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Abstract

Multi-robot systems provide system redundancy and enhanced capability versus

single robot systems. Implementations of these systems are varied, each with specific

design approaches geared towards an application domain. Some traditional single

robot control architectures have been expanded for multi-robot systems, but these

expansions predominantly focus on the addition of communication capabilities. Both

design approaches are application specific and limit the generalizability of the system.

This work presents a redesign of a common single robot architecture in order to pro-

vide a more sophisticated multi-robot system. The single robot architecture chosen

for application is the Three Layer Architecture (TLA). The primary strength of TLA

is in the ability to perform both reactive and deliberative decision making, enabling

the robot to be both sophisticated and perform well in stochastic environments. The

redesign of this architecture includes incorporation of the Unified Behavior Frame-

work (UBF) into the controller layer and an addition of a sequencer-like layer (called

a Coordinator) to accommodate the multi-robot system. These combine to provide

a robust, independent, and taskable individual architecture along with improved co-

operation and collaboration capabilities, in turn reducing communication overhead

versus many traditional approaches. This multi-robot systems architecture is demon-

strated on the RoboCup Soccer Simulator showing its ability to perform well in a

dynamic environment where communication constraints are high.
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A Hybrid Multi-Robot

Control Architecture

I. Introduction

A Multi-Robot System (MRS) is defined as a collection of robots unified by a

mechanism common to each robot, such as communication or tasking. These

systems are useful since they are not spatially limited to a central location as a single

robot system. MRSs are typically more capable at tasks that require simultaneous ex-

ecution of actions, are spatially displaced, and require teamwork. Granted, a uniquely

capable or fast robot may execute these tasks, but there is an associated cost increase

in providing the hardware and software to perform them. Also, the single robot solu-

tion is likely uniquely designed and suited for these tasks, so modification of the tasks

requires additional expense in reconfiguring the robot.

MRSs, however, maintain simplicity of individual robot design and reconfigura-

bility in the face of task modification to provide a spatially distributed approach to

execution of tasks [20]. They are, by nature, more difficult to implement, and are less

common than single robot systems. MRSs also often sacrifice individual autonomy

and sophistication for improved coordination and collaboration capabilities. However,

if implemented appropriately, MRSs provide retention of individual capabilities and

the addition of capabilities reserved for multi-robot tasks. To provide these capabili-

ties in a heterogenous system, a control architecture must emphasize both individual

autonomy (independence) and collaboration and cooperation capabilities (coordina-

tion). Collaboration in this sense is when multiple robots work together, each on

a separate subtask, to accomplish a task. This involves no synchronization since,

though the overall task completion is dependent upon each robot completing their

task, none of the individual robot’s tasks are dependent upon the others. Cooper-

ation is when multiple robots work together to accomplish a task or subtask. This

1



requires at least some degree of synchronization, as overall task progress is mutually

dependent. If both of these are provided, the system has an even greater expansion of

capabilities in general, especially if the system is heterogeneous. Modern MRSs tend

to emphasize coordination while sacrificing independence, and most work involving

independence is limited to single robot systems.

MRSs are often employed in situations where a task is too complex for a single

robot, a task is impossible for a single robot to perform, or the risk of damage to a

single robot is significant. MRSs are also used in hopes of speeding up task completion

in applications such as construction, military operations, or localization and mapping.

In construction or military operations, there is often a need to combine multiple robot

types or heterogeneous systems into a cohesive group in order to complete a given

task. MRSs used in these situations provide a significant benefit, since the work is

distributed among the robots in the group. In all the above applications, there remains

a need for individual autonomy, thus ensuring that failure of part of the group does

not result in failure of the entire group. Many multi-robot control architectures are

inappropriate for these applications, where both a high level of independence and a

high level of cooperation are necessary. Some attempt to handle this via heavy use of

communication, thus monopolizing communication channels and risking broadcasting

of information to undesired parties, such as an enemy in a military engagement. There

is often a tradeoff between independence and cooperation, since exclusive focus on

either one leads to either a single-agent design or a highly cooperative yet mutually

dependent multiagent design. Attempts to balance the two often result in either

extraneous activity [10] or error propagation [20].

1.1 Research Goal

In order to address the above issues (communication overhead, independence,

and cooperation), this thesis presents a control architecture designed to possess the

following attributes:

2



• Low communication overhead: low communication needs contributes to a de-

creased chance of communication messages being intercepted by undesired par-

ties and reduces bandwidth needs, in turn increasing the rate of accepting high-

priority messages into the communication network. This, however, tends to

require much greater sophistication of the individual robots in the group.

• Highly independent: each robot in the group is capable of making high-level

decisions towards completion of a complex task, and can independently act

upon these decisions (provided no cooperation is needed). Like the previous

attribute, this requires greater sophistication of the robots in the group. It also

commonly causes a decrease in the ability of the robots to cooperate.

• Cooperative: when cooperation is needed, the robots are able to work together

to complete a task, and can individually select the tasks they cooperate on.

This is not mutually exclusive with independence, but the two characteristics

are relatively difficult to maintain concurrently.

• Expandable: introduction of new robots into the group is performed with low

overhead, and new robots immediately contribute to a task.

• Robust: failure of individual robots or a number of robots does not cause failure

of the entire group, and tasks that fall within the skillset of the remaining robots

are completed eventually, based upon the task priority and the present allocation

of the tasks.

• Extensible: addition of new capabilities to any number of robots from the group

does not require reconfiguration of the other members of the group, and the

architecture aspects contained within individual robots are sufficiently modular

to enable rapid integration of these new capabilities.

With these properties, the architecture consists of both a multi-robot architecture

and a single robot architecture, so that it is capable even as a single robot system.

This minimizes the need to reprogram for specific tasks, regardless of their nature.

An architecture that possesses these properties contributes a greater degree of auton-

3



omy and sophistication to an MRS. Chapter III provides a description of the Hybrid

Architecture for Multiple Robots (HAMR), an architecture developed to deliver these

properties. The key advancements of this architecture are that it provides advanced

coordination capabilities through an emphasis on individual autonomy, contributes to

this coordination with low communication requirements, provides a taskable system

for all associated robots in the collective, possesses a straightforward mechanism for

modifying the collective size, and enables mutual independence for all the robots in

the collective.

1.2 Sponsor

This research is part of the Cooperative Autonomous Navigation and Intelligent

Sensing (CANIS) project sponsored by the Air Force Office of Scientific Research

(AFOSR). The associated autonomous navigation aspects for CANIS include the need

for each agent to operate independently and also perform well in a group, in turn

requiring an architecture with the properties described in the previous section.

1.3 Assumptions

In order to maintain a fairly accurate picture of the world, sensor signal-to-

noise ratios are assumed sufficient to generate useable data. Real-time processing

is also assumed, since the robots in the collective must interact with the world on

a timely basis. It is generally assumed that the state representation is consistent,

i.e., the data contained in the state is not self-contradictory. The expected domain

contains a medium that enables the ability to transfer information between agents

at a reasonable distance and in reasonable time. Communication constraints require

that the agents are addressable, and each agent can broadcast information. Domain

restrictions include an environment with a minimum spatial area such that all agents

can both fit in the environment and perform work within the same.

4



1.4 Thesis Organization

This thesis is organized as follows: first, an examination of the requirements for

a multi-robot control architecture is presented in Chapter II. Chapter III presents the

Hybrid Architecture for Multiple Robots (HAMR), developed to fulfill the require-

ments from Chapter II. A description of the incorporation of the architecture into

the simulation environment, the RoboCup Soccer Simulator, is provided in Chap-

ter IV. Chapter V discusses the resulting architecture, provides a comparison of

its performance to a similar architecture, and examines the factors contributing to

the results. Chapter VI provides the research conclusions, a discussion of the archi-

tecture’s contributions, and presents recommendations for future work. Finally, the

Appendix holds Unified Modeling Language(UML) diagrams for the architecture’s

primary components.
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II. Architecture Review

Any Multi-Robot System (MRS), regardless of the degree of centralization of the

system, requires the presence of at least some aspect of a control architecture on

each system member. Fully decentralized systems are the most complex in this regard,

since the presence of the entire architecture is required on every member. These

systems have a requirement for individual autonomy to maintain robustness to failure,

yet must also maintain sophisticated coordination capabilities. Thus, these systems

are analyzed via two approaches. The first approach examines single robot aspects

of the architecture, and is followed by consideration of the multi-robot requirements.

Therefore, the requirements of the final architecture are extracted by examining both

the single robot and multirobot architectural components that are included in the

final system.

To provide these examinations, this chapter has been broken into four sections.

The first section introduces MRSs and discusses some of the necessary considerations

when building a software architecture. This is followed by an examination of archi-

tecture composition for single robots and determination of the associated architecture

components. Section 2.4 describes multirobot systems and examines why current ar-

chitectures are inadequate for many military domains. The final section discusses

some additional considerations that are addressed in the final architecture selection.

2.1 Introduction to Multirobot Systems (MRS)

MRSs have the potential to provide significant advantages over single robot sys-

tems in that they enable coordination to complete tasks that the robots individually

are not otherwise able to perform, or they can enable more rapid completion of other

tasks. One purpose of MRSs is to create more robust systems by taking advantage

of redundancy [6] and multitasking. The robustness of the MRS generally depends

upon contributions of each robot or agent1 in the system, so the more each robot

contributes to the system, the more robust, effective, and reliable the system can be.

1The term ”agent” is used interchangeably with robot throughout this document.
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A high measure of reliability and robustness is of crucial importance in mili-

tary applications, since it is important to minimize unit loss and ensure that tasks

are performed. Therefore, the focus of multiagent systems for this application is in

maximizing the contribution of each agent to the system. This focus is broken down

into two categories: 1) the robot’s capability to contribute via cooperation with other

robots, and 2) the robot’s capability to contribute via individual actions and inde-

pendent tasks. A software architecture is selected that emphasizes both of these.

An architecture focusing exclusively on independent tasks does not cooperate, since

there is no mechanism for coordination, in turn causing extraneous activity [10]. An

architecture focusing exclusively on cooperation tends not to have robust indepen-

dent capabilities, such as many swarm-style architectures [20]. This tends to cause a

cascading effect, where a swarm leader can make a poor decision and it is propagated

back to other system members. The cooperation and independence categories dictate

that the final architecture must unify a capable single agent architecture and a robust

multiagent architecture in order to capture both aspects.

2.2 Single Robot Architectures

Single robot architectures (SRAs) are typically distributed on a spectrum that

spans from purely deliberative to purely reactive control [3]. Purely deliberative

control architectures perform significant computations using a highly symbolic do-

main description, which provides sophisticated decision making but requires signif-

icant processing resources and times. The symbolic state representation present in

most architectures of this nature provides an internal model that a system architec-

ture examines in order to aid decision making [33]. Reactive control architectures,

conversely, perform very little computation and are typically highly reflexive, with

little or no symbolic state representation. It is assumed that reactive architectures

always make a timely decision.

Some of the earliest robots, such as Shakey [45], used deliberative mechanisms.

The primary benefit of deliberative architectures is that they provide high-level rea-

7



soning that contributes to goal-based tasking, but when computation time exceeds the

time for environmental change, decisions made by deliberative architectures become

obsolete before they are employed. Reactive architectures address this by possessing

rapid execution of behaviors in response to environmental stimuli [11]. These archi-

tectures provide very rapid response time, but since they are representation-free, they

can make the same poor decision repeatedly and fail to handle more complex tasks in

general. In order to overcome the drawbacks of architectures that are designed as ei-

ther reactive or deliberative (but not both), hybrid architectures have been developed

that make use of the best features of both approaches. Among these are AuRA [3],

3T [9], SSS [17], ATLANTIS [33], SAPHIRA [32], TCA [49], OpenR [21], MIRO [52],

DTRC [44], CLARAty [54], and Remote Agent [37]. All of these architectures contain

specific modules, layers, or subsystems designed to enable and mix both deliberative

planning and reactive execution. Most hybrid architectures generalize to a basic sys-

tem containing three layers [33]. Therefore, a review of these architectures is provided

to indicate the generalization of each to a three-layered approach. The terms used

for the generalized layers follow those used by Gat [33], which consists of Controller,

Sequencer, and Deliberator layers. The Controller layer handles the reactive compo-

nent, tying responses directly to environmental stimuli. The Deliberator handles the

deliberative component, which performs high level processing by generating plans and

decomposing tasks. The Sequencer ties the two together, activating behavior sets as

necessary to complete a task. The following subsections provide a brief overview of

several single agent architectures, and describes their generalization to the three layer

paradigm.

2.2.1 AuRA. The AuRA architecture [3] has two primary components: a

hierarchical component and a reactive component, shown in Figure 2.1. The reactive

component contains the motor and sensory controller, and the hierarchical component

contains a mission planner, a spatial reasoner, and a plan sequencer. The spatial rea-

soner and the mission planner functionality is contained within most approaches as a
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Figure 2.1: The AuRA Architecture. The Hierarchical and
Reactive components are the primary portion of this architec-
ture, where the Hierarchical component’s mission planner and
spatial reasoner act as the Deliberator, it’s plan sequencer is the
Sequencer, and the reactive component is the Controller [3].

Deliberator. This provides for the classification of the Sequencer within the plan Se-

quencer of the hierarchical component. The reactive component, finally, contains the

Controller functionality. This results in simply a three-layered architecture consisting

of a Deliberator, Sequencer, and Controller.

2.2.2 3T. The 3T architecture [9] consists of a planner, sequencer, and a

skills layer tied into some external tools and an interaction layer. The skills layer

interacts with the world, and represents roughly the same functionality as the Con-

troller layer. The planner and sequencer perform similarly to the Deliberator and

Sequencer, respectively. There is also an Interaction layer that functions merely as

a means of enabling goal input and updates and output of the generated plan. This

architecture is shown in Figure 2.2.
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Figure 2.2: The 3T Architecture. The Planner, Sequencer,
and Skills layers are equivalent to the Deliberator, Sequencer,
and Controller layers [9].

2.2.3 SSS. Shown in Figure 2.3, SSS is an acronym for servo, subsumption,

symbolic [17]. This architecture is so named because it combines aspects of different

types of architectures. For the servo layer, it receives sensor data and outputs data

to the actuators, thus acting as the Controller layer. The subsumption layer turns off

or on the behaviors as necessary, acting as a behavior selection layer or Sequencer.

The symbolic layer is a low level planner that basically enumerates the actions to take

when events occur, thus performing the function of the Deliberator.

2.2.4 ATLANTIS. The ATLANTIS architecture [33] also has three lay-

ers: control, sequencing, and deliberative. The control layer physically performs the

behaviors, the sequencing layer turns on or off behaviors, and the deliberative layer

performs planning. All three of these layers follow the indicated terminology. A

simplified version of this architecture is shown in Figure 2.4.

2.2.5 SAPHIRA. The SAPHIRA architecture is broken down into sections

defined by focal areas: sensor processing, actuator output, Local Perceptual Space

(LPS), Procedural Reasoning System (PRS), and topological planning [32]. The sen-

sor processing, actuator output, and LPS could all reclassify as the Controller Layer,
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Figure 2.3: The SSS Architecture. The Servo, Subsumption,
and Symbolic Layers follow the Controller, Sequencer, and De-
liberator layers respectively [17].

Figure 2.4: The Deliberator performs high-level computa-
tions, the Sequencer sends tasks to the Controller, and the Con-
troller carries out the actions.
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Figure 2.5: The SAPHIRA Architecture. The sensor input
processing, LPS, and actuator outputs are the controller layer
and the PRS and topological planner act as the Deliberator and
Sequencer, respectively [32].

since the concentrations of these areas are on carrying out behaviors and processing

sensor data. The PRS is an analog of the Deliberator, and the topological planner

bridges the gap between the PRS and the behaviors, thereby taking on the role of the

Sequencer. This architecture is shown in Figure 2.5.

2.2.6 TCA. Shown in Figure 2.6, this architecture has modules that send

inputs to and get data from the Central Control [49]. This is a message-passing design,

intended to also establish a hybrid control architecture. Even with the message passing

approach, parallels to the three layered approach are apparent. The Central Control

maintains resources and builds task trees, so it performs high-level processing in much

the same way as the Deliberator. Each module controls a specific behavior, acting

as the Controller Layer. The Central Control handles message passing, which is the

means of communication between the Central Control and the modules. When a goal

has been decomposed by the Central Control, appropriate aspects of the behaviors
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Figure 2.6: The TCA Architecture. The Central Control per-
forms the deliberation and sequencing actions and the modules
represent the Controller Layer [49].

are turned on by a Command message. This message passing fills the role of the

Sequencer.

2.2.7 OpenR. The OpenR architecture [21] is designed to provide a frame-

work through which users can customize a robot according to their architecture prefer-

ences. However, in order to enable the user to take either a Sense-Plan-Act approach

or a Behavior Based approach, the architecture defaults to one paralleling the TLA.

This is shown in Figure 2.7. From this configuration, the Target Behavior Generator

acts as the Deliberator, the Action Sequence Generator acts as the Sequencer, and

the Motor Command Generator acts as the Controller. These are all parts of the

Application Layer design in OpenR.
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Figure 2.7: The OpenR Architecture. The Target Behavior
Generator acts as the Deliberator, the Action Sequence Gener-
ator acts as the Sequencer, and the Motor Command Generator
acts as the Controller. [21].

2.2.8 MIRO. The MIRO architecture, shown in Figure 2.8, is geared to-

wards middleware, providing transitions from behaviors to specific hardware compo-

nent activation [52]. This approach is composed mostly of layers of hardware abstrac-

tion. The Application and Miro Class Framework layers are hardware independent, so

the functionality of the Controller is captured by the lower two layers and the behavior

definitions in the Miro Class Framework. The Miro Class Framework contains within

it the ability to generate a variant of the TLA, since, according to [52], ”Available

functionality includes a behavior engine, which permits dynamic activation, enabling

and disabling of sets of behaviors and arbitrators...”, allowing the Sequencer defini-

tion to also fall in this area. The application layer, then, allows development of the

Deliberator. Though not broken up into three layers, this architecture still provides

a hybrid deliberative and reactive architecture.

2.2.9 DTRC. The DTRC architecture shown in Figure 2.9 makes use of

a modification of Graphplan [8] called DT-Graphplan, which allows for stochastic

actions and probabilistic propositions [44]. This layer passes a plan to the Execution
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Figure 2.8: The MIRO architecture. The application and
Miro Class Framework layers encompass the Deliberator and
Sequencer layers of the TLA, with the Miro Sensor/Actuator
services and the behavior definitions in the Miro Class Frame-
work containing the Controller. [52].

Monitor, which in turn passes a skill activation to the Skills layer. This mapping is

straightforward, as the DT-Graphplan layer behaves as the Deliberator, the Execution

Monitor is the Sequencer, and the Robot Skills layer functions like the Controller.

2.2.10 CLARAty. Shown in Figure 2.10, CLARAty (Coupled Layer Au-

tonomous Robot Architecture) consolidates the Sequencer and Deliberator Layers

into a single layer in an attempt to provide Deliberative planning mechanisms with

access to the system functionality (the Controller Layer) [54]. This approach, how-

ever, is still easily differentiated into the three layers, with the Planner aspects of

the Decision layer serving as the Deliberator, the Executive aspects acting as the

Sequencer, and the Functional layer filling the role of the Controller.

2.2.11 Remote Agent. The Remote Agent Architecture [37], shown in Figure

2.11, follows a design approach that encompasses the Deliberative and Sequencing

functions with a single Remote Agent Module. The external tools, with exception of

the Planning Experts, form the Controller basis. The architecture is designed to be
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Figure 2.9: The DTRC architecture. The DT-Graphplan
layer maps to the Deliberator, the Execution Monitor acts as
the Sequencer, and the Robot Skills layer contains the function-
ality of the Controller [44].

Figure 2.10: In CLARAty, the Deliberator and the Sequencer
are combined into the single Decision layer and the Functional
layer contains the functionality of the Controller [54].
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Figure 2.11: The Remote Agent Architecture contains the De-
liberative and Sequencing aspects, with the Controller provided
by external tools [37].

embedded in flight control software for spacecraft and fulfill necessary operations in

a timely manner.

The similarity of these architectures in light of the fact that they were developed

independently attests to their stability. This is still an active research area, but

most modern approaches reflect design variations such as integration of additional

tools, alternate solver methods, or new applications of the TLA style [36, 39, 51, 53].

For a more generalized language set with regards to three layer architectures, the

terminology used throughout the rest of the document to describe the layers reflect

that used by Gat [33], who calls the layers the Deliberator, the Sequencer, and the

Controller. The general hierarchy of this architecture with appropriate terminology

is shown in Figure 2.4. The key advantage of this architecture and its variants is its

modularity: the Deliberator is completely platform independent, as it has no direct

interaction with the hardware-dependent Controller. The Sequencer is also platform

independent to an extent that only references to the Controller’s behaviors are needed,

since the Controller handles the behavior structures itself. TLAs, then, have two

major contributions to robotic control: their modularity and their capabilities for

relatively platform-independent structuring.
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With this structure, robots are able to have both advanced deliberative capabili-

ties and rapidly responding reactive capabilities. This architecture successfully fulfills

the second category from Section 2.1, enabling both sophistication and the ability to

perform well in stochastic environments. The deliberative and reactive hybrid capa-

bilities are ideal requirements for the final architecture, and will be referred to as the

SRA requirements.

2.3 Multi-Robot Systems

MRS’s are expansive in terms of their design space [6] and their associated

architectures are many and widely varied, since they must address many more factors

than Single Robot Architectures (SRAs). These factors include incorporating design

decisions regarding the nature of the collective in conjunction with consideration

of the SRA aspects. The next three sections address these factors by examining

two taxonomies. These are discussed with regards to the performance requirements

for the final MRS architecture. Furthermore, using these taxonomies, the specific

architectural construction and design approaches applied by the designers of various

architectures are better understood.

2.3.1 Cao’s Taxonomy. There are two taxonomies that classify MRSs.

First is a taxonomy developed by Cao [14], which breaks the architecture into four

categories:

1. Centralization/Decentralization. Centralization is characterized by a presence

of a single control agent. MRSs without single control agents are considered

decentralized.

2. Differentiation. MRS are considered homogeneous if capabilities are identical

from robot to robot, heterogeneous otherwise.

3. Communication Structures. Robots can interact in any combination of three

ways. First is via the environment, where environmental modifications (e.g.
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stigmergy) are the only means of communication. Second is interaction via

sensing, where there is still no explicit communication but the ability to recog-

nize objects provides limited information for modeling of other robots. Third is

interaction via communication, which provides the most information for mod-

eling of other robots but adds complexity.

4. Modeling of other agents. Appropriate modeling provides the ability to reduce

communication overhead and can lead to more effective cooperation.

The first category is a continuous classification, allowing a system classification

to include fully centralized, fully decentralized, or somewhere in between. A fully

centralized system provides system simplicity, since only one agent must be intelligent.

This agent then tasks all other agents. However, this does have its drawbacks: the

single point of control also creates a single point of failure. Also, the centralized system

is sensitive to communication signal loss. A fully decentralized system eliminates

these drawbacks, but adds the problems of requiring both a number of sophisticated

agents and advanced coordination mechanisms, significantly increasing the system

complexity. Systems that fall in between these two maintain some simplicity while

reducing some of the communication overhead, but also face, to an extent, the issues

of both centralized and decentralized architectures.

The second category, Differentiation, is a classification based upon agent types in

the system. If all the agents are identical, it provides a comparatively easy mechanism

for improving the system, since any capability added to a single agent is easily added to

all others. However, if there is a task that the group must complete and any one agent

lacks the ability to perform it, then, since all agents are the same, no agents have the

capability and the task remains uncompleted. Conversely, heterogeneous systems can

enable task completion even though certain group members cannot perform perform

the task, but any improvement of the system is incremental since the improvement is

only applied to a subset of the group.
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The Communication Structures category has three classification values, but any

combination of these can describe a system. The simplest structure is with environ-

mental communication. In this, the communication is very low-level, and information

on the status of other group members is not available. However, it is very low over-

head. The second structure is via sensing, which still maintains a low overhead (as-

suming short sensor processing times) and provides some limited information on the

status of other group members, such as orientation and velocity. The final and most

advanced communication structure is via communication. This structure expands

access to information about other agents, depending upon the degree of communica-

tion bandwidth available. Many MRSs contain at least the first two communication

classifications.

The final category in Cao’s taxonomy is Modeling of other agents. This category

is widely varied. This begins at an implementation as simple as having no modeling,

where other agents are recognized simply as environmental entities. This is simple

from a developmental perspective, but requires high communication overhead. The

other end of the modeling is sophisticated to a point where no communication is

required, except to fix errors. This requires extensive modeling, and increases the

time required to add agents to the group, since each group member must have the

models built internally. It also requires expanded processing capability relative to no

modeling, since model reasoning is comparatively time consuming.

2.3.2 Dudek’s Taxonomy. An alternate taxonomy presented by Dudek, et

al. [19] establishes a common language for the description of groups. His taxonomy

has seven axes, and the classification values are described by specific terminology.

The axes and classification values are shown below.

1. Size of the collective: SIZE-ALONE: one robot, SIZE-PAIR: two robots, SIZE-

LIM: Multiple robots with some limit relative to the environment, SIZE-INF:

multiple robots with no limit relative to the environment.
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2. Communication Range:COM-NONE: no direct communication between robots,

COM-NEAR: robots can only communicate with other robots that are suffi-

ciently nearby, COM-INF: robots can communicate with any other robot.

3. Communication Topology: TOP-BROAD: robots broadcast communications to

all others, TOP-ADD: robots communicate by name or address, TOP-TREE:

robots can only communicate to other robots according to constraints imposed

by a tree configuration, TOP-GRAPH: robots can only communicate with other

robots they’re linked to, according to a graph Abstract Data Type (ADT).

4. Communication Bandwidth: BAND-INF: infinite bandwidth is available, so the

communication is free, BAND-MOTION: communication is roughly the same

cost as moving, BAND-LOW: very high communication costs, BAND-ZERO:

no communication between robots.

5. Collective Reconfigurability: ARR-STATIC: the relative spatial positioning of

agents in a system does not change, ARR-COM: the robots can rearrange ac-

cording to communication and sensing variations, ARR-DYN: the relationship

can change arbitrarily.

6. Processing Ability: PROC-SUM: the robot acts as a non-linear summation

unit (typically too simple for a robot), PROC-FSA: the robot behaves as a

finite state automaton, PROC-PDA: the robot acts as a push-down automaton,

PROC-TME: the robot acts as a Turing machine equivalent.

7. Collective Composition: CMP-IDENT: all robots are identical in both hardware

and software, CMP-HOM: all robots have identical hardware, CMP-HET: the

group of robots are heterogeneous or not physically identical.

This taxonomy is not as useful for elucidation of the required architecture as the one

presented by Cao, but it provides a further decomposition of the architectural require-

ments. This is primarily due to the slant of this taxonomy towards communications

as opposed to architectural configuration.
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2.3.3 Taxonomy Classifications. The specific requirements for the intended

domain and thus the architecture itself is classified according to both of the presented

taxonomies. Therefore, in order to identify these requirements, the classification

according to Cao’s taxonomy follows:

1. Centralization: The architecture is fully decentralized, since the system must

tolerate failure and have reduced sensitivity to communication signal loss. This

is a requirement, since system survivability even with unit loss is crucial in

order to ensure tasks are completed. If the architecture is centralized, the risk

of entire system failure is significant since there is a single point of failure. Even

architectures that are only somewhat centralized run this risk, since the loss of a

central unit of the architecture may cause significant capability reduction. Thus,

the architecture is decentralized in order to minimize system capability reduction

due to unit loss. This is especially important in military applications, where

system survivability and continued system productivity are more important than

individual survivability. Naturally, this requires greater sophistication on behalf

of each agent in the collective versus centralized systems.

2. Heterogeneity: This system may potentially have robots of different hardware

configurations, so the architecture must allow this heterogeneity. If the archi-

tecture cannot effectively control a heterogeneous group, the collective is better

represented as multiple groups and each group has a separate tasking structure.

In order to divide the tasks among the different groups, a central solver is re-

quired, thus increasing the measure of centralization in the architecture. This

also extends to military applications. It is more effective for a single mixed

unit to achieve an objective than an amalgamation of multiple units. Hetero-

geneous units are more difficult to implement, since each diverse agent requires

specialized behaviors.

3. Communication Structures: For the sake of better task coordination and a more

global knowledge base, communication exists through both sensing (observation
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of other agent’s tasks and positions) and communication (passing messages be-

tween agents). This allows the robots to better transfer information, which

allows more information to become general knowledge. They also coordinate

better, since the information about task assignments and needs are transferred.

This requires greater capability on behalf of the agents, since the communication

hardware and sensor processing capability is required.

4. Modeling of other agents: In order to avoid task repetition or multiple assign-

ment, the modeling of other agents must exist. This reduces overhead when

coordinating on a task and updating state representations. This need not ex-

tend to the knowledge of each other’s capabilities, rather, it needs to represent

the existence of the other agents and their tasking. This also requires sophisti-

cation on behalf of the agents, since model reasoning is relatively expensive.

These classifications provide information that contribute to the final architecture’s

ideal characteristics. Therefore, these requirements are referred to as Requirements

Set 1 (RS1).

Likewise, we also classify the architecture requirements using Dudek’s taxon-

omy:

1. Size of the collective: SIZE-LIM. There are a limited number of robots in the

group. It is impractical to consider SIZE-INF, since one cannot fully saturate

the real world with robots. SIZE-ALONE eliminates the need for a multiagent

architecture, and SIZE-PAIR is a strict limit on the collective size. Thus, SIZE-

LIM is the best option for this category.

2. Communication Range: COM-NEAR. This reflects a real-world distance limita-

tion on communications. COM-INF is impractical for a real-world application,

since there is a limit to transmission distance for any signal. COM-NONE may

occur intermittently due to certain terrain, but is not considered the strict case

for this classification.
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3. Communication Topology: TOP-ADD. The robots communicate with each

other via addressing. TOP-BROAD is considered excessive, since it can saturate

communication channels for little reason. There is no true collective hierarchy,

so TOP-TREE is impractical because it artificially generates a communication

hierarchy. TOP-GRAPH occurs at times with the TOP-ADD topology when

considering subgroups, but the subgroups communicate via addressing, making

TOP-GRAPH redundant by this configuration.

4. Communication Bandwidth: BAND-LOW. Information transmission volume

during communication is minimized due to high communication cost. BAND-

INF is impractical to consider for real-world applications. BAND-ZERO contra-

dicts the communication structures classification from Cao’s taxonomy. BAND-

MOTION is roughly similar to BAND-LOW, but it is more appropriate to as-

sociate a high cost with communication in military applications in order to

minimize message transmission volume and interception risk.

5. Collective Reconfigurability: ARR-COM. The robots can rearrange according to

communication and sensing variations. ARR-STATIC is inappropriate, because

it implies the assumption of a static collective size. If built for this reconfigura-

bility, single unit failure would cause complete collective failure. ARR-DYN is

also inappropriate, since there is no reason to expect arbitrary information to

occur in the robots (unless it is through communication or sensing, which falls

under ARR-COM).

6. Processing Ability: PROC-TME. The computation model utilized by each robot

is a Turing machine equivalent. PROC-SUM is too simple of a representation

for the system requirements. PROC-FSA, though applicable, is not as general

as PROC-TME (since states can be represented via Turing machines) and is

thus not the selected classification. PROC-PDA is inappropriate for much the

same reason as the PROC-FSA classification.
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7. Collective Composition: CMP-HET. The group of robots is heterogeneous.

CMP-IDENT and CMP-HOM assume identical hardware in each agent. Though

possible in a particular implementation, the design of the system must allow for

heterogeneous units. Thus, CMP-IDENT and CMP-HOM are not sufficiently

general for the intended application.

These ideal requirements are referred to as Requirements Set 2 (RS2). These require-

ments sets establish a basis for determining whether an architecture provides the

necessary capabilities for the domain. Therefore, the next section evaluates current

MRSs with consideration of RS1 and RS2, along with the SRA requirements from

Section 2.2. An additional consideration regarding these architectures includes the

communication strategies, methods, and techniques employed in each.

2.4 Multi-Robot Architectures

This section presents existing MRSs and evaluates them in the context of the

requirements set forth in Sections 2.2 and 2.3. It also illustrates the general structure

and design philosophies used in each architecture.

2.4.1 ALLIANCE. One architecture that fulfills RS1 is ALLIANCE [42],

shown in Figure 2.12. However, ALLIANCE utilizes a TOP-BROAD communication

topology, which causes heavy network load in times of high activity and violates the

selected communication topology from RS2. This load can contribute to lost commu-

nication messages and increase the likelihood of message interception by a potential

adversary. Also, since ALLIANCE makes use of behavior sets that are highly depen-

dent upon the particular robot under consideration, the architecture is not platform-

independent in its behavior selection mechanisms. Since modularity is considered the

key when considering the single robot contribution, the TLA requirement discussed

in section 2.2 is not fulfilled using this architecture.
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Figure 2.12: The ALLIANCE Architecture uses cross-
inhibition of behaviors as its primary behavior selection mecha-
nism [42].

2.4.2 RoboSkeleton. The RoboSkeleton Architecture [13] is shown in Figure

2.13. This architecture fulfills RS2 and the differentiation, communication structure,

and agent modeling aspects of RS1. It incorporates low overhead communication from

one agent to another, where the only communication based actions are changing the

global leader and locating the local leader. Between the agents and the CoachAgent,

however, the communication uses more bandwidth, since the strategy is communicated

to all the agents. Therefore, it fails to accomplish the decentralization requirement

from RS1. This architecture is built on a TLA variant, but since it contains an agent

that controls the other agents, it is not fully decentralized. If the controlling agent

(CoachAgent in this architecture) fails, the entire system could readily fail. This

architecture, then, fails to fulfill the architecture requirements.

2.4.3 CAMPOUT. CAMPOUT [27] is an architecture that is designed for

planetary exploration, outpost site preparation and maintenance, and remote science

investigations. Shown in Figure 2.14, it is a behavior-based architecture with four

types of behaviors. First are the primitive behaviors. Above those are composite

26



Figure 2.13: The RoboSkeleton Architecture is hierarchical
and somewhat centralized [13].

behaviors, which are combinations of primitive behaviors unified via a command-

fusion arbiter. Next are shadow behaviors, which mimic other robot’s behaviors,

and last are group behaviors, which are designed to coordinate the robots. This

architecture fulfills RS1 and most of RS2, with the exception of the communication

bandwidth. Since the robots can communicate at the sensor level, a small number

(relative to the group size) of CAMPOUT robots can end up utilizing much or even

all of the communication bandwidth, which is the source this architcture’s failure

to fulfill RS2. Also, this architecture is behavior-based, meaning that it is mostly

reactive. Thus, the robots do not perform appropriate high level processing and the

CAMPOUT Architecture does not fulfill the SRA requirements.

2.4.4 Essex Wizards ’00. Another architecture is the one employed by the

Essex Wizards ’00 RoboCup Soccer Simulator team [26]. In this architecture, the

Sensors take data from the server and they, along with the Play Mode, Parameters,

and Memory modules, feed the data to the behaviors. When generated, the behav-

iors send motor commands to the actuators. This provides the ability to schedule
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Figure 2.14: The CAMPOUT Architecture is a hierarchical,
behavior-based approach. [27].

behaviors, such that all behaviors have a share of the full time available. Though

there is a hierarchy of behaviors, it is contained entirely within the behaviors and nei-

ther high-level processing (deliberative tasks) nor sequencing are performed. Thus,

though this architecture can fulfill both RS1 and RS2, it does not fulfill the SRA

requirements. The communication in this architecture is also quite low level, since,

for the most part, it is performed indirectly via sensing. This does not preclude true

communication with this architecture, but represents an additional concern regarding

the potential of this architecture.

2.4.5 UM-PRS. The UM-PRS [35] architecture is based upon the Procedu-

ral Reasoning System (PRS) developed by Georgeff [22], and is shown in Figure 2.16.

The data flow in UM-PRS runs from the Environment through Sensors/Receivers into

the Database. From there, the Interpreter unifies the procedure specifications from

the Knowledge Areas (KA), the goals, and the Intention Structure (goal progress)

to determine a plan that includes both high-level and low-level goals. The Intention

Structure then activates certain goals and the Effector/Transmitter module handles

the physical execution. The communication data is sent by the Transmitter and

received by the Receiver. This architecture fulfills all of both RS1 and RS2. Its com-
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Figure 2.15: The Essex Wizards agent architecture uses a
decentralized, behavior-based approach [26].

munication mechanisms minimize communication volume, since the system expects

most messages to contain outdated or erroneous information by the time they are re-

ceived. However, since information has to flow through the high-level processing step

performed by the Interpreter at all times, this ends up being a highly Deliberative

architecture. Thus, it does not fulfill the SRA requirements since it is not sufficiently

reactive to operate well in dynamic environments.

2.4.6 ABBA. The ABBA [29] architecture is almost purely reactive. In

fact, ABBA was intentionally designed to avoid utilizing a hybrid architecture. Also,

the modeling of other agents is weak, since it is a mere recognition of the existence

of additional agents. The communication follows closely to the requirements, but the

tasking of the robots from the architecture is very specific and is naturally reduced in

necessary communication volume. Therefore, though ABBA fulfills RS2, it is not an

appropriate architecture according to the SRA requirements, since it cannot perform

the higher level reasoning needed by the SRA requirements.

2.4.7 Layered Multirobot Architecture. The final multi-robot architecture

considered is described by Simmons et al [48], shown in Figure 2.17. This architecture

is a Layered Multirobot Architecture (LMA) based upon the 3T Architecture, so,

unlike the MRSs discussed above, it fulfills the SRA requirements discussed in Section
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Figure 2.16: The UM-PRS architecture. This architecture
requires high-level planning for any environmental change, and
is thus highly Deliberative [35].

2.2. Also, it fulfills RS1, so it has the potential to fulfill the established requirements.

However, one may note that the interaction from one agent to another is on all layers.

This layer-to-layer cross-robot communication creates a high-bandwidth requirement

for communication, thereby failing to fulfill RS2. At the deliberative level, the layer-

to-layer communication is beneficial, since it enables coordination of plans. On the

behavior and sequencing level, however, this is a less than ideal situation. For example,

if one of the robots is damaged, it can send erratic behavior commands to the other

members of the group, thereby propagating its operational limitations to the other

group members. Even if undamaged and in a dynamic environment, the cross-robot

behavior activation may act as an inhibitor, preventing the robots from completing a

necessary task. This also takes away from the ease of expansion of the group, since

each robot needs to know what all others are capable of in order to communicate on

the Controller layer. Addition of new robots or new capabilities to one robot requires

updating of the available behaviors on every other robot. Therefore, though this
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Figure 2.17: This architecture is a Layered Multirobot Archi-
tecture [48].

Table 2.1: Classification of MRSs via Cao’s taxonomy.
Italicized entries indicate differences between architec-
ture and target classifications.

Centralization Differentiation Com Structs Modeling

Alliance decentralized heterogeneous communication moderate
RoboSkeleton centralized heterogeneous communication moderate
CAMPOUT decentralized heterogeneous communication moderate
Essex Wizards decentralized heterogeneous sensing moderate
UM-PRS decentralized heterogeneous communication moderate
ABBA decentralized heterogeneous communication weak
LMA decentralized heterogeneous communication moderate
Target decentralized heterogeneous communication moderate

architecture takes advantage of the modularity of TLAs, it is not modular in terms

of robot-to-robot interactions.

Table 2.1 and Table 2.2 show each MRS and how they are characterized. From

these tables, one may note that none of the presented multirobot architectures are

appropriate for the architecture requirements developed via RS1, RS2, and the SRA

requirements. These approaches, though capable within their targeted domain, either

possess a different multirobot classification, fail to possess the single-agent architec-

ture requirement, or are potentially sensitive to robot failure. The final architecture

implemented for this domain must, then, base itself upon a robust SRA and must

have reduced sensitivity to failure.
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Table 2.2: Classification of MRSs via Dudek’s taxon-
omy. Italicized entries indicate differences between archi-
tecture and target classifications.

Size Range Top- Band- Reconfig- Proc Comp-
ography width urability Ability osition

Alliance LIM NEAR BROAD HIGH COM TME HET
RoboSkeleton LIM NEAR ADD LOW COM TME HET
CAMPOUT LIM NEAR ADD LOW COM TME HET
Essex Wizards LIM NEAR ADD LOW COM TME HET
UM-PRS LIM NEAR ADD LOW COM TME HET
ABBA LIM NEAR ADD LOW COM TME HET
LMA LIM NEAR ADD HIGH COM TME HET
Target LIM NEAR ADD LOW COM TME HET

2.4.8 Related Work. MRS designs are not generally established using a

common methodology or formalism, rather, they tend to be assembled from exten-

sions of informal and undocumented expert knowledge or even trial-and-error [28].

However, there are a number of formal methodologies available. Parker [41] presents

information invariants as a means to map sensori-computational systems to a mission,

thus providing a mechanism for translating mission objectives into robotic resource

needs and establishing a basis for the design. Balch and Arkin [5] examine the ef-

fect of communication on performance in multiagent robotic systems, which provides

a basis for communication system design aspects of an MRS design. Dudek [19]

and Cao [14] present taxonomies that allow MRS design characteristic extraction

when examined in terms of a domain or mission objective (the formal methodology

used in this thesis). Other approaches to MRS design include analysis of empirical

demonstrations of MRSs, such as examination of MRS architectures. An example

of this [40] presents an MRS design methodology that generates the ALLIANCE ar-

chitecture through examination of the domain and may be used as a basis for other

designs. Jones [28] presents a formal MRS design methodology, which focuses on

controller synthesis and both macroscopic and microscopic modeling to predict task

performance of the synthesized MRS. The approach he presents is not applicable for
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this work, since his approach does not consider control systems using both internal

state and communication, both of which are system requirements extracted from the

taxonomy classifications. Kinny and Georgeff [30] present an Object-Oriented (OO)

modeling technique for analysis and design of Multiagent Systems (MASs). Their OO

approach presents three primary models: an Object Model, a Dynamic Model, and a

Functional Model. These characterize the objects, the states and transitions, and the

data flow within the system. This is presented in order to refine an MAS design in

terms of the object definitions. Other approaches [55] [12] also focus on representation

of agents in terms of OO models to aid design. The approach in this thesis makes use

of the taxonomies to extract the MRS characteristics along with examination of MRS

architectures to provide a basis from which to synthesize the appropriate MRS design.

OO class diagrams are provided in Appendix A to show the agent class structuring

breakdown.

2.5 Additional Considerations

Section 2.2 showed that the SRA requirements is fulfilled using current archi-

tectures. Section 2.3 showed that current multi-robot architectures are inappropriate

for the particular domain under consideration, when measured against requirements

developed using two taxonomies and evaluating them in terms of the SRA require-

ments. In continuation of these, this section addresses concerns with unification of

the two. The combination of TLA with multiagent capabilities is a problem beyond a

simple addition of communication capability and the ability to recognize allies. Dis-

tribution of tasks, coordination, task maintenance (methods used to ensure timely or

successful task completion and avoidance of task clobbering), and survivorship (the

ability of an agent or collective to survive a task or collection of tasks) are among

the primary concerns of a robot collective when applied to a military application

or many construction or localization/mapping applications. Therefore, there must

be a way for the group to determine the appropriate agent or group of agents for a

task, ensure that the tasks are being carried out in an efficient manner, and complete
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tasks by certain deadlines (task management). Furthermore, each robot in the group

must independently determine the task allocation (the selected distribution of tasks

among multiple robots), since the system must be fully decentralized. The failure

of the existing multi-robot architectures discussed above to fit well into the intended

domain, then, calls for the development of a new architecture or an expansion of one

that currently exists. As discussed in Section 2.3, the architecture must build upon

and reflect the individual capabilities of an SRA. Therefore, we present a robust ar-

chitecture which is an expansion of an SRA. The development of this architecture is

discussed in Chapter III.
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III. Architecture Development

This chapter presents the Hybrid Architecture for Multiple Robots (HAMR)

structure. The components of HAMR reflect those of three layer architectures,

with an additional layer presented for multi-robot systems to provide coordination

between independent agents. This layer, the Coordinator, provides the necessary ex-

tensions to enable coordination among these agents. HAMR is designed for use in

either a robot or a simulated environment, since most of the variations between the

two are in the definition of the behaviors. Thus, HAMR’s design is presented in a

manner that is not constrained to a platform. Rather, the design presentation dis-

cusses the required functionality of each component of the architecture and describes

their responsibilities, including the interchanges between the layers.

3.1 Development of the Final Architecture

HAMR is an expansion of the Three Layer Architecture (TLA) [33], shown in

Figure 3.1. The lowest layer is the Controller, which contains low-level behaviors that

interact closely with sensors and motors. The middle layer is the Sequencer, which

translates plans from the Deliberator into a series of behaviors, in essence turning

behaviors on or off, along with storing and maintaining the world state for the sake

of replanning with the Deliberator. The top layer is the Deliberator, which performs

high-level symbolic computations and plan development for long-term goals. The

expansion comes from the addition of the Coordinator layer, described in Section

3.5. Since there are variations in previous TLA implementations [3, 9, 17, 33] with

regard to the roles played by each portion of the hierarchy, a full explanation of the

hierarchy and the responsibilities of each layer is included in this chapter. To provide

a general approach to the architecture, specific theoretical examples are referenced

throughout. These examples do not constrain HAMR to a particular domain, but

serve to illustrate the construction of HAMR and its decision procedures.
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Figure 3.1: The basic Three Layer Architecture. This is the
same structure shown in Figure 2.4.

3.2 Controller Structure

The Controller’s specific internal structure is highly dependent upon the hard-

ware available, but there are certain levels of abstraction available to further expand

the Controller’s capabilities and provide a measure of independence. The primary dif-

ference between the TLA variations discussed in Section 2.2 is where the functional

separation between the layers is placed. For this domain, however, integration of spe-

cific tools enable a clean delineation between the Controller and the Sequencer. This

keeps overlapping responsibilities to a minimum, since the Controller selects between

and combines behaviors from the set provided by the Sequencer and never needs to

generate these behavior sets. The behavior set generation is left to the Sequencer.

The Controller’s responsibility falls in the area of behaviors and their physical

implementation. There is still some debate as to the appropriate level of sophistication

that should be encapsulated within a behavior. More specifically, a behavior can be

as simple as a single motor command, or as sophisticated as an item retrieval behavior

that contains obstacle avoidance and traversal. Overly sophisticated behaviors need

to monitor and fulfill multiple goal states, and lead towards a more behavior-based

type of architecture. Conversely, the very simple behavior leads to a more deliberative

type of architecture. For the purpose of this paper, a behavior is considered to be a

sophisticated function that can output multiple motor commands at the same time,

yet is still simple in that it is designed to only fulfill a single goal or multiple simple
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goals. This allows a selection mechanism to apply a particular behavior at a time that

it deems most effective [25]. As an example of a behavior in this context, a behavior

called GoTo may exist. When passed parameters in two-dimensional space, GoTo(x,

y, θ) relocates the robot to (x, y, θ) relative to the robot’s world frame (where x is the

horizontal component, y is the vertical component, and θ is the orientation angle). The

theoretical GoTo behaviro is more high-level than a simple motor activation because

it outputs the hardware-dependent motor commands necessary to relocate the robot

to (x, y, θ), without any obstacle avoidance. The hardware-dependent sensor feedback

(e.g. odometry or vision sensing) updates the internal state representation, and goal

completion is detected by the Sequencer. From this perspective, the GoTo behavior

may exist on multiple types of robots with very different hardware, yet still perform

the same function. For a higher level of abstraction, the behaviors are implemented

as classes. Based upon an examination of the world representation (World Model),

the behaviors determine some of their own parameters, such as a utility value for

their behavior execution. This becomes very helpful when operating in stochastic

environments, such as an obstacle-ridden course.

Consider another theoretical behavior called Wander, which avoids obstacles by

choosing a random direction of travel whenever an obstacle is detected nearby. To

apply it in the context of the previous paragraph, it may be necessary to stop execution

of the GoTo behavior in order to circumvent an obstacle, so the Wander behavior then

takes effect. However, instead of Wander subsuming GoTo, GoTo merely reduces its

utility value (implying that it has less confidence that it is the best behavior to utilize

in this situation), which then allows Wander to be selected as the best behavior. Once

the obstacle is passed, the GoTo behavior can then increase its utility and again be

selected as the best behavior. The reason for representing these behaviors as classes

instead of functions is that it modularizes them, allowing each behavior to be selected

via a reference instead of called within another function. The representation as classes

also allows for a more hardware-independent functionality, thereby enabling multiple

platforms to contain the behavior by simply calling a function in the same manner,
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Figure 3.2: The internal structure of the UBF. Using an ar-
biter, a composite behavior is generated that makes use of mul-
tiple simple behaviors. [56]

regardless of the underlying processing system, motor hardware, and sensor hardware

available to the robot.

Another consideration for behavior selection is not utility, but the competitive

or non-competitive nature of certain behaviors. Specifically, GoTo and Wander are

competitive behaviors in that only one can be selected at a time. However, moving

a sensor array or manipulating a separate gripper arm is likely independent of GoTo.

By separating the behaviors into their respective motor allocation requirements, a

combination of behaviors is selected that both wanders and rotates the sensor array.

This enables, in a sense, multiple behaviors to be performed at the same time as one

composite behavior. The Unified Behavior Framework (UBF) is a tool for enabling

both the selection of behaviors by utility and generating composite behaviors from a

collection of non-competitive behaviors. Depending upon the arbitration technique

selected, different environmental responses (composite behaviors) are generated. The

arbitration methods range from a “winner take all” scheme to a sophisticated fusion

of the component behaviors weighted by utility. They include priority-based arbitra-

tion [2] [11], command fusion [1], utility fusion [46], or a network of some combination
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of these [16]. The priority-based arbitration allows behaviors with higher priorities

to subsume behaviors with lower priority, and is readily provided via a priority de-

termination within the behavior. The command fusion arbitration scheme generates

a behavior that accepts aspects of all contributing behaviors and generates a mean,

allowing competitive behaviors to all contribute to the final action. The utility fusion

arbitration method takes into account the actuator groups used by each contributing

behavior, generating a single behavior that makes use of all the contributing be-

haviors’ actuator groups. The hierarchy of the behaviors in the UBF places simple

behavior classes at the lowest level, encapsulated as a Leaf behavior class [56]. On

the same level as the Leaf class is the Composite class, which contains an arbiter

and some contributing behaviors. On the topmost level is a template Behavior class.

All behaviors contain a genAction method, which generates the hardware commands.

The UBF takes advantage of polymorphism by overriding the genAction methods of

upper classes in the hierarchy. This hierarchy is shown in Figure 3.2.

The operation of the UBF consists of adding candidate behaviors with their

associated weights to the Composite class then calling the genAction method for that

class. The UBF then calculates, using the arbiter, the best parameters for each mem-

ber motor group according to the arbitration scheme employed. The UBF also allows

arbitration among Composite behaviors, so the resulting Composite behavior can

consist of an extensive Composite and Leaf behavior network, with each Composite

containing a specialized arbiter.

The advantage of the UBF is that it enables rapid, reactive performance of

behaviors while still providing a dynamic selection process for the behaviors. The dy-

namic selection process allows the more time-consuming processing that takes place

in the Deliberator and Sequencer layers to be avoided until sensor data indicates a

requirement for a different set of candidate behaviors to be added to the Composite

class. For example, given a simple task of getting to a target location (x,y,θ), the

Sequencer adds GoTo(x,y,θ) and Wander to the Composite class and simply mon-

itors the World Model. The robot, then, behaves in a reactive manner by running
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Figure 3.3: Updated version of the architecture including the
UBF. The Sequencer sends candidate behaviors to the UBF for
selection via arbitration.

GoTo until sensor data causes the vote of Wander to increase or the vote of GoTo

to decrease to an extent that Wander is chosen by the arbiter, enabling the robot

to wander around the obstacle. Barring any significant environmental changes, the

reactive control method proves sufficient for performing this simple task. Upon task

completion, the Sequencer then adds the next set of candidate behaviors to the UBF.

This theoretical execution procedure captures the general flow of execution as it exists

in implementation of HAMR.

The responsibility of the Controller is delineated by the top end of the UBF. It

is the responsibility of the Sequencer to add candidate behaviors to the UBF, but it is

the Controller’s responsibility to select from those candidates through the UBF. The

sensors, which are controlled via this layer, update values in the state representation,

from which data is extracted by the behaviors in order to determine utility values

and motor commands. The architecture as it stands with these changes is shown in

Figure 3.3.

In summary, the entire functionality of the Controller is established by three core

responsibilities: defining the behaviors; updating the state representation from sensor

data; and physically executing the behaviors, feeding parameters to them through

the state representation. The Controller also contains the State, for the simple reason

that the Controller calls upon and modifies the State much more often than the other
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layers. All the higher-level functionality is encapsulated in the upper layers. The

modularity of the architecture makes it such that the Controller has full domain over

its responsibilities, and the upper layers merely reference the state representation and

trigger the candidate behaviors and arbitration schemes of the UBF for the Controller

functionality.

3.3 Sequencer Structure

The responsibilities of the Sequencer are to enable and disable behaviors at

the appropriate time and maintain internal state. The first of these responsibilities

retrieves tasks from the Deliberator and adds the appropriate behaviors for fulfilling

the tasks to the UBF. Revisiting the example in Section 3.2, the presented task is

to get to a particular location and orientation. In terms of the theoretical example

presented previously, the Sequencer adds all possible behaviors needed to perform the

task to the UBF, which are GoTo(x,y,θ) and Wander (assuming all other behaviors

in this example possess functionality unrelated to the task). They are then carried

out reactively. From this example, it can be seen that the Sequencer takes a task

(or subtask) from the Deliberator, determines the behaviors needed to perform it,

and provides the behavior set and hierarchy to the UBF, which builds a Composite

behavior from the set. In other words, the Sequencer processes tasks into candidate

behaviors then provides them to the Controller layer through the UBF. Therefore,

the Sequencer must have a means of determining the suitability of a behavior for a

particular task. Solutions to this range in sophistication, from predicting the outcome

of the behavior via decision-theoretic approaches [44], perceptual sequencing [4], or

expected outcomes of actions from Reactive Action Packages (RAPs) [9], to evaluating

the state representation by situation recognizers [17], and static activity schema passed

down from the planner [38] [32].

The approach applied in this document assumes that the Sequencer determines

suitability of a behavior by an evaluation of the state representation. For example,

given a robotic soccer player with behaviors that include pass/shoot, dribble, find-
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Ball, and turnNeckToBall, the Sequencer simply examines the state representation,

determines that the ball is too far away to be kicked, and does not add the pass/shoot

and dribble behaviors to the UBF behavior hierarchy. The findBall and turnNeck-

ToBall behaviors are added and processed based upon their evaluation of the state

representation and the UBF’s selected arbitration method.

A secondary responsibility of the Sequencer is monitoring of the state repre-

sentation for situations that require replanning. These situations include hardware

failure, the “kidnapped robot” problem, changes in data, task failure, and task com-

pletion. In hardware failure, a component that is to be used for a task fails. This

requires replanning to determine a method of completing the task without the com-

ponent. The “kidnapped robot” problem is where the robot is relocated to a new

area. Even if this area is within the map data, it occasionally requires replanning,

since entire categories of behavior sets are no longer available. Changes in mapping

data include finding the only known accessible path blocked. The replanning includes

path planning through or around this change, beyond what the Sequencer is capable

of performing. Task failure is when the robot determines that a task is impossible to

be completed. There are a number of ways for the robot to determine task failure,

including maintaining a deadline on task fulfillment or detecting failure of a behav-

ior set. With the responsibility allocation here, it is the Deliberator’s responsibility

to establish the deadline, and it is the Sequencer’s responsibility to detect behavior

failure and determine if the deadline has been reached. Behavior failure is normally

indicated by looping. This arises as either a short loop, such as freezing in position,

or a longer loop, such as wandering around a room looking for an exit. Enabling a

memory of previous states provides a mechanism through which failure detection is

enabled. Replanning is then required if the Sequencer detects any of the situations,

and there are two ways to perform replanning:

• Have the Sequencer regenerate the candidate behaviors. If there is appropriate

change in the state representation, regeneration of the behaviors has the po-
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tential to modify the actions available to the UBF and enable activation of the

appropriate ones, thereby exiting the failure loop.

• Have the Deliberator regenerate the tasks. If the task decomposition at the

previous run was poor, a reevaluation by the Deliberator with new state in-

formation provides a new task decomposition with alternate subtasks, and the

ensuing Sequencer evaluation provides a different set of candidate behaviors.

The second method indicates the need for alerting the Deliberator for recalculation of

the task decomposition. This is the third function of the Sequencer. The Sequencer

monitors outcomes of behavior sets and, if the behavior set doesn’t have the expected

outcome within the necessary time frame, the Sequencer alerts the Deliberator which

generates a new plan from the updated state and provides it back to the Sequencer

for behavior set generation. For more sophisticated tasks or a series of tasks, a more

high-level algorithmic approach such as Partial Order Planning is required, along with

means of detecting duplicate states and ensuring progress. This alternate approach

minimizes Deliberator usage, since much of the high-level solving is performed by the

Sequencer.

HAMR does not have a high-level planner within the Sequencer (since the Delib-

erator generates appropriate task decompositions and plans), so the full responsibility

of the Sequencer is captured within its three responsibilities. Once again, these are:

1) process tasks into candidate behavior functions and send them to the UBF, 2)

monitor the state representation for replanning triggers, and 3) alert the Deliberator

if replanning is necessary. In general, the intent of the Sequencer is to activate and

deactivate behavior sets and provide more sophisticated behavior generation without

very high-level processing. For a simple example of this, consider a robot tasked

to retrieve an item. If the robot possesses prior knowledge of the item’s location,

it activates the behavior set that provides traversal to that specific target location.

However, once it arrives, it finds that the item has been moved. The Sequencer

observes the failure of this behavior set and activates a behavior set that provides

wandering capability (allowing the robot to locally search for the object). When the
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object is found, the Sequencer activates the behavior set used to pick up the item,

then once again activates the target location traversal behavior set to return to the

original location, all prior to the expiration time established by the Deliberator. This

entire task fulfillment sequence is satisfied by a single plan from the Deliberator, and

the Sequencer performs most of the active decision making needed to carry out the

task.

3.4 Deliberator Structure

The Deliberator performs high-level reasoning tasks that include task decom-

position, task allocation, and planning. The Deliberator is presented with a goal set

that it decomposes into manageable tasks. In certain cases, the presented goal is

ill-defined in that the robot is provided with an over-generalized goal. In this situa-

tion, the Deliberator must expand the goal definition to include a set of subtasks. To

consider an example, suppose the robot is required to retrieve an object. The robot

is presented with ”put a at (x, y)”. It must decompose this goal to tasks that the

Sequencer can handle. The Deliberator generates the series of subtasks ”find a, lift

a, go to (x, y), drop a”. The Sequencer understands these tasks, and generates the

behavior hierarchy for each, performing them in order to fulfill the goal. For this to

work, the Deliberator must have the capability to develop an ordering for the task

allocation, requiring a planning capability such as Partial Order Planning [47]. It

also should generate new goals from sensor data processing that occur during the

performance of a task, if necessary. If implemented in a single robot system, this task

decomposition and planning structure provides all necessary requirements for a fully

functional and sophisticated architecture. Deliberators on robots that are part of a

Multi-Robot System (MRS), however, have additional requirements.

The description of HAMR to this point has not included discussion about other

agents, as the lower levels of HAMR do not require additional information from other

actors in the environment, with the exception of using sensor data for collision avoid-

ance of the other robots, etc. HAMR at the lower levels is sufficiently generic and
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shielded from outside influences, so the low-level architecture applies to both single

robot and multi-robot systems. The task allocation responsibility of the Deliberator,

however, indicates the need for knowledge of the actions of other group members.

Thus, in order for each robot to contribute to the MRS, coordination is required so

tasks and resources are appropriately allocated among the different group members.

This is a challenging class of problems, and [18] and [34] each provide approaches to

handle this. The nature of the implementation of HAMR discussed in the next chapter

prevents any requirement for this level of solver. Additionally, the Deliberator must

react to failure of tasks and adjust the assignment when alerted by the Sequencer.

If, in the example presented above, the item is too heavy, the Deliberator determines

that it needs coordination on the task and requests help from another robot. This

is an additional requirement of the Deliberator, again only present if the robot needs

to operate as part of an MRS. If acting independently, the task is simply recorded

as a failure and there is no way to complete the task. Also recall that, as discussed

in Chapter II, the system requirements include a fully decentralized architecture, so

this processing is carried out internal to every member of the group. In other words,

each robot must, upon receipt of the other robot’s utilities, perform the processing

to generate global task or resource assignments and individually determine their own

allocation. This requires updating the state representation and generating the robot’s

utilities. These responsibilities are handled by the additional layer developed to enable

improved multi-robot control, the Coordinator.

3.5 Coordinator Structure

Coordination processes are characterized by the two aspects of coordination:

collaboration and cooperation. Collaboration in this sense is when multiple robots

work together, each on a separate subtask without shared resources, to accomplish

a task. There is little or no synchronization required between the robots. An ex-

ample of this occurs with two robots cleaning a building. Each robot is assigned a

static collection of rooms to clean and is unaffected by the other robot’s progress.
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Cooperation is when multiple robots work together to accomplish a task or subtask.

These require some degree of synchronization and make use of shared resources, so

the progress towards the final goal is mutually dependent.

These aspects of coordination are handled differently based upon the nature

of the robots in the collective and the architectural approach applied. For exam-

ple, ALLIANCE [42] makes use of internal behavior motivations, namely impatience

and acquiescence along with communication. This provides coordination by modeling

task progress. If a task is not proceeding appropriately, a robot becomes impatient

and focuses on the task. Another robot, if attempting a task but failing, acquiesces

and allows the first robot to take over. Cooperative activity is achieved by the same

mechanism, where a robot’s impatience adds it to the group working to complete the

task. RoboSkeleton [13] uses a centralized CoachAgent to model adversarial activity

and generate play strategies, which are then dictated to the active player agents in

the system. This coordination is handled from a centralized aspect of the architec-

ture. CAMPOUT [27] treats coordination as an extension of behaviors present in each

agent. This assigns a leader and a follower, with the follower making use of shadow

behaviors to basically copy the actions of the leader, thus providing tightly coupled

cooperation. CAMPOUT assumes that loosely coupled cooperative and collaborative

activities are effectively individual activities. The layered multi-robot architecture

designed by Simmons [48] provides coordination through activation of behaviors in

other robots. This allows a leader to control every aspect of the contributing robot’s

behaviors, thus enabling tightly coupled cooperation and collaboration. With the

exception of ALLIANCE, these examples require a fairly extensive knowledge of the

other robots in the group. ALLIANCE’s approach enables moderately coupled co-

operation without extensive knowledge, but also precludes much of the negotiation

associated with task distribution. The approach applied in this document provides

negotiation and also allows for mechanisms similar to those in ALLIANCE, where

task progress dictates the need for more contributors. Therefore, in order to provide
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this coordination yet still maximize independence, HAMR contains a layer called the

Coordinator.

The Coordinator is a separate layer developed for enabling multi-robot control

and contributing to a robust collection of mostly independent robots. It has three

primary functions: first, it provides feedback to the Deliberator in order to aid the

Deliberator in decision making for multi-robot task allocation by generating utility

values for tasks. The second function is monitoring of the state representation to

determine if the state has changed significantly enough to justify an update to the

system’s tasking. The third function is to maintain the state representation in order to

incorporate accurate modeling of the other group members, important environmental

data, and maintain global task and resource allocation records.

In order to perform the first function, the Coordinator possesses a means of

determining a sequence for performing a task that has been decomposed by the De-

liberator and the ability to assign a utility to that task. The Coordinator first takes

a candidate task from the Deliberator, then determines, in much the same way as the

Sequencer, the behaviors and skill sets the robot has available to perform this task.

In contrast to the Sequencer, however, the Coordinator does not provide the set of

tasks to the Controller in order to physically perform. Rather, it generates a utility

value for this task based upon expected resource expense and general fitness. The

utility calculation is shown by:

Utility(i) =







fitness(i) − cost(i) iffitness(i) > cost(i);

0 otherwise.

Where i is the target task task, fitness (or quality) is the expected value in having

this robot perform the task, and cost is the expected resource expense of performing

the task [24]. If the robot is unable to complete a task, fitness is very small and

causes a value of 0 for utility. This value is stored in the state representation as part of

the task and the same procedure is followed for each candidate task. When complete,
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the Coordinator transmits the overall goal utility to the other group members so

their Deliberator layers can evaluate the goal and determine appropriate allocation of

tasks and resources. This is performed using auction methods such as those presented

in [23] [7]. The task is stored in the state as a goal, with an associated utility value

and the agent assigned to the task. When the task is unassigned, a message is sent to

the appropriate group members to generate an assignment. Storing the task in this

manner reduces processing time if task reallocation is required and, if a task priority

is incorporated, serves to create an internal task hierarchy, where tasks are ordered

based upon priority and avoidance of clobbering.

During performance of the assigned task, the Coordinator monitors and main-

tains the state representation (the updated structure of HAMR is shown in Figure 3.4).

This requires an expansion of the version of the state monitored by the Sequencer and

maintained by the Controller, as this state representation also consists of the states of

other robots, which is the third function discussed above. This information is stored

according to each group member, with the state of the other robots represented by the

information delivered from both sensor data and inter-robot communications. The in-

formation stored includes positions, task assignments, and resource allocations of the

other group members. There is no need to store the capabilities of the other robots,

since each robot determines its own capabilities independently. Whenever the state

changes in an appreciable manner to the task at hand or to the global task allocation,

the Coordinator alerts the Deliberator and a new allocation is determined. Changes

to the state that are considered appreciable would include events like receiving noti-

fication that another robot is unable to complete a task, modifications to the state

that eliminate the need to complete a task (such as finding an item in the course of

exploring an area), or reaching an expiration time for task completion.

The communication requirements for HAMR are low. If extensive modeling

of other agents is employed, the communication requirements are reduced further.

In order to send the utility values to the other team members, a simple addressing

scheme is used, requiring a single message generation that contains the task descrip-
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Figure 3.4: HAMR block diagram, including the Coordinator.
The arrows indicate information flow direction.

Figure 3.5: HAMR with multiple robots. The internal data
flow has been removed for simplicity.

tion and utility values for the tasks. If this message is sent to only the other potential

candidates for performing the task (subgroups within the collective), it reduces com-

munication overhead and processing time for each team member. When a task is

completed, a simple message consisting of the task description and a completion flag

is sent to the appropriate team members. This provides a means for appropriately

processing the tasks in any required order and in a timely manner, since the ordering

was already determined by the Deliberator and the expiration time is determined with

arrival of the task. HAMR is shown with inter-robot communication in Figure 3.5.

The class structure of HAMR is shown in 3.6.

The Coordinator is crucial for MRSs using the TLA in that it provides a simple,

standardized approach to enable coordination. It is present on all team members, so
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Figure 3.6: HAMR class structure. The Agent contains the
Deliberator, Sequencer, and Coordinator layers, and the Se-
quencer generates the UBF Hierarchy.
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it contributes to a fully decentralized system. It is usable in MRSs with heteroge-

neous robot teams, since the coordination is based upon utility values and, though it

requires a small amount of platform dependence due to the need to determine fitness

and resource expense, is still as independent as the UBF. This is enabled since the

behaviors themselves may incorporate expense calculations and reduces the hardware

dependence to a behavior-dependent function call, shielding the Coordinator from di-

rect hardware-level access. It provides low bandwidth communication, since a single

message is broadcast per robot describing utilities for all current tasks that those re-

cipients that have the potential to also participate in the tasks intercept and process.

During system design, a common message formatting scheme is determined, but this

remains platform independent provided the communication techniques are the same

from one robot to another. The Coordinator also contributes to a robust system,

because each agent is individually capable and there is no cross-agent inhibition or

activation that could cause erroneous behavior such as in the architecture described

by Simmons, et al [48].

3.6 State

Though not a layer in the control system architecture, the State is an important

and crucial component of HAMR. The State provides information to all layers, and

the information provided limits and modifies the robot’s behavior. The sensor data is

stored here as raw or processed data (or a combination of the two), depending upon

the sensor type. This includes odometry readings, range data, corrected position

information, map data, etc. The State also stores goals in one of two categories:

group goals and individual goals. The group goals are discussed above in Section 3.5,

and the individual goals are often subcomponents of these group goals. They reflect

currently active tasks and the subgoals that the individual robot must complete. This

allows the Sequencer to generate goal-fulfilling behavior sets in order to complete

the individual goal-related tasks. The State stores outbound communication data

(created by the Coordinator) until the hardware sends it. Since the State is a means
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Figure 3.7: HAMR Data Flow. The task comes through the
Deliberator and is decomposed into plans, behavior sets, then
motor controls to affect the environment.

of cross-layer communication, it is important to ensure that the permissions for each

subset of the state are appropriately assigned in order to avoid concurrency issues.

To handle this, only sensors write sensor data to the State, but all layers have access

to read the sensor data. Only the Coordinator adds communication messages, and

only the communication hardware removes them when sent. In general, the specific

responsibilities of HAMR layers limit the State access, and these limitations serve to

ensure avoidance of concurrency issues. The full information flow regarding HAMR

is shown in Figure 3.7.

3.7 Summary

HAMR is developed in order to fulfill the single agent and the two multiple agent

requirements sets generated in Chapter II. By the expansion of the Single Robot Ar-

chitecture (SRA) to include the Coordinator layer, HAMR is more robust than the

architecture described by Simmons et al [48], since it reduces the potential of damaged

or malfunctioning robots to adversely affect the entire collective. The contributions of
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Table 3.1: Classification of HAMR via Cao’s taxonomy.

Centralization Differentiation Com Structs Modeling

HAMR decentralized: all heterogeneous: comm: strong: lower
robots are utility values can transfer comm.
independent platform independent info overhead

Target decentralized heterogeneous comm. moderate

Table 3.2: Classification of HAMR via Dudek’s taxonomy.

Size Range Top- Band- Reconfig- Proc Comp-
ography width urability Ability osition

Final Arch LIM NEAR ADD LOW COM TME HET
Target LIM NEAR ADD LOW COM TME HET

the Coordinator layer also includes greater ease of expansion for adding more robots

to the collective, since the collective only needs to add the communication address

of the new robot in order to fully incorporate the new robot into it. Furthermore,

HAMR maintains modularity by keeping each robot from needing to know the full

capabilities of the other robots in the collective, as the determination of utility values

serves to provide a hardware invariant interface for determining those capabilities.

The key advancements of this architecture also include provisions for advanced coor-

dination capabilities through an emphasis on individual autonomy, contributions to

this coordination by low communication requirements, and taskability for all associ-

ated robots in the collective. HAMR fulfills all MRS requirements generated based

out of both Cao’s taxonomy (RS1) [14], Table 3.1, and Dudek’s taxonomy (RS2) [19],

Table 3.2, and the single-agent requirements discussed in Section 2.2. In Table 3.1,

the strong modeling is achieved by tasking: the other agents are modeled based upon

their current tasking, allowing the agent to infer positions and task progress of the

others. Furthermore, the considerations mentioned in Section 2.5 have been fulfilled

by a combination of additional contributions from the Deliberator and the addition

of the Coordinator layer. The following chapter discusses implementation of HAMR

in a common MRS environment, the RoboCup Soccer Simulator.
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IV. Simulation Environment

The RoboCup Soccer Simulator (RCSS) is a common multiagent testing platform

designed to provide a real-time simulation of Multi-Robot Systems (MRSs).

This chapter describes the RCSS and the implementation of the Hybrid Architecture

for Multiple Robots (HAMR) within the RCSS. HAMR’s description, provided in

Chapter III indicates a general approach to the architecture, but does not describe

an application of HAMR to a particular domain. This chapter, then, shows design

variations and implementation specifics in order to generate an appropriate applica-

tion of HAMR. In order to provide this information, the first section describes the

RCSS in general, including its components and general makeup. The second section

describes the architecture implementation specifics. The second section is divided

into four subsections, each describing the implementation of a layer of HAMR.

4.1 RoboCup Soccer Simulator (RCSS)

The RCSS is a program designed to enable implementation and testing of mul-

tiagent systems on the task of playing soccer. The RCSS consists of four packages:

base, server, monitor, and log player [15]. The base code package provides the com-

mon code used by the other packages. The server runs the simulation with clients

sending commands and receiving sensory information. The monitor, shown in Figure

4.1, provides a view of the simulation. Each soccer game is played in two halves, each

running 3000 cycles, or about five minutes. A sudden death round is played in the

case of a tie at the end of the game, where the first goal scored wins the game.

The key part of the RCSS is the server. The server handles all environment up-

dates, from both player actions and general environmental information. This includes

ball movement after a kick and relocation of the ball on penalties or goals. The server

also generates stamina, recovery, and effort values for each player. The players and

coaches communicate with the server in the form of User Datagram Protocol (UDP)

messages. Text-based commands are passed into the server with simple parameters

and are processed. The server generates a “sense body” message, which provides
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Figure 4.1: Screenshot of the RCSS with players distributed
on the field in two teams.

the player and coach with sensory information. The server allows “Kick”, “Dash”,

“Move”, “Say”, “Turn”, “Catch”, and “TurnNeck” commands from each player. The

server handles these commands on a discrete time interval basis, processing one com-

mand per cycle per player. Since these commands are fairly generic and the server

generates stamina, recovery, and effort values, the server allows for teams of hetero-

geneous player types. Each player type has different maximum values for stamina,

recovery, and effort. In order to monitor the gameplay, the server contains a referee

that enforces rules such as out of bounds and offsides.

Central to viewing a game in action is the monitor. This is a windowed appli-

cation that shows the pitch (field), players, and the ball. The ball is displayed as an

open white circle, with a filled inner white circle. Each player is shaded according to

their team, and each player has an associated player number. The red line indicates

the player’s orientation, this determines what the player can sense. A player and the

ball are shown in Figure 4.2

In order to develop and test a control architecture, developers create players

and coaches. The players are the primary agents within the environment, performing

actions on the field that influence ball movement and scoring. Depending upon the
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Figure 4.2: Partial screenshot of the RCSS showing a player
and the ball.

decisions made for the degree of centralization of the resulting system, the role of

coaches may range from practically nonexistent to full control. Since HAMR requires

full decentralization, the implementation makes use of a functionless coach. The

simulator itself does not provide the teams, so the teams must be developed from the

ground up, passing messages to the server portion of the RCSS as described above.

4.2 HAMR Implementation

The team development extends the Trilearn Base Code from the Universiteit

van Amsterdam’s UvA Trilearn 2003 team [31]. This base code provides an imple-

mentation of the agent-environment synchronization, world model, and player skills,

but decision making and coordination methods are not present [31]. The code estab-

lishes a good basis for handling much of the command generation, sensor feedback

handling, and general underlying capabilities. HAMR is built from the bottom up,

starting from the base code and building the Controller, Sequencer, Deliberator, and

Coordinator layers.
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4.2.1 Controller. Since a full system for the sensor feedback and motor

command processing is present in the Trilearn Base code, the only portions of the

Controller that are separately developed are the behaviors and their integration into

the UBF. This section discusses their creation.

4.2.1.1 Behaviors. Procedural-based behaviors come with the Trilearn

base code. These behaviors generate actions only when called by the player loop.

Since the UBF operates on classes and makes use of polymorphism, the behaviors

are changed to classes inheriting from the Leaf superclass, which is a subclass of the

abstract class Behavior (see Section 3.2). There are many behaviors, each with its

own specific applicability in the system. They are:

• GoTo: sends agent to the position indicated by the High-Level World Model

(HLWM).

• AlignNeckWithBody: changes the agent’s looking direction to be square with

the body.

• TurnBodyToPoint: rotates the agent’s body to the central point of the field.

• TurnBackToPoint: rotates the agent’s body such that it is facing 180 ◦ from

the central point of the field.

• TurnNeckToPoint: rotates the agent’s neck to the central point of the field.

• SearchBall: rotates the agent’s neck and body in order to locate the ball.

• DashToPoint: runs the agent to the central point of the field.

• FreezeBall: if the ball is within kickable range, it holds the ball still.

• KickBallCloseToBody: if the ball is within kickable range, it kicks the ball

a short distance.

• AccelerateBallToVelocity: performs multiple kicks to make the ball move

faster.

• CatchBall: a goalie-only behavior, catches the ball if it can be caught.
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• Communicate: has the agent say the text phrase stored in the communication

string state variable.

• TeleportToPos: moves the agent directly to its position according to the cur-

rent formation type. Not available during gameplay.

• ListenTo: pays attention to another agent.

• Tackle: takes the ball away from an opposing agent.

• TurnBodyToObject: rotates the agent’s body to face the ball.

• TurnNeckToObject: rotates the agent’s neck to face the ball.

• DirectTowards: kicks the ball in the specified direction.

• MoveToPos: moves the agent to its position according to the current formation

type.

• CollideWithBall: dash towards and run into the ball.

• InterceptClose: intercepts the ball if it can be intercepted within two cycles.

• InterceptCloseGoalie: intercepts the ball if it is close, goalie only.

• KickTo: kicks the ball to a specified target. The target can be a agent or the

goal.

• TurnWithBallTo: rotates the agent’s body while also keeping the ball to the

agent’s front.

• MoveToPosAlongLine: moves to a specified position along a line drawn be-

tween two objects.

• Intercept: intercepts the ball.

• Dribble: makes a series of kicks in order to move the ball and maintain pos-

session.

• DirectPass: pass the ball directly to an object.

• LeadingPass: pass the ball to an object with some lead distance.
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• ThroughPass: pass the ball through an area to an object.

• OutplayOpponent: attempt to kick the ball behind an opponent and recover

it.

• ClearBall: kick the ball so it is removed from an area.

• Mark: defend against a agent, man-to-man style.

• DefendGoalLine: stands on the goal line to intercept any shots.

• InterceptScoringAttempt: intercept the ball when an opponent is trying to

score.

• HoldBall: holds the ball. This is a goalie behavior only.

These behaviors all contain a go function, where the parameters fed to it are

appropriate to the current state represented by the WorldModel (WM) and High

Level World Model (HLWM) state files. The go function generates the action from

the Trilearn Base Code’s procedural behaviors, and varies widely from one behavior to

another in both complexity and parameters passed to it. The behaviors also each have

a specialized genAction() function, which is used by the UBF in order to generate

commands. The genAction function examines the state, generates parameters to

pass to the go function, and returns the response of the go function along with an

associated vote for the perceived utility of implementing the behavior.

4.2.1.2 UBF. The UBF is incorporated as shown in Figure 4.3, with

the notable exception that the behaviors are not passed a state for the genAction

function. Instead, each behavior is passed a reference to the single WM and, if

necessary, HLWM upon creation of an instance. This way, the genAction() function

is parameterless and processes more quickly, since the entire state does not need to

be placed on the stack. The arbiter is based simply upon utility, where the best

behavior (according to the behavior’s utility values) is selected. Unfortunately, due

to the constraints placed upon the messages that can be passed to the Soccer Server,

only one behavior is performed at a time, thereby limiting the arbiter to a winner-
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Figure 4.3: The internal structure of the UBF. Using an ar-
biter, a composite behavior is generated that makes use of mul-
tiple simple behaviors. [56]
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take-all or command fusion scheme (provided the commands are in the same actuator

group as defined by the RCSS). Therefore, though it is physically possible for a

real-world soccer player to both kick the ball and turn his neck, these are issued as

separate commands in the RCSS environment, so an RCSS player cannot. All of the

behaviors listed in Section 4.2.1.1 fall under the Leaf superclass, which contains a

generic genAction() function and constructor. The Behavior class, a superclass of

Leaf, is also generic. The CompositeBehavior class contains the same variables

and functions as in Figure 4.3. The behavior generated by the CompositeBehavior

class is the one with the highest vote, since the arbiter performs a simple utility

selection. A class diagram with the specific implementation of the UBF is also shown

in Appendix A, Figure A.5.

4.2.2 Sequencer. The Sequencer acts as a container for all behaviors and

also performs the selection of behaviors to activate through generation of the behavior

hierarchy. Its primary activity is carried out in the runPlay function, which adds

appropriate candidate behaviors to the CompositeBehavior instance based upon an

examination of the WM and the current play. For example, if the ball is within range

to be kicked by the agent, the Sequencer adds KickTo, Dribble, and DirectPass

to the CompositeBehavior instance.

The Sequencer also contains an instance of the Play class, which is a container

for the formation, current value for the play type, and preferred ball handler. The

Play instance is generated by the Deliberator, and acts as a means of passing com-

mands from the Deliberator to the Sequencer. The formation is the structure of

soccer players on the pitch (field) and is based upon traditional soccer formations,

those developed are the 4-2-4, 4-4-2, 4-3-3, 3-3-4, 2-4-4, and a kickoff formation which

is similar to the 4-2-4. The play type enumeration allows the following values:

• RECLAIM BALL: the opposing team has the ball, and the current play is de-

signed to create a turn over. This normally requires a defensively-oriented for-

mation such as the 4-4-2.
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• TRAP: attempt to force an offside against the other team. If successful, this

play type results in a turn over.

• DRIVE: the agent’s team has possession of the ball and is moving it down the

field. This normally works best with a 4-3-3 or 3-3-4 offensive formation.

• SCORING: the agent’s team has possession of the ball and is attempting to

score. This normally works best with a 2-4-4 formation.

• KICKOFF US: kickoff for the agent’s team. Works best in a kickoff formation.

• KICKOFF THEM: kickoff for the opposing team.

• CORNER KICK US: corner kick for the agent’s team. Normally works best

with a 3-3-4 offensive formation.

• CORNER KICK THEM: corner kick for the opposing team. Normally works

best with a corner kick formation.

• PENALTY US: the agent’s team has a corner kick.

• PENALTY THEM: the opponent’s team has a penalty kick.

• GOAL KICK US: the agent’s team has a goal kick.

• GOAL KICK THEM: the opposing team has a goal kick.

• FREEKICK US: the agent’s team has a free kick.

• FREEKICK THEM: the opposing team has a free kick.

These play types provide a readily accessible evaluation of the state for the Sequencer,

such that the Sequencer can then spend more time activating the appropriate behav-

iors for those states. Each call of the runPlay() function compares the current play

type with the HLWM play type, and if they don’t match, it sets a flag that notifies

the Deliberator that it is needed in order to reevaluate the state. This comparison is

run once during each gameplay cycle. A class diagram of the Sequencer is shown in

Appendix A, Figure A.4.
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4.2.3 Deliberator. The Deliberator’s only function in the RoboCup domain

is the setting of the play type, formation, and preferred ball handler for the Sequencer.

The high-level decision making is simple in soccer, since there is only ever two sig-

nificant objectives: score a goal, and keep the opposing team from scoring. Subtasks

can be decomposed from this, but it is unnecessary since the Sequencer can generate

a simple plan which, due to its simplicity, is more robust to task failure. Because

of this, the behavior activation decision making is left to the Sequencer. The Delib-

erator, instead, generates instances of the Play class. This is done via the primary

function of the Deliberator, which is the genPlay() function. The genPlay() function

evaluates the WM and HLWM, generates a Play instance, then sets that play to

active in the Sequencer. In order to make use of the Deliberator as rarely as possible,

the Deliberator’s genPlay() function is only called if the Sequencer detects that the

current play is done. The detection is performed by examining the Play instance,

as the Play instance itself determines whether it is complete by determining current

ball possession and position relative to tolerable values for the play. Additionally, the

Deliberator contains the Sequencer instance that it interfaces with. This allows the

commands to cascade downwards: the Deliberator generates the play, the Sequencer

implements the play by activating component behaviors, and the behaviors physi-

cally carry out the activity. This is a minor variation on the hierarchical structure

presented in Section 2.2, with the only significant change given by the functionality

of the Deliberator.

4.2.4 Coordinator. The Coordinator relies heavily upon the HLWM, since it

must generate and process appropriate communication messages and, in some cases,

set a state variable based upon the received information. There are two impor-

tant functions in this class: the GenMsg() and the GenUtility() functions. The

GenUtility() function computes individual task utilities based upon received mes-

sages. One assignment it computes is which opponent to mark when playing de-

fense. First, it generates a list of possible candidates and goes through the list,
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removing any opponent already marked. If there are any remaining unmarked op-

ponents, the GenUtility() function selects it, generates a utility value, and indicates

both the utility value and the potential assignment in the WM. If all opponents

from the list are covered, the GenUtility() function selects the candidate from the

original list with the highest utility and covers it (double-teaming the selected op-

ponent), also indicating it in the WM. This enables the defenders to coordinate

their coverage assignments and more efficiently cover opponents and improve the

chances for forcing a turnover. Appropriate allocation of these marking assignments

requires communication, since the system should avoid double assignments if there

are uncovered opponents. This communication is handled by the GenMsg() func-

tion. The utility value is calculated based upon distance to the target and current

stamina levels generating the cost function and the player type indicating fitness. So

cost(target) = (DistanceTo(target) + StaminaUsed) and the utility value is:

Utility(target) =







(playerType ∗ 10) − cost(target) if (playerType ∗ 10) > cost(target);

0 otherwise.

The physical communication is part of the Controller layer functionality, so the

task of the GenMsg() function is to generate an appropriately formatted message in an

efficient manner. The message is currently sent in one of three formats: WorldModel

update, coverage assignment, and utility value formats. The WorldModel update

format has two message structures: opponent attacker and ball status messages. The

message structuring for all three formats is shown below.

• Opponent Attacker Message: The opponent attacker message transmits a vari-

ation on a time stamp along with the name and position of the deepest attacker

and the offside line. The offside line runs parallel to the goal line immediately

behind the nearest non-goalie teammate to the goal. The first byte is encoded

by taking the current cycle (time point in the game) modulo 10, and adding that

value to the ASCII character ’a’. Therefore, the first byte is between the lower
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case letters ’a’ and ’j’. The second byte is the offside line, which is encoded by a

single ASCII character between ’a’ and ’Z’. This is decoded as a numerical value

between 0 and 52. The next character is the opponent player number added

to ASCII character ’a’. The next three bytes are the x-coordinate, shifted left

by one digit and displayed with no values to the right of the decimal. The

y-coordinate is last, displayed similarly to the x-coordinate but shown in two

bytes, unless negative. As an example, encoding opponent number 9 at position

(-40.3345, -3.3123) and the offside line at 27.0 during cycle 1534 would give:

“eBj403-33”, where ’e’ is 1534 modulo 10 + ’a’, ’B’ is 27, ’j’ is 9 + ’a’, and the

coordinates are shifted left by one and the decimal values dropped.

• Ball Status Message: The ball status message, which begins with the same two

characters as the opponent attacker message, uses eight bytes to encode the ball

status. The first two of these are the x-coordinate of the ball and the second two

are the y-coordinate of the ball. The next four bytes are the x and y component

velocities of the ball, each using two digits.

• Coverage Assignment Message: The last message type is in the coverage as-

signment format. This message encodes the cycle in a similar manner as shown

above. The remaining bytes are pertaining to the coverage assignment. The first

one or two bytes of the remaining message is the player number, the next four

bytes are the letters of the word “Mark”, and the last one or two bytes is the

opponent player number being covered. This is generated after communication

of the utility values.

• Utility values: The utility values are transferred using the cycle as shown above,

followed by the player number, the word ”Ut” and the potential target for

assignment. The final two digits are the utility value.

Upon reception of a communication message, the Coordinator makes the ap-

propriate updates to the WM regarding the ball, opponent, coverage assignment, and

other agent’s utilities. Before making any of these updates, the value of the informa-
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Figure 4.4: The team with each agent showing the architec-
ture. The Coordinator layers communicate with each other.

tion is checked against the current WM. The update is kept if the data is newer than

the last time local sensing received data, and replaced readily if local sensing receives

additional data. Figure 4.4 shows the team configuration in a 4-4-2 formation with

HAMR internal to each team member.

4.3 Summary

This chapter introduced the RoboCup Soccer Simulator and presented an ap-

proach to integrating HAMR as a team in the simulator. HAMR provides a highly

modular, stable framework for behavior development and coordination on tasks.

HAMR integrates well, with the UBF providing much of the structure for the Con-

troller layer and the Sequencer generating the behavior hierarchy for the UBF. The

Play class provides a means of information transfer between the Deliberator and the

Sequencer while enabling an additional abstraction of the state. The Coordinator

solves for individual allocation of tasks requiring coordination, and efficiently gener-

ates messages for the communication mechanisms contained in the Controller. Thus,
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individual autonomy is preserved, communication bandwidth is kept low, and high-

level coordination is provided. In order to show the performance of HAMR in the

RCSS domain, Chapter V presents comparison of the results of integrating HAMR

versus the Layered Multirobot Architecture presented in Section 2.3 and also testing

HAMR against the Trilearn Base code.
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V. Results

Testing of a design approach is difficult, since few benchmarks exist to validate

the approaches. The most effective way to test the performance of the Hybrid

Architecture for Multiple Robots (HAMR) is to implement an alternate architecture

and comparatively test the two. The alternate architecture tested against HAMR is

Simmons’ Layered Multirobot Architecture [48]. As discussed previously, the Layered

Multirobot Architecture fulfills most of the architecture requirements. It makes use

of the Three Layer Architectural approach (the Single Robot Architecture (SRA) re-

quirement). It is fully decentralized, allows for heterogeneity, communicates through

both sensing and communication, and has strong modeling of other agents, fulfilling

Requirements Set 1 (RS1). It contains a SIZE-LIM collective size, uses COM-NEAR

communication range, makes use of a TOP-ADD communication topology, has ARR-

COM configurability, assumes a PROC-TME processing equivalent, and allows for

CMP-HET composition, thus fulfilling much of Requirements Set 2 (RS2). In addi-

tion, centrally controlled and managed communication in HAMR is not present in

LMA, which is estimated as the key factor in performance variations between the two

architectures. The lone exception to this is that the Layered Multirobot Architecture

uses BAND-HIGH communication bandwidth. Nevertheless, the Layered Multirobot

Architecture is the closest multiagent architecture of those reviewed to fulfilling the

requirements, thus making it a good candidate for the comparison.

The primary benefits of HAMR over the Layered Multirobot Architecture are its

lower communication overhead and the lack of cross-activation of behavior sets, which

is one of the structural design approaches used in the Layered Multirobot Architecture.

Thus, one expects the comparison of the two to result in HAMR out scoring the

Layered Multirobot Architecture, ceteris paribus (including behavior definitions and

general hierarchical structure).

In testing, the implementations were run against each other for seven sets of

thirty games, with score differentials recorded. Each set of games has different com-

munication settings enabled on the Layered Multirobot Architecture. The results
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indicate better performance on behalf of HAMR. This Chapter discusses these tests

and describes using them to test the performance of HAMR versus the Layered Mul-

tirobot Architecture. In addition, the Trilearn Base code is tested against HAMR in

order to determine any gains or losses to performance acquired by the hierarchical

structure of HAMR. This test was also for thirty games.

5.1 Implementation of the Layered Multirobot Architecture

Of the existing architectures reviewed in Chapter II, the Layered Multirobot

Architecture is the closest to fulfilling the desired requirements described by the sin-

gle robot architecture requirements, Requirements Set 1, and Requirements Set 2.

Thus, in order to evaluate the capabilities and contributions of HAMR, the Layered

Multirobot Architecture is implemented in the RoboCup Soccer Simulator (RCSS)

and pitted against the implementation from Chapter IV. This provides a means of

measuring the performance of HAMR by evaluating communication overhead and

relative score. The implementation of the Layered Multirobot Architecture has the

same behaviors in the same manner, and the ball and offsides information messages

are generated in the same manner as in HAMR, but at the Controller level. For the

Sequencer, communication messages are generated that indicate the agent’s active

behavior set. The agent on the receiving end of the message processes this message

and activates a complementary behavior set. The Deliberator generates messages

indicating the play type, and the receiving agent also activates this play in order to

have a more consistent play activation type. These communication methods are also

shown in Table 5.1.

With any configuration (regardless of architecture), the communication is some-

what limited in that only one communication message can be sent per cycle. Thus,

by necessity, messages in the Layered Multirobot Architecture are prioritized and

supersede other messages if multiple messages are generated in one cycle. This pri-

oritization is based upon the layers, with Deliberator messages more important than

Sequencer messages and Sequencer messages more important than Controller mes-
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Table 5.1: Communication methods in the Layered
Multirobot Architecture implementation.

Layer Message Type When Produced

Deliberator Play At Play Generation
Sequencer Behavior Set When Behaviors Change
Controller Ball Position Every Cycle

Deepest opponent position Every Cycle

sages. In order to approximate a normal distribution, thirty games are run against

HAMR with this configuration. Next, thirty games are run with only the Deliberator

layers communicating, thirty with only the Sequencer communication, and thirty with

only the Controller level communication. Finally, three sets of thirty games are run

with the first thirty having both the Controller and Sequencer communication active,

the next thirty with Controller and Deliberator communication, and the last thirty

with Sequencer and Deliberator communication active. This way, a test of the full

spectrum of all possible combinations of communication is performed. The results of

these runs are discussed in the next section. In addition, thirty games are played in

order to test HAMR against the Trilearn Base code. This is performed in order to

determine the performance of the hierarchical nature of HAMR against an effectively

implemented reactive architecture.

5.2 Results of gameplay

This section discusses the results of the games played between HAMR and the

Layered Multirobot Architecture as described in Section 5.1, along with the games

played between HAMR and the Trilearn Base code. The relative performance of the

Layered Multirobot Architecture and HAMR are to be measured. To perform this

measurement, thirty games are played with both architectures as presented in the

associated literature (referred to as the base test). Blocked communication messages

are also measured for these games to illustrate the extent of the constraints on the

Layered Multirobot Architecture’s communication structure. To examine the poten-
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tial source or sources of any score discrepancy, communication capabilities are varied

on the Layered Multirobot Architecture for a secondary block of tests (referred to

as the secondary tests). Thirty games are played with communication only on the

Deliberator layer, thirty with communication only on the Sequencer layer, and thirty

with communication only on the Controller layer. The third test is performed with

HAMR playing the Trilearn Base code for thirty games. All results are presented as

a score differential in favor of HAMR (e.g. a value of 11 represents HAMR winning

by 11 goals, -3 represents HAMR losing by three goals).

In order to determine the statistical significance of the score values, the z-test

is used. The z-test assumes a normal distribution, so a test for normality is first

performed using the χ2 goodness-of-fit test [50]. The χ2 value is calculated using the

following:

χ2 =
N

∑

i=1

(Oi − Ei)
2/Ei (5.1)

Where Oi are the observed counts in an associated bin and Ei are the expected counts

in that associated bin. This tests the null hypothesis that the data in the associated

vector are a random sample from a normal distribution. The null hypothesis is rejected

if the χ2 value is greater than 5 (based upon a 95% significance value). Table 5.4 shows

the associated χ2 and null hypothesis rejection conclusion. For better matching on

the Controller, two outliers are removed. The normal probability density functions

(PDFs) for these results are then compared using a z-test [43] in order to determine

statistical significance and thus determine aspects of the contribution to the score

differential in the first test set. The z-test is calculated using Standard Error (SE) [43],

which is expressed as σ√
n
, where σ is the standard deviation and n is the size of the

sample under consideration. Next, the z score (z) is calculated using z = x−µ

SE
[43],

where x is the sample mean and µ is the population mean. Thus, the z score is

x − µ
σ√
n

(5.2)
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Figure 5.1: Histogram of thirty game score results with the
Layered Multirobot Architecture communicating on all layers,
played against HAMR. LMA scored zero goals in every game.

or better expressed as √
n(x − µ)

σ
(5.3)

Using this equation, the z scores are calculated.

5.2.1 Base Test. The base test (Figure 5.1) shows score occurrences relative

to the score value with the Layered Multirobot Architecture against HAMR. This

indicates a mean of 8.3 goals, with a standard deviation of 2.94, with HAMR winning

every game. The blocked messages from these games consist of a mean of 58662.7

and a standard deviation of 4707.84. These blocked messages are the net sum of

blocked messages over all players from the Layered Multirobot Archiecture. In all

these games, the Layered Multirobot Architecture scored zero goals.

5.2.2 Secondary Tests. In order to better understand the source of the sig-

nificant differences in score between the architectures, communication on the LMA

implementation is reconfigured such that it is limited to only one layer communicating
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at a time and thirty games are played at each configuration. The histogram in Figure

5.2 shows score occurrences relative to the score value with just the Deliberator layers

communicating. This reflects a mean of 8.1 goals and a standard deviation of 2.5.

Figure 5.3 shows the same for communication at just the Sequencer layer, reflecting

a mean of 11.07 and a standard deviation of 2.5. This is the most significant of the

individual layer communication tests. Figure 5.4 shows the histogram for communi-

cation at only the Controller layer for thirty games, indicating a mean of 3.37 and a

standard deviation of 1.35. The two layer communication tests reflect similar results.

The score occurrences with the Layered Multirobot Architecture communicating on

the Controller and Sequencer layers are shown in the histogram of Figure 5.5. This

is similar to the results with only the Sequencer communicating, with a mean of

11.1 and a standard deviation of 1.97. Next, the histogram in Figure 5.6 shows the

results with communication on the Controller and Deliberator layers, with a mean

value of 2.3 and a standard deviation of 1.12. Finally, Figure 5.7 shows the results

with communication on the Sequencer and Deliberator layers. This indicates a mean

of 11.4 and standard deviation of 1.28, also similar to the results of the Sequencer

communication alone. The means and standard deviations of scores for each configu-

ration as mentioned above are shown in Table 5.2. The most significant of the single

layer and two layer communication score differences are shown in bold, which are the

Sequencer for the single layer and the Sequencer and Deliberator communication for

the two layer communication. This is due to the interference caused by the Sequencer

layer communications in the Layered Multirobot Architecture.

5.2.3 Third Test. The tertiary test is performed between HAMR and the

Trilearn Base code. The Trilearn Base code is implemented with little modification

from the original source. The KickTo action generation is modified to always kick the

ball at maximum kick power directly towards the opponent’s goal, thus matching the

general behavior structuring of the unmodified Trilearn Base code. The histogram of

thirty games played with this configuration is shown in Figure 5.8. This reflects a mean
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Figure 5.2: Histogram of thirty game score results with the
Layered Multirobot Architecture communicating on only the
Deliberator layer, played against HAMR.
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Figure 5.3: Histogram of thirty game score results with the
Layered Multirobot Architecture communicating on only the Se-
quencer layer, played against HAMR.
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Figure 5.4: Histogram of thirty game score results with the
Layered Multirobot Architecture communicating on only the
Controller layer, played against HAMR.
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Figure 5.5: Histogram of thirty game score results with the
Layered Multirobot Architecture communicating on the Con-
troller and Sequencer layers, played against HAMR.
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Figure 5.6: Histogram of thirty game score results with the
Layered Multirobot Architecture communicating on the Con-
troller and Deliberator layers, played against HAMR.
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Figure 5.7: Histogram of thirty game score results with the
Layered Multirobot Architecture communicating on the Se-
quencer and Deliberator layers, played against HAMR.
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Table 5.2: Means and Standard Deviations of score
differentials with regards to HAMR in the games played
against the Layered Multirobot Architecture.

Communication Mean Score Standard Deviation

All Layers 8.3 2.94
Deliberator 8.1 2.35
Sequencer 11.07 2.5

Controller 3.37 1.35
Cont & Seq 11.1 1.97
Cont & Del 2.3 1.12
Seq & Del 11.4 1.28

Table 5.3: Means and Standard Deviations of messages
blocked by the Layered Multirobot Architecture in the
three-layer communication games played vs. HAMR.

Type Mean Standard Deviation

Blocked Messages-All Layers 58662.7 4707.84

Table 5.4: χ2 goodness-of-fit results for HAMR vs.
Layered Multirobot Architecture.

Communication χ2 reject null hypothesis?

All Layers 2.6096 no
Deliberator 0.5303 no
Sequencer 4.0096 no
Controller 1.4779 no
Cont & Seq 1.3732 no
Cont & Del 1.2617 no
Seq & Del 5.2854×10−4 no
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Figure 5.8: Histogram of thirty game score differentials with
the Trilearn Base code against HAMR.

Table 5.5: χ2 goodness-of-fit results for HAMR vs.
Trilearn Base code.

Result Type χ2 reject null hypothesis?

Thirty games 5.1601 no

score of 0.10 and standard deviation of 0.9948. The χ2 calculation is shown in Table

5.5. Its value is 5.1601. This indicates that the thirty games follow an approximately

normal distribution and both HAMR and the Trilearn Base code perform roughly

equivalently.

5.2.4 Analysis of Results. From the scores obtained from the base and

secondary tests, the χ2 goodness-of-fit test from Equation 5.1 is performed in order

to test for normality. All results are approximately normal, and are shown in Table

5.4. Communication on all layers gives a χ2 value of 2.6096. Communication on

the Deliberator layer gives χ2 equal to 0.5303. The Controller layer communication

gives a value of 1.4779 for χ2. For the two-layer communications, the Controller and
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Sequencer together give a χ2 value of 1.3732, the Controller and Deliberator give a χ2

of 1.2617, and the Sequencer and Deliberator communication provide a very low χ2

of 5.2854×10−4. With these results indicating normal distribution is acceptable for

all tests, the z-test is run on each combination of these two tests. The results of the

z-test are calculated from Equation 5.3. The percentage of the population that falls

closer to the mean is also determined from this, and if this value is less than 95%, it is

considered to be part of the same distribution. If greater than 95%, the null hypothesis

is rejected and it is considered statistically significant. These values are shown in Table

5.6. From this table, it is apparent that the Sequencer and Controller make unique

contributions to the score result of all layers. This table also indicates that in most

cases where Sequencer communication is enabled, it is not considered statistically

significant relative to other instances where Sequencer communication is enabled.

The z-test shows that the results are statistically significant except with regards to all

layers communicating vs. the Deliberator only communicating, and in all instances

other than all layers where the Sequencer is communicating in both contributors to the

z-test. These are in Sequencer vs. Controller & Sequencer, Sequencer vs. Sequencer

& Deliberator, and Controller & Sequencer vs. Sequencer & Deliberator. The z-score

values are 0.2673, 0.2673, 0.2967 in these cases, respectively. The z-score for all layers

communicating vs. the Deliberator is 0.1443.

5.2.5 Discussion. The primary cause of the score differential in the base

and secondary tests is communication on the Sequencer layer. Note from Table 5.6

that in most cases where Sequencer communication is enabled, it is not considered

statistically significant relative to other instances where Sequencer communication

is enabled. In other words, the Sequencer communication dominates the effect on

the Layered Multirobot Architecture’s performance by causing erratic behavior and

reducing its effectiveness in the RCSS domain. With this communication enabled,

each agent receives messages pertaining to the behavior set of another agent, thus

causing the agent to enable a complementary behavior set. However, with the highly
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Table 5.6: Statistical significance calculations of score
results (Layered Multirobot Architecture vs. HAMR),
shown for each configuration of LMA.

Comparison x µ σ z z-test % closer Signif-
icant

All Layers vs. Delib 8.1 8.3 2.94 -0.37 0.1443 28.86 no
All Layers vs. Seq 11.07 8.3 2.94 5.16 0.5 100 yes
All Layers vs. Cont 3.37 8.3 2.94 -9.18 0.5 100 yes
All Layers vs. Cont & Seq 11.1 8.3 2.94 5.22 0.5 100 yes
All Layers vs. Cont & Del 2.3 8.3 2.94 -11.18 0.5 100 yes
All Layers vs. Seq & Del 11.4 8.3 2.94 5.78 0.5 100 yes
Deliberator vs. Seq 11.07 8.1 2.35 6.92 0.5 100 yes
Deliberator vs. Cont 3.37 8.1 2.35 -9.37 0.5 100 yes
Deliberator vs. Cont & Seq 11.1 8.1 2.35 6.98 0.5 100 yes
Deliberator vs. Cont & Del 2.3 8.1 2.35 -13.50 0.5 100 yes
Deliberator vs. Seq & Del 11.4 8.1 2.35 7.67 0.5 100 yes
Sequencer vs. Cont 3.37 11.07 2.5 -16.87 0.5 100 yes
Sequencer vs. Cont & Seq 11.1 11.07 2.5 .0729 0.2673 53.46 no
Sequencer vs. Cont & Del 2.3 11.07 2.5 -19.17 0.5 100 yes
Sequencer vs. Seq & Del 11.4 11.07 2.5 .7291 0.2673 53.46 no
Controller vs. Cont & Seq 11.1 3.37 1.35 31.34 0.5 100 yes
Controller vs. Cont & Del 2.3 3.34 1.35 -4.32 0.5 100 yes
Controller vs. Seq & Del 11.4 3.34 1.35 32.55 0.5 100 yes
Cont & Seq vs. Cont & Del 2.3 11.1 1.97 -24.45 0.5 100 yes
Cont & Seq vs. Seq & Del 11.4 11.1 1.97 0.8335 0.2967 0.5934 no
Cont & Del vs. Seq & Del 11.4 2.3 1.12 44.55 0.5 100 yes
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dynamic nature of soccer and its implementation in the RoboCup Soccer Simulator

(RCSS), this causes a very rapid shift in behavior sets. This, on occasion, causes the

agents to behave erratically, rapidly shifting between behavior sets and accomplishing

very little in terms of ball retrieval or advancement of the ball towards the opponent’s

goal. Thus, this behavior set activation acts as an inhibitor, just as discussed earlier.

The Deliberator level communication causes less interference than that of the

Sequencer, but it also fails to deliver a significant benefit. Since the messages passed at

this layer are plays, it serves merely to define a preferred ball handler and a formation

position for the agent. This does help to a certain extent, since all agents on the team

have a universal play selected, but is otherwise limited in its contributions due to the

limited amount of information contained within the play.

The Controller level communication contains many of the same aspects of the

ball status and opponent player information as the Coordinator layer-generated mes-

sages, and thus serves to contribute more benefit to the Layered Multirobot Architec-

ture implementation than the Deliberator and the Sequencer layer communication.

The score differential here is much smaller than those of only the Deliberator or

Sequencer communication, and this is simply a result of all agents knowing where

the ball is located. With this communication setup, each agent spends less time re-

acquiring the ball position and instead spends more time acting upon the information.

The reason that the goal differential is still greater than three is that there is an addi-

tional aspect to HAMR, where the Coordinator layer generates a better distribution

of marking assignments when on defense, thus allowing the team to recover the ball

better and keep it on the opponent’s side of the field. The Layered Multirobot Archi-

tecture implementation has no such coordination. This reduces the team’s ability to

recover the ball when on defense, and increases time of possession for HAMR, thereby

contributing to the score differential.

In general, the tests involving HAMR and LMA are performed to show the

benefit to performance achieved by controlling and managing the communication in a
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central portion of the architecture. HAMR contains the central, integrated Coordina-

tor layer whereas LMA contains the addition of communication on the architecture’s

layers. HAMR performs better than LMA in this domain, regardless of the configu-

ration selected for the communication in LMA, illustrating this point.

The third test shows that, even though there is higher-level processing and more

advanced coordination and behavior generation mechanisms in HAMR, any adverse

affects to its performance are negligible. It performs as well as the Trilearn Base code

while also providing a platform independence through the hierarchy that is not present

in the Trilearn Base code. Thus, there is no loss to its performance, and the capa-

bility is actually expanded, since the advancements provide capabilities not available

in the Trilearn team’s behavior-based approach. This capability expansion includes

increased time of possession and better anticipation of ball position for intercepting

the ball.

5.3 Summary

In the RCSS environment, the Layered Multirobot Architecture proves less ef-

fective than HAMR, as evidenced by the communication overhead and the score dif-

ferential. The communication overhead caused by heavy message traffic in the Lay-

ered Multirobot Architecture results in a number of communication messages being

blocked, thus reducing the agent’s ability to operate efficiently. An inherent drawback

of the Layered Multirobot Architecture is its Sequencer-layer communications, which

causes cross-agent behavior inhibitions and occasional erratic behavior. This is the

greatest contributor to the score differential, and thus the primary factor in the perfor-

mance difference. This, coupled with the communication message blocking, forces the

agent to spend much of its time alternatively activating various behavior sets or reac-

quiring ball information, since the ball information communication messages are often

blocked. This takes away from the agent’s ability to effectively operate in a dynamic

environment such as the RCSS. It is not, however, any fault of the hierarchy that it

encounters reduced performance. This is shown by the results of the testing between
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HAMR and the Trilearn Base code. The hierarchical structure of HAMR causes no

reduction in relative performance. The effectiveness of a single layer of communica-

tion versus communication on all layers is indicated by this, since the Coordinator

provides a single centralized control for message generation and processing.
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VI. Conclusion

Multi-Robot Systems (MRSs) used in certain situations provide a significant

benefit, since the work is distributed among the robots in the group. In many

applications, there remains a need for individual autonomy while also capturing the

associated coordination aspects of the MRS. There is often a tradeoff between in-

dependence and coordination, since exclusive focus on either one leads to either a

single-agent design or a highly cooperative yet mutually dependent multiagent de-

sign. Attempts to balance the two often result in either extraneous activity or error

propagation. The design of the Hybrid Architecture for Multiple Robots (HAMR)

emphasizes individual independence among members of a collective. The result of this

independence is that HAMR provides greater robustness than some other architec-

tural approaches, along with greater sophistication than most multirobot architectures

since it is built on the three layered approach.

Comparison of HAMR against the Layered Multirobot Architecture in the RoboCup

Soccer Simulator (RCSS) indicate that HAMR performs better than the Layered Mul-

tirobot Architecture in this application. The Layered Multirobot Architecture was

selected as a basis for comparison since it is well suited to function in a single agent

system, fully decentralized, and can make high-level decisions independently. The

testing indicates that the addition of the Coordinator layer provides a greater benefit

to a multi-agent system than additional communication on all layers. Specific benefits

include minimizing interference by other agents, reducing communication overhead,

greater modularity within an agent, and greater independence between agents. The

results of the testing indicate that the Coordinator is a better way to bundle commu-

nication and manage coordinated activity, but only provides these benefits if it is an

integrated part of the architectural design, as opposed to an addition to a preexisting

architecture.

HAMR provides a number of key advancements:

1. provides coordination capabilities through an emphasis on individual autonomy.
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2. contributes to coordination with low communication requirements.

3. provides a taskable system for all associated robots in the collective.

4. possesses a straightforward mechanism for modifying the collective size.

5. enables mutual independence for all the robots in the collective.

These were shown previously in the design of the architecture and in the evaluation

of the architecture’s performance in Chapters III and V.

6.1 Research Conclusions

The required properties for HAMR identified in Chapter I are to be lightweight

in terms of communication, highly independent, highly cooperative, expandable, ro-

bust, and extensible. All these properties are fulfilled by HAMR, and are described

below.

• Low communication overhead: all communications are conducted through the

Coordinator. This provides a degree of filtering to reduce communication needs.

In addition, the only required communications are those used to coordinate on

tasks and assign utilities, so the demands on the communication system are low,

especially when there is a low rate of task turnover.

• Highly independent: each agent in HAMR possesses high-level computation

capabilities through a Deliberator, which translates goals into actions. In addi-

tion, any agent can complete a task when it falls within the agent’s skillset and

cooperation is not required.

• Cooperative: The Coordinator layer provides a mechanism for cooperating on

tasks, allowing each agent to determine their own contribution to any task

requiring cooperation.

• Expandable: addition of an agent to the group merely requires an addition of

an address to the network, and other agents do not need to know about the
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capabilities of the recently added agent. This provides a simple method to

modify the group size easily and rapidly.

• Robust: any task that falls within the skillset of the remaining agents will be

completed eventually, and the removal of one or more agents from the group

does not cause group failure, since simple expiration times on tasks provides the

ability to detect most failures.

• Extensible: the modularity of the three-layer architecture basis and the Unified

Behavior Framework (UBF) provide a straightforward mechanism for introduc-

ing new skills to agents, and the other agents need not be informed of these

changes.

The key advancements indicated previously are shown by the results of testing

HAMR against the Layered Multirobot Architecture. HAMR provides coordination

capabilities through an emphasis on individual autonomy with low communication

requirements, shown by the defender assignments in the RoboCup Soccer Simulator

(RCSS) team implementation of HAMR. It provides a taskable system for all asso-

ciated robots in the collective, provided by the layered architectural approach and

generation of the Play instance in the RCSS implementation. HAMR possesses a

straightforward mechanism for modifying the collective size, since references to other

players in the RCSS team are contained in a linked list, which is easy to modify.

Finally, HAMR enables mutual independence for all the robots in the collective. This

is shown by the nature of individual assignments and responsibilities in HAMR and

formations and player types in the RCSS domain. Thus, HAMR provides a number of

advancements over other architectures and provides these advancements by encour-

aging individual autonomy. The key to these advancements are in the Coordinator

layer, which contributes to mutual independence by its mechanisms for centralized

management of communication and contribution to auction-based task allocation.

This independence leads towards greater expandability and robustness in MRSs with

HAMR.
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6.2 Future Work

There are auxiliary aspects to this work that serve to improve not only HAMR,

but also prove applicable in other architectural approaches. Therefore, some of these

aspects are presented below, along with a few that pertain almost exclusively to

HAMR.

• Determine an appropriate cutoff for behavior complexity. Behaviors may range

in implementation from an activation of a single motor in response to a stimulus

to a highly sophisticated, complex function with its own internal planning and

high-level computation capabilities. A standardized cutoff for this complexity

would serve to increase modularity and provide a cleaner separation between

layers.

• Design a common framework for determining candidate behaviors in the Se-

quencer. Barring the development of a Sequencer which has a canned response

for all states, this problem is difficult without making the Sequencer hardware

dependent. One possible approach is to have each behavior “provide” a function

known to the Sequencer so that the Sequencer generates behavior sets containing

behaviors that provide the needed functionality.

• Implement a high-level solver in the Deliberator. More than just partial order

planning to break down a task into subtasks, the Deliberator in a multi-robot

system must also determine task scheduling, determine task allocation, and per-

form task maintenance. There must also be consideration of common resources,

which must also be appropriately allocated.

• Implement HAMR in a real-world, heterogeneous robotic team. The implemen-

tation of HAMR in the RoboCup Soccer Server (RCSS) avoids many problems

common to real-world robotics, such as sensor noise and odometry error. The

RCSS implementation is also simplified in that there are only ever two goals:

gaining possession of the ball and scoring goals. This negates the need for a
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sophisticated Deliberator, and, though the agents on the team have slightly dif-

ferent capabilities, all agents have the same simulated hardware. A real-world

implementation provides a true test of HAMR’s robustness.

• Create a manager for sensor and motor energy expenditure. This is needed in

order to monitor and limit energy output, thereby avoiding death via an internal

cause. If a set of behaviors only utilize a limited number of sensors and there is

no estimated need for the others, it is best to deactivate those sensors in order

to reduce energy use and prolong the robot’s period of operation. An example

of this is night vision capabilities during daytime operations. The night vision

provides no additional information to the state, and thus is wasted energy.

• Sensor component scheduling. Similar to that mentioned above, this addresses

the need to shift computational resources to certain sensors in times of high

activity. For example, if moving rapidly through an environment, more com-

putational resources should be shifted to sensors that contribute to obstacle

detection and avoidance, since there is a high demand on these sensors. Also,

in times of low activity, a scheduling mechanism must allocate appropriate time

blocks to each sensor so that there is no starvation (where certain sensors are

never processed) and each sensor is providing pertinent and timely data. This

also works in conjunction with the above item, where the usage of an energy-

intensive sensor must become more intermittent when energy expenditure is of

concern.

• Develop a mechanism for changing common Deliberator and Sequencer process-

ing results into behaviors. This is, in essence, learning new behaviors based

upon common behavior set activations and results. A related example is with

a child learning to throw a ball. Initially, the ball throwing task consists of

multiple sequences of arm movement behaviors. Over time, however, the child

learns the new behavior, no longer considering it a collection of behaviors. This

also enables greater precision in that the new behavior allows the focus to shift

to the target of the throw instead of the throw itself.
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• Generate a mechanism for enabling the full spectrum of both the cooperative and

collaborative aspects of coordination in independent agents. Independence read-

ily contributes to collaboration and loosely coupled cooperation, but is difficult

to maintain in the face of tightly coupled cooperation, where the requirements

for inter-agent synchronization are high. Other architectures and approaches

handle this by increasing the dependence of the agents upon each other, thus

limiting the scalability of the MRS and the independence of the agents in the

system. Tightly coupled cooperation in independent agents provides both of

these features while enhancing the task fulfillment capability of the system as a

whole.

• Create a means of dynamically generating goals associated with tasks. Control

architectures are typically presented with a task that follows a strict composition

protocol. The agents in the architecture fulfill this well-defined goal without the

need for new goals and associated tasks due to these constraints. Dynamic goal

generation and fulfillment provides decomposition well suited to dynamic envi-

ronments and enables the completion of ill-defined goals. It also provides partial

formulation of a plan and abstract, contigency-based planning for dynamic en-

vironments. An example of this is sending a military squad to clear a building

when there is no knowledge of the interior layout. The squad dynamically gen-

erates goals on a per-room basis and handles contigencies appropriately.

These suggestions are by no means complete, but completion and integration of them

into HAMR could provide a highly sophisticated robot which significantly expands

the current limits on robotic control architectures.

6.3 Final Remarks

Continuing efforts to reduce the need for human input in robotic operations

have greatly expanded the capabilities of modern robotic systems. As these systems

become more pervasive, mechanisms must be in place to enable them to coordinate

on tasks and operate as a cohesive unit. Real-world systems are expected to oper-
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ate reliably and tasking of these systems are expected to grow, thus increasing the

potential heterogeneity and size of MRSs. HAMR provides mechanisms for task co-

ordination and does so with low communication needs. It also contributes to the

coordination capabilities by providing a common point for group size modifications,

task processing, and utility determination in the Coordinator layer. These contri-

butions emphasize individual autonomy, thus enabling the robots to coordinate in a

manner similar to humans. This provides advanced coordination without sacrificing

individual autonomy and allows dynamic modification of the group size, ranging from

one robot to the limit of the addresses available. This provides steps towards reducing

the degree of human-in-the-loop needed for autonomous systems, namely MRSs. One

commonly stated benefit of MRSs is that tasking can be maintained with reduced in-

dividual robot costs. HAMR takes another approach, emphasizing enhanced tasking

as opposed to focusing on maintaining only that which could otherwise be achieved.
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Appendix A. Unified Modeling Language Diagrams

This appendix contains the class diagrams indicating the internal structure of the

components of the final architecture. These are presented in order to clarify the

specifics of the implemented architecture as described in Chapter IV.

The Coordinator handles the inbound and outbound communication messages,

calling the GenMsg() function which, in turn, calls one of the message generation

functions (sayOppAttackerStatus() or sayBallStatus()) if necessary. The sayOppAt-

tackerStatus() and sayBallStatus() functions generate the messages formatted just as

described previously. The Deliberator class, shown in Figure A.2, contains the func-

tionality of the Deliberator. It contains a reference to the Sequencer and the World

Model. The Sequencer is referenced in order to provide accessiblity to the Sequencer

for passing down a play once it is generated. The World Model reference is present to

provide access to the state so the Deliberator can make better decisions. The major

functionality of the Deliberator is in the genPlay() function. This generates an in-

stance of the Play class, shown in Figure A.3. This instance is then passed down to

the Sequencer and the Sequencer runs the play. The Sequencer class (Figure A.4)

contains references to all the behaviors, the world model, an arbitration unit, and a

composite behavior that it generates using behaviors and the arbitration unit refer-

ence. The behaviors are referenced by the superclass Behavior to take advantage of

polymorphism. The primary functionality of the Sequencer is in the runPlay() com-

mand, which conditionally generates composite behaviors for use with the UBF then

returns the resulting action. This is performed in the runPlay() function by examin-

ing the World Model, then creating an individual behavior hierarchy using the UBF

with regards to the play currently active. The Deliberator calls the SetPlay() function

to set the play. The UBF class diagram, shown in Figure A.5, Shows the intercon-

nections between classes in the UBF. This follows the pattern shown in chapter III,

and is generated by the Sequencer. This behavior hierarchy composes the Controller

layer. Figure A.6 shows the Player class, which contains the Sequencer, Deliberator,

and Coordinator and calls upon them when appropriate. The mainLoop() function
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Figure A.1: The Coordinator Class Diagram.

Figure A.2: The Deliberator Class Diagram.
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Figure A.3: The Play Class Diagram.

in the Player class calls the appropriate main loop for the player type, be it goalie,

defender, midfielder, or attacker. These call the Sequencer’s runPlay() function and

generate an action, which is passed to the Server to execute.
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Figure A.4: The Sequencer Class Diagram.
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Figure A.5: The UBF class diagram, as implemented.
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Figure A.6: The Player Class Diagram.
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