164 research outputs found

    A Hybrid Multi-Robot Control Architecture

    Get PDF
    Multi-robot systems provide system redundancy and enhanced capability versus single robot systems. Implementations of these systems are varied, each with specific design approaches geared towards an application domain. Some traditional single robot control architectures have been expanded for multi-robot systems, but these expansions predominantly focus on the addition of communication capabilities. Both design approaches are application specific and limit the generalizability of the system. This work presents a redesign of a common single robot architecture in order to provide a more sophisticated multi-robot system. The single robot architecture chosen for application is the Three Layer Architecture (TLA). The primary strength of TLA is in the ability to perform both reactive and deliberative decision making, enabling the robot to be both sophisticated and perform well in stochastic environments. The redesign of this architecture includes incorporation of the Unified Behavior Framework (UBF) into the controller layer and an addition of a sequencer-like layer (called a Coordinator) to accommodate the multi-robot system. These combine to provide a robust, independent, and taskable individual architecture along with improved cooperation and collaboration capabilities, in turn reducing communication overhead versus many traditional approaches. This multi-robot systems architecture is demonstrated on the RoboCup Soccer Simulator showing its ability to perform well in a dynamic environment where communication constraints are high

    Multi-Robot Symbolic Task and Motion Planning Leveraging Human Trust Models: Theory and Applications

    Get PDF
    Multi-robot systems (MRS) can accomplish more complex tasks with two or more robots and have produced a broad set of applications. The presence of a human operator in an MRS can guarantee the safety of the task performing, but the human operators can be subject to heavier stress and cognitive workload in collaboration with the MRS than the single robot. It is significant for the MRS to have the provable correct task and motion planning solution for a complex task. That can reduce the human workload during supervising the task and improve the reliability of human-MRS collaboration. This dissertation relies on formal verification to provide the provable-correct solution for the robotic system. One of the challenges in task and motion planning under temporal logic task specifications is developing computationally efficient MRS frameworks. The dissertation first presents an automaton-based task and motion planning framework for MRS to satisfy finite words of linear temporal logic (LTL) task specifications in parallel and concurrently. Furthermore, the dissertation develops a computational trust model to improve the human-MRS collaboration for a motion task. Notably, the current works commonly underemphasize the environmental attributes when investigating the impacting factors of human trust in robots. Our computational trust model builds a linear state-space (LSS) equation to capture the influence of environment attributes on human trust in an MRS. A Bayesian optimization based experimental design (BOED) is proposed to sequentially learn the human-MRS trust model parameters in a data-efficient way. Finally, the dissertation shapes a reward function for the human-MRS collaborated complex task by referring to the above LTL task specification and computational trust model. A Bayesian active reinforcement learning (RL) algorithm is used to concurrently learn the shaped reward function and explore the most trustworthy task and motion planning solution

    Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space 1994

    Get PDF
    The Third International Symposium on Artificial Intelligence, Robotics, and Automation for Space (i-SAIRAS 94), held October 18-20, 1994, in Pasadena, California, was jointly sponsored by NASA, ESA, and Japan's National Space Development Agency, and was hosted by the Jet Propulsion Laboratory (JPL) of the California Institute of Technology. i-SAIRAS 94 featured presentations covering a variety of technical and programmatic topics, ranging from underlying basic technology to specific applications of artificial intelligence and robotics to space missions. i-SAIRAS 94 featured a special workshop on planning and scheduling and provided scientists, engineers, and managers with the opportunity to exchange theoretical ideas, practical results, and program plans in such areas as space mission control, space vehicle processing, data analysis, autonomous spacecraft, space robots and rovers, satellite servicing, and intelligent instruments

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Design and Control of Robotic Systems for Lower Limb Stroke Rehabilitation

    Get PDF
    Lower extremity stroke rehabilitation exhausts considerable health care resources, is labor intensive, and provides mostly qualitative metrics of patient recovery. To overcome these issues, robots can assist patients in physically manipulating their affected limb and measure the output motion. The robots that have been currently designed, however, provide assistance over a limited set of training motions, are not portable for in-home and in-clinic use, have high cost and may not provide sufficient safety or performance. This thesis proposes the idea of incorporating a mobile drive base into lower extremity rehabilitation robots to create a portable, inherently safe system that provides assistance over a wide range of training motions. A set of rehabilitative motion tasks were established and a six-degree-of-freedom (DOF) motion and force-sensing system was designed to meet high-power, large workspace, and affordability requirements. An admittance controller was implemented, and the feasibility of using this portable, low-cost system for movement assistance was shown through tests on a healthy individual. An improved version of the robot was then developed that added torque sensing and known joint elasticity for use in future clinical testing with a flexible-joint impedance controller

