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Summary

This thesis is concerned with the development, design and implementation of a novel hybrid
multi-agent orientated control architecture for navigation of multiple autonomous mobile robots
operating in an unknown and unstructured environment populated by static and/or dynamic
obstacles.

The proposed hybrid control architecture is modular and draws its design from competitive
tasks architecture, production rules architecture, connectionist architecture, dynamic system
architecture, multi-agent architecture and subsumption architecture. The reasoning of the
control architecture is both deliberative and reactive. The proposed reactive behaviours are
modelled using fuzzy logic, neural networks and hybrid behavioural encoding incorporating
stateflow-fuzzy logic and stateflow-neural networks. The deliberative system is comprised of
finite state machines. The processing is achieved in a centralised and/or decentralised manner
using the proposed controller-agent concept from the field of multi-agent systems. The
framework of the control architecture is suitable for adaptation in single and multiple robot
navigation,

The control architecture has been implemented in MATLAB/Simulink using the full non-linear
model of the MIABOT V2 mobile robots. It is evaluated incrementally in order to verify its
overall control performance and the performance of each subsystem. Results show that the
control architecture’s modularity, distribution, reactivity and behaviourbased structure
provided the overall control system with robustness in all cases of navigation tasks utilising
either single or multiple mobile robots. Furthermore the results obtained show the effectiveness
of the control architecture in navigation tasks involving up to five mobile robots operating in
unknown static and dynamic environments. The results demonstrate that the control strategy
chosen for navigation of multiple mobile robots is efficient and also established the robustness
of the control system architecture against the desired requirements, such as supervision,
decision-making and co-ordination of internal control structures (subsystems). The autonomous
mobile robots were exposed to a complex and highly dynamic environment and successfully
achieved every control objective. Their trajectories were smooth despite the interaction between
several behaviours and the presence of unexpected static and dynamic obstacles.

The main contributions of this thesis are: development of a novel hybrid multi-agent based
control architecture called CAROS; novel approach for identification of direction of moving
obstacles (other robots) using finite state machines; novel approach for behavioural encoding
using hybrid solutions such as stateflow-fuzzy and stateflow-neural for autonomous robot
navigation; proposed a design methodology for developing integrated solutions for autonomous
mobile robotic systems and classification of the main design methodology (properties) of
control systems architectures for autonomous mobile robots. Less significance contributions are:
literature survey on approaches/methods related to the development of intelligent control
architectures for navigation of multiple autonomous mobile robots; modelling of MIABOT V2
mobile robots; comparison between PI, fuzzy and neural controllers and algorithmic
methodology for discovery of fuzzy/neural local models from observation data; identification of
the relationship of the most important requirements/properties of control architecture versus the
main control architecture specifications using the Quality Function Deployment tool; modular
approach for modelling and evaluation of three types of sensor and sensor sensitivity.
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Introduction, Motivation and
Overview of the Thesis

1.1 Introduction
This thesis is concerned with the development of modelling and identification techniques for the
design and implementation of a novel hybrid multi-agent oriented control architecture for

navigation of multiple autonomous mobile robots operating in an unknown and unstructured

environment populated by static and/or dynamic obstacles.

Autonomous control and navigation of mobile robotic vehicles are fundamental enabling
technologies for automation in a variety of operating domains ranging from industrial
environments to remote planetary surfaces. The engineering problem to be solved generally
consists of achieving real-time sensor-based motion control among obstacles in the enviroﬁment
while performing useful tasks throughout its accessible regions. In many instances, mobile

robots are required to do so using limited resources (e.g., power computation, sensors etc.) that

are resident onboard the vehicle.
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The remainder of this chapter is organised as follows: Section 1.2 highlights the main
motivations of the thesis for the research work carried out. Potential application areas for the
results of this thesis are given in section 1.3. The aim and objectives of the research carried out
is indicated in section 1.4. Section 1.5 presents the main challenges and problems in mobile
robot navigation with a brief discussion of how they have been approached in this thesis. An
overview of the thesis is presented in section 1.6. Section 1.7 presents a brief summary of the
main contributions of the research described in this thesis. A summary of the chapter is

presented in section 1.8. A list of references is given at the end of the chapter.

1.2 Motivation of the thesis

Clearly there are many motivations for working on mobile robots. The mobile robots,
sometimes called autonomous guided vehicles (AGVs), can be found nowadays in factories,
storage areas, universities, hospitals, nuclear plants, homes and even on Mars for planetary
exploration. Several robots working together provide an advantageous solution with respect to a
single-robot system. Advantages include: robustness, scalability, large range of possible tasks,
greater efficiency, parallel execution, ease of development, lower economic cost and problem

solving.

Theoretically, multiple robots should be able to accomplish any task that a single robot can.
However, since multiple robots can cover more ground than a single robot, there are tasks that
multiple robots can accomplish that a single robot cannot. Multiple robots may also offer
performance benefits. For instance, (Balch and Arkin, 1994) show how multiple robots provide
speedup for foraging and similar tasks. Furthermore, implementation of multiple robots offers
robustness, for example, if one robot malfunctions or is destroyed, the others can continue the
task. This is a prime advantage for military robots, which may be under attack from enemy

forces or damaged while cleaning fields of landmines.
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A single robot system for a particular task may need to be more complicated than each of the
individual robots in a multi-robot system for the same task. A single robot system will need to
handle all aspects of the task, while a multi-robot system can divide the subtasks among the
robots, requiring each robot to only know how to accomplish its subtask. Therefore, a multi-
robot system is often less expensive and easier to develop than an equivalent single-robot

system.

