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Summary

This thesis is concerned with the development, design and implementation of a novel hybrid 
multi-agent orientated control architecture for navigation of multiple autonomous mobile robots 
operating in an unknown and unstructured environment populated by static and/or dynamic 
obstacles.

The proposed hybrid control architecture is modular and draws its design from competitive 
tasks architecture, production rules architecture, connectionist architecture, dynamic system 
architecture, multi-agent architecture and subsumption architecture. The reasoning of the 
control architecture is both deliberative and reactive. The proposed reactive behaviours are 
modelled using fuzzy logic, neural networks and hybrid behavioural encoding incorporating 
stateflow-fuzzy logic and stateflow-neural networks. The deliberative system is comprised of 
finite state machines. The processing is achieved in a centralised and/or decentralised manner 
using the proposed controller-agent concept from the field of multi-agent systems. The 
framework of the control architecture is suitable for adaptation in single and multiple robot 
navigation.

The control architecture has been implemented in MATLAB/Simulink using the full non-linear 
model of the MIABOT V2 mobile robots. It is evaluated incrementally in order to verify its 
overall control performance and the performance of each subsystem. Results show that the 
control architecture's modularity, distribution, reactivity and behaviourbased structure 
provided the overall control system with robustness in all cases of navigation tasks utilising 
either single or multiple mobile robots. Furthermore the results obtained show the effectiveness 
of the control architecture in navigation tasks involving up to five mobile robots operating in 
unknown static and dynamic environments. The results demonstrate that the control strategy 
chosen for navigation of multiple mobile robots is efficient and also established the robustness 
of the control system architecture against the desired requirements, such as supervision, 
decision-making and co-ordination of internal control structures (subsystems). The autonomous 
mobile robots were exposed to a complex and highly dynamic environment and successfully 
achieved every control objective. Their trajectories were smooth despite the interaction between 
several behaviours and the presence of unexpected static and dynamic obstacles.

The main contributions of this thesis are: development of a novel hybrid multi-agent based 
control architecture called CARDS; novel approach for identification of direction of moving 
obstacles (other robots) using finite state machines; novel approach for behavioural encoding 
using hybrid solutions such as stateflow-fuzzy and stateflow-neural for autonomous robot 
navigation; proposed a design methodology for developing integrated solutions for autonomous 
mobile robotic systems and classification of the main design methodology (properties) of 
control systems architectures for autonomous mobile robots. Less significance contributions are: 
literature survey on approaches/methods related to the development of intelligent control 
architectures for navigation of multiple autonomous mobile robots; modelling of MIABOT V2 
mobile robots; comparison between PI, fuzzy and neural controllers and algorithmic 
methodology for discovery of fuzzy/neural local models from observation data; identification of 
the relationship of the most important requirements/properties of control architecture versus the 
main control architecture specifications using the Quality Function Deployment tool; modular 
approach for modelling and evaluation of three types of sensor and sensor sensitivity.
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1
Introduction, Motivation and 
Overview of the Thesis

1.1 Introduction

This thesis is concerned with the development of modelling and identification techniques for the 

design and implementation of a novel hybrid multi-agent oriented control architecture for 

navigation of multiple autonomous mobile robots operating in an unknown and unstructured 

environment populated by static and/or dynamic obstacles.

Autonomous control and navigation of mobile robotic vehicles are fundamental enabling 

technologies for automation in a variety of operating domains ranging from industrial 

environments to remote planetary surfaces. The engineering problem to be solved generally 

consists of achieving real-time sensor-based motion control among obstacles in the environment 

while performing useful tasks throughout its accessible regions. In many instances, mobile 

robots are required to do so using limited resources (e.g., power computation, sensors etc.) that 

are resident onboard the vehicle.
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The remainder of this chapter is organised as follows: Section 1.2 highlights the main 

motivations of the thesis for the research work carried out. Potential application areas for the 

results of this thesis are given in section 1.3. The aim and objectives of the research carried out 

is indicated in section 1.4. Section 1.5 presents the main challenges and problems in mobile 

robot navigation with a brief discussion of how they have been approached in this thesis. An 

overview of the thesis is presented in section 1.6. Section 1.7 presents a brief summary of the 

main contributions of the research described in this thesis. A summary of the chapter is 

presented in section 1.8. A list of references is given at the end of the chapter.

1.2 Motivation of the thesis

Clearly there are many motivations for working on mobile robots. The mobile robots, 

sometimes called autonomous guided vehicles (AGVs), can be found nowadays in factories, 

storage areas, universities, hospitals, nuclear plants, homes and even on Mars for planetary 

exploration. Several robots working together provide an advantageous solution with respect to a 

single-robot system. Advantages include: robustness, scalability, large range of possible tasks, 

greater efficiency, parallel execution, ease of development, lower economic cost and problem 

solving.

Theoretically, multiple robots should be able to accomplish any task that a single robot can. 

However, since multiple robots can cover more ground than a single robot, there are tasks that 

multiple robots can accomplish that a single robot cannot. Multiple robots may also offer 

performance benefits. For instance, (Balch and Arkin, 1994) show how multiple robots provide 

speedup for foraging and similar tasks. Furthermore, implementation of multiple robots offers 

robustness, for example, if one robot malfunctions or is destroyed, the others can continue the 

task. This is a prime advantage for military robots, which may be under attack from enemy 

forces or damaged while cleaning fields of landmines.
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A single robot system for a particular task may need to be more complicated than each of the 

individual robots in a multi-robot system for the same task. A single robot system will need to 

handle all aspects of the task, while a multi-robot system can divide the subtasks among the 

robots, requiring each robot to only know how to accomplish its subtask. Therefore, a multi- 

robot system is often less expensive and easier to develop than an equivalent single-robot 

system.

Multi-robot systems are inspired and have several similarities with multi-agent systems (MAS) 

but are not exactly the same. Multi-robot systems have to interact with the real world, which is 

difficult to model. According to(Fukuda and Ueyama, 1994), the behaviour of a robot depends 

on its perceptions and on the physical constraints from the environment and other robots. 

Therefore, there is a huge motivation for working on mobile robots as the challenges are not 

small or easy to overcome. The design of these systems involves knowledge from different 

areas, such as artificial intelligence, control engineering, electronics, mechanics and others. 

Very often, the application domain is not structured involving a large number of interactions, 

such as static and moving obstacles (other robots). When many robots work together in a 

confined space, one of the biggest challenges is the control of individuals in order to avoid 

interference and resource sharing problems. Another major challenge is the maintenance of the 

multi-robot system working in good conditions. A single robot is hard to maintain. Many robots 

are even harder.

According to (Arkin and Balch, 1998) another motivation for working on mobile robots is to 

shed some light on human cognition. Such work may be considered good if it provides an 

explanation of certain observed cognitive behaviour, for example dealing with conflicts in 

reasoning or goals, and more importantly if it leads to testable predictions whose results are not 

known in advance but which turn out to be as predicted.
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1.3 Application areas

The direct application for the results of this thesis is for robotics education, further research and 

also for certain non-academic areas. According to (Altenburg, 1995) the appropriate use of 

robots is best recognised where the task or environment is life threatening or for other reasons 

inaccessible to people. Therefore, there is an increased interest in multiple autonomous mobile 

robot systems due to their large applicability to various tasks. In the following brief outline of 

application areas, which may involve operation of multiple mobile robots is given. This range of 

applications is by no means exhaustive and appropriate references for these ideas are included.

According to (Boutros, 1994) military land mines kill and maim thousands of people every 

month around the world, most of these people are civilians. Countries where civil wars have 

persisted for many years are covered with thousands of unmapped and uncovered land mines. 

Simple, inexpensive robots could detect and detonate these land mines, possibly sacrificing 

parts or all of themselves in the process.

The treatment of hazardous materials spills is a real problem. Although every precaution is 

taken to prevent accidental release of these materials, accidents do happen. The containment and 

clean up of such materials is usually very costly. A multi-robot system equipped with 

appropriate actuators could replace human workers in this task. This would certainly reduce the 

threat to human life, and furthermore the robot could operate 24 hours a day.

The idea of sending and establishing a robotic presence on other planets has been suggested 

since the beginning of the space age. Several researchers such as (Flynn et al, 1989), (Miller, 

1990) and (Steels, 1990) have proposed that a self-replicating system of mining and 

construction robots could be set in place in other planets. This application domain can be also 

extended for planetary surface exploration.
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The application of multiple robots to ocean floor exploration has been proposed by (Lipkin, 

1995). The vast riches of the ocean floor can be explored and cultivated using a system of 

multiple mobile robots. Underwater vehicles are already being used for surveillance, 

explorations and salvage operations.

Certainly there are many more applications of multiple robots to mention such as agriculture, 

medicine, ethological research and applications involving micro-robotics.

1.4 Aim and objectives of the research

The aim of the research is to develop new hybrid control architecture for navigation of multiple 

autonomous mobile robots operating in an unknown and unstructured environment populated by 

static and/or dynamic obstacles.

The objectives of the research are to:

  Conduct a literature survey on approaches/methods related to the development of intelligent 

control architectures for navigation of multiple autonomous mobile robots.

  Propose a design methodology for developing integrated solutions for autonomous mobile 

robotic systems.

  Classification and discussion of the main design methodology of control systems 

architectures for autonomous mobile robots.

  Familiarisation with existing control and learning algorithms and investigation of intelligent 

control methods.

  Investigation and suggestions for merging multi-agent systems and control engineering.

  Familiarisation and modelling of MIABOT V21 mobile robots.

! MIABOT is trademark of Merlin Systems Corporation Ltd. Copyright 1999. All rights reserved.
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  Discovery of fuzzy-neural local models from observation data using clustering techniques 

and supervised learning.

  Optimisation and tuning of control parameters using both classical and intelligent control 

theories.

  Investigation of robust stability testing of closed-loop systems under uncertainty in robot's 

dynamics.

  Prediction and estimation of dynamic objects using linear and non-linear models.

  Design and implementation of the hybrid proposed control architecture for navigation of 

multiple autonomous mobile robots.

  Evaluate the proposed control architecture and compare it with existing architectures.

  Test the proposed architecture and analyse the results.

1.5 Challenges and problems in mobile robot navigation

Navigation is a vital issue in the research of autonomous mobile robots. The navigation of an 

autonomous mobile robot may be considered as a task of determining a collision free path that 

enables the robot to travel through an environment populated with obstacles from an initial 

configuration to a target configuration, where configuration here refers to the spatial co-ordinate 

and the heading angle of the robot. The ultimate goal of research in mobile robot systems is to 

develop control strategies and architectures, which support autonomous operations in an 

unknown or partially known environment.

Several methods for controlling mobile robot systems have been put forward. They can be sub­ 

divided into two main parts: global planning and local control. The former is usually conducted 

off-line and is based on the complete knowledge of the environment and the robot. It enables 

generation of collision-free paths, which are assumed to be executed correctly. The knowledge 

about the system and the environment is originated either from the modelling through aprior 

knowledge or from the perception through a sensory system. Many attempts such as geometric
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algorithms (Janet et al, 1997), potential fields methods (Khatib, 1986), (Hwang and Ahuja, 

1992) and (Guldner and Utkin, 1995), as well as other heuristic or approximating approaches 

(Brooks, 1983), (Lozano-Perez, 1983) and (Diamantopoulos et al, 2000) for solving this 

problem have been reported. As a pre-specified environment is required for these methods to 

plan the path, they fail when the environment is not fully known.

The local control or behavioural strategies, also known as the obstacle avoidance methods, are 

more efficient in autonomous mobile robot navigation in an unknown or partially known 

environment as has been demonstrated by (Brooks, 1986) and (Arkin, 1998). Such strategies do 

not require a global map of the environment but utilises on-line sensory information to tackle 

the uncertainty. Considering the up-to-date status of the robot and the relationships with its 

environment the robot motion decision is made. The main advantage of this approach is the 

ability to handle changing aspects of the environment because the structural modelling of the 

environment is not necessary. Usually the behaviour strategies are well-suited for real-time 

implementation, although they suffer from a deadlock problems since the high level planning is 

no longer available.

Advanced mobile robotic systems operating in uncertain dynamic environments, combine 

information from several sensory sources needed to acknowledge the dynamics of the robot. 

Prior knowledge of the domain may be incomplete, and reasoning must be deliberative in nature 

and fast enough to respond to unexpected events. Also, the information gained via sensory 

subsystems is often incomplete, inaccurate and uncertain. To operate correctly in this type of 

environment, planning systems must be reactive, taking into account, information about current 

state. Thus advanced mobile robotic systems architectures must combine deliberative planning 

with reactive sensor driven operations.
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In this thesis a novel hybrid multi-agent oriented control architecture for navigation of multiple 

autonomous mobile robots operating in an unknown and unstructured environment populated by 

static and/or dynamic obstacles is proposed. The control architecture integrates deliberative 

planning and reactive control with attention focused on the design and co-ordination of robot 

behaviours. The complex behaviour is generated by combining simpler behaviours. This 

complex behaviour in the robot results from the interaction between the goals, the internal and 

global states and the environment itself. Fuzzy logic, neural networks and hybrid solutions form 

the basis of the behaviours in order to generate more complex observable robot behaviour.

1.6 Overview of the thesis

The thesis is organised as follows:

Chapter one is this introduction. It presents the motivations for conducting the research, as well 

as an overview of the thesis.

Chapter two discusses research related to this thesis. The literature review of related work based 

on co-operative robotics and control of multiple mobile robots (multi-agent robotics) is 

presented. Background information of the birth and origin of the behaviour-based control is 

given. The role of distributed artificial intelligence and distributed systems in the development 

of control architectures for multiple autonomous mobile robots is presented. The field of 

artificial life is introduced with several numbers of contributions. The origin of intelligent 

control including its approaches is illustrated. Recent research in modelling, identification and 

control of dynamic systems using methodologies from intelligent control are reviewed. Robot 

navigation using intelligent control methods is described. In particular, the chapter reviews 

robot navigation techniques up to date, focusing on those utilising fuzzy logic and neural 

networks.
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Chapter three proposes, justifies and presents the main methodology adopted for the research 

work carried out in this thesis. This has been broken down into nine basic steps. Each step is 

presented individually focusing on design/modelling issues followed by a discussion of 

advantages or disadvantages when the particular method is adopted. The nine steps include: 

conventional control design, constrained optimisation using the non-linear control design tool, 

parametric approach, fuzzy systems, neural networks, clustering, design of control system 

architecture, multi-agent systems and finite state machines.

Chapter four presents the modelling of MIABOT V2 mobile robot. The robot is small in size

measuring 8cm 3 and is steered and driven by differential drive utilising two DC motors 

enabling robot's speed up to 1.2m/s. The full non-linear dynamic model of the robot is 

established as a complete description of its dynamics. The robot's dynamic model is used in 

chapter six and seven for the design and evaluation of the proposed control architecture.

Chapter five presents control and robust stability analysis of the MIABOT V2 mobile robot and 

discovery of fuzzy-neural local models from observation data. The robot's closed-loop system is 

tested under uncertainty in robot dynamics. An algorithmic methodology is presented for 

discovery of fuzzy-neural local models from observation data using clustering and supervised 

learning.

Chapter six presents the development of a novel hybrid multi-agent based control architecture 

called CAROS (Co-operative Autonomous RObotic Systems) for navigation of multiple 

autonomous mobile robots in unknown static and/or dynamic environment. The proposed 

architecture takes the advantages of various control structures integrating them in a way that 

results in an overall increase in synergy.
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Chapter seven evaluates the proposed control architecture. The chapter investigates the validity 

of the control architecture when applied to the problem of navigation of single/multiple 

autonomous mobile robots. Results are presented to show the effectiveness of the proposed 

architecture.

Chapter eight reviews the thesis, draws some conclusions from the work presented, summarises 

the contributions of this research and makes recommendations for further work.

The appendices describe lower level details of this work. Appendix A presents the MIABOT V2 

mobile robot. The main block diagrams designed in Simulink2 for the modelling and 

implementation of the CARDS control architecture are given in Appendix B. Appendix C gives 

a brief overview of the conventional control design. Constrained optimisation using the non­ 

linear design tool is described in Appendix D. Appendix E presents definitions and theorems 

related to robust stability testing based on interval polynomials. The backpropagation algorithm 

for training multi-layer feedforward neural networks is presented in Appendix F. Appendix G 

contains copies of the publications that have been produced during the course of the research 

described in the thesis.

Figure 1-1 depicts a schematic outline of how the thesis is organised.

: SIMULINK is registered trademark of the Math Works, Inc. Copyright 1990-2000. All rights reserved.
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1.7 The main contributions of the thesis

Here is a brief summary of the main contributions of the research described in this thesis, these 

are discussed in more detail in chapter eight, section 8.4.

1. Development of a novel hybrid multi-agent based control architecture called CARDS for 

navigation of multiple autonomous mobile robots operating in an unknown and unstructured 

environment populated by static and/or dynamic obstacles.
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2. Novel approach for identification of direction of moving obstacles (other robots) using 

finite state machines.

3. Novel approach for behavioural encoding using hybrid solutions such as fuzzy/stateflow3 

and neural/stateflow for autonomous robot navigation.

4. Proposed a design methodology for developing integrated solutions for autonomous mobile 

robotic systems and classification of the main design methodology (properties) of control 

systems architectures for autonomous mobile robots.

Less significance contributions are:

1. Literature survey on approaches/methods related to the development of intelligent control 

architectures for navigation of multiple autonomous mobile robots.

2. Modelling of MIABOT V2 mobile robot. A generic approach for optimisation and 

identification of parameters of physical components (i.e moments of inertia) conducting 

experiments and using the non-linear control design tool.

3. Comparison between PI, fuzzy and neural controllers based on their performance criteria 

(ISE, ITE and ITAE) and execution time. An algorithmic methodology for discovery of 

fuzzy/neural local models from observation data. Use of parametric robustness analysis 

approach for robust stability testing of closed-loop control system under uncertainty in robot 

dynamics (The approach has not been considered previously within the research community 

of autonomous mobile robots).

4. Identification of the relationship of the most important requirements/properties of control 

architecture versus the main control architecture specifications using the Quality Function 

Deployment (QFT) tool.

5. Modular approach for modelling three types of sensor and sensor sensitivity.

1 Stateflow is registered trademark of the Math Works, Inc. Copyright 1997-2000. All rights reserved.
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1.8 Summary

This chapter presented an introduction, motivation and overview of the thesis. The motivation 

of conducting the research described in this thesis was given. Some potential application areas 

for the results of this thesis were suggested. The list of applications suggested is by no means 

exhaustive and appropriate references for these ideas were included. The aim and objectives of 

the research carried out here are stated. Then the main challenges and problems in mobile robot 

navigation with brief discussion of how they have been approached in this thesis were 

discussed. An outline of the thesis was presented. A brief summary of the main contributions 

resulting from the research work described in the thesis was given.

The next chapter presents a literature review of topics related to this thesis.
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2
Literature Review of Related 
Work

2.1 Introduction

This chapter presents a literature review of topics related to this thesis. Some of the topics 

discussed here will be mentioned in more detail than others, since they are more closely related 

to the main subject of this thesis. However, it is impossible to refer to all the contributions from 

the last two decades or so, therefore, this chapter does not present an exhaustive survey but only 

gives an indication of the development of techniques/methods related to this thesis. Further 

literature reviews related to this thesis can be found in the contributions of(Dudek et al, 1993), 

(Harris, 1994), (Bhattacharyya et al, 1995), (Everett, 1995), (Borestein et al, 1996), (Muller, 

1997), (Cao et al, 1997), (Jang et al, 1997), (Zadeh et al, 1997), (Arkin, 1998), (Kortenkamp et 

al, 1998), (Senehi and Kramer, 1998), (Ferber, 1999), (Ridao et al, 1999) and (Van Breemen, 

2001). Note that some parts of chapters four and five are concerned with modelling and control 

of a mobile robot. Brief surveys of related contributions in these fields are provided at the 

beginning of each of these two chapters.
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The remainder of this chapter is organised as follows: Section 2.2 introduces the field of 

artificial life with a number of related contribution to the work presented in this thesis. Related 

research work based on co-operative robot and control of multiple robots is given in sections 2.3 

and 2.4. The birth of the behaviour-based control including its advantages/limitations for control 

of a mobile robot is described in section 2.5. The influence and importance of distributed 

artificial intelligence and distributed systems related to the development of a multi-robot system 

is given in section 2.6. Section 2.7 presents the origin of the intelligent control including its 

main approaches. Modelling, identification and control of dynamic systems using 

methodologies from intelligent control is also discussed in this section. Section2.8 presents a 

literature review of related work based on navigation of mobile robot using methodologies from 

the intelligent control. In particular the research work to date on mobile robot navigation using 

both fuzzy and neural techniques is presented in this section. A discussion follows in section 

2.9, and the main summary of the chapter is presented in section 2.10. A list of references is 

given at the end of the chapter.

2.2 Artificial life

The field of Artificial Life (Alife) focuses on bottom-up modelling of various complex systems. 

This scientific field of study, as defined by(Langton, 1989) is the study of man-made systems 

that exhibit behaviour characteristics of natural living systems. Alife incorporates a broad, 

interdisciplinary approach to the study of a variety of phenomena. Disciplines included in the 

study of Alife are Artificial Intelligence, Computer Science, Mathematics, Control Engineering 

and Psychology. Knowledge of experimental material from these disciplines is required in order 

to develop artificial life. These materials and models may include fuzzy logic, neural networks, 

multi-agent systems, control of autonomous mobile robots, modelling and identification of 

dynamic systems. These diverse and evolving scientific fields are the source of inspiration for 

the work undertaken in this thesis. In fact, the new hybrid control architecture described in 

chapter six as well modelling, control and identification techniques developed in this thesis owe
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their design origins to the artificial life. Artificial life relevant to this thesis features 

contributions based on simulations of multiple autonomous robots, as described by(Maes and 

Brooks, 1990), (Steels, 1990), (Mataric, 1992), (Noreils, 1993), (Lueth and Laengle, 1994), 

(Balch and Arkin, 1998), (Arkin and Balch, 1998), (Parker, 1999), (Goldberg and Mataric, 

1999) and (Kube and Bonabeau, 2000).

Work in artificial life is related to the work in this thesis in that both are concerned with 

exploiting the dynamics of local interactions between agents (agent is either a physical unit or 

software, for instance it can be a single mobile robot or a program representing or encoding a 

specific task) and the world in order to create complex global behaviours.

2.3 Co-operative robots

As an integrative engineering discipline, robotics has always had to confront technological 

constraints that limit the domains that can be studied. Co-operative mobile robotics has been 

subject to these same constraints and tends to be more severe because of the need to cope with 

multiple mobile robots. Co-operative robotics is a highly interdisciplinary field that offers the 

opportunity to draw influences from many other domains. Therefore developing systems for co­ 

operative robotics is a very difficult and challenging task. In particular, the assumption that 

multiple robots (or multi-agent robotics) have the potential to solve problems more efficiently 

than a single robot has attracted the attention of many researchers in the areas of control 

engineering, computer science and psychology. According to (Arkin and Balch, 1998) there are 

several reasons why two or more robots can be better than one. Firstly, distributed action: 

multiple robots can be in many places at the same time(Jung and Zelinsky, 1999). Secondly, 

inherent parallelism: it is quite possible that many applications could be solved much more 

quickly if the mission could be divided across a number of robots in parallel (Parker, 1998). 

Thirdly, simpler is better: building and using several simple robots, can be easier, cheaper, more 

flexible and more fault-tolerant than having a single powerful robot for each separate task
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(Deneubourg et al, 1990). Fourthly, divide and conquer: several problems are well suited for 

decomposition and allocation among multi-robot system (Azarm and Schmidt, 1997). 

Unfortunately there are also drawbacks, in particular regarding collision avoidance among 

individual robots, co-ordination and elimination of interference. The degree of difficulty 

imposed depends heavily upon the task, communication (with or without) and the control 

strategy chosen.

2.4 Control of multiple robots (multi-agent robotics)

Research on control of co-operative multiple robots began in the late 1980s. (Fukuda and 

Nakagawa, 1987), introduced new project in the field of co-operative robotics called CEBOT 

(Cellular Robotic System). Their work is based on co-ordination among mobile multi-robot 

systems with emphasis on communication mechanisms, which can be used to support co­ 

ordinated behaviour. About the same time relevant work on co-operative robotics carried out by 

(Beni, 1988), SWARM (large numbers of homogeneous robots), and (Asama et al, 1989), with 

the ACTRESS (ACTor-based Robot and Equipment Synthetic System), a multi-robot system 

designed for heterogeneous agents (robots), with focus on communication issues. The robots act 

independently, but if the need arises, they negotiate with other robots to form a co-operative 

group to handle the problem. The 1990s decade begins with the works of (Caloud et al, 1990), 

on the GOFER architecture, and (Steels, 1990). The latter used the behaviour-based approach to 

solve the problem of co-operation between distributed robots. Research activity on co-operative 

robots increased dramatically with important work by (Deneubourg et al, 1990), (Asama et al, 

1991), (Wang, 1991) and (Arkin, 1992) the latter presents research concerned with sensing, 

communication, and social organisation for tasks such as foraging. (Mataric, 1992), has 

developed behaviours for multi-robot system using the subsumption style architecture. (Noreils, 

1993), proposed a three-layered control architecture that included a planner level, a control 

level, and a functional level. Similar work was carried out by (Parker, 1993), (Kube and Zhang, 

1993), (Laengle and Lueth, 1994), (Barnes, 1996), (Shim et al, 1997), (Yoshida et al, 1998) and
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(Werger, 1999). There is more work reported in the literature, but the aforementioned is the 

most significant within the research community. All the above research activity has attempted to 

solve the same problem (control of multiple robots) by adopting different techniques. The 

solution to the problem is not straightforward, so many of the researchers prefer to perform 

simulation rather than physical implementation. Many of the recent attempts to control multiple 

robots, in contrast to the earlier works, are based on a behaviour-based approach (Brooks, 

1986). However, the emphasis on the connection between intelligence and environment is 

strongly associated with the behaviour-based approach but is not intrinsic to multiple robot 

systems.

In terms of co-operation and communication, most of the work cited either uses extensive 

explicit communication and co-operation among the robots, or almost none at all. In systems 

that are co-operative by design, two or more robots are aware of each other's existence, and can 

sense and recognise each other directly or through communication. This type of research 

explores explicit co-operation, usually through the use of direct communication. The other 

category includes work on implicit co-operation, in which the robots usually do not recognise 

each other but indirectly co-operate by having identical or at least compatible goals. The 

research work described in this thesis, falls nearer this end of the spectrum. It is focused on 

robots (agents) that can discriminate each other from the rest of the world based on a local 

reactive approach and use this ability as a basis to form global behaviour.

2.5 Behaviour-based control

The real world can be described as a complex and unstructured environment. Robots, which are 

designed to operate in the real world, must be able to operate in situations which their designers 

only vaguely envisaged and must have the ability to respond appropriately and quickly to 

unexpected events. The classical artificial intelligence approach to interacting with an 

environment is to divide the task into a number of major subsystems as shown in Figure 2-1.
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Figure 2-1 Traditional functional decomposition

The perception subsystem handles the sensing devices connected to the robot. The modelling 

subsystem converts the sensor input into a description of where the robot is in relation to its 

internal model of the environment. The planning subsystem attempts to work out how it will 

achieve its goals given the current world state. The task execution subsystem breaks down the 

plan into detailed motion commands and finally the motor control subsystem causes these 

commands to be executed. Each of these subsystems is a complex program, and all have to 

work together perfectly for the robot to operate at all. In particular perception and world 

modelling subsystems are extremely complex. Currently it is only possible to design such 

subsystems for structured environments only, as noisy and random environments of the real 

world overwhelms them. In addition, as the complexity of the environment increases, the time 

needed to perceive, model and plan about the world increases exponentially. In (Watanabe et al, 

1992), (Heikkila and Roning, 1992), (Liscano et al, 1995) and (Van Brussel, 1995) the 

disadvantages of the classical artificial intelligence approach are discussed in more detail.

The behaviour-based control is an alternative to the classical artificial intelligence approach. 

Instead of having a number of complex individual vertical tasks, the behaviour-based approach 

tackles the control problem by thinking of it as a number of horizontally arranged layers. This 

paradigm is inspired by biology and fostered by the artificial intelligence community. It has 

been observed that the number of behaviour patterns of even simple animals exhibits most of
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the characteristics in designing artificial autonomous agents. Complex behaviour patterns can 

often be decomposed into hierarchies of simple behavioural patterns. When individual simple 

behaviours operate concurrently, new behavioural patterns may emerge. In the subsumption 

architecture developed by (Brooks, 1986), behaviours are arranged into horizontall layers as 

shown in Figure 2-2. Each layer provides a degree of performance by adding a new behaviour 

on top of the previous layers. The new layer overrides some aspects of the low-layer behaviours. 

Thus each layer is fully capable of controlling the robot by itself. Major advantages of the 

behaviour-based control are rapid response to environment change, robustness in real worlds, 

less demanding computation requirements and flexibility.

build map

sensors ———* ex P lore ———^ actuators
wander

avoid obstacles

Figure 2-2 Behaviour-based decomposition

Industrial robots usually operate in a more controlled environment than experimental mobile 

robots. Working in a controlled structured environment scientifically reduces the perception and 

world modelling sub-elements of the control task as described above. Inclusion of advanced 

sensory systems such as vision systems does imply an increase in the complexity of control in 

the areas of perception, interpretation and world modelling. In addition, flexibility is one of the 

most important attributes of robotics over other forms of automation. This flexibility implies 

uncertainty in the robot environment. For these reasons, behaviour-based control may therefore 

have a useful role to play in certain applications of industrial robotics. However, earlier 

behaviour-based systems have suffered from difficulties in systems modularity, state 

representation and integration of world models. For instance for a mobile robot to be able to 

execute tasks, such as transportation, cleaning, assisting disabled persons it is necessary to have
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a representation of the overall state and to be able to use knowledge of the environment. As the 

behaviour-based architectures are usually highly distributed and each behaviour is meant to 

implement a specific function, representation and sharing of systems states and knowledge have 

been inconvenient. According to (Hartley and Pipitone, 1991) in control architectures, like 

subsumption, behaviours usually need to access the internal states of low-level behaviours, 

which make implementation of behaviours dependent and modularity difficult. According to 

(Wilson et al, 1997) a behaviour-based approach can take away the cognitive bottleneck 

provided by the classical artificial intelligence, but on the other hand it is difficult to give the 

robot a specific task. All the behaviours are manually designed to respond to specific stimuli. 

For a given task, the behaviours must be engineered and combined to provide the complex 

interactions with the world. Therefore the success of the behaviours depends on the competence 

of their designer. (Schoppers, 1987) proposed a "universal plan" which generates appropriate 

actions in unpredictable environments. The activation of parts of the plan depends on the 

environment. This method relies on extensive knowledge of the reactive components about the 

analysis of the robot world before running. In (Gat, 1992) a version of the subsumption 

architecture was used in which higher levels provide information or advice to the lower layers. 

A sequencer builds up chains of primitive behaviours using advice from a planning system. In 

(Lyons and Hendriks, 1995) the deliberative component was allowed to adapt the reactive 

component on-line. Their planner, which has a model of the environment and the knowledge of 

the reactive components, was used to tune the performance of the reactive agents, which were 

able to trigger independently of the planner. However, it was shown that this may provide 

problems in reacting quickly to sudden changes in the environment and still requires knowledge 

of the real environment along with the problem of the designer determining appropriate 

behaviours. In this thesis the proposed control architecture (CAROS) is introduced to overcome 

some shortcomings of the pure behaviour-based architecture, especially where modularity and 

task execution capability are concerned. The proposed control system is developed
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incrementally. The overall control system is straightforward but the system exhibits reactivity 

and a great degree of autonomy in a completely unknown and unstructured environments.

2.6 Distributed artificial intelligence and distributed systems

The field of distributed artificial intelligence (DAI) deals with multi-agent interactions and 

concerns itself with the study of distributed systems of intelligent agents. According to(Ferber, 

1999) the following lines of reasoning can explain the need of distributed intelligence: Problems 

are physically distributed, complex problems are often physically distributed such as 

transportation network or traffic management. Problems are widely distributed and 

heterogeneous in functional terms: for instance, a formula one car requires a large number of 

experts to perfect its design. All these experts integrate their knowledge to try to make the best 

possible car. The complexity of problems demands a local point of view: when problems are too 

complicated to be solved and analysed as a whole, solutions based on local approaches often 

allow them to be solved more quickly. Systems should be adaptive to changes in the 

environment: it is widely claimed that regarding system complexity is no longer enough to 

design efficient and accurate systems, but systems should be able to adapt to changes in the 

context of operations. Therefore, the field of distributed artificial intelligence is highly relevant 

to multi-robot and co-operative systems.

According to (Bond and Gasser, 1988) distributed artificial intelligence is defined as the sub- 

field of artificial intelligence concerned with concurrency in artificial intelligence computations, 

at many levels. (Rosenschein, 1993) has divided DAI into two sub-fields: Distributed problem 

solving (DPS) and multi-agent systems (MAS) as shown in Figure 2-3.
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Figure 2-3 Origin and sub-fields of distributed artificial intelligence

(Cao et al, 1997) has defined the field of DPS as three possible overlapping phases, problem 

decomposition (task allocation), subproblem solution and solution synthesis. The first phase has 

attracted the most researchers in the field of DAI, (Asama et al, 1989) and (Ozaki et al, 1997). 

For instance, (Decker and Lesser, 1993) have addressed the task of fast co-ordination and 

reorganisation of agents on a distributed sensor network with the goal of increasing system 

performance. DPS deals with centrally designed systems solving global problems using 

frameworks for co-operative behaviour between willing agents. In contrast, multi-agent systems 

deals with heterogeneous, not necessarily centrally agents faced with the goal of utility- 

maximising coexistence using frameworks to enforce co-operation between potentially 

incompatible agents. The group of these heterogeneous agents can form a collective behaviour 

with potentially conflicting goals. The earliest works in the field of multi-agent systems are 

presented in the contributions of (Rosenschein, 1982), (Georgeff, 1983) and (Genesereth et al, 

1986).
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The majority of the research work on multi-agent systems begins in the early 1990s, which 

seems to be theoretical and in an abstract domain. A common underlining assumption is that 

although the agents may be selfish, they are rational and highly deliberative. In that period 

examples of work in MAS includes (Miceli and Cesta, 1993), (Kraus, 1993) and (Durfee et al, 

1993). The latter present game theory and different approaches of artificial intelligence in order 

to deal with rational agents. As previously mentioned until that period the majority of the work 

in MAS is purely theoretical and deals with the difficulty of multi-agent planning and control in 

abstract environments. In the late 1990s multi-agent systems become new field in control 

engineering. Researchers started to consider how the approach to conventional control theory 

could be replaced by a multi-agents system methodology. Chapter three illustrates the main 

research methodology adopted in this thesis; background information regarding multi-agent 

systems in control engineering and in agent control architectures is presented in that chapter.

According to the aforementioned literature review on distributed artificial intelligence it 

becomes quite clear that any kind of multiple-robot system can be a unique or special case of 

distributed system. The methodology of the field of distributed systems can therefore be a very 

good source for solutions and new ideas in multiple-robot systems. For instance (Beni, 1988) 

describes cellular robotics as a subject that belongs to the field of distributed computing shown 

in Figure 2-3. However he has accepted that distributed computing can be applied successfully 

in theoretical bases which means that further progress is vital in order to extent distributed 

computing capabilities into multiple robot systems. In(Cao et al, 1997) an extensive list of 

references regarding research work associated with the field of distributed computing can be 

found. Most of these research works focus on deadlock detection, resource allocation, pattern 

generation and task allocation. In section 2.4 was mentioned that in terms of co-operation and 

communication, most of the research work on multiple robots lies at two ends of the spectrum 

(explicit and implicit communication). Research works, which evolve explicit communication, 

can take an advantage of the techniques used in computer networks. For instance, networking
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issues can be applied successfully to multi-robot systems if explicit communication is assumed. 

Some of the research work in this field include (Weiser, 1993) and (Badrinath et al, 1994). As 

stated by (Cao et al, 1997) distributed control is a promising framework for the co-ordination of 

multiple robots. In an ideal scenario, maximal fault tolerance is possible, modelling of the other 

agents can be avoided, and each agent can be controlled by a very simple mechanism.

2.7 Intelligent control and its approaches

Intelligent control, as a discipline, has certainly been one of the main growth areas in the field of 

control systems over the last 5-10 years. Although the topic is relatively new in itself, a number 

of other research areas, some of them well-established, have effectively been swallowed up 

under the overall intelligent control umbrella. Intelligent control was first proposed by(Fu, 

1971) and was defined as an approach to generate control actions by employing aspects of 

artificial intelligence, operations research and automatic control systems(Saridis and Valanidis, 

1988). In the book of (Harris and Billings, 1985) it is shown that in the 1970s and 1980s flexible 

control systems were developed that could adapt to plant changes as they occurred. Rapid 

improvements in computer capabilities allowed for on-line, real-time control where previously 

it had quite simply not been possible. Initially adaptive, self-tuning controllers were designed, 

often being based, in some sense, on the classical Kalman filtering techniques of previous years. 

Since that time adaptation has turned more to learning and control has become more task 

oriented. According to (Warwick, 1998) and (Roberts, 1999) the term "intelligent control" 

means a wide variety of things to different people. However, as with any relatively new topic of 

study it suffers from a considerable amount of hype and terminology abuse. Currently one of the 

most popular definition of intelligent control is given by (Harris, 1994), who suggest that 

"intelligent control is defined as an approach to generate control actions by employing aspects 

of artificial intelligence, operations research, automatic control systems and computer science". 

Figure 2-4 illustrates the inter-relationships between the various techniques that are utilised in 

intelligent control and the functionality and infrastructure that they attempt to incorporate.
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Figure 2-4 Techniques employed in intelligent control (after (Harris, 1994))

(Harris, 1994) also suggests that the main methodologies used in intelligent control are 

knowledge based systems (KBS), fuzzy logic and neural networks as shown in Figure 2-5. In 

the work presented in this thesis both fuzzy logic and neural network methodologies are used. 

The main design methodology of both topics is presented in chapter three.

The concept of fuzzy logic was introduced to model human reasoning by giving definitions to 

vague terms and allowing several rules in the rule base to interact with varying degrees of 

belief. It is important to note that it is irrelevant whether or not humans store knowledge in this 

form, what is important is that fuzzy logic allows the creation of rule base systems with vague 

terms using interacting rules which have the property of generalisation.

Artificial neural networks (ANN) and neural engineering/computing in the wide sense are 

among today's most rapidly developing scientific disciplines. ANN are parallel computational 

models that consist mainly of interconnected adaptive processing units. These networks are
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considered fine-grained parallel implementation of non-linear dynamic and static systems. An 

ANN is an abstract simulation of real nervous system that contains a collection of processing 

units or processing elements communicating with each other via axon connections. Such a 

model resembles the axons and dendrites of the nervous system. Because of its self-organising 

and adaptive nature, the model provides a new parallel and distributed paradigm that has the 

potential to be more robust and user-friendly than traditional schemes.

Knowledge 
Based Systems

Figure 2-5 Methodologies used in intelligent control (after (Harris, 1994))

2.7.1 Modelling, identification and control of dynamic systems

The establishment of an input-output model for a process is very important in systems 

engineering. Many deterministic and stochastic methods have been proposed to derive 

acceptable mathematical models for both continuous-time and discrete-time processes. 

However, in the modelling of complicated processes, precise mathematical models may fail to 

give satisfactory results. Some of the modelling, identification and control approaches for 

dynamic or static systems that been researched during the last two-three decades are based on 

methodologies that are used in intelligent control (Kichert and Mamdani, 1978), (Sugeno and 

Kang, 1986), (Yager and Filev, 1994c), (Jang and Sun, 1995), (Hellendoorn and Driankov, 

1997) and (Norgaard et al, 2000).
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Traditionally, modelling is seen as a conjunction of a thorough understanding of the system's 

nature and behaviour, and a suitable mathematical treatment that leads to a usable model. This 

approach is usually termed "white box" (physical, mechanistic, first-principle) modelling. In 

practice, however, when complex and poorly understood systems are considered, the 

requirement for a good understanding of the physical background of the system proves to be a 

severe limiting factor. The difficulties that can arise in conventional "white-box" modelling 

approaches appear from poor understanding of the underlying phenomena, inaccurate values of 

various process parameters, or from the complexity of the resulting model. A complete 

understanding of the underling mechanisms is virtually impossible for a majority of real 

systems. However, gathering an acceptable degree of knowledge needed for physical modelling 

may be difficult, time-consuming and an expensive task. Even if the structure of the model is 

determined, a major problem of obtaining accurate values for the parameters remains. It is the 

task of system identification to estimate the parameters from data measured. Identification 

methods have been developed to a mature level, mostly, for linear systems. Most real systems 

are, however, both non-linear and dynamic and can be approximated by local models.

The accuracy of mathematical models is based on how good are the approximations of the 

mathematical functions that are used to describe the system's characteristics under study. If the 

model is not accurate enough, the subsequent steps of analysis, prediction and controller 

synthesis, cannot be successful. However, there is an obvious trade-off between the necessary 

accuracy of the model and its complexity. Models should provide information at the most 

relevant level of precision (abstraction), suppressing unnecessary details when appropriate. If 

the model is too simple, it cannot properly represent the characteristics of the system and does 

not serve its propose. However, the model should not be too complex if it is to be practically 

useful.
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Fuzzy modelling is a method of describing the characteristics of a system using fuzzy rules and 

is a topic that has been studied extensively in recent years mostly as a problem of function 

approximation instead of a problem of knowledge acquisition (Takagi and Sugeno, 1985) and 

(Jang et al, 1997). Compared to other "intelligent" modelling techniques (Haykin, 1999), fuzzy 

systems provide a more transparent representation of the non-linear dynamic systems under 

study, and can also be given a linguistic interpretation in the form of rules. Moreover, fuzzy sets 

serve as a smooth interface between qualitative variables involved in the rules and numerical 

domains of the inputs and outputs of the model (Akkizidis and Roberts, 1998). The rule-base 

nature of fuzzy models allows the use of information expressed in the form of natural language 

statements, and makes the models transparent to interpretation and analysis. At the same time, at 

the computational level, fuzzy models can be regarded as flexible mathematical structures, 

similar to neural networks, that can approximate a large class of non-linear system to a desired 

degree of accuracy (Kosko, 1992) and (Wang, 1997). This duality allows qualitative knowledge 

to be combined with quantitative data. Finally, it can be said that the use of linguistic qualitative 

terms in the rules can be regarded as a kind of information quantisation. Thus, depending on the 

number of qualitative values considered, models at different levels of abstraction and accuracy 

can be developed for a given system. Each of the models may serve a different purpose such as 

prediction, controller design, monitoring.

Another approach to modelling, identification and control of dynamic systems is to use some 

sufficiently general "black-box" structures, such as, Artificial Neural Networks (ANN) (Picton, 

1998), used as a general function approximator. The modelling problem is then that of obtaining 

an appropriate structure of the approximator, in order to correctly capture the dynamics and the 

non-linearity of the system. In "black-box" modelling, the structure of the model is hardly 

related to the structure of the real system. The identification problem consists of estimating the 

parameters in the model. If representative system data is available, "black-box" models usually 

can be developed quite easily, without requiring system-specific knowledge. A severe drawback
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of this approach is that the structure and parameters of these types of models usually do not 

have any physical significance. Additionally such models cannot be used for analysing the 

internal system's behaviour otherwise than by numerical simulation. Finally, it is neither 

possible to use prior knowledge to initialise the network, nor can its final state be interpreted in 

terms of rules.

The drawback of the conventional "white-box" and "black-box" techniques in modelling non­ 

linear system is their trade-off between accuracy and knowledge acquisition as well as that they 

are based mostly on quantitative mathematical techniques. The weakness of the traditional 

quantitative techniques to adequately describe complex systems was summarised in the well- 

known principle of incompatibility, formulated by(Zadeh, 1973). This principle states that "as 

the complexity of a system increases, our ability to make precise and yet significant statements 

about its behaviour diminishes, until a threshold is reached beyond which precision and 

significance (or relevance) become almost mutually exclusive characteristics ".

2.8 Mobile robot navigation using methodologies from intelligent control

One of the most difficult challenges in mobile robotics is autonomous navigation in a real 

world. A real world can change suddenly, so a robot in this environment easily makes wrong 

estimates of which events can happen and which events can produce unwanted side effects. In 

order to overcome such uncertain and drastic changes, methodologies from intelligent control 

have been employed. According to (Chatila, 1995) navigation is in general an incremental 

process that can be summarised in four main steps: Environment perception and modelling: any 

motion requires a representation of the local environment at least, and often a more global 

knowledge. Localisation: the robot needs to know where it is with respect to its environment 

and goal. Motion decision and planning: the robot has to decide where or which way to go, 

locally or at the longer term, and possibly compute a trajectory. Motion execution: the 

commands corresponding to the motion decisions are executed by control processes possibly
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sensor-based and using environment features. The reminder of this section presents a literature 

review in the area of mobile robot navigation, focusing on intelligent systems techniques for 

navigation control. The literature review in this section is closely related with the work 

presented in chapter six in which robot behaviours are implemented using fuzzy, neural and 

stateflow for navigation control. Therefore the survey in this section is focused on mobile robot 

navigation using either fuzzy or neural control.

2.8.1 Mobile robot navigation using fuzzy logic

Fuzzy logic has been successfully used in various knowledge-based systems to control real-time 

decision-making in the area of command and control in environments where no mathematical 

model can be applied with efficiency. As previously mentioned, robot navigation in unknown 

environments is a very complex and difficult task, because the large amount of imprecise and 

ambiguous information that has to be considered. In section 2.7.1 a discussion was based on 

how human knowledge can satisfactorily deal with such information in an efficient manner. 

Therefore human knowledge gained through experience can be modelled to control real-time 

navigation systems. The knowledge provided by the human can be represented as IF-THEN 

rules as has been modelled in expert systems where the importance has been shown for an 

efficient inference mechanism to manipulate the rule base. In this context, in addition to the 

imprecision and uncertainty of the information perceived from the environment, other sources 

of imprecision/uncertainty have to be considered such as the reasoning process and rule 

description. Under these circumstances the quality of the decision is strongly dependent of 

fuzzy models that will be implemented to control the movements of the robot. In the following, 

examples of research work relating to fuzzy logic for the navigation of mobile robot(s) are 

presented.

The use of fuzzy logic in robot navigation begins in late 1980s. (Takeuchi et al, 1988) discussed 

fuzzy control of a mobile robot for obstacle avoidance in an indoor environment. Processing the
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floor image in front of the robot, which was obtained with aCCD camera, derived the inputs to 

the fuzzy controller. Computer simulations modified fuzzy control rules, which were derived on 

the basis of a human's driving actions. In (Ciliz and Isik, 1989) a rule-based approach for the 

motion control for an autonomous mobile robot was discussed. The assumed inexactness in 

world description is represented by fuzzy membership functions, and a state space is discretised 

into a linguistic vocabulary. Fuzzy motion control rules that have been experimentally derived 

are then used in fuzzy inference mechanism to give the final control command to robot 

actuators. The work of (Rosa and Garciaalegre, 1990) follows a similar approach.

2.8.1.1 The 1990s: The peak of fuzzy logic in mobile robot navigation

(Martinez et al, 1994) have considered a problem, which consists of achieving sensor-based 

motion control of a mobile robot among obstacles in structured and/or unstructured 

environments with collision-free motion as the priority. They used fuzzy logic to implement the 

approximate reasoning necessary for handling the uncertainty inherent in the collision 

avoidance problem. Navigation of a mobile robot using fuzzy logic has also been discussed by 

(Li, 1994b), (Li, 1994a) and (Li and He, 1994), they used ultrasonic sensors and fuzzy logic in 

order to navigate a single mobile robot in an unknown environment. The output from their 

control scheme is command for the speed control unit of two rear wheels of a mobile robot. 

They have shown simulation results of the proposed method. In (Lee and Wang, 1994) a fuzzy 

logic approach was proposed for a single robot navigation. The authors stated that their 

approach needed few modifications if their proposed algorithm was to be used in navigation of 

multiple robots. In (Beaufrere and Zeghloul, 1995a) and (Beaufrere and Zeghloul, 1995b) a 

fuzzy logic controller was developed using information from a few ultrasonic sensors to control 

the navigation of mobile robot in dynamic environment. Their approach reduces the large 

quantity and variety of sensors usually used in autonomous vehicles and at the same time 

handles uncertain and noisy data. The problem with their approach is that they do not control 

the robot's velocity, which has not been addressed by many researchers. During the same period
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the research work of (Lee, 1995), (Czarneki et al, 1995) and (Maaref and Barret, 1995) 

summarises the contributions of fuzzy logic in robot navigation.

In the late 1990s the research effort in mobile robot navigation using fuzzy logic increased 

dramatically. Researchers investigated different solutions to solve the navigation problem of the 

mobile robot, in terms of robot behaviours. The behaviour of a single robot during its 

movements towards a target, in an open field with simple obstacles, has been studied by(Xu 

and Tso, 1996). They worked out two types of reaction strategies. The first is based on human 

experience whereas the second is based on reaction rules. Their technique has only been 

demonstrated in simulation and was proved to be suitable for the navigation of a single robot, 

but not multiple mobile robots. (Ramirez-Serrano and Boumedine, 1996) study robot navigation 

based on a fuzzy logic controller, which was designed in order to deal with the uncertainty and 

ambiguity of the information the system receives. They used a set of seven ultrasonic sensors in 

order to perceive the environment for the navigation of a single mobile robot. A similar 

approach is adopted by (Gasos and Martin, 1996) in which single robot navigation is considered 

using sensor observations. Their approach is mainly based on indoor environments. The 

research work of (Miyata et al, 1996) considers single robot navigation with a primary goal a 

parallel parking. Their method cannot be applied in multiple robot navigation and again only 

simulation results are available.

(Lin and Wang, 1997) proposed a fuzzy approach to collision avoidance for automated guided 

vehicle navigation. Their work was based in sensor modelling and trap recovery. The first topic 

is concerned with finding the minimum number of sensor used and their optimal arrangement. 

The fuzzy approach to robot trap recovery is demonstrated in simulation. (Benreguieg et al, 

1997) developed a fuzzy navigator, which integrates heuristics copying of human behaviour. 

They claim that their approach provides several contributions such as a low sensitivity to 

erroneous or inaccurate measures. In addition if the inputs of the controllers are normalised, an
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effective portability on various platforms is possible. In order to demonstrate the advantage of 

their approach the same fuzzy navigator is implemented on two different mobile robots 

(Khepera and RMI). The research work of (Zhang et al, 1997) is concerned with fuzzy logic 

based reactive navigation for a mobile robot operating in an unknown environment. They 

provide a steering command enabling a mobile robot to avoid collision with obstacles. At that 

time the contributions of (Castellano et al, 1997), (Kam et al, 1997), (Jagannathan, 1997), 

(Oriolo et al, 1997) and (Hoffmann and Pfister, 1997) are reported in the literature.

(Godjevac, 1998) used fuzzy logic to implement linguistic rules for navigation of a mobile 

robot. He demonstrated his approach with a navigation of a single mobile robot in a simple 

environment. He did not consider multiple robot navigation. (Oriolo et al, 1998) present an 

algorithmic solution method for the problem of autonomous robot motion in unknown 

environments. Their approach is based on the alternate execution of two fundamental processes: 

map building and navigation. In the former, range measures are collected through the robot 

sensors and processed in order to build a local representation of the surrounding area. This 

representation is then integrated in the global map so far reconstructed by filtering out 

insufficient or conflicting information. In the navigation phase, A*-based planner generates a 

local path from the current robot position to the goal. The robot follows the path up to the 

boundary of the explored area, terminating its motion if unexpected obstacles are encountered. 

The most peculiar aspects of their method are the use of fuzzy logic for the efficient building 

and modification of the environment map, and the iterative application of A*, a complete 

planning algorithm which takes full advantage of local information. Experimental results show 

the real-time performance of the proposed method, both in static and moderately dynamic 

environments using a single mobile robot (NOMAD 200). (Gasos and Rosetti, 1999) present a 

fuzzy-sets based approach to the problem of mobile robot navigation in unknown environments. 

Fuzzy sets are used to represent the uncertainty that is inherent to the perception of the 

environment through the robot sensors. This uncertainty is then propagated in the process of
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map building so that not only a plausible spatial layout of the environment, but also the 

confidence on this layout, is obtained. The initial map built by the robot is then used for self 

localization as it continues navigating in the same environment. The new information collected 

by the sensors is matched to the initial map and the transformation that brings them together is 

used to correct and bound the dead-reckoning errors. The approach is illustrated by experiments 

in office environments. In the paper of (Fukuda and Kubota, 1999) a fuzzy-based intelligent 

robotic system is presented. The paper, proposed a robotic system with "structured intelligence." 

The authors focused on a mobile robotic system with a fuzzy controller and proposed a sensory 

network that allowed the robot to pre-perceive its environment. The effectiveness of the 

proposed method is demonstrated through computer simulations of collision avoidance and 

path-planning problems.

2.8.1.2 Early 2000: Fuzzy logic in mobile robot navigation continues to grow

(Song and Sheen, 2000) presents a pattern recognition approach to reactive navigation of a 

mobile robot. A heuristic fuzzy-neuro network is developed for pattern-mapping between 

quantised ultrasonic sensory data and velocity commands to the robot. The design goal was to 

enable an autonomous mobile robot to navigate safely and efficiently to a target position in a 

previously unknown environment. Useful heuristic rules were combined with the fuzzy 

Kohonen clustering network (FKCN) to build the desired mapping between perception and 

motion. (Seraji, 2000) introduced Fuzzy Traversability Index as a new and simple measure for 

quantifying the ease of traversal of natural terrains by field mobile robots. This index provides a 

simple means for incorporating the terrain quality data into the robot navigation strategy and is 

used for terrain-based navigation of held mobile robots. A set of fuzzy navigation rules was 

developed using the Fuzzy Traversability Index to guide the robot toward the safest and the 

most traversable terrain. In addition, another set of fuzzy rules was developed to drive the robot 

from its initial position to a user-specified goal position. These two rule sets were integrated in a 

two-stage procedure for autonomous robot navigation without a priori map-based knowledge
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about the environment. Three simulation studies were presented to demonstrate the capability of 

the mobile robot to reach the goal safely while avoiding impassable terrains. (Xu and Lu, 2000) 

studied the cause of the limit cycle (the robot wanders indefinitely in a loop in the course of 

navigation in unknown environment) using fuzzy logic. The main features of the proposed 

strategy were compared with other approaches for handling the local trapping problems. 

Efficiency and effectiveness of the proposed approach were verified through simulation and 

experiments.

(Nanayakkara et al, 2001) presents an approach for evolving optimum behaviours for a 

nonholonomic mobile robot in a class of dynamic environments. A new evolutionary algorithm 

reflecting some powerful features in the natural evolutionary process to have flexibility to deal 

with changes in the environment is used to evolve optimum behaviours. Furthermore, a fuzzy 

set based multi-objective fitness evaluation function is adopted in the evolutionary algorithm. 

The multi-objective evaluation function is designed so that it allows incorporating complex 

linguistic features that a human observer would desire in the behaviours of the mobile robot 

movements. The authors illustrate the effectiveness of the proposed method in simulation. 

(Mucientes et al, 2001) described a fuzzy control system for navigation and obstacle avoidance 

by a mobile robot. The control system has over 117 rules, which reflects the complexity of the 

problem to be tackled. The controller has been subjected to an exhaustive validation process and 

simulation results were shown. (Tsourveloudis et al, 2001) proposed an electrostatic potential 

field (EPF) path planner, which is combined with a two-layered fuzzy logic inference engine 

and implemented for real-time mobile robot navigation in a 2-D dynamic environment. The 

environment is first mapped into a resistor network; an electrostatic potential field is then 

created through current injection into the network. The path of maximum current through the 

network corresponds to the approximately optimum path in the environment. The first layer of 

the fuzzy logic inference engine performs sensor fusion from sensor readings into a fuzzy 

variable, collision, providing information about possible collisions in four directions, front,
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back, left, and right. The second layer guarantees collision avoidance with dynamic obstacles 

while following the trajectory generated by the electrostatic potential field. The proposed 

approach was experimentally tested using a mobile robot.

In (Tunstel et al, 2002) an approach to hierarchical control design and synthesis for the case 

where the collection of subsystems is comprised of fuzzy logic controllers and fuzzy 

knowledge-based decision systems is presented. The approach is used to implement hierarchical 

behaviour-based controllers for autonomous navigation of one or more mobile robots. 

Theoretical details of the approach are presented, followed by discussions of practical design 

and implementation issues. (Maaref and Barret, 2002) considered the problem of the navigation 

of a mobile robot either in an unknown indoor environment or in a partially known one. A 

navigation method in an unknown environment is based on the combination of elementary 

behaviours. Most of these behaviours are achieved by means of fuzzy inference systems. In the 

case of a partially known environment, a hybrid method is used in order to exploit the 

advantages of global and local navigation strategies. The co-ordination of these strategies is 

based on a fuzzy inference system by an on-line comparison between the real scene and a 

memorized one. The planning of the itinerary is achieved by visibility graph and A* algorithm. 

(Barbera and Skarmeta, 2002) considered the use of fuzzy behaviours in the field of 

autonomous mobile robots. They address the problem of conflicts between the different 

behaviours that compete with each other to take control of the robot using learning techniques to 

efficiently co-ordinate them. They used fuzzy rules to perform such fusion.

2.8.2 Mobile robot navigation using neural networks

Interest in robot navigation using neural networks has increased recently due partly to some 

significant breakthroughs in research in learning and training algorithms. Advances in computer 

hardware technology that made neural network implementation faster and more efficient have
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also contributed to the progress in research and development in neural networks for mobile 

robot navigation.

Humans do not employ an accurate spatial environment model to fulfil a predefined navigation 

task (at least not in terms of a co-ordinate system). They use only some abstract, symbolic world 

knowledge to plan a route. This symbolic route description defines the necessary actions to be 

performed at selected, classifiable places in order to pilot a vehicle from a starting point to a 

destination. In addition, the steering and low-level navigation behaviour of humans, like 

obstacle avoidance, is based on experience and skills rather than high-level planning procedures. 

Human travelling performance can be seen as a small set of basic visual guidance activities, 

which are adapted to the current, specific environment configurations. Neural networks have 

been shown to be successful in emulating the human behaviour. In the following, some 

examples of research work relating to neural networks for the navigation of mobile robot(s) are 

presented.

2.8.2.1 The 1990s: The beginning of neural networks in mobile robot navigation

The use of neural networks in mobile robot navigation begins in middle 1990s with the research 

works of (Tani and Fukumura, 1994), (Sethi and Yu, 1994) and (Ortega and Camacho, 1994). In 

(Pal and Kar, 1996) a neural network was trained to navigate a mobile robot in simulation with 

a finite turning radius. Simulation studies were also carried out by(Kodaira et al, 1996) in 

which an intelligent control algorithm for mobile robot navigation was presented. The feasibility 

of using neural networks for camera localization and mobile robot control was investigated by 

(Choi and Oh, 1997). Their technique has been tested and compared through both simulation 

and real-time experiments and was shown to yield more precise localization than analytic 

approaches. Furthermore, this neural localisation method is also shown to be directly applicable 

to the navigation control of an experimental mobile robot along the hallway purely guided by a 

dark wall strip. (Yun et al, 1997) have presented a neural network based path planning
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algorithm for a single mobile robot. Their method integrates both global and local path planning 

and has been demonstrated through simulation on a known environment.

In (Chohra et al, 1998) a neural navigation approach essentially based on pattern classification 

to acquire target localization and obstacle avoidance behaviours was suggested. Simulation 

results displayed the ability of the neural approach to provide a mobile robot with capability to 

intelligently navigate in a partially structured environment. (Zhou et al, 1998) discussed the 

development of an associative, neural network as an on-line algorithm to train and control a fire- 

fighting robot. Learning is externally supervised with encoded target actions. The robot acquires 

basic navigation skills as well as the ability to detect a fire and to extinguish it.(Floreano and 

Mondada, 1998) described a methodology for evolving neuro-controllers of autonomous mobile 

robots without human intervention. The implications, of their methodology in engineering, 

biology, cognitive science and artificial life are discussed. (GutierrzOsuma et al, 1998) used 

neural network techniques to compute the location of a mobile robot with respect to the 

obstacles around it. The knowledge about its position helps the robot to navigate in an unknown 

environment. The method is only suitable for navigation of a single mobile robot. (Quoy et al, 

1999) present a neural model for the control of a robot, which is based on two structures. The 

first one enables visual navigation using landmarks for use in unknown and changing 

environments. The second structure enables building a proximity map of the environment. 

Using this map, the robot may successfully reach different goals linked to different motivations 

and solve various types of action selection problems. (Kassim and Kumar Bvkv, 1999) 

discussed the navigation of single robot using neural network techniques. Their paper described 

a neural network called the wave expansion neural network (WENN) and shows that it is 

capable of developing a variety of artificial potential fields that are useful for path planning. The 

discretised environment including information about the target configuration (position and 

orientations) and the obstacles are applied to the WENN as input. Activity is then propagated in 

the form of waves throughout the WENN neural field. The research work of (Howard and
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kilchen, 1999) also uses neural network techniques in which the mobile robot can plan its path 

in two degrees of freedom and avoid obstacles in a simple environment, although environmental 

uncertainty was not considered. In (Rivals, 1999) a piloting module of a four-wheel-drive 

autonomous vehicle, whose implementation relies entirely on neural network, was introduced. 

The authors showed how neural networks can be advantageously used for navigation of a single 

mobile robot. A similar approach was adopted by (Jebric et al, 1999) in which a mobile robot 

using neural network is able to find the target in an unknown environment.

2.8.2.2 Early 2000: More challenges remain

(Yang and Meng, 2000) discussed a biologically inspired neural network approach to real-time 

collision-free motion planning of mobile robots or robot manipulators in a non-stationary 

environment. The real-time robot motion is planned through the dynamic activity landscape of 

the neural network without a prior knowledge of the dynamic environment, without explicitly 

searching over the free workspace or the collision paths, and without any learning procedures. 

The effectiveness and efficiency of the proposed approach were demonstrated through 

simulation studies. In the paper of (Araujo and De Almeida, 2000) a method for mobile robot 

navigation in an unknown world using neural network is presented. The learning approach is 

used to construct a world model, and to learn to navigate from a starting position to a known 

goal region. Simulation and real-robot results obtained with a Nomad 200 mobile robot were 

presented to demonstrate the effectiveness of the discussed method. Quantitative results 

demonstrate the exploration and planning improvements of the proposed navigation approach. 

(Marichal et al, 2001) presented work in which neural network is used for optimisation of fuzzy 

system for guidance of a mobile robot towards the target. A set of fuzzy rules is optimised 

according to different criteria. They verified their proposed approach by implementation in two 

mobile robots. In (Ayrulu and Barshan, 2001) a study was undertaken to investigate the 

processing of sonar signals using neural networks for robust differentiation of commonly 

encountered features in indoor robot environments. Their work can find application in areas
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where recognition of patterns hidden in sonar signals is required. Some examples are system 

control based on acoustic signal detection and identification, map building, navigation, obstacle 

avoidance, and target-tracking applications for mobile robots and other intelligent systems. 

(Hamze and Clark, 2001) described a view-based mobile robot navigation system relying on 

self-organizing neural networks. A sequence of view images from a test route was obtained, pre- 

processed, and used to train a system of self-organizing maps. In (Ma et al, 2001) a hybrid 

intelligent method including fuzzy inference and neural network was presented for real-time 

self-reaction of a mobile robot in unknown environments. Their method can be used to control a 

mobile robot based on the present motion situations of the robot in real-time.

(Mbede et al, 2002) present an integration of fuzzy local planner and modified Elman neural 

networks (MENN) approximation-based computed-torque controller for motion control of 

autonomous robot in dynamic and partially known environments containing moving obstacles. 

The purpose of the controller, which is designed as a Neuro-fuzzy controller, is to generate the 

commands for the servo-systems of the robot so it may choose its way to its goal autonomously, 

while reacting in real-time to unexpected events. The controller demonstrates good performance 

in adaptation to changes in robot dynamics. The paper of (Zalama et al, 2002) describe a neural 

network model for the reactive behavioural navigation of a mobile robot. From the information 

received through the sensors the robot can navigate, through a competitive neural network. The 

robot is able to develop a control strategy depending on sensor information and learning 

operation. The proposed method did not consider multiple robot navigation. Finally (Berlanga et 

al, 2002) show a new method, in order to learn weights of a neural network controller in 

autonomous robots called Uniform Co-evolution. The introduction of their method allows the 

environment to be evolved in the process of learning a general behaviour able to solve problems 

in different conditions. In particular the proposed method is used to learn reactive robot 

behaviour for navigation and collision avoidance. Again, the authors have not reported multiple 

robot navigation.
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2.9 Discussion

This chapter details several of the principle study sources that have inspired or paralleled the 

development of the research work in this thesis. As discussed in section 2.2 familiarities with 

certain scientific topics facilitates research in which various complex problems can be solve. 

The traditional way to problem solving was based on the good knowledge and expertise in a 

specific subject. This has been shown to be insufficient for the development of new tools and 

techniques. This is the main reason why the filed of artificial life played so important role in the 

development of recent research works. Scientists endeavour to merge different fields and 

certainly this is a promising approach to the research development. As this thesis is concerned 

with the development of modelling, identification and control techniques for the development of 

architecture for autonomous mobile robots using hybrid approaches some related research 

works and issues have been reviewed and discussed in this chapter.

In sections 2.3 and 2.4 research work based on co-operative robots and control of multiple 

robotic systems was discussed. Considering the literature review, it becomes clear that the 

problem of multi-robot control is challenging and also great motivation for future research. 

Contributions of related work show that development of control with reliable behaviour with 

more than one robot co-existing in the same environment still remains a very difficult task. 

However, it has been almost established that the solution to the problem lies where centralised, 

decentralised or hybrid control is considered. Recent research works shown that gradually the 

research community has abandoned the centralised approach as the number of limitations 

overcome the number of the advantages. In section 2.5 the concept of behaviour-based control 

was discussed with a number of related contributions. Despite the fact that behaviour-based 

control is one of the greatest revolutions in robot control, still several issues remain unanswered 

which generate motivation for further research. Issues like, robot behaviour design, modularity 

and co-ordination is still of interest. Potential solution to solve these issues can be found within 

the field of distributed artificial intelligent and distributed systems.
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The filed of distributed artificial intelligent and distributed system seems to be very promising 

framework in the research area of development and control of co-operative systems. The 

literature review shows that the research work of distributed artificial intelligent is still in 

theoretical stage but it is believed that very soon practical implementations will take place. 

Already it is shown that the research effort regarding multi-agent systems has well established 

in the development of more sophisticated software than traditional approaches. In addition, as 

lower-level processes (perception and actuation) are better understood and implemented, and as 

computational power increases, the high-level results of distributed artificial intelligence and 

distributed systems may become increasingly applicable to many practical applications 

including the control and development of multiple robots incorporating highly intelligent 

programs.

In section 2.7, background information related to the origin of intelligent control and its use in 

modelling, identification and control is given. As section 2.7 shows, intelligent control 

comprises three main approaches (methodologies), which are now widely accepted and 

established. The use of these methodologies can be successfully implemented to solve several 

problems in modelling, identification and control of dynamic systems incorporating a specified 

behaviour. The literature review has shown that fuzzy and neural approaches have been 

developed for modelling, identification and control of dynamic systems. However, these 

approaches are still shown signal of suffering with a great number of choice that the designer 

has to make during the development process. For instance, consider the identification and 

modelling of a dynamic system using neural network. There are a larger number of learning 

algorithms available to be used with different methodological approaches to be followed. The 

question is, which method should be used, and how. Therefore a development time can be 

dramatically increased or decreased according to a chosen approach.
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Section 2.8 presents a literature review of navigation of mobile robot(s) using methodologies 

from intelligent control. The length of the number of the research works outlined, almostcovers 

the past two decades. It is clear that fuzzy logic is the oldest method used in robot navigation in 

contrasts to neural networks, which is appears to be relatively new. Using both methodologies 

the majority of the research works carried out considers a single mobile robot and not 

navigation of multiple robots. In addition much of the contributions made focusing on robot 

navigation uses kinematic models and not dynamic models. The literature review also shows 

that very few works consider solving the problem of robot navigation using behaviours in which 

certainly is the most promising way. Many research contributions to robot navigation are based 

on both fuzzy and neural methods with the attempt to solve the problem using one or two 

models behaviours/models (single fuzzy or neural controller is used with large number of 

sensory inputs).

2.10 Summary

The work in this thesis shares motivations and goals with a number of related fields. This 

chapter has presented a literature review based on those fields. At the beginning of the chapter 

the field of artificial life is introduced. A number of contributions from artificial life based on 

simulations of multiple autonomous mobile robots relevant to this thesis are given. The 

literature review of related work based on co-operative robotics and control of multiple mobile 

robots (multi-agent robotics) is presented, focusing on research contributions in which mobile 

robots can discriminate each other from the rest of the world based on a local reactive approach. 

Background information of the birth and origin of the behaviour-based control is given. 

Advantages and disadvantages of the behaviour-based decomposition control approach in 

contrast with the traditional functional decomposition are discussed. The role of distributed 

artificial intelligence and distributed systems in the development of control architectures for 

multiple autonomous mobile robots is presented. Hence, the more significant sub-fields of 

distributed artificial intelligence are discussed in more detail as they relate directly to the work
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of this thesis. The origin of intelligent control including its approaches is illustrated. Three 

methodologies in the field of intelligent control are presented two of which are used direct in 

this thesis. Recent research in modelling, identification and control of dynamic systems using 

methodologies from intelligent control has been reviewed with reference on related work. Robot 

navigation using intelligent control methods has been described. In particular the chapter has 

reviewed robot navigation techniques up to date, focusing on those utilising fuzzy logic and 

neural networks.

The next chapter presents the main research methodology adopted for the research work carried 

out in this thesis.
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3
Research Methodology

3.1 Introduction

The aim of this chapter is to propose, justify and present the main methodology adopted for the 

research work carried out in this thesis. Although there is no formal method for developing 

integrated solutions for advanced mobile robotic systems, in most cases, robot systems or 

different types of controlling robot systems are evaluated using a proof of concept technique, in 

which the system or the approach is shown to be capable of accomplishing a particular task. 

More often, two methods are compared. The comparison of those two methods may produce an 

inaccurate result because a more formal approach needs to be taken to choose which types of 

methods to compare and for what type of task.

The demand for complex control systems with or without the use of a mathematical model of 

the plant to be controlled and the effort to model, control, identify and build control systems 

architectures for autonomous mobile robots has led to recent use of intelligent control methods 

such as fuzzy logic, neural networks, genetic algorithms, multi-agents systems, etc. However
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the effort for several simple, cheap, flexible and more fault-tolerant mobile robots rather than a 

single powerful robot for each separate task needs an integration of both conventional and 

intelligent control design techniques.

The proposed methodology for this research work can be broken into the following nine basic 

steps, described as follows:

1. Conventional control design. Automatic control has played an important role in the 

advance of engineering and science (Gajic and Lelic, 1996) and (Astrom and Wittenmark, 

1997). In addition to its extreme significance in the steering of missiles, aircraft-autopilot 

systems, spacecrafts, underwater vehicles, mobile robots, automatic control has become a 

crucial and usually integral part of modern manufacturing and industrial processes. Design 

of Proportional + Integral (PI) speed controller is presented in chapter five fer the MIABOT 

V2 mobile robot. This method was chosen as conventional control design provides good 

performance when mainly based upon knowledge of the process mathematical model. In 

addition conventional control is computational simple and fast (this is demonstrated in 

chapter five where comparison with fuzzy and neural controllers has been made) and in 

general is much more widely understood and easier to tune (only three terms are tuneable). 

Appendix C presents the background information of the basic control system structure with 

more emphasis on PID control,

2. Optimisation. The subject of optimisation is an interesting blend of heuristics and rigor, of 

theory and experiments and may be defined as the science of determining the 'best' 

solutions to certain mathematically defined problems, which are often models of physical 

reality. The non-linear control design 1 (NCD) blockset based on constrained optimisation

1 NCD is registered trademark of the Math Works, Inc. Copyright 1993-1997. All rights reserved.
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provided by MATLAB2 is used in chapter four and five for tuning/optimisation of physical 

and control parameters. The physical parameters (moment of inertial, etc.) were 

identified/optimised for more accurate robot model, whereas controller parameters (PI 

gains) were tuned to meet desired design requirements. This method is fast, easy to use, 

suitable for control design of both linear and non-linear systems and gives good 

performance. Appendix D presents an overview of constrained optimisation and the non­ 

linear control design tool.

3. Robust stability analysis for interval polynomials based on parametric approach.

Almost all dynamic systems depend on varying or uncertain parameters and this is certainly 

true for small mobile robots. For instance, consider the velocity of a mobile robot (i.e. due 

to the battery variations), or its mass (i.e. adding or removing components), all these 

parameters may vary more or less significantly within certain bounds and they influence the 

system dynamics. Traditional control design approaches consider a fixed operating point in 

which the controller (compensator) is robust enough to effectively control the plant for 

different operating conditions. These approaches produce good results if the parameter 

variations are small or the system dynamics are not too sensitive with respect to these 

parameters. For significant (large) parameter variations these control design methods reach 

their performance limits. The parametric robustness analysis approach (Kharitonov's 

Theorem) is adopted in chapter five as it is an easy to use method and offers fast robust 

stability testing and analysis based on interval polynomials. Using this method the closed- 

loop control system of the MIABOT V2 mobile robot is proved to be robustly stable under 

uncertainty in its dynamics. The interval polynomial problem was first posed by(Faedo, 

1953), who attempted to solve it using the Routh-Hurwitz conditions. (Kharitonov, 1978) 

gave the complete solution with his theorem for real polynomials, which he then extended

1 MATLAB is registered trademark of the Math Works, Inc. Copyright 1984-2000. All rights reserved.
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to the complex case. Since then many papers have been published based on parametric 

approach regarding robust stability of uncertain plant (Siljad, 1989) and (Kontogiannis and 

Munro, 1996). Appendix E presents definitions and theorems (Bhattacharyya et al, 1995) 

related to robust stability testing of the closed-loop control system of the MIABOT V2 

mobile robot under uncertainty in its dynamics.

4. Fuzzy logic systems (FLS). Fuzzy logic systems are employed in chapter five to model 

local controller (speed controller) from observation data and in chapter six to model robot 

behaviours (obstacle avoidance behaviours) for mobile robot navigation. The reason that 

FLS were adopted is because they employ qualitative linguistic terms that take into account 

the imprecise nature of real-world processes and systems. Other important advantages of 

FLS includes: allows the handling of processes that are either modelled inadequately or not 

representable mathematically; they describes process behaviour based on available 

empirical or experiential information from sensors systems and/or human operators; they 

can cope with complex non-linear, multi-variable and time-varying processes without 

requiring them to be defined in precise mathematical terms.

5. Artificial neural networks (ANN). Artificial neural networks are also used in chapter five 

to model local controller (speed controller) from observation data and to model robot 

behaviours (obstacle avoidance behaviours) in chapter six for mobile robot navigation. The 

advantages of using ANN can be summarised as follows: ANN have interesting and 

attractive features such as learning, self-organisation and the capability to model a large 

class of non-linear systems. ANN can learn a mapping between an input and an output 

space and form an associate memory that retrieves the appropriate output when presented 

with an unseen input. They can also generalise to produce an output when presented with 

previously unseen inputs. Calculations are in principle carried out in parallel resulting in 

speed advantages and programming can be done by training rather than defining explicit
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instructions. The major advantage of the ANN methodology is that it can produce learning 

controller for a mobile robot that can operate in an uncertain environment.

6. Clustering techniques. Clustering can be an effective technique for dealing with large sets 

of data. The principal idea is to distil natural groupings of data from a large data set thereby 

allowing concise representation of the model's behaviour. Subtractive clustering is used in 

chapter five for the identification of a fuzzy speed controller from observation data. The 

advantage of using subtractive clustering is that computation is simply proportional to the 

number of data points and independent of the dimension of the problem under 

consideration. Having training data from a PI speed controller, construction of a dynamic 

fuzzy model to control the plant is achieved. Such dynamic modelling is complex and 

difficult task (large rule base due to many input variables) and is effectively solved using 

subtractive clustering.

7. Design of control systems architectures for autonomous mobile robots. The new control 

system architecture presented in chapter six is hybrid. In this chapter a description of 

different techniques that have been used to build control systems for autonomous mobile 

robots (or agents) and how different architectures can be classified is presented. When 

comparison between different types of control architectures is undertaken, this comparison 

should be made based on a number of important properties. Classification among these 

properties is proposed in this chapter.

8. Multi-agent systems (MAS). As mentioned above the new control system architecture in 

chapter six is hybrid, but also is multi-agent type constructed and orientated. Multi-agent 

systems theory is relatively new field in control and systems engineering. A special role in 

the theory and tools for solving complex control problems is attributed to the concept of 

agent. An agent represents an abstract entity that is able to solve a particular (partial)
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problem. Agents have the ability to be combined into a multi-agent system, such that the 

overall multi-agent system is able to solve a more complex problem. In this chapter brief 

background information of MAS and classification of the main multi-agent control 

architectures is presented in order to form the basic of the concept to construct local 

controllers that consist of several other controllers in chapter six.

9. Stateflow design tool based on finite state machines (FSM) theory. Stateflow design tool 

is based on finite state machines (FSM) theory. In this thesis it is used in chapter six as 

global state identification mechanism, supervisor-like co-ordination object for several local 

controllers-agents and also as tool for identification of direction of neighbour robots. The 

advantage of using Stateflow is model visualisation and simulation of complex reactive 

systems based on the theory of FSM. However, the design can be easily modified, 

evaluation of results and verification of system's behaviour at any stage of the design can be 

done successfully. In this chapter the main idea behind of FSM is highlighted followed by 

description of Stateflow's main design steps.

This chapter is organised as follows: The main methodology of fuzzy logic systems and 

artificial neural network is presented in sections 3.2 and 3.3 respectively. Clustering techniques 

are discussed in section 3.4. Section 3.5 presents the design methodology of control systems 

architectures for autonomous mobile robot. Section 3.6 discuss multi-agent systems and their 

role of how can solve complex control problems. Stateflow design tool based on FSM theory is 

outlined in section 3.7. A discussion follows in section 3.8 and finally the summary of the 

chapter is presented in section 3.9.

3.2 Fuzzy logic systems (FLS)

As mentioned in the introduction of this chapter fuzzy logic is used in chapters four and five for 

modelling and control of local controllers. Therefore this section forms a brief outline of the
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theoretical background of fuzzy logic systems highlighting the structure of fuzzy logic and 

fuzzy control followed by classification of different types of fuzzy models. More details and 

background information can be found in (Mamdani and Gaines, 1981), (Zimmermann, 1991), 

(Heske and Heske, 1996), (Berkan and Trubatch, 1997), (Yen and Langari, 1999) and (Nguyen 

and Walker, 2000).

Every history of logic seems to start with Aristotle (384-322 B.C). Aristotle, the student of 

Plato, thought of Logic as the science of knowing. Aristotle's most germane, and certainly his 

most quoted contributions to the foundations of fuzzy logic are two axioms named the Law of 

Contradiction and the Law of the Excluded Middle. The Law of Contradiction says that a thing 

cannot belong to a class and not belong to a class at the same time. This is like saying that it 

cannot be both raining and not raining at the same time. The Law of the Excluded Middle says 

that a thing must either belong to a class or not belong to a class. In other words, it must be 

raining or not raining. Together these two axioms leave no room for such concepts as sort-of 

raining or slightly raining.

The next, and certainly most significant, steps in the development of logic were taken in 1965 in 

a paper called Fuzzy Sets (Zadeh, 1965). Lofti A. Zadeh of the University of California at 

Berkeley took those steps by coining the name fuzzy logic and defining the mathematical 

notions of inclusion, union, intersection, complement, etc. for such sets. Zadeh then turned his 

attention to applying his newly minted fuzzy framework to modelling and automating models of 

human reasoning. Approximate Reasoning is the term used by Zadeh to describe the human 

ability to process imprecise, incomplete, and possibly unreliable information while reaching 

concrete conclusions. Since then the development of fuzzy logic theory stimulated alternative 

means to solve several problems in automatic control.
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3.2.1 What is fuzzy logic

Fuzzy logic is a powerful problem-solving methodology with a myriad of applications in 

embedded control and information processing. Fuzzy provides a remarkably simple way to draw 

definite conclusions from vague, ambiguous or imprecise information. In a sense, fuzzy logic 

resembles human decision making with its ability to work from approximate data and find 

precise solutions. Unlike classical logic, which requires a deep understanding of a system, exact 

equations, and precise numeric values, fuzzy logic incorporates an alternative way of thinking, 

which allows modelling complex systems using a higher level of abstraction originating from 

human knowledge and experience. Fuzzy Logic allows expressing this knowledge with 

subjective concepts such as very hot, bright red, and a long time, which are mapped into exact 

numeric ranges.

3.2.2 Structure of fuzzy logic

A logic based on the two truth values true ana false is sometimes inadequate when describing 

human reasoning. Fuzzy logic uses the whole interval between 0 (false) and 1 (true) to describe 

human reasoning.

3.2.2.1 Fuzzy sets

A fuzzy set is a set without crisp or clearly defined boundary. Fuzzy sets can be used to describe 

vague concepts or linguistic variables. Take for example the set of young people. A one year old 

baby will clearly be a member of the set, and a 100 years old person, will not be a member of 

this set, but what about people at the age 20, 30 and 40 years? Zadeh proposed a grade of 

membership such that the transition from membership to non-membership is gradual rather than 

abrupt. The grade of membership for all its members thus describes a fuzzy set. An item's grade 

of membership is normally a real number between 0 and 1 as shown in Figure 3-1, often 

denoted by the Greek letter p.. The higher the number the higher the membership.
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0 10 20

Figure 3-1 The sets more less old, very young, and not very young are derived from young and
old

3.2.2.2 Universe

Elements of a fuzzy set are taken from a universe of discourse, or universe for short. The 

universe contains all elements that can come into consideration. Even the universe depends on 

the context, as for instance the set of young people could have all human beings in the world as 

its universe. Alternatively it could be the numbers between 0 and 100. These would then 

represent age as shown in Figure 3-1.

3.2.2.3 Membership functions

Every element in the universe of discourse is a member of the fuzzy set to some grade, maybe 

even zero. The function that ties a number to each element x of the universe is called the 

membership function (J.(x). A fuzzy set can be described by a membership function whose 

membership values are strictly monotonically increasing, monotonically decreasing or 

monotonically increasing then monotonically decreasing for elements in the universe of 

discourse. Several types of basic functions can be used for membership functions, examples 

includes singleton, triangular, trapezoidal, s-shaped (called an s-curve), bell shaped (called n - 

curve), and a reverse s-shaped (called z-curve). Figure 3-2 shows an example of both triangular 

and trapezoid- shaped build in membership functions.
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34567 
trapmf. P=[1 578]

Figure 3-2 Examples of membership functions: (a) triangular-shaped (b) trapezoidal-shaped

The mathematical expression of the most commonly used membership functions is given in the 

following. The mathematical expression of all currently used membership functions can be 

found in several sources such as (Klir and Yuan, 1995) and (Passino and Yurkovich, 1998).

Triangular. Equation (3.1) represents triangular membership function in which b is a modal 

value, and a and c denote the lover and upper bounds, respectively, for non-zero of 

f(x;a,b,c).

f(x;a,b,c) =

o,
x-a
b-a 
c-x
c-b'

if x <a

if a < x < b

if b < x < c

if c <x

(3.1)

Sometimes it is more convenient to use the notation explicitly highlighting the membership 

function's parameters. In this case the result is:
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f(x; a, m, b) = max min ^ -, ̂  £- ,0 (3.2) 
^ ^b-a c-bj J

Trapezoidal. A trapezoidal membership function (3.3) is specified by four parameters 

(a,b,c,d ) and is defined by:

f(x;a,b,c,d) =

0, if x < a 

' if a<x<b
b-a 

1, if b<x<c (3.3)

___ jf c ^ x ^ d 
d-c 

0, if d < x

Singleton. A singleton membership function is defined by one parameter only. This model can 

be used to translate the precise crisp input for fuzzification or to represent the inference solution. 

When variable x is a, its membership ja(x) takes value 1 as defined in (3.4).

3.2.2.4 Fuzzy sets operations

The membership function is obviously a crucial component of a fuzzy set. It is therefore natural 

to define operations on fuzzy sets by means of their membership functions. In fact a fuzzy set 

operation creates a new set from one or several given sets. In more general terms, the most 

commonly used fuzzy sets operations are defined as Intersection (AND), Union (OR) and 

Complement (NOT). For example, consider two fuzzy sets A and B on the universe X, for a 

given element x of the universe, the intersection is defined as:
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M'AnB 00 = M A (x) * ^B (x) (3 .5)

where t is the notation of the triangular norm or /-norm, which is a fuzzy conjunction operator 

(Yen and Langari, 1999). The Minimum and Algebraic Product are most commonly used to 

calculate the /-norm for a fuzzy intersection (Pedrycz and Gomide, 1998) as shown in (3.6) and 

(3.7):

H AnB (*) = ^A 00 A V-B (x) = min [HA (x)' ̂ B (x)] (3 - 6)

(3 - 7)

The union is defined as:

(3 - 8)

where s is the notation of the triangular s-norm, which is a fuzzy disjunction operator (Yen and 

Langari, 1999). The Maximum is suggested and most commonly used to calculate the s-norm 

for a fuzzy union (Zadeh, 1965) as shown in (3.9):

Finally the complement is defined by:
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3.2.3 Design of fuzzy logic controller

Design of a fuzzy controller requires more design decisions than usual, for example regarding 

rule base, inference engine, defuzzification, and data pre and post processing. There are specific 

components characteristic of a fuzzy controller to support a design procedure. In the block 

diagram in Figure 3-3, the fuzzy controller is between pre-processing block and a post­ 

processing block.

w

Figure 3-3 Structure of fuzzy controller

Where w is the setpoint, x is the process output, u is the control action, r is the measured 

value, e is the error and z is the process noise. The following briefly explains the Figure 3-3 

block by block. More details can be found in (Cox, 1999).

3.2.3.1 Pre-processing

The inputs are most often hard or crisp measurements from some measuring equipment, rather 

than linguistic. A pre-processor, conditions the measurements before they enter the controller. 

Examples of pre-processing are: normalisation or scaling onto a particular, standard range; 

filtering in order to remove noise. When the input to the controller is error, the control strategy 

is a static mapping between input and control signal. A dynamic controller would have 

additional inputs, for example derivatives, integrals, or previous values of measurements
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backwards in time. These are created in the pro-processor thus making the controller multi­ 

dimensional, which requires many rules and makes it more difficult to design. The pre­ 

processor then passes the data on to the controller.

3.2.3.2 Fuzzification

The first block inside the controller '^fuzzification, which converts each piece of input data to 

degrees of membership by a lookup in one or several membership functions. The fuzzification 

block matches the input data with the conditions of the rules to determine how well the 

condition of each rule matches that particular input instance. There is a degree of membership 

for each linguistic term that applies to that input variable. In other words fuzzification interface 

involves the following functions: measures the value of input variables; performs a scale 

mapping that transfers the range of values of input variables into corresponding universes of 

discourse; performs the function that converts input data into suitable linguistic values, which 

may be viewed as labels of fuzzy sets. At this design stage it is important to set up parameters 

such as type and number of membership functions.

3.2.3.3 Rule base

The rules may use several variables both in the condition and the conclusion of the rules. The 

controllers can therefore be applied to both multi-input multi-output (MIMO) problems and 

single-input single-output (SISO) problems. The controller may actually need both the error and 

the change of error as inputs. To simplify, this section assumes that the control objective is to 

regulate some process output around a prescribed setpoint or reference. Therefore the rule base 

will contain rules in the if-then format. Usually different formats are used to represent the rule 

base. One example can be the rule format in the following:

IF error is Neg and change in error is Pos THEN output is Zero
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The names Neg, Pos and Zero are labels of fuzzy sets. The same set of rules could be presented 

in a relational format or the tabular linguistic format for shorter representation.

3.2.3.4 Inference engine

Inference is the act of drawing a conclusion based on a premise. In the case of fuzzy logic rule 

based systems, premises are spelled out as a combination of antecedents on the IF-side of rules. 

The consequents of a fuzzy rule can be interpreted as the conclusions drawn if the premises of a 

fuzzy rule are satisfied. The fuzzy inference procedure specifies how the IF-side truth value 

applies to the consequents specified in the rule. The strength of the conclusion simply indicates 

a degree of belief in the actual value or action specified in the rule consequent.

Characteristically, the degree to which the premise of a fuzzy rule is satisfied lies on the 

continuum of values [0,1]. What it is expected for any inference procedure is that the strength of 

the conclusion should track with the strength of its associated premises. A premise truth of zero 

should lead to a conclusion with zero strength, and a premise truth of one should lead to a 

conclusion with maximal strength. In between the extremes of premise truth, the strength of a 

conclusion should increase as the strength of its premise increases. Implication and aggregation 

both are operating within the inference engine mechanism. In general there are three methods of 

inference engine: correlation minimum, correlation product and min-max (Heske and Heske, 

1996).

3.2.3.5 Defuzzification

Defuzzification is needed to translate the fuzzy output of a fuzzy controller to a numerical 

representation (crisp). When a fuzzy controller is considered from the theoretical point of view, 

the fuzzy output can be a multi-dimensional fuzzy set (fuzzy relation). This assumes that the 

controller can have multiple outputs (SISO or MIMO system) which causes the fuzzy output of 

the controller to be a multi-dimensional fuzzy set. Some of the most commonly defuzzification
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methods include: centre of gravity, centre of largest area, mean of maxima, first of maxima, 

middle of maxima, height, left most, right most and weighted average defuzzification. The 

choice of defuzzification method depends on the context of the control problem (Ross, 1995) 

and (Reznik et al, 2000). In the following only the centre of gravity defuzzification method is 

described due to its popularity whereas the other methods can be found in several sources such 

as (Klir and Yuan, 1995) and (Yen and Langari, 1999).

The crisp output value u is the abscissa under the centre of gravity of a fuzzy set. Here x s is a 

running point in a discrete universe, and M.(XJ) is its membership value in the membership 

function. For the continuous case, replace the summations by integrals. It is much used method 

although its computational complexity is relatively high.

3.2.3.6 Post-processing

Output scaling is also very important operation in the design of fuzzy logic controllers. In case 

the output is defined on a standard universe, this must be scaled to engineering units, for 

instance, volts, meters, etc.

3.2.4 Types of fuzzy models

Given a model (heuristic or analytical) of the physical system to be controlled and specifications 

for its desired behaviour, the design objective in fuzzy control is to design a feedback control 

law in the form of a set of fuzzy rules such as that the closed loop system exhibit the desired 

behaviour. To achieve this design goal different types of fuzzy model can be employed. 

(Driankov and Palm, 1998) has classified these types of fuzzy models as follows: Mamdani
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fuzzy model, Takagi-Sugeno (TS) fuzzy model, relational fuzzy model, differential equations 

non-linear model and modified TS fuzzy model approximating a given differential equations 

non-linear model. In this thesis both Mamdani and Takagi-Sugeno fuzzy models are used. Each 

fuzzy model has to offer advantages over the other. In the following an overview is given for 

both Mamdani and Takagi-Sugeno fuzzy models.

3.2.4.1 Mamdani model

The Mamdani fuzzy model was first introduced by (Mamdani and Assilean, 1975). Using this 

model, Mamdani, developed the first fuzzy logic controller. Most fuzzy control systems 

developed in the 80's use the Mamdani model. The main idea of the Mamdani controller is to 

describe process states by means of linguistic variables and to use these variables as inputs to 

control rules. The Mamdani method is more intuitive and well-suited to human input and also 

more widespread method. However, this model is computational expensive and cannot be used 

for optimisation. In the following the Mamdani model is described.

Consider the following rule base, where X, Y and Z are linguistic variables:

RS : IF X is A, and Y is Bj THEN Z is C; (i = l,2,...,n) (3.12)

Given the input fact (x 0 ,y0 ), the goal is to determine the output "Z is C". The first step to 

make is to fuzzify the given input. The fuzzifier maps the input data x 0 e U x into the fuzzy set 

A and y0 e U y into fuzzy set B. The next step is to evaluate the truth-value for the premise for 

each rule, and then apply the result to the conclusion part of each rule using the fuzzy 

implication. The Membership functions defined on the input variables are applied to their actual 

values to determine the degree of truth for each rule premise. The degree of truth for a rule's 

premise is computed for the rule base in equation (3.12) as follows:
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a = (3.13)

If a rule's premise has nonzero degree of truth the rule is activated. The next step is to find the 

output, C'j , of each of the rules:

Vw e W (3.14)

In MIN inferencing (or Mamdani implication rule) the implication is interpreted as a fiizzyAND 

operator:

H C , (w) = nAjandB. (x 0 ,y0 ) and (ic . (w) = min(nA . andB. (x 0 ,y0 ),^c . (w)) (3.15)

In the rule aggregation step, all fuzzy subsets assigned to each output variable are combined 

together to form a single fuzzy subset for each output variable. The purpose is to aggregate all 

individual rule outputs to obtain the overall system output. In the MAX composition, the 

combined output fuzzy subset C* is constructed by taking the maximum over all the fuzzy 

subsets assigned to the output variable by the inference rule:

i (w),jac, 2 (w),...,|iCn (w)) (3.16)

Normally, the defuzzification step is executed as the last step and the most commonly used 

method in the centre of gravity described in section 3.2.3.5.
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3.2.4.2 Takagi-Sugeno model

The Takagi-Sugeno (TS) model was introduced by (Takagi and Sugeno, 1985) about one 

decade after the Mamdani model. The main motivation for developing this model is to reduce 

the number of rules required by the Mamdani model, especially for complex and high- 

dimensional problems. The Takagi-Sugeno model is computationally more efficient and well 

suited to optimisation and adaptive techniques and to mathematical analysis. It has also 

guaranteed continuity of the output space and it works well with linear techniques such as PID 

control. The fuzzification of the inputs and the application of the fuzzy operator are similar to 

Mamdani model. However the Takagi-Sugeno model differs from Mamdani model by 

introducing crisp functions as the consequences of the rules. This structure offers a systematic 

approach to generate fuzzy rules from a given input-output data set. A Takagi-Sugeno rule set is 

of the following form:

Rj:IF X is A; and Y is Bj THEN z-t =fj(x 0 ,y0 )t (i = l,2,...,n) (3.17)

Where, (x 0 ,y0 ) is the input. The antecedent of each rule is a set of fuzzy propositions 

connected with the AND operator. The consequent of each rule is a crisp function of the input 

vector [x 0 ,y0 ]. By means of the fuzzy sets to the antecedent propositions the input domain is 

softly partitioned in smaller regions where the mapping is locally approximated by the crisp 

functions f;. Combining the rules and their affects differs from the Mamdani method 

considerably. One variation of the TS inference system uses the weighted sum criterion to 

combine all the local representations in a global approximator, by:

(3.18)
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Where, Hj is the degree of fulfilment of the ith rule and r is the number of the rules in the rule 

base.

3.3 Artificial neural networks (ANN)

Artificial neural networks are employed in chapters five and six for modelling and control of 

local controllers. This section forms a brief introduction of the theoretical background of ANN. 

More details and background information can be found in literature in the contributions of 

(Kosko, 1992), (Taylor and Lisboa, 1993), (Harris, 1994), (Welstead, 1994), (Jang et al, 1997), 

(Ng, 1997), (Picton, 1998), (Haykin, 1999) and (Li et al, 2001).

The aim of ANN is to model networks of biological neurons in the brain. The human brain and 

nervous system have amassing properties. Although brain cells operates about seven orders of 

magnitude slower than switching elements of modern computers, the brain is capable of 

performing tasks which are impossible for computers. The main reasons behind this statement 

are massive parallelism and asynchronous operation of the human brain. The ANN structure is 

parallel composed of many computational elements connected by links with variable weights.

3.3.1 Biological neuron

The human brain consists of about hundred billions (10n ) different types of neurons. Each of 

them has about 1,000 - 10,000 connections to other neurons. The nervous system has several 

kinds of nerve cells (neurons), but they all share common features. Figure 3-4 shows the 

structure of a typical biological neuron. The neuron is formed of a soma (i.e., cell body), 

dendrites, and an axon. The dendrites receive signals from the other neurons, and the axon 

passes a signal to the other neurons. A junction between the axon and the dentate is called a
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synapse. One axon makes typically a few thousand of excitatory or inhibitory synapses with 

other neurons.

Excitatory synapse 
Inhibitory synapse

Figure 3-4 Biological neuron

The process of transmitting a signal from one neuron to another is chemically complex and is 

beyond the scope of this thesis. Briefly, the receiving cell's electrical potential raises or lowers 

depending on the incoming signal. When this potential reaches a threshold, an action potential 

of fixed strength and duration is sent down the axon. The neuron "fires" and the action potential 

is transmitted through the axon to the synapses with other cells. After a refractory period the 

cell can fire again (Ganong, 1987) and (Hertz et al, 1991).

3.3.2 Model of artificial neuron

The first model of an artificial neuron was proposed in 1943 by (McCulloch and Pitts, 1943). 

The standard artificial neuron is a processing element whose output is calculated by multiplying 

its inputs by a weight vector, summing the results and applying an activation function to the 

sum. Figure 3-5 shows the model of a neuron, which forms the basics for designing the ANN. 

The main basic elements of the neuron are described as follows (Haykin, 1999):
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Input 
Signals

Activation 
Function

Synaptic 
Weights

Figure 3-5 Model of a neuron

Synaptic weights. This is a set of synapses or connecting links, each of which is characterised 

by a weight or strength on its own. Specifically, a signal Xj at the input of synapse j connected

to neuron k is multiplied by the synaptic weight w kj.

Summing junction. This an adder for summing the inputs signals, after they have been 

weighted by the respective synapses of the neuron.

Activation function. This transforms the result of the adder and limits the amplitude of the 

output of a neuron. Generally, the normalised amplitude range of the output of the neuron is 

given as the closed unit interval [0,l], or alternative [- l,l].

Bias. This is has the affect of increasing or lowering the net input of the activation function, 

depending on whether it is positive or negative, respectively.
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In mathematical terms the neuron's functionality can be described with equations (3.19) and 

(3.20) as follows:

(3.19)

(3.20)

Where x 1 ,x 2 ,...,xm are the input signals, w kl ,w k2 vWkm are the synaptic weights of the 

neuron k, u k is the output of the summing junction, bk is the bias, (p(-) is the activation 

function and y k is the output signal of the neuron.

3.3.2.1 Types of activation function

The activation function, <p(), defines the output of a neuron in terms of the activity level at its 

input. The activation function can have various shapes depending on the application (Jang et al, 

1997). The most commonly used types of activation functions are shown in Figure 3-6.

Symmetric saturating linear

-5 •< -3 -2 -I 0 I 2 3 < 5-54-3 -2 1

Figure 3-6 Common activation functions
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In mathematical terms the activation functions shown in Figure 3-6 can be expressed as follows:

Linear. A linear (Figure 3-6(a)) activation function's output is simply equal to its input as 

shown in equation (3.21).

f(x)=x (3.21)

Symmetric hard limit, A symmetric hard limit (Figure 3-6(b)) activation function's output is 

defined by:

.1,:::
Symmetric saturating linear. A symmetric saturating linear (Figure 3-6(c)) activation 

function's output is defined in equation (3.23) where k is constant and greater than zero.

f(x) = -jkx (-l/k)<x<(l/k) (3.23) 

l-l x<-

Hard limit (or step). A hard limit (Figure 3-6(d)) activation function's output is defined by:

(3-24) 
|0 x<0

Hyperbolic tangent sigmoid. A hyperbolic tangent sigmoid (Figure 3-6(e)) activation 

function's output is defined by:
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f(x)=(e x -e-x )/(e x +e-x ) (3.25)

Logarithmic sigmoid. A logarithmic sigmoid (Figure 3-6(f)) activation function's output is 

defined by:

(3.26)

The construction of a neural network deepens upon many parameters. These parameters include: 

type of activation function, network architecture and learning method. In the following section 

the main types of ANN architectures are presented.

3.3.3 ANN architectures

ANN architectures can be divided into two main categories depending on the kind of learning 

that is incorporated in the network (Pfeifer and Scheier, 1999). In the first category are neural 

networks that require no teacher and are said to be unsupervised. Unsupervised ANN usually 

divided into two types; Hebbian learning and Kohonen maps. Hebbian learning comes in many 

variations but usually takes place when the nodes on both sides of the connection are 

simultaneously active (sometimes within a given interval). The advantages of Hebbian learning 

includes: it is simple and requires little computation; it is purely local, meaning that for learning, 

only the neuron itself and its neighbours need to be considered; it is biologically plausible 

(Churchland and Sejnowski, 1992). Kohonen maps (Kohonen, 1982) are widely used in many 

applications such motor control, navigation, etc. The basic architecture of Kohonen map is 

described as follows: In the map layer, lateral (connections are called lateral if they link nodes 

within a layer, rather than between layers) connections are excitatory for close neighbours, 

inhibitory for those further away and neutral for the ones still further out. Patterns are presented
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to the model at the input layer, and depending on the particular architecture and choice of 

parameters, the system will eventually learn a particular categorisation of the input space. The 

Kohonen maps can be used if the classification data are unknown, can be used to map high- 

dimensional spaces into law-dimensional ones and as does Hebbian learning, Kohonen maps 

have certain neurobiological plausibility (Kohonen, 1989). The second category comprises 

neural networks that require a teacher and are said to be supervised. Supervised ANN usually 

divided into two network topologies; feedforward neural networks (FNN) and recurrent (or 

feedback) neural networks (RNN). Supervised FNN and RNN are discussed in more detail in 

the following section. However more emphasis will be given to FNN as used both in chapters 

five and six.

3.3.3.1 Feedforward neural networks (FNN)

FNN are constructed of one (perceptron neural network) or more (multilayer perceptron neural 

network) hidden layers between the input and output layers as shown in Figure 3-7. As can be 

observed from Figure 3-7 the network is divided into input layer, output layer and hidden 

layer(s). The neurons are forward connected between adjacent layers, signals propagate only in 

the direction from the input layer, through intermediate hidden layers neurons, to the output 

layer. FNN are classified as fully connected, if every neuron in the layer of the network is 

connected to every neuron in the adjacent forward layer. However, if some of the 

communication links (synaptic connections) are missing from the network, it is said that the 

network is partially connected. It has been proved that any non-linear function can be 

approximated using FNN with one hidden layer having non-linear activation functions 

(Cybenko, 1989), (Hornik et al, 1989) and (Funahashi, 1989). The same result or even better 

can be achieved if more than one non-linear hidden layers form the network. (De Villiers and 

Barnard, 1993) have demonstrated that FNN with two hidden layers are more prone to fall into 

local minima, which might give better approximation for some specific problems.
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Hidden 
Layer 1

Hidden 
Layer 2

Output 
Layer

Figure 3-7 Feedforward neural network

The general relationship in a FNN between the input x and the output y is represented by the 

following equation (3.27).

(3.27)

In the particular case in Figure 3-7 with two hidden layers, equation (3.27) can be expressed as 

follows:

yfexM^fstafafeififeix)))) (3-28)

Where £ f = [wj,bj] with i = 1,2,3,4 is the vector parameter of each layer, w are the weights, 

b are the biases, x is the input vector and f are the activation functions for each layer of 

neurons. In order to allow the output of the network to be any real number within a certain 

bound, the activation function of the output layer is usually chosen to be a linear function. In 

order to guarantee the approximation properties of the network, the hidden layers activation
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functions are chosen to be a non-linear function with known derivatives (this requirement is due 

to the backpropagation algorithm). Two of the commonly used non-linear functions in the 

hidden layer are: the hyperbolic tangent sigmoid function shown in equation (3.25) with values 

in [-1,1] and logarithmic sigmoid function shown in equation (3.26) with values in [0,1].

3.3.3.2 Recurrent neural networks (RNN)

RNN are different from FNN in that their structure incorporates at least one feedback loop as 

shown in Figure 3-8. In general, the output of every neuron is fed back with varying gains 

(weights) to the input of all neurons. It is claimed that the presence of feedback loops has a 

profound impact on the learning capability of the network and on its performance (Ku and Lee, 

1995). The feedback loops commonly involve unit delays if dealing with discrete-time systems, 

or integrators in the continuous-time case. The RNN may be preferred to FNN when the 

measured plant outputs are highly corrupted by noise and the dynamics of the non-linear 

process are complex and unknown

.,—0

Output 
Layer

Figure 3-8 Recurrent neural network
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3.3.4 Training of feedforward multilayer perceptron NN

The multilayer perceptron (MLP) neural networks were not used in the past because of lack of 

an effective training technique. (Werbos, 1974) developed an algorithm called back-propagation 

in 1974, but his achievement remained almost unknown for almost a decade. (Rumelhart et al, 

1986) re-discovered the technique and later a closely related approach was proposed in 

(Cichocki and Unbehauen, 1994) and (Faussett, 1994). Since the work of (Rumelhart et al, 

1986) back-propagation algorithm has been successfully used for training of MLP networks. In 

addition, more recently, the back-propagation algorithm has also been adopted for training of 

RNN. A feedforward MLP network should perform a specific non-linear mapping or association 

task which can be expressed in terms of a given input/output pattern (pairs). These input/output 

relations are called a set of training examples. Training of the MLP network consists of the 

adaptation of all synaptic or connection weights in such a way that the discrepancy between the 

actual output signals and the desired signals, averaged over all training input examples, is as 

small as possible. In other words, the back-propagation algorithm can be considered as an 

unconstrained optimisation training problem of a suitably constructed error or cost function. A 

full description of the back-propagation algorithm is given in Appendix F. There are several 

different back-propagation training algorithms available in the literature. They have a variety of 

different computation and storage requirements and no one algorithm is best suited to all 

situations. The MATLAB library offers a wide range of different back-propagation training 

algorithms some of which include: basic gradient descent algorithm, gradient descent with 

momentum algorithm, Resilient back-propagation algorithm, Fletcher-Reeves conjugate 

gradient algorithm, Polak-Ribiere conjugate gradient algorithm, Powell-Beale conjugate 

gradient algorithm, Scaled conjugate gradient algorithm, BFGS quasi-Newton method 

algorithm, one step secant method algorithm, adaptive learning rate algorithm, Levenberg- 

Marquardt algorithm and Bayesian regularisation algorithm. It is very difficult to know which 

of the above algorithms will be the faster for a given problem as this depends upon many
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factors. Some of this factors include complexity of the problem, number of data points in the 

training set, number of weights and biases in the network and the error goal. The training 

algorithm used for the feedforward MLP networks in chapters five and six is Levenberg- 

Marquardt (Levenberg, 1944) and (Marquardt, 1963). This algorithm was chosen because it was 

found to have the fastest convergence over the others with accurate training. More details of the 

Levenberg-Marquardt algorithm can be found in Appendix F.

3.4 Clustering

Clustering is used in chapter five for the identification of a dynamic model (fuzzy model from 

PI speed controller). The problem of automatic generation of fuzzy IF-THEN rules is one of the 

most important issues in the development of fuzzy systems models. Clustering of numerical 

data, which is one of the most fundamental issues in pattern recognition and system modelling 

algorithms, can be successfully used to solve the aforementioned problem. The main purpose of 

clustering is to distill natural groupings of data from a large data set, producing a concise 

representation of the system's behaviour. To demonstrate the importance of clustering 

techniques consider the clustering problem in Figure 3-9. It is obvious that there are four 

clusters in Figure 3-9a when the objective function is based on distance between the elements. 

In this case reasoning easily can create clusters, such as IF X and Y are small THEN it is cluster 

1; IF X and Y are large THEN it is cluster 2, and so forth. On the other hand the clustering 

problem in Figure 3-9b is complex since every data point appears to be equidistance from each 

other. The important question here is whether a mathematical technique can do better job than 

the human brain for cases depicted in Figure 3-9b. In the following sections some definitions 

and notation in general cluster analysis is given. The main three offline clustering techniques 

are also discussed with more emphasis on subtractive clustering as this technique is 

implemented in chapter five for identification of dynamic fuzzy controller.
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Figure 3-9 Clustering based on distance: (a) Interpretable by human, (b) ambiguous to human.

3.4.1 Definitions and notations in cluster analysis

Prior the description of the off-line clustering techniques that can be used in identification, 

modelling and control strategies, some definitions and notations used in the cluster analysis are 

given. Note that the following sections only indicate the main definitions and notations of the 

cluster analysis whereas more details can be found in the literature (Bezdek, 1981), (Klir and 

Yuan, 1995), (Yen and Langari, 1999) and (Bezdek etal, 1999).

3.4.1.1 The data used in cluster analysis

One of the most important advantages of clustering techniques is that they can be applied to 

data that is quantitative (numerical), qualitative (categoric) or mixture of both. In chapter five 

where cluster analysis takes place for the identification of dynamic model the data considered 

are quantitative. In general, the data are typically observations and/or records of some physical 

process of a real system and/or control action. Each observation and/or record consists of n 

measured variables, grouped into an n-dimensional Euclidean space 9?" column vector
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Vk = [vik>V2k>-,v|/ nk ]T , v|/ k e9t n . A set of N observations and/or records is denoted by 

¥ = |z k |k = 1,2,..., N} and is represented as an n x N matrix as follows:

Vll

M>22

Vnl VnN

(3.29)

In pattern recognition terminology, the columns of the matrix are called patters or objects, the 

rows are called the features or attributes, and *F is called the pattern or data matrix. The 

meaning of the columns and rows of *P depends on the context of the classification problem.

3.4.1.2 Definition of clusters

Various definitions of a cluster can be formulated, depending of the objective of clustering. 

(Bezdek, 1981) defined a cluster as a group of homogeneous classes or objects that are more 

similar to one another than to members of other clusters. The term "similarity measure" has an 

important effect on the clustering analysis results since it indicates which mathematical 

properties of the data set, i.e. distance, connectivity, intensity should be used and in what way in 

order to identify the clusters. Distance can be measured among the data vectors themselves, or 

as a distance from a data vector to some prototypical object of the cluster. The prototypes 

(which are usually the centre of the clusters) or centroids are usually not known in advance, and 

are sought by the clustering algorithms simultaneously with the partitioning of the data. The 

centre of clusters may be vectors of the same dimension as the data objects, but they can also be 

defined as high-level geometrical objects, such as linear or non-linear subspaces or functions.
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3.4.2 Clustering algorithms (off-line)

This section presents three of the most representative off-line clustering techniques frequently 

used for fuzzy modelling (fuzzy c-means, mountain and subtractive). According to (Jang et al, 

1997) clustering techniques are validated on the basis of the following two assumptions.

1. Similar inputs to the target system to be modelled should produce similar outputs. In other 

words the target system to be modelled is a smooth input-output mapping.

2. These similar input-output pairs are bundled into clusters in the training data set. This 

means that the data set required conforming to some specific type of distribution. (Jang et 

al, 1997) claims that this is not always true. Therefore clustering techniques used for fuzzy 

modelling are highly heuristic, and finding a data set to which clustering techniques cannot 

be applied satisfactory is not uncommon.

3.4.2.1 Fuzzy C-means clustering

The Fuzzy C-means3 (FCM) clustering method was proposed by (Bezdek, 1974), as an 

improvement over previous clustering method called C-means (Dunn, 1974). FCM clustering 

method clusters the data by minimising the total "distance" of each data point to the cluster 

centre. In particular, FCM algorithm is an iterative optimisation algorithm that minimises the 

following cost function.

£K-ViI (3 - 30)
k=l i=l

1 C-means clustering method very often called K-means or hard C-means
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Where, n is the number of data points, c is the number of clusters, x k is the kth data point, 

Vj is the ith cluster centre, nik is the degree of membership (between 0 and 1) of the kth data 

in the ith cluster and m is a weighting exponent greater then 1 (typically m=2, m e [l, oo)). The 

degree of membership u, ik is defined by equation (3.31).

(3-31)
- V J

Starting with a desired number of clusters c and an initial guess for each cluster centre v,, 

i - 1,2,...,c, FCM clustering method will converge to a solution for Vj that represents either a 

local minimum or a saddle point of the cost function (Bezdek et al, 1999). The quality of the 

FCM solution depends strongly on the choice of initial values such as the number of clusters, 

clusters centres, etc. This is can be concluded as disadvantage of FCM, as the critical problem is 

how to determine the optimal number of clusters. To overcome this problem another fast 

algorithm is needed to determine the initial cluster centres or the FCM algorithm must run 

several times with a different sets of initial clusters. For detailed treatment of FCM clustering 

algorithm including its variants and convergence properties, the reader is referred to (Bezdek, 

1981).

3.4.2.2 Mountain clustering method

The mountain clustering method, proposed by (Yager and Filev, 1994a), (Yager and Filev, 

1994b), (Yager and Filev, 1994c), is a relatively simple and effective approach for estimating 

the number and initial locations of cluster centres on the basis of a density measure called the 

mountain function. This method makes a grid of the data space and computes a potential value 

of each grid point based on the distance to the actual data points (a grid point with many data
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points nearby will have a high potential value). The first cluster centre is chosen the grid point 

with the highest potential value. The main philosophy behind this method is that once the first 

cluster centre is chosen, the potential of all grid point are reduced according to their distance 

from the cluster centre (a greatly reduced potential will have grid point near the first cluster 

centre). The next cluster centre is placed at the grid point with the highest remaining potential 

value. This procedure (acquiring new cluster centre and reducing the potential of surrounding 

grid point) is repeated until the potential of all grid points falls below a threshold. The general 

form of the mountain method can be divided into three steps as follows:

1. Step one involves forming a grid on the data space, where the intersections of the grid 

lines constitute the candidates fro cluster centres, denoted as a set Y.

2. Step two involves the construction of the mountain function representing a data density 

measure. The height of the mountain function at an a point u e Y is given as follows:

N
, (3-32) 

2a 2

Where i|/j is the ith data point and CT is an application-specific constant, which determines 

the height as well the smoothness of the resultant mountain function. Equation (3.32) shows

that each data point \j/j contributes to the height of the mountain function h m (u) at u. This 

contribution is inversely proportional to the distance between vj/j and u. The higher the 

mountain function value at a point the higher is its potential to be a cluster centre.

3. Step three involves the use of mountain function to define the cluster centres (this is 

achieved by sequentially destruction of the mountain function). The first cluster centre
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Cj is the point in the candidate centres Y that has the greatest value for the mountain

function i.e., c = max(h m (o)j. Obtaining the next cluster centre requires eliminating the 

effect of the just-identified centre, which is typically surrounded by a number of points 

that also have high-density scores. This is can be done by revising the mountain function 

as follows:

= h Em_1 (u)-h m (c £ )exp
lu-cjl 2

(3.33)

Where E is the number of the cluster and q is a positive constant similar to the parameter 

a. The subtracted exponential part in equation (3.33) is a Gaussian function inversely 

proportional to the distance between u and C E , as well as being proportional to the height

h m (c e ) at the centre. Note that after subtraction, the new mountain function reduces to zero 

at o = Cj. The s cluster centre is again selected as the point in Y that has the largest value 

for the new mountain function. This process of revising the mountain function and finding 

the next cluster continuous until a sufficient number of cluster centres is attained.

The main advantage of the mountain clustering method is that it does not required a predefined 

number of clusters and also is less sensitive to noise than other clustering methods such as FCM 

(Pal and Chakraborty, 2000). The main disadvantage of the mountain clustering method is that 

is computationally expensive and the amount of computation grows rapidly with the increase in 

the dimensionality of the data.
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3.4.2.3 Subtractive clustering

Subtractive clustering is used in chapter five for the identification/construction of local models 

(fuzzy speed controller). In sections 3.4.2.1 and 3.4.2.2 two well-established clustering 

algorithms for fuzzy model identification were presented. It was shown that both algorithms had 

disadvantages such as determination of optimal number of clusters (FCM) and increase in 

computation as the dimensionality of the problem increases (mountain clustering). To overcome 

these problems Subtractive clustering is an alternative approach to solve complex and high- 

dimensional problem. In the following, a subtractive clustering algorithm is presented in more 

details than the previously presented algorithms as this has been used extensively in this thesis.

Subtractive clustering proposed by (Chiu, 1994) is an extension of the mountain clustering 

method. Using subtractive clustering data points (not grid points) are considered as the 

candidates for cluster centres. The computation is simply proportional to the number of data 

points and independent of the dimension of the problem under consideration. Consider a 

collection of n data points {x 1? . . ., x n } in an M-dimensional space. Without the loss of 

generality, the data points are assumed to have been normalised within a hypercube. Since each 

data point is a candidate for cluster centres, a density measure at data Xj is defined as:

(3.34)

Hence, a data point will have a high-density value if it has many neighbouring data points. The 

radius ra defines a neighbourhood. Data points outside this radius contribute only slightly to the 

density measure. After computing the density measure for each point, the one with the higher 

density is selected as the first cluster centre. Let x C[ be the centre of the first group and D Ci its 

density. Then, the density measure for each data point Xj is revised by the formula:
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D, =D, -D C) e "»"' "C1 " , p = -i, rb >0 (3.35)

The radius rb represents the radius of the neighbourhood for which significant density measure 

reduction will occur. The radius for reduction of density should be to some extent higher than 

the neighbourhood radius to avoid closely spaced clusters. The value is typically, rb = 1 .5ra . 

Since the points closer to the cluster centre will have their density measure strongly reduced, the 

probability for those points to be chosen as the next cluster is lower. This procedure is carried 

out iteratively, until the stopping criteria are reached. The algorithm is presented as follows.

Subtractive clustering algorithm

if D k > s up D Ci (Dk is the density of location of the kth cluster centre x Ck )

Accept xCk as the next cluster centre and continue 

elseifDk <sdown D Ci

Reject x Ck and end the clustering process 

else 

Let d min be the shortest distance between x k and all previously found cluster centres

ra D c,

Accept xk as the next cluster centre and continue 

else

Reject x c k and set the density at xCk to 0 

Select the data point with the next highest density as the new x Ck and re-test

end if 

end if
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Here, s up specifies a threshold above which the point is selected as a centre, and e down 

specifies the threshold below which the point is definitely rejected. Typically, e up =0.5 and 

£ down _Q 15. if the density measure fails in the gray region, then checking of data points is 

required to identify where they provide a good trade-off between having a significant density 

measure and being sufficiently far from existing clusters. At the end of clustering procedure, a 

set of fuzzy rules will have been obtained. Each cluster will represent a rule. However, since the 

clustering procedure is conducted in a multidimensional space, fuzzy sets must be obtained. As 

each axis of the multidimensional space refers to a variable, the centres of the membership 

functions for that variable are obtained by projecting the centre of each cluster in the 

corresponding axis. As for the widths, they are obtained on the basis of the neighbourhood 

radius ra , defined while performing subtractive clustering. Since Gaussian membership 

functions are used, their standard deviations are computed as follows:

max(x kj)-min(x ki )
  \J2l—  LJ9Z j k = ij . ,N (3.36)

V8

3.5 Design of control systems architectures for autonomous mobile robots

The control architecture for autonomous mobile robots presented in chapter six is hybrid. The 

scope of this section is to classify and discuss the main design methodology of control systems 

architectures for autonomous mobile robots. In section 3.5.1 some definitions related to design 

of control system architectures are given. Section 3.5.2 presents a short classification of the 

currently used control architectures. The main key issues when designing such control system 

architectures for complex control systems are discussed in section 3.5.3. In section 3.5.4 the
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most important properties, which can characterise a control system architecture for autonomous 

mobile robots, is discussed.

3.5.1 Definitions used in design of control system architectures for autonomous 
mobile robots

In most books and articles terms such as robot, autonomy, etc, are used without any explicit 

definition. Sometimes this is confusing as definitions regarding the same thing are variance to 

each other. Some definitions of the main terms used in this thesis are given in the following, just 

for consistency purposes. Note, that the following definitions cannot be treated or considered to 

be unique or the best.

Robot: According to the Robotics Industry Association (RIA) "a robot is a programmable, 

multi-functional, manipulator designed to move material, parts, tools, or specialised devices 

through variable programmed motions for the performance of a variety of tasks". This 

definition is quite restrictive, excluding mobile robots, among other things. In this thesis the 

robot's definition used is the one by (Arkin, 1998) in which "robot is a machine able to extract 

information from its environment and use knowledge about its world to move safely in a 

meaningful and prospective manner".

Autonomy: For the scope of this thesis autonomy will be defined "as the ability of a system to 

perform complex tasks without human guidance while coping with an unkiown and changing 

environment".

Autonomous mobile robot: (Russel and Norvig, 1995) has given the following definition for 

an autonomous mobile robot. "An autonomous mobile robot can make decisions on its own, 

guided by the feedback it gets from its physical sensors". This definition fully defines the term 

of autonomous robot used in this thesis.
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Behaviour: What an autonomous robot is observed doing. It can be seen also as the result of an 

interaction of a robot with its environment (Pfeifer and Scheier, 1999).

Behaviour control: Set of mechanisms that determine the behaviour in which the robot will 

engage (Pfeifer and Scheier, 1999).

Behaviour-based robotics: When the overall robot design is decomposed, not into functional 

components (learning, planning, etc.) but into a number of behaviours such as avoid obstacle, 

reach target, etc (Brooks, 1986).

Control architecture: Two definitions have been chosen to define control architecture. The 

first is by (Pfeifer and Scheier, 1999) which states: "structure that determines the robot- 

environment coupling, that is how the sensory and motor signals are processed to produce 

behaviour". The second definition is also given by (Pfeifer and Scheier, 1999) and states: "the 

control architecture of a robot defines how the job of generating actions from percepts is 

organised"

3.5.2 Classification of control architectures

According to (Ridao et al, 1999) the control architectures can be classified in three main 

categories: deliberative, reactive and hybrid. Each category is discussed in brief in the following 

sections. More details can be found in (Muller, 1997), (Ridao et al, 1999) and (Senehi and 

Kramer, 1998).

3.5.2.1 Deliberative architectures

These architectures are strongly based on traditional artificial intelligence techniques based on 

planning and also on a world model. Deliberative architectures are usually very difficult to
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adapt in a dynamic environment where changes are taking place very fast. In general, they 

present a predictable behaviour with some degree of reactivity through re-planning. Two major 

architectural principles that are often incorporated in a deliberative architecture are the 

hierarchical and centralised structure. Hierarchical architectures use a functional and 

hierarchical decomposition where the tasks are decomposed into subtasks and the control is 

organised in progressive levels with different levels of data abstraction. Centralised 

architectures (see section 3.5.3.1) are organised as a set of modules communicated through a 

central control module.

3.5.2.2 Reactive architectures

The main philosophy behind the reactive architectures (Brooks, 1986), also known as 

behavioural architectures, is that the modules in which the system is built up of are behaviour 

producing instead of functional as in deliberative architectures. Normally, the missions are 

described as a sequence of phases with a set of active behaviours. The behaviours continuously 

react to the situation sensed by the perception system. Each of these behaviours pursues its own 

goal and can be defined using rules or any kind of link between sensor and actuator module. 

The main robot's global behaviour emerges from the combination of the elemental active 

behaviours. These types of architectures are more suited for dynamic environments where 

changes are taking place very fast.

3.5.2.3 Hybrid architectures

Hybrid architectures are integrating deliberative and reactive activities, where deliberative 

elements are used for planning and problem solving and reactive elements are used for obtaining 

a quick response action to situations that the system is not able to predict (real-time control). 

According to (Ridao et al, 1999) hybrid architectures are normally structured into three layers: 

planning layer, control execution layer and functional reactive layer. At the upper layer a 

planner transforms the mission into a set of tasks to be executed by the control system
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(symbolic reasoning takes places at this layer). The second layer may be seen as a task 

refinement layer plus its execution control. In this case the execution control drives the system 

into a sequence of phases, where each phase is characterised by a set of active behaviours. 

Finally the last layer is a function reactive layer, normally executed asynchronously to the rest 

of the system.

3.5.3 Main key issues of the design of control systems architectures for multiple 
autonomous mobile robots

As mentioned in the introduction of this thesis the use of multiple robots offers a wide range of 

advantages over the use of a single robot. However, the architecture design requirements for a 

multiple mobile co-operative robot system are complex and have several differences compared 

to single robot architecture. In the following sections the six key issues, regarding the 

architecture design of multiple autonomous mobile robots is discussed in brief.

3.5.3.1 Centralised, decentralised or hybrid control

The first decision that has to be made is whether the control architecture will be centralised, 

decentralised or one form of hybrid. There is no specific law or any particular restriction of 

which control form is the best. This is because the control architecture that is suitable for a 

given task may not be flexible and suitable for another. In centralised control architecture, 

decisions are made in a central mechanism or in a single control unit (agent), and afterwards 

transmitted to the executive components (robots). Due to the complexity of the hierarchical 

planning system the development of these architectures is difficult because it is not easy to 

determine the suitability of this concept in advance. With the decentralised control architecture, 

each robot makes its own decisions and performs only these decisions without having any 

connection with a central mechanism or single control unit. This is very important for a multiple 

mobile co-operative robot system, because problems such as fault-tolerance, the difficulty of 

adding new features into the system, and re-implementation of the system are automatically
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avoided. The research literature has been dominated with works on decentralised control 

architecture, avoiding the centralised approach. Hybrid control architecture - often designers 

decide to adopt a hybrid solution of the decentralised and centralised approach. If the problem 

lies where the decentralised system needs an internal central unit a hybrid solution has to be 

adopted.

3.5.3.2 Heterogeneous or homogeneous robots

A second step in the design of the architecture for multiple mobile co-operative robots is the 

selection between heterogeneous and homogeneous robot characteristics. The robots should be 

either homogeneous or heterogeneous, depending on the task being undertaken. A homogeneous 

robot team consists of a number of robots, which have the same skills and capabilities. Most of 

the research projects involve homogeneous robot teams. This choice makes the design process 

much easier, because it minimises the complexity of task allocation. Co-operation may involve 

a team of robots provided with different skills (the mechanical design may be different also), 

referred to as heterogeneous robots. The complexity of the design is increased dramatically 

compared with the design process with homogeneous robots.

3.5.3.3 Co-operation with or without communication

Communication between multiple robots may make the team able to perform some cooperative 

tasks more efficiently. However, achieving co-operation within the robot team with 

communication produces several advantage i.e. achieving very complex tasks and also 

disadvantages i.e. waiting time, and transmission error. The above benefits and restrictions of 

communication led the research community to distinguish between explicit (with) or implicit 

(without) communication. If the robots (agents) communicate with each other directly, or if 

there is broadcast communication between them, then, this form of communication is called 

explicit communication. If the robots do not communicate with each other, or there is no
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broadcast communication between them, but there is communication through the world 

environment, then this form of communication is called implicit communication.

3.5.3.4 Making robots that work as a team

The key issue in team working is how well the modelling between robots and environment has 

been developed. This key issue has a strong relationship with the communication key issue 

(modelling of purely communicating robots, or not).

3.5.3.5 Multiple robots path planning

Multiple robot path planning differs from single robot path planning in several ways. A mobile 

robot has to avoid obstacles and also other robots. To address this particular problem is very 

complicated problem, which should be taking into account when designing control architecture 

of autonomous mobile robots.

3.5.3.6 Learning

The final key issue in architecture design is learning in multiple robot systems. Changes within 

the robot's environment can result in poor robot performance and decreases the ability to 

achieve a given task. One solution to this problem is to introduce a learning method. The chosen 

method will increase the robot's performance and its ability to respond correctly to environment 

changes. This desirable result will be achieved by learning, so the robot system will be able to 

optimise and set its own control features. The main problem is that compared to single robot 

learning, co-operative learning adds the challenge of a much larger search space, awareness of 

other team members, and also the synthesis of the individual behaviours with respect to the task 

given to the group.
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3.5.4 Properties of control architectures

When comparison between different types of control architectures is undertaken, this 

comparison should be made based on a number of important properties. (Pettersson, 1997) and 

(Yavuz and Bradshaw, 2002) have proposed a number of properties for comparison between 

different types of control architectures. Classification among these properties is proposed and 

discussed in brief as follows:

Modularity. In order to facilitate adding of new components or functionality into a control 

architecture then modularity is important. A modular architecture can produce a flexible 

robot(s) that can be easily adapted to different applications and environments. Modularity can 

be achieved either by focusing on independent modules or independent behaviours.

Robustness. The control architecture should be able to continue to function during unexpected 

situations. Reactive and hybrid architectures are generally more robust than deliberative ones.

Fault tolerance. In order for a robot to be able to achieve its goal in an environment that is 

dangerous or unsuitable for humans despite component failures it must be able to function 

without any possibility of repair. In that case the robot must be able to detect and isolate 

possible faults.

Distribution. Related to the fault tolerance of architecture is its distribution. As mentioned in 

section 3.5.3.1 the problem of centralised architecture is that the central parts become a 

bottleneck that slows down the control system. The problem, which may occur utilising 

distributed architecture, is communication and co-ordination that can be very difficult. An 

example of a fully distributed architecture is ALLIANCE developed by (Parker, 1999) which is 

tolerant to faults in the distributed modules.
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Reactivity. This property of control architecture provides the robot(s) with the ability to act in 

short and predictable time on any sensory input. Reactivity is very important if the mobile robot 

has to operate in unknown and unstructured environment. Behavioural architectures are more 

suited to this property whereas this can often be a problem with deliberative ones as some type 

of modelling before acting on the sensory input is required.

Adaptability. Adaptability is considerable property, since control architectures will need to be 

adapted and extended during the lifetime of the robot. An important aspect of adaptability is the 

ability to adapt to changes in the environment by dynamic learning or dynamic switching. In 

same cases in order to achieve adaptability, integration of problem solving and learning in the 

control system is considered.

Planning. This property allows the robot to simulate itself and its environment in real time 

(unsuitable for reactive architectures).

Co-operation. One-way to increase modularity, distribution and robustness is to use co­ 

operative agents. Co-operative agents having different skills and capabilities for specific 

subtasks, have the ability to solve problems more efficiently and effectively than single agent. 

An important aspect of co-operation is communication between the agents (communication of 

goals, states, etc.).