    Proceedings of the NASA Conference on Space Telerobotics, volume 2

    Get PDF
    These proceedings contain papers presented at the NASA Conference on Space Telerobotics held in Pasadena, January 31 to February 2, 1989. The theme of the Conference was man-machine collaboration in space. The Conference provided a forum for researchers and engineers to exchange ideas on the research and development required for application of telerobotics technology to the space systems planned for the 1990s and beyond. The Conference: (1) provided a view of current NASA telerobotic research and development; (2) stimulated technical exchange on man-machine systems, manipulator control, machine sensing, machine intelligence, concurrent computation, and system architectures; and (3) identified important unsolved problems of current interest which can be dealt with by future research

    Distributed consensus in multi-robot systems with visual perception

    Get PDF
    La idea de equipos de robots actuando con autonomía y de manera cooperativa está cada día más cerca de convertirse en realidad. Los sistemas multi robot pueden ejecutar tareas de gran complejidad con mayor robustez y en menos tiempo que un robot trabajando solo. Por otra parte, la coordinación de un equipo de robots introduce complicaciones que los ingenieros encargados de diseñar estos sistemas deben afrontar. Conseguir que la percepción del entorno sea consistente en todos los robots es uno de los aspectos más importantes requeridos en cualquier tarea cooperativa, lo que implica que las observaciones de cada robot del equipo deben ser transmitidas a todos los otros miembros. Cuando dos o más robots poseen información común del entorno, el equipo debe alcanzar un consenso usando toda la información disponible. Esto se debe hacer considerando las limitaciones de cada robot, teniendo en cuenta que no todos los robots se pueden comunicar unos con otros. Con este objetivo, se aborda la tarea de diseñar algoritmos distribuidos que consigan que un equipo de robots llegue a un consenso acerca de la información percibida por todos los miembros. Específicamente, nos centramos en resolver este problema cuando los robots usan la visión como sensor para percibir el entorno. Las cámaras convencionales son muy útiles a la hora de ejecutar tareas como la navegación y la construcción de mapas, esenciales en el ámbito de la robótica, gracias a la gran cantidad de información que contiene cada imagen. Sin embargo, el uso de estos sensores en un marco distribuido introduce una gran cantidad de complicaciones adicionales que deben ser abordadas si se quiere cumplir el objetivo propuesto. En esta Tesis presentamos un estudio profundo de los algoritmos distribuidos de consenso y cómo estos pueden ser usados por un equipo de robots equipados con cámaras convencionales, resolviendo los aspectos más importantes relacionados con el uso de estos sensores. En la primera parte de la Tesis nos centramos en encontrar correspondencias globales entre las observaciones de todos los robots. De esta manera, los robots son capaces de detectar que observaciones deben ser combinadas para el cálculo del consenso. También lidiamos con el problema de la robustez y la detección distribuida de espurios durante el cálculo del consenso. Para contrarrestar el incremento del tamaño de los mensajes intercambiados por los robots en las etapas anteriores, usamos las propiedades de los polinomios de Chebyshev, reduciendo el número de iteraciones que se requieren para alcanzar el consenso. En la segunda parte de la Tesis, centramos nuestra atención en los problemas de crear un mapa y controlar el movimiento del equipo de robots. Presentamos soluciones para alcanzar un consenso en estos escenarios mediante el uso de técnicas de visión por computador ampliamente conocidas. El uso de algoritmos de estructura y movimiento nos permite obviar restricciones tales como que los robots tengan que observarse unos a otros directamente durante el control o la necesidad de especificar un marco de referencia común. Adicionalmente, nuestros algoritmos tienen un comportamiento robusto cuando la calibración de las cámaras no se conoce. Finalmente, la evaluación de las propuestas se realiza utilizando un data set de un entorno urbano y robots reales con restricciones de movimiento no holónomas. Todos los algoritmos que se presentan en esta Tesis han sido diseñados para ser ejecutados de manera distribuida. En la Tesis demostramos de manera teórica las principales propiedades de los algoritmos que se proponen y evaluamos la calidad de los mismos con datos simulados e imágenes reales. En resumen, las principales contribuciones de esta Tesis son: • Un conjunto de algoritmos distribuidos que permiten a un equipo de robots equipados con cámaras convencionales alcanzar un consenso acerca de la información que perciben. En particular, proponemos tres algoritmos distribuidos con el objetivo de resolver los problemas de encontrar correspondencias globales entre la información de todos los robots, detectar y descartar información espuria, y reducir el número de veces que los robots tienen que comunicarse entre ellos antes de alcanzar el consenso. • La combinación de técnicas de consenso distribuido y estructura y movimiento en tareas de control y percepción. Se ha diseñado un algoritmo para construir un mapa topológico de manera cooperativa usando planos como características del mapa y restricciones de homografía como elementos para relacionar las observaciones de los robots. También se ha propuesto una ley de control distribuida utilizando la geometría epipolar con el objetivo de hacer que el equipo de robots alcance una orientación común sin la necesidad de observarse directamente unos a otros

    Time constraint agents? coordination and learning in cooperative multi-agent system

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore