so as to ensure the quality
of initial population.

2.4. Hybrid Method of Simulated Annealing and Stochastic
VNS. In the PSOVNS proposed by Tasgetiren et al. [31], a
stochastic VNS, which itself is a variant of VNS (Hansen and
Mladenović [36]), is developed as the local search. For a given
discrete job permutation 𝜋𝑡, let 𝑤 and 𝑧 denote two different
random integer numbers generated in [1, 𝑛], and then the
two stochastic neighborhoods moves used in the stochastic
VNS to generate a neighbor solution 𝜋

𝑡
󸀠

are (1) 𝜋
𝑡
󸀠

=

insert(𝜋𝑡, 𝑤, 𝑧): remove the job at the wth position and insert
it in the zth position; and (2) 𝜋

𝑡
󸀠

= interchange(𝜋𝑡, 𝑤, 𝑧):
interchange two jobs arranged at the wth position and the
zth position. After a job permutation is changed according
to a local search operator such as insert or interchange, the
position value of each dimension is adjusted correspondingly
to guarantee that the permutation that resulted by the SPV
rule for new position values is the same as the permutation

that resulted by the local search operator. For example, Table 2
shows the interchange move applied to two jobs 3 and 7,
and the corresponding position value changes. It is clear
that the interchange of jobs 3 and 7 is corresponding to the
interchange of position values −1.02 and 0.23. The position
value adjustment for the insert move is similar.

To further improve the exploration ability of the local
search, we incorporate the solution acceptance scheme of
simulated annealing into the stochastic VNS and thus obtain
a hybrid method of simulated annealing and stochastic VNS
(denoted as SA VNS). To reduce the computation time and
make the search process focus on the intensification phase,
we use a decreasing acceptance threshold to act as the cooling
procedure of simulated annealing. The procedure of the
proposed SA VNS algorithm is illustrated in Algorithm 1.

In the PSOVNS proposed by Tasgetiren et al. [31], the
stochastic VNS is applied on the global best particle found
at each iteration. However, a drawback of such application
is that the starting point of the stochastic VNS may be the
same solution if the global best particle cannot be improved
for a number of consecutive iterations, and consequently the
exploration ability of the PSO may be decreased. Therefore,
for a given population at iteration 𝑡, we propose to use the
following strategy.

Step 1. Apply the SA VNS on the promising particles satisfy-
ing (𝑓(𝜋𝑡) − 𝑓(𝑔best))/𝑓(𝑔best) ≤ 0.02, in which 𝑓(𝜋𝑡) is the
objective value of particle 𝜋𝑡.

Step 2. Update the global best particle. If a new global best
particle is found, then further improve it using the SA VNS.

2.5. Population Update Method. It is well known that the
advantage of PSO is that it has a high convergence speed.
However, this advantage may become the disadvantage for
complex scheduling problems because the scheduling prob-
lems generally have many local optimal regions in the search
space. That is, for the PSO applied to PFSP, some particles
may always fly around a local region and thus are trapped in
local optimum.Therefore, we propose a solution replacement



4 The Scientific World Journal

Begin:
Initialization:

Let 𝜋
0
be the input initial solution. Set 𝜋 = 𝜋

0
, the acceptance threshold 𝑇 = 0.05, and

𝑜𝑢𝑡𝑒𝑟𝑙𝑜𝑜𝑝 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0.
while (𝑜𝑢𝑡𝑒𝑟𝑙𝑜𝑜𝑝 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝑛/5) do

(1) Generate a random number 𝑟 in [0, 1], and two random integer numbers 𝑤 and 𝑧.
If 𝑟 > 0.5, generate 𝜋󸀠 = insert (𝜋,𝑤, 𝑧); otherwise generate 𝜋󸀠 = interchange (𝜋,𝑤, 𝑧).

(2) Set 𝑖𝑛𝑛𝑒𝑟 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 0.
(3) while (𝑖𝑛𝑛𝑒𝑟 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝑛 × (𝑛 − 1)) do

Set 𝑘 = 1.
while (𝑘 ≤ 2) do

(1) Generate two random integer numbers 𝑤 and 𝑧.
(2) If 𝑘 = 1, generate 𝜋󸀠󸀠 = 𝑖𝑛𝑠𝑒𝑟𝑡 (𝜋󸀠, 𝑤, 𝑧).
(3) If 𝑘 = 2, generate 𝜋󸀠󸀠 = 𝑖𝑛𝑡𝑒𝑟𝑐ℎ𝑎𝑛𝑔𝑒 (𝜋󸀠, 𝑤, 𝑧).
(4) If 𝑓(𝜋󸀠󸀠) < 𝑓(𝜋󸀠), then set 𝜋󸀠 = 𝜋󸀠󸀠 and 𝑘 = 1; otherwise set 𝑘 = 𝑘 + 1.