Uncertainty. Uncertainty has been one of the main aspects of study in mobile robotics because 

plays an important role in many real-time applications (Min et al, 1997). As prior knowledge of 

the environment may be incomplete and time variant, therefore uncertainty is one of the main 

design constraints in control systems architecture. The control architecture should be able to
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cope with the dynamic changes in the environment that occur simultaneously with the operation 

of the robot.

Learning. On-line learning also is an important issue to be considered as it has promising 

features for design and implementation of more flexible and adaptive control systems 

architectures.

Goal oriented. Navigation of the mobile robot implies the meaningful progress towards the 

achievement of the goal. Therefore control architectures must combine deliberative with 

reactive planning in order to be successful in navigational tasks.

Efficiency. Control architecture designed for complex- real-time systems must provide the 

means by which the system may accomplish its objectives efficiently. The control architecture 

must be able to satisfy real-time constraints, safety and promote fault-tolerance.

Easy of application. Crucial consideration in the design of control architectures for mobile 

robots is the ease with which a system may be developed, tested, debugged and understood.

Optimal control (operation). Control architectures must be able to provide control design 

methods to choose the best behaviour or controller in an optimal manner. Therefore control 

architectures must incorporate deliberative reasoning and hierarchical structures.

3.6 Multi-agent systems (MAS) in control engineering

As mentioned previously the new control system architecture in chapter six is hybrid but also is 

multi-agent type constructed and orientated. During the past few years, the need for large scale 

and complex systems has become obvious. The main problem is often the design of the 

intelligent control structure for such complex systems, and also for system components if the
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overall system consists of several separate systems (i.e., controllers). Multi-agent systems 

(MAS) theory is a relatively new field in control and systems engineering and can be used 

successfully to solve the aforementioned problem. A special role in the theory and tools for 

solving complex control problems is attributed to the concept of agent4 . An agent represents an 

abstract entity that is able to solve a particular (partial) problem. Agents have the ability to be 

combined into a multi-agent system, such that the overall multi-agent system is able to solve a 

more complex problem. In this section the background information of MAS, classification of 

the main agent control architectures and the concept to construct local controllers that consist of 

several other controllers using MAS is presented.

3.6.1 Autonomous agents

In traditional artificial intelligence (AI) and cognitive science, computer models have been the 

predominant tools. Synthetic methodology, however, can be extended to include not only 

simulations, but also physical systems, artificial creatures, behaving in the real world (Pfeifer 

and Scheier, 1999). As mentioned in section 3.5.1 "autonomous" designates independence from 

human control. Typically, autonomous agents have the form of mobile robots and can be used 

as models of biological systems, human or animals. To date, autonomous agents behave in the 

real world without the intervention of a human. They have sensors to perceive the environment, 

and they perform actions that change the environment. In other words autonomous agents are 

systems in their own right as shown in Figure 3-10. This is the main reason why autonomous 

agents are well suited to explore issues in the study of control engineering and artificial 

intelligence in general.

4 Introducing the concept of an agent in a precise and technical manner is a difficult thing to do, as there no generally 
accepted definition of it (Van Breemen and De Vries, 2001). In this thesis the word agent is used to represent both a 
physical entity (i.e., robot) and virtual entity (software component). Good source of reference regarding variety of 
agent definitions is given in (Ferber, 1999).
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Agent

— 1 Environment IA
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Figure 3-10 An agent as entity (physical or virtual) that senses, thinks and acts in some 
environment in order to achieve its goal.

3.6.2 Multi-agent systems

Despite the fact that agents are often presented as entities that solve problems in order to realise 

their goal, sometimes many problems are far too complex to be handled by an individual agent. 

The solution to such complex problems can be often obtained using a group of agents. From the 

terminology point of view a group or society of agents is called multi-agent system (MAS). In 

recent years the study of such systems (MAS) has become a new field of research (Stone and 

Velose, 2000) and (Van Breemen and De Vries, 2001). (Lesser, 1998) has defined MAS as a 

loosely coupled network of problem solvers that work together to solve problems that are 

beyond the individual capabilities or knowledge of each problem solver. According to (Jennings 

et al, 1998), a general design methodology of MAS does not exist. (Stone and Velose, 2000) 

have identified several good reasons justifying why a MAS approach should be adopted. Some 

of these reasons include: distributed problem (a MAS is suitable for problems which are 

distributed in nature), robustness (a MAS that has redundant agents might tolerate failures in 

one or several of the agents, and is thus more robust than a centralised system), scalability 

(because agents are modular, it should be easy to add and remove agents from the MAS), 

simpler implementation (again because agents are modular, implementing a MAS should be
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easier than implementing one overall centralised system), and parallelism (to speed up the 

computation time needed for solving a problem, some parts could be executed in parallel). 

Detail background information about design aspects, co-ordination, structure and some of the 

key issues in agent technology of MAS, can be in found in the work of (Lesser, 1998), (Ferber, 

1999) and (Van Breemen and De Vries, 2000).

3.6.3 Agent control architectures

Agents are not common in control engineering. Possible reasons behind this could be the 

following. Firstly, the field of multi-agent systems is relatively new. This means that merging 

MAS and control engineering has not get happened. Secondly, merging MAS and control 

engineering is very challenging and difficult task, because control theory has a strong 

mathematical foundations, whereas the field of MAS is mainly focused on abstract descriptions 

of the system.

At the present time, it is a non-trivial problem to design the architecture of an agent, given a 

specification of its behaviour. In the literature it has been documented that there are several 

different reasoning models which an agent can possess (Pfeifer and Scheier, 1999). However 

each particular model can be implemented by several different control architectures. (Ferber, 

1999) presents and discuss a list of the main agent control architectures based on type of 

approach, subordination structure, pairing and constitution as shown in Table 1, along with their 

associated parameters. The new hybrid control architecture presented in chapter six draws its 

design from the most of the main agent control architectures shown in Table 1 but most from 

competitive tasks architecture, production rules architecture, connectionist, dynamic system and 

multi-agent architecture.
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Type of 
architecture
Horizontal 
modular

Blackboard

Subsumption

Competitive 
tasks

Production
rules

Classifiers

Connectionist

Dynamic 
system

Multi-agent

Approach

Horizontal 
functional

Functional

Vertical 
functional

Vertical 
functional

Functional

Vertical
functional
Vertical 

functional

Vertical 
functional

Object/functional

Type of 
component

Module

Task

Primitive 
task

Task + 
Primitive 

task

Rule

Rule

Formal 
neuron
Stimuli-

command 
relationship

Agent

Subordination 
structure

Hierarchical

Hierarchical
(Meta)

Hierarchical

Hierarchical 
(Competition)

Hierarchical
(Meta)

Hierarchical

Egalitarian

Egalitarian

Egalitarian

Coupling 
structure
Fixed (but 

progressive)

Variable

Fixed

Variable

Variable

Evolutionary

Fixed (by 
weight)

Fixed (but 
progressive)

Variable

Constitution

Predefined

Predefined

Predefined

Predefined

Predefined

Predefined

Predefined

Emergent

Emergent

Table 1 Main agent control architectures (after (Ferber, 1999)) 

3.7 Stateflow design tool based on finite state machines theory

The methodology chosen in chapter six for the design and modelling of global state 

identification mechanism., supervisor-like co-ordination object responsible for several local 

controller-agents and also the tool for identification of direction of neighbour robots is 

stateflow, which is based on the theory of finite state machines (FSM).

3.7.1 Finite state machines (FSM)

Finite state machines are widely used in the modelling and control of system in various areas 

(Moor and Raisch, 1999), (Singh and Nowick, 2000), (Carter, 2001), (Sato and Gohara, 2001), 

(Giua, 2001) and (Roze and Cordier, 2002). Descriptions using FSM are useful to represent the 

flow of complex control problems and are amenable to formal analysis such as model and 

control algorithm checking. An FSM consists of a finite number of states and conditional 

transitions between them. The FSM reads input symbols from the finite alphabet and produces 

output symbols (actions) taken from another (or possible the same) finite alphabet, while
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jumping between the different states. More details in the operation of FSM can be found in 

(Gill, 1962), (Harel, 1987), (Hatley and Imtiaz, 1988), (Villa et al, 1997) and (Kam et al, 1997). 

In the following, the basic definition of a FSM either as non-deterministic or deterministic is 

given.

Definition 3-14 (non-deterministic finite state machine or simple FSM): A NDFSM is defined 

as a 5-tuple M = (S,I,O,T,R) where S represents the finite state space, I represents the finite 

input space and O represents the finite output space. T is the transition relation defined as a 

characteristic function T:IxSxSxO-»B. On an input i, the FSM at present state p can 

transit to a next state n and output o if and only if T(i,p,n,o) = l (i.e., (i,p,n,o) is a 

transition). There exist one or more transitions for each combination of present state p and 

input i. R c S represents the set of reset states.

Definition 3-15 (deterministic finite state machine or completely specified FSM): A DFSM is 

defined as a 6-tuple M - (S, 1,0,5, A,, r) where S represents the finite state space, I represents 

the finite input space and O represents the finite output space. 5 is the next state function 

defined as 5:1x S-» S where n e S is the next state of present state p e S on input i e I if and 

only if n = 8(i,p). A. is the output function defined as A,: I x S -> O where o e O is the output 

of the present state peS on input iel if and only if o = X(i,p). reS represents the unique 

reset state.

3.7.2 Stateflow

The stateflow design tool provided by (The Math Works, 1997) is a powerful graphical design 

and development tool for complex control and supervisory logic problems. The advantages of 

using stateflow can be summarised as follows: model visualisation, simulation of complex
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reactive systems based on FSM, design and development of deterministic supervisory control 

systems, easily design modification, evaluation of results, verification of system's performance 

at any stage of the design and integration with Simulink platform for system analysis and 

modelling. Another, important property of stateflow is that enables the representation of 

hierarchy, parallelism and history. Hierarchy is useful for designing very complex control 

systems, parallelism is useful as two or more orthogonal states can be active at the same time 

and history provides the means to specify the destination state of a transition based on historical 

information. An example of stateflow diagram is shown in Figure 3-11. The main components 

of the diagram are briefly discussed in the following.

Transition

State

[sensor = = threshold] 

Figure 3-11 An example of 2-state stateflow diagram based on FSM theory

As can be observed from Figure 3-11, state5, transition and condition are the main components 

of the stateflow diagram (more details of all components comprising a stateflow diagram can be 

found in (The MathWorks, 1997)). State describes a mode of an event-driven system. The 

activity or inactivity of the state dynamically changes based on events and conditions (events 

are non-graphical objects and thus not represented directly in the Figure 3-11). A transition is a 

graphical object that links, in most cases, one object to another. One end of the transition is 

attached to a source object and the other end to a destination object. The source is where the

5 The idea of "state" as a concept in the representation of systems was first introduced in 1936 by Turing, A. M. 
(TURING, A. M. 1936. On Computable Numbers, with an Application to the Entscheidungsproblem. Proc. London 
Math. Soc., 42 (2), pp. 230-265)
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transition begins and the destination is where the transition ends. A transition describes the 

circumstances under which the system moves from one state to another. A condition is a 

Boolean expression specifying that a transition occur, given that the specific expression is true. 

Figure 3-11 shows that if a sensor is equal to threshold then no obstacle has been found, thus the 

system it will stay in state 1. If the sensor is grater than the threshold then the system will jump 

to state 2. The system will return to state 1 if the sensor reading is equal to a threshold.

3.8 Discussion

As mentioned in the introduction the main scope of this chapter is to propose, justify and 

present the main research methodology adopted for the research work carried out in this thesis. 

The main methodology was broken down into nine basic steps. Steps one, two and three present 

the design methodology for the low-level control of the proposed control architecture, which is 

modelling and control of the MIABOT V2 mobile robot. A new concept within the first three 

design steps is the constrained optimisation using the non-linear design (NCD) tool. Although 

constrained optimisation is well documented in the literature NCD is a relatively new tool 

providing both tuning of control parameters (controller gains) and optimisation/identification of 

either physical parameters (optimisation of physical parameters, such as moment of inertia can 

be achieved). The next three steps propose the design methodology of fuzzy, neural and 

clustering techniques. One of the main advantages of fuzzy systems is that there is no need to 

have a mathematical model of the system, it is possible to control non-linear plants and using 

comprehensive linguistic rules and it is possible to implement expert human knowledge and 

experience. However, it is impropriate to note that fuzzy systems cannot solve all control 

problems. Like any other design methodology the use of fuzzy logic has some drawbacks, such 

as no global or systematic method for the transformation of the human experience into the rule 

base of the fuzzy system. In addition, it is not possible to demonstrate stability of the controlled 

system since the model is not known and it is not guaranteed that rules are coherent (the 

possibility of mismatch between the rules exists). The advantages of neural networks have
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already discussed in the introduction of this chapter. However, it is important to discuss and 

identify drawbacks of ANN, if any, and possible similarities with fuzzy systems. A considerable 

drawback of ANN is that knowledge extraction and knowledge representation are difficult. This 

results in some kind of integration between fuzzy and neural systems. For instance, automatic 

design and fine-tuning of the membership functions used in fuzzy control through learning by 

neural networks. Clustering techniques described in section 3.4 can be considered as a helping 

tool for developing both fuzzy and neural systems. The final three steps of the proposed design 

methodology are very closely related. In chapter six, the final three steps of the proposed 

methodology are merged for the total integration of the control system. In section 3.5 it was 

shown the background information of the design of control systems architecture for autonomous 

mobile robot followed by the main design methodology of multi-agent systems in section3.6 

and stateflow design in section 3.7. It was shown that there are still open areas for research on 

merging of different fields, such as multi-agent systems and control engineering.

3.9 Summary

As mentioned in the introduction of this chapter there is no formal method for developing 

integrated solutions for advanced mobile robotic systems. This chapter proposes, justifies and 

presents the main methodology adopted for the research work carried out in this thesis. The 

main methodology has been broken down into nine basic steps. Each step is presented 

individually focusing on design/modelling issues following a discussion of either advantages or 

disadvantages when the particular method is adopted. The first step concerns conventional 

control design, which is used in chapter five to model speed controller for the mobile robot. The 

second step refers to constrained optimisation using non-linear control design tool for 

tuning/optimisation of physical and control parameters in chapters four and five. The design 

methodology for fast robust stability testing and analysis based on interval polynomials is 

discussed in the third step, where, using the parametric robustness analysis approach 

(Kharitonov's Theorem) the closed-loop control system (controller and plant) is proved to be
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robustly stable under uncertainty in robot dynamics. Steps four, five and six discuss the main 

methodology for modelling and identification of local controllers using fuzzy logic systems, 

artificial neural networks and clustering techniques. Steps seven and eight define the 

methodology regarding the design of control systems architectures of mobile robots and multi- 

agent systems as additional tool in development of control architectures. The stateflow design 

tool based on finite state machines theory is the final step of the proposed design methodology. 

Using this tool, model visualisation and construction of complex reactive systems can be 

achieved. In particular this design tool is used in chapter six as a global state identification 

mechanism, supervisor-like co-ordination object for several local controllers-agents and also as 

tool for identification of direction of neighbour robots.

The contributions of this chapter are: A proposed design methodology for developing integrated 

solutions for autonomous mobile robotic systems and classification of the main design 

methodology (properties) of control systems architectures for autonomous mobile robots. Fuzzy 

systems, neural networks and clustering techniques are described under a unifying theory. 

Discussion based on merging multi-agent systems and control engineering.

In the next chapter the design methodology of steps one and two is used for the derivation and 

establishment of a dynamic model of the MIABOT V2 mobile robot.
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4
Modelling of MIABOT V2 
Mobile Robot

4.1 Introduction

As mentioned in the introduction of this thesis the design and testing of the new hybrid multi- 

agent control architecture presented in chapter six and seven is highly dependent on the 

accuracy of the mathematical model describing the system to be controlled. Therefore the main 

purpose of this chapter is to derive and establish a dynamic model of the MIABOT V2 mobile 

robot.

In the research on autonomous mobile robots, experiments are very important and many 

experimental approaches towards mobile robot research have been done. However, the heavy 

cost of a large number of experiments is a serious problem in the development of control 

algorithms. To avoid the cost of experiments, simulations using mathematical models of the 

plant have been a popular method for research on mobile robotics. For instance, to show results
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of planning algorithms (Borenstein, 1995), (Will and Zak, 1997), (Louste and Liegeois, 2000), 

(Pruski and Atassi, 2000), (Tuneski et al, 2001) and (Egerstedt and Hu, 2002) to analyse and 

design motion control systems (Menezes de Oliveira et al, 2000), (Pajaziti et al, 2000), 

(Herrmann, 2001) and (Kodagoda et al, 2002) and to investigate sensor characteristics (Everett, 

1995), (Bemporad et al, 2000) and (Han et al, 2001). Therefore for the design of control 

systems the importance of a mathematical model, describing the system to be controlled, is well 

recognised.

Figure 4-1 MIABOT V2 mobile robots

Modelling the behaviour of dynamic systems is quite a complex task. Generally the model 

should describe, acceptably well, the relevant dynamics of the plant. The more complex the 

model is, the more difficult the controller design will become. For this reason, it is common 

practice to distinguish between models used for control design purposes from those used for 

simulation purposes. In the former, only the relevant dynamics are represented, often in a way
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that are compatible with the selected control design technique, while the latter it is important 

that the discrepancies between the real plant response and the model response is reduced.

In a general case, any mobile robot can be modelled with both a kinematic and a dynamic 

model. The kinematic model of a mobile robot is required to give its global description and to 

understand its manoeuvrability properties. However, there are cases in which the kinematic 

model is necessary in order to analyse the behaviour of the robot within the framework of the 

theory of nonholonomic systems. In this case the controllability, the reducibility, and the 

stabilisability of the kinematic model are also analysed. The dynamic model will give a 

complete description of the dynamics of the system including the generalised forces produced 

by the actuators. Similar to the kinematic model, the dynamic model can be used also to analyse 

controllability, reducibility, and the stabilisability.

However, the position accuracy of the robot is mainly affected by mechanical disturbances in 

which the most severe is wheel slippage (due to accelerations and fast turning). Most of the 

disturbances have been identified and are discussed below.

In order to minimise slip, the contact surface between wheels and floor should have a high 

friction coefficient, so rubber tyres are used. However, it is difficult to obtain rubber tyres with 

exactly the same diameter. In addition, distributed loads will slightly compress one tyre more 

than the other, thus changing its rolling radius. Wheels with different diameters cause the robot 

to travel along an arc, rather along a straight line, even if the motors are running at equal speeds. 

There is a contact area, rather than a contact point, between the wheel and the floor. This causes 

an uncertainty about the effective distance between the drive wheels, creating inaccuracies when 

turning. Another major mechanical disturbance is caused by misalignment of the drive wheels. 

This affect will produce a lateral drag force resulting in a curved path even when both wheels 

are exactly of the same diameter and are rotating at the same velocity. The condition of the
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batteries affects the robot performance a great deal. If the batteries are 'down' there is a greater 

drop in voltage when they are loaded and vice versa. Finally it was found that at slow speeds the 

motors are not very reliable. This is more obvious particularly at starting when the input is low 

(this is basically due to friction). Taking into consideration all these disturbances, it is 

worthwhile to note that the modelling process is quite a complex and challenging task.

This chapter is organised as follows: Section 4.2 introduce the main features of the MIABOT 

V2 mobile robot. Analytically, from section 4.2.1 to 4.2.3 the main components of the mobile 

robot, the drive train and the DC motors are presented. In section 4.3 the kinematic model is 

derived with some discussion based on nonholonomic systems. Section 4.4 gives the full non­ 

linear dynamic model of the robot, followed by, in section 4.5, the illustration of the linearised 

model. To verify the accuracy of the model both experiments and simulation studies were 

conducted. The main results of this chapter are presented in Section 0. A discussion follows in 

section 4.7 and finally the summary of the chapter is presented in section 4.8.

4.2 Main features of MIABOT V2 mobile robot

Merlin Systems Corporation Ltd, manufacture the MIABOT V2 mobile robot. The robot is 

currently used as a robot footballer in the Mechatronics Research Centre and in other 

Universities throughout the UK (Plymouth University, Salford University, Open University, 

Essex University, etc.). Therefore a precised dynamic model is required for construction and 

testing of control algorithms. Such a model is not available from the manufacturer. Prior to the 

derivation of both the kinematic and dynamic equations a brief description of the mobile robot 

is given (only the main components will be presented here, more details can be found in 

Appendix A).
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4.2.1 Main components

Figure 4-2 shows an exploded view of the MIABOT V2 mobile robot. The main components of 

the mobile robot, indicated in Figure 4-2, are as follows: Modular style metal case (main body) 

8cm 3 [1], main board (including CPU, H-Bridge, etc.) [2], two rechargeable Nickel Metal 

Hydride (NIMH) battery packs [3], drive train [4] (including motors [5], encoders [6]) and 

wheels [7] equipped with O-rings [8].

Figure 4-2 An exploded view of the mobile robot 

4.2.2 Drive train

The drive train of the mobile robot consists of two 4.5-12V DC motors, with worm gear drives 

(one 10x6mm and one 6x6mm) to each wheel. The wheels are 32mm in diameter and fitted 

with O-rings to reduce slippage. The overall width of the drive train is approximately 80mm . 

Each motor shaft is monitored via a combination of phototransistors and infrared LED's, which

4-5



Chapter 4______________________________Modelling of MIABOT V2 Mobile Robot

provide feedback for the ATMEL (AT90s8515) microprocessor. All the information is gathered 

by the microprocessor and each motor is driven independently.

4.2.3 DC motors

The DC motors used by the drive train are produced by Mabuchi RC-280SA-20120 giving 

29g.cm torque at 6400rpm taking 0.57A from a 6V supply at maximum power. The stall 

torque from a 6V supply is 175g.cm at a current of 2.85A. The armature resistance of the 

motor is 2.1 lohm . Back electromagnetic force EMF is 2.16V at SOOOrpm . The robot is able 

to achieve speeds of up to 1.2m / s .

4.3 Establishing the kinematic model

As mentioned in the introduction of this chapter the kinematic model of a mobile robot is 

required to give its global description and to understand its manoeuvrability properties. Most 

conventional mobile robots use either a tricycle design where one wheel is steered and driven or 

a differential drive design (i.e. two drive wheels, each with its own motor; note that this is the 

type of design of the MIABOT V2 mobile robot). In (Campion et al, 1996) structural properties 

and classification of general kinematic models of wheeled mobile robots (WMR) can be found. 

Several other examples of derivation of kinematic models of WMR are available in the 

literature. For example, (Muir and Neuman, 1987), (Killough and Pin, 1992), (Dudek et al, 

1993) and (Borestein et al, 1996).

Before the derivations of the kinematic equation it is important to state the difference between 

holonomic and nonholonomic robot (this is an important property due to the difficulty of 

nonholonomic systems to be stabilised in a posture by a smooth time-invariant state feedback). 

It is necessary to draw the distinction between what the actuators do, namely, turning or steering 

the wheels, and what these motions do in the environment. In this case, the side effect of the
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wheel motion is to move the robot to any point in a three-dimensional space. If the number of 

controllable degrees of freedom is only two, and the total degrees of freedom is three this is 

nonholonomic robot. In general, a nonholonomic robot has fewer controllable degrees of 

freedom than total degrees of freedom. As a rule, the greater the difference between controllable 

and total degrees of freedom, the harder it is to control the robot. A robot with a trailer has four 

degrees of freedom but only two are controllable, and takes considerable skill to drive in 

reverse. If the number of total and controllable degrees of freedom of the system is the same, the 

robot is holonomic. MIABOT V2 is a nonholonomic robot as the number of controllable 

degrees of freedom is two (v,co or uj,u r ), which is less than the total degrees of freedom 

(x, y, 9 ). Therefore the mathematical expression of this kind of system can be represented as 

follows:

Mobile robots whose motion is subjected to a set of p nonintegrable constraints involving time 

derivatives of the configuration vector q are classified as nonholonomic systems (Neimark and 

Fufaen, 1972). The constraints usually take the form:

G(q)q = 0 (4.1)

with the (n-p) independent columns of the pxn matrix G(q) forming the base for the 

nonholonomic constraint condition:

q = K(q)u (4-2)

Note that the number of control inputs is less than the dimension of the system, i.e. under

actuation with ue«n"p follows from Equation (4.1). Consider a set of wheels with 

independent wheel motors as the MIABOT V2 mobile robot with nonholonomic kinematics, as
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shown in Figure 4-3. Assuming no slippage the motion of each wheel is restricted to its 

longitudinal direction with velocities u, and u r , respectively, by a single nonholonomic 

constraint (p = l). In other words, no motion can occur along the lateral robot co-ordinate axis

yr . Also shown in Figure 4-3 is the robot configuration q = (x,y,3)eSR 3 in the global co­ 

ordinate frame (x g ,yg ). Control inputs are the two wheel velocities u, and u r , which may be

translated into the translational and rotational velocity variables u = (v,o>)e$R 2 for

convenience. The motion of the wheel set in the global co-ordinate frame is given in the 

following.
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Figure 4-3 Schematic layout of the mobile robot

Let point P denote the centre of the mobile robot in Figure 4-3. Let x be the time derivative of 

the global x position of point P and y the time derivative of the global y position of the point
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P. Let & be the time derivative of the global orientation angle (angle from the x axis in

Figure 4-3). Also, let B = 2b, where b is defined as the half distance between the two wheels. 

Then the first order kinematic equations of the mobile robot are defined as follows:

x =   *cos$*u 1 +   *cos$*u r (4.3) 

y =_ *sin$*u I +   *sin$*u r (4.4)
A* 2t

8= ,„,+!, Ur (4.5)
D D

The general form of Equations (4.3), (4.4) and (4.5) can be represented in the following if 

control inputs are v (linear velocity) and o> (angular velocity).

x =v*cos& (4.6)

y =v*sin3 (4.7)

S = (D (4-8)

4.4 Establishing the dynamic model

(Yamamoto and Yun, 1994) considered dynamic modelling of a wheeled mobile robot taking 

into consideration nonholonomic constraints. Their work is mainly based on control of a mobile 

platform with a manipulator. Lagrange multipliers were used in order to implement the 

Lagrange equations of motion of the mobile platform. (Bloch et al, 1992) have also discussed 

more complicated dynamic modelling of mobile robots. The derivation of the equations of 

motion of MIABOT V2 is similar to (Kimoto. K. and Yuta, 1995) and (Feddema et al, 1997) 

except that wheel slippage is added due to linear accelerations and fast turning. Also the
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parameters of the right and left sides are assumed equal. The following notations will be used in 

the derivation of the constrained and dynamic equations.

B: Wheel base

D: Friction constant of the wheel

J: Rotational moment of inertia

j   Active moment of inertia
3Ct

j   Moment of inertia about the wheel 'm  

j Moment of inertia about the motor axis
W

Kb : Motor's back EMF 

Kj: Torque constant

M: Mass 

M .   Active massact *

R : Radius of each driving wheel 

Vj: Left motor voltage

V : Right motor voltage

P: Center of mass of the robot

Q: Motor armature resistance

b: Distance between the driving wheel and the axis of symmetry

f : Force generated by the right wheel

ft: Force generated by the left wheel

y: Ratio of the motor gearbox

9 : Robot's orientation (heading angle)

TI : Left motor torque value
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Tf: Right motor torque value

v: Linear velocity

u: Forward velocity of the left wheel

u : Forward velocity of the right wheel

CD : Angular velocity

(a : Left wheel angular velocity

co : Right wheel angular velocity

x: Direction on x axis in the global co-ordinate frame (xg , yg )

a: Slippage factor

c . : Slippage factor due to linear accelerations

o .. : Slippage factor due to angular accelerations
9

0J: Slippage factor for left wheel

CT : Slippage factor for right wheel

y: Direction on y-axis in the global co-ordinate frame (xg , yg )

x ; x-axis of robot co-ordinate frame

yr; y-axis of robot co-ordinate frame

x : X-axis of global co-ordinate frame

y : Y-axis of global co-ordinate frame
e?

Referring to Figure 4-3 the robot's equations of motion are:

M   = fr +f, (4-9) 
dt
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Assuming no slippage, the linear and angular velocities of the robot from the odometry are:

i(Rfl>r +Rfl>,) (4.11)

r (4.12)

In reality this assumption is not true. In this case the odometry is based on simple equations that 

are easily implemented and that utilise data from inexpensive incremental wheel encoders. 

However, odometry is also based on the assumption that wheel revolutions can be translated 

into linear displacement relative to the ground. This assumption is only of limited validity 

(Borenstein and Koren, 1995). One extreme example is wheel slippage: if one wheel was to slip 

then the associated encoder would register wheel revolutions even though these revolutions 

would not correspond to a linear displacement of the wheel. In (Borestein et al, 1996) two 

categories are listed in which inaccuracies in the translation of wheel encoder readings into a 

linear motion can occur. In this work the wheel slippage is of interest, as the mass of the robot is 

very small in accordance with very fast DC motors. In general, the main reasons for wheel 

slippage is slippery floors, robot accelerations, fast turning, poor contact with the floor and 

finally due to both external and internal forces (interaction with other objects and castor wheels)

Therefore the model of the MIABOT V2 mobile robot contains two different types of slippage. 

The first slippage has been modelled due to the linear accelerations and the second due to the 

angular accelerations (fast turning). The general form of the slippage factor a is given within 

the interval 0 < a < 1.
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The wheel slippage was calculated conducting experiments with different initial robot 

accelerations. Comparison was made on the feedback information from the wheel encoders 

(wheel revolutions were counted) against the robot's actual linear displacement on the ground. 

The value of slippage factor shown in Figure 4-4 and Figure 4-5 was based on averaged results. 

The slippage factors of the MIABOT V2 mobile robot due to linear (Figure 4-4) and angular 

(Figure 4-5) accelerations were estimated to be:

=fj(v) = a 5 v 5 +a 4 v 4 +a3 v 3 + a 2 v 2

= f »=

(4.13)

(4.14)

20 30 40 
Robot Linear Accelaration [m/s2]

SO 60

Figure 4-4 Approximation of slippage factor due to robot linear acceleration

100 200 300 400 500 600 
Robot Angular Accelaralion (rad/s2)

Figure 4-5 Approximation of slippage factor due to robot angular acceleration

4-13



Chapter 4 ____________________________ Modelling of MIABOT V2 Mobile Robot

Where v and & denotes the linear and angular acceleration of the robot respectively. Then the 

slippage factors for the left and right wheel are:

(4.15) 

a r =maxa <r ,o-y (4.16)

Equations (4.15), (4.16) show that the dominant slippage factor will be used to derive the final 

linear and angular velocities of the wheels. Referring to Equations (4.1 1), (4.12) the linear and 

angular velocities of the mobile robot are obtained from the following:

= i(R(l-ar >o r +R(l-a 1 >D 1 )

The force generated by each wheel is related to the motor torque, which in turn is related to the 

applied voltage of the motor by (note y is the gear ratio):

t r = yJ m (br +-(l>r + Do>r +Rfr ) (4.19)

T l =yJ> 1 +i(jw fl>,+D(D 1 +Rf1 ) (4.20) 
Y

T = r -- r 
r Q r Q

(4-22)

The velocity and acceleration of the robot in the x and y directions are:
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~ V|_sin$J

= v cosB 

sinO cosS J

(4.23)

(4.24)

Note that <o = & and v = yx 2 + y 2 . Combining Equations (4.23) and (4.24), the resulting 

equations of motion are:

RQM
_V r lt 'M.

-»n8

2RQJ act v r 2R 2 J act [ O

(4.25)

(4.26)

Where the active mass and moment of inertia are:

M act =l R^

2R'

(4.27)

(4.28)

The dynamic model of the mobile robot has been modelled in Simulink and for simplicity 

reasons the following four factors were used:

Pi=-
RDM

Qi =
Y 2 K b K,

act
R Z M

act
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YBK,
2RQJ

Q 2 =
act 2R 2 Jact

To increase the model's accuracy factors P,,P2 ,Qi,Q 2 were estimated using the constrained 

optimisation method described in Appendix D. Experiments using the mobile robot took place 

to verify the model. Comparison between real and simulated trajectories was made based on 

different input commands. Figure 4-6 shows a picture of the experimental trials.

The Simulink block of robot's input/output dynamic model is shown in Figure 4-7. The control 

inputs are left and right voltage for the DC motors. The initial values include initial position of 

the robot and initial speed either as linear or angular. In order for the robot' model to be user- 

friendly and for more convenience regarding manipulation of initial values and values of 

physical parameters, a mask block has been developed. In addition, Figure 4-8 shows the 

Simulink submodel of the mobile robot in more detail including all the interconnections

Figure 4-6 Real-time experiments to obtain and verify the accuracy of the open-loop model.
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4.5 Linearised model

Most physical systems have non-linear elements, but in some circumstances it may be possible 

to treat them as linear. Then the edifice of linear mathematics, which is very highly developed, 

can be employed to yield solutions. Sometimes the system operates over a small range of input 

values, and then the non-linearities can often be effectively approximated by linear functions. 

This is referred to as operation about some reference point or nominal trajectory. However if the 

non-linear equations are known, then the linearised form of these equations are often called 

perturbation equations. When designing and considering a linear controller or stability analysis 

takes place for a vehicle (mobile robot), it is often necessary to establish linearised models 

around representative operating points. In this case the linearised model is extracted from the 

full non-linear model of the vehicle. For the MIABOT V2 mobile robot, the non-linear model is 

composed of the non-linear equations of motion described in Equations (4.25) and (4.26). 

Although in chapter five the control design is based on the non-linear model of the robot the 

linear model is required for the robust stability testing, which takes place also in chapter five. 

The non-linear model can be written in the state-space form as:

x = f(x,u) (4.29) 

y = h(x,u) (4.30)

Where, x, u and y denote states, control inputs and outputs respectively.

By linearising the non-linear model Equations (4.29), (4.30) around a steady operating point 

x 0 ,u 0 , a linearised state-space model can be obtained in the following form:
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(4.32)

Where,

= x-x0 , Au = u-u 0 , Ay = y-y0 =h(x,u)-h(x 0 ,u 0 )

And,

afi
(*o."o)' ax 5u

Once a linearised state-space has been established, the transfer function can be obtained directly 

from Equations (4.31) and (4.32), i.e.

AY(S)=G(S)-AU(S) (4.33)

Where,

G(S)=C[SI-A]~I B + D (4.34)

Around a representative operating point of (x 0 ,u 0 ) the linearised state-space model is 

established using the linmodvS MATLAB function. The matrices A, B, C and D are:

4-19



Chapter 4 Modelling of MIABOT V2 Mobile Robot

A =

"-63

0
0
1
0
0

-63

0
0
0
1
0

0
0

-45

0
0
1

0
0
0
0
0
0

0
0
0
0
0
0

0"

0
0
0
0
0

(4.35)

B =

6.45 6.45
0 0

-105 105
0 0
0 0
0 0

(4.36)

1.03 1.03 -0.04 000" 
1.03 1.03 0.04 0 0 0

(4.37)

0 0
0 0

(4.38)

The state vector of the state-space model is:

(4.39)

From the linearised state-space model and using the Equation (4.34), the transfer function 

matrix can be obtained in the following:
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G(s) = §11 

§21

§12 s 

§22 (s)
(4.40)

Where, after pole-zero cancellation becomes:

G(s) =

10.99s+ 572.4 2.317s+ 26.24

s 2 +108s + 2835 s 2 +108s + 2835 
2.317s+ 26.24 10.99s+ 572.4

.s 2 +108s + 2835 s 2 +108s + 2835

(4.41)

4.6 Results

To verify the robot model, experiments took place in order to compare real and simulated robot 

trajectory. Figure 4-9 shows a comparison of both trajectories when the control input was 3.5V 

for both motors at t = 0 and 4.5V on right and 3.5V on left motor at t = 2s (note that the input 

command was transmitted to it from PC host through the serial port). It can be observed that the 

non-linear robot's dynamic model is very close to the real dynamics of the plant. The root mean 

square error (RMSE) was found to be 1.51. Measuring errors were not considered for the real 

trajectory shown in Figure 4-9 as they were obtained using a pen on the robot moving on a fixed 

grid.

Following the non-linear model linearisation it is necessary to verify the linearised model 

established. The direct way of verification is to compare the responses of the linearised model 

and the non-linear model from which the linearised model is extracted under the same 

perturbations of the control inputs. The comparison of the responses under perturbations of 

control inputs is shown in Figure 4-10 and Figure 4-11. In Figure 4-10 the left motor is 

perturbed to achieve left wheel linear velocity O.lm/s at t = 0 and 1m/s at t = Is. In Figure 

4-11 the right motor is perturbed to achieve a right wheel linear velocity 0.8m/s at t = 0 and
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concluded that the linearised model is acceptable. The RMSE in Figure 4-10 is 0.05 and in 

Figure 4-11 is 0.03. The peaks in Figure 4-10 at t = 2s and in Figure 4-11 at time t = Is are due 

to the influence of one wheel to another (system is coupled). As mentioned earlier the non-linear 

model will be used in chapter five for control system design and the linearised model for the 

robust stability analysis of the uncertain closed-loop dynamic system.

Figure 4-9 Comparison of real and simulated robot trajectory (RMSE=1.51)

Left Wheel Linear Velocity [m/secl
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I
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Figure 4-10 Comparison of non-linear and linear response for the left wheel linear velocity 
under perturbations of control inputs (RMSE=0.05).
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Figure 4-11 Comparison of non-linear and linear response for the right wheel linear velocity 
under perturbations of control inputs (RMSE=0.03)

4.7 Discussion

As mentioned in the introduction of this chapter, the main objective is to derive both kinematic 

and dynamic model of the differential drive MIABOT V2 mobile robot. A discussion of some 

of the modelling issues as well as the results is presented in this section.

At the introduction of this chapter was discussed the difficulty to model mobile robots due to 

mechanical disturbances in which affects their position accuracy. For this reason several factors 

were identified showing that obtaining a good model of a mobile robot is very difficult and 

challenging task. Conducting experiments and optimising physical parameters the robot 

dynamic model was established. Figure 4-9 demonstrates verification on a dynamic model of 

the mobile robot compared to the real system's dynamics, in which the resultant position errors 

are significant small. The RMSE of the comparison between real and simulated trajectory found 

to be 1.51. This very good result taking into consideration that the most mechanical 

disturbances that affect the mobile robot were overcome.

4-23



Chapter 4______________________________ Modelling of MIABOT V2 Mobile Robot

Finally having representative dynamic model results in representative linearised model as 

shown in Figure 4-10 and Figure 4-11. This is desirable and useful result that provides the 

opportunity for reliable robust stability testing for uncertainty in robot dynamics.

4.8 Summary

This chapter presents the modelling of MIABOT V2 mobile robot. The robot is small size

measuring 8cm and is steered and driven by differential drive design utilising two DC motors 

enabling robot's speed up to 1.2m/s. The first order kinematic model of the robot was derived 

in order to understand its manoeuvrability properties and to produce information about its global 

description. However, as the robot behaviour is related to the framework and theory of 

holonomic and nonholonomic systems some discussions were made to show in which category 

MIABOT V2 falls (holonomic or nonholonomic). Then the full non-linear dynamic model of 

the robot was established for complete description of its system's dynamics. To improve the 

model accuracy real experiments took place. The non-linear control design blockset based on 

constrained optimisation method was used for identification of several robot physical 

parameters. However, to further improve the model, wheel slippage was introduced and 

modelled. Contacting real experiments, two different types of slippage were considered, one due 

to linear accelerations and another due to angular accelerations (fast turning). The robot model 

found to be very close to the real dynamics of the plant considered. The linearised model of the 

robot was extracted and some comparisons were made to show the validity of the linearised 

model against the non-linear. Results were presented, and show that the linearised model is 

acceptable, comparing non-linear and linear response under perturbations of the same control 

inputs.

The contributions of this chapter are: Modelling of MIABOT V2 mobile robot with both a 

kinematic and a dynamic model. Optimisation and identification of parameters of physical
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components (i.e moments of inertia) conducting experiments and using the non-linear control 

design tool. Modelling of wheel slippage based on experiments for more accurate feedback 

control design.

In the next chapter the full non-linear model is used for the design of a speed controller and the 

linearised model is used for verification of the robust stability of the closed-loop system under 

uncertainty in robot dynamics.
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5
Control, Robust Stability 
Analysis and Discovery of 
Fuzzy/Neural Local Models

5.1 Introduction

The aims of this chapter is to present the control, the robust stability analysis of the MIABOT 

V2 mobile robot and the discovery of fuzzy-neural local models from observation data. Three 

speed controllers have been developed and comparison is made based on performance criteria 

and length of execution time. Reliable speed controller for the MIABOT V2 mobile robot is 

vital in this thesis for credible control strategy development and testing in chapters six and 

seven.

In a general control scheme, the plant is affected by input signals, some of which (the control 

inputs) are accessible to the controller, and some of which (the disturbance inputs) are not. 

Some of the plant signals (the tracking outputs) are to be controlled, and some of the plant
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signals (the measurement outputs) are available to the controller. A controller generates control 

inputs to the plant with the objective of having the tracking outputs closely approximate to the 

reference inputs. With open-loop control, there is no feedback from the motors, informing the 

robot's program how fast the wheels are turning or how far the robot has travelled. Depending 

on terrain, slippage in wheel contacts, etc. the commanded voltages (to the drive motors) do not 

necessarily imply particular speeds. To overcome this problem closed-loop control is used using 

a speed controller. The main traditional idea is to take the desired velocity command, send that 

command to the motors, measure how fast the motors actually turn, and then measure the speed 

and compare this to the commanded speed. In this case and depending on the control design 

chosen, several control parameters have to be tuned or optimised. For instance if the control 

design involves Proportional Integral and Derivate (PID) action then three gains or parameters 

have to be tuned/optimised. In many cases this is a very difficult task and also a non-linear 

control problem. In this chapter the tuning/optimisation process is solved using the Non-linear 

Control Design (NCD) blockset provided by MATLAB. As described in Appendix D the NCD 

blockset converts constraint bound data and tuneable variable information into a constrained 

optimisation problem. Then the tuneable variables are adjusted in an attempt to better achieve 

the constraints on system signals defined by the NCD interface. The constrained optimisation 

problem is solved using Sequential Quadratic Programming (SQP) algorithm and Quasi-Newton 

gradient search techniques.

As mentioned in chapter three section 3.5.4, one of the most important properties of control 

architectures is modularity. Therefore three types of speed controllers have been developed 

based on conventional control theory, fuzzy logic and neural networks. The performance and 

the length of execution time of each controller are compared against the other controllers. The 

design of the intelligent controllers (fuzzy and neural) is based on clustering techniques and 

learning with a teacher, which is also referred as supervised learning. In addition this study also
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addresses the problem of identifying, modelling and controlling systems with dynamical 

behaviour.

In many applications, the structure, linearity and order of the system are considered fixed and 

the parameters of the system are allowed to change to a certain extent. Changes in parameters of 

parts of the system determine changes in the coefficients of the closed-loop system dynamics. 

Only very simple cases are described by coefficient variations free of independence. Complex 

processes are characterised by rather complex relations between changes in the parameters and 

changes in the coefficients of the closed-loop system. Nevertheless, even in those cases, 

sufficient conditions are required for allowable parameter changes without causing inadmissible 

change in the dynamic system behaviour. Usually two approaches are available when 

considering uncertainty models and robustness; parametric (Interval polynomial, The Edge 

Theorem etc) and nonparametric robustness analysis (The basic perturbation model, Structured 

singular value, etc.). MIABOT V2 mobile robot is still under further development in order to 

increase its capabilities and functionality (adding new sensors and deployment of other 

hardware). The problem, which arises in this case, is whether the control law implemented is 

sufficient to incorporate all these changes, which rapidly affect the robot dynamics. As 

mentioned in chapter three the parametric robustness analysis approach (Kharitonov's Theorem) 

is adopted in this thesis as it offers fast robust stability testing and analysis based on interval 

polynomials.

The remainder of this chapter is organised as follows: Section 5.2 discusses design requirements 

and the selection criteria of speed controller for the mobile robot. Section 5.3 presents the 

development and tuning of the PI controller. The modelling and identification of fuzzy 

controller based on subtractive clustering is given in section 5.4. Section 5.5 presents the 

development of a neural controller based on supervised learning. Comparison of all three types 

of controllers based on performance criteria and execution time is covered in section 5.6. Robust
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stability analysis of the closed-loop control system of the mobile robot under uncertainty in 

robot dynamics is presented in section 5.7. A discussion follows in section 5.8 and finally the 

summary of the chapter is presented in section 0.

5.2 Controlling the mobile robot

Already mentioned in the introduction that one of the aims of this chapter is the development of 

speed controller for the mobile robot for credible control strategy development and testing in 

chapters six and seven. In the following sections the selection of the speed controller is 

presented, followed by design requirements derived for the mobile robot.

5.2.1 Selection of speed controller

The control problem is to design speed controller for the MIABOT V2 mobile robot based on 

the multivariable non-linear model derived in chapter four. In general, the selection of the 

design method depends upon many parameters such as performance criteria, process 

knowledge, linearities, non-linearities of the system etc. Several controller design methods can 

be found in the literature (Gajic and Lelic, 1996), (Skogestad and Postlethwaite, 1996) and 

(Burnham et al, 1999). However, these methods may differ in complexity, flexibility and in the 

amount of process knowledge used. For instance, Ziegler-Nichols method is based on 

knowledge of the process transfer function at the operating point. Pole placement is also based 

on knowledge of the process transfer function. Using this method a controller that gives desired 

closed-loop poles can be found. A drawback of this method is that complex models lead to 

complex controllers. Other methods include, dominant pole design (only few poles are 

assigned), loop shaping, Hoo control design (it assumes system interconnection structure matrix 

is known), Cohen-Coon method (main design criterion is rejection of load disturbances), 

Haalman method, Chien-Hrones-Reswick method (modification of Ziegler-Nichols method), 

etc. More details for controller design methods can be found in (Astrom and Hagglund, 1995).
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The design of MIABOT's V2 speed control law is based on PI MIMO controller (described in 

section 5.3) and the NCD optimisation method described in Appendix D. It has previously been 

mentioned that this method is simple, fast, easy-to-use, suitable for control design of non-linear 

models and gives good performance. The main objective is the optimisation and tuning of the 

speed controller parameters such as the closed-loop system in Figure 5-1 meets the design 

requirements defined in the following section 5.2.2. However, it is important the closed-loop 

response to be robust to the uncertainty in the robot dynamics. This aspect will be discussed in 

more detail in section 5.7
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Figure 5-1 Closed-loop robot model with speed controller

5.2.2 Design requirements

The next step in controlling the mobile robot is to specify performance criteria. When operating 

from the 6V supply the mobile robot will reach speeds up to 1.2m/s. Ideally the robot should 

be able to accelerate up to this speed in less than 0.15s (i.e. to match open-loop performance, 

see chapter four, Figure 4-11). Since the most basic requirement of the MIABOT V2 mobile 

robot is that it should operate at the desired velocity, the steady-state error of the wheel speed 

should be zero. The other performance requirement is that the robot must accelerate to its
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steady-state speed as soon as it is commanded. In this case a settling time of 0.25s is desirable, 

with an overshoot of less than 5% .

5.3 PI controller

Chapter four presented the dynamic model of the plant to be controlled with two inputs and two 

outputs. The inputs are left and right voltages of the left and right motor respectively. The 

outputs are the actual left and right velocities of the left and right wheel respectively. The 

control action selected is PI instead of PD or PID for the following reasons: PI control action 

decreases steady-state error in a system's output response to a step input and also removes 

steady-state offsets, including those caused by disturbance input signals. Derivative action is 

omitted, as it has no affect on constant offsets in either the reference tracking or disturbance 

rejection responses. This is because the derivative of a constant error is zero and so the 

controller does not respond to the presence of the constant error. This is quite the opposite of the 

use of integral control as was previously mentioned. In order to introduce more freedom into the 

control design the PI controller is modelled as a state-space system as shown in Equations (5.1) 

and (5.2) with a null A matrix and B defined as the identity matrix. Matrices C and D are the 

tuneable variables Kj and K p respectively for a total of eight tuneable variables (note that the 

size of both matrices is 2x2). The final form of the PI controller is shown in Equation (5.3), 

(5.4) and in Figure 5-2 as expanded Simulink model. The controller can be represented in the 

general state space form as follows:

(5-1) 

(5.2)

x i o ojx,
0 Ojx 2

'1 Oje, 

0 lle2
(5.3)
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Ki, 2 Tx,
Ki 2 ,

KPn

Kp 2 , Kp 22 _e 2 (5.4)

Figure 5-2 Proportional Integral MIMO speed controller with eight tuneable variables

5.3.1 Controller tuning

The non-linear control design (NCD) blockset provided by MATLAB is used for 

tuning/optimisation of the controller parameters. It uses time domain constraint bounds to 

represent lower and upper bounds on response signals. When the optimisation procedure starts 

NCD converts the constraint bound data and tuneable variable information (K f and K p ) into a

constrained optimisation problem. As described in Appendix D the constrained optimisation 

problem is solved by a Sequential Quadratic Programming (SQP) algorithm and Quasi-Newton 

gradient search techniques. The main idea behind the controller's parameter optimisation is the 

minimisation of the maximum constraint violation (in other words NCD minimises the 

maximum (weighted) constrained error). The set-up for upper and lower bounds is shown in 

Figure 5-3 and is defined as follows: For upper bounds constraints, the difference between the 

constraint boundary and the simulated error defines the constraint error. The constraint error for 

lower bound constraints is defined as the difference between the simulated error and the 

constraint boundary. The subroutine of the SQP method solves a Quadratic Programming (QP) 

problem at each iteration. At each iteration, the upgrade and estimate of the Hessian of the
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Lagrangian is achieved. At this stage a line search method is required in which a merit function 

is used to solve the problem. Finally the implementation of the SQP subproblem attempts to 

satisfy the Kuhn-Tucker equations, which are necessary conditions for optimality of the 

constrained optimisation problem. Both (Fletcher, 1987) and (Gill et al, 1991) provide good 

references and more details on the above algorithms.

(a)

(b)

Figure 5-3 Constraint windows with initial controller gains before optimisation for left (a) and
right (b) response
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5.3.2 Results of tuning

The required parameters for the PI controller were tuned and optimised successfully as shown in 

Figure 5-4. Equation (5.5) shows the output equation where it can be observed that the 

controller is symmetrical. This is an expected result as the mobile robot was modelled as being 

symmetrical with equal parameters on both left and right sides.

"102.9782 -25.190lTx, 

[-25.1901 102.9782 J(_x 2

1.3536 -1.5770Te,~ 

_-1.5770 1.3536 j[e 2
(5.5)

(a)

Figure 5-4 Constraint windows with final controller gains after optimisation for left (a) and
right (b) response
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To test and verify the control algorithm the mobile robot was simulated with different step input 

command. The test was carried out for 3s using step input on both wheels as desired input 

velocity command. The comparison of both uncompensated and compensated responses under 

perturbations of control inputs is shown in Figure 5-5(a) and Figure 5-5(b). In Figure 5-5(a) the 

desired input linear velocity for the right wheel is 0.8m/s at t = 0 and 0.2m/s at t = Is. In 

Figure 5-5(b) the desired input linear velocity for the left wheel is 0.2m/s at t = 0 and 1m/s 

at t = 2s. Comparing the two responses (uncompensated and compensated) with the reference 

response, it can be concluded that the control algorithm is successful, in that the robot produces 

the desired performance as defined in section 5.2.2 i.e. there is less than 5%, overshoot on the 

response, the rise time is less than 0.15s and the settling time is less than 0.25s . The peaks in 

Figure 5-5(a) at t = Is and in Figure 5-5(b) at time t = 2s are due to the influence of one wheel 

to another (system is coupled). However, it is also important to observe the control effort as the 

robot has supply of 6V, both Figure 5-6(a) and Figure 5-6(b) show that the motor input 

voltages do not exceed 6V and are therefore acceptable.

0.2 f

V

1 Uncompensated Responsi
• Compensated Response
• Reference

0.5 1 1.5 2 
Time |sec|
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|
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J 0.5 1 1.5 2 25 3
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Figure 5-5 Comparison of uncompensated compensated and reference response (PI control), (a) 
Step input for the right wheel (b) Step input for the left wheel

5-10



Chapter 5 Control, Robust Stability Analysis and Discovery of Fuzzy/Neural Local Models
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2.5

/
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(a) (b)

Figure 5-6 Control effort for the right (a) and left (b) motor (PI control).

5.4 Fuzzy controller using PI controller as a teacher

This section presents the development of a dynamic fuzzy controller, where the fuzzy controller 

replaces the PI controller. Chapter three presented the main design methodology of fuzzy logic 

systems and clustering techniques for model identification. However, the establishment of an 

input-output model for a process is still a very important problem in dynamic systems analysis. 

The replacement of the PI controller with fuzzy is difficult and challenging task. The reason 

behind this statement is that the plant to be controlled is MIMO with dynamical behaviour. In 

addition, the relationship of one output to another is coupled. Therefore in this case the design 

of fuzzy controller is non-trivial task. Fuzzy controller outputs are static functions of the 

controlled input. Dynamical behaviour of a controller, like differential or integral action, is 

emulated by extending the controller function to more inputs. Those inputs are delayed values 

of inputs and outputs. One problem with this is the large number of inputs, which results a large 

number of rules in the rule base of the fuzzy controller. To design such a controller manually is 

a very complicated and difficult task. Also, it is known that a fuzzy controller with more rules is 

not necessarily better than one with fewer rules. Thus, it is important to develop efficient rules 

for such controllers. As the scope of fuzzy controller development is to compare its execution
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time and its performance against the PI controller, subtractive clustering is used. Despite the 

existence of many clustering techniques, subtractive clustering was chosen for the reasons 

already mentioned in chapter three section 3.4.2.3. This method generates Sugeno type fuzzy 

controller (see chapter three, section 3.2.4.2) with the fewer number of rules (this will produce 

faster controller). The steps of the algorithmic methodology for the design procedure of the 

fuzzy controller with dynamical behaviour based on subtractive clustering are defined as 

follows:

5.4.1 Selection of input-output data

The first step of the proposed algorithmic methodology is to select and collect input-output data 

using the PI controller from section 5.3 as a teacher. Figure 5-7 shows a Simulink model, where 

the inputs and outputs of the PI controller are recorded for the construction of the fuzzy 

controller. Equations (5.6) and (5.7) shows in symbolic form the input-output recorded data to 

be used to define the multi-dimensional input-output space.

[-1.1]
Output 

observation
- 1 ! MIMO PI Controller

Figure 5-7 Input-output observations for data collection

el 2 er2

EFL = (5.6)

er
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v! 2 vr2

vrIt).

(5.7)

5.4.2 Subtractive clustering to define the number of rules

As mentioned in section 5.4 dynamical behaviour of a controller, such as differential or integral 

action, is emulated by extending the controller function to more inputs. Those inputs are 

delayed values of inputs and outputs. Thus, as the PI controller (see Figure 5-1) has dynamical 

behaviour due to the appearance of integrator the fuzzy controller should have as additional 

inputs delayed values of inputs and outputs. Figure 5-8 shows the schematic layout of inputs 

and output of the fuzzy controller with sampling time and delay of 10ms.
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Figure 5-8 Schematic layout of fuzzy controller with delayed inputs and outputs
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The next step is to construct the multi-dimensional input-output space and to apply subtractive 

clustering for automatic rule generation of the fuzzy inference system. The multi-dimensional 

input-output space is shown in Equation (5.8)

v!2 vr2 e! 2 er2 el, 

v!3 vr3 e!3 er3 e!2

vl n vrn el n ern

er, 

er v!

vr, 

vr2

ern_, vln_, vrn_,

(5.8)

The subtractive clustering algorithm presented in chapter three generates a model from data 

given in Equation (5.8), when specific cluster radius is defined (see chapter three section 

3.4.2.3). The cluster radius indicates the range of influence of a cluster when a data space is 

considered as a unit hypercube. Specifying a small cluster radius will usually yield many small 

clusters in the data and thus many rules in the rule base of the fuzzy controller and vice versa. 

The radius cluster is selected to be 0.5 (it is recommended as initial value, if the resulting model 

is inaccurate then the cluster radius needs to be changed). Applying subtractive clustering a 

fuzzy inference system is returned. In this case the controller type for the fuzzy inference system 

is a first order Sugeno model with 64 rules in the rule base. The number of rules is small 

considering the large number of input variables (six) to the fuzzy controller. The next step is to 

verify the fuzzy controller performance.

5.4.3 Fuzzy controller testing and verification

To test and verify the fuzzy controller the mobile robot was simulated with step input 

commands. The experiment was carried out for 3s using step input on both wheels as desired 

input velocity command. The comparison of both reference and actual responses under 

perturbations of control inputs is shown in Figure 5-9(a) and Figure 5-9(b). In Figure 5-9(a) the 

desired input linear velocity for the right wheel is 0.5m/s at t = 0 and 0.3m Is at t = 2s. In
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Figure 5-9(b) the desired input linear velocity for the left wheel is 0.4m / s at t = 0 and 0.8m /s 

at t = ls.
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Figure 5-9 Comparison between the reference and actual response (fuzzy control), (a) Step 
input for the right wheel (b) Step input for the left wheel

Comparing the two responses (reference and actual), it can be concluded that fuzzy control is 

successful, in that the robot produces the desired performance as defined in section 5.2.2. The 

control effort, illustrated in Figure 5-10(a) and Figure 5-10(b) show that the motor input 

voltages do not exceed 6V .

0.51
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(a) (b)

Figure 5-10 Control effort for the right (a) and left (b) motor (fuzzy control).
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5.5 Neural controller using PI controller as a teacher

This section presents the development of a dynamic neural controller, where the neural network 

controller replaces the PI controller. In chapter three the main design methodology of neural 

networks and their training techniques was presented. In this section feedforward neural 

network is trained in order to be able to control the speed of the mobile robot. Already 

mentioned in section 5.4 that fuzzy systems are usually static mapping of input-output. 

Similarly, neural network is static mapping indicating that theoretically it is not feasible to 

control or identify a dynamic system. To extend this essentially steady state mapping to the 

dynamic domain is to adopt an approach similar to linear theory of ARMA (Auto Regressive 

Moving Average) modelling. As in section 5.4 the ANN is fed with past outputs and inputs 

values as shown in Figure 5-11.
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Figure 5-11 Schematic layout of neural controller with delayed inputs and outputs

5.5.1 Training the neural controller

The main design methodology when training a neural network is shown in Figure 5-12. At the 

beginning of the training, data are collected or generated for both training and testing of the 

neural network.

5-16



Chapter 5 Control, Robust Stability Analysis and Discovery of Fuzzy/Neural Local Models

Update weights or 
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Select training and 
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Select neural network 
architecture

Initialise weights

Find NN output on 
training data

Find NN output on 
checking data

Re-select training set 
or collect more data

Figure 5-12 Neural network training flow chart

Equations (5.9) and (5.10) shows in symbolic form the input-output collected data to be used to 

define input and target data of the neural network.

elj el2

ert er2

l t v! 2

rj vr2

. . el r
ern

- vl r

vrn

(5.9)

(5.10)
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Using Equations (5.9) and (5.10) the input training data are shown in Equation (5.11) and the 

target data are shown in Equation (5.12) as follows:

'NN

"e!2 
er2 
el, 
er,

vr,

"v! 2 
.vr2

e!3 . . . el n ' 
e!3 ... ern 
e! 2 ... eln_, 
er2 ... ern_, 
v!2 . . . vln_,

v! 3 . . . vl n 
vr3 . . . vrn

(5.11)

(5.12)

The next step is to define the neural network architecture. According to (Mines, 1997) there are 

two options available when an ANN architecture has to be defined. The first option is to start 

with a fairly large network that is sure to have enough degrees of freedom (large number of 

neurons in the hidden layrer(s)) to train to the desired error goal. Then, once the network is 

trained, the network size is reduced until the smallest size of network that trains remains. The 

second option available is to start with a small network and gradually to increase its size until 

the network trains and its error goal is met. In this work the second option has been selected 

which involves initially a fairly small network architecture. After the network is chosen, the 

weights and biases are initialised and the network is ready for training.

Using the input and target data from Equations (5.11) and (5.12) the training process starts. 

During training the weights and biases of the network are iteratively adjusted to minimise the 

network performance function (error goal). Usually the performance function for feedforward 

networks is the mean square error (MSB), which is the average squared error between the 

network outputs and the target outputs. In chapter three section 3.3.4 the background theory 

behind training of feedforward multilayer perception NN was given, included the differert
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training algorithms available in the literature when network training is considered. All of these 

algorithms use the gradient performance function to determine how to adjust the weights to 

minimise the error goal. The gradient is determined using a technique called backpropagation 

(see chapter three section 3.3.4 and Appendix F), which involves performing computations 

backwards through the network. In this thesis the algorithm of Levenberg-Marquardt is used in 

order to increase the speed of convergence. For more details of the algorithm see Appendix F. 

The final structure of the dynamic NN controller is shown in Figure 5-13.

Figure 5-13 Structure of dynamic NN using PI controller as a teacher
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The network shown in Figure 5-13 has two hidden layers (ten neurons on each layer) and an 

output layer consisting of two neurons. The input and output to the network are column vectors 

as shown in Equations (5.13) and (5.14).

u =

el(t) ' 
er(t) 

el(t-l) 
er(t-l)

4)

(5.13)

(5.14)

Each layer has a weight matrix W, a bias vector b, and an output vector a. The bias vector of 

the first, second and third layer is defined by the following equation.

b

o

b 2.

io

(5.15)

The weight matrix of the first, second and third layer is given by Equations (5.16), (5.17) and 

(5.18) as follows:
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(5.16)

(5.17)

(5.18)

The activation function used for the first two layers is hyperbolic tangent sigmoid (tansig) 

whereas linear (purelin) activation function is used for the last layer. The mathematical 

expressions of the most commonly used activation functions including hyperbolic tangent 

sigmoid and linear is given in chapter three section 3.3.2.1. Note that the chain rule that is used 

in deriving the back-propagation algorithm necessitates the computation of the derivative of the 

activation functions. The derivative of hyperbolic tangent sigmoid and linear activation function 

is given by:
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f(x) = l-f(x)2 f(x) = l (5.19)

This formulation for the derivative makes the computations of the gradient more efficient since 

the output f (x) has already been calculated in the forward pass.

The final output y of the network illustrated in Figure 5-13 can be calculated as follows:

a 3

a 1
r ^\

y = purelm(l,W 3-2tansig(LW 2Jtansig(lW 1J » + b')+b2 )+ b3 ) <5 -20)

5.5.2 Neural controller testing and verification

To test and verify the neural controller the mobile robot was simulated with step input 

commands. The experiment was carried out for 3s using step input on both wheels as desired 

input velocity command. The comparison of both reference and actual responses under 

perturbations of control inputs is shown in Figure 5-14(a) and Figure 5-14(b). In Figure 5-14(a) 

the desired input linear velocity for the right wheel is 0.6m / s at t = 0 and 0.4m / s at t = 2s. 

In Figure 5-14(b) the desired input linear velocity for the left wheel is 0.2m/s at t = 0 and 

0.5m/s at t = ls.

Comparing the two responses (reference and actual), it can be concluded that neural control is 

successful, in that the robot produces the desired performance as defined in section 5.2.2. The
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control effort, illustrated in Figure 5-15(a) and Figure 5-15(b) show that the motor input 

voltages do not exceed 6V .
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Figure 5-15 Control effort of the left and right motor respectively (neural control)

5.6 Comparison between the different controllers

In this section comparison of all three types of controllers is made based on their execution time 

and performance. As mentioned in the introduction of this chapter the overall control 

architecture should be modular. To address this modularly even from the low-level control unit,
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all three types of controllers have been created as a subsystem as shown in Figure 5-16. Each 

controller can be selected from the mask block shown in Figure 5-17.

Figure 5-16 Subsystem of speed controller (PI, FL and NN controller)

Block Parameters: Speed Controller

Selection of Speed Controller for MIABOT V2 Mobile Robot (mask)-

-Parameters-
Select Controller: | PI Controller

Figure 5-17 Mask block for selection of speed controller

To compare the execution time and performance of all three types of controllers the mobile 

robot was commanded under the same perturbations of the control inputs. The experiments were 

carried out for 3s using step input on both wheels as desired input velocity command. The
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desired input linear velocity for the right wheel is 0.3m/s at t = 0 and the desired input linear 

velocity for the left wheel is O.lm/s at t = 0 and 0.6m/s at t = ls. The comparison of both 

reference and actual responses under perturbations of the same control inputs of all three types 

of controllers is shown in Figure 5-18, Figure 5-19and Figure 5-20. Table 1 illustrates the 

performance of each controller in terms of integral square error (ISE), integral absolute error 

(IAE) and integral time absolute error (ITAE) for each response (left and right), and also the 

elapsed time taken for 3s simulation time.

Examining the time responses obtained from Figure 5-18 to Figure 5-20 the following 

conclusions can be drawn. From Table 1 it can be seen that PI and fuzzy speed controllers have 

a marginal advantage against the neural controller (red shaded numbers show the best 

performance). In particular the PI controller has the smallest ISE error of all controllers, 

whereas the fuzzy controller has the smallest IAE and ITAE error. This simulation study shows 

that both fuzzy systems and neural networks can successfully model and control a dynamic 

system when their training is based upon a teacher with good input-output training data. 

However it is shown that a fuzzy or neural controller is not necessary better than classical PI 

controller and vice versa. In chapter seven the performance of this controller is validated when 

the mobile robot has to accomplish different navigational tasks. Another important remark in 

this study is the execution time of each controller. Table 1 shows that neural controller is almost 

three times slower than PI controller whereas a fuzzy controller is almost twice slower than 

neural controller. The explanation behind the large execution time of fuzzy controller lies in 

terms that fuzzy controller has a large number of parameters. This indicates the degree of 

complexity when fuzzy controller performs operations such as fuzzification, rule base 

evaluation and in defuzzification.
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Performance criteria and execution time of PI, fuzzy and neural speed controller
Type of 

controller
PI

Fuzzy
Neural

ISE
Left Right

0.008047
0.008324
0.008333

0.003207
0.003269
0.003286

1AE
Left Right

0.03458
0.03362
0.03604

0.02218
0.02169

0.025

ITAE
Left Right

0.02778
0.02681

0.032

0.006594
0.006483
0.01318

Elapsed time
(sec)

1.2600
7.0300
3.9600

Table 1 Comparison of performance and execution time of PI, fuzzy and neural controller

5.7 Robust stability testing of MIABOT V2 closed-loop

In this section the robust stability of the closed-loop control system of the MIABOT V2 mobile 

robot under uncertainty in robot dynamics is tested and proved. In Appendix E, definitions and 

theorems from (Bhattacharyya et al, 1995) related to robust stability analysis for interval 

polynomials is given. Description of uncertainty structure (Appendix E, section 2) is given 

through several definitions following by both definitions and theorems regarding Value Sets and 

Zero Exclusion condition (Appendix E, section 3). Then the Kharitonov's theorem (Barmish, 

1994) is described in brief following theorems on robust stability testing via graphics (Appendix 

E, section 4).

The following sections are organised as follows: The application (robust stability testing of 

mobile robot closed-loop control system under uncertainty in robot dynamics) is presented in 

section 5.7.1. The robust stability analysis of the closed-loop control system is verified using 

graphical techniques in section 5.7.2 (see Appendix E, section 5 for background information). 

Section 5.8 presents a discussion based on the importance of the selection of the interval 

polynomial family.

5.7.1 The application

Figure 5-1 shows the MIABOT's actual closed-loop control system consisting of MIMO speed 

controller and an uncertaint paint (mobile robot). The open-loop transfer function matrix (TFM) 

for the mobile robot was derived in chapter four as shown in Equation (5.21). To test and prove
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the robust stability of the closed-loop system under uncertainty in robot dynamics the transfer 

function of the PI speed controller is used, which is easy to understand and analyse (note that 

three types of speed controllers exist).

10.99s +572.4 2.317s +26.24

s 2 +108s + 2835 s 2 +108s + 2835 
2.317s+ 26.24 10.99s+ 572.4

_s 2 +108s + 2835 s 2 +108s + 2835

(5.21)

The MIMO PI speed controller G c (s) of the mobile robot can be described in the following 

TFM form:

G c (s) =

1.354s+ 103 -l.577s-25.19

-l.577s-25.19 1.354s + 103
(5-22)

Thus Equation (5.23) describes the overall closed-loop TFM, G'(s).

G'(s) =

10.87 s 3 +1679s 2 +7.806e004s + 1.079e006 -13.75s3 -877.2s2 -1.135e004s-0.01564

s4 +129.7 s3 + 6265 s 2 +1.345e005s +1.079e006 s 4 +129.7 s 3 + 6265 s 2 +1.345e005s +1.079e006 
-13.75s3 -877.2s 2 -1.135e004s-0.01564 10.87s3 + 1679s 2 + 7.806e004s + 1.079e006

.s4 +129.7 s3 + 6265 s 2 +1.345e005s +1.079e006 s 4 +129.7 s 3 + 6265 s 2 +1.345e005s + 1.079e006.

(5.23)

According to the definitions and theorems from Appendix E sections 2, 3 and 4 the robust 

stability of the closed-loop system under uncertainty in robot dynamics of Equation (5.23) can 

be tested and proved. The characteristic equation of the closed-loop system can be written as 

interval polynomial in the following form:

P(s,q) = q 4 s 4 +q 3 s 3 +q 2 s (5.24)
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Where,

(5.25)

is the vector of uncertain parameters, and assume that,, q 3 e [123.2,136.2], q 2 e [5951,6579], 

q, e [127780,141230] and q 0 e [1025100,1 133000] (note that no closed inreval is taken for q 4 

as it is always 1) then the uncertainty bounding set (Appendix E, Definition E-l) is:

Q= q 0  [1025100,1133000^, E[I27780,141230],!

q 2 e [5951,6579], q 3 e [123.2,136.2] J (5 "26)

The above interval polynomial family is denoted by writing an interval polynomial family of the 

form:

p(s,q) = s 4 +[l23.2,136.2]s 3 +[5951,6579> 2 +[127780,141230> + [1025100,1133000] (5.27)

Where Og[q4,q4J=l. Thus interval polynomial family P(s,Q) has invariant degree. From 

Definition E-10 given in Appendix E the four fixed Kharitonov polynomials are derived as 

follows:

K,(s) = s 4 +136.2s 3 +6579s 2 +127780s + 1025100 (5-28)

K 2 (s) = s 4 +123.2s 3 +5951s 2 +141230s + 1133000 (5-29)

K 3 (s) = s 4 + 136.2s 3 + 5951s 2 + 127780s +1133000 (5-30)
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K 4 (s) = s 4 +123.2s 3 +6579s 2 +141230s + 1025100 (5.31)

Using Routh criterion it is easy to verify that all four Kharitonov polynomials are stable. Hence 

it can be concluded that the closed-loop control system is robustly stable under uncertainty in 

robot dynamics.

5.7.2 Verification of the closed-loop robust stability

To verify that the closed-loop control system is robustly stable further testing using graphics is 

performed using the Theorem E-3 and E-4 given in Appendix E, section 5. The characteristic 

equation of the closed-loop system is given from Equation (5.23). Equations (5.24) and (5.25) 

provide the uncertainty vector q and the uncertainty bounding set Q . It was shown earlier that 

the interval polynomial family P(s,Q) has invariant degree, therefore in accordance with 

Theorem E-3, the first step in the graphical test for robust stability requires that at least one 

polynomial in P(s,Q) that is stable. Using the midpoint of each interval from Equation (5.26)

q* is obtained as follows:

q* =(1,129.7,6265,134505,1079050) (5-32)

Then,

p(s,q*)=s 4 + 129.7s 3 + 6265s 2 + 134505s + 1079050 (5-33)

Using the Routh criterion it is easy to verify that p(s,q*j is stable. The cut-off frequency can be 

calculated from Equation (E-11) as follows:
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CO,
= l + max{l 133000.141230,6579,136.2} =

(5.34)

Therefore the Kharitonov rectangles can be plotted to verify the stability of the closed-loop 

system under uncertainty in robot dynamics for frequency range coe [0,113300l]rad/s. For 

more convenient, frequency range roe[o,100]rad/s plot is shown in order the zero point in the 

graph to be visible. Figure 5-21 shows the Kharitonov rectangles for the closed-loop system. 

Figure 5-22 shows the plot of the frequency sweeping function H(CO) . Since the origin is 

excluded from the Kharitonov rectangles (Figure 5-21) it is concluded that the closed-loop 

control system under uncertainty in robot dynamics is robustly stable. The same conclusion can 

be obtained from Figure 5-22 because it can be observed that the frequency sweeping function 

H(CO) is positive for all co e [0,100]rad / s.

x10 Max. Freq. (r/s) = 100

Real Axis x10"

Figure 5-21 Kharitonov rectangles for the controlled closed-loop control system
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Figure 5-22 A plot of H(CO) versus co.

5.8 Discussion

As mentioned in the introduction of this chapter, the objective was to develop successful speed 

control law for the mobile robot, to perform analysis and testing of the closed-loop robust 

stability under uncertainty in robot dynamics and to discover fuzzy-neural local models from 

observation data. In order to add modularity into the overall control architecture three types of 

controllers (PI, fuzzy and neural) were developed based on classical and intelligent methods. A 

discussion of some of the control, identification and robust stability algorithmic methodology 

issues is presented in this section.

In sections 5.2 and 5.3 was discussed how difficult is to successfully control the mobile robot as 

it is multivariable with coupled interconnection structure. Although there exists many controller 

designs methods in the literature the control solution in which can produce satisfactory result is 

still a difficult decision that has to be made. A successfully control law for the MIABOT V2 

found to be PI MIMO controller with eight tuneable parameters. This control structure has to 

offer an advantage over the traditional PI controller as it gives more freedom for tuning. In other
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words it is much better to control a process by tuning eight parameters rather than two in terms 

of controller freedom. The disadvantages of this approach are that the tuning process becomes 

very complex and highly non-linear problem. To overcome this problem the non-linear control 

design tool was used for the tuning/optimisation of the control parameters. The use of NCD in 

this chapter has demonstrated to be capable to solve high non-linear constrained optimisation 

and also successful tuning of PI controller based on non-linear model of the robot (note that 

most PID tuning methods are based on the linear model of the plant).

The next algorithmic methodology covered in this chapter is the problem of identifying, 

modelling and controlling dynamical systems. Sections 5.4 and 5.5 give two different 

approaches when dynamical system has to be developed based on clustering and supervised 

training using a teacher. In particular, section 5.4 demonstrates how fuzzy control can be 

developed to replace the PI controller. This algorithmic methodology is based on clustering of 

observed input-output data, which can successfully produce concise representation of the 

system's behaviour. Subtractive clustering was chosen, as it is capable to solve complex and 

high dimensional nature problems. However, disadvantages of other clustering techniques such 

as determination of optimal number of clusters and increase in computation as the 

dimensionality of the problem increases are overcome using this method. Using subtractive 

clustering a fuzzy inference system is generated with the minimum number of rules. This is 

desirable result especially when the fuzzy system has a high number of inputs. Results show 

that fuzzy logic can successfully model and control system with dynamical behaviour.

In section 5.5 an algorithmic methodology is proposed in which neural controller can model and 

control the plant based on training using the PI controller as a teacher. Results show that if 

appropriate network size has been defined and the training process (see Figure 5-12) is based on 

good input-output training data then the control law obtained is good and satisfactory.
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In section 5.6 comparisons between the different controllers has been made. Using the same 

input command the controllers were tested for 3s simulation time. Examining the time 

responses obtained the results show that PI and fuzzy speed controllers have a marginal 

advantage against the neural controller. In particular the PI controller has the smallest ISE error 

of all controllers, whereas the fuzzy controller has the smallest IAE and ITAE error. It is 

interesting how fuzzy and neural controller controls the plant having dynamical behaviour 

characteristics. As mentioned above this is a result of good input-output observation data and 

appropriate size of neural network architecture. The main point highlighted already in section 

5.6 is the execution time of each controller. The simulation study shows the huge advantage of 

PI control compared to any other control methods in terms of computational complexity. PI 

appears to be simple and effective. However both fuzzy and neural controllers despite their 

computational complexity equally control the plant. A question then arises of which control 

method is the best. Although a neural controller does not provide better performance in this 

simulation study this is not true when the system to be controlled is unknown and highly non­ 

linear. These conclusions lead to the path of further study of possible combinations and 

development of hybrid system consisting of classical and intelligent techniques.

In section 5.7 the robust stability of the closed-loop was tested and proved under uncertainty. 

The uncertainty of the closed-loop system was modelled by replacing the coefficients of the 

closed-loop characteristic equation of the MIMO system with closed interval polynomials. 

Although the robust stability was proven, a question remains of how to map a closed-loop 

characteristic equation of system to the system's physical parameters (especially for MIMO 

systems). For example, the mobile robot for which the robust analysis took place weighs 0.5 kg. 

If there was a need for 10% increase of its mass (i.e. adding more sensing elements) how the 

coefficients of the closed-loop characteristic equation will change is of interest. To map the 

change of the robot's mass to the change in the coefficients of the closed-loop characteristic 

equation is very difficult. In order to demonstrate this, consider the modified open-loop robot
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transfer function matrix in Equation (5.35), and the closed-loop transfer function of the system 

in Equation (5.36) resulting from the 10% increase in mass.

GM (s) =

10.06s+ 504.2 1.659s+ 23.11

s2 +102.3s+ 2577 s 2 + 102.3s+ 2577
1.6S9s+ 23.11 10.06s+ 504.2

.s 2 + 102.3s + 2577 s 2 + 102.3s + 2577.

HM (s) =

Ils3 +1576s2 +7.096e004s + 9.814e005 -13.62s3 -846.4s2 -1.032e004s

s4 +124.3 s3 +5793 s2 + 1.223e005s + 9.814e005 s4 +124.3 s3 +5793s 2 + 1.223e005s + 9.814e005 
-13.62s3 -846.4s2 -1.032e004s lls3 +1576s 2 +7.096e004s + 9.814e005

. s4 +124.3 s3 + 5793 s2 +1.223e005s + 9.814e005 s4 +124.3 s3 + 5793 s2 -f 1.223e005s + 9.814e005

(5.35)

(5.36)

It can be observed that the intervals used for Equation (5.25) do not include all the variations in 

coefficients resulting from a 10% increase in mass. Care must therefore be taken in selecting the 

most suitable interval in order to accommodate the range of the expected parameter variations. 

The closed-loop control system described in Equation (5.36) was tested again for robust 

stability based on new uncertainty bounding set given in equation (5.37) and was found to be 

robustly stable.

QHq
q 0 e [981400,1133000^ e[l22300,141230}l 

q 2 e [5793,65791 q 3 e[l23.2,136.2] j
(5.37)

5.9 Summary

This chapter presented the control, the robust stability analysis of the MIABOT V2 mobile robot 

and the discovery of fuzzy-neural local models from observation data. At the first instance PI 

control law was developed based on full non-linear model and design requirements derived in 

section 5.2.2 for the mobile robot. PI control action was selected, as it is computational simple 

and fast to design. However, as already mentioned there exists a clear relationship between PI 

(or PID) and system response parameters. The tuning/optimisation of the PI control parameters
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was achieved using the non-linear control design tool (NCD). This design methodology was 

fast, easy to use and suitable for the control design, which was based on non-linear model. In 

addition the method was found to produce good performance and robust control under plant 

uncertainty. The results of tuning show that PI control action successfully controls the plant, 

providing performance within the design requirements. Then a design methodology to replace 

the PI controller by fuzzy logic controller was proposed. Based on subtractive clustering a fuzzy 

logic controller was identified using the PI controller as a teacher. The fuzzy controller was 

modelled with dynamical behaviour by emulating the controller function to more inputs (delays 

of inputs and outputs). To extend this design methodology a multilayer feedforward neural 

network with dynamical behaviour was developed based on supervised learning. Comparison 

was made of all three types of controllers based on their performance and execution time. It was 

shown that all controllers control the plant within the design requirements where the PI 

controller has the smallest ISE error of all controllers, whereas the fuzzy controller has the 

smallest IAE and ITAE error. However, the execution time found to vary dramatically between 

the controllers. The PI control action found to be as the fastest controller whereas the neural 

controller found to be faster than the fuzzy controller. Finally the closed-loop control system 

was tested for robustness under uncertainty in robot dynamics. Using the parametric robustness 

analysis approach (Kharitonov's Theorem) the closed-loop control system of the MIABOT V2 

mobile robot was tested and proved to be robustly stable under uncertainty in robot dynamics. 

This method proved to be easy and fast to use. To reinforce the result of the approach taken the 

robust stability analysis of the closed-loop control system was verified using graphical 

techniques. The work covered in this chapter is used in chapter six as an algorithmic 

methodology for the design of local behaviours and also in chapter seven to form the low-level 

control unit of the proposed hybrid control architecture where its evaluation is taking place.

The contributions of this chapter are: Development of speed control action (MIMO speed 

controller) for the mobile robot based on non-linear model and non-linear control design tool.
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Identification, modelling and control of dynamic system (controller) using fuzzy control based 

on subtractive clustering and neural control based on supervised learning (learning with a 

teacher). Comparison of time response performance and length of execution time between PI, 

fuzzy and neural controller. Testing of the closed-loop control system based on parametric 

robustness analysis approach under uncertainty in robot dynamics.

In the next chapter using the non-linear model of the mobile robot derived in chapter four and 

the speed control law from this chapter including the algorithmic methodologies for 

identification, modelling and control of dynamic system, a hybrid multi-agent type control 

architecture is developed for navigation of multiple autonomous mobile robots in unknown 

environment based on implicit communication.
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6
Hybrid Control
for Navigation of Multiple
Autonomous Mobile Robots

6.1 Introduction

This chapter presents the development of a novel hybrid multi-agent based control architecture 

called CAROS (Co-operative Autonomous RObotic Systems) for navigation of multiple 

autonomous mobile robots in unknown static and/or dynamic environment. The proposed 

architecture takes the advantages of various control structure types thereby integrating them in a 

way that results in an overall increase in synergy.

The remainder of this chapter is organised as follows: Section 6.2 discusses the need for hybrid 

control architectures for autonomous mobile robots in order to form a more robust, flexible and 

modular control system. An overview of the proposed hybrid multi-agent type control 

architecture for navigation of multiple autonomous mobile robots is presented in section
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6.3. Section 6.4 presents the control strategy chosen for the navigation of mobile robots in an 

unknown environment. Sections 6.4.1 and 6.4.2 illustrates the control strategy decomposition 

into global and local strategy. In section 6.5 the design and implementation methodology of the 

control architecture is given. The low-level control unit of the control architecture is presented 

in section 6.6. Sensor modelling and sensor sensitivity is described in section 6.7. In particular 

in this section three types of sensor have been modelled based on their sensitivity 

characteristics. Robot localisation during the navigation tasks is discussed in section 6.8. 

Section 6.9 presents the analysis of the speed and orientation adaptive mechanism (SOAM) 

used in CAROS. In particular section 6.10 describes how the SOAM is organised using local 

controllers by means of agents. The co-ordination method for these controllers-agents is 

presented in section 6.10.1. Section 6.11 presents an algorithmic methodology for modelling the 

robot's behaviours. In this section is also shown that the implementation of complex control 

systems can be overcome by decomposing the global task into simpler well-defined behaviours. 

Sections 6.12, 6.13, 6.14 and 6.15 describe the implementation of four well-defined behaviours 

for the navigation of multiple robots in an unknown environment. In particular static and 

dynamic obstacle avoidance is considered. The proposed algorithmic methodology uses both 

fuzzy logic and neural networks. Hybrid solutions are also proposed for a novel approach of 

identification of moving direction of neighbour robots. A proposed method for co-ordination 

and parallel switching of the modelled behaviours is described in section 6.16. A discussion 

follows in section 6.17, and the summary including the main contributions of this chapter is 

presented in section 6.18.

6.2 Why hybrid architecture?

In chapter two, section 2.5 it was shown that the behaviour-based approach in robotic control 

could effectively produce robust performance in complex and dynamic domains. However, 

strong assumptions that purely reactive systems make can serve as a disadvantage at times. 

These assumptions according to (Arkin, 1998) may include environmental lack of temporary
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consistency and stability, insufficient symbolic representation of world knowledge and finally 

difficult to localise the robot in respect to a world model. However, in some environments these 

assumptions may not be completely valid. For instance, if an accurate world model exists then 

perhaps a deliberative control architecture (method) may be preferred. Therefore it can be 

concluded that hybrid systems capable for incorporating both deliberative, reactive and may be 

other systems have the potential to deliver a satisfactory solution for flexible and robust control 

systems architecture. In chapter three section 3.5.2 a classification and some discussion of 

control architectures was presented. In addition section 3.5.4 (chapter three) described the main 

requirements/properties of control architecture. However the identification of what are the 

"best" characteristics of each control approach in terms of requirements/properties is still a 

matter of interest. In Figure 6-1 an analysis is presented based on the Quality Functional 

Deployment tool (QFD)1 (Bossert, 1991) for the identification of the relationship of the 

requirements/properties of control architecture versus the control architecture specifications.
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Figure 6-1 QFD analysis of control architecture specifications versus requirements/properties

1 Figure 6-1 sometimes called L Shaped Matrix Diagram. In the L Shape, two interrelated groups of items 

are presented in line and row format. The choice of satisfaction levels is subjective (Bossert, 1991).
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The results from Figure 6-1 clearly indicate that the most promising solution in control systems 

architecture design is the hybrid approach. Therefore a deliberative upper module is needed to 

make high-level navigational planning and decision-making, whereas a low-level reactive 

module is needed to take care of the real-time issues related to the interactions with the 

environment. A schematic layout of this approach (hybrid) is shown in Figure 6-2. The middle 

module interacts between the deliberative and reactive module supervising the accomplishment 

of the tasks.

Deliberative Module

Interaction Module

sensors
Reactive Module

actuators

Figure 6-2 Hybrid approach

6.3 Overview of CAROS

In this section a general overview of the CAROS hybrid control architecture for navigation of 

autonomous mobile robots is presented. The hybrid control architecture draws its design from 

competitive tasks architecture, production rules architecture, connectionist architecture, 

dynamic system architecture, multi-agent architecture and subsumption architecture. Figure 6-3 

shows the overview of the control architecture where it can be seen that the control architecture 

consists of the following parts: Sensory data, action co-ordinator mechanism, a set of local 

controllers modelling the robots behaviours, speed and orientation adaptive mechanism 

comprising of a set of local controller-agents, the robot model and its control mechanism and 

finally the robot working environment. The main characteristics of the proposed control 

architecture are summarised in Table 6-1.
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robot behaviours
Including set ol other

ocal controllers

Co-operative Autonomous RObotte Systems 
(CAROS) control architecture

Figure 6-3 Structure of CAROS

Property Value

Name

Developer

Type

Design Method

Behavioural Encoding

Approach

Type of Component

Co-ordination Method 

Coupling Structure 

Constitution 

Programming Method 

Robots Fielded

Co-operative Autonomous RObotic Systems (CAROS)

Alexandras Mouzakitis

Hybrid Multi-Agent Control Architecture

Experimental Simulation
Discrete. Fuzzy Logic, Neural Networks and Stateflow. Compatible
with MATLAB Toolboxes

Object/Vertical Functional
Agent/Stimuli-Command Relationship/Tasks and Primitive Actions
/Rules/Formal Neuron/FSM
Egalitarian/Hybrid Hierarchical Competition

Variable

Emergent/Predefined 

MATLAB/Simulink and C 

MIABOT V2

Table 6-1 Main characteristics of CAROS
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6.3.1 Sensory data

The sensory data block is used to model sensitivity of three types of sensors for the robot's local 

navigation. The three types of sensors used were ultrasonic, infrared and no-shape sensors, 

which are all presented in detail in section 6.7.

6.3.2 Action co-ordinator mechanism (ACM)

The action co-ordinator mechanism is used to identify the robot/system states and then decide 

which controller/behaviour should be activated. The number of required states is not unique but 

depends on a particular application and designer choice. The design tool used to model the 

robot's states is stateflow based on theory of finite state machines (FSM). In chapter three an 

overview of the design methodology of stateflow and FSM was presented. The output of the 

control logic of the FSM decides which behaviour has to be activated according to the current 

state of the system. Note that action co-ordinator mechanism and robot behaviours share the 

same type and number of inputs coming from the sensory data block. A non-linear switch 

mechanism then is in charge to release the control output commanded by the global state 

identification mechanism (GSIM). This kind of action co-ordination draws its advantages from 

the competitive tasks architecture in which once a functional module is selected the module is 

activated and the previous one deactivated. However the deactivated module is not totally 

switched off, it continues to receive sensory data in parallel with FSM. Thus, the module it 

exercises a monitoring activity, which consists in receiving data from sensors and calculating 

the values of the selection parameters, which depend on it. The ACM is presented in more detail 

in section 6.16

6.3.3 Decision-making mechanism (DMM)

The decision-making mechanism is the largest part of the proposed control architecture. Only 

four independent local controllers were employed in this thesis to model the DMM (note that 

the number of local controllers is dependent upon the particular application). Each local 

controller (behaviour) runs completely independently, is responsible for a predefined task and
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provides the action co-ordinator mechanism with control commands according to its own rate 

and time constraints. The main design philosophy behind the decision-making mechanism is 

based on behaviour-based approach. The classical artificial intelligent approach to robot control 

is to divide the problem in a task-based style. As mentioned previously in chapter two, the 

major problem with this approach was that all subsystems must work well in order for the robot 

to function at all. The behaviour-based approach came to solve this problem. With the new 

intelligent control approach several behaviours are used to control the robot. For this work, each 

of the behaviour (functional module-local controllers) is designed to perform a particular task 

such as to orientate and approach the goal, to avoid neighbour robots and also collisions with 

static obstacles. For instance, one of the major differences between this work and the 

subsumption architecture is that the coupling structure is not fixed. The variable coupling 

structure of the CAROS architecture allows more flexibility and modularity into the control 

system.

The design of the functional modules is not unique. The most popular behaviour design is the 

one by (Brooks, 1986), although other researchers have developed behaviour on more or less 

the same principle (Arkin, 1989) and (Mataric, 1992). For this work the principle of the 

production systems architecture, FSM and connectionists architecture is proposed for the design 

of the major functional modules. Fuzzy logic is one form of production systems architecture. 

This form of control architecture was shown in chapter three that consists of the perception, the 

database with the inference engine and the rule base, and finally the execution. In terms of fuzzy 

logic the functional module consists of the fuzzification mechanism, the inference engine and 

the defuzzification mechanism, which produces the crisp output as the control command. Neural 

networks, which are one form of connectionist architecture, also used to model standalone or 

hybrid behaviours in accordance with FSM (stateflow-neural approach). As mentioned in 

chapter three the use of fuzzy logic, neural networks and FSM provide good tools for translating 

human knowledge into mathematical terms, easy to identify, model and apply learning

6-7



Chapter 6_______Hybrid Control Architecture for Navigation of Multiple Autonomous Mobile Robots

techniques for non-linear systems and finally provides model visualisation and control of 

complex reactive control systems. The DMM is presented in more detail in section 6.11

6.3.4 Speed and orientation adaptive mechanism (SOAM)

The speed and orientation adaptive mechanism, which forms another part of the control 

architecture, is in charge of two tasks. The first task is to define the local operating speed of the 

mobile robot (local operating speed depends on control strategy) whereas the latter task is to 

provide feedback for one of the local controllers in the decision-making mechanism responsible 

to correct the mobile robot orientation towards the target. This adaptive mechanism consists of a 

set of local controller-agents, one local controller and a co-ordination object. According to (Van 

Breemen and De Vries, 2000) a controller-agent "is a largely autonomous locally operating 

controller that consists of a control algorithm (in the form of an update and a calculate function), 

an operating regime characterisation, initialisation and finalisation functions and an interface to 

co-ordinate its behaviour in order to handle dependencies among controller-agents". The Co­ 

ordination object solves dependencies between controller-agents based on their interactions. As 

can be observed from Figure 6-3 the co-ordination object has as inputs the inputs and outputs of 

the controller-agents. The SOAM is presented in more detail in section 6.9

6.3.5 Mobile robot and environment

The last two parts of the control architecture comprise the mobile robot and the robot's 

environment. The mobile robot block consists of the full non-linear model of the MIABOT V2 

mobile robot described in chapter four. Three types of controllers developed in chapter five, for 

reliable speed control can be selected to control the robot's velocity. Realistic model and robust 

speed control of the mobile robot are required for the implementation of the hybrid control 

architecture (note that most control architecture assume kinematic model of the mobile robot in 

which the robot's dynamics and speed remains unconstrained). The environment simulation 

block is used in order to simulate static obstacles and sensor readings (see sections 6.7 and 

6.13).
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6.4 Control strategy

In this section an introduction based on control strategy chosen for the navigation of the mobile 

robots is presented. The control strategy has been decomposed into two sub-control strategies 

(global and local control strategies) as shown in Figure 6-4 and furthermore presented in 

sections 6.4.1 and 6.4.2. Although the CAROS control architecture is based on the control 

strategy presented here, it still remains a generic architecture capable of solving other complex 

control problems. For instance, the control architecture may be used for navigation of other 

types of vehicles such as a different type of wheeled mobile robot, for ship motion control, for 

aircraft control etc., The control architecture can also be applicable in other applications which 

may involve problems of control and decision making for a given process.

Global Control 
Strategy

Local Control 
Strategy

(b)

Figure 6-4 Control strategy for robot(s) navigation

6.4.1 Global control strategy

The global control strategy of the mobile robot(s) during the navigation cycle is defined as 

shown in Figure 6-5. The co-ordinates and the orientation of the robot at time t are x s , y s and 

»s (note that subscript S stands for "sensed"). The start and target points of the robot are
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(x 0 y 0 ) and (x T ,y T ) respectively. The orientation at start and target points of the robot is 

defined as $0 and &T respectively in which the orientation angle is measured anticlockwise 

from the x axis (see chapter four, section 4.3). The robot's velocity at start and target points is 

defined as V0 and VT respectively. The robot desired velocity during the mission is defined by 

VD . If there were no obstacles (either static or dynamic) during the navigation, the robot would 

instantly turn towards its target from the start. Table 6-2 summarises the variables used for the 

robot's co-ordinates, orientation and velocity during navigation.

(x T ,yT ,3T ,VT )

(x s ,y s ,S s ,& D ,Vs ,VD ,VNOM )

Figure 6-5 Robot(s) global strategy

Name ___________ Representation _______

(x o v o ) Robot's start point co-ordinates 

(x sys ) Robot's current (sensed) point co-ordinates 

(X T y T ) Robot's target point co-ordinates 

&o Robot's start point orientation 

& s Robot's current orientation 

&D Robot's desired orientation 

3T Robot's target point orientation 

V0 Robot's start point linear velocity 

Vs Robot's current linear velocity 

VD Robot's desired linear velocity 

Robot's nominal linear velocity 

Robot's target point linear velocity

Table 6-2 Variables used for robot navigation 
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6.4.2 Local control strategy

The robot(s) local control strategy is divided into two phases described as follows:

Phase A (local control strategy (a) as shown in Figure 6-4) is the case in which the mobile robot 

detects and moves towards the target, but obstacles either as static or dynamic obstructing its 

path i.e. the main goal during Phase A is to approach close to the target, avoiding possible 

obstacles on the way. Therefore the robot will move around the obstacle if it is static or it will 

use traffic rules if it is dynamic. If at the same time both static and dynamic obstacles have been 

found to obstruct the robot's path, then priority is given to the closest obstacle. Section 6.11 

presents in detail the analysis of the proposed method of both static and dynamic obstacle 

avoidance.

Phase B begins when robot enters a predefined region (circle) around the target. At the end of 

the mission the robot has to reach the target with predefined angle and speed. To achieve this, 

the local control strategy from Phase A is switched off. The main idea is to generate a virtual 

trajectory from the entry point to the target, which satisfies boundary conditions specified with 

the approaching angle and speed. Virtual trajectory is specified by two virtual points. Positions 

of the virtual points are calculated dynamically, depending on the entry point co-ordinates and 

approach requirements. Figure 6-6 shows a schematic layout of Phase B.

Robot trajectory

Figure 6-6 Phase B of local control strategy
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6.5 Design and implementation methodology

Once the main principles and structure of the control architecture is defined, the next step is the 

implementation of the control architecture. The implementation of CAROS took place on a 

MATLAB/Simulink based simulator. The control architecture was tested throughout a large 

number of experiments until the simulation reached the desired results. The main design 

methodology was based on iterative cycle of simulations, analysis of the results, leading to 

further improvement of the control architecture towards its final configuration. In the following 

sections the design and implementation of CAROS control architecture is presented in more 

detail.

6.6 Low-level control

The simulation of the control architecture relies on the ability to realistically simulate a mobile 

robot (MIABOT V2, or any other robot) within its working environment. Hence, the modelling 

and simulation of the vehicle was considered the first problem to face. The dynamics, which are 

certainly important for a mobile robot including its local control laws, have been taken into 

account. The dynamic model of the mobile robot derived in chapter four and its speed control 

laws (PI, fuzzy and neural controller) derived in chapter five comprise the low-level control unit 

in CAROS control architecture. Parameters of the low-level control unit such as initial values 

and/or initial vector for the mobile robot and/or selection of speed controller are set using the 

dialog boxes shown in Figure 6-7.
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Block Paramrtrn: Speed ControUrr

- Selection ol Speed Contcollei lot MIABOT V2 Mobile Robot Imajk)

: PaameMt
I Select Condole.:

JP I OK 1 Cancel | Help | Apply

Dlock PwuiiFlrn: Speed Controller + Mobile Robot

fa)

• RobotlnbaWaluw Imask) 
Set lr*al Vdue ol State Vectoi.

rPaameten—— 
I xdotOlm/s]

F
xON

1°
ydotOKs)

1° 

yON

P
IheladolOloeoA)
1°

Cancel Help

ConliolteilflobolPaiameltii (mask) - ——— 

Initial Values la Low-level Control in CARDS Control AicMecUiei

, Patameteis
Wheel ladiuj R (m)

I 0——————————————————————————— 

| Wheel base B |m|

SjppagaHt______________________

Slippage light____________

1° 

PI|5——————————————————— 

01

P2

Q2

Proportional gain Kp
| |[0 0 0 0] 

| Integral gain Ki
|[0000)

OK | Cancel | Help |

0» lc '

Figure 6-7 Dialog boxes used in low-level control unit, (a) Selection of speed controller (PI, 
fuzzy or neural) (b) Initial value of state vector for the robot(s) (c) Initial value for robot

dynamics and speed controller gains

6.7 Modelling sensors and sensor sensitivity

Truly autonomous control implies the ability of a free-roaming robot to travel anywhere so 

desired, subject to nominal considerations of terrain traversibility. Furthermore at the robot, task 

and environment are tightly linked, the overall behaviour of the robot is the result of the 

interaction of these three components.

Sensors are devices that can sense and measure physical properties of the environment, such as 

distance, temperature, size, weight, etc. They deliver low-level information about the 

environment the robot is working in. According to (Everett, 1995) sensors are divided into two 

categories, the navigational referencing sensors and the collision avoidance sensors. Collision 

avoidance sensors usually operate over short ranges incorporating low resolution. The field of 

view should provide sufficient coverage for a turning robot, and allow enough time to stop or
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change course. (Nehmzow, 1999) has characterised all sensors by a number of properties that 

describe their capabilities. The most important properties include sensitivity, linearity, 

measurement range, response time, accuracy, repeatability, resolution and finally type of output. 

In this section the modelling of collision avoidance type sensors is considered for the navigation 

of the MIABOT V2 mobile robot(s) in the simulation trials using the CAROS control 

architecture.

During the simulation trials three type of sensors were used: infrared, ultrasonic (or modular) 

and no-shape sensors. It was decided that the use of three sensors on each mobile robot would 

be sufficient to simulate the interaction between the robot and its environment (detection of 

obstacles). Note that introduction of more sensors may increase the robot ability to navigate but 

the computational complexity of the simulation increases dramatically (too slow to run). All 

sensors are set in the front face of the robot. A support was created in order to give two rotation 

axes for each sensor and so there is the possibility to choose different horizontal and vertical 

positions. The following schema and picture in Figure 6-8 shows the arrangement of the sensors 

on the mobile robot.

Centre sensor 

Left sensor Right sensor

Figure 6-8 Schematic layout of sensor arrangement.
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6.7.1 Infrared sensors

The infrared sensor (Sharp GP2D02) was the first type of sensor to be modelled as they have 

already been used with the MIABOT V2 mobile robot. Infrared sensors are probably the 

simplest type of non-contact sensors and they are widely used in mobile robots to detect 

obstacles. They are safe, inexpensive and fairly easy to use. Provided all objects in the robot's 

environment have a uniform colour and surface structure, infrared sensors can be calibrated to 

measure distance from the objects. However, in realistic scenarios surfaces of objects have 

different colours, which results a larger or smaller amount of light. To overcome this problem in 

mobile robot navigation it is usually best to start avoiding the object as soon as it is detected. 

Figure 6-10 shows the modelling of infrared sensor sensitivity based on real experiments with 

the mobile robot. It can be seen that the sensor sensitivity it varies between 0 and 1 according to 

the distance of the obstacle detected up to the range of 0.8m.

6.7.2 Ultrasonic sensors

Ultrasonic sensors are the second type of sensor sensitivity modelled. Ultrasonic sensors are 

also safe, low-cost and easy to use. The main design philosophy behind ultrasonic sensors is the 

same that is used by bats2 . The sensitivity of this type of sensor is not uniform, but consists of a 

main lobe and side lobes. It can be used to obtain distances up to 10m through direct time-of- 

flight measurement. Figure 6-11 shows the modelling of ultrasonic sensor sensitivity based on 

given 0.7 value of slope. Slope is a value between 0 and 1, which can be selected to change the 

sensor sensitivity in terms of sharpness (note that zero value of slope will give an no-shape 

sensor presented in the next paragraph). It can be seen that the sensor sensitivity it varies 

between 0 and 1 according to the distance of the obstacle detected up to the range of 0.8m.

2 A chirp, that is a short (e.g. 1.2 ms), powerful pulse of a range of frequencies, is emitted, and its reflection of objects 
ahead of the sensor is detected by a receiver (Nehmzow, 1999).
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6.7.3 No-shape sensors (infrared)

This is a simple sensor unable to distinguish distance. With this type of sensor if an object is 

detected the sensor sensitivity is 1 and 0 otherwise. Therefore this sensor does not consider 

distance to the object but only information if it is present. Figure 6-10 shows the modelling of 

no-shape sensor sensitivity. It can be seen that the sensor sensitivity is either 0 or 1 according to 

the appearance of the obstacle detected up to the range of 0.8m .

As can be seen from Figure 6-9 all sensors can be monitored during the robot(s) navigation. In 

addition, sensor modelling is generic and modular. This means that at any time several sensor 

parameters can be adjusted such as sensor position, range, sensitivity and type of sensor to be 

used.

Block Parameters: Robot & Environment Parame ton

- Robol&SensorsParametersBlock (mask) 
Set Value* for Robot Envionement and Scrims Parameters

- Parameters -
Robot: Length a (m)

1°

Robot Width b (m)
1°

x grid vector [mil step max]

y grid vector [min step max]

ID
Sensor Length l(m)
I"

Sensor Angle afcha(deg)

I"

Sensor LS angte phil (deg)
I"

Sensor CS angle phi2 (deg)

Sensor RS angle phi3 (deg)

1°

Sensor Sensitivity slope (only for ultrasonic)(o ————^

Sensor Shape sensitivity [UlliasonicSensois 

Static Obstacle Malm:

] Cancel | Help | flppfr

Sensitivity
0 1

Left Sensor

MIABOT V2

' Sensitivitf
0 1

Center Sensor

CARDS MIABOT V2

Far 0.4 ° 5 0.6 Close 

0.3 >-U'< 0.7

•TOT"0.2 

0.1

i

CARDS

0.9
1 Sensitivitj 

Right Sensor

MIABOT V2

Figure 6-9 Dialog box for environment/sensor parameters and gauges used to read sensor
sensitivity
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robot with respect to a reference frame is a fundamental requirement for autonomous 

navigation. Different kinds of techniques have been developed to tackle the problem of robot 

localisation and these techniques according to (Roumeliotis and Bekey, 1997) can be sorted into 

two main categories: Relative (local) localisation, which consists of evaluating the position and 

the orientation through integration of information provided by diverse sensors. The integration 

is started from the initial position and its continuously updated in time. Absolute (global) 

localisation, which is the technique, that permits the robot to find its way directly in the domain 

of evaluation of the system. These methods usually rely on navigation beacons, active or 

passive landmarks, map matching or satellite-based signals i.e. global positioning system (GPS). 

(Canudas De Witt and Sordalen, 1992), (Hou and Muller, 1992), (Eren and Fung, 1997), 

(Astolfi, 1999), (Jetto et al, 1999), (Mutambara and Durrant-Whyte, 2000), (Sasiadek and 

Hartana, 2000) and (Conticelli et al, 2000) have demonstrated methods of how to estimate both 

position and orientation of a mobile robot with navigational behaviour in two-dimensional 

space. Some of their methods include the use of fuzzy logic adapted Kalman filter, extended 

Kalman filter and design of non-linear observers. The problem of robot localisation is not the

scope of this thesis, therefore the full estimate of robot's position and orientation (X;, yj, S-t ) it 

is assumed.

6.9 Analysis of SOAM

In this section, an analysis of speed and orientation adaptive mechanism (SOAM) based on 

organisation of local controllers by means of agents is described. In addition also described the 

method of co-ordinating these controllers-agents using a co-ordination object based on FSM.

6.10 Organising SOAM using local controllers by means of agents

The main objective of the SOAM is to provide the mobile robot with the desired speed and 

orientation according to current local control strategy (i.e. Phase A or B). The local controllers 

used in the SOAM are organised by means of agents. From the control point of view, systems
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are analysed by focusing on models of the dynamic behaviour of variables of the plant. One of 

the major concepts of control theory is to analyse robustness, stability and other performance 

properties. As mentioned in chapter three, the field of multi-agent systems is concerned with 

analysing and designing systems in terms of agents. The uses of multi-agent systems provides 

an answer to the question of how to deal with distributed systems with focus on goals and 

organisations, an area which is almost unexplored in the control community. However, it is well 

known that a controller is usually designed to operate contentiously the whole operating time of 

the control system. A controller that only operates in some restricted part of the operating 

regime of the controller system comes close to the concept of agent. SOAM is multi-agent 

constructed and orientated as the majority of its operation belongs to a restricted part of the 

operating regime of the control architecture (only operates when the robot enters Phase B). The 

capability of the mobile robot to reach the target with predefined speed and orientation when it 

enters Phase B is achieved through the use of local controllers organised by means of agents as 

summarised and shown in Table 6-3.

Name ____ Controller-agent Function Representation ______ Agent Goal
Calculate co-ordinates of-,,,_, far, i r i rv 1,1 r 1 IV 1 r 1\ f 1 acu fmd_VPl ([S T 1 K yJr , [X, Y]entry , [ej, [f J, |gj) -> [x, yJVP1 first ^

r- , ™, ifr. nv.*rnvir i \ r l Calculate co-ordinates of findJ/P2 ([S T 1 [RVP2 J [x, y]T ) -> [x, y]VP2 point

approachjarget ([x, y]T , [x, y]s ) -> [»D ] Orientate towards the target

Orientate towards the first». , , , , , v r , 1 Orientate to
approach_VPl ([x, y]T , [x, y]s , [x, y]VP1 )-> |d£ J virtua, point

n T r , r , x r , ] Orientate towards the
approach_VP2 flx> y]T , [x, y]s , [x, y]VP2 ) ̂  [ D̂ \ second virtual point

r i Reach the goal with 
get_target [dj ]_> [S * J predefined angle

/r i r i N, IN, T\ fw 1 Reach the goal with adjust_speed ([x, yJT , [x, yjs , IVT j, [VNOM j) ̂  IV D J predefined speed

Table 6-3 Controller-agents used in CAROS and SOAM for robot navigation
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At the beginning of the navigation the robot(s) target location, predefined target approach angle, 

nominal robot speed and other initial values can be set using the dialog boxes shown in Figure 

6-13.

Block Parameters: Speed and Orientation Adaptive Mechanism (... E
CflAU fmB.rL-1

Sd Initial Values fa SOAM

Vnom (m/s)

|i
VUm/s)

I"

epslorc Target Threshold (mj

1"

1"

epsVP: Epsilon Radius lot VPs(m)

1"

(: Distance Factor lot VP1

l°

g: Angle Factoi for VP1

1"

st: Slop Threshold (m)

1° 

ss: Slopping Simulation Radius m)

1"

OK | Cancel Help | Apply |

3

• Block Parameters: Target Hi
- Target (mask) —————————————————————————— |

j Set Initial Value of Stale Vector. j

P omelet
! Kt(m)

1"

yl(m) !

\ 1°
thelat (degl

> 1°

OK | Cancel | Help | •-, \

Figure 6-13 Dialog boxes used to set initial values in robot(s) navigation

In order to explain the co-ordinating work undertaken by the controller-agents when the robot 

enters Phase B the following example is considered. The mobile robot is initially located at 

point (x 0 ,y0 ) and its goal is to reach the target (x T ,y T ) with predefined angle » T and 

predefined speed VT . As shown in Figure 6-14 the robot enters at point (x e ,y e ) the predefined 

region (circle) denoted by the radius e taken from the target point. At this stage the SOAM is 

activated and therefore the scope of the set of local controllers-agents is to find two virtual
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points and also to provide the robot with its desired speed and orientation towards the virtual 

points and the target. The task of the adjust jspeed controller-agent is to continuously calculate 

the desired robot's speed until the robot reaches the target. The inputs to the adjustjspeed 

controller-agent are nominal robot speed (VNOM ), robot's linear velocity at the target point 

(VT ), distance from the robot's current position to the target (d), target threshold (s ) and the 

threshold to stop at the target (st). The output of adjustjspeed controller-agent is given in 

Equation (6.1), which simply gives the desired robot speed denoted by VD .

if d > stANDd < e (6.1)s-VT 
VT if d<st

The next controller-agent to be activated is thefind_VP2. This controller-agent is responsible 

for finding the co-ordinates of the second virtual point. The inputs are robot's target point 

orientation 3T , target point co-ordinates (x T ,yT ) and the predefined distance of virtual point 

two from the target denoted by RVP2 (see dialog box in Figure 6-13). Equations (6.2) and (6.3) 

calculate the co-ordinates of virtual point two as shown in Figure 6-15.

xVP2 = XT - (RVP2 • cos(aT • TC/180)) (6.2) 

YVP2 = yr - (RVP2 ' sin(at' t/180)) (6.3)

When virtual point two has been found the fmd_VPl controller-agent is activated. This 

controller-agent is responsible for finding the co-ordinates of the first virtual point. The inputs 

are robot's target point orientation S T , target point co-ordinates (x T ,yT ), entry point co­ 

ordinates (x e ,ye ), target threshold (e), distance factor for virtual point one (f) and angle
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factor for virtual point one (g). Note that the distance and angle factor for virtual point one have 

been introduced in order to provide more flexibility and modularity into the proposed approach 

(for other applications distance and angle factors can be modified using the dialog box in Figure 

6-13). At the beginning angle \\> can be calculated using the four-quadrant inverse tangent and 

the co-ordinates of entry and target points as shown in Equation (6.4)

\l/= tan"1 yT ~ yE .180/n (64) 
I x T -x E J

Then angle £ is calculated based on angles \\i , 9T and the distance and angle factors f and g 

as follows:

(6.5)

Using the RVP2 distance from target for virtual point two, the distance from target to virtual 

point one RVP1 can be calculated as follows:

RVP1 = f • RVP2 + (l - f ) • e (6.6)

Having found £ and RVP1 the co-ordinates of virtual point one are given by Equations (6.7) 

and (6.8). Figure 6-16 shows the schematic layout of virtual point one calculation.

x VP1 = X T - (RVP1 • cos(£ -Ti/1 80)) (6.7) 

yvpl =yT -(RVPl-sinfe-jr/180)) (6-8)
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At this stage the virtual points VPI and VP2 have been found and therefore the robot can follow 

the virtual trajectory generated. The problem, which occurs at Phase B, is that robot's desired 

orientation is changing dynamically according to which virtual point it is pass in. To solve the 

problem, four controller-agents are used. The first controller-agent, called approachJarget, is 

used to generate the desired robot orientation from the start point (x 0 , y0 ) until the robot enters 

the predefined region E . The output of approachjarget controller-agent is given in Equation 

(6.9).

tan"1 YT ~ ys -180/71 (6.9) 
X T -xs

When the robot enters the predefined region s another controller-agent, approach_VP1, is 

used to navigate the robot towards the VPI virtual point. Equation (6.10) shows the output of 

the approach_VPl controller-agent.

(6, 0).
x T -xs -(RVPl-cosfe-Ji/180))

When the robot reaches virtual point one, approach_VP2 controller-agent is used to navigate 

the robot towards the virtual point two (VP2). The desired robot orientation towards the virtual 

point two is calculated as follows:

(6 . n)
X T - x s - (RVP2 • cos(» T • n 1 1 80))
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Finally when the robot reaches virtual point two,get_target controller-agent is used to navigate 

the robot towards the target point denoted by (x T ,yT ). The output of this controller-agent is 

the same as the given predefined target angle as follows:

(6.12)

In some cases the interface of a controller-agent is achieved by activation request and 

acknowledge signals. The activation request and acknowledge signals are used to co-ordinate 

the behaviour of the controller-agent with the other controller-agents of the overall controller. 

For instance in (Van Breemen, 2001) a controller-agent behaves just like a local controller 

either as being active or inactive. In this thesis the controller-agents are switched on and off 

using the enabled subsystem block provided by MATLAB. Using the enable subsystem block a 

subsystem (controller-agent) can be either enabled or disabled according to a specific control 

input (request). Although, a controller-agent does not execute while it is disabled, its output 

signal is still available to other controllers. While a controller-agent is disabled its output can be 

selected to hold its previous value or can be reset to its initial condition. The blocks of 

controller-agents, which have been modelled using the MATLAB/Simulink can be found in 

Appendix B.
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Robot trajectory
Target threshold 

8

Start (Xo ,y 0 )

Figure 6-14 Schematic view of mobile robot navigation when enters Phase B

Robot trajectory
Predefined distan 
of VP2 from target 

RVP2

Figure 6-15 Schematic view of virtual point two calculation

Robot trajectory

Predefined distance 
ofVPl from target

* m A. __ _

Virtual point one 
VP1

Figure 6-16 Schematic view of virtual point one calculation
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6.10.1 Co-ordination of local controller-agents using stateflow

In section 6.10 the use of a controller-agent was proposed to implement a locally operating 

controllers. To co-ordinate several controller-agents, a mechanism is needed that activates/de­ 

activates them. So, a co-ordination object that retains the decision taking part of the supervisor 

and hence still must solve problems such as conflicts (several local controllers might generate 

valid control signals at the same time), deadlock (at the same time none of the controllers might 

be relevant), bumpless transfer (there should be smooth transition between the outputs of the 

local controller) and shattering (ideally should be no situation of fast switching between the 

local controllers) is needed. In the field of multi-agent systems, the design of a co-ordination 

mechanism is handled as a separate issue. In the literature, a large number of different design 

methods for co-ordination objects can be found as well as several different types of co­ 

ordination mechanisms (Malone and Crowston, 1994) and (Van Breemen, 2001). Among all the 

different types of co-ordination mechanisms such as parallel, master-slave, competitive and co­ 

operative, supervisor-like co-ordination mechanism was selected as it combines several useful 

characteristics such as use of switch, timing diagram, FSM, flowchart and scheduler/planner 

(scheduler/planner determines the order in which the controller-agents should be active during 

operating time of the overall controller). The co-ordination object used here is the co-ordination 

mechanism of supervisor-type modelled with the use of FSM. The use of FSM was chosen as 

have been proven to work/operate superiorly in the filed of hybrid systems modelling and 

analysis of multi-controller systems (Boel et al, 1999) and (Van Den Bosch and Heemels, 

1999). In the following a description of the supervisor-like co-ordination object shown in Figure 

6-17 is presented.
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[dRVPl < sVP]

Figure 6-17 Supervisor-like co-ordination object.

Some definitions of FSM and brief background theory regarding stateflow were given in chapter 

three section 3.7.1. The supervisor-like co-ordination object shown in Figure 6-17 was modelled 

using a Moore finite state machine and it functions as follows: The task, when the robot enters 

the predefined region denoted by s , and until it reaches the target, can be described as an 

ordered sequence of steps. A stateflow diagram (FSM) is then, designed to accomplish each step 

incorporating transitions between steps3. As can be observed from Figure 6-17 the task has been 

decomposed into four states. Each state is responsible for activating one of the controller-agents 

described in section 6.10. At the beginning of the co-ordination object execution the system will 

stay in state one if the robot has not reached the predefined region denoted by s and therefore

the approachjarget controller-agent is activated ($D). The co-ordination object it will jump 

into state two at the point where the robot enters the predefined region s . This means that the 

condition of the first transition connecting first and second states is satisfied ( d < s ) and hence

controller-agent approach_VPl is activated $D. However, at this state not only does the

3 Each step may be composed of sub-steps or subtasks also performed sequentially.
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system activate controller-agent approach_VPl but also records the robot's entry point co­ 

ordinates (x e ,ye ) (Note that (x e ,ye ) are required for the calculation of virtual point one). At 

this stage it is possible that the mobile robot will go outside the predefined region. Therefore a 

transition is used from state two to state one which can only be true if d > s. The system will 

jump into state three if the distance from the current robot position to the virtual point one 

(dRVPl) is less than or equal to a radius of predefined circle around both the virtual points 

denoted by sVP (see the dialog box in Figure 6-13). Automatically when the co-ordination 

object jumps into state three the controller-agent approach_VP2 is activated ($D). State four 

will be active if the distance from the current robot position to the virtual point two (dRVP2) is 

less than or equal to a radius of predefined circle around both the virtual points denoted by 

sVP. This is the final state of the co-ordination object at which the controller-agent getjtarget

is activated (Sp ). Note that there are not any transitions from state four to state three, and from 

state three to state two as the distance from the current robot location to the target is very small 

and therefore no obstacles are assumed to be present.

6.11 Modelling the robot(s) behaviours

Building behaviour-based control systems for robots has become a major alternative to the 

traditional robot design methodology. In particular to build robot behaviours is a tough job 

because the designer has to predict the interactions between the robot and the environment as 

well as to deal with them. However, according to (Brooks, 1990) the extension of the 

behaviour-based approach to design complete autonomous robots for more complex task still 

present some challenges. The first concern is how to code a single behaviour module always 

capable of dealing with the information in the uncompleted known world to achieve a specific 

task. The second one is actually the action selection problem, it concerns how to decide, for a 

system including multiple behaviours to handle a variety of situations, which behaviour or 

behaviours should be active at any particular time to achieve various tasks. All these problems
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will become even more challenging when the number of behaviour modules involved increases 

to follow the increase in task complexity. The capability of each robot to navigate safe and 

successfully throughout its mission is achieved through the breaking down of its control system 

into a set of four behaviours as shown in Table 6-4 co-ordinated by the action co-ordinator 

mechanism (note that the total number of behaviours is dependent on the particular application). 

In the following sections each of the behaviours is described.

Name _______ Function Representation _____________ Goal __________

go_to ([»]D , [»]s ) -> [SVLD , SV^r, ] Go towards the target

., . .- a i\ f 7 2 1 Ignore target and turn away from 
av01d_stat.c IK.^^^^.^] static obstacles

... • /r TV F i T 1 Ignore target and avoid dynamic 
avoid_dynaimc ([sD L ,sDc ,sDR ,T])^ [aV^SY^] obstacles

avoidjrap (jsD L , sDc , sD R ]) -> [8V^D , SV^ ] Avoid trap situation 

Table 6-4 Behaviours used in CAROS for robot navigation

6.12 Analysis ofgojto robot behaviour

The gojto behaviour is implemented to steer and move the robot towards the location of the 

target. Although this is very simple behaviour, when combined with the other behaviours it 

produces a very robust and reliable navigation system. The input to gojo behaviour is 3 error 

which is the difference between & D and $s angles as shown in Figure 6-18. The behaviour's 

output is 8VLD and oV^, representing the difference in left and right wheel desired velocity 

respectively. This difference is subtracted from the desired robot velocity (VD ) as shown in 

Figure 6-18.
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Figure 6-18 Schematic layout ofgojo robot behaviour

Figure 6-19 shows a schematic layout of robot's possible orientation during its mission. More 

specifically, Figure 6-19(a) shows that robot orientation is towards the target and therefore 

current robot orientation &s is equal to desired orientation & D and therefore 3 error = 0 . Figure 

6-19(b) illustrates a case in which the robot needs to move in a direction that is $ error (positive) 

away from the direction that the robot is currently pointing. For instance, if & error = 90 degrees, 

then the robot's direction of motion should be "left". Similarly, Figure 6-19(c) illustrates an 

example in which $error is negative and therefore the robot's direction of motion should be 

"right".

Target

Robot

Target

Robot Robot

(a) (b) (c) 

Figure 6-19 Schematic layout of possible robot orientation
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From the analysis of Figure 6-19 it can be concluded that the robot's gojo behaviour can be 

modelled with a continuous odd function 5V^D(RD) =5V/,D(RD) (9error ), defined in the first and

third quadrant and which satisfies condition 5VLD (o}=0 or 8V^D (o)=0 as shown in Figure 

6-20.

SVLD(RD)

Figure 6-20 Function defined in the first and third quadrant (shaded regions)

The unknown odd function 5VLD(RD) =8VLD(RD)(&erTor ) can be selected from a family of 

functions O shown in Equation (6.13), which satisfies all required conditions:

SV£D(RD) =K-tanh(S.Serror ) (6.13)

Where K > 0 and S > 0 are scaling factors. The scaling factors used in gojo robot behaviour 

are K = 0.2 and S = 0.02. To increase modularity a dialog box shown in Figure 6-21 has been 

created for automatic generation of odd function incorporating different values of scaling 

factors.
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Block Paranirtcn: Behaviour for Orientation of Robot

OnenlalionConUollei (mask] —————— 

Robot's Rttl Behavkxi (Set K and S Values)

Paiamelers 
K

J Cancel Help

Figure 6-21 Dialog box for scaling factor selection used in gojo robot behaviour

Equations (6.14) and (6.15) describe the internal structure of gojo robot behaviour shown in 

Figure 6-18.

8V^D =0.2.tanh(0.02-»error ) (6.14)

(6.15)

The graphical representation of equations (6.14) and (6.15) describing the gojo behaviour is 

shown in Figure 6-22. It is clear that the behaviour's outputs §VLD and SY^ always have a 

opposite sign due to the systems symmetry except when &error = 0 where both outputs are equal

to zero.
Hyperbolic Tangent Function for the Left Wheel Linear Velocity Hyperbolic Tangent Function for the Right Wheel Linear Velocity

150

Figure 6-22 Shape of hyperbolic tangent functions describing the output of gojo behaviour 
with K = 0.2 and S = 0.02 scaling factors.
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6.13 Analysis of avoidjstatic robot behaviour

The aim of intelligent robotics research is to develop mobile robots capable of navigating 

autonomously in unstructured and/or unexplored environments. This development requires 

intelligent control strategies capable of overcoming the uncertainties presented by the real 

world. To ensure the safety of the robot system it is necessary that it is able to navigate without 

colliding with obstructions in its environment. Therefore the most important behaviour in the 

context of robot safety is the obstacle avoidance behaviour. In chapter two several 

methodologies were discussed for achieving collisions avoidance. In this thesis two types of 

obstacle avoidance behaviours have been developed, the avoidjstatic and the avoid_dynamic 

robot behaviour. In this section the first behaviour is described whereas the latter is discussed in 

section 6.14.

The avoidjstatic robot behaviour is responsible for monitoring the sensory information 

regarding static obstacles in the robot's environment and to move the robot away from an 

obstacle before a collision occurs. This information is received from the sensors described in 

section 6.7. For instance, if an obstruction is detected to the left of the robot, a command is 

issued to turn the robot to the right. If an obstacle is detected to the right, the robot will turn to 

the left. Similarly, if an obstruction is detected at the front of the robot, a turn to either the left or 

the right will follow. As stated in Table 6-1 the behavioural encoding is achieved using fuzzy 

logic, neural networks and stateflow.

The avoidjstatic robot behaviour was implemented using both fuzzy and neural techniques. 

Fuzzy logic was chosen since encoding behaviour as a set of fuzzy rules is considered a natural 

way for humans to describe the expected functioning of the behaviour. On the other hand 

encoding behaviours using neural networks, several interesting features such as learning and 

modelling a wide class of non-linear systems is achieved. Calculations are in principle carried 

out in parallel resulting in speed advantages (as was shown in chapter five) and programming
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can be done by training rather than defining explicit instructions. Therefore encoding 

behaviours using neural networks can produce learning a controller for a mobile robot that can 

operate in an uncertain environment. The static obstacle avoidance using fuzzy logic is 

described in section 6.13.1 whereas the static obstacle avoidance using neural networks is 

described in section 6.13.2. The results presented in chapter seven show that both behavioural 

encoding methods have to produce some positives and negative aspects. Throughout the thesis 

has mentioned that the overall control architecture is modular. To address this modularity at this 

stage both fuzzy and neural behavioural encoding methods implementing avoid_static 

behaviour were created as a subsystem as shown in Figure 6-23. Each controller can be selected 

from the dialog box shown in Figure 6-24. In addition, the fuzzy inference system (FIS) and the 

neural network unit have been encoded with a format compatible with the MATLAB fuzzy and 

neural toolboxes. Therefore any files developed in MATLAB implementing other behaviours 

can be directly migrated to the CARDS architecture and used without any modifications.

Robot Behaviour 
avoid static

Figure 6-23 Subsystem of avoidjitatic robot behaviour
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Block Parameters: Fuzzy/NN Controller Avoid Static Obstacle

Selection of Controller "Avoid Static Obstacles" (mask)-

Parameters-
Select Controller | N euial Net wort; Controller

OK

iNeural Networks Controller
| Fuzzy Logic L'ontrolle

| Cancel" I Help I ^~7r

Figure 6-24 Dialog box used in avoid_static robot behaviour selection

6.13.1 Static obstacle avoidance using fuzzy controller

The mobile robot's reactive control problem consists of a direct map between input space (i.e. 

sensor data) into the output space (i.e. control commands). Fuzzy logic is used to implement this 

matching taking into account the information provided by the sensors and qualitative relations 

between input and outputs. The avoid_static robot behaviour with fuzzy encoding has the same 

number of inputs as signals provided by the sensors described in section 6.7. These inputs are 

signals of left sensor (sSL), centre sensor (sSC) and right sensor (sSR) taking measurements

from static obstacles. The avoid'jstatic behaviour's output is 8VLD and 8V|0 representing the 

difference in left and right wheel desired velocity. This difference is subtracted from the desired 

robot velocity (VD ). Schematic layout of avoid_static behaviour using fuzzy logic is shown in 

Figure 6-25

sSL ————— >

sSC ————— >•

sSR ————— >•

SOAM —— ^

Fuzzy Robot Behaviour 
avoidjstatic

f

5VLD

V

+

— ̂

D

+
\y T i^ sv^-x?

VLd

A VRd ^'v^y

Figure 6-25 Schematic layout of avoid_static robot behaviour with fuzzy encoding
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Linguistic terms such as "far" (F) and "near" (N) are defined for the left sensor (sSL), centre 

sensor (sSC) and right sensor (sSR). Terms such as "small" (S), "medium" (M) and "big" (B)

are defined for the §VLD and SY^ variables in the robot's linear left and right velocities. The 

type of fuzzy model used to implement ovo/W_static robot behaviour is Mamdani (Mamdani and 

Assilean, 1975) as it is more intuitive and well-suited to human input (the design methodology 

behind Mamdani fuzzy model was presented in chapter three, section 3.2.4.1). The MIN fuzzy 

set operation is used defined by the intersection operator AND. Implication was achieved using 

the operator MIN, whereas for aggregation the MAX operator was used. The centre of gravity 

defuzzification method is used because it usually yields superior results (Braae and Rutherford, 

1978). The membership functions used for the input and output variable are generalised bell 

curve membership functions (using this kind of function any shape of membership function can 

be easily achieved and therefore offers flexibility in the design process). The mathematical 

expression of the generalised bell function is given in Equation (6.16). The shape and position 

of this function can be defined using three parameters a, b and c. Parameter b is usually 

positive whereas parameter c locates the centre of the curve.

f(x;a,b,c) =—————-

1 +
x-c

Where x is a vector, which defines the universe of discourse.

The membership functions described above are shown in Figure 6-26 and Figure 6-27. Table 

6-5 and Table 6-6 lists the parameters defining the membership functions for input and output 

variables.
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Fuzzy Membership Functions for Left. Centre and Right Static Obstacle

D.8

0.6

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
sSL, sSC and sSR

Figure 6-26 Fuzzy membership functions used for the input variables of avoid_static robot
behaviour

Fuzzy Membership Functions for dVL2 and dVR2 Output Variables

0.8

0.6

0.4

02

B

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
dVL2 and dVR2

Figure 6-27 Fuzzy membership functions used for the output variables of avoid_static robot
behaviour

Variables Parameters Far(F) Near(N)

SSL, sSC and sSR
a 
b 
c

0.5
9.1

0.0025

0.5
10.7

1

Table 6-5 Parameters of fuzzy membership functions for avoidjstatic input variables

Variables Parameters Small (S) VIedium

8VL2D and
a 
b
c

0.08
5.2 
0

0.108
5.94
0.19

0.125
5.74

0.424

Table 6-6 Parameters of fuzzy membership functions for avoidjstatic output variables
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When the robot is very close to an obstacle, it must change its speed and steering angle in order 

to avoid the obstacle. The fuzzy rules used for obstacle avoidance by robots are listed in Table 

6-7. All the rules were obtained heuristically using human reasoning. For instance, in rule 7, the 

left static obstacle is "near", the right static obstacle is "far" and the front static obstacle is 

"near", then the robot should turn to the right as soon as possible (sharp turn) to avoid the 

obstacles in front and on its left. For the above situation the left velocity should decrease slowly 

and right velocity should decrease fast as shown in Figure 6-28.

^"le sSL sSC sSR 8V,2n 5V^ Action
No.

1 Far Far Far Small Small Slow down little
2 Far Far Near Medium Small Slow down and turn left smooth
3 Far Near Far Medium Small Slow down and turn left smooth
4 Far Near Near Big Small Slow down and turn left sharp
5 Near Far Far Small Medium Slow down and turn right smooth
6 Near Far Near Medium Medium Slow down medium
7 Near Near Far Small Big Slow down and turn right sharp
8 Near Near Near Big Big Slowdown fast

Table 6-7 List of fuzzy rules incorporated in fuzzy avoid '_static robot behaviour

Mi^L = 0.9 SSC = 0.8
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Figure 6-28 Values of SVLD and 5Vj^D when rule 7 is activated
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In the following section the avoid_static robot behaviour is replaced by neural network. Both 

behaviours (fuzzy and neural) are compared in chapter seven where the testing of the CAROS 

control architecture is presented.

6.13.2 Static obstacle avoidance using neural controller

This section describes the development of the avoid_static robot behaviour using neural 

networks instead of fuzzy logic. The schematic layout of the avoid_static robot behaviour 

incorporating neural encoding is the same as in Figure 6-25. The difference between the fuzzy 

and neural encoding is mainly based on the internal control structure/architecture used. In 

chapter three the main design methodology of neural networks and their training techniques 

were presented. In chapter five an algorithmic methodology was proposed for identification, 

modelling and control of dynamic system using neural networks based on supervised learning 

(learning with a teacher). In particular recorded data from PI controller were used to train the 

neural network. In this section a similar algorithmic methodology is used to train static nature 

neural network using the fuzzy model derived in section 6.13.1 as a teacher. The robot using the 

neural network controller should be able to avoid static obstacles in the robot(s) working 

environment at least as well as the fuzzy model. The form of neural network learning proposed 

in this section is shown in Figure 6-29.

Teacher 
(Fuzzy Model)

Desired

Learning System 
(Feedforward ANN)

Actual

Error

Figure 6-29 ANN learning using fuzzy model as a teacher.
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As can be seen from Figure 6-29 the teacher (fuzzy model) having knowledge of the 

environment (signals from sensors) and also having knowledge of the control output should be

(control values of 8VLD and SV^). Therefore it can be assumed that the fuzzy model 

knowledge can be used as one kind of representation of a set of input-output data. The 

environment is, however unknown to the neural network. At the beginning of the learning 

process the fuzzy model (teacher) and the neural network are both exposed to the training vector 

drawn from the environment (signals sSL, sSC and sSR). At this stage the fuzzy model is able 

to provide the neural network with a desired response for that particular training vector. The 

desired response represents the action to be performed by the neural network. The network 

parameters are adjusted using both the training vector and the error signal. The network 

parameters are adjusted until the neural network matches the fuzzy model response up to a 

predefined error. When the network is fully trained the fuzzy model is removed.

The neural network architecture for the avoid_static robot behaviour is defined using the design 

principles discussed in chapter five. At the beginning a small size network was selected and 

gradually increases until the error goal is met. The network architecture chosen is feedforward 

multilayer perceptron network. The performance function is defined by the mean square error 

(MSB), which is the average squared error between the network output response and the fuzzy 

model output response. As in chapter five the backpropagation technique is used and also the 

algorithm of Levenberg-Marquardt to increase the convergence speed. The final structure of the 

static neural network incorporated in the avoid_static robot behaviour is shown in Figure 630.
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Figure 6-30 Structure of static NN used in avoid'jstatic robot behaviour

The network shown in Figure 6-30 has one hidden layer with ten neurons and an output layer 

consisting of two neurons. The input and output to the network are column vectors as shown in 

Equations (6.17) and (6.18).

u =
sSL 
sSC 
sSR

(6.17)
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y=
8V,2 
5V,2

LD

RD
(6.18)

Each layer has a weight matrix W, a bias vector b, and an output vector a. The bias vector of 

the first and second layer is defined by the following equation.

bibi
b'7

!0

.bl
(6.19)

The weight matrix of the first and second layer is given by Equations (6.20) and (6.21).

LW 2'1 =
Iw 2',1 Iw

U
Iw

2,1 
1,2
2.1
2.2

IW1'1 =

iwg

iw 1W

iw 1W

1,1 
3,1 
1,1 
4,1

< 
;„,','

i«fe 
iwg,

1,11W

iw iw 1,1
3,3

10,2

Iw

lw 1,1 
10,3

2,1 
2,6

(6.20)

Iw 2,1 
2,9

(6.21)
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The final output y of the ovo/af_static robot behaviour using neural network encoding 

illustrated in Figure 6-30 is calculated as follows

a 2

a 1

y = purelin^LW^tansig^W 1 ' 1 !! + b 1 ^ b 2 ) (6.22) 

V ^""^ J

6.14 Analysis of avoid_dynamic robot behaviour

It was mentioned in section 6.13 that the most important behaviour in the context of robot safety 

is the obstacle avoidance behaviour. The ov0/</_dynamic is the third robot behaviour developed 

in this thesis and it is presented in this section. According to the global control strategy the task 

of each robot is to reach its target position avoiding collisions with static and dynamic obstacles. 

As a robot plans its motion based on the local information from its sensors (see section 6.7), 

effectively each robot is a moving obstacle for the other robots (note there is no direct 

communication between robots). Therefore a robot has no knowledge about other objects (static 

obstacles or robots) within its working environment until it senses them. The task of the 

avoidjtynamic robot behaviour is to monitor the sensory information regarding dynamic 

obstacles (other robots) in the robot's environment, to identify the direction of the moving 

obstacle and finally to provide the robot with a set of traffic rules so that a possible collision 

with other robots is avoided. An assumption made in this section is that the sensory data block 

can distinguish between a moving object (robot) and a stationery object. The sensory 

information from left, centre and right of the robot are denoted by dSL, dSC and dSR 

respectively. As can be seen from Table 6-1 the behavioural encoding of all robot behaviours is 

achieved using fuzzy, neural and stateflow. The avoid'jJynamic robot behaviour is hybrid 

incorporating two types of behaviours: a hybrid stateflow-fuzzy discussed in section 6.14.2 and
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a hybrid stateflow-neural discussed in section 6.14.3. A schematic layout of the avoid jfynamic 

robot behaviour is shown in Figure 6-31. The internal structure of the avoid jfynamic robot 

behaviour is shown in Figure 6-33. A desired hybrid controller in this behaviour is selected 

using the dialog box in Figure 6-32. In addition, the design methodology followed with the 

avoid_sfatic robot behaviour is adopted here, which means that any files developed in 

MATLAB implementing other types of behaviours can be directly migrated to CAROS 

architecture and used without any modifications.

Robot Behaviour 
avoidjdynamic

SOAM

Fuzzy/Neural 
Controller

Figure 6-31 Schematic layout of a hybrid avoidjfynamic robot behaviour

Block Parameters: Hybrid Fuzzy/NN Controller Avoid Dynamic ...

Selection of Controller "Avoid Dynamic Obstacles" (mask)

r Parameters -
Select Controller: [Hybrid Stateflow-Neural Networks

OK

[Hybrid Stateflow-Neuial Networks 

Cancer ] tjelp

Figure 6-32 Dialog box used in ovoid_dynamic robot behaviour selection
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Robot Behaviour 
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Figure 6-33 Internal structure of avoidjtynamic robot behaviour

6.14.1 Identification of direction of neighbour robot (moving object)

In this section a novel method for identification of direction of moving object (neighbour robot) 

based only on three sensory inputs is presented. The sensor arrangement on the mobile robot 

was discussed in section 6.7 when the sensors schematic layout was illustrated in Figure 6-8. As 

the robot navigates towards its target the possibility of detecting moving objects can be 

decomposed into six states as shown in Figure 6-34. Three states can be assignment if the robot 

detects the moving object left, centre or right. Two additional states can be assigned if the robot 

detects the moving object within the left-centre sensor intersection or within the centre-right 

sensor intersection. The final state is assigned if the moving object is outside the robot's sensor 

range area. A list of all states assigned for the identification of direction of moving object is 

given in Table 6-8. As all the possible states of the position of the moving object have been 

assigned what it is remaining is to identify all possible directions of the moving object within 

the robot's sensor range area. Figure 6-35 shows some of the possible directions of the moving
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object around the robot's sensing area. In particular Figure 6-3 5(a) shows five possible cases in 

which the moving object could enter the robot's sensing area. Case one, three and five 

illustrating an example in which the moving object enters the robot's sensing area at the left, 

centre or right side from the outside world. Case two and four showing that the moving object 

can enter the robot's sensing area either from the intersection of left-centre sensors or the 

intersection of centre-right sensors. Figure 6-3 5(b) and Figure 6-3 5(c) shows the cases in which 

the moving object enters and crosses the robot's sensing area either from left to right or from 

right to left.

Figure 6-34 Schematic layout of possible positions (states) of moving obstacle

State
N
L
C
R

LC
CR

Name
Neutral

Left
Centre
Right

LeftCentre
CentreRight

Representation
Obstacle outside the sensors range

Obstacle within the left sensor
Obstacle within the centre sensor
Obstacle within the right sensor

Obstacle within the intersection of left and centre sensor
Obstacle within the intersection of centre and right sensor

Table 6-8 States used to identify the direction of moving obstacle
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3 4

RtgN sensor

(a) (b) (c) 

Figure 6-35 Possible directions of moving object when entering the robot's sensing area

In section 6.10.1 a supervisor-like co-ordination mechanism was modelled using FSM. The 

FSM used in that case was Moore FSM as all actions were associated with states. In other words 

when an event occurs a transition between two states is evaluated and if it is true, then one of 

the defined states is activated resulting in a specific control action. For the identification of the 

direction of moving object a Mealy FSM is designed based on the six states previously 

discussed. Using Mealy FSM, actions are associated with transitions rather than states. When an 

event occurs a transition is evaluated. The condition action is executed as soon as the condition 

is evaluated as true and before the transition destination has been determined to be valid. 

Specifying a transition action means that the action is executed when the transition is taken, 

provided the condition, if specified, is true. Figure 6-36 shows a Mealy FSM used to identify the 

direction of the moving object.
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Figure 6-36 Identification of direction of moving obstacle using stateflow

From Figure 6-36 it can be observed that there are fifteen transitions associated the six states 

shown in Table 6-8. Every transition has been assigned a specific condition and action. A list of 

all the specified conditions for all transitions used in Figure 6-36 is given in Table 6-9. It can 

been seen from Table 6-9 that only three sensor measurements (dSL, dSC and dSR) are used to 

specify all transitions used in Figure 6-36. Furthermore Table 6-9 shows that the transitions 

actions are integer numbers from zero to eighteen. This means that when an event occurs only 

one transition is active (output of FSM can be between 0 to 18) if the associated condition 

specified is true. The transitions shown in Figure 6-36 in conjunction with the associated
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conditions given in Table 6-9, covers all the possible directions of the moving object(s) around 

the robot's sensing area.

Transition IN o. (1) Condition Direction of moving obstacle
0 (IDLE) dSL=0&dSC=0&dSR=0

1 dSL>0&dSC=0&dSR=0
2 dSL>0&dSOO&dSR=0
3 dSL=0&dSOO&dSR=0
4 dSL=0&dSOO&dSR>0
5 dSL=0&dSC=0&dSR>0
6 dSL>0&dSOO&dSR=0
7 dSL=0&dSOO&dSR=0
8 dSL=0&dSOO&dSR>0
9 dSL=0&dSC=0&dSR>0
10 dSL=0&dSOO&dSR=0
11 dSL=0&dSC=0&dSR=0
12 dSL=0&dSC=0&dSR=0
13 dSL=0&dSC=0&dSR=0
14 dSL=0&dSC=0&dSR=0
15 dSL>0&dSOO&dSR=0
16 dSL>0&dSOO&dSR=0
17 dSL=0&dSOO&dSR=0
18 dSL=0&dSOO&dSR>0

Obstacle outside the sensing area
From outside to the left (N-L) 

From outside to left centre (N-LC)
From outside to centre (N-C) 

From outside to centre right (N-CR)
From outside to the right (N-R)

From left to the left centre (L-LC)
From left centre to the centre (LC-C)

From centre to the centre right (C-CR)
From centre right to the right (CR-R)

From left to the outside (L-N) 
From left centre to the outside (LC-N)

From centre to the outside (C-N) 
From centre right to the outside (CR-N)

From right to the outside (R-N)
From left centre to the left (LC-L)

From centre to the left centre (C-LC)
From centre right to the centre (CR-C)
From right to the centre right (R-CR)

Table 6-9 Transitions used for the identification of direction of moving obstacle

6.14.2 Dynamic obstacle avoidance using hybrid stateflow-fuzzy controller

In section 6.13.1 was shown that the mobile robot's reactive control consists of a direct map 

between input space into the output space. In this section the schematic layout of a hybrid 

avoid_dynamic robot behaviour shown in Figure 6-31 using stateflow-fuzzy encoding is 

presented. As shown in Figure 6-31 the avoid_dynamic robot behaviour has four inputs (dSl,

dSC, dSR and T) and two outputs (SV^o and 8Vj^ ). The purpose of the avoid ̂dynamic robot 

behaviour is to provide the robot with a set of specified traffic rules. This is make sure the use 

of a simple mechanism of "reasonable behaviour", which means that when a robot is 

manoeuvring to avoid a potential collision with other robots, each robot assumes that other
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robots will try to avoid collisions as well. In other words, although the motion and sensing 

parameters may differ widely from robot to robot, each robot can safely assume that other 

robots operate under the same strategy or "traffic rules " such as in ship navigation and in air 

traffic collision avoidance systems. Similar to avoid_static robot behaviour linguistic terms 

such as "far" (F) and "near" (N) are defined for the left sensor (dSL), centre sensor (dSC) and 

right sensor (dSR). Terms such as "from right to centre-right" (R-CR) is used to defined the 

direction of the moving object within the current robot sensing range. Howeve-, terms such as

"small" (S), "medium" (M) and "big" (B) are defined for the 8V^D and 5V^ variables in the 

robot's linear left and right velocities.

The type of fuzzy model used to implement avoid_dynamic robot behaviour is Sugeno (Takagi 

and Sugeno, 1985) as it well suited to mathematical analysis and guarantees continuity of the 

output surface. However the most important reason for the Sugeno fuzzy model selection is that 

of clear relationship between input and output space. As the avoid_dynamic robot behaviour 

was implemented with a set of traffic rules a particular output of the fuzzy model can be 

specified upon certain value of input variables. In addition, as the avoidjtynamic robot 

behaviour is a hybrid incorporating FSM the advantage of computationally efficient Sugeno 

fuzzy model leads to a desirable design method. The membership functions used to model input 

variables are generalised bell curve (for more details see section 6.13.1) and triangular (see 

chapter three, section 3.2.2.3) membership functions as shown in Figure 6-37 and Figure 6-38. 

Table 6-10 and Table 6-11 lists the parameters defining the membership functions for the input

variables. The membership functions used for the output variables 8VLD and SVJ^ are 

constant membership functions listed in Table 6-12 (note that Sugeno fuzzy model output uses 

singletons as either constant or linear membership functions).
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Fuzzy Membership Functions for Lett, Centre and Right Dynamic Obstacle

0.8

0.6

0.4

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 OB 09 1 
dSL, dSC and dSR

Figure 6-37 Fuzzy membership functions used for the dSL, dSC and dSR input variable in
avoidjfynamic robot behaviour

Fuzzy Membership Functions for Transitions 0 to 18

1

08

06

04

02

n
0 2 4 6 8 10 12 14 16 18

Transition [T]

Figure 6-38 Fuzzy membership function used for T input variable of avoidjtynamic robot
behaviour

Variables Parameters Far(F) Near(N)

dSL, dSC and dSR
a 
b
c

0.5 
9.1 

0.19

0.5
10.7
1.19

Table 6-10 Parameters of fuzzy membership functions of dSL, dSC and dSR for avoid_dynamic
input variables
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IDLE
N-L

N-LC
N-C

N-CR
N-R
L-LC
LC-C
C-CR

T CR-R
L-N

LC-N
C-N

CR-N
R-N
LC-L
C-LC
CR-C
R-CR

a
-0.09
-0.9
1.9
2.9
3.9
4.9
5.9
6.9
7.9
8.9
9.9
10.9
11.9
12.9
13.9
14.9
15.9
16.9
17.9

b
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

c
0.1
1.1
2.1
3.1
4.1
5.1
6.1
7.1
8.1
9.1
10.1
11.1
12.1
13.1
14.1
15.1
16.1
17.1
18.1

Table 6-11 Parameters of fuzzy membership functions of T for avoidjtynamic input variable

Variables

&VLD anc* &VKD

Term
B
M
S

Value
0.5

0.25
0

Table 6-12 Singletons used of and for avoid _dynamic output variables

When the mobile robot has detected a moving object (another robot) it must change either its 

speed or steering angle to avoid the object. The fuzzy rules used for the dynamic obstacle 

avoidance incorporating traffic rules are listed in Table 6-13. All the rules were obtained based 

on traffic rules followed by humans when driving a car. More specifically the traffic rules are 

design based on the scenario that traffic lights are out of order and therefore drivers have to use 

common sense rules to avoid collisions. For example, if a robot is navigating towards its target 

and another moving robot has been detected on the right side, then the control action of the
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robot will be to stop (or decrease speed) and let the other robot to pass through. An opposite 

scenario could be that the neighbour robot has been detected on the left side of the robot, then 

the robot's control action will be to continue its mission knowing that the other robot will 

follow the same traffic rules and therefore stop. For instance in rule 30, a moving object has 

been detected in which its direction appears to be from the right side of the robot to the centre 

(R-CR), in addition the centre robot sensor indicates that moving obstacle is "near", then the 

robot according to the traffic rules should stop to allow the other robot to pass. For this 

particular situation the control commands to the robot's motors should be zero left and right

linear velocity ($VlD = 0.5 and SVj^, = 0.5 if VD = 0.5 ) as shown in Figure 6-39.

Rule dSL dSC 
No.

dSR SV 3LD Action

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Far
Near

.
-
.
_
_

Far
Near
Far

Near
_,

_ _

_ _

_ _

Far
Near

.
_ _

.

.

.
Far

Near
Far

Near

.
-
-
-
-

Far
Near

.
_
.
_

Far
Near
Far

Near
_
_
_
_
_

Far
Near

_

—

—

_

NL
NL

N-LC
NC

N-CR
N-R
N-R
L-LC
L-LC
LC-C
LC-C
C-CR
C-CR
CR-R
CR-R
L-N
L-N

LC-N
C-N

CR-N
R-N
R-N

LC-L
LC-L
C-LC
C-LC

Medium
Medium
Medium
Medium

Big
Medium

Big
Medium

Big
Medium

Big
Small

Medium
Small
Big

Small
Small
Small
Small
Small
Small

Medium
Small

Medium
Medium

Small

Medium
Big
Big

Small
Small

Medium
Big

Small
Big

Small
Big

Small
Small
Small
Small
Small

Medium
Small
Small
Small
Small
Small
Small
Big

Medium
Big

Slow down
Slow down and turn right
Slow down and turn right

Turn left little
Turn left fast
Slow down

STOP
Turn left little

STOP
Turn left little

STOP
Continue

Turn left little
Continue

Turn left fast
Continue

Turn right little
Continue
Continue
Continue
Continue

Turn left little
Continue

Slow down and turn right
Slow down

Turn right fast
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27
28
29
30
31

Far
Near
Far

Near
.

CR-C
CR-C
R-CR
R-CR
IDLE

Medium
Big

Medium
Big

Small

Medium
Big

Medium
Big

Small

Slow down
STOP

Slow down
STOP

Continue

Table 6-13 List of fuzzy rules used in hybrid stateflow-fuzzy avoid'_dynamic robot behaviour to
model "trafficrules"

Figure 6-39 Values of 6VLD and when rule 30 is activated

In the following section the avoidjfynamic robot behaviour is modelled using a hybrid 

stateflow-neural encoding. Both behavioural encoding methods (stateflow-fuzzy and stateflow- 

neural) are tested in chapter seven where the overall testing of the CAROS control architecture 

is presented.

6.14.3 Dynamic obstacle avoidance using hybrid stateflow-neural controller

This section describes the development of the avoidjfynamic robot behaviour using stateflow- 

neural networks instead of stateflow-fuzzy logic presented in section 6.14.2. The schematic 

layout of the hybrid stateflow-neural encoding is shown in Figure 6-31. The design
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methodology followed in section 6.13.2 in which a fuzzy model was used to train a neural 

network is adopted in this section. Using the proposed method from Figure 6-29 the fuzzy 

model for dynamic obstacle avoidance derived in section 6.14.2 is used as a teacher to train the 

neural network to model the robot behaviour avoidjfynamic. During the training, the teacher 

(fuzzy model) and the neural network are both exposed to the training vector drawn from the 

environment, which is consists of four input signals (dSL, dSC, dSR and T). The training 

process is exactly the same as in section 6.13.2 in which the network parameters are adjusted 

until the neural network matches the teacher's response up to a predefined error tolerance. The 

construction of the network architecture (number of layers, number of neurons on each layer, 

e.t.c.) is defined using the algorithmic methodology discussed in chapter five. The performance 

function is defined by the MSB, and the backpropagation technique is used for the network 

training (again the Levenberg-Marquardt algorithm is used also to increase the convergence 

speed).

The final structure of the static multilayer feedforward neural network incorporated in the - 

avoid jfynamic robot behaviour is shown in Figure 6-40. It can be seen that the network has two 

hidden layers with 10 neurons in the first and six neurons in the second. In comparison with the 

neural network structure derived to model the avoid_static robot behaviour the network is 

considerable larger due to the increase in number of the input variable used (an extra input (T) 

has been added). However, using the design methodology from chapter five (initially small size 

network is selected and gradually increased) the second hidden layer is much smaller in size 

than the first hidden layer (only six neurons are used) providing advantage of better 

computational efficiency.
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Figure 6-40 Structure of static NN used in hybrid statefiow-neural avoidjfynamic robot
behaviour

The input and output to the network are column vectors as shown in Equations (6.23) and 

(6.24).

u =

dSL
dSC
dSR

T

(6.23)
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(6.24)

The weight matrix W, a bias vector b, and an output vector a of each layer are given 

Equations (6.25), (6.26), (6.27) and (6.28).

in

bU
b

4
b io

bi
b 2 b 3 = Di (6.25)
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LW 2' 1 =

1W 2,4

iwjl

1W 2{

Iw 2j

l^S

iwg
K2i

Iw 2;7

1W 6,'7

Iwfj Iw 2;,1

Iw 2;j 0

Iw 2;j0

(6.27)

6-57



Chapter 6________Hybrid Control Architecture for Navigation of Multiple Autonomous Mobile Robots

LW3' 2 = Wff for" lw?'2 lw?'2 Iwff lw?>2
Iw322 w (6.28)

The final output y of the avoidjfynamic robot behaviour using stateflow-neural encoding can 

be calculated as follows:

a3

a 1
' 1

y = purelinfLW^tansigfLW^tansig^W 1 '1 !! + b')+ b 2 )+ b 3 ) (6.29)

^

6.15 Analysis of avoid_trap robot behaviour

The purpose of this kind of robot behaviour is to avoid possible trap situations for the mobile 

robot(s) during navigation. A trap situation is a common problem in single robot as well in 

multiple robot navigation. Many researchers such as (Lee and Wang, 1994), (Zhang et al, 1997), 

(Lin and Wang, 1997) and (Ng and Trivedi, 1998) have successfully attempted to detect, 

identify and solve possible trap situations. (Lin and Wang, 1997) classified all trap situations 

into three categories. The first trap situation may occur when the robot neither moves nor turns 

but just keeps waiting endlessly. This case can happen if the sensor readings of left, centre and 

right are equal (considering static obstacles). The robot can neither turn right nor left and 

eventually reduces its speed to zero. Consequently, the robot is trapped. The second trap 

situation can occur when the mobile robot has fallen into an infinity loop (robot performs the 

same motion iteratively). In the third trap situation, several robots meet and wait for each other 

to pass. Consequently, the robots are trapped. In this chapter the third trap situation is 

considered. The first and second trap situations are not considered as the avoidjstatic robot
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behaviour overcomes successfully the first trap situation without any modification, whereas the 

second trap situation may only occur if the robot is navigating in the environment containing 

corridors (mainly indoor navigation). As previously mentioned the trap situation occurs when 

several robots meet and wait for each other to pass and there is a possibility for all robots to 

remain stationary (waiting for each other) for long time or even forever and also a potential 

danger of possible robot collision (robots are too close of each other). A schematic layout of the 

avoidjrap robot behaviour is shown in Figure 6-41. The behavioural encoding is fuzzy logic, 

which can be easily transformed into a neural network using the design methodology described 

in sections 6.13.2 and 6.14.3. As shown in Figure 6-41 the avoidjrap robot behaviour has three

inputs (dSl, dSC and dSR) and two outputs (8VLD and SV^). As discussed previously the 

purpose of the avoidjrap robot behaviour is to provide the robot with a set of specified rules. 

Similar to avoidjfynamic robot behaviour linguistic terms such as "far" (F) and "near" (N) are 

defined for the left sensor (dSL), centre sensor (dSC) and right sensor (dSR). Terms such as

"small" (S), "medium" (M) and "big" (B) are defined for the 8V^D and SV^, variables in 

robot's linear left and right velocities. The type of fuzzy model used to implement avoidjrap 

robot behaviour is Sugeno. The membership functions and parameters used to model the input 

and output variables are the same as in ovo/W_dynamic robot behaviour (Figure 6-37, Table 6-10 

and Table 6-12). When the robot has detected moving obstacles at left, centre and right sides at 

the same time, then according to the linguistic terms "far" and "near" of the input variables a 

set of fuzzy rules shown in Table 6-14 is used to solve the possible trap situation.

dSL ————— >

dSC ————— V
dSR ————— V

SOAM —— >

Fuzzy Robot Behaviour 
avoidjrap

8Vi

VD

+iI +'^ ̂  r̂ VLd
f ' 
7\ VRd .*vy

Figure 6-41 Schematic layout of avoidjrap robot behaviour
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dSL dSC dSR 5VL4D SV^________Action

1 Far Far Far Medium Big Slow down and turn right
2 Near Near Near Small____Big_______Turn right fast

Table 6-14 List of fuzzy rules used in avoidJrap robot behaviour

As can be seen from Table 6-14 only two fuzzy rules are used for the avoid Jrap robot 

behaviour. The first rule will be activated if moving objects have been detected around and far 

from the robot. The robot in this case will reduce its speed and it will start to turn to the right. 

The second rule will be activated if moving objects have been detected around and close to the 

robot. The robot in this case will instantly turn to the right (sharp turn). Note that the control 

output of this behaviour will only be released if the action co-ordinator mechanism (described in 

the section) has found the moving objects at the same distance from the robot. As the 

avoid Jrap robot behaviour was modelled using only two fuzzy rules the development of neural 

network encoding of this type of behaviour is not unnecessary. However, when the trap 

behaviour is complex the design methodology used in sections 6.13 and 6.14 should be 

followed.

6.16 Co-ordination and parallel switching of robot behaviours using stateflow

In section 6.11 it was shown that the implementation of complex behaviour generation for 

artificial systems can be overcome by decomposing the global task(s) into simpler, well- 

specified behaviours which are easier to design and can be tuned independently of each other. 

The behaviours developed in this thesis were implemented as a set of fuzzy rules, as models of 

neural networks and also as hybrid solutions integrating fuzzy, neural and FSM for efficient 

integration of planning and reactive control. In this section the proposed action co-ordinator 

mechanism (see Figure 6-3 for overview of CAROS) used in CAROS control architecture is 

presented with a focus on, and attention to the design, co-ordination and action selection of the 

elementary behaviours.
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Figure 6-42 shows a schematic layout of the action co-ordinator mechanism (ACM) used in 

CAROS. Its main components include the non-linear switch mechanism and the global state 

identification mechanism. The task of the ACM is to decide when and how to switch between 

the set of behaviours. The operation of the ACM is described as follows: ACM and behaviours 

are sharing the same type and number of inputs generated from the robot's working 

environment. Suppose that both (ACM and behaviours) are exposed to a given vector (sensory 

data) from the robot's environment. The global state identification mechanism (GSIM) within 

the ACM makes a decision as to which robot behaviours need to be activated according to the 

current state of the system. In particular, as shown in Figure 6-43, the GSIM is implemented by 

means of FSM. It utilises a stateflow model based on a Mealy FSM approach. As can be seen 

from Figure 6-43 the GSIM consists of four global states representing the possible robot states 

during its mission (note that the number of states depends on particular navigation task or 

control problem).

At the beginning (initialisation) of the robot navigation task the GSIM is automatically located 

at state one ("No obstacles"). Then the system can jump to any of the three remaining states 

according to the specified condition of the transitions illustrated in Table 6-15. For instance, if 

during the navigation the path of the robot is obstructed by static obstacles then state two is 

active ("Avoid static"). If the path of the robot is obstructed by dynamic obstacles (other robots) 

then state three ("Avoid dynamic") is activated. State four ("Avoid trap") will be active if three 

neighbour robots are found to be around (left, front and right) the robot within the same 

distance. If the robot has detected both static and dynamic obstacles then priority is given to the 

closest object. When all conflicts have been resolved the robot's global state re-enters state one 

("No obstacle"). The task of the GSIM is to solve possible conflicts during the robot navigation 

task, to identify the robot's global state and to nominate which behaviour (or local controller) 

should be active at a particular time. The mechanism in which is responsible to release the 

output of the nominated behaviour from the GSIM is the non-linear switch mechanism (NSM).
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The NSM has as inputs the control outputs of the behaviours and also the output of the GSIM 

(see Figure 6-43). The output of the NSM, and therefore the output of the ACM, is a vector 

carrying the control output of a specific behaviour.

This action co-ordination draws its advantages from the competitive tasks architecture in which 

once a functional module is selected the module is activated and the previous one deactivated. 

However, the deactivated module (behaviour) is not totally switched off, it continues to receive 

sensory data in parallel with the ACM. Thus, the behaviour exercises a monitoring activity, 

which consists in receiving data from sensors and calculating the values of the selection 

parameters, which depend on it.
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Figure 6-42 Schematic layout of the action co-ordinator mechanism
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Figure 6-43 Global state identification mechanism

Condition
1 max(max(dSL,dSC),dSR)<max(max(sSL,sSC),sSR)
2 (max(max(dSL,dSC),dSR)= =0)&(max(max(sSL,sSC),sSR)= =0)
3 max(max(dSL,dSC),dSR)>=max(max(sSL,sSC),sSR)&(max(max(sSL,sSC),sSR)>0)
4 max(max(dSL,dSC),dSR)<max(max(sSL,sSC),sSR)
5 (max(max(dSL,dSC),dSR)= =0)&(max(max(sSL,sSC),sSR)= =0)
6 (max(max(dSL,dSC),dSR)>=max(max(sSL,sSC),sSR))&(max(max(sSL,sSC),sSR)>0)
7 (dSL= =dSC= =dSR)
8 (max(max(dSL,dSC),dSR)= =0)&(max(max(sSL,sSC),sSR)= =0)
9 (dSL= =dSC= =dSR)
10 max(max(dSL,dSC),dSR)<max(max(sSL,sSC),sSR)
11 (dSL= =dSC= =dSR)
12 (max(max(dSL,dSC),dSR)>=max(max(sSL,sSC),sSR))&(max(max(sSL,sSC),sSR)>0)

Table 6-15 Conditions of the transitions used in global state identification mechanism

6-64



Chapters________Hybrid Control Architecture for Navigation of Multiple Autonomous Mobile Robots

6.17 Discussion

This chapter presents the development of a novel hybrid multi-agent based control architecture 

called CAROS (Co-operative Autonomous RObotic Systems) for navigation of multiple 

autonomous mobile robots in unknown static and/or dynamic environments. The proposed 

architecture takes the advantages of various control structure types thereby integratingthem in a 

way that results in an overall increase in synergy (This aspect is demonstrated in the next 

chapter). This section contains discussions regarding the overall structure of the proposed 

control architecture and also comparison with other control architectures in terms of specific 

architecture characteristics discussed in previous chapters.

The design and implementation of complex control systems for autonomous mobile robots is a 

difficult task and still continues to challenge researchers. This challenge lies in the development 

of robust, flexible and modular control systems that are capable of coping with the dynamics of 

the real world. The new approach proposed in this thesis is a hybrid control system that takes 

the advantages of various control structures. In particular, the proposed control architecture 

draws its design from the competitive tasks architecture, the production rules architecture, the 

connectionist architecture, the dynamic system architecture, the multi-agent architecture and the 

subsumption architecture. The ongoing research for the identification of what are the "best" 

characteristics of each control approach in terms of requirements/properties is still an open 

question. In section 6.2, (see Figure 6-1), an analysis is presented based on the Quality 

Functional Deployment tool (QFD) for the identification of the relationship of the 

requirements/properties of control architecture versus the control architecture specifications. 

The analysis was based on fourteen requirements when design of control architecture is 

considered and the analysis presented clearly shows that the solution to the design and 

implementation of complex control systems for autonomous mobile robots is hybrid. However, 

the sufficient number of requirements/properties when this type of analysis is taking place is a 

question of interest. On the other hand the control architecture specifications taken place in the
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analysis is also a question of interest. For instance, is the number of specifications such as 

reasoning, processing, control and integration method of the control architecture being 

considered sufficient for the analysis, in order the control architecture to achieve its best 

performance? Nevertheless the answer is not straightforward as other specifications may be 

added due to the dramatically progress in control engineering community.

Table 6-16 shows a comparison between the proposed control architecture and several other 

control structures developed in the past decade for navigation of autonomous mobile robots. 

The comparison demonstrates that the CAROS control architecture offers several advantages 

over the others. The control architecture has been designed for both single and multiple robot 

navigation in an unknown static and/or dynamic environment. The reasoning of the control 

architecture is both deliberative and reactive. Reactive reasoning is necessary so that the vehicle 

can navigate safely and can take actions in real-time. The reactive behaviours are in charge of 

the robot's specific domain. They are modelled using fuzzy, neural and hybrid behavioural 

encoding. They process the information from the sensors in order to apply primitive reactions 

such as obstacle avoidance behaviour. The deliberative system comprising finite state machines 

is responsible for high-level planning and for solving conflicts among behaviours that try to 

access the robot's actuators at the same time. Therefore the integration method among 

behaviours is selection. The processing can be achieved in a centralised and decentralised 

manner using the controller-agent concept from the field of multi-agent systems. The 

hierarchical and behavioural-based control structure is used, as both offer significant 

advantages. For example, hierarchy of behaviours offers an efficient approach to synthesis of 

behavioural capabilities necessary for autonomous navigational tasks. Its practical utility lies in 

the hierarchical decomposition of overall behaviour into sub-systems that are activated only 

when needed. The hybrid approach presented in this thesis provides a suitable framework for 

situated adaptation in single and multiple robot navigation.
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Table 6-16 Proposed control architectures and their architectural specifications

Another important aspect to consider is fault-tolerance. Because all the sub-systems function 

representations and their inputs and outputs are known (or can be observed), on-line self- 

diagnosis facilities becomes an easy task to achieve. It is relatively straightforward to add an 

additional sub-system in order to observe the inputs and outputs from various sub-systems and 

compare them with look-up table built using experimental data.
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6.18 Summary

This chapter presents the development of a proposed novel hybrid multi-agent based control 

architecture called CARDS for navigation of multiple autonomous mobile robots. The proposed 

architecture was designed for single/multiple robot navigation in both static and dynamic 

unknown environments. The need for hybrid solutions in design of complex control systems 

was demonstrated through an analysis using the Quality Function Deployment (QFT) tool. The 

analysis has clearly indicated that the most promising solution in control systems architecture 

design is the hybrid approach. At the beginning of the chapter an overview of the proposed 

architecture was presented highlighting its main characteristics. The proposed control 

architecture takes the advantages of various control structure types. In particular, the control 

architecture takes its design from competitive tasks architecture, production rules architecture, 

connectionist architecture, dynamic system architecture, multi-agent architecture and 

subsumption architecture.

The main objective is to achieve successful navigation of both single and multiple mobile robots 

in an environment populated by stationary and moving objects. In order to achieve this goal, the 

design of the architecture was based on a number of requirements/properties such as modularity, 

robustness, fault tolerance, distribution, reactivity, adaptability, planning, co-operation, easy of 

application, uncertainty, optimal control, learning and efficiency (see section 6.2). The final 

configuration of the control architecture utilises reactive, deliberative, distributed and 

centralised control approaches and uses artificial intelligence as well as modular hierarchical 

structure. Multi-agent systems take care of the distributed control utilising the controller-agent 

concept, which is relatively new field in control engineering. Controllepagents are operating in 

some restricted part of the operating regime producing or solving problems in terms of request 

from a well-defined supervisor (Co-ordination object). Centralised processing and deliberative 

reasoning is tackled using supervisory techniques incorporating finite state machines and non­ 

linear switching mechanisms.
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The implementation of the main robot behaviours was achieved by decomposing the global 

tasks into simpler well-defined behaviours. The behavioural encoding is based on fuzzy logic, 

neural networks and finite state machines design methodologies. An algorithm methodology 

was proposed for supervised learning of neural network using fuzzy logic as a teacher. As real- 

time motion planning in an unknown environment involves collision avoidance of static as well 

of moving robots a novel scheme was presented for identification of the direction of moving 

robots. Sensor modelling and sensor sensitivity was also considered in order to form modular 

reactive layer (different sensors have been modelled). Prior to the testing of the architecture in 

the next chapter a comparison was made with other recent approaches based on control 

architecture specifications such as reasoning, control, processing, integration, behavioural 

encoding, robot navigation and operating environment (see chapter discussions). The proposed 

architecture has been shown to satisfy the most of the essentials specifications (see Table 6-16).

The contributions of this chapter are: Development of a novel hybrid multi-agent based control 

architecture called CAROS for navigation of multiple autonomous mobile robots in an unknown 

environment. Identification of the most important requirements/properties of control 

architecture versus the main control architecture specifications using the Quality Function 

Deployment (QFT) tool. Comparison of the proposed architecture with recent approaches. An 

algorithmic methodology for supervised learning of neural network architecture using fuzzy 

logic as a teacher for behavioural encoding. Behavioural encoding using hybrid solutions 

(fuzzy/stateflow and neural/stateflow) for robot navigation. Novel approach for identification of 

direction of moving neighbour robots using finite state machines. Modular approach of 

modelling three types of sensor and sensor sensitivity.

The next chapter presents the results of testing of the proposed control architecture for 

navigation of single and multiple mobile robots based on the full non-linear model of the mobile 

robot derived in chapter four and the different speed control laws derived in chapter five. The
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control strategy and architecture presented in this chapter for mobile robot navigation is 

validated through simulation studies. In particular, single and multiple robot navigation in both 

static and/or dynamic environment is presented.
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7
Evaluation of the Control 
Architecture

7.1 Introduction

Chapter six introduced a novel hybrid multi-agent based control architecture called CAROS. 

The control architecture has been implemented in MATLAB/Simulink using the full non-linear 

model of the MIABOT V2 mobile robot, derived and described in chapter four and including its 

speed control laws, which were derived in chapter five. This chapter investigates the validity of 

the control architecture when applied to the problem of navigation of single/multiple 

autonomous mobile robots. Simulation results are presented to show the effectiveness of the 

proposed strategy for navigation and obstacle avoidance in both single and multiple robot 

navigation considering static and dynamic environments. The algorithmic methodology, 

regarding modelling of sensor sensitivity and modelling and identification of local 

controlle^ehaviours, presented in chapters five and six, is also validated based on a number of 

simulations of mobile robot navigation tasks incorporating different sensors and local 

controllers for each of the robot behaviours described in chapter six.
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The remainder of this chapter is organised as follows: Section 7.2 describes the simulation setup 

and the main futures of the simulator. The simulation results are divided into three parts as 

shown in section 7.3. In particular Part I (section 7.3.1) illustrates results of single mobile robot 

navigation using the CARDS control architecture whereas sections 7.3.2 and 7,3.3 illustrate 

results involving two to five mobile robots. A discussion based on results presented in this 

chapter follows in section 7.4. Section 7.5 presents the chapter's summary.

7.2 Simulation setup

The simulator developed for the proposed control architecture has been implemented in 

MATLAB 6.0 on a 1300 MHz PC under Windows NT/98 environment. The simulation of 

Simulink models involved the numerical integration of sets of ordinary differential equations 

(ODEs). Simulink provides a number of solvers for the simulation of such equations. Due to the 

diversity of the dynamic system behaviour, some solvers may be more efficient than other at 

solving a particular problem. The solver used in CARDS simulator incorporates fixed-step of 

0.05 using the fourth-order Runge-Kutta formula (ode4). In order to speed up the execution of 

the simulator, all Simulink models have been complied into a C code. The computations are 

therefore faster, with a 2X-to-6X increase in performance, for all models that use build in 

Simulink blocks. The workspace utilised in the simulator is represented by two-dimensional 

grid map with 73x73 pixels (3.6mx3.6m environment). The height and width of each grid is 

5cm (one pixel). Throughout the simulations the units for time is seconds (sec), for distance is 

meter (m) and for velocity is m/sec.

7.3 Division of results

To examine the performance of the control architecture and the navigation strategy described in 

chapter six, a set of simulating experiments were devised and organised into three main parts. 

Each part is divided into a group of results as shown in Table 7-1. A brief discussion 

highlighting the purpose of each part is given in the following.
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Parti

fe
g
o

Al
A2
A4
A4

-
-

Division of Results
Part II

Bl
B2
-
.
-
-

Part III
Cl
C2
C3
C4
C5
C6

Table 7-1 Division of results

Part I investigates the effectiveness of the proposed CARDS control architecture with a single 

mobile robot operating in an unknown environment populated by static obstacles (the first 

simulations consider the case of robot navigation without obstacles). In particular issues such as, 

demonstrating system performance, independencies amongst integrated subsystems, 

implementation of global and local control strategies, static obstacle avoidance strategy, travel 

time due to the different controller configurations and effectiveness of different sensor 

sensitivity utilisation will be addressed.

Part II investigates the effectiveness of CAROS control architecture in navigation tasks 

involving two mobile robots operating in an unknown static and dynamic environment. The 

purpose of these tests is to demonstrate that the control strategy chosen for navigation of 

multiple mobile robots is efficient and also observes the robustness of the designed control 

system architecture against desired requirements, such as, supervision, decision-making and co­ 

ordination of internal control structures.

Part III investigates the effectiveness of CAROS control architecture in more complex 

navigation tasks, involving multiple mobile robots (results are presented for up to five robots) 

operating in a restricted workspace. These results show mobile robots are able to achieve
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independent targets avoiding a large number of static obstacles in the workspace, as well as 

other mobile robots.

7.3.1 Part I: Results

Simulation groupings for Part I, are given in Table 7-2. In the next sections results of each 

group are presented followed by a summary of the performance of the proposed system.

______________________Part I; Division of Results________________
Group____________________Representation ________ ____ 

Al Single robot navigation with observations based on various control signals (no obstacles) 
A2 Single robot navigation with observations based on the robot's trajectory (no obstacles) 
A3 Single robot navigation with observations based on sensor sensitivity (static obstacles)
.. Single robot navigation with observations based on static obstacle avoidance behaviour (static 

_________________________obstacles)_______________________

Table 7-2 Division of results (Part I)

7.3.1.1 Group Al: Results

Results presented in Group Al concentrate on single robot navigation with observations based 

on various control signals (i.e. desired versus actual robot velocity, desired versus actual robot 

orientation etc.) in an environment free from both static and dynamic obstacles. In particular the 

effectiveness of the controller-agent concept used in chapter six for implementation of local 

control strategy is validated through several tests.

Figure 7-1 to Figure 7-3 depict navigation tasks in which the mobile robot has to reach a target 

point (x T ,yT ) marked by T from an initial position (x 0 y 0 ) marked by S. In total 9 

experiments were considered as shown in Table 7-3. In particular the results of each experiment 

are presented using two graphical plots. Figure 7-1 (a) for instance depicts on the left hand side 

the main plot illustrating the robot's trajectory (x s ,ys ), initial point, target point, virtual points 

one and two (VP1, VP2) and the predefined region (e). On the right hand side of Figure 7-1 (a)
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are six smaller graphs illustrating (from right to left) a comparison of robot's left and right 

desired velocity (VLd,VRd) versus actual left and right velocity (VL,VR), the robot's actual 

velocity (Vs ) versus the robot's desired velocity (VD ), the robot's desired orientation ($ D ), 

actual orientation &s and orientation at target point S T , the robot's actual left and right motor 

voltage Vr, VI, and the internal state of the robot as a result of the co-ordinated work by the 

controller-agents. The topside of all sub-plots shows the global state of the robot.

Group Al
*ixp (x Q , y Q )

1 (0,0)
2 (0,0)
3 (0,0)
4 (0,0)
5 (0,0)
6 (0,0)
7 (0,0)
8 (0,0)
9 (0,1)

(XT. XT)
(2.2)
(2,2)
(2,2)
(2,2)
(2,2)
(2,2)
(2,2)
(2,2)
(2,1)

9 T
Ou

45°
90°
135°
180°
-135°
-90°
-45°
180°

Caption
Figure 7-1 (a)
Figure 7-l(b)
Figure 7-l(c)
Figure 7-2(a)
Figure 7-2(b)
Figure 7-2(c)
Figure 7-3 (a)
Figure 7-3(b)
Figure 7-3(c)

Table 7-3 Initial, target co-ordinates and desirable target angle for the mobile robot

From Figure 7-1 to Figure 7-3 it can be observed that the mobile robot reaches the control 

objective in every case despite the different requirement of orientation 9T at target point. When 

all controller-agents are activated within their operational regime, the transition between the 

controller-agents is smooth and the robot adapts its behaviour according to the current internal 

state. The robot's trajectory is smooth and free from oscillation. The control effort (motor 

voltage) is within the design requirements, and in all cases the motor's input voltages do not 

exceed 6V . The comparison of robot's desired versus actual velocity reinforce the robustness 

and stability performance of the co-ordination of the controller-agents. The same conclusion can 

be drawn from observations on desired versus actual orientation and orientation at target point 

achieved by the mobile robot. The internal robot's state demonstrates that the sequencing and
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co-ordination among controller-agents emerges from the interaction of the SOAM with the 

environment. Thus a controller-agent is activated when its context becomes true and deactivated 

when its context becomes false. The transition is smooth and does not affect robot dynamics and 

therefore the robot's trajectory remains smooth during the navigation task. At the lower level 

the speed control law used is PI. Results show that the control law developed in chapter five 

successfully controls the robot's speed despite the transition and interaction among several 

controller-agents. However in order to establish the performance of each speed controller 

developed in chapter five (PI, fuzzy and neural) during a navigation task, experiments 1 to 4 

from Table 7-3 were repeated with observations based on ISE, IAE and ITAE performance 

criteria as shown in Table 7-4.

Performance criteria of PI, fuzzy and neural speed controller for left and right wheel
Performance criteria of PI speed 

controller
Performance criteria of Fuzzy 

Logic speed controller
Performance criteria of Neural 

Networks speed controller
Exp ISE_____IAE ITAE ISE_____IAE ITAE ISE IAE ITAE

~~ 0.005475 0.06187 6~78450.005528 0.06108 0.1842 0.005549 O0686 0.2304
0.01707 0.07773 0.1847 0.0173 0.07641 0.1833 0.01738 0.08694 0.2019
0.007247 0.08572 0.3632 0.007343 0.08474 0.3622 0.007374 0.09188 0.4112
0.01854 0.09319 0.2963 0.01881 0.09228 0.2971 0.01888 0.1033 0.3164

p.007682 0.09875 0.5263 0.008582 0.1069 0.6006 0.008493 0.1137 0.6547
0.02017 0.126 0.6349 0.01948 0.1115 0.5043 0.0196 0.1224 0.519
0.00692 0.0763 0.2855 0.007002 0.07575 0.2865 0.007036 0.08343 0.3383
0.01874 0.1005 0.3505 0.01902 0.09919 0.3499 0.01914 0.1105 0.3706

Table 7-4 Comparison of performance criteria between three different speed controllers

From Table 7-4 it can be seen that PI and fuzzy speed controllers have a marginal advantage 

against the neural controller (red shaded numbers show the best performance). In particular the 

PI controller has the smallest ISE error of all controllers, whereas the fuzzy controller has the 

smallest IAE and ITAE error. However, as the difference between the errors is less than 1% the 

PI speed controller will be used for the rest of the tests in this chapter. In addition it was shown 

in chapter five that the execution time of PI controller is considerable smaller compared to other
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speed controllers (three times faster than the neural controller and six times faster that the fuzzy 

controller).

7.3.1.2 Group A2: Results

The effectiveness of the controller-agent concept for implementation of local control strategy 

was validated through a number of navigation tasks as demonstrated in Group Al results. The 

start and the target points were considered to be the same (except experiment 9, Group Al). In 

order to further validate the effectiveness of the controller-agent concept, 20 tests were 

performed with different start points, target points and desired orientation at target points.Table 

7-5 shows the parameters used in robot navigation for Group A2 simulation results.

Group A2

Exp (x 0 ,yo)
1 (2.5,0)
2 (2.5,0)
3 (2.5,0)
4 (2.5,0)
5 (2,0)
6 (2,0)
7 (2,0)
8 (2.5,0)
9 (2.5,0)
10 (2.5,0)
11 (2.5,0)
12 (2.5,2.5)
13 (2.5,2.5)
14 (2.5,2.5)
15 (2.5,2.5)
16 (0,2.5)
17 (0,2.5)
18 (0,2.5)
19 (0,2.5)
20 (0,2.5)

(xT.yi)
(0.5,2)
(0.5,2)
(0.5,2)
(0.5,2)
(2,2)
(2,2)
(2,2)
(0,0)
(0,0)
(0,0)
(0,0)

(0.5,0.5)
(0.5,0.5)
(0.5,0.5)
(0.5,0.5)

(2,0)
(2,0)
(2,0)
(2,0)
(2,0)

S T
135"
45°
-45°
-135°
-90°

0°
180°

0°
180°
-90°
90°
0°

-135°
180°
-45°
45°
90°
0°

-135°
180°

Caption
Figure 7-4(a)
Figure 7-4(b)
Figure 7-4(c)
Figure 7-4(d)
Figure 7-4(e)
Figure 7-4(f)
Figure 7-4(g)
Figure 7-4(h)
Figure 7-4(i)
Figure 7-4(j)
Figure 7-4(k)
Figure 7-4(1)
Figure 7-4(m)
Figure 7-4(n)
Figure 7-4(o)
Figure 7-4(p)
Figure 7-4(q)
Figure 7-4(r)
Figure 7-4(s)
Figure 7-4(t)

Table 7-5 Parameters used in robot navigation in Group A2
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From Figure 7-4 it can be observed that the mobile robot reaches the control objective in every 

case despite the different start and target points, and the different desirable orientation at target 

point. The robot reaches the target with the desirable approach angle with smooth trajectory.

7.3.1.3 Group A3: Results

The purpose of the results presented in this section is to identify the best performance between 

the three types of sensor sensitivity developed in chapter six for reactive robot navigation.

Figure 7-5 to Figure 7-7 depict three different navigation tasks where the robot has to reach the 

target point from a starting location in an environment populated by static obstacles using three 

different types of sensors. Again as in Group Al each set of results are presented as a composite 

set of graphical outputs. Figure 7-5(a) for instance depicts on the left hand side, the main plot 

illustrating the robot's trajectory, initial and target point. On the right hand side, of Figure 7-5(a) 

the plot is divided into six sub-plots illustrating the following. The first, second and third sub 

plots show the sensor sensitivity of the left, centre and right sensor respectively. The fourth sub­ 

plot shows the robot's desired orientation ($ D ), actual orientation 3s and orientation at target 

point $ T . The fifth sub-plot shows the robot's actual velocity (Vs ) versus the robot's desired 

velocity (VD ). The sixth sub-plot shows the robot's global state during the navigation task. 

Comparison of the robot's left and right desired velocity (VLd,VRd) versus actual left and 

right velocity (VL,VR.) is omitted as the simulation results from Group Al showed satisfactory 

performance. The same principle is followed for the robot's actual left and right motor voltage 

(Vr,Vl), in which graphical representation are also omitted (simulation results in Group Al 

showed control effort within the design requirements).

In Figure 7-5 the robot has to reach the target point in an environment, which contains 8 static 

obstacles. The same navigation task was repeated three times (see Figure 7-5(a), (b) and (c)), in
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order to simulate all three types of sensor. Figure 7-5(a) shows a navigation task of the robot 

incorporating infrared sensor for detection and avoidance of static obstacles. The result clearly 

shows that the mobile robot is able to reach the target point successfully without any collision 

with the static obstacles. However, as can be observed from Figure 7-5(a), the mobile robot 

turns away from the obstacles at a very close distance. The average velocity is considerably 

high, the distance travelled is short and the time taken to reach the target is significantly small. 

Figure 7-5(b) depicts the same navigation task but with ultrasonic sensor. The result again is 

satisfactory and shows that the mobile robot is able to reach the target point successfully 

without any collision with the static obstacles. However, average velocity, travel time and 

distance travelled are different compared, to the navigation task incorporating infrared sensor. 

From Figure 7-5(b) it can be observed that the mobile robot turns away from the obstacles at a 

far distance resulting in a different trajectory. As can be seen from sub-plot number 5 in Figure 

7-5(b) the robot reduced its velocity by 0.2m/s when the obstacle avoidance behaviour was 

activated. Although distance travelled and time taken to complete the mission is marginally 

higher than the one with infrared sensor, the robot took a safer trajectory avoiding the main 

cluster of static obstacles. The result of the third type of sensor (no-shape) is depicted in Figure 

7-5(c). The path followed by the robot in this case is more or less equivalent to that using the 

ultrasonic sensor. The main difference compared with the two other sensors is that the average 

velocity is considerably lower resulting in an increase in travel time.

To examine further the effectiveness of different types of sensor sensitivity, two additional 

navigation tasks were completed considering the same environment configuration but with a 

higher number of static obstacles. Figure 7-6 depicts a navigation task in which the robot has to 

reach the target point in an environment, which contains 11 static obstacles. In Figure 7-7 a total 

number of 15 static obstacles populate the environment. Again the use of infrared sensor 

sensitivity produces short distance travelled and high average robot velocity. However, the 

results this time show a different trajectory generated by the robot in the case of ultrasonic and
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no-shape sensor utilisation. The mobile robot with ultrasonic sensor sensitivity generated safe 

trajectory away from the main cluster of static obstacles, whereas the no-shape sensor sensitivity 

generated trajectory safe but very close to the static obstacles. Therefore, as safety is an 

important issue in mobile robot navigation the ultrasonic sensor sensitivity will be used for the 

rest of the tests in this chapter (distance travelled and time taken to complete the mission is 

marginally higher than the infrared sensitivity).

Table 7-6 shows the comparison made between the different types of sensor sensitivity based on 

three different navigation tasks.

_________________________Group A3_________________________
(x 0 ,y 0 ) = (0,0). (x T ,yT )=(2.5,2.5) and 9 T =45°

Exp
1
2
3

Infrared sensor
Distance 
travelled
3.6606
3.6652
3.6776

Time 
taken
10.56
10.6
10.7

Collision

No
No
No

Ultrasonic
Distance 
travelled
4.3476
4.7924
3.7976

Time 
taken
12.8

14.26
12.18

sensor

Collision

No
No
No

No-shape sensor
Distance 
travelled
4.3395
4.1640
4.1328

Time 
taken
13.64

12
15.82

Collision

No
No
No

Caption

Figure 7-5
Figure 7-6
Figure 7-7

Table 7-6 Comparison between different types of sensor sensitivity

7.3.1.4 Group A4: Results

In chapter six it was suggested that the aim of intelligent robotics research is to develop mobile 

robots capable of navigating autonomously in an unstructured and/or unexplored environment. 

In order to ensure the robot's system safety it is necessary that the robot is able to navigate 

without colliding with obstructions in its environment. Both fuzzy logic and neural networks 

behavioural encoding of the avoid'jstatic robot behaviour developed in chapter six are tested in 

this group of simulations. Both behavioural encoding are exposed in the same environment, 

where the mobile robot has to complete a specified navigation task. The comparison measure 

between the two behavioural encoding is the distance travelled and time taken for the mobile
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robot to successfully complete its mission (elapsed times are not considered here as alredy 

shown in chapter five fuzzy encoding is much slower than neural encoding).

In total 6 simulated experiments took place as depicted from Figure 7-8 to Figure 7-13. Each 

figure illustrates a navigation task for the mobile robot using both fuzzy and neural encoding. 

Again each result is presented as a composite set of graphical outputs. Figure 7-8(a) for instance 

depicts on the left hand side, the main plot illustrating the robot's trajectory, initial and target 

point. On the right hand side the plot is divided into three sub-plots, illustrating sensory 

information, robot's orientation and robot's velocity respectively. Again the topside of the sub­ 

plots contains the global state of the mobile robot.

In this group for every simulated navigation task, different shapes and positions of the static 

obstacles have been tested. Figure 7-8 depicts a navigation task in which a circle-shape obstacle 

has been placed in front of the robot in order to obstruct its path towards the target. As Figure 

7-8(a) and Figure 7-8 (b) show, the mobile robot was able to reach the target successfully 

without colliding with the static obstacle. The trajectories of both fuzzy and neural encoding are 

almost identical. Figure 7-9 depicts a navigation task in which a wall-shape obstacle has been 

placed in front of the robot. Again the robot was able to successfully find the target without any 

collision with the static object. The robot's trajectory is smooth and free from any signs of 

oscillation.

In Figure 7-10 the static environment becomes more complex as both a U-shape and a 

semicircle-shape static objects obstruct the robot's navigation path. Since there are no obstacles 

around the start position, at the start the robot mainly reflects the behaviour,go_to (no-obstacles 

global state one is activated), so that it moves towards the target at a high speed (VNOM )• when 

the robot approaches the U-shape object, state two is active (avoid static) and it automatically
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decelerates in order to find a way to avoid the static object. When the robot departs from the U- 

shape object, state one is activated (no obstacles). The robot then moves towards the target. 

When the robot approaches the semicircular object, its state changes, decelerates, and 

successfully avoids the object. When the robot has passed the static obstacle, behaviourgojo is 

activated, so that it reaches the target according to the local control strategy defined in phase A 

and B. Again as in the previous navigation task the robot trajectory generated by the fuzzy and 

neural behavioural encoding are similar.

In Figure 7-11 an environment configuration with two static obstacles is illustrated. The first 

static obstacle is a corridor-shape and is located in front of the robot's start position. The second 

static obstacle is a circle-shape and is located in front of the corridor-shape object. Assume that 

this environment configuration is unknown to the robot in which its navigation task is to reach 

the target point from the start position. At the beginning of the mission, the robot's global state 

is one and therefore the robot moves towards the target activating thego_/o behaviour. At this 

stage the go Jo behaviour calculates the difference between the current heading angle of the 

robot and the angle towards the target. When the robot approaches the corridor-shaped object it 

decelerates and moves straight ahead as only left and right obstacles appear to obstruct the 

robot's path. The robot then detects the circular-shape object, and both fuzzy and neural static 

obstacle avoidance behaviours, successfully navigate the robot out of the corridor, around the 

circular object and then towards the target. As can be observed from Figure 7-11, when the 

robot moves around the circular object its deceleration is much lower than its deceleration 

through the corridor. The fuzzy and neural encoding navigates the mobile robot with similar 

trajectories.

Figure 7-12 to Figure 7-13 depicts robot navigation in an environment populated by static 

obstacles. In particular, Figure 7-12 illustrates the robot's workspace populated by 21 static 

obstacles whereas, in Figure 7-13 the robot's workspace is populated by 26 static obstacles (5
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obstacles were added in Figure 7-13 in order to obstruct deliberately the robot's trajectory 

shown in Figure 7-12). The results of both figures show that the robot can automatically control 

its velocity according to the sensory information extracted from the environment. The robot 

when is close to the static obstacles, it reduces its velocity, whereas while has bypassed the 

obstacles, it moves towards the target with higher velocity. It can be observed that, using only 

ultrasonic sensors to acquire dynamic information, the robot can successfully reach the target by 

efficient co-ordination between the multiple robot behaviours. As in the previous navigation 

tasks both fuzzy and neural encoding navigates the mobile robot with a similar trajectories.

The results are summarised and presented in Table 7-7. As can be seen from Table 7-7, fuzzy 

logic behavioural encoding produces marginally better results over neural encoding in terms of 

distance travelled during the navigation tasks (red shaded numbers show the best performance). 

On the other side of the spectrum neural networks behavioural encoding shows better result 

over fuzzy encoding in term of time taken to complete each mission. For the rest of the tests, 

neural networks behavioural encoding for static obstacle avoidance will be used, as the elapsed 

time of neural encoding is considerably lower than fuzzy encoding, and the difference between 

the two behavioural methods is marginal in terms of distance travelled and time taken for the 

robot to complete the navigation task.

_________________________Group A4 ____
. (x T ,y T ) = (2.5,2.5) and » T =45°

Exp

1
2
3
4
5
6

Fuzzy logic
Distance 
travelled
4.3444
3.9468
4.7291
4.2413
4.4206
3.8645

Time 
taken
12.06
11.02
13.34
17.59
16.3

17.16

Collision

No
No
No
No
No
No

Neural network
Distance 
travelled
4.3458
3.9497
4.7289
4.2217
4.4209
3.8721

Time 
taken
12.13
11.05
13.31
17.16
15.7

16.11

Collision

No
No
No
No
No
No

Caption

Figure 7-8
Figure 7-9

Figure 7-10
Figure 7-1 1
Figure 7-12
Figure 7-13

Table 7-7 Comparison between fuzzy and neural static obstacle avoidance behaviour

7-13



Chapter 7____________________________ Evaluation of the Control Architecture

7.3.1.5 Part I: Outcome of results

The main outcome of Part I results can be summarised as follows. The control architecture was 

observed to exhibit robustness, adaptability and flexibility when tested in single robot 

navigation in an unknown environment populated by static obstacles. The mobile robot 

achieved every control objective and its trajectory was smooth despite the interaction between 

several behaviours and the presence of unexpected obstacles.

The effectiveness of SOAM using the controller-agent concept was validated by a number of 

tests. In all cases the robot achieved the control objectives defined both in A and B local control 

strategies.

Three speed controllers were tested and the results show that PI and fuzzy speed controllers 

have a marginal advantage against the neural controller. In particular the PI controller has the 

smallest ISE error of all controllers, whereas the fuzzy controller has the smallest IAE and ITAE 

error.

Three different type of sensor sensitivity were tested according to the distance travelled and 

time taken for the robot to complete the mission. In all cases it was possible to navigate the 

mobile robot towards the target without any collision with the static objects. Infrared sensor 

sensitivity produced the lowest values for distance and time taken for the robot to complete its 

mission.

Finally, the fuzzy logic and neural networks behavioural encoding for static obstacle avoidance 

developed in chapter six were tested in an environment containing different configurations of 

static obstacles. Fuzzy behavioural encoding produced marginally better result over neural 

encoding in terms of distance travelled during the navigation tasks. The neural networks 

behavioural encoding showed a better result over fuzzy encoding in terms of time taken for the
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robot to complete each mission. The control architecture was successfully adapted to the 

environmental conditions, by adjusting the robot's control parameters (i.e. speed) and to 

activation of appropriate behaviour.
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7.3.2 Part II: Results

The results presented in this section investigate the effectiveness of CARDS control architecture 

in navigation tasks involving two mobile robots operating in an unknown static and dynamic 

environment. Division of simulation results in Partll, is given in Table 7-8. In the next sections 

results of each group are presented followed by a summary of the performance of the proposed 

system.

_____________________Part II; Division of Results_______________
Group_____________________Representation____________________ 

R1 Navigation of two robots with observations based on dynamic obstacle avoidance behaviour
(no static obstacles)

R7 Navigation of two robots with observations based on co-ordination of robot behaviours (static 
_______________________and dynamic obstacles)___________________

Table 7-8 Division of results (Part II)

7.3.2.1 Group Bl: Results

Results presented in Group Bl concentrate on navigation of two mobile robots with 

observations based on dynamic obstacle avoidance behaviour developed in chapter six. In 

particular the effectiveness of the main features of the proposed hybrid behaviours (stateflow- 

fuzzy and stateflow-neural) for dynamic obstacle avoidance in an unknown and unstructured 

environment is validated through a number of tests. The results are used to compare the 

performance of the proposed hybrid behaviours and also to observe the robustness of the control 

system architecture against the desired requirements, such as supervision, decision-making and 

co-ordination of internal control structures (subsystems and behaviours).

Figure 7-14 to Figure 7-19 depicts a number of navigation tasks where two mobile robots have 

to reach independent target points (x T ,yT ) marked by T from an initial position (x 0 y 0 ) 

marked by S. Each experiment is divided into four figure plots illustrating both hybrid
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behavioural encoding. For instance, the stateflow-fuzzy behavioural encoding is illustrated in 

Figure 7-14(a), which depicts on the top-left hand side the main plot of both robots A and B, 

illustrating their trajectories (xs ,ys ), initial points and target points. On the right hand side of 

Figure 7-14(a) the plot is divided into six sub-plots illustrating the following. The first three of 

these show control parameters for robot A, and sub-plot 4 to 6 shows control parameters for 

robot B. The observed control parameters for each robot are, sensory data (left, centre and right 

sensor), comparison of robot's actual velocity (Vs ) versus the robot's desired velocity (VD ), 

and the distance between the two robots during the navigation task. Figure 7-14(b) illustrates the 

same experiment and information as above but using the stateflow-neural behavioural encoding.

Figure 7-14 to Figure 7-19 depicts results of navigation of two mobile robots (A and B) in the 

same environment. The robots have to reach independent targets from their initial positions 

without any collision between them. In order to demonstrate the effectiveness of the proposed 

system, start and target points are different for every experiment as show in Figure 7-14 to 

Figure 7-19. In all navigation tasks no collision between the mobile robots occurred. Each 

mobile robot, without prior knowledge about the direction and velocity of the other robot, 

successfully solved the conflict when the other robot was found to obstruct its path. In all 

figures the control parameters illustrate that when the global identification mechanism decides 

to activate different behaviour, the mobile robots effectively adjust their velocities producing 

smooth trajectories. The concept of traffic rules used in chapter six to model robot behaviour 

proved to be an efficient technique for multiple robot navigation without communication. In 

addition the efficiency of the proposed method for identification of direction of moving object 

developed in chapter six is established through the results. As the robots trajectories are almost 

on a straight line the ravel time and distance travelled by both robots is low and close to 

optimal.
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Table 7-9 shows a comparison between the stateflow-fuzzy and stateflow-neural behavioural 

encoding. It can be seen that stateflow-fuzzy behavioural encoding produces better result over 

stateflow-neural encoding in terms of distance travelled during the navigation tasks (red shaded 

numbers show the best performance). Stateflow-neural behavioural encoding shows better result 

over stateflow-fuzzy encoding in term of time taken to complete each mission. Although the 

performance of both behaviours is similar, stateflow-fuzzy behavioural encoding is chosen for 

the rest of the tests because it controls better the robot's velocity than the stateflow-neural 

behavioural encoding. This is desirable for a mobile robot navigating in an unknown 

environment containing moving obstacles.

~~^ "" "~ Group Bl

Exp

1

2

3

4

5

6

Robot

A 
B
A 
B
A 
B
A 
B
A 
B
A 
B

Stateflow-fuzzy
Distance 
travelled
3.5289 
3.6686
2.8303 
2.9870
2.0503 
2.7902
2.0497 
2.4706
2.3630 
2.4702
2.2685 
2.4880

Time 
taken
9.86
10.84
8.63 
8.98
6.85 
9.15
7.14 
9.22
7.68
8.35
7.36 
7.92

Collision

N 
N
N 
N
N
N
N 
N
N
N
N 
N

Stateflow-neural
Distance 
travelled
3.5273 
3.6825
2.8309 
2.9879
2.0502
2.7959
2.0499
2.4722
2.3589
2.4703
2.2681
2.4902

Time 
taken
9.84 
10.63
8.6 

8.93
6.84 
9.09
7.1 

9.24
7.87 
8.32
7.41 
7.93

Collision

No
No
No
No
No 
No
No 
No
No
No
No
No

Caption

Figure 7- 14

Figure 7-15

Figure 7- 16

Figure 7- 17

Figure 7- 18

Figure 7-19

Table 7-9 Comparison between stateflow-fuzzy and stateflow-neural hybrid dynamic obstacle
avoidance behavioural encoding

7.3.2.2 Group B2: Results

Real-time motion planning in an unknown and unstructured environment involves collision 

avoidance of static as well as moving objects (robots). However, strategies suitable for 

navigation in a stationary environment cannot be translated as strategies for dynamic

7-28



Chapter 7___________________________ Evaluation of the Control Architecture

environment. In chapter six it was shown that the implementation of complex behaviour 

generation for artificial systems can be overcome by decomposing the global task(s) into 

simpler, well-specified behaviours which are easier to design and can be tuned independently of 

each other. In this group of results the co-ordination of these well-defined behaviours using the 

action co-ordinator mechanism developed in chapter six is tested. The neural networks 

behavioural encoding is used for the avoidjstatic robot behaviour, whereas the stateflow-fuzzy 

logic behavioural encoding is used for the avoid_dynamic robot behaviour.

Figure 7-20 to Figure 7-22 depicts a number of navigation tasks where two mobile robots have 

to reach independent target points (x T ,yT ) marked by T from an initial position (x 0 y 0 ) 

marked by S in an unknown environment populated by static and dynamic obstacles. A total 

number of nine experiments were considered. The result of each experiment is presented as two 

figure plots illustrating the robots trajectories and their control signals (velocity, distance to 

other robot and global state). For instance, the experiment illustrated in Figure 7-20(a), on the 

left hand side illustrates robots A and B trajectories (xs ,ys ), initial points and target points. On 

the right hand side of Figure 7-20(a) the plot is divided into six sub-plots illustrating the 

following. The first three show control parameters for robot A and sub-plots 4 to 6 show control 

parameters for robot B. The control parameters for each robot are, comparison of robot's actual 

velocity (Vs ) versus the robot's desired velocity (VD ), the robot's global state and the distance 

between the two robots during the navigation task. Note that as in Group Bl results, the robot's 

desired orientation at the target point is shown in the legend in the main figure plot illustrating 

the robots trajectories.

Figure 7-20(a) to Figure 7-20(c) depicts results of three experiments of navigation tasks of two 

mobile robots (A and B) in the same environment populated by static obstacles. The robots have 

to reach independent targets from their initial positions without any collision with static
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obstacles or themselves. In order to demonstrate the effectiveness of the proposed control 

architecture, start and target points are the same for the first three experiments but the number of 

static obstacles increases considerably in order to deliberately obstruct the robots paths, as 

shown in Figure 7-20(b) and Figure 7-20(c). In all three navigation tasks no collision between 

the mobile robots and the static occurred. Considering Figure 7-20(a) to Figure 7-20(c) it can be 

also observed that each mobile robot successfully modifies its velocity according to the current 

global state. The action co-ordinator mechanism activates the appropriate behaviour, and the 

robots reach their target with smooth and close to optimal trajectories.

Figure 7-21 (a) to Figure 7-2 l(c) depicts results of navigation tasks of two mobile robots (A and 

B) in the same environment operating in a narrow corridor or road. In Figure 7-21 (a) the robots 

depart from their initial position and automatically decelerate when they approach the left and 

right static obstacle (global state is two). Then according to the neural behaviour encoding for 

static obstacle avoidance the mobile robots move straight and keep on the road (between walls). 

When the two robots are meeting each other, their global state changes from two (avoid static) 

to three (avoid dynamic) and the stateflow-fuzzy behavioural encoding for dynamic obstacle 

avoidance is activated. Then the mobile robots proceed according to the traffic rules developed 

in chapter six for dynamic obstacle avoidance.

This example was given in order to demonstrate how a car driving on a road avoids another car 

moving in an opposite direction. Both drivers slow down and turn left in order to avoid each 

other. When the mobile robots solve the conflict between them automatically make reasonable 

movement to keep in the middle of the road. The robots then move directly towards the targets 

with a desired approach angle.
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Figure 7-2 l(b) and Figure 7-2 l(b) depict the same scenario as above but this time the corridor is 

obstructed. In the first case (Figure 7-2 l(b)) there is a blockage on the left hand side and in the 

second case (Figure 7-2 l(c)) the corridor is blocked in both sides. Only a very narrow exit is 

available to the robots when they get trapped. The results show that the robots were able to find 

the path towards their targets.

Figure 7-22(a) to Figure 7-22(c) depict a scenario of navigation tasks where two mobile robots 

have to reach independent targets from their initial positions without any collision. In order to 

demonstrate and verify the effectiveness of the proposed system, start and target points are 

different for every simulated experiment. Initially the robots are in a mixed environment (static 

and dynamic), without any prior knowledge of each other or of the obstacles. The robots are 

therefore in state one (no obstacles). Once the robots receive a command to move towards their 

targets, they try to approach the targets while avoiding static obstacles and each other. From 

Figure 7-22(a) to Figure 7-22(c) it can be seen that during the navigation tasks each other and 

static obstacles obstruct the robots path. The global state of both robots shows that the action co­ 

ordinator mechanism solves the conflict for each robot by adjusting the robots velocities 

accordingly. When the global state of each robot is one (no obstacles) then the robots accelerate 

until they reach the velocity threshold. Both robots reach the targets with smooth trajectory 

without any collisions. In all three navigation tasks the proposed control architecture achieve a 

sufficiently high control performance once the control objective of each robot has been reached.

Table 7-10 summarises the collision avoidance results from Group B2.
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Group B2

Exp

1

2

3

4

5

6

7

8

9

Robot

A 
B
A 
B
A 
B
A 
B
A 
B
A 
B
A 
B
A 
B
A
B

Collision Avoidance Result
Collision with Static Obstacle

No 
No
No 
No
No 
No
No
No
No 
No
No
No
No 
No
No
No
No
No

Collision with Dynamic Obstacle
No 
No
No 
No
No . . . ^^No """""' '""

No 
No
No ~~No

No 
No
No 
No
No
No
No 
No

Caption

Figure 7-20(a)

Figure 7-20(b)

Figure 7-20(c)

Figure 7-21 (a)

Figure 7-2 l(b)

Figure 7-2 l(c)

Figure 7-22(a)

Figure 7-22(b)

Figure 7-22(c)

Table 7-10 Collision avoidance result of a mixed environment containing both static and
moving obstacles

7.3.2.3 Part II: Outcome of Results

Part II investigated the effectiveness of the proposed CARDS control architecture in navigation 

tasks involving two mobile robots operating in an unknown both static and dynamic 

environments. The results demonstrate that the control strategy chosen for navigation of 

multiple mobile robots is efficient. The robustness of the designed control system architecture 

against desired requirements, such as supervision, decision-making and co-ordination of internal 

control structures (subsystems) was observed. Both mobile robots achieved every control 

objective and their trajectory was smooth despite the interaction between several behaviours and 

presence of unexpected obstacles.
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The effectiveness of the proposed method for identification of direction of moving object 

defined in chapter six was established. The robots found to perform sufficient navigation with 

travel time and distance travelled by both robots considerably low and very close to optimal.

The effectiveness of the action co-ordinator mechanism developed in chapter six for co­ 

ordination and parallel switching between robot behaviours was validated by several tests. In all 

tests the proposed control architecture achieve a sufficiently high control performance once the 

control objective of each robot was reached.

The stateflow-fuzzy logic and stateflow-neural networks behavioural encoding for dynamic 

obstacle avoidance developed in chapter six were tested in an environment containing different 

configurations of static and dynamic obstacles. Stateflow-fuzzy behavioural encoding produces 

better result over stateflow-neural encoding in terms of distance travelled during the navigation 

tasks. The stateflow-neural behavioural encoding shows better result over stateflow-fuzzy 

encoding in terms of time taken to complete each mission. The control architecture successfully 

adapted to the environmental conditions by adjusting the robot's control parameters (i.e. 

velocity) and taking actions (i.e. activation of appropriate behaviour). The stateflow-fuzzy 

behaviour encoding controlled better the robot's velocity.
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7.3.3 Part III: Results

The results presented in this section investigate the effectiveness of CARDS control architecture 

in more complex navigation tasks involving multiple mobile robots (results are presented for up 

to five robots) operating in a restricted workspace. Part III is divided into six groups of results, 

there are defined by Table 7-11. Each robot incorporates the control subsystems shown in Table 

7-12 for all tests. In the next section results of each group are presented followed by a summary 

of the main outcome of the performance of the proposed system.

Part III: Division of Results
Group Representation

Cl

C2

C3

C4

C5

C6

Navigation of three robots with observations based on dynamic obstacle avoidance behaviour, 
distance travelled and time taken to complete the mission (no static obstacles)

Navigation of four robots with observations based on dynamic obstacle avoidance behaviour,
distance travelled and time taken to complete the mission (no static obstacles - start and target

positions of the first three robots are the same as in Group Cl)

Navigation of five robots with observations based on dynamic obstacle avoidance behaviour,
distance travelled and time taken to complete the mission (no static obstacles - start and target

positions of the first four robots are the same as in Group C2)

Navigation of three robots with observations based on static and dynamic obstacle avoidance
behaviour, distance travelled and time taken to complete the mission (start and target

positions are the same as in Group Cl)

Navigation of four robots with observations based on static and dynamic obstacle avoidance
behaviour, distance travelled and time taken to complete the mission (start and target

positions are the same as in Group C2)

Navigation of five robots with observations based on static and dynamic obstacle avoidance
behaviour, distance travelled and time taken to complete the mission (start and target 

________________positions are the same as in Group C3)

Table 7-11 Division of results (Part III)

| Subsystems used in robot navigation
Sensors
Static Obstacle Avoidance 
Behavioural Encoding
Dynamic Obstacle Avoidance 
Behavioural Encoding
Speed Control

[• Ultrasonic

l~ fuzzy logic

1^ Stateflow-fuzzy

F PI

l~~ Infrared

P? Neural networks

l~~ Stateflow-neural

[~~ Fuzzy logic

F~ No-shape

f" Neural networks

Table 7-12 Subsystems used in all mobile robots in Part III
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7.3.3.1 Group Cl: Results

Results presented in sections 7.3.3.1, 7.3.3.2 and 7.3.3.3 concentrate on navigation of three, four 

and five mobile robots with observations based on dynamic obstacle avoidance behaviour. In 

particular the effectiveness of the proposed control architecture is tested with three, four and 

five mobile robots operating in the same size of working environment as in Part I and Part II but 

without static obstacles.

Figure 7-23(a) to Figure 7-23(c) depicts three navigation tasks where three mobile robots have 

to reach independent target points (x T ,yT ) marked by T from an initial position (x 0 y 0 ) 

marked by S in an unknown environment free of static obstacles. The results of Group Cl are 

summarised in Table 7-13. Each result is divided into two figure plots illustrating both the 

robots trajectories and their control signals (distance to other robots and global state). For 

instance, Figure 7-23(a), depicts on the left hand side the main plot illustrating the trajectories of 

three mobile robots A, B and C (xs,ys)? initial points and target points. On the right hand side 

of Figure 7-23(a) the plot is divided into six sub-plots illustrating the following. The first three 

sub-plots show the distance of each robot with respect to others, sub-plots 4 to 6 show the 

global state of each robot. The robots orientation at the target point is shown in the legend of the 

main figure plot illustrating the robots trajectories.

Group Cl
Exp

1

2

3

Robot
A 
B 
C
A 
B 
C
A 
B 
C

Distance travelled
3.5546 
3.7009 
2.5509
2.5477 
2.7868 
2.5477
2.5409 
2.7864 
2.5481

Time taken
10.71 
11.35 
8.61
9.39 
9.62 
7.83
9.08 
9.73 
7.83

Collision
No 
No 
No
No
No
No
No 
No 
No

Caption

Figure 7-23(a)

Figure 7-23(b)

Figure 7-23(c)

Table 7-13 Collision avoidance result of an environment containing three mobile robots

7-41



Chapter 7____________________________ Evaluation of the Control Architecture

As can be observed from Figure 7-23(a) to Figure 7-23(c) in all three navigation tasks no 

collision between the mobile robots occurred. The distance travelled and time taken of each 

robot to complete the mission is recorded for comparison with the results from Group C2 

presented in the next section.

7.3.3.2 Group C2: Results

The results of this section are compared with the simulation results from Group Cl.

Figure 7-24(a) to Figure 7-24(c) depicts three navigation tasks where the four mobile robots 

have to reach independent target points (x T ,yT ) marked by Tfrom an initial position (x 0 y 0 ) 

marked by S in an unknown environment free of static obstacles In particular each experiment 

is divided into two figure plots illustrating both the robots trajectories and their control signals 

(distance to other robots and global state). For instance, the results illustrated inFigure 7-24(a), 

depicts on the left hand side the main plot of four mobile robots A, B, C and D illustrating their 

trajectories (xs ,ys ), initial points and target points. On the right hand side of Figure 7-24(a) 

the plot is divided into eight sub-plots illustrating the following. First four subplots show the 

distance of each robot in respect to other robots whereas sub-plot 5 to 8 shows the global state 

of each robot. Again as in the previous section the robots desired orientation at the target point 

is shown as a legend in the main figure plot illustrating the robots trajectories.

As can be observed from Figure 7-24(a) to Figure 7-24(c) in all three navigation tasks no 

collision between the mobile robots was reported. The distance travelled and time taken of each 

robot to complete the mission have been compared with the simulation results from Group Cl.

The results of this group are summarised in Table 7-14. As can be seen from Table 7-14 the 

recorded travelled distance of each robot in navigation tasks involving four robots is shorter
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than the recorded travelled distance of each robot in navigation tasks involving three robots. 

However, the time taken for each robot to complete its mission is smaller in the case of 

navigation involving three robots. The delay in time taken for each robot to complete its mission 

is a result of longer negotiations between robots. The concept of traffic rules used to model the 

robots behaviour for dynamic obstacle avoidance, means that conflicting mobile robots will 

decelerate and will negotiate with each other for longer time to decide which has a priority (note 

that the negotiation taking place between robots is without inter-communication). The improved 

result in travelled distance for each robot (for four mobile robots) is because the navigation task 

with three robots requires fewer negotiations with other robots and therefore resulting in longer 

distance by finding the easier way to reach the target. Whereas for four robots, each robot has 

more negotiation with other robots and therefore executes shorter distance by finding its way 

towards the target after the majority of the conflicts have been solved.

Group C2
Exp

1

2

3

Robot
A
B 
C
D
A
B 
C
D
A
B
C
D

Distance travelled
i 3.5351 (-0.0195)
13.6899 (-0.011) 

4 2.55 19 (-0.0001)
2.4949

i 2.4873 (-0.0604)
1 2.7964 (-0.0096) 
1 2.5502 (-0.0043)

3.5302
i 2.5432 (-0.0023)
1 2.7856 (-0.0008) 
1 2.5426 (-0.0055)

2.9086

Time taken
T 11.47(0.76)
t 12.9(1.55) 
t 8.67 (0.06)

9.14
T 11.41 (2.02)
t 10.54(0.92) 
T 8.68 (0.85)

10.26
T 9. 12 (0.04)
T 10(0.27) 
t 9.1 (1.27)

9.54

Collision
No
No 
No
No
No
No 
No
No
No
No 
No
No

Caption

Figure 7-24(a)

Figure 7-24(b)

Figure 7-24(c)

Table 7-14 Collision avoidance result of an environment containing four mobile robots

In the next group of results, experiments 2 and 3 from this section are repeated using five 

mobile robots.

7-43



9hapter7——————————————————.____________ Evaluation of the Control Architecture

7.3.3.3 Group C3: Results

The results of this section are compared with the results from the last two experiments from 

Group Cl.

Figure 7-25(a) and Figure 7-25(b) depicts two navigation tasks in which five mobile robots have 

to reach independent target points (xT ,yT ) marked by T from an initial position (x 0 y 0 ) 

marked by S in an unknown environment free of static obstacles In particular each experiment 

is divided into two figure plots illustrating both the robots trajectories and their control signals 

(distance to other robots and global state). The experiment illustrated in bothFigure 7-25(a) and 

Figure 7-25(b), depicts on the top side the main plot of five mobile robots A, B, C, D and E 

illustrating their trajectories (xs ,ys ), initial points and target points. On the bottom side of 

Figure 7-25(a) and Figure 7-25(b) the plots are divided into ten sub-plots illustrating the 

following. First five sub-plots show the distance of each robot in respect to other robots whereas 

sub-plot 6 to 10 shows the global state of each robot.

As can be observed from Figure 7-25(a) and Figure 7-25(b) in both navigation tasks no collision 

between the mobile robots was reported as the distance plots between the five mobile robots 

shows value always greater than zero. The distance travelled and time taken of each robot to 

complete the mission have been compared with the results from Group Cl.

The results of Group C3 are summarised in Table 7-15. As can be seen from Table 7-15 the 

recorded travelled distance of each robot in navigation tasks involving five robots is higher than 

the recorded travelled distance of each robot in navigation tasks involving three robots. In 

addition, the time taken for each robot to complete its mission is also greater in the case of 

navigation involving five robots. The delays in both distance travelled and time taken for each 

robot to complete its mission are acceptable which is a result of longer negotiations between
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robots in a restricted workspace. The results in this section demonstrated once again the 

efficiency and robustness of the control architectures. All mobile robots achieved every control 

objective and their trajectories are smooth in spite of the interaction with other robots.

Group C3
Exp

1

2

Robot
A
B 
C
D
E
A
B 
C
D
E

Distance travelled
4 2.5553 (-0.0076)
t 2.8328 (0.046) 
t 2.7230 (0.1753)
t4.3738(1.8789)

3.3467
72.5537(0.0128)
t 2.8066 (0.0202) 
t 2.5530 (0.0049)
1 2.9232 (-0.0628)

3.5729

Time taken
T 9.46 (0.09)
t 11.01(1.39) 
t 8.77 (0.94)
t 15.79(5.53)

11.01
T 9. 12 (0.04)
t 10(0.27) 
t9.1 (1.27)
-»9.54(-)

14.37

Collision
No
No 
No
No
No
No
No 
No
No
No

Caption

Figure 7-25(a)

Figure 7-25(b)

Table 7-15 Collision avoidance result of an environment containing five mobile robots

The next group of results demonstrates the efficiency of the proposed control architecture in a 

highly dynamic environment.

7.3.3.4 Group C4: Results

As previously mentioned real-time motion planning in an unknown and unstructured 

environment involves collision avoidance of static as well as moving obstacles (other robots). 

However, strategies suitable for navigating two mobile robots in a dynamic environment are not 

necessary suitable for strategies for navigation of three or more mobile robots. This section and 

sections 7.3.3.5 and 7.3.3.6 demonstrate the control architecture's applicability to multiple robot 

navigation operating in an environment populated by static and dynamic obstacles. In particular 

the navigation tasks of the three, four and five mobile robots considered in Group Cl, C2 and 

C3 are repeated with the addition of static obstacles within the robots working environment.
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Figure 7-26(a) to Figure 7-26(b) depicts three navigation tasks where three mobile robots have 

to reach independent target points an initial in an unknown environment populated by static and 

dynamic obstacles. The graphical representation of each result is the same as in Group Cl.

As can be observed from Figure 7-26(a) to Figure 7-26(b) in all three navigation tasks no 

collision between the mobile robots occurred. In addition no collision between the robots and 

the static obstacles occurred..

Table 7-16 summarises the collision avoidance results of all three navigation tasks performed by 

the robots. The distance travelled and time taken of each robot to complete the mission is 

similar to those in Group Cl

Group C4 ~~~

Exp Robot
A 

1 B 
C
A

2 B 
C
A 

3 B 
C

Distance 
travelled
3.9929 
4.0655
3.5375
2.9435 
3.0882 
3.6906
2.6016 
3.0912 
3.6940

Time taken

11.41 
11.43 
10.59
9.23 
10.13 
11.56
9.51 
10.13
12.32

Collision Avoidance Result
Static 

Obstacle
No 
No 
No
No 
No 
No
No 
No 
No

Dynamic 
Obstacle

No 
No
No
No 
No 
No
No 
No 
No

Caption

Figure 7-26(a)

Figure 7-26(b)

Figure 7-26(c)

Table 7-16 Collision avoidance result of a mixed environment containing static obstacles and
three mobile robots

7.3.3.5 Group C5: Results

Figure 7-27(a) to Figure 7-27(b) depicts three navigation tasks in which four mobile robots have 

to reach independent target points an initial in an unknown environment populated by static and 

dynamic obstacles. The graphical representation of each result is the same as in Group C2.
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As can be observed from Figure 7-27(a) to Figure 7-27(b) in all three navigation tasks no 

collision between the mobile robots occurred. Again no collision between the mobile robots and 

the static obstacles occurred.

Table 7-17 summarises the collision avoidance results of all three navigation tasks performed by 

the robots. The distance travelled and time taken of each robot to complete the mission is 

similar to those in Group C2.

^ "" Group C5

Exp

1

2

3

Robot
A
B
C
D
A
B 
C
D
A
B 
C
D

Distance 
travelled
4.0108
3.8778 
3.0163
3.0570
3.0555
2.9387 
3.6510
3.9986
4.3139
3.1175 
3.6802
3.0688

Time taken

11.41
13.5 
10.5
9.5
9.5

9.83
11.78
11.41
14.93
10.52 
13.25
12.34

Collision Avoidance Result
Static 

Obstacle
No
No 
No
No
No
No
No
No
No
No 
No
No

Dynamic 
Obstacle

No
No
No
No
No
No 
No
No
No
No 
No
No

Caption

Figure 7-27(a)

Figure 7-27(b)

Figure 7-27(c)

Table 7-17 Collision avoidance result of a mixed environment containing static obstacles and
four mobile robots

7.3.3.6 Group C6: Results

Figure 7-28(a) to Figure 7-28(b) depicts two navigation tasks where five mobile robots have to 

reach independent target points an initial in an unknown environment populated by static and 

dynamic obstacles. The graphical representation of each result is the same as in Group C3.
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As can be observed from Figure 7-28(a) to Figure 7-28(b) in both navigation tasks no collision 

between the mobile robots was reported. However, for this particular example the mobile robots 

have to pass each other very close. In addition no collision between the mobile robots and the 

static obstacles occurred.

Table 7-18 summarises the collision avoidance results of both navigation tasks performed by the 

robots. The distance travelled and time taken of each robot to complete the mission is 

considerably higher than those in Group C3. For all tests considered activation of avoidJrap 

robot behaviour did not occur, which means that the implementation of the standalone robot 

behaviours is sufficient to successfully navigate the robots.

" ~~ "^~~~ Group C6 "~ ~~

Exp Robot
A

' I
D
E
A
B

2 c
D
E

Distance 
travelled
3.0634
2.9357 
3.0880
4.4927
4.2751
2.5564
2.8977 
3.1094
2.9668
3.7085

Time taken

11.76
10.16 
11.31
15.24
15.06
10.33
10.49 
12.29
11.41
16.05

Collision Avoidance Result
Static 

Obstacle
No
No 
No
No
No
No
No 
No
No
No

Dynamic 
Obstacle

No
No 
No
No
No
No
No 
No
No
No

Caption

Figure 7-28(a)

Figure 7-28(b)

Table 7-18 Collision avoidance result of a mixed environment containing static obstacles and
five mobile robots

7.3.3.7 Part III: Outcome of results

Part III has investigated the effectiveness of the proposed CAROS control architecture in 

navigation tasks involving three to five mobile robots operating in an unknown both static and 

dynamic environments. The results in Part III demonstrated that the control strategy chosen for
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navigation of multiple mobile robots is efficient and also re-established the robustness of the 

control system architecture against the desired requirements, such as supervision, decision- 

making and co-ordination of internal control structures (subsystems). The mobile robots were 

exposed in a complex and highly dynamic environment and successfully achieved every control 

objective, as their trajectories were smooth despite the interaction between several behaviours 

and presence of unexpected static and dynamic obstacles.

The effectiveness of the action co-ordinator mechanism developed in chapter six for co­ 

ordination and parallel switching between robot behaviours was validated. In all experiments 

the control objective of each robot was successfully reached demonstrating that the proposed 

control architecture achieve a good control performance. The mobile robots were found to 

navigate with travel time and distance travelled low and close to optimal.
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Co-operative Autonomous RObotic Systems - CAROS
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Co-operative Autonomous RObollc Systems . CARDS
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Co-operative Autonomous RObotic Systems • CARDS
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Co-operalive Autonomous RObolic Systems - CARDS

•OS

DIsltoB.C. D and E (ROB A) Dist to A, C, D andE (ROB B) DIsltoA. B, Dand E (ROB C) DlsltoA.B, C and E (ROBD) Dlsl to A, B. C and D (ROB D) 

6

Global Slates (ROBOT A) Global Slates (ROBOT B) Global Slates (ROBOT C) Global Stales (ROBOT D) Global Slates (ROBOT E)

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 

Time [sec] Time [sec] Time [sec] Time [seel Time [sec]

(a)
Co-operalive Autonomous RObotic Systems - CAROS

TP

—— Robot A , e T=90°
—••••• Robot 6.^-180°
—— RobdC.9r--90<1 
....... Robot D. 9T=45°

Robot E. ^--45"

-05 0 05 1 15 2 25 3 

DlsttoB.C,DandE(ROBA) Dlstto A C. D and E (ROB B) Dist to A, B. D and E (ROB C) Dlsl 10 A, B. C and E (ROB D) Dlsl to A. B, C and D (ROB D)

—— Dist to
—— Dist to
—— Dislto

ftstw

Robot A
Robot B
Rot>ot C
Robot E

\^
0 5 10 15 05 Tjj——it " 5 10 15 0 5 10 15 0 5 10 15

3 5 
Ti

10 15 
me [sec]

4

(

A
5 10 15 

Time [sec]

4

3

S 2 
55

0
M

.
3 5 10 15 

Time [sec]

5 2 
K

1

nr

n
5 

Tim
10 15 

e [sec]

[

1 p

ol ——

Tim |sec ]

(b)

Figure 7-28 Results C6

7-55



chapter7——————————————————___________Evaluation of the Control Architecture

7.4 Discussion

The main outcomes of all results presented in this chapter were discussed after the completion 

of the three parts. This section will give some general discussions based on the overall control 

architecture performance presented in this chapter.

The control architecture was tested incrementally in order to verify its overall control 

performance and the performance of each subsystem. The subsystem by subsystem testing of 

the control architecture proved useful in the achievement of system performance while issues 

related to subsystems integration and co-ordination were successfully validated.

Results show that the control architecture's modularity, distribution, reactivity and behaviour 

based structure provided the overall control system with robustness in all cases of navigation 

tasks utilising either single or multiple mobile robots. The experiments carried out for 

navigation of autonomous mobile robots proved that the modular design of the control 

architecture eased the testing for performance by allowing individual and integrated subsystem 

testing, thereby reducing the problems inherent in the design, integration and performance test 

of such complex systems. The results presented not only reveal the advantages of the proposed 

control architecture, but also identify answers to other issues in mobile robot navigation such as 

performance of sensor sensitivity, performance of proposed method for identification of 

direction of moving object and performance of behavioural encoding utilising fuzzy, neural or 

hybrid solutions.

It was shown that using the concept of behaviour-based control, a complex task can be easily 

completed implementing several simple behaviours. The experiments have demonstrated that in 

a complex navigation task potential difficulties may arise from the quantitative formulation of 

reactive behaviour as well as from the need for an efficient coordination and integration of 

conflicts and competition among different types of behavioural encoding. The results show that
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the study undertaken in chapter six for the design of the action co-ordinator mechanism using 

finite state machines, the implementation of the controller-agent concept from the field of multi- 

agent systems and the use of fuzzy logic and neural networks for behavioural encoding 

successfully compensates and overcomes the aforementioned difficulties.

Results show that the proposed hybrid system, using only three sensors, can be successfully 

applied to multiple robot navigation in complex and highly dynamic environments by efficiently 

co-ordinating multiple types of robot behaviours and local controllers organised by means of 

agents.

7.5 Summary

This chapter presents evaluation of the proposed novel hybrid multi-agent control architecture 

developed in this thesis for navigation of multiple autonomous mobile robots. The control 

architecture has been verified and validated when applied to the problem of navigation of 

single/multiple autonomous mobile robots using the full non-linear model of the MIABOT V2 

mobile robot derived and described in chapter four.

In Part I the effectiveness of the proposed CAROS control architecture in a single mobile robot 

navigation operating in an unknown environment populated by static obstacles was considered. 

The proposed control architecture was observed to exhibit robustness, adaptability and 

flexibility when tested in single robot navigation in an unknown environment populated by 

static obstacles. The mobile robot achieved every control objective and its trajectory was 

smooth despite the interaction between several behaviours and the presence of unexpected 

obstacles. The effectiveness of SOAM using the controller-agent concept was validated with 

several numbers of tests. Three speed controllers were tested and the results show that PI and 

fuzzy speed controllers have a marginal advantage against the neural controller. The different 

types of sensor sensitivity developed in chapter six were tested according to the distance
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travelled and time taken for the robot to complete the mission. All sensors successfully 

navigated the mobile robot towards the target without any collision with the static objects. 

Fuzzy logic and neural networks behavioural encoding for static obstacle avoidance developed 

in chapter six were tested in an environment containing different configurations of static 

obstacles. Fuzzy behavioural encoding produced marginally better result over neural encoding 

in terms of distance travelled during the navigation tasks. The neural networks behavioural 

encoding showed a better result over fuzzy encoding in terms of time taken for the robot to 

complete each mission.

In Part II the effectiveness of CARDS control architecture in navigation tasks involving two 

mobile robots operating in an unknown both static and dynamic environment was investigated. 

The results demonstrated that the control strategy chosen for navigation of multiple mobile 

robots is efficient and also the robustness of the designed control system architecture against 

desired requirements, such as, supervision, decision-making and co-ordination of internal 

control structures (subsystems) was successfully observed. The results obtained established the 

effectiveness of the proposed method for identification of direction of moving object defined in 

chapter six. The stateflow-fuzzy logic and stateflow-neural networks behavioural encoding for 

dynamic obstacle avoidance developed in chapter six were tested in an environment containing 

different configurations of static and dynamic obstacles. Stateflow-fuzzy behavioural encoding 

produced better result over stateflow-neural encoding in terms of distance travelled during the 

navigation tasks. The stateflow-neural behavioural encoding showed better result over 

stateflow-fuzzy encoding in terms of time taken to complete each mission. The control 

architecture successfully adapted to the environmental conditions.

In Part HI the effectiveness of CAROS control architecture in more complex navigation tasks 

involving multiple mobile robots (results were presented up to five robots) operating in a 

restricted workspace. The mobile robots were exposed in a complex and highly dynamic
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environment and successfully achieved every control objective, as their trajectories were smooth 

despite the interaction between several behaviours and the presence of unexpected static and 

dynamic obstacles. In all tests the proposed control architecture achieved a high control 

performance. The mobile robots were found to navigate effectively with travel time and distance 

travelled low and very close to optimal.

The main contribution of this chapter is the implementation and evaluation of novel hybrid 

multi-agent control architecture for navigation of single/multiple autonomous mobile robots in 

both static and/or dynamic environment.

The next chapter presents review, conclusions and future work of the thesis.

7-59



8
Review, Conclusions and 
Future Work

8.1 Introduction

In this chapter a review of the thesis is presented, some conclusions are drawn, the main 

contributions of the research are discussed and future work is recommended.

As mentioned at the introduction of the thesis, autonomous control and navigation of mobile 

robotic vehicles are fundamental enabling technologies for automation in a variety of operating 

domains ranging from industrial environments to remote planetary surfaces. Therefore 

navigation is a vital issue in the research of autonomous mobile robots. The navigation of an 

autonomous mobile robot may be considered as a task of determining a collision free path that 

enables the robot to travel through course, populated with obstacles, from an initial 

configuration to a target configuration, where configuration here refers to the spatial co-ordinate 

and the heading angle of the robot. The ultimate goal of the research in mobile robot systems is
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to develop control strategies and architectures, which support autonomous operations in an 

unknown or partially known environment.

It was also mentioned at the introduction of the thesis that advance mobile robotic systems 

(architectures) must combine deliberative planning with reactive sensor driven operations. Tbi 

has been recently accepted as advance mobile robotic systems operating in uncertain dynamic 

environments, combine information from several sensory sources. Prior knowledge of the 

domain may be incomplete, and reasoning must be deliberative in nature and fast enough to 

respond to unexpected events. Also, the information gained via sensory subsystems is 

incomplete, inaccurate and uncertain.

In this thesis a novel hybrid multi-agent oriented control architecture for navigation of multiple 

autonomous mobile robots operating in an unknown and unstructured environment populated by 

static and/or dynamic obstacles is proposed. The control architecture integrates deliberative 

planning and reactive control with attention focused on the design and co-ordination of robot 

behaviours.

The remainder of this chapter is organised as follows: Section 8.2 presents review of the 

research described in the thesis. Discussion and the main conclusions drawn of the research are 

illustrated in section 8.3. In section 8.4 the main contributions of the research described in this 

thesis are discussed. Suggestions for future work are presented in section 8.5.

8.2 Review of the thesis

In the introductory chapter of the thesis the motivation of conducting the research described in 

this thesis was given. Some potential application areas for the results of this thesis were 

suggested and the aim and objectives of the research carried out were highlighted. Then the 

main challenges and problems in mobile robot navigation with brief discussion of how they
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have been approach in this thesis were discussed. An outline of the thesis was presented with a 

brief summary of the main contributions resulted of the research work described in the thesis.

Chapter two presented a background literature review of topics related to this thesis. The work 

in this thesis has shared motivations and goals with a number of related fields. The first topic to 

be reviewed was the field of artificial life. A number of contributions from artificial life based 

on simulations of multiple autonomous mobile robots relevant to this thesis were discussed. The 

literature review of related work based on co-operative robotics and control of multiple mobile 

robots (multi-agent robotics) was presented, focusing on research contributions in which mobile 

robots can discriminate each other from the rest of the world based on a local reactive approach. 

Background information of the birth and origin of the behaviour-based control was highlighted. 

Advantages and disadvantages of the behaviour-based decomposition control approach in 

contrast with the traditional functional decomposition were discussed. The role of distributed 

artificial intelligence and distributed systems in the development of control architectures for 

multiple autonomous mobile robots was presented. Hence, the more significant sub-fields of 

distributed artificial intelligence were discussed in more detail as they relate directly to the work 

of this thesis. The origin of intelligent control including its approaches was illustrated. Three 

methodologies in the field of intelligent control were presented two of which were used direct in 

this thesis. Recent research in modelling, identification and control of dynamic systems using 

methodologies from intelligent control was reviewed with reference on related works. Robot 

navigation using intelligent control methods was described. In particular chapter two has 

reviewed robot navigation techniques up to date, focusing on those utilising fuzzy logic and 

neural networks.

In chapter three the aim was to propose, justify and present the main research methodology 

adopted for the research work carried out in this thesis. The main research methodology was 

broken down into nine basic steps. Each step was presented individually focusing on
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design/modelling issues following a discussion of either advantages or disadvantages when the 

particular method is adopted. First step concerned conventional control design, which was used 

in chapter five to model speed controller for the mobile robot. The main advantages of 

conventional control design followed by short description of its main parts were outlined in the 

presentation of this step. Second step refers to constrained optimisation using non-linear control 

design tool for tuning/optimisation of physical and control parameters in chapters four and five. 

The design methodology for fast robust stability testing and analysis based on interval 

polynomials was discussed in the third step. More specific, using the parametric robustness 

analysis approach (Kharitonov's Theorem) the closed-loop control system (controller and plant) 

was proved to be robustly stable under uncertainty in robot dynamics. Steps four, five and six 

discussed the main research methodology for modelling and identification of local controllers 

(behaviours) using fuzzy logic systems, artificial neural networks and clustering techniques. 

Steps seven and eight defined the research methodology regarding the design of control systems 

architectures of mobile robots and multi-agent systems as additional tool in development of 

control architectures. The final step highlighted the stateflow design tool based on finite state 

machines theory. Using this tool model visualisation and construction of complex reactive 

systems can be easily achieved. In particular this design tool was used in chapter six as 

supervisor-like co-ordination object, global state identification mechanism and as static model 

for identification of direction of moving obstacle.

In chapter four the modelling of MIABOT V2 mobile robot was presented. The robot is small, 

measuring 8cm 3 and is steered and driven by differential drive design utilising two DC motors 

enabling robot's speed up to 1.2m/s. The first order kinematic model of the robot was derived 

in order to understand its manoeuvrability properties and to produce information about its global 

description. However, as the robot behaviour was related to the framework and theory of 

holonomic and nonholonomic systems some discussions were made to show in which category
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MIABOT V2 falls (holonomic or nonholonomic). Then the full non-linear dynamic model of 

the robot was established for complete description of its system's dynamics. To improve the 

model accuracy real experiments took place. The non-linear control design blockset based on 

constrained optimisation method was used for identification of several robot physical 

parameters. To further improve the model, wheel slippage was introduced and modelled. 

Contacting real experiments, two different types of slippage were considered, one due to linear 

robot accelerations and another due to angular robot accelerations (fast turning). The robot 

model found to be very close to the real dynamics of the plant considered. The linearised model 

of the robot was extracted and some comparisons were made to show the validity of the 

linearised model against the non-linear. Results were presented, and show that the linearised 

model is acceptable, comparing non-linear and linear response under perturbations of the same 

control inputs.

Chapter five concerned control, robust stability analysis and discovery of fuzzy/neural local 

models from observation data. In the first instance a PI speed control law was developed based 

on full non-linear model and design requirements of the MIABOT V2 mobile robot. PI control 

action was selected, as it is robust and simple to design. The tuning/optimisation of the PI 

control parameters was achieved using the non-linear control design tool (NCD). This design 

methodology was fast, easy to use and suitable for the control design, which was based on non­ 

linear model. In addition the method produced good performance and robust control under plant 

uncertainty. The results of tuning show that PI control action successfully controls the plant, 

providing performance within the design requirements. Then a design methodology to replace 

the PI controller by fuzzy logic controller was proposed. Based on subtractive clustering a fuzzy 

logic controller was identified using the PI controller as a teacher. The fuzzy controller was 

modelled with dynamical behaviour by emulating the controller function to more inputs (delays 

of inputs and outputs). To extend this design methodology a multilayer feedforward neural 

network with dynamical behaviour was developed based on supervised learning. Although a
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neural network is static mapping of input-output indicating that theoretically it is not feasible to 

control or identify dynamic system, in this chapter was shown that a neural network with 

dynamical behaviour could successfully control the plant. Comparison was made of all three 

types of controllers based on their performance criteria and execution time. It was shown that all 

controllers controlled the plant within the design requirements producing similar RMSE of 

actual and reference response. However, the execution time was found to vary dramatically 

between the controllers. The PI control action was the fastest whereas the neural controller was 

faster than the fuzzy controller. Finally the closed-loop control system was tested for robustness 

under uncertainty in robot dynamics. Using the parametric robustness analysis approach 

(Kharitonov's Theorem) the closed-loop control system of the MIABOT V2 mobile robot was 

tested and proved to be robustly stable under uncertainty in robot dynamics. This method 

proved to be easy and fast to use. To reinforce the result of the approach taken the robust 

stability analysis of the closed-loop control system was verified using graphical techniques.

Chapter six presented the development of a proposed novel hybrid multi-agent based control 

architecture called CARDS for navigation of multiple autonomous mobile robots. The proposed 

architecture was designed for single/multiple robot navigation in both static and dynamic 

unknown environments. The need for hybrid solutions in design of complex control systems 

was demonstrated through an analysis using the Quality Function Deployment (QFT) tool. The 

analysis has clearly indicated that the most promising solution in control systems architecture 

design is the hybrid approach. At the beginning of the chapter an overview of the proposed 

architecture was presented highlighting its main characteristics. The proposed control 

architecture takes the advantages of various control structure types, and in particular the control 

architecture takes its design from competitive tasks architecture, production rules architecture, 

connectionist architecture, dynamic system architecture, multi-agent architecture and 

subsumption architecture.
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The main objective was to achieve successful navigation of both single and multiple mobile 

robots in an environment populated by stationary and moving objects. In order to achieve this 

goal, the design of the architecture was based on a number of requirements/properties such as 

modularity, robustness, fault tolerance, distribution, reactivity, adaptability, planning, co­ 

operation, easy of application, uncertainty, optimal control, learning and efficiency.

The final configuration of the control architecture utilised reactive, deliberative, distributed and 

centralised control approaches and used artificial intelligence as well as modular hierarchical 

structure. Multi-agent systems took care of the distributed control utilising the controller-agent 

concept, which is relatively new field in control engineering. Controllepagents operating in 

some restricted part of the operating regime produced or solved problems in terms of request 

from a well-defined supervisor-like co-ordination object. Centralised processing and 

deliberative reasoning was tackled using supervisory techniques incorporating finite state 

machines and non-linear switching mechanisms. The implementation of the main robot 

behaviours was achieved by decomposing the global tasks into simpler well-defined behaviours. 

The behavioural encoding was based on fuzzy logic, neural networks and finite state machines 

design methodologies. An algorithm methodology was proposed for supervised learning of 

neural network using fuzzy logic as a teacher.

As real-time motion planning in an unknown environment involves collision avoidance of static 

as well of moving robots a novel scheme was presented for identification of the direction of 

moving robots. Sensor modelling and sensor sensitivity was also considered in order to form 

modular reactive layer (different sensors have been modelled). Prior to the testing of the 

architecture in chapter seven a comparison was made with other recent approaches based on 

control architecture specifications such as reasoning, control, processing, integration, 

behavioural encoding, robot navigation and operating environment. The proposed architecture 

was shown to satisfy the most of the essentials specifications.
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In chapter seven evaluation of the proposed novel hybrid multi-agent control architecture 

developed in this thesis for navigation of multiple autonomous mobile robots was presented. 

The control architecture was successfully verified and validated when applied to the problem of 

navigation of single/multiple autonomous mobile robots using the full non-linear model of the 

MIABOT V2 mobile robot derived and described in chapter four. The results presented in this 

chapter were devised in to three parts and are summarised follows.

The effectiveness of the proposed CARDS control architecture in a single mobile robot 

navigation operating in an unknown environment populated by static obstacles was considered. 

In particular issues such as, demonstrating system performance, independencies amongst 

integrated subsystems, implementation of global and local control strategies, static obstacle 

avoidance strategy, travel time due to the different controllers configuration and effectiveness of 

different sensor sensitivity utilisation were addressed. The proposed control architecture was 

observed to exhibit robustness, adaptability and flexibility when tested in single robot 

navigation in an unknown environment populated by static obstacles. The mobile robot 

achieved every control objective and its trajectory was smooth despite the interaction between 

several behaviours and the presence of unexpected obstacles. The effectiveness of SOAM using 

the controller-agent concept was validated with several numbers of tests. In all cases the robot 

achieved the control objectives defined both in A and B local control strategies defined in 

chapter six. The speed controllers developed in chapter five were re-tested and the results show 

that PI and fuzzy speed controllers have a marginal advantage against the neural controller. In 

particular the PI controller has the smallest ISE error of all controllers, whereas the fuzzy 

controller has the smallest IAE and ITAE error. The different types of sensor sensitivity 

developed in chapter six were tested according to the distance travelled and time taken for each 

robot to complete its mission. In all cases it was possible to navigate the mobile robot towards 

the target without any collisions with the static objects. Infrared sensor sensitivity produced the 

lowest values for distance and time taken for the robot to complete its mission. However as
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safety is an important issue in mobile robot navigation the ultrasonic sensor sensitivity was used 

for the rest of the tests as the robot was navigated towards the target avoiding the main cluster 

of static obstacles by incorporating this type of sensor. The fuzzy logic and neural networks 

behavioural encoding for static obstacle avoidance developed in chapter six was tested in an 

environment containing different configurations of static obstacles. Fuzzy behavioural encoding 

produced marginally better result over neural encoding in terms of distance travelled during the 

navigation tasks. The neural networks behavioural encoding showed a better result over fuzzy 

encoding in terms of time taken for the robot to complete each mission. The control architecture 

was adapted to the environmental conditions, by adjusting the robot's control parameters (i.e. 

speed) and to activation of appropriate behaviour.

Secondly, the effectiveness of CARDS control architecture in navigation tasks involving two 

mobile robots operating in an unknown both static and dynamic environment was investigated. 

The results demonstrated that the control strategy chosen for navigation of multiple mobile 

robots is efficient. The robustness of the designed control system architecture against desired 

requirements, such as supervision, decision-making and co-ordination of internal control 

structures (subsystems) was observed. Both mobile robots achieved every control objective and 

their trajectories were smooth despite the interaction between several behaviours and presence 

of unexpected obstacles. The effectiveness of the proposed method for identification of 

direction of moving object defined in chapter six was established. The robots found to perform 

sufficient navigation with travel time and distance travelled by both robots considerably low and 

very close to optimal. The effectiveness of the action co-ordinator mechanism developed in 

chapter six for co-ordination and parallel switching between robot behaviours was validated by 

several tests. In all tests the proposed control architecture achieve a sufficiently high control 

performance once the control objective of each robot was reached. The stateflow-fuzzy logic 

and stateflow-neural networks behavioural encoding for dynamic obstacle avoidance developed 

in chapter six were tested in an environment containing different configurations of static and
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dynamic obstacles. Stateflow-fuzzy behavioural encoding produced better result over stateflow- 

neural encoding in terms of distance travelled during the navigation tasks. The stateflow-neural 

behavioural encoding demonstrated better result over stateflow-fuzzy encoding in terms of time 

taken to complete each mission. The control architecture successfully adapted to the 

environmental conditions by adjusting the robot's control parameters (i.e. velocity) and taking 

actions (i.e. activation of appropriate behaviour).

Finally the effectiveness of the proposed CAROS control architecture in navigation tasks 

involving three to five mobile robots operating in an unknown both static and dynamic 

environments was considered. The results in Part III demonstrated that the control strategy 

chosen for navigation of multiple mobile robots is efficient and also re-established the 

robustness of the control system architecture against the desired requirements, such as 

supervision, decision-making and co-ordination of internal control structures (subsystems). The 

mobile robots were exposed in a complex and highly dynamic environment and successfully 

achieved every control objective, as their trajectories were smooth despite the interaction 

between several behaviours and presence of unexpected static and dynamic obstacles. The 

effectiveness of the action co-ordinator mechanism developed in chapter six for co-ordination 

and parallel switching between robot behaviours was validated. In all experiments the proposed 

control architecture achieve a sufficiently high control performance once the control objective 

of each robot was successfully reached. The mobile robots found to perform sufficient 

navigation with travel time and distance travelled considerably low and close to optimal.

8.3 Discussion and conclusions of the research

Throughout the thesis it has been shown that familiarities with certain scientific topics facilitate 

research where various complex problems can be solved. Considering the literature review in 

chapter two, it becomes clear that the problem of multi-robot control is challenging and also 

great motivation for future research. Contributions of related work show that development of
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robust control with reliable behaviour with more than one robot co-existing in the same 

environment still remains a very difficult task. Despite the fact that behaviourbased control is 

one of the greatest revolutions in robot control several issues remain unanswered, which 

generate motivations for further research. Issues like, robot behaviour design, modularity and 

co-ordination is still of interest. Potential solutions to solve these issues can be found within the 

field of distributed artificial intelligent and distributed systems.

The field of distributed artificial intelligent and distributed systems is a very promising 

framework in the research area of development and control of multi-robot systems. Although 

the research work of distributed artificial intelligent is still in theoretical stage, it is believed that 

very soon practical implementations will take place. Already it is shown that the research effort 

regarding multi-agent systems is established in the development of more sophisticated software 

than traditional approaches. In addition, as lower-level processes (perception and actuation) are 

better understood and implemented, and as computational power increases, the high-level 

results of distributed artificial intelligence and distributed systems may become increasingly 

applicable to many practical applications including the control and development of multiple 

robots incorporating highly intelligent programs.

In chapter three it was shown that multi-agent systems theory is relatively new field in control 

and systems engineering. A special role in the theory and tools for solving complex control 

problems is attributed to the concept of agent. An agent represents an abstract entity that is able 

to solve a particular (partial) problem. Agents have the ability to be combined into a multi-agent 

system, such that the overall multi-agent system is able to solve a more complex problem. It 

was demonstrated (speed orientation adaptive mechanism in chapter six) that the concept of 

constructing local controllers that consist of several other controllers can be archived using 

multi-agent systems. Full integration and merging of multi-agent systems and control
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engineering is challenging and difficult task, because control theory has a strong mathematical 

foundations, whereas the filed of MAS mainly is focused on abstract descriptions of the system.

Intelligent control such as fuzzy and neural approaches can be successfully implemented to 

solve several problems in modelling, identification and control of dynamic systems 

incorporating a specified behaviour as was shown in chapters five and six. There are a larger 

number of learning algorithms available to be used with different methodological approaches to 

be followed. The question is, which method should be used, and how. Therefore a development 

time can be dramatically increased or decreased according to a chosen approach.

Fuzzy logic and neural networks have been used in robot navigation although neural networks 

are relatively new. The majority of the research works in the literature consider a single mobile 

robot and not navigation of multiple robots. In addition much of the contributions made focus 

on robot navigation using kinematic models and not dynamic models. Very few works consider 

solving the problem of robot navigation using behaviours. Many research contributions to robot 

navigation are based on both fuzzy and neural methods with the attempt to solve the problem 

using one or two models (behaviours).

As was shown throughout the thesis (chapter five and six) one of the main advantages of fuzzy 

systems is that there is no need to have a mathematical model of the system. In addition, it is 

possible to control non-linear plants and using comprehensive linguistic rules it is possible to 

implement expert human knowledge and experience. However, it would be impropriate to say 

that fuzzy systems can solve all control problems. Like any other design methodology the use of 

fuzzy systems has some drawbacks such as no global or systematic method for the 

transformation of the human experience into the rule base of the fuzzy system. In addition, it is 

not possible to show the stability of the controlled system since the model is not known and 

finally it is not guaranteed that rules are coherent (the possibility of mismatch between rules

8-12



Chapters—————————————————____________Review, Conclusions and Future Work

exists). From the results obtained in chapter seven, it can be concluded that behaviour encoding 

incorporating fuzzy system is able to control the navigation of multiple mobile robots in an 

unknown environment populated by static and/or dynamic obstacles.

The neural networks behavioural encoding demonstrated that artificial neural networks have 

interesting and attractive features such as learning, self-organisation and the capability to model 

a large class of non-linear systems. ANN were able to learn (fuzzy systems was the teacher) and 

produce mapping between an input and an output space and form an associate memory that 

retrieves the appropriate output when presented with an unseen input. They can also generalise 

to produce an output when presented with previously unseen inputs. Calculations are in 

principle carried out in parallel resulting in speed advantages and programming can be achieved 

by training rather than defining explicit instructions. The results from chapter seven show that 

the major advantage of the ANN methodology is that it can produce learning controller for a 

mobile robot that can operate in an uncertain environment. A considerable drawback of ANN is 

that knowledge extraction and knowledge representation are difficult. This results in some kind 

of integration between fuzzy and neural systems. Again from the results obtained in chapter 

seven, it can be concluded that behaviour encoding incorporating neural networks system is able 

equally to control the navigation of multiple mobile robots.

It chapter four was mentioned that the design of motion control systems of many mobile robots 

is based only on kinematics models. In order to increase the efficiency in control architectures in 

robot navigation it is necessary to take into account dynamics affects. For this purpose in 

chapter four the dynamic model of the MIABOT V2 including its speed control law was derived 

with the help of the non-linear control design tool. This tool based on constrained optimisation 

proved to be fast, easy to use, suitable for control design of both linear and non-linear systems 

providing good performance. The implementation of the parametric robustness analysis 

approach (Kharitonov's Theorem) adopted in chapter five fro testing robust stability of the
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robot's closed-loop systems found to be an easy to use method offering fast robust stability 

testing and analysis based on interval polynomials. Using this method the closed-loop control 

system of the MIABOT V2 mobile robot was proved to be robustly stable under uncertainty in 

robot dynamics. Three speed controllers were tested and the results show that PI and fuzzy 

speed controllers have a marginal advantage against the neural controller. In particular the PI 

controller has the smallest ISE error of all controllers, whereas the fuzzy controller has the 

smallest IAE and ITAE error.

The algorithmic methodology presented in chapter five for discovery of fuzzy models from 

observation data using subtractive clustering show that this methodology can be an effective 

technique when dealing with large sets of data. The principal idea is to distil natural groupings 

of data from a large data set thereby allowing concise representation of the model's behaviour. 

The advantage of using subtractive clustering compared to other clustering techniques is that 

computation is simply proportional to the number of data points and independent of the 

dimension of the problem under consideration. Having any set training data construction of a 

dynamic fuzzy model to control the plant can be achieved.

The design and implementation of complex control systems for autonomous mobile robots is a 

difficult task and still continues to challenge researchers. This challenge lies in the development 

of robust, flexible and modular control systems that are capable of coping with the dynamics of 

the real world. The new approach proposed in this thesis is a hybrid control system that takes 

the advantages of various control structures. The ongoing research for the identification of what 

are the "best" characteristics of each control approach in terms of requirements/properties is still 

an open question. In chapter six an analysis was presented based on the Quality Functional 

Deployment tool (QFD) for the identification of the relationship of the requirements/properties 

of control architecture versus the control architecture specifications. The analysis was based on 

fourteen requirements when design of control architecture is considered and the analysis
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presented clearly shows that the solution to the design and implementation of complex control 

systems for autonomous mobile robots is hybrid. Deliberative systems are best suited for 

proposes where planning and long-term reasoning is essential. On the other hand reactive 

systems are best suited for proposes where the environment continuously changing and fast 

responses are essential.

The reasoning of the proposed control architecture is both deliberative and reactive as for an 

unknown and changing environment it seems likely that no single architecture (deliberative or 

reactive), will be able to cope with all different problems. Reactive reasoning was necessary so 

that the vehicle can navigate safely and can take actions in real-time. The reactive behaviours 

are in charge of the robot's specific domain. They were modelled using fuzzy, neural and hybrid 

behavioural encoding. The deliberative system comprising finite state machines is responsible 

for high-level planning and for solving conflicts among behaviours that try to access the robot's 

actuators at the same time. Using both hierarchical and behavioural-based control structure 

significant advantages can be achieved. For example, hierarchy of behaviours offers an efficient 

approach to synthesis of behavioural capabilities necessary for autonomous navigational tasks. 

Its practical utility lies in the hierarchical decomposition of overall behaviour into sub-systems 

that are activated only when needed. A hybrid approach similar to the one presented in this 

thesis should provide a suitable framework for situated adaptation in single and multiple robot 

navigation. Therefore hybrid models in mobile robotics systems are more flexible because they 

exploit the whole potential of behaviour-based systems and allow the introduction of diverse 

forms of knowledge. This type of control architecture combines symbolic methods of artificial 

intelligence, maintaining the objective of providing robustness, and real-time response.

The results presented in chapter seven show that the control architecture's modularity, 

distribution, reactivity and behaviour-based structure provided the overall control system with 

robustness in all cases of navigation tasks utilising either single or multiple mobile robots. The

8-15



Chapter 8______________________________ Review, Conclusions and Future Work

experiments carried out for navigation of autonomous mobile robots proved that the modular 

design of the control architecture eased the testing for performance by allowing individual and 

integrated subsystem testing, thereby reducing the problems inherent in the design, integration 

and performance test of such complex systems. The results presented not only reveal the 

advantages of the proposed control architecture, but also identify answers to other issues in 

mobile robot navigation such as performance of sensor sensitivity, performance of proposed 

method for identification of direction of moving object and performance of behavioural 

encoding utilising fuzzy, neural or hybrid solutions.

It can be concluded that using the concept of behaviour-based control, a complex task can be 

easily completed implementing several simple behaviours. The experiments have demonstrated 

that in a complex navigation task potential difficulties may arise from the quantitative 

formulation of reactive behaviour as well as from the need for an efficient co-ordination and 

integration of conflicts and competition among different types of behavioural encoding. The 

results show that the study undertaken in chapter six for the design of the action co-ordinator 

mechanism using finite state machines, the implementation of the controller-agent concept from 

the field of multi-agent systems and the use of fuzzy logic and neural networks for behavioural 

encoding successfully compensates and overcomes the aforementioned difficulties.

Results show that the proposed hybrid system, using only three sensors, can be successfully 

applied to multiple robot (results are presented for up to five robots) navigation in complex and 

highly dynamic environments by efficiently co-ordinating multiple types of robot behaviours 

and local controllers organised by means of agents. The control architecture was observed to 

exhibit robustness, adaptability and flexibility when tested in single/multiplerobot navigation in 

an unknown environment populated by static an/or dynamic obstacles. The mobile robots 

achieved every control objective and their trajectories were smooth despite the interaction 

between several behaviours and the presence of unexpected obstacles.
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Three different type of sensor sensitivity were tested according to the distance travelled and 

time taken for the robot to complete the mission. In all cases it was possible to navigate the 

mobile robot towards the target without any collision with the static objects. Infrared sensor 

sensitivity produced the lowest values for distance and time taken for the robot to complete its 

mission. The proposed method for identification of direction of moving object show that the 

robots were able to navigate sufficiently with travel time and distance travelled by all robots 

considerably low and very close to optimal.

The fuzzy logic and neural networks behavioural encoding for static obstacle avoidance were 

tested in an environment containing different configurations of static obstacles. Fuzzy 

behavioural encoding produced marginally better result over neural encoding in terms of 

distance travelled during the navigation tasks. The neural networks behavioural encoding 

showed a better result over fuzzy encoding in terms of time taken for the robot to complete each 

mission. The stateflow-fuzzy logic and stateflow-neural networks behavioural encoding for 

dynamic obstacle avoidance were tested in an environment containing different configurations 

of static and dynamic obstacles. Stateflow-fuzzy behavioural encoding produces better result 

over stateflow-neural encoding in terms of distance travelled during the navigation tasks. The 

stateflow-neural behavioural encoding shows better result over stateflow-fuzzy encoding in 

terms of time taken to complete each mission.

8.4 The main contributions of the thesis

The main contributions of the research presented in this thesis are summarised as follows:

1. Development of a novel hybrid multi-agent based control architecture called CAROS for 

navigation of multiple autonomous mobile robots operating in an unknown and unstructured 

environment populated by static and/or dynamic obstacles
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The proposed hybrid control architecture is modular and draws its design from competitive 

tasks architecture, production rules architecture, connectionist architecture, dynamic system 

architecture, multi-agent architecture and subsumption architecture. A comparison between the 

proposed control architecture and several other control structures developed in the past decade 

for navigation of autonomous mobile robots was made. The comparison demonstrates that the 

CAROS control architecture offers several advantages over the others. The reasoning of the 

control architecture is both deliberative and reactive. The proposed reactive behaviours are 

modelled using fuzzy logic, neural networks and hybrid behavioural encoding incorporating 

stateflow-fuzzy logic and stateflow-neural networks. The deliberative system comprised of 

finite state machines. The processing can be achieved in a centralised and decentralised manner 

using the proposed controller-agent concept from the field of multi-agent systems. The 

framework of the control architecture is suitable for situated adaptation in single and multiple 

robot navigation.

2. Novel approach for identification of direction of moving obstacles (other robots) using 

finite state machines.

A novel method for identification of direction of moving objects (other robots) based on three 

sensory inputs using finite state machine was proposed. More specifically fifteen transitions 

associated with six states incorporating a Moore FSM were proposed. Every transition was 

assigned with a specific condition and action. Only three sensors are used to specify all 

transitions conditions. The specified transitions in conjunction with the associated conditions 

covers all the possible directions of the moving object around the robot's sensing area.

3. Novel approach for behavioural encoding using hybrid solutions such as stateflow-fuzzy 

and stateflow-neural for autonomous robot navigation.
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A new real-time dynamic obstacle avoidance method for autonomous mobile robot navigation 

has been developed. The proposed novel approach incorporates either stateflow-fuzzy or 

stateflow-neural behavioural encoding. The applicability and effectiveness of the proposed 

approaches were evaluated in an environment containing different configurations of dynamic 

obstacles. The mobile robot successfully adapted to the environmental conditions in the 

presence of moving obstacles (other robots). The approach is generic and can be easily extended 

to accommodate more complicated dynamic environments.

4. Proposed a design methodology for developing integrated solutions for autonomous mobile 

robotic systems and classification of the main design methodology (properties) of control 

systems architectures for autonomous mobile robots.

Six key issues, regarding the control architecture design of multiple autonomous mobile robots 

were proposed. These key issues include: centralised, decentralised or hybrid control, 

heterogeneous or homogeneous robots, co-operation with-or-without communication, (implicit 

or explicit communication), making agents (robots) work as a team, multiple mobile robots path 

planning, and learning. When comparison between different types of control architectures is 

undertaken, this comparison should be made based on a number of important properties. 

Classification among these properties was proposed including: modularity, robustness, fault- 

tolerant, distribution, reactivity, adaptability, planning, co-operation, easy of adaptation, 

uncertainty, optimal control, goal-oriented, learning and efficiency.

Less significance contributions are summarised as follows:

1. Literature survey on approaches/methods related to the development of intelligent control 

architectures for navigation of multiple autonomous mobile robots.
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More specifically the literature survey shows that intelligent control comprises three main 

approaches (methodologies), which are now widely accepted and established (fuzzy logic, 

neural networks and knowledge based systems). The use of these methodologies can be 

implemented to solve several problems in the development of intelligent control architectures 

for navigation of multiple autonomous mobile robots. The literature review has shown that 

fuzzy and neural approaches dominate the research community when mobile robot navigation is 

considered.

2. Modelling of M1ABOT V2 mobile robot. A generic approach for optimisation and 

identification of parameters of physical components (i.e moments of inertia) conducting 

experiments and using the non-linear control design tool.

The full non-linear dynamic model of the mobile robot was established for complete description 

of its system's dynamics. To improve the model accuracy a generic approach for optimisation 

and identification of parameters of physical components (i.e moments of inertia) conducting real 

experiments and using the non-linear control design tool was proposed. The robot model found 

to be very close to the real dynamics of the plant considered.