end while
Set 𝑖𝑛𝑛𝑒𝑟 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑖𝑛𝑛𝑒𝑟 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1.

end while
(4) If 𝑓(𝜋󸀠) < 𝑓(𝜋

0
), set 𝜋

0
= 𝜋
󸀠and 𝜋 = 𝜋

󸀠, and then go to step 6; otherwise go to step 5.
(5) If 𝑓(𝜋󸀠) ≥ 𝑓(𝜋

0
) but (𝑓(𝜋󸀠) − 𝑓(𝜋

0
))/𝑓(𝜋

0
) ≤ 𝑇, set 𝜋 = 𝜋󸀠; otherwise, generate a random

number r in [0, 1], and then set 𝜋 = 𝜋
0
if 𝑟 > 0.5 and 𝜋 = 𝜋󸀠 if 𝑟 ≤ 0.5.

(6) Set 𝑇 = 𝑇 × 0.95 and 𝑜𝑢𝑡𝑒𝑟𝑙𝑜𝑜𝑝 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑜𝑢𝑡𝑒𝑟𝑙𝑜𝑜𝑝 𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1.
end while
Report the improved solution 𝜋0.

End

Algorithm 1: The main procedure of the SA VNS.

strategy based on the pathrelinking [37] to remove these
solutions with new solutions with good quality.

In our algorithm, a particle is viewed as being trapped in
local optimum if its personal best solution 𝑝best has not been
improved for a number of consecutive generations (i.e., 20).
For these particles, we give them the last chance to stay in
the population by applying the path relinking algorithm on it
to check if its personal best 𝑝best can be improved. If so, this
particle can remain in the population; otherwise, we replace
this particle with a new random particle.

The path relinking is originally proposed by Glover et al.
[37] to generate new solutions by exploring a path that
connects an initial solution and a guiding solution. In this path,
moves are selected that introduce attributes contained in the
guiding solution. To present the path relinking algorithm,
we define the distance between two particles 𝑋

𝑖
and 𝑋

𝑗
as

𝑑(𝑋
𝑖
, 𝑋
𝑗
) = 𝑑(𝜋

𝑖
, 𝜋
𝑗
) = |ℎ(𝜋

𝑖
) − ℎ(𝜋

𝑗
)|, where 𝜋 is the

corresponding job permutation (obtained by the SPV rule)
of particle 𝑋 and ℎ(𝜋) is the Hash function value of 𝜋 =

(𝜋(1), . . . , 𝜋(𝑛)) that is calculated as ℎ(𝜋) = ∑
𝑛

𝑘=1
𝑘 × 𝜋(𝑘) ×

𝜋(𝑘). Then the path relinking algorithm can be described as
follows.

Step 1. Set 𝜋
𝑖
= (𝜋
𝑖
(1), 𝜋
𝑖
(2), . . . , 𝜋

𝑖
(𝑛)) as the initial solution.

Find the particle that has the largest distance to particle
𝑋
𝑖
in the current population (denoted as 𝑋

𝑗
), and set its

corresponding job permutation 𝜋
𝑗
= (𝜋
𝑗
(1), 𝜋
𝑗
(2), . . . , 𝜋

𝑗
(𝑛))

as the guiding solution. Set 𝑘 = 1 and the local optimum
𝜋opt = 𝜋𝑖.

Step 2. If 𝜋
𝑖
(𝑘) ̸= 𝜋

𝑗
(𝑘), find the job with index 𝜋

𝑗
(𝑘) in 𝜋

𝑖
and

swap it with 𝜋
𝑖
(𝑘) to generate a new job permutation 𝜋󸀠

𝑖
. If 𝜋󸀠
𝑖

is better than 𝜋opt, then set 𝜋opt = 𝜋
󸀠

𝑖
.

Step 3. Set 𝑘 = 𝑘 + 1. If 𝑘 > 𝑛 − 10, stop; otherwise, go to
Step 2.

It should be noted that the above path relinking stops
when 𝑘 is larger than 𝑛 − 10, because if particle 𝑋

𝑗
is better

than 𝑋
𝑖
, then 𝑋

𝑖
will be replaced by 𝑋

𝑗
if the path relinking

stops when 𝑘 = 𝑛, which may result in duplicated particles
and thus decrease the search diversification.

2.6. Complete Procedure of the Proposed PSO

Step 1. Initialization

Step 1.1. Set initial values for the population size 𝑛pop, the
inertia weight, and the cognitive and social parameters. Set
𝑡 = 0 and 𝑁𝑂

𝑖
= 0 (𝑖 = 1, 2, . . . , 𝑛pop) for each particle in

the population. Create the initial population and the initial
velocities for each particle using the method described in
Section 2.3.

Step 1.2. Generate the job permutation for each particle in
the population using the SPV rule, and calculate the objective
value of each particle.



The Scientific World Journal 5

Step 1.3. Set the personal best of each particle to be the
particle itself and the global best to be the best one among
the population.

Step 2. Update Particle Positions

Step 2.1. Update iteration counter 𝑡 = 𝑡 + 1.

Step 2.2. Update inertia weight by 𝑤 = 𝑤 × 𝛽.

Step 2.3. For each particle, update the velocity and position
values according to (2).

Step 2.4. Generate the job permutation for each particle in
the current population using the SPV rule, and calculate the
objective value of each particle.

Step 3. Local Search Phase

Step 3.1. Use the SA VNS algorithm to improve the promising
particles in the current population and then the global best
particle found so far according to the adoption strategy of
SA VNS described in Section 2.4.

Step 3.2. For each particle in the current population, update
its personal best 𝑝best. If 𝑝best of particle 𝑖 is improved, then
set𝑁𝑂

𝑖
= 0; otherwise set𝑁𝑂

𝑖
= 𝑁𝑂

𝑖
+ 1.

Step 4. Population Update. For each particle in the current
population, use the population update method described in
Section 2.5 to update the current population.

Step 5. Stopping Criterion. If 𝑡 > 𝑇max (the maximum
iteration number) or the runtime has reached the limit, then
stop; otherwise, go to Step 2.

3. Computational Experiments

To test the performance of our PSO algorithm (denoted as
PSO∗), computational experiments were carried out on the
well-known standard benchmark set of Taillard [33] that
is composed of 110 instances ranging from 20 jobs and 5
machines to 200 jobs and 20 machines. This benchmark set
contains some instances proven to be very difficult to solve.
In this benchmark set there are 10 instances for each problem
size. Our PSO algorithm was implemented using C++ and
tested on a personal PC with Pentium IV 3.0GHz CPU and
512MBmemory. Tomake a fair comparisonwith the PSOVNS,
we use the same parameter setting proposed by Tasgetiren et
al. [31]. That is, the population size is taken as 𝑛pop = 2𝑛; the
initial inertia weight is set to 𝑤 = 0.9 and never less than 0.4;
the decrement factor𝛽 for𝑤 is taken as 0.975; the acceleration
coefficients are set to 𝑐

1
= 𝑐
2
= 2; the maximum iteration

number 𝑇max is taken as 500.

3.1. Results for PFSP with Makespan Minimization. For the
makespan minimization objective, our PSO algorithm was
compared with other powerful methods, for example, the
ant colony algorithm named PACO of Rajendran and Ziegler

[29], the genetic algorithm named HGA RMA of Ruiz et al.
[25], the iterated greedy algorithm named IG RSLS of Ruiz
and Stützle [30], and the PSOVNS algorithmofTasgetiren et al.
[31].The solution qualitywasmeasured by the average relative
percent deviation (denoted as ARPD) over 𝑅 replicated runs
for each instance in makespan with respect to the best
known upper bounds. More specifically, ARPD is calculated
as ARPD = ∑

𝑅

𝑖=1
(((𝐻
𝑖
− 𝑈
𝑖
) × 100)/𝑈

𝑖
)/𝑅, in which 𝐻

𝑖
is

the makespan obtained by a certain algorithm, whereas 𝑈
𝑖
is

the best known upper bound value for Taillard’s instances as
of April 2004 for the makespan criterion. As done by many
researchers, 𝑅 is set to 𝑅 = 10 in our experiments.

The comparison results for these algorithms are given in
Table 3, in which the values are the average performance of
the 10 instances for each problem size. As seen in Table 3, our
PSO∗ algorithm achieves the best average performance and it
obtains the best results for instances of 20 × 5, 20 × 10, 50 × 5,
50 × 10, 100 × 5, 100 × 20, and 200 × 20. The IG RSLS method
also performs well with the HGA RMA method being close.
More specifically, the PACOmethod cannot obtain the lowest
ARPD for any group of problem size compared to other rival
methods. The HGA RMA method has the lowest ARPD for
instances of 20×10, 50×5, and 100×10.The IG RSLS method
demonstrates the best results for instances of 20 × 20, 50 × 5,
50 × 10, 50 × 20, and 200 × 10. For instances of 20 × 10,
both the HGA RMA method and the PSOVNS method give
the best performance. For instances of 50 × 5, all the four
methods except for PACO can obtain the lowest ARPD. For
instances of 100 × 5, only the two PSO algorithms give the
best performance. Our PSO∗ algorithm performs better than
its rivals in 100 × 20 and 200 × 20 instances, which have been
proven more difficult to solve. Therefore, it can be concluded
that our PSO∗ algorithm is competitive with other powerful
methods in the literature.

3.2. Results for PFSP with Total Flowtime Minimization. For
the total flowtimeminimization objective, our PSO algorithm
was compared with other powerful methods, for example,
the constructive heuristics of Framinan and Leisten [20],
the ant colony algorithm of Rajendran and Ziegler [29], and
the PSOVNS of Tasgetiren et al. [31], using the benchmark
problems of Taillard [33]. The solution quality was measured
by the relative percent deviation (denoted as RPD) of the
best solution found among 𝑅 (𝑅 = 5) replicated runs for
each instance in the total flowtime criterion with respect to
the best known results. That is, RPD is calculated as RPD =

min{((𝐻
𝑖
− 𝑈
𝑖
) × 100)/𝑈

𝑖
, 𝑖 ∈ 𝑅}, in which 𝐻

𝑖
is the total

flowtime value obtained by a certain algorithm, whereas𝑈
𝑖
is

the best result obtained among the algorithms of Framinan
and Leisten [20] and Rajendran and Ziegler [29] (this best
result is denoted as LR and RZ).

For the minimization of the total flowtime criterion,
the PSOVNS algorithm [31] is demonstrated to be a very
powerful PSO algorithmbecause it improved 57 out of 90 best
known solutions reported in [20, 29].The comparison results
between our PSO∗ and the PSOVNS are given in Table 4. From
this table, we can see that the PSOVNS algorithm can obtain
the best results for instances of 20×5, 20×10, 50×5, 100×5, and



6 The Scientific World Journal

Table 3: ARPD comparison of different methods for makespan criterion.

Problem PACO HGA RMA IG RSLS PSOVNS PSO∗

20 × 5 0.18 0.04 0.04 0.03 0.00
20 × 10 0.24 0.02 0.06 0.02 0.02
20 × 20 0.18 0.05 0.03 0.05 0.05
50 × 5 0.05 0.00 0.00 0.00 0.00
50 × 10 0.81 0.72 0.56 0.57 0.56
50 × 20 1.41 0.99 0.94 1.36 0.99
100 × 5 0.02 0.01 0.01 0.00 0.00
100 × 10 0.29 0.16 0.20 0.18 0.20
100 × 20 1.93 1.30 1.30 1.45 1.18
200 × 10 0.23 0.14 0.12 0.18 0.18
200 × 20 1.82 1.26 1.26 1.35 1.16
Average 0.65 0.43 0.41 0.47 0.39
The bold font is used to highlight the better solutions.
∗used to denote our algorithm.

Table 4: Performance comparison of PSOVNS and PSO∗ for total flowtime criterion.

Problem PSOVNS PSO∗

RPD CPU (s) RPD CPU (s)
20 × 5 −0.175 3.18 −0.168 8.11
20 × 10 −0.037 7.21 −0.035 4.86
20 × 20 2.758 11.93 −0.068 24.97
50 × 5 −0.603 41.71 −0.531 40.28
50 × 10 −0.819 74.49 −0.892 44.32
50 × 20 0.857 143.32 −0.543 50.67
100 × 5 −0.570 222.28 −0.546 409.75
100 × 10 −0.692 407.88 −0.636 414.14
100 × 20 −0.104 824.41 −0.801 442.37
Average 0.068 192.93 −0.469 159.941
The bold font is used to highlight the better solutions.
∗used to denote our algorithm.

100 × 10, while our PSO∗ algorithm obtains the best results
for the other large size instances of 20 × 20, 50 × 10, 50 × 20,
and 100 × 20. On average, our PSO∗ shows a much better
performance in the solution quality and robustness than the
PSOVNS algorithm.

4. Conclusions

This paper presents a PSO-based hybridmetaheuristic for the
permutation flowshop problems to minimize the makespan
and the total flowtime. In this algorithm, a hybrid method
of simulated annealing and stochastic variable neighborhood
search is incorporated to improve the exploitation ability, and
a solution replacement strategy based on the path relinking
method is developed to improve the exploration ability.
Computational experiments are carried out to test the perfor-
mance of the proposed PSO-based hybrid metaheuristic, and
the results show that the proposed algorithm is competitive or

superior to some other powerful algorithms in the literature
for this problem. Future research may lie in the application of
this algorithm in practical production scheduling problems.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by National Nature Science Foun-
dation under Grant 61004039, by the Science Foundation of
Educational Department of Liaoning Province under Grant
L2010374, and also by the Key Laboratory for Manufacturing
Industrial Integrated Automation of Liaoning Province. The
authors would like to thank the Associate Professor Hong
Yang for her valuable comments.



The Scientific World Journal 7

References

[1] S. M. Johnson, “Optimal two- and three-stage production
schedules with setup times included,” Naval Research Logistics
Quarterly, vol. 1, no. 1, pp. 61–68, 1954.

[2] R. Ruiz and C. Maroto, “A comprehensive review and evalua-
tion of permutation flowshop heuristics,” European Journal of
Operational Research, vol. 165, no. 2, pp. 479–494, 2005.

[3] J. M. Framinan, R. Leisten, and R. Ruiz-Usano, “Comparison
of heuristics for flowtime minimisation in permutation flow-
shops,” Computers and Operations Research, vol. 32, no. 5, pp.
1237–1254, 2005.

[4] M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of
flowshop and jobshop scheduling,” Mathematics of Operations
Research, vol. 1, no. 2, pp. 117–129, 1976.

[5] E. F. Stafford, “On the development of a mixed integer linear
programming model for the flowshop sequencing problem,”
Journal of the Operational Research Society, vol. 39, pp. 1163–
1174, 1988.

[6] Z. A. Lomnicki, “A branch and bound algorithm for the exact
solution of the threemachine scheduling problem,”Operational
Research Quarterly, vol. 16, pp. 89–100, 1965.

[7] A. P. G. Brown and Z. A. Lomnicki, “Some applications of
the branch and bound algorithm to the machine scheduling
problem,” Operational Research Quarterly, vol. 17, pp. 173–186,
1966.

[8] G. B. McMahon and P. G. Burton, “Flowshop scheduling with
the branch and boundmethod,”Operations Research, vol. 15, no.
3, pp. 473–481, 1967.

[9] E. Ignall and L. Schrage, “Application of the branch and bound
technique to some flow-shop scheduling problems,” Operations
Research, vol. 13, no. 3, pp. 400–412, 1965.

[10] S. P. Bansal, “Minimizing the sum of completion times of n
jobs over m machines in a flowshop—a branch and bound
approach,” AIIE Transactions, vol. 9, no. 3, pp. 306–311, 1977.

[11] C.-S. Chung, J. Flynn, and O. Kirca, “A branch and bound
algorithm to minimize the total flow time for m-machine
permutation flowshop problems,” International Journal of Pro-
duction Economics, vol. 79, no. 3, pp. 185–196, 2002.

[12] H. G. Campbell, R. A. Dudek, and M. L. Smith, “A heuristic
algorithm for the n job, m machine sequencing problem,”
Management Science, vol. 16, no. 10, pp. 630–637, 1970.

[13] C. Koulamas, “A new constructive heuristic for the flowshop
scheduling problem,” European Journal of Operational Research,
vol. 105, no. 1, pp. 66–71, 1998.

[14] D. Palmer, “Sequencing jobs through a multi-stage process in
the minimum total time—a quick method of obtaining a near
optimum,”Operational ResearchQuarterly, vol. 16, no. 1, pp. 101–
107, 1965.

[15] J. N. D. Gupta, “Heuristic algorithms for multistage flowshop
scheduling problem,” AIIE Transactions, vol. 4, no. 1, pp. 11–18,
1972.

[16] T. S. Hundal and J. Rajgopal, “An extension of Palmer’s heuristic
for the flow shop scheduling problem,” International Journal of
Production Research, vol. 26, no. 6, pp. 1119–1124, 1988.

[17] M. Nawaz, E. E. Enscore Jr., and I. Ham, “A heuristic algorithm
for the m-machine, n-job flow-shop sequencing problem,”
Omega, vol. 11, no. 1, pp. 91–95, 1983.

[18] E. Taillard, “Some efficient heuristic methods for the flow
shop sequencing problem,” European Journal of Operational
Research, vol. 47, no. 1, pp. 65–74, 1990.

[19] J. Liu and C. R. Reeves, “Constructive and composite heuristic
solutions to the 𝑃//∑𝐶

𝑖
scheduling problem,” European Jour-

nal of Operational Research, vol. 132, no. 2, pp. 439–452, 2001.
[20] J. M. Framinan and R. Leisten, “An efficient constructive

heuristic for flowtimeminimisation in permutation flow shops,”
Omega, vol. 31, no. 4, pp. 311–317, 2003.

[21] J. P.-O. Fan and G. K. Winley, “A heuristic search algorithm for
flow-shop scheduling,” Informatica, vol. 32, no. 4, pp. 453–464,
2008.

[22] S.M. A. Suliman, “Two-phase heuristic approach to the permu-
tation flow-shop scheduling problem,” International Journal of
Production Economics, vol. 64, no. 1, pp. 143–152, 2000.

[23] J. M. Framinan, M. S. Nagano, and J. V. Moccellin, “An efficient
heuristic for total flowtimeminimisation in no-wait flowshops,”
International Journal of Advanced Manufacturing Technology,
vol. 46, no. 9–12, pp. 1049–1057, 2010.

[24] P. C. Chang,W.H.Huang, and J. L.Wu, “A blockmining and re-
combination enhanced genetic algorithm for the permutation
flowshop scheduling problem,” International Journal of Produc-
tion Economics, vol. 141, no. 1, pp. 45–55, 2013.

[25] R. Ruiz, C. Maroto, and J. Alcaraz, “Two new robust genetic
algorithms for the flowshop scheduling problem,” Omega, vol.
34, no. 5, pp. 461–476, 2006.

[26] N. Hooda and A. K. Dhingra, “Flow shop scheduling using
simulated annealing: a review,” International Journal of Applied
Engineering Research, vol. 2, no. 1, pp. 234–249, 2011.

[27] B. V. Nouri, P. Fattahi, and R. Ramezanian, “Hybrid firefly-
simulated annealing algorithm for the flow shop problem with
learning effects and flexible maintenance activities,” Interna-
tional Journal of Production Research, vol. 51, no. 12, pp. 3501–
3515, 2013.

[28] J. Gao, R. Chen, and W. Deng, “An efficient tabu search
algorithm for the distributed permutation flowshop scheduling
problem,” International Journal of Production Research, vol. 51,
no. 3, pp. 641–651, 2013.

[29] C. Rajendran and H. Ziegler, “Ant-colony algorithms for per-
mutation flowshop scheduling to minimize makespan/total
flowtime of jobs,” European Journal of Operational Research, vol.
155, no. 2, pp. 426–438, 2004.

[30] R. Ruiz and T. Stützle, “A simple and effective iterated greedy
algorithm for the permutation flowshop scheduling problem,”
European Journal of Operational Research, vol. 177, no. 3, pp.
2033–2049, 2007.

[31] M. F. Tasgetiren, Y.-C. Liang, M. Sevkli, and G. Gencyilmaz, “A
particle swarm optimization algorithm for makespan and total
flowtime minimization in the permutation flowshop sequenc-
ing problem,”European Journal of Operational Research, vol. 177,
no. 3, pp. 1930–1947, 2007.

[32] X. Wang and L. Tang, “A discrete particle swarm optimization
algorithm with self-adaptive diversity control for the permuta-
tion flowshop problem with blocking,” Applied Soft Computing
Journal, vol. 12, no. 2, pp. 652–662, 2012.

[33] E. Taillard, “Benchmarks for basic scheduling problems,” Euro-
pean Journal of Operational Research, vol. 64, no. 2, pp. 278–285,
1993.

[34] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, pp. 1942–1948, December 1995.

[35] R. Eberhart and J. Kennedy, “New optimizer using particle
swarm theory,” in Proceedings of the 6th International Sympo-
sium onMicroMachine and Human Science, pp. 39–43, October
1995.



8 The Scientific World Journal

[36] P. Hansen and N. Mladenović, “Variable neighborhood search:
principles and applications,” European Journal of Operational
Research, vol. 130, no. 3, pp. 449–467, 2001.

[37] F. Glover, M. Laguna, and R. Mart́ı, “Fundamentals of scatter
search and path relinking,” Control and Cybernetics, vol. 29, no.
3, pp. 652–684, 2000.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