3. Comparison between PI, fuzzy and neural controllers based on their performance criteria 

(ISE, IAE and ITAE) and execution time. An algorithmic methodology for discovery of 

fuzzy/neural local models from observation data. Use of parametric robustness analysis 

approach for robust stability testing of closed-loop control system under uncertainty in robot 

dynamics (The approach has not been considered previously within the research community 

of autonomous mobile robots).

Comparison between PI, fuzzy and neural controllers was made. In particular the PI controller 

has the smallest ISE error of all controllers considered, whereas the fuzzy controller has the
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smallest IAE and ITAE error. The execution time of PI controller is considerable smaller 

compared to other speed controllers considered (three times faster than the neural controller and 

six times faster that the fuzzy controller). A design methodology for discovery of fuzzy-neural 

local models from observation data was proposed. Based on subtractive clustering a fuzzy logic 

local controller was identified using a PI controller as a teacher. To extend this design 

methodology a multilayer feedforward neural network with dynamical behaviour was developed 

based on supervised learning using, this time, a fuzzy logic model as a teacher. Finally, the 

parametric robustness analysis approach (Kharitonov's Theorem) was used for testing the 

stability of the closed-loop control system of the MIABOT V2 mobile robot under uncertainty 

in robot dynamics. This method, which proved to be easy and fast method to use has not been 

considered previously within the research community of autonomous mobile robots.

4. Identification of the relationship of the most important requirements/pDperties of control 

architecture versus the main control architecture specifications using the Quality Function 

Deployment (QFT) tool.

An analysis is presented based on the Quality Functional Deployment tool (QFD) for the 

identification of the relationship of the requirements/properties of control architecture versus the 

control architecture specifications. The analysis was based on fourteen requirements when 

design of control architecture is considered and the analysis presented clearly shows that the 

solution to the design and implementation of complex control systems for autonomous mobile 

robots is hybrid.

5. Modular approach for modelling three types of sensor and sensor sensitivity.

Three different types of sensor sensitivity (infrared, ultrasonic and no^hape) were evaluated 

according to the distance travelled and time taken for the each mobile robot to complete the
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mission. In all cases it was possible to navigate the mobile robot towards the target without any 

collision with the static objects. Infrared sensor sensitivity produced the lowest values for 

distance and time taken for the each robot to complete its mission. The approach is both 

modular and generic. New sensors or new sensor sensitivity can be easily added to different 

applications (different robot) and environments.

8.5 Suggestions for future work

After the completion of the research the results obtained open several possible avenues for 

future work. This work is summarised in the following.

In order to further improve navigation performance, the present study can be extended to 

implement a vision system for determining some sub-goals and building a local map. On-line 

learning also is an important issue to be considered as it has promising features for design and 

implementation of more flexible and adaptive systems. More specifically, automatic generation 

of behaviours is an area that has not been explored enough. Research could be focused not only 

on basic behaviours, but also on the process of developing complex emergent behaviours by 

learning. The concepts of basic and emergent behaviours are relative, because emergent 

behaviours can be fused recursively with other behaviours to produce new generations of 

emergent behaviours. A improvement will be to develop control architectures which are able to 

cope with this recursive evolution process.

Investigations into some adaptations in the proposed control architecture can be a potential area 

for further research. Instead of having a fixed hierarchy of priorities for behaviours, both 

variable and time varying priority schemes are certainly worthwhile for further investigation. 

Further research must be devoted to develop planners that work directly with a library of skills, 

instead of working with pre-programmed plan units. This library of skills should be dynamic 

and must allow the incorporation of new learned skills.
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In order to cope with real situations, dynamic objects should be detected and distinguish among 

static. Despite the work done on this topic, the problem of distinguishing between static and 

dynamic obstacles is still unsolved.

Design methodologies for agents and multi-agent systems are certainty becoming a research 

issue. The aim of a unique and generally agreed on definition of agents and multi-agent control 

architectures have the potential for further research on a single programming language to be 

used worldwide. Given this statement, maybe the important issue is not only to agree on a 

unique definition of agents and their internal structure, but also to develop uniform interfaces 

and communications standards that allow different and possibly heterogeneous agents to 

interact.

8-23



A
MIABOT V2 Mobile Robot

A.1 Introduction

The robots are manufactured by Merlin Systems Corporation Ltd (Merlin Systems Corporation, 

2002). Each robot is fully autonomous measuring (8cm x 8cm x 8cm). Commands can be sent 

to the robots from the host PC via a debug cable, but obviously for football match purposes the 

communications link is used to send complete strategic instructions to each robot. Each 

MIABOT package comes as a fully autonomous development robot supplied complete with 'C' 

compiler and ISP programmer.

A.2 Main features

The main structure of the robots are built around the RISC based Atmel (AT90S8515) CPU, of 

which some features are mentioned below, but full specifications can be found on the ATMEL 

website (Atmel, 2002).

- 4 MIPS operation.
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- 8K bytes flash programmable RAM.

- 512 bytes SRAM.

All software for the robots operation is stored in an onboard EPROM. 

The Robots other features include:

. - 2 re-chargeable NIMH battery packs.

- RF receive communications module (Frequency can be selected by exchanging between 418 

and433Mhz modules).

- Easy access modular style case. (For easy battery change etc.)

- On-board systems programmer (enables programs to be initially downloaded to the robots 

EPROM via the supplied cable).

- On-board dual channel H-Bridge: gives the ability to drive 2 DC motors in either direction.

- Drive train with achievable speeds of up to 1.2m/s (Each wheel having it's own encoder 

(opto-feedback ) for position and speed feedback).

A.3 Drive train

The drive train Figure A-l consists of two motors (DC 4.5 - 12V), produced by Swallow 

Systems Ltd (Swallow Systems, 2002), with worm gear drives to each wheel enabling accurate 

stop positions. The overall width of the drive train is approximately 80mm. The wheels are 

32mm in diameter and equipped with O-rings to reduce pitch slip. Each motor shaft is 

monitored via a combination of phototransistors and infrared LED's (Shaft Encoders), which 

provide feedback for the ATMEL microprocessor. The speed of the robots can also be
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controlled, using the shaft encoders (phototransistors) to interrupt the microprocessor. The 

microprocessor gathers all the information, and each motor is driven accordingly.

Figure A-l Drive train overview

A.4 DC motors

The DC motor Figure A-2 used in the drive train it is a Mabuchi RC-280SA-20120 motor 

giving 29g.cm torque at 6400 rpm taking 0.57A from a 6V supply at maximum efficiency. The 

stall torque from a 6V supply is 175g.cm at a current of 2.85A. This is a powerful beast. These 

motors are able to make the robot to achieve speeds over 1 m/s.

Figure A-2 MIABOT's DC motor overview
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A.5 MIABOT control board

The MIABOT control board is designed using the latest surface mount technology to create a 

compact feature packed general-purpose control board. The specifications of MIABOT's 

control board are listed in Table A-l. Figure A-3 shows an overview of the control board.

Feature Description

4 - Way Battery Connector Socket provided to run the robot via the onboard batteries or 

from another power source (such as a bench supply)

2 - Way Charger Socket When the switch is in the charge position power supplied to the 

charge socket will recharge the onboard batteries.

Opto Encoders Open collector opto inputs, which are connected, to interrupt 

capture pins on the MCU. These inputs are normally connected 

to the outputs from the drive train encoders.

LED1 & LED2 Status LED's, software programmable but by default used to 

indicate power on and activity on the RX line.

CPU Atmel AT90s8515 Microcontroller (MCU)

Motor Output 2 Channel DC motor outputs. 12v with max. (stall) current of 3 A 

per channel.

RX Module Plug n slot for wireless communications module. 

Specifications: 418Mhz or 413Mhz.
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TX Module

Programmer/Debugger/SPI

H-Bridge

Expansion Port

Switch

Optional plug in socket for wireless transmission modu 

Specifications: 418Mhz or 433Mhz. 

Note: The RX and TX unit must be on separate frequencies

both are used.

'pSJflwtfdMMk- •.-.*'

i • iii

le. 

if

Socket can be used for general purpose I/O (5) as well as 

programming, and debugging (bi-directional communications 

via cable) and SPI (Serial Peripheral Interface).

Power drive for the motors.

15 Way header for general purpose I/O (13).

On, Off or Charge

Table A-l Specifications of MIABOT's control board

Microcontroller 
ATMELAT90S8515 at 4 MHz

Programmer / Debug / SPI

Figure A-3 Control board overview
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A.6 The software

Each robot is supplied with the GNU 'C' compiler, download utility (DOS & Windows 95,98 

only), editor and other development tools. Basic (but extensible) motion control software is 

supplied with the robot. Corresponding sample code is provided to run on the PC to control the 

robot (QBASIC and Visual C++).

A.7 PC transmitter

Each robot can be driven via the debug cable or wireless communications. To communicate 

with the robot the PC Transmitter unit Figure A-4, which plugs into the 9-Way RS232 port is 

used. Specific transmitter frequency is required (418Mhz or 433Mhz) to match the RX module 

on the robot. A single PC transmitter can be used to communicate with multiple robots by 

sending out communications packets each with a unique ID. The software on each robot can be 

then tuned to only respond to commands with the correct ID. The commands are sent from the 

host computer with a protocol communication shown below:

Preamble Start byte Command Robot Id Data command End byte

Preamble: Used to synchronise the emitter and the transmitter

Start byte: Start

Command: Type of command (forward, stop, long curve, etc)

Robot Id: 0, 1, 2, 3 (0 to control all the robots)

Data command: Parameters of the command

End Byte End
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To simplify the transmission, the byte commands are coded in ASCII, for example '£' = 69 in 

decimal or 0100 0101 in binary. The usually commands used is shown below in Table A-2.

Preamble:

Start byte:

Command

Robot Id:

Left wheel

Speed

Distance

Distance

Direction

Right wheel

Speed

Distance

Distance

Direction

End Byte

ACSII

[

L

0, 1 ,2, 3

Oor 1

Oor 1

]

Decimal

000

091

108

048,049,050,051

0...255

0...255

0...255

048 or 049

0...255

0...255

0...255

048 or 049

093

Table A-2 Command coded

Note that distances for both wheels are coded with two bytes, 0...65536. When the data needs 

than a byte, it is real problem because they need to be discomposed and rebuilt. For
more

integer is simple but for float it is more complicated.
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Figure A-4 PC transmitter unit overview

A.8 References
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B
SIMULINK Block Diagrams

B.I Introduction

This appendix contains the main block diagrams that were designed in Simulink for the 

modelling and simulation of the CAROS control architecture described in this thesis.
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Figure B-1 Implementation of CAROS in MATLAB/Simulink-based simulator with one robot
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Figure B-3 Implementation of CAROS in MATLAB/Simulink-based simulator with two robots
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Figure B-4 Implementation of CAROS in MATLAB/Simulink-based simulator with three
robots
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Figure B-5 Implementation of CAROS in MATLAB/Simulink-based simulator with four robots
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Figure B-6 Implementation of CAROS in MATLAB/Simulink-based simulator with five robots
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Figure B-7 Gauges used to read sensor sensitivity, robot speed and both global and internal
states
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Figure B-8 Controller-agent.//«^_FP7
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Figure B-15 Modelling parameters for mobile robot sensors and environment
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Figure B-16 Global view of speed and orientation adaptive mechanism

Figure B-17 Global view of co-ordination between robot behaviours and action co-ordinator
mechanism
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Conventional Control Design

C.I The basic control system structure

A control system consists of subsystems and processes (plants) assembled for the main purpose 

to control the output of the process. In the simplest form a control system provides an output 

response for a given input as shown in Figure C-l.

uft)——————— *
Inout

Control 

System

y(t) ——————— ̂
Output

Figure C-l Input-output block diagram of a control system 

C.I.I Description of the input and output

In a general control system the input represents the desired response and the output is the actual 

response. Figure C-2 shows the input and output of a general control system. The transient 

response shown in Figure C-2 indicates a number of the most commonly used performance

C-l



Appendix C Conventional Control Design

criteria such as rise time, settling time, steady state, etc. (more details can be found in (Dutton e/ 

al, 1997)). It can be observed that mainly two factors make the output different from the input. 

The first factor is the instantaneous change of the input against the gradual change of output 

(transient response) and the second factor is the accuracy of the final transient response in 

respect with the input command (steady state error).

Figure C-2 Description of input output of a general control system

C.2 Linear and non-linear control systems

Systems with linear, time invariant (LTI) behaviour can be understood very well using 

frequency-domain techniques. Unfortunately many control systems include regions of non­ 

linear operation and have significant parameter variation. The definition of linear and non-linear 

control system is given in the following paragraphs (Ellis, 2000).

Definition C-l (Linear Time-Invariant System): Consider a system with an input r(t) and 

output c(t). The system is LTI if the following three criteria are satisfied. Homogeneity: If r(t)
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generates c(t), then kxr(t) generates kxc(t). Superposition: If rj(t) generates c,(t) and 

r2 (t) generates c 2 (t), then r,(t) + r2 (t) generates C!(t) + c 2 (t). Time invariance: If r(t) 

generates c(t), then r(t-i) generates c(t-i). Note, that the first and second criteria define 

linearity, whereas, the third defines the time invariance. Examples of linear1 system include 

addition, subtraction, scaling by a fixed constant, integration, differentiation, time delay and 

sampling.

Definition C-2 (Non-Linear Time-Invariant System): Consider a system with an input r(t) and 

output c(t). If the system violates one or more of the three criteria listed in Definition 3-1 then 

the system is said to be non-linear time-invariant (Non-LTI). The most common non-linear 

behaviours are gains that vary as a function of operating conditions.

C.3 PID Control

PID stands for a Proportional (present control error), Integral (past control error) and Derivative 

(future control error) control, and, is the most commonly used standard form of dynamic 

compensation in most practical applications such as process control, motor drives, magnetic and 

optic memories, automotive, flight control, instrumentation etc.

Despite a lot of research and the huge number of different solutions proposed, different sources 

estimate the share taken by PID controllers is between 90% and 99% (Astrom and Hagglund, 

2001). Some of the reasons include (Reznik et al, 2000): PID controllers are robust and simple 

to design. There exists a clear relationship between PID and system response parameters. As a 

PID controller has only three terms, plant operators have a deep knowledge about the influence 

of these parameters and the specified response characteristics on each other. Many PID tuning 

techniques have been elaborated during recent decades, which facilitates the operator's task.

No practical control system is completely linear and most vary over time.
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PID control could benefit from the advances in technology due to their flexibility (tuning and 

self-tuning).

PID controllers (Figure C-3) are derived from the best properties of PD and PI controllers. The 

proportional controls action is employed to reduce the settling time and the rise time of the plant 

response during transient conditions, the derivative control action is employed to reduce the 

overshoot and the oscillations of the plant response during transient conditions, and the integral 

control action is employed to eliminate the steady state error during steady state conditions.

Generally, the PID control law can be formulated according to:

(C.I)

Where K p , Tj and Td are proportional gain, integral time and derivative time respectively. If 

an instantaneous error signal e(t) is the input to the PID controller, then the output u(t) is the 

calculated control effort from the controller and is given, in time domain, by:

(C.2)

Another common form of the PID control action is a rearrangement of (C.I) to:

(C.3)
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©-
e(s)

Proportional

Integral

D>->

u(s)

C> Derivative

Figure C-3 Conventional PID Controller

As mentioned earlier PID controllers are derived from PD and PI controllers. Consequently PD 

controller can be formulated as:

(C.4)

The output signal of this controller is equal to the sum of two signals: the signal obtained by 

multiplying the input signal by a constant gain K p and the signal obtained by differentiating

and multiplying the input signal by Td . Similarly to the PD controller, the PI controller 

produces as its output a weighed sum of the input signal and its integral. This controller is 

formulated as follows:

u(t)=Kf (C.5)

C-5



Appendix C______________________________^__ ^Conventional Control Design
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D
Constrained Optimisation 
using the non-linear control 
design tool

D.I Introduction

In this appendix an overview of constrained optimisation and the non-linear control design tool 

(The Math Works, 1997) is presented. This methodology is used both in chapters four and five 

for tuning/optimisation of physical and control parameters.

D.2 Overview

can 

or

Optimisation techniques are used to find a set of design parameters, x = {x 1 ,x 2 ,...,x n }, that 

be in some way be defined as optimal. In a simple case this may be the minimisation 

maximisation of some system characteristic, dependent on x. In a more advanced formulation 

the objective function, f (x), to be minimised or maximised, may be subject to constraints in the 

form of equality constraints, Cj(x) = 0 (i = l,...,p e ), inequality constraints,
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(i = pe +lv.,p), and/or parameter bounds, x,,xu . A general optimisation 

problem is given as follows:

minimise f(x)
(D.I) 

subject to: Cj(x) = 0 i = l,...,pe , Cj(x)<0 i = pe +l,...,p, x, <x<x u

Where x is the vector of design parameters (x e 9?"), f(x) is the objective function that returns 

a scalar value (f (x): 5R n -> <R ), and the vector function (C(x)) returns the values of the equality

and inequality constraints evaluated at x(c(x):5R" -»9? p ). Although an efficient and accurate 

solution to the above problem depends on the number of constraints and design variables, the 

characteristics of the objective function and constraints are also associated with efficient and 

accurate solution. The optimisation problem is known as Linear Programming (LP) problem if 

both the objective function and the constraints are linear functions of the design variable. 

However, if the objective function and the constraints are non-linear functions of the design 

variable then the optimisation problem is known as Non-linear Programming (NP) problem.

D.3 Constrained optimisation

In constrained optimisation, the general aim is to transform the problem into an easier 

subproblem that can then be solved and used as the basis of an iterative process. Early methods 

were based on the translation of the constrained problem to a basic unconstrained problem by 

using a penalty function. In this way the constrained problem is solved using a sequence of 

parameterised unconstrained optimisations. These methods are now considered relatively 

inefficient and have been replaced by methods that have focused on the of the Kuhn-Tucker 

(KT) equations which are necessary conditions for optimality for a constrained optimisation 

problem (Kuhn and Tucker, 1951). In other words if f(x) and C;(x), i = l,...,p are convex
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functions, then the KT equations are both necessary and sufficient for a global solution point. 

The KT equations for the optimisation problem in (D.I) can be expressed as follows:

(D.2)

(D.3) 

(D.4)

Equation (D.2) describes a cancelling of the gradients between the objective function and the 

active constraints at the solution point. For the gradients to be cancelled, Lagrange Multipliers 

(X.j, i = l,...,p) are necessary to balance the deviations in magnitude of the objective function 

and constraint gradients. Equations (D.3) and (D.4) shows that constraints that are not active are 

given Lagrange multipliers equal to zero, since only active constraints are included in this 

cancelling operation. The solution of the KT equations forms the basis to many non-linear 

programming algorithms in which they attempt to compute directly the Lagrange multipliers. 

Constrained quasi-Newton methods guarantee linear convergence by accumulating second order 

information regarding the KT equations using a quasi-Newton updating procedure. These 

methods are commonly referred to as Sequential Quadratic Programming (SQP) methods since 

a QP subproblem is solved at each major iteration.

D.4 Sequential Quadratic Programming (SQP)

Sequential quadratic programming (SQP) methods represent state of the art in non-linear 

programming. Historically the original SQP method due to (Wilson, 1963) generates a sequence 

of directions, each of which is the minimiser to a quadratic programming (QP) subproblem. 

Based on the work of (Harm, 1977), SQP method allows you to closely mimic Newton's method 

for constrained optimisation just as is done for unconstrained optimisation. At each major
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iteration an approximation is made of the Hessian of the Lagrange function using a quasi- 

Newton updating method. This idea was first proposed by(Powell, 1983). Then QP subproblem 

is generated whose solution is used to form a search direction for a line search procedure. More 

information and details about SQP can be found in (Gill et al, 1981), (Powell, 1983), (Fletcher, 

1987), (Goldsmith, 1999). To demonstrate the method the optimisation problan in (D.I) is 

taken as example. The main idea is the formulation of a QP subproblem based on a quadratic 

approximation of the Lagrangian function as follows (note that equation (D.I) is simplified by 

assuming that bound constraints have been expressed as inequality constraints):

The QP subproblem is obtained by linearising the non-linear constraints.

D.5 Solving the optimisation problem using the non-linear control design tool

As mentioned in the introduction of this appendix the non-linear control design tool (NCD) 

based on constrained optimisation is used in chapters four and five for tuning/optimisation of 

both physical and control parameters. NCD uses time domain constraint bounds to represent 

lower and upper bounds on response signals. When the optimisation procedure starts NCD 

transforms constraints and simulated system output into an optimisation problem in the 

following form:

minimise y
x,y (D.6) 

subject to: g(x)- coy < 0, x, < x < \ u
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Where variable x is a vectorisation of the tuneable variables, while X| and xu are 

vectorisations of the lower and upper bounds on the tuneable variables. The vector g(x) is a 

vectorisation of the constraint bound error and co is a vectorisation of weightings on the 

constraints. The scalar y imposes an element of slackness into a problem which otherwise 

imposes that the goals be rigidly met.

The constrained optimisation problem is solved by a SQP and quasi-Newton techniques. The 

principal idea behind this optimisation is the minimisation of the maximum constraint violation 

(or minimisation of the maximum weighted constrained error).

Figure D-l shows an overview of the constraint window used in NCD. The set-up for upper and 

lower bounds is defined as follows: For upper bound constraints, the difference between the 

constraint boundary and the simulated error defines the constraint error. The constraint error for 

lower bound constraints is defined as the difference between the simulated error and the 

constraint boundary. The subroutine of the SQP method solves a Quadratic Programming (QP) 

problem at each iteration. Then, the upgrade and estimate of the Hessian of the Lagrangian is 

achieved. At this stage a line search method is required in which a merit function is used to 

solve the problem. Finally, the implementation of the SQP subproblem attempts to satisfy the 

Kuhn-Tucker equations, which are necessary conditions for optimality of the constrained 

optimisation problem.

More details about the non-linear control design tool can be found in (The Math Works, 1997)
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Figure D-l Constraint window
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E
Robust Stability Analysis for 
Interval Polynomials Based 
on Parametric Approach

E.I Introduction

This appendix presents definitions and theorems (Barmish, 1994) and (Bhattacharyya et al, 

1995) related to robust stability testing of the closed-loop control system of the MIABOT V2 

presented in chapter five.

E.2 Description of uncertain structure

Definition E-l (Uncertainty Bounding Set): The uncertainty bounding set Q can be described

as follows:

for
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Note that q.' s and therefore Q need not be connected. However, connected sets will be used 

since much of the results in the literature apply only to connected sets. This assumption is not 

restrictive because most of the physical parameters (such as viscous friction coefficients, 

material properties, lengths, etc) entering the uncertainty vector vary continuously over a 

bounded interval of the real line. Frequently, each element q. of q is described by its lower

and upper bounds q- and q +, respectively. Then the uncertainty set is the box:

Q = for i = l,2,...,l (E.2)

Definition E-2 (Family): An uncertain function together with its uncertainty bounding set is 

called & family i.e.

/tQ)={f(.,q)|q 6 Q}

For example, an uncertain plant G(s,q) and its uncertainty bounding set Q form a family of 

plants denoted by G(s, Q) = {G(S, q)(q e Q} • Similarly, it can be written n(s, Q) = {N(S, q)q e Q} 

for the family of numerators and rf(s, Q) = {D(S, q)q e Q} for the family of denominators.

Definition E-3 (Independent Uncertainty Structure): An uncertain polynomial,

i=0

is said to have an independent uncertainty structure if each component q . of q enters into only 

one coefficient.
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Definition E-4 (Affme Linear Uncertainty Structure): An uncertain polynomial p(s>q) is said 

to have an affine linear uncertainty structure if each coefficient function a . (q) is of the form:

(E.5)

where a is a column vector and p. is a scalar.

Definition E-5 (Multilinear Uncertainty Structure): An uncertain polynomial p(s,q) >s said to 

have a multilinear uncertainty structure if each function a- (q) ' s a multilinear function in the 

components of « . That is, if all but one uncertain parameter is kept constant, then a . (q\ is 

affine linear in the remaining component of q .

Definition E-6 (Polynomic Uncertainty Structure): An uncertain polynomial p(s,q) is said to 

have a polynomic uncertainty structure if each coefficient function a,(q) 's a multivariable 

polynomial in the components of q .

E.3 Value sets and zero exclusion condition

Definition E-7 (Value Set): The value set is the subset of the complex plane consisting of all

values, which can be assumed by p(jco,q) as q ranges over Q (o> is a fixed frequency).

Theorem E-l (Zero Exclusion Condition): A polynomial family p(s,Q] having invariant 

degree with associated uncertainty bounding set Q , which is pathwise connected, continuous 

coefficient functions a . (q) for j = 0,l,2,...,n and at least one stable member p (s>q *) is robustly
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stable if and only if the origin of the complex plane is excluded from the value set P(h),Q} at 

all nonnegative frequencies i.e. o e p(jco,q) f°r a'l frequencies oo ^ 0 a°d q e Q •

Definition E-8 (Robust Stability): An uncertain system with the characteristic polynomial 

p(s,q) is robustly stable if and only if p(Sj q) is stable for all qe Q, where Q is the 

uncertainty bounding set.

Definition E-9 (Interval Polynomial Family): A family of polynomials /?(SJ Q)= (p(s,q)q e Q} 

is said to be an interval polynomial family if p(s,q) has an independent uncertainty structure, 

each coefficient depends continuously on q and the uncertainty bounding set Q is a 

n _ dimensional box. For brevity, is also referred to P(s, Q) as an interval polynomial. 

Similarly, a family of uncertain plants £(S,Q) = |G(s,q) = N(s,q)/D(s,q)(q eQJ is said to be 

an interval plant family if both N(s,q) and D(s,q) are interval polynomials.

E.4 Kharitonov's theorem

Definition E-10 (Kharitonov's Polynomials): Associated with the interval polynomial family:

sQ (K6)
i=o J

are four fixed Kharitonov's polynomials formulated as follows:

+ a 3 s

K 2 (s)=aJ +af
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K 3 (s)=ao +ar (E.9) 

(E.10)

Theorem E-2 (Kharitonov's Theorem): An interval polynomial family P(S,Q) with invariant 

degree is robustly stable if and only if its four Kharitonov's polynomials are stable.

Definition E-ll (Kharitonov's Rectangle): Associated with the four Kharitonov's polynomials 

Kj(s), K 2 (s), K 3 (s) and K 4 (s) is a rectangle (the Kharitonov's rectangle) whose four 

vertices are obtained by evaluating the four Kharitonov's polynomials at s = jo>0 . Therefore 

given an interval polynomial family P(s, Q) and a fixed frequency co = o>0 , the value set 

^(j^O'Q) i§ a rectangle whose vertices are given by K^JCOQ) for i = 1,2,3,4. Figure E-l 

shows a generic Kharitonov rectangle. Note that the size and the position of the Kharitonov 

rectangle change with o), while its sides always remain parallel to the respective real and 

imaginary axes. Therefore, the frequancy is sweeped over a certain polynomial, it can be 

observed the motion of the Kharitonov rectangle.

Im p(s}- plane

Re

Figure E-l The Kharitonov's rectangular for co 0 > 0
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E.5 Robust stability testing via graphics

The Kharitonov's rectangle provides a very handy graphical means to test the robust stability of 

physical systems. Plots of successive Kharitonov's rectangles over the frequency interval 

co e [0,oo) can produce observation of their motion in the complex plane. This plot together with 

the following theorem enables checking the stability of interval polynomials.

Theorem E-3 (Zero Exclusion for Interval Families): An interval polynomial family

/'(s,Q)= (p(s,q)jq eQJ having invariant degree and at least one stable member p(s,q*j is 

robustly stable if and only if the origin of the complex plane is excluded from the Kharitonov's 

rectangle at all nonnegative frequencies i.e. 0 £ /7{jro 0 , Q) for all frequencies co > 0. In practice, 

there is not need to plot the Kharitonov's rectangles for all co > 0. A cut-off frequency co c > 0 

can be obtained such that 0 e P(ja) 0 , Q) for all co > co c . One such estimate, suggested from the 

classical bounds on the roots of a polynomial, provides an appropriate cut-off frequency as 

given by:

for the interval polynomial p(s,q) with q~ > 0 (n is the order of the polynomial). Instead of 

generating two-dimensional Kharitonov's rectangles, examination of the plot of the scalar 

function H(CO) (Frequency Sweeping Function) is determine if the family of polynomials P is 

robustly stable.
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Theorem E-4 (Frequency Sweeping Function for Robust Stability): Let P be an interval 

polynomial family with interval degree, at least one stable member and associated Kharitonov's 

polynomials Kj(s), K 2 (s), K 3 (s) and K 4 (s). Then with,

it follows that P is robustly stable if and only ifH(eo) > 0 for all frequencies o> > 0.
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F.I Introduction

In this appendix a training algorithm is presented to show how to choose the weights of the 

multilayer feedforward neural network. The neural network learns to associates a given output 

with a given input by adapting its weights. For this purpose a steepest descent algorithm for 

minimising a non-linear function is used. This algorithm for neural networks is called 

backpropagation. Description of the backpropagation algorithm can be also found in the 

contributions of (Kosko, 1992), (Jangetal, 1997), (Picton, 1998) and (Haykin, 1999).

F.I.I Error definitions

To describe the training the error for a network layer (including the output layer) with n neurons 

is first defined as follows:
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E = (F.I)

If x is the given output vector and x is the actual output vector the output error e is a function 

of the input data and the weight matrix:

(F.2)

This is a non-linear function in weight matrix W, due to the non-linear transfer function. The 

training is a problem of minimising this non-linear function that also is called the loss function. 

The error of the hidden neurons is defined as follows:

(F.3)

The function sec h (x) is the hyperbolic secant that is the derivate of the hyperbolic tangent 

sigmoid (tansig) function. Cj is the error for neuron i and u is the output of the summing 

junction of neuron i before the application of the tansig function,

u = (F.4)
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F.I.2 Backpropagation to update the parameters

To demonstrate the training of a network using backpropagation the following example is used. 

Assume that the neural network has an input layer, a hidden layer and an output layer with n 

number of neurons in the whole network. Further assume that the weights are collected in the 

matrix W and the upgrading rule is:

(F.5)

The initial value of weights is randomly guessed. It is important this value is not zero (there is a 

risk that the neuron will remain at the same state). Then an input is applied to the neural 

network and the outputs of the summing junctions are changing according to the upgrade rule. 

The error is then calculated for the output layer and the weights are modified to minimise the 

error according to the following equation:

(F.6)

Where the gain t^ is called the learning rate. A small value (e.g. 0.001) might cause a too slow 

change to the weights and a big value (e.g. 10) might change the weights too much.

With the new weights it is possible to calculate the errors for the hidden neurons according to 

Equation (F.5), and the weights between the input layer and the hidden layer is updated1 . Then 

another input-output pair is applied to the neural network and the same procedure is repeated 

once more.

1 In the case where several hidden layers exist the updating procedure would have been done one layer at 

the time starting with the one closest to the output
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This procedure to adapt the weights once according to a series of input-output pairs is called an 

epoch. The training is repeated through several epochs to make the weights better and better. It 

is not known hoe many input-output pairs it is possible to show to a neural network, but if it 

seems impossible to train the network to sufficient small errors, it might be because of a too 

small number of neurons. Also it is not known how many input-output pairs it is needed to train 

a neural network sufficiently.

Finally one way to sum up the backpropagation algorithm is as follows:

dE (F.7)
Sw nj

Where Aw ni is the change of the weights, —— is the gradient vector of the update functions

and t| is the learning rate.

F.1.3 The Levenberg-Marquardt algorithm

In order to avoid the computation of the second derivate with the backpropagation algorithm the 

Levenberg-Marquardt algorithm approximates the Hessian matrix by:

and the gradient can be computed as:

VE = J T e (F.9)
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Where J is the Jacobian matrix, which contains of the derivatives of the neural network errors 

with respect to the weights. The Jacobian matrix is much less complex to compute than the 

Hessian matrix. The update is performed then as follows:

Where \i is a parameter that is decreased at every successful iteration. It is only increased when 

the calculated change would increase the loss function. Another important aspect of p. is that it 

makes sure that the matrix has an inverse. The size of the Jacobian matrix is Q x n , where Q is 

the number of training sets and n is the number of weights and biases in the neural network.
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ROBUST STABILITY OF AN AUTONOMOUS MOBILE ROBOT 
BASED ON A PARAMETRIC APPROACH

A. Mouzakitis and G. N. Roberts

Mechatronics Research Centre
University of Wales College, Newport

Allt-yr-yn Campus, P.O. Box 180, NP20 5XRNewport,
United Kingdom

Tel: +44(0) 1633 432487, Fax: +44(0) 1633 432442. 
Email: alexandros. mouzakitis@newport. ac. uk

Abstract: In this paper the robust stability of an autonomous mobile robot based on a 
parametric approach is presented. The closed-loop control consists of Multi-Input / Multi- 
Output (MIMO) uncertain plant (mobile robot) and a MIMO Proportional Integral (PI) 
controller. Using Kharitonov's Theorem and Zero Exclusion Condition the closed-loop 
system is proved to be robustly stable in the presence of parameter variations or the 
system dynamics which are sensitive with respect to these parameters (Uncertainty). 
Simulation results are presented to demonstrate the robust analysis and to prove the 
robust stability of the closed-loop system. Copyright © 2002 IF AC

Keywords: Autonomous mobile robots, MIMO, Uncertainty, Interval polynomials, 
Robust control, Robust stability, Robust analysis.

1. INTRODUCTION

Almost all-dynamic systems depend on varying or 
uncertain parameters and this is certainty true for 
small mobile robots. For instance, consider the 
velocity of a mobile robot (i.e. due to the battery 
variations), or the mass of a mobile robot (i.e. adding 
or removing components) all these parameters may 
vary more or less significantly within certain bounds 
and they influence the system dynamics. Traditional 
control design approaches consider a fixed operating 
point in which the controller (compensator) is robust 
enough to stabilise the plant for different operating 
conditions. These approaches produce good results if 
the parameter variations are small or the system 
dynamics are not too sensitive with respect to these 
parameters. For significant (large) parameter 
variations these control design methods reach 
their performance limits. Robust control theory

based on interval polynomials is an effective 
approach when considering plant uncertainty. The 
interval polynomial problem was first posed by 
Faedo (1953) who attempted to solve it using the 
Routh-Hurwitz conditions. Kharitonov (1978) gave 
the complete solution with his theorem for real 
polynomials, which then he extended to the complex 
case. Since then many papers have been published 
based on parametric approach regarding robust 
stability of uncertain plants (Siljak, 1989; 
Kontogiannis and Munro, 1996).

The main objective of this paper is to show that the 
closed-loop system (mobile robot and controller) is 
robustly stable to varying or uncertain parameters. 
The parametric approach based on interval 
polynomials using Kharitonov theorem was chosen 
due to its simplicity and its suitability when 
considering uncertainty of interval polynomials.
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This paper is organised into 5 sections. The control of 
the MIABOT V2 mobile robot is described in section 
2. Section 3 presents the robust stability analysis for 
interval polynomials together with a number of 
simulations to verify the robust stability of the 
closed-loop system. Some discussions of the work 
are given in section 4. Finally, section 5 contains the 
conclusions of the work presented.

2. CONTROL OF MIABOT V2 MOBILE ROBOT

MIABOT V2 mobile robots shown in Fig 1 are a 
small sized (8cm3), two-wheeled autonomous mobile 
robots, which have the ability to achieve speeds up to 
l-1.5m/sec by driving each wheel independently (two 
DC motors). A Multi-Input / Multi-Output (MIMO) 
Proportional Integral (PI) controller has been 
designed for accurate speed control.

Fig 2 shows the overall system structure of the 
closed-loop control. The open-loop robot model
G(s) consists of two inputs, and two outputs. The 
inputs are left and right voltages of the left and right 
wheel respectively. Outputs are the speed of the left 
and right wheel. The second-order dynamic model of 
the mobile robot is described in the following 
transfer function matrix (TFM) form:

G(s) =

10.645 + 554.6 2.245s + 25.42
s 2 + 1085 + 2835 
2.2455 + 25.42

5 2 +1085+ 2835 
10.645 + 554.6

+1085 + 2835 5 2 +1085 + 2835.

(1)

Similarly the MIMO PI controller Gc (s) is described 
in the following TFM form:

1.3545 + 103 -1.5775-25.19

-1.5775-25.19 1.3545 + 103 (2)

•»*, The Uncertain Plant>-» G.W ^ G(5)

k • -
MIMO Pl-conlroller MIABOT V2 

Mobile Robot

J

Fig. 2. Closed-loop system.

Equations (3a, 3b, 3c and 3d) describe the closed- 
loop system illustrated in Fig 2.

10.87s3 +1679s2 +7.806e004s + 1.079eOQ6 
s" +129.7s3 +6265s2 + 1.345e005s + 1.079e006 "

-13.75s3 -877.2s 2 -1.135e004s-0.01564 
s 4 +129.7S 3 +6265s2 + 1.345e005s + 1.079e006 "

t/^W =

-13.75s3 -877.2s2 -1.13Se004s-0.01564 
s" +129.7s3 +6265s2 + 1.345e0055 + 1.079e006

— (s) =

10.87 s 3 +1679 s 2 + 7.806e004 s +1.079e006 
s" +129.7 s 3 + 6265 s 2 + 1.345e005j + 1.079e006

(3a)

(3b)

(3c)
=«„«

(3d)

Fig 3 shows the transfer function description 
expanded for the MIMO system in Fig 2.

Fig. 1. MIABOT V2 mobile robots.

Fig. 3. The transfer function matrix description 
expanded for the 2x2 system (plant and 
controller)

The characteristic equation given in Equation (4) will 
be used for the testing of the robust stability of the 
closed-loop system given Fig 2.

5" +129.75 3 +62655 2 +1345005 + 1079000 (4)
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3. ROBUST STABILITY ANALYSIS FOR 
INTERVAL POLYNOMIALS

In this section definitions and theorems related to 
robust stability analysis for interval polynomials are 
given (Bhattacharyya, et al., 1995). First the 
description of uncertainty structure is given through 
several definitions following by both definitions and 
theorems regarding value sets and zero exclusion 
condition. Then the Kharitonov's theorem (Barmish, 
1994) is described in brief together with results of the 
application (closed-loop control). Finally, the robust 
stability of the closed-loop control is demonstrated 
using graphical techniques.

3.1 Description of uncertainty structure.

Definition 1 (Uncertainty Bounding Set): The 
uncertainty bounding set Q is the set

for (5)

Note that qt 's and therefore Q need not be 
connected. However, connected sets will be used 
since much of the results in literature apply only to 
connected sets. This assumption is not restrictive 
because most of the physical parameters (such as 
viscous friction coefficients, material properties, 
lengths, etc) entering the uncertainty vector vary 
continuously over a bounded interval of the real line.

Frequently, each element qf of q is described by its

lower and upper bounds q~ and q* , respectively. 
Then the uncertainty set is the boy.

fi= for '(6)

Definition 2 (Family): An uncertain function together 
with its uncertainty bounding set is called a family
.e.

(7)

For example, an uncertain plant G(s,q) and its 
uncertainty bounding set Q form a family of plants 

denoted by G(s,Q)= jc?(j,q)|q e £?}• Similarly, it can 

be written n(s,Q)= JA^qjjq e g} for the family of 

numerators and d(s,Q)= {D(s,q]qeQ\ for the 
family of denominators.

Definition 3 (Independent Uncertainty Structure): An 
uncertain polynomial

(8)

is said to have an independent uncertainty structure if 
each component q, of q enters into only one 
coefficient.

Definition 4 (Affine Linear Uncertainty Structure): 
An uncertain polynomial p(s,q) is said to have an 
affine linear uncertainty structure if each coefficient 
function a,.(q) is of the form

(9)

where a, is a column vector and /?, is a scalar

Definition 5 (Multilinear Uncertainty Structure): An 
uncertain polynomial p(s,q) is said to have a 
multilinear uncertainty structure if each function 
a,(q) is a multilinear function in the components of 
q . That is, if all but one uncertain parameter is kept 
constant, then a,.(q) is affine linear in the remaining 
component of q .

Definition 6 (Polynomic Uncertainty Structure): An 
uncertain polynomial p(s,q) is said to have a 
polynomic uncertainty structure if each coefficient 
function a,(q) is a multivariable polynomial in the 
components of q .

3. 2 Value sets and zero exclusion condition.

Definition 7 (Value Set): The value set is the subset 
of the complex plane consisting of all values which 
can be assumed by p(ja>,q) as q ranges over Q 
( co is a fixed frequency).

Theorem 1 (Zero Exclusion Condition): A 
polynomial family P(s,Q) having invariant degree 
with associated uncertainty bounding set Q , which is 
pathwise connected, continuous coefficient functions 
<z,(q) for i = 0,1,2,..., n and at least one stable

member p(s,q') is robustly stable if and only if the 
origin of the complex plane is excluded from the 
value set P{jco,Q) at all nonnegative frequencies i.e.

for all frequencies a> > 0 and q e Q .

Definition ^(Robust Stability): An uncertain system 
with the characteristic polynomial p(s,q) is robustly 
stable if and only if p(s,q) is stable for all q e Q , 
where Q is the uncertainty bounding set.
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Definition 9 (Interval Polynomial Family): A family 
of polynomials P(s,Q)= {p(s,q)q e Q} is said to be 
an interval polynomial family if p(s,q) has an 
independent uncertainty structure, each coefficient 
depends continuously on q and the uncertainty 
bounding set Q is a n - dimensional box.

For brevity, is also referred to P(s,Q) as an interval 
polynomial. Similarly, a family of uncertain plants 
G(s,Q)=fc(S,q)=N(s,q)/D(s,q]qzQ} is said to 
be an interval plant family if both N(s,q) and 
D(s,q) are interval polynomials.

3.3 Kharitonov's theorem.

Definition 10 (Kharitonov Polynomials): Associated 
with the interval polynomial family

are four fixed Kharitonov polynomials

+ a, s }

(11)

(12)

(13)

(14)

Theorem 2 (Kharitonov's Theorem): An interval 
polynomial family P(S,Q) with invariant degree is 
robustly stable if and only if its four Kharitonov 
polynomials are stable.

Definition 11 (Kharitonov Rectangle): Associated 
with the four Kharitonov polynomials K } (s) , K2 (s) , 
KI(S) and K4 (s) is a rectangle (the Kharitonov 
rectangle) whose four vertices are obtained by 
evaluating the four Kharitonov polynomials at 
s = jcoQ . Therefore given an interval polynomial 
family P(s,Q) and a fixed frequency (O = co0 , the 
value set P(jco^,Q) is a rectangle whose vertices are 
given by Kt (jcoQ ) for z = 1,2,3,4 .

Im p(s)- plane

Re

Fig. 4 shows a generic Kharitonov rectangle. Note 
that the size and the position of the Kharitonov 
rectangle change with to, while its sides always 
remain parallel to the respective real and imaginary 
axes. Therefore, as we sweep the frequancy over a 
certain polynomial, we can observe the motion of the 
Kharitonov rectangle.

3.4 The application (robust stability of mobile robot)

According to the definitions and theorems from 
subsection 3. 1, 3.2 and 3.3 the robust stability of the 
closed-loop system of Equation (4) can be proved. 
Equation (4) can be written as interval polynomial in 
the following form:

p(s,q)=q4s 4 +q3s3 +q2s (15)

where

q = [94. <?3><72><7i,9o] (16) 

is the vector of uncertain parameters, and assume that

q, e [1,2] , q, e [123.2,136.2], q2 e [5951,6579] , 
9, e [127780,141230], q0 e [l 025 100,1133000]

then the uncertainty bounding set (Definition 1) is

| ke[l025100J133000], ?1 e[l27780,14123oU 
~ J192 e [5951,65791ft e [l 23.2,1 36.21 ?4 E [l,2] J ^

The above interval polynomial family is denoted by 
writing an interval polynomial family of the form:

•,q)= [l,2]s 4 + [l23.2,136.2]j 3 +[5951,6579>2 (lg) 
+ [l27780,141230]s + [l 025100,1133000]

where 0

interval polynomial family P(s,Q) has invariant 
degree.

From Definition 10 the four fixed Kharitonov 
polynomials are derived as follows:

K} (s)=s 4 +I36.2s 3 + 6579s 2 +127780^ + 1025100 (19)

Fig. 4. The Kharitonov rectangle for ca0 > 0 .

/f3 (s) = 2s 4 + 136.2s 3 +595Is 2 + 127780s+ 1133000 (21) 

K4(s) = s4 + 123.2x3 + 6579s2 +1412305 +1025100 (22)

Using Routh criterion it is easy to verify that all four 
Kharitonov polynomials are stable (Routh column is 
positive in all cases). Hence it can be concluded that 
the closed-loop control system is robustly stable. The 
same conclusions can be drawn using the Zero 
Exclusion Condition in subsection 3.5 below.
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5.5 Robust stability testing via graphics.

The Kharitonov rectangle provides a very handy 
graphical means to test the robust stability of physical 
systems. Plots of successive Kharitonov rectangles 
over the frequency interval we[o,oo), can produce 
observation of their motion in the complex plane. 
This plot together with the following theorem enables 
checking the stability of interval polynomials.

Theorem 3 (Zero Exclusion for Interval Families): 
An interval polynomial family
P(s,Q)= \p(s,qjft e Q\ having invariant degree and

at least one stable member p(s,q') is robustly stable 
if and only if the origin of the complex plane is 
excluded from the Kharitonov rectangle at all 
nonnegative frequencies i.e. QeP(ja>0 ,Q) for all 
frequencies o > 0.

hi practice, there is not need to plot the Kharitonov 
rectangles for all co > 0 . A cut-off frequency <oc > 0 
can be obtained such that QeP(ja>0 ,Q) for all 
& > (Oc . One such estimate, suggested from the 
classical bounds on the roots of a polynomial, 
provides an appropriate cut-off frequency as given by

=1 + (23)

for the interval polynomial p(s,q) with q~n >0 (« 
is the order of the polynomial).

Instead of generating two-dimensional Kharitonov 
rectangles, examination of the plot of the scalar 
function H(CO) (Frequency Sweeping Function) is 
determine if the family of polynomials P is robustly 
stable.

Theorem 4 (Frequency Sweeping Function for 
Robust Stability): Let P be an interval polynomial 
family with interval degree, at least one stable 
member and associated Kharitonov polynomials 
K} (s), K2 (s), Kj(s) and K,(s). Then with

maxi T, /•. \ , v (• \ [lmK 3 (jco),-ImK 4 (j(o)

it follows that P is robustly stable if and only 
if H((O) > 0 for all frequencies co > 0 .

3.6 Verification of the closed-loop robust stability

To verify that the closed loop control system is 
robustly stable further testing using graphics is 
performed using the Theorem 3 and 4. The 
characteristic equation of the closed-loop system is

given in Equation (4). Equations (15) and (16) both 
provide the uncertainty vector q and the uncertainty 
bounding set Q. It was already shown that the 
interval polynomial family P(s,Q) has invariant 
degree. In accordance with Theorem 3, the first step 
in the graphical test for robust stability requires that 
at least one polynomial in P(s,Q) that is stable. 
Using the midpoint of each interval from Equation 
(17) q* is obtained as follows:

q* = (1.5,129.7,6265,134505,1079050) (25)

then

p(s,q*)=1.5s" +129.7s 3 +6265s 2 +134505s 
+1079050

(26)

Using the Routh criterion it is easy to verify that
p(s,q) is stable. The cut-off frequency can be 
calculated from Equation (22) as follows:

maxjl 133000,141230,6579,136.2} wc -\ ——————————j (2?)

= U33QOlrad/s

The Kharitonov rectangles can be plotted to verify 
the stability of the closed loop system for frequency 
range co e[0,l 13300 fyad I s . For more convenient 
frequency range co e[0,100]rae? / £ plot is shown in 
order the zero point in the graph to be visible. Fig 5 
shows the Kharitonov rectangles for the closed-loop 
system. Fig 6 shows the plot of the frequency 
sweeping function ff(ct>) .

Since the origin is excluded from the Kharitonov 
rectangles (Fig 5) it is concluded that the closed-loop 
control system is robustly stable. The same 
conclusion can be obtained from Fig 6 because it can 
be observed that the frequency sweeping function 
H(CO) is positive for all co e [o,100]ra// s .

Max. Freq. (r/s) = 100

Fig. 5. Kharitonov rectangles for the controlled 
closed-loop control system.
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„ »1°' Frequency Testing of Robust Stability

10 20 30 40 50 60 70 80 90 100 
Frequency (r/s)

Fig. 6. A plot of H(CO) versus a>.

4. DISCUSSIONS

The uncertainty of the closed-loop system was 
modelled by replacing the coefficients of the closed- 
loop characteristic equation of the MIMO system 
with closed interval polynomials. Although the 
robust stability was proven, a question remains of 
how to map a closed-loop characteristic equation of 
system to the system's physical parameters. For 
example, the mobile robot for which the robust 
analysis took place weighs 0.5 kg. If there was a need 
for 10% increase of its mass (i.e. adding more 
sensing elements) how the coefficients of the closed- 
loop characteristic equation will change is of interest. 
To map the change of the robot's mass to the change 
in the coefficients of the closed-loop characteristic 
equation is very difficult. In order to demonstrate 
this, consider the modified open-loop robot transfer 
function matrix in Equation (28), and the closed-loop 
transfer function of the system in Equation (29a, 29b, 
29c, 29d) resulting from the 10% increase in mass. It 
can be observed that the intervals used for Equation 
(16) do not include all the variations in coefficients 
resulting from a 10% increase in mass. Care must 
therefore be taken in selecting the most suitable 
interval in order to accommodate the range of the 
expected parameter variations. The closed-loop 
control system described in Equations (3a, 3b, 3c, 3d) 
was tested again for robust stability based on new 
uncertainty bounding set given in equation (30). And 
was found to be robustly stable.

10.06.S + 504.2 1.659J + 23.11

s2 +102.3^ + 2577 
1.659.S + 23.11

s2 + 102.3s + 2577 
10.06.S + 504.2

_s2 + \02.3s + 2577

(28)

-13.62s 3 -846.4s 2 -1.032e004s 
s" +124.3s 3 +5793s 2 + 1.

(29c)

(29d)
11s' +7.096e004s + 9.814e005

S* +124.3s 3 +5793s2 + 1.223e005.s + 9.814e005

f ke[981400,1133000l ?1 e [l22300,141230],l 
^ " [% E [5793,6579^3 e [l23.2,136.21 </4 e [\,2\ \ (* U)

5. CONCLUSIONS

In this paper the robust analysis of a closed-loop 
MIMO system based on parametric approach was 
investigated. Robust stability is vital due to the 
dynamics of the system. To demonstrate robust 
stability the Kharitonov theorem was used, based on 
interval polynomials control theory. The closed-loop 
control system was shown to be robustly stable under 
uncertainty based on closed intervals (first arbitrary 
then specific). Finally the robust stability was verified 
using graphical techniques based on Zero Exclusion 
Condition.
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FUZZY LOGIC AND LEAST SQUARES METHODS AS SYSTEM 

IDENTIFICATION TOOL FOR PREDICTION AND ESTIMATION OF DYNAMIC 

OBJECTS IN APPLICATIONS WHICH INVOLVES OPERATIONS OF 

CO-OPERATIVE AGENTS

Alexandras MOUZAKITIS, Mechatronics Research Centre, University of Wales College, 
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ABSTRACT

The paper is concerned with real-time, on-line estimation and prediction of dynamic objects 

using a hybrid combination of least squares and fuzzy logic. The development of the real- 

time algorithm is described together with experimental results. The particular application 

considered is robot football where by estimating positions of ball and mobie robots in x and y 

co-ordinates separately the algorithm is shown to have increased prediction capabilities.

1. INTRODUCTION

The problem of system identification is generally referred to as the determination of a 

mathematical model for a system or a process by observing its input-output relationships. In 

many cases it is necessary, or useful, to have a model available on-line while the system is 

in operation. The model should then be based on observation up to the current time. The 

need for such an on-line model typically arises since a model is required in order to take 

some decisions about the system. Numbers of such decisions that have to be made are 

given in [Ljung 1999]. However, there are two methods in which identification can be 

accomplished. One is off line identification, in which a record of inputoutput data is first 

observed and the model parameters are estimated based on the entire data record. The 

other approach is on-line identification, the parameter estimates are recursively calculated for 

every data set so that new data is used to correct and update the existing estimates. If the 

updating process can be made very fast it becomes possible to obtain parameter estimates 

of time varying systems with reasonable accuracy.
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Traditional control designs are based on physical models of the system to be controlled. If 

mathematical models are difficult to be defined, i.e. due to the complexity of the system or to 

the kind of available information (rather vague and uncertain), cognitive modelling represents 

a more viable alternative. Using a cognitive based modelling approach, the aim is to design 

control system based on a model of the expert, who is able to specify the general properties 

of the system, rather than a model of the system to be controlled. In this respect, fuzzy logic 

has proved to be a powerful tool [Zadeh et al 1997, Roberts 1998]. In this paper a hybrid 

solution of both the least squares method and fuzzy logic is used for prediction and 

estimation of dynamic objects

This paper is organised into seven sections. The problem statement is defined in section two. 

Section three presents a brief overview of the theory of least squares methods. A brief 

overview of how fuzzy logic operates is presented in section four. Section five contains the 

hybrid scheme of least squares methods and fuzzy logic. Section six shows some 

experimental results of the proposed approach. Section seven contains the conclusions of 

the overall work.

2. PROBLEM STATEMENT

In this paper it is assumed that there are number n mobile robots (Figure 1a), which much 
complete a predefined mission i.e. play football. CCD colour camera and frame grabber

(a)

Frame Grabber 
MATROX-METEOR-II
Ball Position and Robot

MAIN STRATEGY
Goalie, defender and striker

PENTIUM 
400MHz

rJ

(b)

Miabot

Figure 1. (a) MIABOT V2 mobile robots (b) Overall system structure
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(Figure 16), are used to track the ball and robots positions in a x, y coordinate frame. The 

information are processed in the Pentium 400 MHz computer, which sends the signal 

commands via the serial port in to the robots receiver module. The objective is to identify the 

position of the ball at one time step ahead (t+1). To achieve this goal an improved approach 
for estimation and prediction is required.

3. LEAST SQUARES THEORY

This section in brief describes the operation of least squares theory. Karl Gauss first 

proposed least squares theory for carrying out his work in orbit prediction of planets. Least 

squares theory has since become a major tool for parameter estimation from experimental 

data. It provides a mathematical procedure by which a model can achieve a best fit to 

experimental data in the sense of minimum error squares. In the following least squares 

theory in brief is presented, but more details can be found in [Cowan and Grant 1985, 

Isermannetal 1992].

Suppose that is a variable y that is related linearly to a set of n variables x = (x} ,x2 ,...,xn ) 

that is

y = fa+32 x2 +... + 3n xn (1)

in which 6 = (&l ,92 ,...,&n } is a set of constant parameters. It is assumed here that 6>, is

unknown and the estimation of their values required by observing the y and x at different

times.

Let assume that a sequence of m observations on both y and x has been made at times

f,,f2 ,...,fw , and denote the measured data by XO and *i(0,*2(0v,*n (0- i = l,2,...,m.

Now it is possible to relate these data by the following set of m linear equations:

XO = fa (0 + #2*2 (0 + - + -V, (0 * = U,..., m (2) 

The equation (2) can be alternative and conveniently arranged into a simple matrix form

where
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y =

r Xi)~
X2)

.

y(m)

X-

"*,(!) • • • *„(!) "

*,(2) xs (2)

• "

x, (w) xn (w)

9 =

"*1

«92

,

A.

To be able to estimate the « parameters 5,., it is necessary that m>n. If m = n, then 0 

can be solved uniquely from the equation (3) by

0 = X~l y (4)

provided that X~l , exists. The estimate of 9 is denoted by 0. However when m>n it is 

generally not possible to determine a set of 9t exactly satisfying all m equations (2) 

because the data maybe complicated by random measurements noise error in the model or 

a combination of both. Therefore one way to determine 9 is on the basis of least error 

squares.

Define an error vector e = (el ,e2 ,...,em f and let 

e=y-X9 (5)

then let 0 in such a way that the criterion J is minimised.

(6)
1=1

To carry out the minimisation the criterion becomes

Differentiating J with respect to 9 and equating the result to zero the conditions on the 

estimate 9 that minimises J can be determined. Thus

a/
dO

= -2Xry + 2X TX0 = 0, this yields
8=6

XTX9 = X Ty

from which 0 can be solved as

(7)

(8)
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The result of equation (8) is called least squares estimator of B.

4. FUZZY THEORY

This section of the paper gives a brief description of the basic concepts of fuzzy theory 

including fuzzy sets, operations on fuzzy sets and inference engine [Zimmermann 1991, 

Wang 1997].

Fuzzy sets

In the classical theory a crisp set A is a collection of objects or elements x taken in a 

universal set U . The characteristic function jUA :xeU-+ {o,l} declares which elements of 

U are members of the set and which are not. If x belongs to A then //„(*) = 1 otherwise 

//,(*) = 0.

For a fuzzy set, the characteristic function allows various degrees of membership for each 

object or element. When A is a fuzzy set and x is a relevant element, the proposition "x is a 

member of A " is not necessarily true or false, but if may be true only to some degree, the

degree to which x is actually member of A . According to this introductory discussion the 

formal definition of a fuzzy set is stated as follows:

Let U be a universal set, then the fuzzy set A in U is defined by a set of pairs:

(9)

where the /^(X) is called the membership function of x in A. U is defined as Universe of 

discourse and A is defined as the supremum of ju~ (x) over U .

Operations on fuzzy sets

In fuzzy theory the most common crisp operators, such as union, intersection and 

complement are used, dependent on particular application. According to fuzzy set theory for 

any two fuzzy set A and 7 defined in U with membership functions being /u~A (x) and 

fij (x) respectively the following applies:

1) membership function //e (x) of their intersection C = A n 7 is pointwise defined by

li f, (x) = mim{v~A (x), JUT (*)}, x e U ( 1 0)
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2) membership function n^(x) of their union N = A(j7 is pointwise defined by

^ (x) = max{^~ (x), //- (x)}, x e I/ (1 !)

3) membership function /^(*) of the complement of a fuzzy set A is defined by

^«jj(*) = 1 -//xW' xeU (12)

Fuzzy inference

Fuzzy inference is a reasoning method using fuzzy theory in which the human knowledge is 

expressed using linguistic rules. Membership functions, assigned with linguistic variables, are 

used to fuzzify physical quantities. Fuzzified inputs are inferred to a fuzzy rule base which 

characterises the relationship between fuzzy inputs and fuzzy outputs. For instance, a simple 

fuzzy control rule relating the input a to the output b maybe expressed in the following form:

IF a is C THEN b is D

where C and D are fuzzy values defined on the universes of X and Y , respectively. The 

response of each fuzzy rule is weighted according to the degree of membership of its input 

conditions. The role of the fuzzy inference is to provide a set of common actions according to 

fuzzified inputs. The next step is the defuzzification method to convert the fuzzy values into a 

crisp output value of the fuzzy system. In other words defuzzification is the process of 

mapping form a space of inferred fuzzy control actions to a space of non-fuzzy (crisp) control 

actions. The defuzzification method used for this work is the centroid method and is 

expressed in the form as follows:

where b' is a crisp output of the fuzzy system, n is the number of control rules associated 

with the fuzzified inputs, and c, is the centroid of the membership function associated with 

each linguistic value in the output space.
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5. HYBRID SCHEME OF LEAST SQUARES METHODS AND FUZZY LOGIC

This section presents an improved method for estimation and prediction of dynamic object 

using the hybrid scheme of least squares and fuzzy logic. It is important to state that the work 

in this paper differs to work done by [Lee and Wang 1994] in terms of how and when 

A coefficient changes. X coefficient is greater than 0 and smaller than 1 and it is used to 

place more or less weight on recent data. The prediction of the ball position in (t+1) requires 

that x+1 and y+1 be estimated. A sequential algorithm that is able to closely track time- 

varying parameters is called a real-time algorithm. In this section such a real time algorithm 

is presented. An exponential weighting scheme is used to place heavier emphasis on more 

recent data. As a result, the parameter tracking capability is greatly increased. In [Lee and

Wang 1994] the prediction error error = ^(x, -xp ) 2 +(yi -yp ) 2 is defined and then

according to its magnitude the A parameter either increases or decreases. However, by 

manipulating the errors (x error and y error) separately a more reliable result is produced. 

This means that two controllers are required for adjusting A., one for the x and another for 

the y. In the following, the algorithm is presented for dynamic object prediction.

In section three it was shown that equation (3) can be used to simplify a set of linear 

equations. Let matrices y, X and 9 denote the system's observations, the time related 

with system's observations and the parameters to be estimated. The three matrices can be 

defined as follows.

y =

y*

x =

x I

* 1

0 = 1 (14)

The error vector for each solution 6 is the same as in equation (5). Then consider the error 

function

0</1<1 < 15>

in which later squared errors are given more weight than earlier ones. According to [Hsia 

1977] matrix 0 can be estimated as follows.
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(16)

The parameters /B1+1 , Pm , Xm+l are defined as follows. 

1

Pm =— (X'.X') (?n\ 
/I * '

\x 1
^rm+i= j" (21)

It can be observed from equation (15) that the smaller the A, the heavier are the weights 

assigned to the more recent data. This implies that the algorithm is more capable of tracking 

the parameter variations. For the estimation and prediction of dynamic objects in an x,y co­ 

ordinate frame the above algorithm is used to estimate both x and y. The estimate 0m+l from

(16) produces the unknown parameters ,9, and 32 so the linear equation y = 3} x + 92 can be 

solved.

Figure 2 shows the overview of the proposed approach. Observations are taken in x and y 

co-ordinates representing the object position. The real time algorithm takes as inputs the 

value of x or y and /I. Then the algorithm's output is x, x + 1, An which denotes the 

estimate of x, the predicted value of x and the value of the current A . Then two blocks are 

used, one to calculate the new A value and another to calculate the predicted error. Fuzzy 

logic was employed as a control tool for the adjustment of the A values. Figure 3 shows the 

3-D surface of the fuzzy logic controller. The inputs to the fuzzy inference engine are 

prediction error and current value of A. The output is the new value of /I for the next 

estimation and prediction step.

The 3-D surface demonstrates how new A is derived according to the input parameters. If 

the estimation error is big and the current A is high then the new value of A is small. That 

means that if the previous estimate was inaccurate and only way to get more accurate the 

next prediction step is to reduce A. Finally the block (predicted_error_xy) in figure 2 finds the 

Euclidean distance between the current and predicted position of the object. This method 

has the advantage of adjusting different values of A for x and y according to their estimation 

errors.
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observations 
dynamic_object

> current lamda x 
new_lamda_x

{————— *~*r
current_lamda_x

error_x

controller for x

Figure 2. Overview of the proposed identification approach

Control surface of 'AdjustLamda' fuzzy controller

Error
Current Lamda

Figure 3. Control surface of "Adjust/I" fuzzy controller
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6. EXPERIMENTAL RESULTS

To test and analyse the proposed approach for estimation and prediction of dynamic 

objects, simulation and experimental studies were performed. Simulation was carried out 

using the MATLAB development software. The task set was for the mobile robot to move 

with a random trajectory (the same trajectory could also represent the ball's movement). It 

was assumed that this represented a course of the mobile robot when avoiding obstacles. 

The velocity varies due to accelerations and decelerations of the mobile robot.

Figure 4a shows the velocity during the robot's motion, the desired trajectory (to be 

estimated and predicted, figure 4b), and the x and y co-ordinates of the trajectory, figure 4c 

and 4d. It can be seen that the x and y co-ordinates of the trajectory are different in terms of 

local minima. The y co-ordinate of the trajectory is more difficult to predict compared to the x 

co-ordinate due to its non-monotonic characteristics and the appearance of larger number of 

local minima. For this reason the experiments were carried out on y co-ordinate only for this 

stage of simulation.

Figure 5 shows results with the A coefficient having constant value of 0.98. The absolute 

values of estimated errors are illustrated in figure 5a, the square errors are shown in figure 

5b (equation 15 with a window of 6 observations), the minimisation of the error function is 

shown in figure 5c and the value of the correction term is illustrated in figure 5d. It is clear 

that the estimated error is large when the error function (Jm) is high It can be concluded 

that the mean rate of the correction term remains the same throughout the simulation 

period.

Figure 6 shows results of the real-time algorithm using fuzzy logic to control the A. 

coefficient. It can be seen that when A is small then the correction term is small and vice 

versa (Figure 6a and 6b). Observing figure 5a and figure 6a the /I value increases when the 

error is small and /I value decreases when the error is large. These changes in /I 

coefficient and corresponding changes in the correction term reduces the estimation error 

producing more accurate position prediction.

Figure 7a shows both estimated errors with and without the fuzzy controller. It can be 

observed that the error between those two estimations is very small. Figure 7b shows the 

absolute value of difference between the estimation errors.
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Finally figure 8a shows the real trajectory derived by the mobile robot and that predicted 

using the hybrid least square and fuzzy logic method. Again they are very close and figures 

8b, 8c and 8d are included to demonstrate both trajectories in order to show the accuracy of 

the prediction method. It can be observed that the predicted path is very accurate at the 

local minima point where the mobile robot changes trajectory.

0.46

0 50 100 150 200 250 300 350 400 450 500

25

(a)

0 50 100 150 200 250 300 350 400 450 500 
Time

(c)

Y -6

10 15 
X-axis (ml

(b)

0 50 100 150 200 250 300 350 400 450 500
Time

(d)

Figure 4. (a) Velocity of the center point of MIABOT V2 mobile robot (b) Random trajectory 

of the mobile robot to be estimated (c) Trajectory on x-axis (d) Trajectory on y-axis
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Figure 5. (a) Estimated error with X constant (b) Square errors (c) Error function 

minimisation (d) Correction term with 1 constant
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Figure 6. (a) New A, coefficient depending on error and current A value (b) Correction term

(Pm) with variable A. coefficient
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Figure 7. (a) Estimated error with and without the fuzzy controller to adjust A (b) Difference 

in estimation error using fuzzy controller to adjust A
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Figure 8. (a) Real trajectory (solid line) against predicted (dotted line) (b) Top left side zoom 

showing both trajectories (c) Zoom at the center (d) Bottom right side zoom
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7. CONCLUSIONS

This paper presents a hybrid method of least squares and fuzzy logic for estimation and 

prediction of dynamic objects. The method is to be implement in the robot football system at 

University of Wales College, Newport for estimation and prediction of ball and mobile robot 

positions. The paper described in brief the operation of least squares and the function of 

fuzzy logic. The real-time least squares algorithm based on minimisation of the error function 

and the adjustment of the A. coefficient was also presented. The approach presented uses 

fuzzy logic to adjust respective X coefficients for of x and y co-ordinates based on their 

estimation errors.

The task considered was to estimate and predict the random trajectory, which was 

generated by the mobile robot moving with non-constant velocity. Experiments concentrated 

on the observations of the y co-ordinate of the trajectory due to its non-monotonic 

characteristics and the appearance of large number of local minima. The results clearly 

indicate that the method is extremely accurate. In fact for this particular application the 

improvement obtained when using the proposed hybrid method is marginal. This is due to 

the fact that the sample period used was very small. However, in real application there is 

often a conflict between sample time and accuracy and the next stage of the work will 

investigate how the prediction accuracy is affected by increasing in sample period.
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Abstract

Intelligent autonomous robots and multi- 
agent systems, having different skills and 
capabilities for specific subtasks, have the 
potential to solve problems more efficiently 
and effectively. In this paper both fuzzy 
logic (FL) and subtractive clustering (SC) 
are used for the design of autonomous robot 
behaviours. The design procedure is 
conducted in two stages: first subtractive 
clustering is applied to extract fuzzy model 
from experimental data; then adaptive 
neuro-fuzzy inference system (ANFIS) is 
applied to improve the fuzzy model 
performance. This technique produces good 
result (0.01% root mean square error) and 
has the advantage of being closer to natural 
human language, by describing the robot 
behaviours using a set of linguistic rules.

Keywords: Robot Behaviours, Subtractive 
Clustering, Neuro-fuzzy Modelling.

1 Introduction

An autonomous robot is defined as a physical 
device, which performs a predefined task in a 
dynamic and unknown environment without any 
kind of external help. Having the ability to sense the 
state of the environment the robot is able to perform 
its control actions with the help of what is called

control architecture. In most multi-agent type 
architectures the control is divided into vertical 
functional modules or behaviours where each of the 
behaviour is responsible for a well-defined task.

Classical control theory is based on 
mathematical models that describe the 
behaviour of the plant or system under 
consideration. The main idea of fuzzy control 
[4] is to build a model of a human control expert 
who is capable of controlling the plant without 
thinking in mathematical model terms.
Fuzzy logic modelling techniques can be 
classified into three categories, namely the 
linguistic (Mamdani-type), the relational 
equation, and Takagi, Sugeno and Kang (TSK). 
In linguistic models, both the antecedent and the 
consequence are fuzzy sets while in the TSK 
model the antecedent consists of fuzzy sets but 
the consequence is made up of linear equations. 
Fuzzy relational equation models aim at 
building the fuzzy relation matrices according to 
the input-output process data. To model a 
nonlinear system Jang [2] has introduced an 
adaptive neuro-fuzzy inference system (ANFIS) 
based on TSK model.
In this paper subtractive clustering is used to derive 
a fuzzy model from experimental data for the design 
of autonomous robot behaviours. Then ANFIS is 
used as a post-processor to improve model capability 
and efficiency.
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2 Subtractive Clustering Method

In order to obtain a set of R rules avoiding the 
problems inherent to grid partitioning, e.g., rule 
explosion, subtractive clustering is applied [1]. This 
technique, is employed since it allows a scatter 
input-output space partitioning.

Subtractive clustering is an extension of the 
mountain clustering method [3]. Mountain clustering 
is relatively simple and effective. However, its 
computation grows exponentially with the 
dimension of the problem because the method must 
evaluate the mountain function over all grid points. 
Using subtractive clustering data points (not grid 
points) are considered as the candidates for cluster 
centers. The computation is simply proportional to 
the number of data points and independent of the 
dimension of the problem under consideration.

Consider a collection of n data points 
{*,,. . ., xn } in an M -dimensional space. 
Without the loss of generality, the data points are 
assumed to have been normalised within a 
hypercube. Since each data point is a candidate for
cluster centers, a density measure at data xt is 
defined as:

(1)

where a = — r- and ra > 0 .

Hence, a data point will have a high density value if 
it has many neighboring data points. The radius ra 
defines a neighbourhood; data points outside this 
radius contribute only slightly to the density 
measure.
After computing the density measure for each point, 
the one with the higher density is selected as the first 
cluster center. Let JCC] be the centre of the first group 

and Dc its density. Then, the density measure for 

each data point xt is revised by the formula:

(2)

The radius rb represents the radius of the 
neighbourhood for which significant density 
measure reduction will occur. The radius for 
reduction of density should be to some extent higher 
than the neighbourhood radius to avoid closely 
spaced clusters. The value is typically, rb =l.5ra . 
Since the points closer to the cluster center will have 
their density measure strongly reduced, the 
probability for those points to be chosen as the next 
cluster is lower. This procedure is carried out 
iteratively, until the stopping criteria are reached. 
The algorithm is:

if Dk > eu"D* ci
Accept xk as the next cluster center and continue

else if Z). <£ft
dom> D

Reject xk and end the clustering process 
else

Let fl?min be the shortest distance between xk and 
all previously found cluster centers

"min

£i

where 0 = —^ and rb > 0.

Accept xk as the next cluster center and
continue 

else
Reject xk and set the density at xk to 0 
Select the data point with the next highest 
density as the new xk and re-test

end if 
end if

Here, £up specifies a threshold above which the
point is selected as a center, and sdow" specifies the 
threshold below which the point is definitely
rejected. Typically, e"" = 0.5 and edomt = 0.15 . If 
the density measure fails in the gray region, then 
checking of data points is required to identify where 
they provide a good trade-off between having a 
significant density measure and being sufficiently 
far from existing clusters.
At the end of clustering procedure, a set of fuzzy 
rules will have been obtained. Each cluster will 
represent a rule. However, since the clustering 
procedure is conducted in a multidimensional space, 
fuzzy sets must be obtained. As each axis of the 
multidimensional space refers to a variable, the
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centers of the membership functions for that variable 
are obtained by projecting the center of each cluster 
in the corresponding axis. As for the widths, they are 
obtained on the basis of the neighbourhood radius 
ra , defined while performing subtractive clustering. 
Since Gaussian membership functions are used, their 
standard deviations are computed as:

max(jcu -
' ' (3)

3 Adaptive Neuro-Fuzzy Inference System

Jang [2] introduced the ANFIS (Adaptive neuro- 
fuzzy inference system). Figure 1 provides an 
example of a simple fuzzy inference system (FIS) 
represented in an ANFIS network. In the ANFIS 
architecture, FIS is described in a layered, feed­ 
forward network structure where some of the 
parameters are represented by adjustable nodes 
(represented as rectangular entities in the figure) and 
the others as fixed nodes (represented as spherical 
entities in the figure). The raw inputs are fed into the 
layer 1 nodes that represent the membership 
functions. The parameters in this layer are called 
premise parameters and they are adjustable. The 
second layer represents the T-norm operators that 
combine the possible input membership grades in 
order to compute the firing strength of the rule. In 
the basic ANFIS method these parameters are not 
adjustable. The third layer implements a 
normalisation function to the firing strengths 
producing normalised firing strengths. The fourth 
layer represents the consequent parameters that are 
adjustable. The fifth layer represents the aggregation 
of the outputs performed by weighted summation. 
This is not adjustable.

Layer 1 Layer 2 Layers Layer 4 Layer 5

4 Problem Statement

In section 2 and 3 an algorithmic methodology was 
described to identify fuzzy control strategies using 
any n -dimensional input-output space. In this paper 
the proposed algorithmic methodology is applied to 
identify an autonomous robot's (MIABOT V2, 
Figure 2) control strategy to avoid objects 
(neighbour robots). The robot's control architecture 
is multi-agent type and consists of multiple 
controllers (fuzzy behaviours). Each of the 
behaviours is designed to perform a particular task 
such as to orientate the mobile robot towards the 
goal, to avoid neighbour robots (agents) and either to 
find or reach the goal.

Figure 1: An ANFIS structure for a simple FIS

Figure 2: MIABOT V2 mobile robots

5 Simulation Results

In this section experimental results are presented to 
show the validity of the proposed algorithmic 
methodology. The strategy of the control action is 
based on three inputs: speed of the robot u, distance 
d and angle & between the robot and the neighbour 
robots (obstacles). Hence the model has three input 
variables and two output (left velocity UL, right 
velocity UR) variables subtractive clustering is used 
to take input-output training data and generate a 
Sugeno-type fuzzy inference system that models the 
data behaviour. Of the original 209 experimental 
data points, 176 data points are used as training data 
and 33 data points as checking data. Figure 3 shows 
the input output data.

Using subtractive clustering the result for the first 
and second output is shown in figure 4 (top) and 
figure 5 (top). Checking data are compared with 
observation data and the root mean square error
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(RMSE) is 0.0066 and 0.0610 respectively. To 
improve the model's accuracy ANFIS is employed. 
Figure 4 (Bottom) and figure 5 (Bottom) illustrate 
the new model in which in both cases the RMSE has 
been reduced to 0.0019 and 0.0133 respectively. 
Finally figure 6 illustrates at which point the training 
and checking error settles.

Input Data

„ irj 1 Training and checking error for output UL

100 160 200

Figure 3: Input-output experimental data points
Result of subtractjve clustenng for output UL (RMSE=0.0066)

035

03

0.25

0.2

015
10 15 20 25 30 35

Result of subtractive clustering and ANFIS for output UL (RMSE=0 0019)

0.25

015
10 15 20 25 30 35

Figure 4: Fuzzy model for output (UL)
Result of subtractive clustering for output UR (RMSE=0.0610)
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Figure 5: Fuzzy model for output (UR)
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Figure 6: Settle of training and checking error 

6 Conclusions

In this paper, a hybrid method of subtractive 
clustering and neuro-fuzzy modelling using ANFIS 
was presented. The proposed method can be applied 
to construct an identification method of fuzzy 
control strategies based on availability of 
input/output mapping data. In the first stage 
subtractive clustering was applied in order to obtain 
a fuzzy model of the robot behaviour. Then, a 
adaptive neuro-fuzzy inference system was used to 
improve the model's accuracy. Simulation results 
shows that the proposed method can produce very 
accurate results (RMSE 0.0019 and 0.013 
respectively).
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Abstract

Intelligent autonomous mobile robots and multi-agent systems, having 
different skills and capabilities for specific subtasks, have the potential to 
solve problems more efficiently and effectively than single agents. This 
paper contributes with the proposal of new hybrid control architecture for 
autonomous robots and co-operative agents. The proposed architecture is 
a combination of subsumption architecture, competitive tasks architecture 
and production systems architecture. The state identification mechanism, 
CAROS algorithm, decision making mechanism and action co-ordinator 
mechanism define the structure of the proposed architecture. As a tool for 
this research work the autonomous mobile robots MIABOT V2 are used 
both as real examples and simulation models. Simulation results are 
presented to show the validity of the proposed architecture and also to 
show how the mobile robot performs according to various dynamic 
environment changes.

1 Introduction

An autonomous robot is defined as a physical device, which performs a predefined task 
in a dynamic and unknown environment without any kind of external help. Having the 
ability to sense the state of the environment the robot is able to perform its control 
actions with the help of what is called control architecture. Control architecture for 
autonomous robots have been previously proposed or developed by various researchers 
(Muller, 1997). In general mobile robot control architectures have been classified in two 
major categories: hierarchical and behaviour-based. Traditional artificial intelligence 
approach to robot control is based on functional decomposition into hierarchical levels. 
In this control architecture the problem is divided into vertical functional modules. Each 
vertical functional module is responsible for a well-defined task, where each level must 
pass its output onto the next level in order for the robot to be able to complete a 
predefined task. The behaviour-based approach is an alternative to the traditional 
approach. Instead of having a number of vertical functional levels, the behaviour-based

G-28



Appendix G Published Work

method tackles the control problem by thinking of it as a number of horizontal arranged 
layers (Brooks, 1986). In (Xu and Van Brussel, 1997) advantages of the behaviour-based 
architecture and weaknesses of the traditional approach are discussed in more detail.

This paper concentrates on modelling new hybrid control architecture for autonomous 
robots and co-operative agents. The proposed control architecture is hybrid of 
subsumption architecture, competitive tasks architecture and production systems 
architecture. The control architecture consists of five independent modules, each of 
which is responsible for a particular task. The state identification mechanism produces 
the states of the system as true or false according to the input sensory data, then the 
CAROS algorithm having the required states of the system selects the appropriate 
controller. The function modules (or controllers) have been designed using Fuzzy Logic 
(FL). The control output of the system adjusts left and right velocities of the mobile 
robot MIABOT V2, the kinematics model of which is used for the simulation.

This paper is organised into six sections. The related work on control of co-operative 
robots and design in control architecture is described in section 2. Section 3 defines the 
problem statement. The modelling of the new hybrid control architecture is described 
and discussed in section 4. Section 5 presents experimental results of the proposed 
control architecture. Finally section 6 contains the conclusions of the work presented.

2 Related Work

Within the robotics community, research into multi-robot systems or co-operative 
robotics has increased dramatically due to wide range of applications such as planetary 
exploration, map making and trash collecting. Most of the research has focused on either 
group architecture, resource conflicts, origins of co-operation, learning, and control or 
geometric problems (Cao et al, 1997). (Fukuda and Nakagawa, 1987), introduced a new 
project in the field of co-operative robotics called CEBOT. Their work is based on co­ 
ordination among mobile multi-robot systems with emphasis on communication 
mechanisms, which can be used to support co-ordinated behaviour. (Asama et al, 1989), 
developed ACTRESS a multi-robot system designed for heterogeneous agents based on 
communication issues. The robots act independently, but if the need arises, they 
negotiate with other robots to form a co-operative group to solve the problem. (Arkin, 
1992), presents research concerned with sensing, communication, and social 
organisation for multiple mobile robots that are supposed to forage and retrieve objects 
in the hostile environment. (Noreils, 1993), proposed a three-layered control architecture 
for semi-heterogeneous robots that included a planner level, a control level, and a 
functional level. The first (planner level) was the high-level decision-maker. However 
many of the recent co-operative robotics systems, in contrast to the earliest works, are 
based on the behaviour-based approach (Brooks, 1986). For instance (Mataric, 1992) 
developed behaviours for multi-agent systems using subsumption architecture. In terms 
of co-operation and communication, most of the above work has fallen along the two 
ends of the spectrum. It either uses extensive explicit communication and co-operation, 
or almost none at all. In systems that are co-operative by design, two or more robots are 
aware of each other's existence, and can sense and recognise each other directly or 
through communication. This type of research explores explicit co-operation, usually 
through the use of direct communication (Parker, 1993). The other category includes 
work on implicit co-operation, in which the robots usually do not recognise each other 
but indirectly co-operate by having identical or at least compatible tasks. Such work 
includes (Kube and Zhang, 1992). The design of such control architectures is complex 
due to the system's complexity. (Ferber, 1999), has categorised the main types of
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architectures based on multi-agent platforms. The main agent architectures are 
categorised according to type of architecture, approach, type of component, sub­ 
ordination structure, coupling structure and constitution. In (Ferber, 1999), there are nine 
possible architectures from which the control designer can choose. The research work in 
this paper concerns the design and modelling of control architecture for autonomous 
robots and co-operative agent using implicit communication based on production rules 
architecture (Fuzzy Logic), competitive tasks architecture and subsumption architecture.

3 Problem statement

In this work it is assumed that there are number « mobile robots. The robots, without any 
prior knowledge of the environment must reach two independent objects, from an initial 
position, in the shortest possible travel time, without colliding with each other.

The robots are moving in a 2-dimensional completely uncertain and unknown 
environment with non-constant velocity. The unknown environment is assumed to be 
filled by moving and/or stationary neighbour robots. Ultrasonic sensors provide 
information about the neighbouring robots and their relative positions. It is assumed that 
the ultrasonic sensors obtain the information in terms of polar co-ordinates (d, 9) with 
error-free measure. This information will be the distance to the nearest robot (drotloj and 
the direction to the nearest robot (&mbot) in robot co-ordinates (xr,n>yr.J. An additional 
input provides information about the direction and distance to the goal. The robot also 
receives a signal from a beacon placed on top of the goals and it is assumed that this 
signal is always receivable. The output signals from the control architecture are the 
commands for the speed control of the two wheels of the mobile robot (u^and U_K)-

The main objective is to design multi-agent behaviour-based control architecture for the 
mobile robot in order to be able to adjust its motion according to the dynamic input 
sensory data.

4 Modelling the control architecture

This section presents the modelling of the new hybrid control architecture, which draws 
its design from competitive tasks architecture, production rules architecture and 
subsumption architecture. Figure 1 shows the overview of the control architecture.

As can be seen from figure 1 the control architecture consists of the following parts: 
Sensory data, state identification mechanism, CARDS algorithm, action co-ordinator 
mechanism, decision making mechanism the environment and the model of the 
MIABOT V2 mobile robot. The main characteristics/advantages of the proposed 
architecture can be summarised in the following:

1. Coupling structure is variable. This structure introduces more flexibility in the 
choice of behaviour selection.

2. Subordination structure is hierarchical. This structure represents the most of the new 
intelligent control multi-agent type architectures.

3. Type of component is based on rules, task and primitive actions. This type of 
component integrates the advantages of the type of component of the subsumption, 
competitive tasks and production rules architectures.
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4. Constitution is predefined. Almost all the multi-agent architectures follow the same 
constitution.

5. Low computational complexity. Each of the behaviour only consists of maximum 
15 rules and minimum of 3.

6. Easy to upgrade. Extra behaviour can be added into the control system with only 
minor modifications in state identification mechanism and CAROS algorithm.

In the following subsections each individual part of the proposed control architecture is 
described with emphasis on modelling and identification issues. The control architecture 
was developed and simulated under the MATLAB SIMULINK software environment.

Figure 1 Overview of the control architecture

4.1 Sensory data
This mechanism performs data fusion, which produces the required inputs for the control 
architecture. The main sensory data are the distance and the angle for the neighbour 
robots and the goal. As stated earlier this information can be derived using ultrasonic 
sensors and beacons.

4.2 State identification mechanism (SIM)
This mechanism is responsible for identification of system's states. The number of 
required states is not unique but depends on a particular application and designer choice. 
The SIM has an input of sensory data from the robot's environment and outputs of the 
required states as true or false represented as 1 and 0 respectively. Figure 2 shows the 
MATLAB pseudo-code showing the operation of the SIM mechanism.
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The SIM can be programmed with predefined sampling time. This allows the control 
architecture to know its current state and decide the control output according to this 
predefined sampling time. For the threshold value, a precise designer's decision is 
important in order to produce a result that at least is correct within an order of 
magnitude. For instance, each state must be assigned as true or false only if it satisfies 
the threshold value, which has been set by the designer. Thus the threshold value should 
be as close as possible to the system specific optimum value.

sensor_data_l=input(1,1); 
sensor_data_2=input(2,1); 
sensor_data_3=input(3,1);

sensor_data_n=input(n, 1); 

output=[A,B,C,..n];

if sensor_data_l<= threshold (detect the goal)
state A is true; 

else
state A is false/­ 

end

if sensor_data_n<= threshold (reach goal)
state N is true; 

else
state N is false/­ 

end

Figure 2 MATLAB pseudo-code showing the State Identification Mechanism

4.3 CAROS algorithm
This is the main algorithm that decides which behaviour (or controller) is to be activated 
according to the current state of the system. For different application, modification of the 
CAROS algorithm is required. The control strategy for this research work, including the 
control flowchart of the CAROS algorithm can be found in (Mouzakitis and Roberts, 
2000). The CAROS algorithm navigates the mobile robots towards the goal avoiding 
collisions with neighbour robots either stationary or moving. Pseudo-code of the 
CAROS algorithm is illustrated in Figure 3.

4.4 Action co-ordinator mechanism (ACM)
The ACM is responsible for releasing the control output of the functional module, which 
the CAROS algorithm has selected. The inputs into this module are the control outputs 
of the functional modules (controllers) and also the output from the CAROS algorithm. 
Each functional module produces two outputs, each of which is responsible for the left 
and right velocity respectively. The output of the CAROS algorithm is a crisp number 
from 1 to n. For instance, output value 2 would represent the label for the functional 
module numbered as 2, then the control output of this particular module will be used as 
the command for the differential drive of the mobile robot. This kind of action co­ 
ordination draws its advantages from the competitive tasks architecture in which once a 
functional module is selected the module is activated and the previous one deactivated. 
However the deactivated module is not totally switched off, it continues to receive 
sensory data in parallel with SIM. Thus, the module it exercises a monitoring activity,
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which consists in receiving data from sensors and calculating the values of the selection 
parameters, which depend on it. The local model of ACM is given in Figure 4.

state_A=input(1,1); 
state_B=input(2,1); 
state_C=input(3,1);

state_n=input(n,1); 

output=[l,2,3,4, . . .,n];

if state A true (neighbour robots found) 
if state B true (moving robots found)

control action=3; (FLC: AVOID MOVING NEIGHBOUR) 
else

if state C true (stationary robots found)
control action=4; (FLC: AVOID STATIC NEIGHBOUR) 

end 
end 

else
if state D true (robot detects the goal)

if state E true (robot orientates the goal) 
control action=5; (FLC: GET GOAL) 
if state F true (robots reached the goal)

control action=6; (STOP the robot) 
end 

else
control action=2; (FLC: CHANGE ORIENTATION) 

end 
else

control action=l; (FLC: FIND GOAL) 
end 

end

Figure 3 MATLAB pseudo-code showing the CARDS algorithm

simulation tm»

Figure 4 Local model Action Co-ordinator Mechanism
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4.5 Decision-making mechanism (DMM)
The decision-making mechanism is the largest part of the proposed control architecture. 
Five independent control units are employed for this work. Each of the independent 
functional modules is responsible for a particular task. The design philosophy behind the 
decision-making mechanism is based on behaviour-based approach. The classical 
artificial intelligent approach to robot control is to divide the problem in a task-based 
style. The major problem with this approach was that all subsystems must work well in 
order for the robot to function at all. This is very easy to occur as perception and world 
modelling encompass problems which are very difficult to be solved. The behaviour- 
based approach came to solve this problem. With the new intelligent control approach 
several behaviours are used to control the robot. For this work, each of the behaviour 
(functional module) is designed to perform a particular task such as to orientate the goal, 
to avoid neighbour robot and either to find or reach the goal. The major difference 
between this work and the subsumption architecture is that the coupling structure is not 
fixed. The variable coupling structure of the proposed architecture allows more 
flexibility and modularity into the control system. The design of the functional modules 
is not unique. The most popular behaviour design is the one by (Brooks, 1986), although 
other researchers have developed behaviour on more or less the same principle (Arkin, 
1989), (Mataric, 1992). For this work the principle of the production systems 
architecture is proposed for the design of the major functional modules. Fuzzy logic is 
one form of production systems architecture. This form of control architecture consists 
of the perception, the database with the inference engine and the rule base, and finally 
the execution. In terms of fuzzy logic the functional module consists of the fuzzification 
mechanism, the inference engine and the defuzzification mechanism which produces the 
crisp output as the control command. The use of fuzzy logic was chosen due to lack of 
mathematical model of the mobile robots (approximate kinematics model only) and also 
as the tool of translating human knowledge into mathematical terms. However, fuzzy 
logic has other advantages as well and has proved in the past that is a superior method 
for navigation of mobile platforms.

4.6 The mobile robot
As a tool for this research work the autonomous mobile robots MIABOT V2 are used 
both as real examples and simulation models. Figure 5 shows the appearance of the fully 
autonomous mobile robots. The driving system is a power wheeled steering system, 
which drives a left and a right wheel independently. The steering control of the robot is a 
simple procedure of sending the speed commands u_l and u_r as input to the left and 
right wheel respectively. The drive train consists of two motors (DC 4.5-12V), with 
worm gear drives to each wheel enabling accurate stop positions and achievable speeds 
up to Im/s. The wheels are 32mm in diameter and equipped with an O-ring to reduce 
pitch slip. Each motor shaft is monitored via a combination of phototransistors and 
infrared LED's (shaft encoders), which provide feedback for the ATMEL 
microprocessor.

To simulate an approximate models in terms of kinematics equations the first order 
model of the mobile robot MIABOT V2 is required. Let point C denote the centre of the 
mobile robot. Let xc be the time derivative of the global x position of point C and yc 

the time derivative of the global y position of the point C. Let 9 be the time 
derivative of the global orientation angle. Also, let R = 2b, where b is defined as the 
half distance between the two wheels. Let u, be the forward velocity of the left wheel
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ur the forward velocity of the right wheel. Then the first order model equations of 
the mobile robot are defined as follows:

xc = — *cos5*w/ +— *cos&*ur (i)
* <&

yc ~ — *sin3*ui-i-— *sin >9*Mr (2)
A Z 

a l 1& = ———*M/+ — *U. fi\

R ' R r (3)

5 Experimental results

In this section experimental results are presented to show the validity of the proposed 
architecture. Experiments were carried out for 600 seconds, (which is the travel time for 
the mobile robot to reach the goal). In order to clearly illustrate the operation of the 
control architecture, experimental results presented in this paper use a window period of 
1 second only, with noise measurements every 100ms (however, the control architecture 
is capable of functioning with higher or lower sampling intervals). In this experiment the 
control architecture allows the mobile robot to reach a goal point, from a starting one 
whilst avoiding neighbour robots. Control inputs are the orientation error (the angle 
between the current direction of the robot and the direction to goal), distance to the goal 
and also the angle and distance to the nearest moving or stationary neighbour mobile 
robot. Control outputs are left and right velocity for the mobile robot (differential drive).

As avoiding obstacles is more important than taking the shortest path to the goal, the 
obstacle avoidance behaviours are assigned a higher priority than orientate'_goal and 
get_goal behaviour (all the behaviours are illustrated in Figure 1 within the decision 
making mechanism from FLC1 to FLC2). However avoid_moving_neighbours 
behaviour is assigned a highest priority than avoid_stationary_neighbours behaviour by 
using a threshold range of their sensory data. A simple example to illustrate the manner 
in which robot's behaviours are activated according to the current sensory data is shown 
in figure 5 and 6.

Using random sensory data to represent the inputs from the robot's working environment 
the states of the system were simulated. Figure 5 shows the states of the control system 
as true or false represented as 1 and 0 respectively. State A will be true if the mobile 
robot has found any neighbour within a predefined range, either as moving or stationary. 
If moving neighbours have been found then state B is true, otherwise if stationary 
neighbours have been found state C will be true. States D and E inform the control 
system if the mobile robot detects or orientates towards the goal. Finally, if the mobile 
robot has reached the goal, state F is true. Figure 6 shows the output of the CARDS 
algorithm having as inputs the states of the system. It is shown that CARDS output 
activates only one controller at a time. This gives the advantage of the coupling structure 
being variable. Thus more flexibility in the choice of behaviour selection is introduced. 
Each of the behaviours will accelerate or decelerate the mobile robot into the required 
direction taking either sharp or smooth turns in a left or right direction. This method 
shows its robustness by the fact that the states of the system have been bounded with a 
predefined threshold, and also from the fact that for each action an independent 
controller is allocated to perform the required task.
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6 Conclusions and future work

This work has presented a new hybrid control architecture for autonomous mobile robots 
and co-operative agents. It is based on a combination of subsumption architecture, 
competitive tasks architecture and production systems architecture. It was shown a 
successful attempt to produce useful independent functional modules (behaviours), based 
the philosophy of the behaviour-based approach and production rules. The control 
architecture can be extended into higher levels of intelligence and become more 
distributed with the introduction of extra behaviours and more control algorithms (like 
CAROS) responsible for a certain number of functional modules. Although this 
introduces more flexibility it also creates several problems such as appearance of control 
conflicts. The structure and function of the new hybrid control architecture may be used 
for construction of complex control systems for mobile robots. Further work is under 
development to increase the architecture's capability for identification and prediction of 
moving neighbours, including methods for identification of direction-to-goal in an 
unknown environment taking into account nonholonomic constraints.
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Abstract

Intelligent autonomous mobile robots and multi-agent (robot) 
systems, having different skills and capabilities for specific 
subtasks, have the ability to solve problems more efficiently 
and effectively than single agents. This paper considers the 
problem of controlling co-operative multiple agents so that a 
number of multiple robots will reach common or different 
goals (objects) without colliding with each other. The 
proposed system called CAROS (Co-operative Autonomous 
RObotic Systems) consists of autonomous mobile robots 
using decentralised control and implicit communication. To 
achieve cost effective agents, a fuzzy control method is used 
in this work to replace the conventional control. Each robot 
carries a fuzzy controller (FC) MIMO (Multi-input Multi- 
Output), of four state-input variables and two control-output 
variables. The four inputs into the FC are the direction and 
distance to the goal and also the direction and distance to the 
nearest robot (static or motionary). The two control-output 
variables are the commands for the speed control of the two 
wheels of the mobile robot. Simulation results are presented 
to show how the mobile robot performs according to various 
dynamic environment changes.

build several simple, cheap, more flexible and more fault- 
tolerant robots rather than a single powerful robot for each 
separate task has led to recent research on decentralised 
control architectures. The development of these architectures 
becomes simpler and may be more reliable using a series of 
intelligent methods such as fuzzy logic, and neural networks. 
The demand for simple controllers with small amount of 
processing and memory onboard brings a need for the above 
intelligent control methods. This paper proposes a system 
called CAROS (Co-operative Autonomous RObotic Systems) 
in order to achieve co-operative agents in an unknown and 
uncertain environment. The system comprises of the three 
following characteristics. Firstly the number N of robots must 
be homogeneous (functionally and physically identical). 
Secondly the use of communication among the agents is 
implicit (robots do not communicate with each other and also 
these is no broadcast communication between them). Third 
the control method is decentralised (each robot makes its own 
decisions and performs only these decisions without having 
any connection to a central mechanism) using fuzzy logic to 
tackle the motion planning and control problem.

This paper is organised into seven sections. The related 
work on control of co-operative robots is defined in section 2. 
Section 3 defines the problem statement. The Fuzzy theory is 
discussed in section 4. Section 5 presents the fuzzy approach 
on multiple co-operative agents. Section 6 shows some 
experiments results of the proposed fuzzy system. Section 7 
contains the conclusions of the overall work.

1 Introduction

Achieving co-operative multi-agent (robot) systems is a very 
difficult and challenging task. The assumption that multiple 
agents have the potential to solve problems more efficiently 
than a single agent, has attracted the attention of researchers 
in the areas of control engineering, computer science, 
psychology and others. Possible reasons for developing and 
designing co-operative robots include distributed action, 
problem decomposition and task allocation in parallel. The 
meaningful operation of a multi-robot system requires that 
serious problems such as collision avoidance and co­ 
ordination of member of robots be solved.

The architecture design requirements [1] for a multiple 
robot system are complex and have several differences 
compared to single robot architecture. However, the effort to

2 Related work

Co-operative robotics is a relatively new research area that 
began in the late 1980s. There has been much work in 
multiple mobile robot systems, much of which has not 
considered the use of fuzzy logic. Fukuda and Nakagawa [2], 
introduced new project in the field of co-operative robotics 
called CEBOT (Cellular Robotic System). Their work is 
based on co-ordination among mobile multi-robot systems 
with emphasis on communication mechanisms, which can be 
used to support co-ordinated behaviour. Asama [3], 
developed the ACTERSS (ACTor-based Robot and 
Equipment Synthesis System) a multi-robot system designed 
for heterogeneous agents, based on communication issues. 
The robots act independently, but if the need arises, they
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negotiate with other robots to form a co-operative group to 
handle the problem. Arkin [4], presents research concerned 
with sensing, communication, and social organisation for 
multiple mobile robots that are able to forage and retrieve 
objects in a hostile environment. Noreils [5], proposed a 
three-layered control architecture for semi- heterogeneous 
robots that included a planner level, a control level, and a 
functional level. The first (planner) level is the high-level 
decision-maker. Many of the recent co-operative robotic 
systems, in contrast to the earlier works, are based on a 
behaviour-based approach [6]. For instance Mataric [7], 
developed behaviours for multi-agent systems using 
subsumption style architecture. Further reading on recent 
trends in control architecture for autonomous vehicles can be 
found in [8]

This work presents the design of a fuzzy logic control for 
co-operative agents. Each robot (agent) will be able to reach 
an independent object from an initial position, without any 
prior knowledge of the environment, avoiding collisions with 
the other agents and in the shortest possible travel time.

distance to the goal. Using a compass the robot will be able to 
correct the error (Ad) between its position and the goal agoai. 
The robot also receives a signal from a beacon placed on top 
of the goals and it assumed that this signal is always 
receivable. The output signals from the fuzzy controller are 
the commands for the speed control of the two wheels of the 
mobile robot

3 Problem statement

In this paper it is assumed that there are number n mobile 
robots (MIABOT V2) figure 1, which must reach two 
independent objects (dand G2) without colliding with each 
other.

Figure 1. Photo of MIABOT V2 robots

The robots are moving in 2-dimensional completely 
uncertain and unknown environment with non-constant 
velocity. The unknown environment is assumed to be filled 
by motionary and/or stationary neighbour robots. The 
geometric configuration of the mobile robots during the co­ 
operative task is shown in figure 2. Ultrasonic sensors provide 
information about the neighbouring robots and their relative 
positions. It is assumed that the ultrasonic sensors mounted on 
top of the robot obtains the information in terms of polar co­ 
ordinates (d,a) with error-free measure. This information will 
be the distance to the nearest robot (droboi) and the direction to 
the nearest robot (amboj in robot co-ordinates (xr, nyf,J. An 
additional input provides information about the direction and

Figure 2. Geometric configuration of the mobile robots 
during the mission.

4 Fuzzy theory

This section of the paper gives a brief description of the basic 
concepts of fuzzy theory including fuzzy sets, operations on 
fuzzy sets and fuzzy inference [9,10].

4.1 Fuzzy sets

In the classical theory a crisp set A is a collection of objects 
or elements x taken in a universal set U. The characteristic 
function fa: x e U ->• {0,1} declares which elements of U are 
members of the set and which are not. If x belongs to A then 
HA (x)-l otherwise fiA (x)=0.

For a fuzzy set, the characteristic function allows various 
degrees of membership for each object or element. When A is 
a fuzzy set and x is a relevant element, the proposition "x is a 
member of A" is not necessarily true or false, but if may be 
true only to some degree, the degree to which x is actually a 
member of A.

According to this introductory discussion the formal 
definition of a fuzzy set is stated as follows:

Let U be a universal set, then the fuzzy set A in U is defined 
by a set of pairs:

= {(x,ti A (x))\xeU} 0)

where the ,HA (x) is called the membership function of x in A, 
U is defined as Universe of discourse and A. is defined as the 
supremum of,//^-^ over U-

4.2 Operations on fuzzy sets

In fuzzy theory the most common crisp operators, such as 
union, intersection and complement are used, always
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dependent on a particular application. According to fuzzy set 
theory for any two fuzzy set A and u defined in U, with 
membership functions being M(X) and juu (x) respectively the

membership function ne(x) of their intersection C = A n u is 
pointwise defined by

= min(nA(x),

membership function 
pointwise defined by

(3)
= mox{/jA(x),

)}, x e U (2) 

of their union N = A u u is

x eU

membership function n(A (x) of the complement of a fuzzy set 
I is defined by

(4)x eU 

4.3 Fuzzy inference

The fuzzy inference method, which has been selected for this 
work is the fuzzy min-max method proposed by Mamdani 
[11]. Fuzzy inference is a reasoning method using fuzzy 
theory in which the human knowledge is expressed using 
linguistic rules. Membership functions, assigned with 
linguistic variables, are used to fuzzify physical quantities. 
Fuzzified inputs are inferred to a fuzzy rule base. The 
relationship between fuzzy inputs and fuzzy outputs is 
characterised by the rule base. For instance, a simple fuzzy 
control rule relating the input d to the output e maybe 
expressed in the following form:

IFdisFTHENeisK (5)

where F and K are fuzzy values defined on the universes of X 
and J, respectively. The response of each fuzzy rule is 
weighted according to the degree of membership of its input 
conditions. The role of the fuzzy inference is to provide a set 
of common actions according to fuzzified inputs. The next 
step is the defuzzification method to convert the fuzzy values 
into a crisp output value of the fuzzy system. In other words 
defuzzification is the process of mapping from a space of 
inferred fuzzy control actions to a space of non-fuzzy (crisp) 
control actions. The defuzzification method used for this 
work is the centroid method and is expressed in the form as 
follows:

5 Fuzzy approach on multiple 
co-operative agents

In this section the paper proposes the fuzzy approach for 
multiple co-operative agents. The agents move through an 
unknown environment in which they must avoid collision 
with their neighbours and must reach an allocated goal. Fuzzy 
logic is used to implement the direct map between the input 
space (sensor data) into the output space (control commands 
UL and UR).

The proposed algorithm for the co-operative agents can be 
decomposed in seven steps as follows:

Algorithm CARPS
Step 1_: Start the robot (noisy sensor measurements) from 
the position R, and set robot's speed.

Step 2: Detect the goal? (distance to the goal, signal from
the beacon)
If true: go to step 3
If false: flnd_goal (change speed ui=ur>set speed), and
then go to step 2

Step 3: Orientates the goal? (angle to the goal,
measurement from the compass)
If true: go to step 4
If false: change_orientation, (change speed u/>ur or
U/<HI) and then go to step 3

Step 4:_ Moving robot (neighbour) found? (signal from
ultrasonic sensors)
If true: avoid_moving^robot (change the speed u/=ur>set
speed or u/=ur<set speed) and then go to step 4
If false: go to step 5

Step 5: Static robot found? (signal from ultrasonic
sensors)
If true: avoid_static_robot (change speed u,>ur or ui<ui)
and then go to step 3
If false: go to step 6

Step 6: get_goal (change speed u\~ur >set speed) and 
then go to step 7

Step 7: Reach the goal?
If true: STOP the robot (distance to the goal equal to
zero)
If false: then go to step 2

(6)

where e* is a crisp output value of the fuzzy system, n is the 
number of control rules associated with the fuzzified inputs,

The above algorithm presents an efficient and effective 
approach for co-operative agents moving in 2-dimensional 
environment. However, some questions still remain for the 
proposed algorithm. The algorithm only considers the nearest 
neighbour robot at a given time. The assumption that the 
robot is able to detect the status between static and moving

1 c is the centroid of the membership function associated neighbour robot is also made. The algorithm is suited to the

with each linguistic value in the output space. proposed CAROS approach as all the robots are
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homogeneous. Figure 3 illustrates the flowchart of the 
proposed algorithm for the co-operative agents.

Figure 3. Flowchart of the proposed algorithm

The fuzzy control system adjusts the velocities of the two 
wheels of the mobile robot, which are independently 
controlled by a pair of DC motors. The input signals to the 
fuzzy system are the distances to the nearest robot 
robot_close, robotjnedium and robot Jar, the direction to the 
nearest robot negative_left_big, negative_left_small, zero, 
positive_right_small, and positive_right_big, the distance to 
the goal goal_close, goal_medium and goal Jar, and finally 
the direction to the goal goaljjigjeft, goaljeft, goaljront, 
goal_right, and goaljbigj-ight. The output control signals of 
the fuzzy system are the two vector velocities of the left and 
right wheel (u_^ u_j), slow, medium, and fast. Very careful 
consideration is needed for the design of the universe of 
discourse of the two velocity vectors. Those two velocity 
vectors must be able to accelerate, decelerate and turn the 
robot into the required turning angle.

The flowchart in figure 3 shows the flow of the proposed 
control algorithm within a certain amount of time (t). The first 
function will Tire' if the robot cannot detect the beacon a 
simple command to the two motors will increase the robot's 
speed. As long as the robot detects the beacon the robot's 
speed returns to predefined one. The second function 
change_orientation will 'fire' if the robot does not orientate 
the goal. The differential (AU) of the two velocities will 
orientate the robot to the goal. As the flowchart shows, the 
functions are closed loop to make sure that there is zero error 
before proceeding into the next step. The third control 
function will 'fire' only if a neighbour robot has been found 
around the agent within a certain distance and direction. As 
stated earlier, at this point only one agent at a time is 
considered, and it is also assumed that the robot is able to 
define its motion. The output signals of the fuzzy system are 
the velocity vectors for the two wheels, either positive or 
negative. As long as the robot finds a neighbour in a collision 
zone it will automatically speed up or slow down. Four of the 
fifteen fuzzy control rules required to generate the 
avoidjieighbour function are given as follows:

7. If (angle_r is negative Jeftjbig {NLB}) and (dist_r is 
close {C}) then (u^ is medium {M})(u_R is medium {M})
2. If'(angle_r is negativeJ.eft_small {NLS}) and (dist_r is 
far {F}) then (u^ is fast {F})(u^ is fast {F})
3. If (angle_r is zero {Z}) and (dist_r is close {C}) then 
(U_L is slow {S})(u_R is slow {S})
4. If (angle j- is positive_right_small {PRS}) and (dist_r is 
medium {M}) then (U_L is medium {M})( U_K is medium 
{M})

In order to improve and enhance the avoidjieighbour 
function ongoing research is being carried out. The fourth 
function avoid_static_robot is needed in case the robot finds a 
broken agent which is unable to complete the mission. In this 
case the robot must be able to avoid the neighbour and carry 
on with its own mission. The scenario that the robot is only 
able to avoid one neighbour at a time is applied in this 
function as well. The output control signal of the fuzzy 
system is the differential command of the two independent 
drive wheels. Four of the fifteen fuzzy control rules required 
to generate the avoid_static_robot function are given as 
follows:

7. If (anglej- is negativeJeftjjig {NLB)) and (dist_r is 
close {C}) then (u_^ is medium {M})(u_R is medium

G-41



Appendix G Published Work

2. If (angle_r is negativeJeft_big {NLB}) and (distj is 
far {F}) then (u^ is fast {F})(u_^ is fast (F))
3. If'(angle_r is negativejeftjsmall {NLS}) and (distj is 
close{C}) then (u_i is medium {M})(u_R is slow{S})
4. If (angle_r is zero {Z}) and (distj- is close {€}) then 
(v_i is fast (F))( M_JJ is slow {S})
5. If'(angle_r ispositive_right_small{PRS}) and (distj- is 
close (Q) then (u_j. is slow{S})(u^ is medium {M})

The last function get_goal of the proposed algorithm is 
very similar to the first one. If the algorithm passes all the 
stages and the robot orientates to the goal without having any 
problems with other agents, then its speed increases in order 
to approach the goal in the shortest possible time. The 
algorithm is repeated until the agent reaches the goal.

6 Experimental results

To test and analyse the proposed fuzzy system for the co­ 
operative agents, simulation and experimental studies were 
performed. Simulation was carried out using the Matlab 
Fuzzy Logic Toolbox. The two most important functions 
avoidjieighbour and avod_staticjobot were simulated and 
analysed. Figure 4 and 5 show a 3-D surface and the 
relationship between the two input variables distance and 
angle to the nearest static agent and the two output variables 
the velocity of the left and right wheel (u_L, U_R). It is 
demonstrated that according to the static robot position the 
velocity of both wheels is modified respectively.

so

angle,

Figure 5. Output for the velocity of the right wheel according 
to the distance and direction of the nearest static neighbour

Figure 6 presents the relationship between the two input 
distance and direction to the nearest moving agent and the 
velocity for both left and right wheels control output.

50

angle

angle

Figure 4. Output for the velocity of the left wheel according 
to the distance and direction of the nearest static neighbour

Figure 6.. Output signal for the velocity of both left and right
wheel according to the distance and direction of the nearest

moving agent

From figure 6, it can be observed that when the robot 
finds a neighbour agent in front of it, it instantly reduces its 
speed on both wheels. If the moving neighbour is far from the
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robot trajectory the fuzzy system sends a signal to the DC 
motors for either acceleration or deceleration.

7 Conclusions

This paper has considered the control problem for co­ 
operation within multiple robots. The paper proposed a new 
decentralised control for co-operative agent using fuzzy logic 
control. Each agent caries a MIMO FLC and has the ability to 
sense the goal and the neighbour robots. The design of the 
fuzzy approach is based on min-max Mamdani method. The 
new decentralised control was shown that is more suited to 
the CAROS approach. Simulation results were also presented 
to show how the two independent velocities change according 
to the dynamic environment.

The next phase of this work is to implement the same 
method but with more than one robot at a tune. In order to 
achieve further improvement experiments with other fuzzy 
inference techniques will be considered for obtaining more 
accurate output velocities. Finally research is being carried 
out in order to combine the two control-output variables into a 
single control variable.
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Abstract - Intelligent autonomous mobile robots and 
multi-agent (robot) systems, having different skills 
and capabilities for specific sub tasks, have the ability 
to solve problems more efficiently and effectively 
than single agents. This paper discusses recent 
research on co-operative robots, the design of their 
control architectures and proposes future 
developments and improvements by presenting 
design methods, evaluation of the control systems, 
and applications such as robot football. Different 
forms of co-operation are presented. In particular, 
the paper will show how multiple mobile robot 
systems architectures may be designed by examining 
six key issues: (I) centralised, decentralised or 
hybrid control, (2) heterogeneous or homogeneous 
robots, (3) co-operation with-or-without 
communication, (implicit or explicit communication), 
(4) making agents that work as a team, (5) multiple 
mobile robots path planning, and (6) learning. The 
paper also reviews and gives brief descriptions of the 
most common architectures for co-operative robots, 
emphasising the theory and the implementation of 
these techniques. Robot football provides an 
excellent research opportunity for integrated multiple 
robots systems, the robot football system at UWCN 
(University of Wales College, Newport) is described. 
The paper concludes with a discussion on future 
developments and improvements.

Keywords: Co-operative Mobile Robots, Design 
Architecture, Robot Football

1. Introduction
Achieving co-operative multi-agent (robot) 

systems is a very difficult and challenging task. The 
assumption that multiple agents have the potential to 
solve problems more efficiently than a single agent,

has led to recent research effort into multi-robot 
systems [1]. There are several reasons for developing 
and designing co-operative robots. Firstly, distributed 
action, at the same time multiple robots can be in 
many places [2]. Secondly, it is quite possible that 
many applications could be solved much more 
quickly if the mission could be divided across a 
number of robots in parallel [3]. Thirdly, building 
and using several simple robots can be easier, 
cheaper, more flexible and more fault-tolerant than 
having a single powerful robot for each separate task 
[4]. Fourthly, several problems are well suited for 
decomposition and allocation among multi-robot 
systems. The meaningful operation of a multi-robot 
system requires that serious problems such as 
collision avoidance among individual robots and co­ 
ordination of member robots be solved [5].

This paper is organised into seven sections. 
The related work on co-operative robots is defined in 
section 2. The six key issues for designing multiple 
mobile robot systems architectures are discussed in 
section 3. Section 4 is concerned with forms of co­ 
operation. Section 5 presents the robot football 
system of the UWCN. Section 6 suggests future 
developments and improvements. Section 7 contains 
the conclusions.

2. Related Work
Co-operative robotics is a new research area 

that began in the late 1980s. Fukuda and Nakagawa 
[6], introduced new project in the field of co­ 
operative robotics called CEBOT (Cellular Robotic 
System). Their work is based on co-ordination 
among mobile multi-robot systems with emphasis on 
communication mechanisms, which can be used to 
support co-ordinated behaviour. About the same time 
relevant work on co-operative robotics carried out by
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Beni [7], SWARM (large numbers of homogeneous 
robots), and Asama [8], with the ACTRESS (ACTor- 
based Robot and Equipment Synthetic System), 
multi-robot system designed for heterogeneous 
agents, with focus on communication issues. The 
robots act independently, but if the need arises, they 
negotiate with other robots to form a co-operative 
group to handle the problem. The 1990s decade 
begins with the works of Caloud et al. [9], on the 
GOFER architecture, and Steels [10]. The latter used 
the behaviour-based approach to solve the problem of 
co-operation between distributed agents. Research 
activity on co-operative robots increased dramatically 
with important work by [11, 12, 13, 14], the latter 
presents research concerned with sensing, 
communication, and social organisation for tasks 
such as foraging. Mataric [15], developed behaviours 
for multi-agent systems using subsumption style 
architecture. Noreils [16], proposed a three-layered 
control architecture that included a planner level, a 
control level, and a functional level. Similar work 
was carried out by [17, 18, 19, 20, 21, 22, 23,]. There 
is more work reported in the literature, but the 
aforementioned is the most significant within the 
research community. All the above research activity 
has attempted to solve the same problem (co­ 
operation among robots) by adopting different 
techniques. The solution to the problem is not 
straightforward, so many of the researchers prefer to 
perform simulation rather than physical 
implementation. Many of the recent co-operative 
robotic systems, in contrast to the earlier works, are 
based on a behaviour-based approach [24]. The 
emphasis on the connection between intelligence and 
environment is strongly associated with the 
behaviour-based approach but is not intrinsic to 
multiple robot systems.

Shen [25], presents a system architecture for 
robot football in order that the robot players can 
recognise and track objects in real-time, navigate in a 
dynamic field, collaborate with team-mates, and 
strike the ball in the correct direction.

3. Architecture Design for Multiple 
Mobile Co-operative Robot System

The architecture design requirements for a 
multiple mobile co-operative robot system is 
complex and have several differences compared to 
single robot architecture. According to Hayes-Roth 
[26], robot architecture refers to the interconnection 
topology between components with the specific 
functionality and interface of each component, in 
which perception, reasoning and action occur. 
However, from another point of view, multiple robot 
architecture of a co-operative robotic system 
provides the infrastructure upon which collective 
behaviours are implemented, and determines the 
capabilities and limitations of the system [4].

In the following subsections the six key 
issues, regarding the architecture design of multiple 
mobile co-operative robot system are discussed.

3.1 Centralised, Decentralised or Hybrid Control
The first decision that has to be made is 

whether the control architecture will be centralised, 
decentralised or one form of hybrid. There is no 
specific law or any particular restriction of which 
control form is the best. This is because the control 
architecture that is suitable for a given task may not 
be flexible and suitable for another.

In centralised control architecture, decisions 
are made in a central mechanism or in a single 
control agent, and afterwards transmitted to the 
executive components (robots). Due to the 
complexity of the hierarchical planning system the 
development of these architectures is difficult 
because it is not easy to determine the suitability of 
this concept in advance [19].

With decentralised control architecture each 
robot makes its own decisions and performs only 
these decisions without having any connection with a 
central mechanism or single control agent. This is 
very important for a multiple mobile co-operative 
robot system, because problems such as fault- 
tolerance, the difficulty of adding new features into 
the system, and re-implementation of the system are 
automatically avoided. The research literature has 
been dominated with works on decentralised control 
architecture, avoiding the centralised approach. 
Related work on a decentralised approach has been 
carried out by Parker [27], which proposes a fully 
distributed, behaviour-based architecture called 
ALLIANCE.

Hybrid control architecture - often designers 
decide to adopt a hybrid solution of the decentralised 
and centralised approach. If the problem lies where 
the decentralised system needs an internal central 
agent a hybrid solution has to be adopted. There are 
few reports of work on co-operative robot in the 
literature in which the control architecture is hybrid. 
An example is the work of Noreils [16] in which the 
architecture is composed of, three levels: functional, 
control, and planner level. The last level is the level 
at which complex operations such as planning and 
co-operation are carried out.

3.2 Heterogeneous or Homogeneous Robots
A second step in the design of the architecture 

for multiple mobile co-operative robots is the 
selection between heterogeneous and homogeneous 
robot characteristics. The robots should be either 
homogeneous or heterogeneous, depending on the 
task being undertaken. This decision is very 
important because any underestimation or 
overestimation of the problem could lead to wrong 
design with undesired results. The following 
paragraphs explain and give appropriate definitions
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of the terms homogeneous and heterogeneous with 
reference to the related works of several other 
researchers.

A homogeneous robot team consists of a 
number of robots, which have the same skills and 
capabilities. So far, most of the research projects 
involve homogeneous robot teams. This choice 
makes the design process much easier, because it 
minimises the complexity of task allocation.

Co-operation may involve a team of robots 
provided with different skills (the mechanical design 
may be different also), referred to as heterogeneous 
robots [16]. The complexity of the design is 
increased dramatically compared with the design 
process with homogeneous robots. Once again the 
designer has to be able to understand the problem in 
order to decide what kind of strategy will be 
implemented for given task allocations. Despite the 
fact that multiple robot architecture design is very 
complex using heterogeneous robot teams, work has 
been reported by [28, 1, 29, 30, 31].

3.3 Co-operation with-or-without 
Communication

Communication between multiple robots may 
make the team able to perform some co-operative 
tasks more efficiently. Communication is expressed 
as a form of interaction in which the dynamic 
relationship between agents is expressed through the 
intermediary of mediators, signals, which once 
interpreted, will affect these agents [32]. However, 
achieving co-operation within the robot team with 
communication, produces several advantage i.e. 
achieving very complex tasks and also disadvantages 
i.e. waiting time, and transmission error. The above 
benefits and restrictions of communication led the 
research community to distinguish between explicit 
(with) or implicit (without) communication. The two 
main forms of communication are explained below.

If the robots (agents) communicate with each 
other directly, or if there is broadcast communication 
between them, then, this form of communication is 
called explicit communication. Ichikawa et al. [5] 
proposed the Hello-Call communication protocol, 
which was utilised low-level intelligence multi-robot 
system, in order to investigate the message 
transmission ability among the robots. Asama et al. 
[33], developed a communication system between 
multiple robotic agents able to exchange messages by 
radio communication. Yoshida et al. [22], presents an 
optimal design for local communication between 
multiple mobile robots. Their aim was to minimise 
the information transmission time by creating an 
optimal communication area. In other work, Yoshida 
et al. [34], classify mobile robot communication into 
two categories. Global communication (210 robots) 
with wide-area media and local communication (<10 
robots) with limited capacity. Parnichkun and Ozono 
[35], support that efficient co-operation depends

upon two main factors, communication, and 
movement of the robots. They propose a 
communication method for a co-operative robot 
system using CDCSMA-CD (Code Division Carrier 
Sensing Multiple Accesses with Collision Detection), 
which can be used for both point-to-point and 
broadcast communication.

If the robots do not communicate with each 
other, or there is no broadcast communication 
between them, but there is communication through 
the world environment, then this form of 
communication is called implicit communication. 
Arkin [36], suggests that communication bottlenecks 
between agents pose potentially serious drawbacks in 
co-ordinated behaviour. He proposes the use of 
multiagent schema-based robot navigation involving 
co-operation without communication. Deneubourg J. 
et al. [11], presents work in which robots move 
randomly, do not communicate, have no hierarchical 
organisation, have no global representation, can only 
perceive objects just in front of them, but can 
distinguish between objects of two or more types 
with a certain degree of error.

3.4 Making Agents that Work as a Team
The key issue in team working is how well the 

modelling between agents and environment has been 
developed [37]. This key issue has a strong 
relationship with the communication key issue 
(modelling of purely communicating agents, or not). 
However, there are several options available of how 
modelling could be achieved, for and between agents. 
Ferber [32], proposes a technique of modelling 
agents and their environment. Other works and 
techniques can be found in the literature such as 
Friedrich et al. [38], who presents (EOs) Elementary 
Operations, a method of combining the agent specific 
nature of skills with the requirements for a general 
action knowledge representation, inherent to multi- 
agent systems.

3.5 Multiple Mobile Robots Path Planning
Multiple robot path planning differs from 

single robot path planning in several ways. A mobile 
robot has to avoid obstacles and also other robots. To 
address this particular problem is not an easy task. 
Significant work has been reported on multiple robot 
path planning, by Hashimoto and Oba [39], who 
proposes a dynamic control method to transfer a 
common heavy object by several wheeled mobile 
robots. Ota et al. [40], present a motion planning 
method for robot groups. They classify the robots 
into two groups (P-group/cluster) and implement a 
motion-planning method using the virtual impedance 
method. Khatib [41], described a unique real-time 
obstacle avoidance approach for mobile robots based 
on the artificial potential field concept. Sasaki et al. 
[42], propose an algorithm for grasping and handling 
a large object by co-operative multiple robots. Their
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work is based on the difference (whether the mass 
centre of the object is recognised or not) between two 
optimisation problems (decision of initial robot 
arrangement/decision of final robot arrangement). 
Azarm and Schmidt [43], present a novel approach to 
decentralised motion planning and conflict-resolution 
for multiple mobile robots.

3.6 Learning
The final key issue in architecture design is 

learning in multiple robot systems. Changes within 
the robot's environment can result in poor robot 
performance and decreases the ability to achieve a 
given task. One solution to this problem is to 
introduce a learning method. The chosen method will 
increase the robot's performance and its ability to 
respond correctly to environment changes. This 
desirable result will be achieved by learning, so the 
robot system will be able to optimise and set its own 
control features. The main problem is that compared 
to single robot learning, co-operative learning adds 
the challenge of a much larger search space, 
awareness of other team members, and also the 
synthesis of the individual behaviours with respect to 
the task given to the group. So far the main learning 
approach used in autonomous robotics is 
reinforcement learning. More recently, lazy learning 
has become the leading bias. Today the full 
integration of those two techniques lead to what is 
called lazy Q-learning. Work in this field have been 
done by [44, 15].

4. Forms of Co-operation
The word 'co-operation' has been applied to 

behaviour between humans, animals and robots, 
although co-operation may take various forms. One 
form of co-operation is by exchanging information or 
signals. In this kind of co-operation an entity 
synchronises its action with respect to the other entity 
(replace the word) or co-ordination (entity co­ 
ordinates its activity with another) takes place 
instead. Co-ordination is based on a system of signals 
by which an entity influences the behaviour of 
another entity. Examples of such co-ordination can 
be found both in animal and human society. People 
have to learn specific rules to be able to interact with 
others. In the animal society a signal is produced by, 
for example, a movement of the animal itself (a 
dance) or a modification of its aspect (colour of its 
skin changes). Work in this area, which also 
examines the social behaviour of animals, has been 
carried out by Tinbergen [45] and Wilson [46].

Another form of co-operation in the robotics 
field is where different robots provided with different 
skills work toward a common goal. This kind of co­ 
operation appears commonly in human society and 
can be described through the classic example of the 
experts metaphor. This metaphor is already applied 
in several artificial intelligent systems [47], where

experts from different fields are trying to solve a 
large problem together. Experts decompose the 
problem into sub-problems, each sub-problem being 
handled by a specific expert. They then define such 
issues as how they will work together and what kind 
of information they have to exchange. Ferber [32] 
describes in detail forms and methods of co-operation 
in multi-agent systems.

5. Robot Football at UWCN
Recently, robot football is gaining much 

interest in the field of robotics because it provides a 
suitable platform for experimentation and 
investigation of co-operative multi-robot systems. 
Robot football is an excellent testbed for studying co­ 
operative multi-robot systems because it involves 
real-time vision processing, obstacle avoidance, 
sensing local information, and position correction.

In the following a brief description of the 
robot football at UWCN is presented. Figure 1 shows 
the overall system structure comprising robots, 
communication and vision system.

Frame Grabber 
MATROX-METEOR-II

Ball Position and Robot Position

PENTIUM 
400 MHz

MAIN STRATEGY 
Goalie, defender and striker

RF
418MHz 

or 433MHz

\jxAl

/V
\N

Figure 1: Overall System Structure

5.1 Robots
The design philosophy is to realise 

autonomous micro robots with various functions so 
that they can be used not only for robot football but 
in other applications as well. The robots illustrated in 
Figure 2 should be small in size (7.5cm3) to comply 
with the MIROSOT rules [48], their body must be 
very robust in order to protect the internal hardware 
from damage caused by collisions with other robots. 
The robots carry a control board with the CPU, RX 
module, H-Bridge, extension ports, and other 
functional modules.

The DC motors driving the two wheels can be 
controlled separately so that the robot can respond to 
a large set of flexible commands. Table 1 summarises 
the specification of the robots.

5.2 Communication System
According to MIROSOT rules, the method of 

communication to the robots must be by RF 
communication with the host-PC using the serial 
port. The frequency can be selected by exchanging
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between 418 and 433 MHz modules. An optional TX 
module can be added for two-way remote 
communications.

Figure 2: MIABOT V2 Robots at UWCN

Table 1. Specification of MIABOT V2 Robots
Metal case (7.5cm x 7.5cm x 7.5cm)
AT90S8515
4 MIPS oper, 8KB RAM, 512B SRAM
2 DC Motors
Speed Im/s, opto-feed for each wheel
78 Pulse per revolution

Frame 
CPU

Motor
Drive Train
Encoder
Com. Module (TX/RX) RF receive com mod (418 or 433Mhz)
Battery 2 x Re-chargeable NIMH (2 x 4.8V)

5.3 Vision System
In order that the vision system can identify the 

robots and their IDs, uniforms of blue or yellow 
colour are placed on top of the robots. The uniforms 
must contain a team colour and must not contain the 
ball colour (orange). To find the direction of the 
robot and its ID two circles are used, one 5cm in 
diameter (team colour) and another 3cm in diameter 
(robot ID colour). A CCD colour camera takes the 
pictures and the frame grabber grabs the images at a 
rate of about 30 frame/sec. The algorithm running on 
the host computer calculates the centre of the robot 
and works out its direction.

A problem that arises when the vision system 
has to identify the robots is the changes of the 
lighting conditions. As the lighting conditions change 
camera re-calibration is needed. To overcome this 
problem ongoing research on auto-calibration is 
being carried out. However the illumination is rarely 
constant in intensity or colour through a scene. 
Experiments have shown that the colour information 
varies a little compared to intensity, which varies 
widely [49]. In this situation the HSI (Hue Saturation 
Intensity) colour model is the best solution because 
the intensity is decoupled from the colour 
information in HSI model. The problem in this case 
is the transformation or conversion from the RGB

(Red Green Blue) values to HSI, which is time 
consuming for the computer. The equations 1, 2 and 
3 below show how to convert the RGB values into 
HSI [50].

H = cos" (1)

S = l-
R + G + B

min(R,G,B)

i = ~(R + G + B) (3)

6. Future Developments and 
Improvements

The field of co-operative mobile robotics is 
still an open research area with a significant 
application domain. Future developments and 
improvements are vital in order that the field of co­ 
operative robotics can become more for applications 
in the real world. So far the research in this area has 
to show more theory and scepticism rather than 
integrated solutions of how to solve problems, which 
involves multiple mobile robots. As stated in section 
2 several researchers have addressed and solved 
partial the problem of co-operation between multiple 
robots with various solutions and techniques.

In this section the paper proposes possible 
developments and improvements in the field of co­ 
operative robotics, which are still very attractive for 
the near future. Firstly the theory and study of social 
insects, animals by biologists should be applied to 
multiple robot systems more extensively for the 
development and improvement of control strategies. 
What is still missing on the current research is the 
mathematics on which to base models, of both robots 
and the tasks, which they are designed to accomplish. 
Secondly in case of group of robots (swarm 
intelligence) the interaction period affects the 
effectiveness. For instance if there is no interaction 
between each robot, their working ability is in 
proportion to a number of robots. Therefore research 
is necessary to attack the problem of interaction 
period for multiple mobile robots. Third, achieving 
co-operation within competitive situations is difficult 
a task. In the robot football players have to co­ 
operate efficiently in order to win the game. A 
challenging area of research is the improvement and 
development of more sophisticated solutions to 
improve system robustness. Those solutions could be 
adding passing capabilities and communication to 
improve the ability of players to co-operate, better 
sensing elements to increase awareness and may be 
construction of players which are able to learn 
through their experience. Fourthly, problems 
concerning a co-operation of robots with different
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features, is an attractive subject to be surveyed in the 
future.

7. Conclusions
This paper has considered the problem of co­ 

operation within multiple mobile robots. Recent 
research activities within co-operative robotics, the 
architecture design for multiple mobile co-operative 
robot systems and examples of applications have also 
been discussed. This paper has discussed the six key 
issues for developing such co-operative systems and 
has highlighted related work. Forms of co-operation 
have been presented and analysed with appropriate 
examples. Robot football at UWCN has been 
presented as an application of co-operative robotics 
with a brief description of its subsystems. Possible 
developments and improvements in the field of co­ 
operative robotics, which can lead to more efficient 
and effective systems, were also discussed.
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