Multi-robot systems are inspired and have several similarities with multi-agent systems (MAS)
but are not exactly the same. Multi-robot systems have to interact with the real world, which is
difficult to model. According to (Fukuda and Ueyama, 1994), the behaviour of a robot depends
on its perceptions and on the physical constraints from the environment and other robots.
Therefore, there is a huge motivation for working on mobile robots as the challenges are not
small or easy to overcome. The design of these systems involves knowledge from different
areas, such as artificial intelligence, control engineering, electronics, mechanics and others.
Very often, the application domain is not structured involving a large number of interactions,
such as static and moving obstacles (other robots). When many robots work together in a
confined space, one of the biggest challenges is the control of individuals in order to avoid
interference and resource sharing problems. Another major challenge is the maintenance of the
multi-robot system working in good conditions. A single robot is hard to maintain. Many robots

are even harder.

According to (Arkin and Balch, 1998) another motivation for working on mobile robots is to
shed some light on human cognition. Such work may be considered good if it provides an
explanation of certain observed cognitive behaviour, for example dealing with conflicts in
reasoning or goals, and more importantly if it leads to testable predictions whose results are not

known in advance but which turn out to be as predicted.
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1.3 Application areas

The direct application for the results of this thesis is for robotics education, further research and
also for certain non-academic areas. According to (Altenburg, 1995) the appropriate use of
robots is best recognised where the task or environment is life threatening or for other reasons
inaccessible to people. Therefore, there is an increased interest in multiple autonomous mobile
robot systems due to their large applicability to various tasks. In the following brief outline of
application areas, which may involve operation of multiple mobile robots is given. This range of

applications is by no means exhaustive and appropriate references for these ideas are included.

According to (Boutros, 1994) military land mines kill and maim thousands of people every
month around the world, most of these people are civilians. Countries where civil wars have
persisted for many years are covered with thousands of unmapped and uncovered land mines.
Simple, inexpensive robots could detect and detonate these land mines, possibly sacrificing

parts or all of themselves in the process.

The treatment of hazardous materials spills is a real problem. Although every precaution is
taken to prevent accidental release of these materials, accidents do happen. The containment and
clean up of such materials is usually very costly. A multi-robot system equipped with
appropriate actuators could replace human workers in this task. This would certainly reduce the

threat to human life, and furthermore the robot could operate 24 hours a day.

The idea of sending and establishing a robotic presence on other planets has been suggested
since the beginning of the space age. Several researchers such as (Flynn et al, 1989), (Miller,
1990) and (Steels, 1990) have proposed that a selfreplicating system of mining and
construction robots could be set in place in other planets. This application domain can be also

extended for planetary surface exploration.
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The application of multiple robots to ocean floor exploration has been proposed by (Lipkin,
1995). The vast riches of the ocean floor can be explored and cultivated using a system of
multiple mobile robots. Underwater vehicles are already being used for surveillance,

explorations and salvage operations.

Certainly there are many more applications of multiple robots to mention such as agriculture,

medicine, ethological research and applications involving microtobotics.

14 Aim and objectives of the research
The aim of the research is to develop new hybrid control architecture for navigation of multiple
autonomous mobile robots operating in an unknown and unstructured environment populated by

static and/or dynamic obstacles.

The objectives of the research are to:

e Conduct a literature survey on approaches/methods related to the development of intelligent
control architectures for navigation of multiple autonomous mobile robots.

e Propose a design methodology for developing integrated solutions for autonomous mobile
robotic systems.

e Classification and discussion of the main design methodology of control systems
architectures for autonomous mobile robots.

e Familiarisation with existing control and learning algorithms and investigation of intelligent
control methods.

e Investigation and suggestions for merging multi-agent systems and control engineering.

e Familiarisation and modelling of MIABOT V2' mobile robots.

! MIABOT is trademark of Merlin Systems Corporation Ltd. Copyright 1999. All rights reserved.
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e Discovery of fuzzy-neural local models from observation data using clustering techniques
and supervised learning,

e Optimisation and tuning of control parameters using both classical and intelligent control
theories.

e Investigation of robust stability testing of closed-loop systems under uncertainty in robot’s
dynamics.

e Prediction and estimation of dynamic objects using linear and non-linear models.

e Design and implementation of the hybrid proposed control architecture for navigation of

multiple autonomous mobile robots.

e Evaluate the proposed control architecture and compare it with existing architectures.

Test the proposed architecture and analyse the results.

1.5 Challenges and problems in mobile robot navigation

Navigation is a vital issue in the research of autonomous mobile robots. The navigation of an
autonomous mobile robot may be considered as a task of determining a collision free path that
enables the robot to travel through an environment populated with obstacles from an initial
configuration to a target configuration, where configuration here refers to the spatial co-ordinate
and the heading angle of the robot. The ultimate goal of research in mobile robot systems is to
develop control strategies and architectures, which support autonomous operations in an

unknown or partially known environment.

Several methods for controlling mobile robot systems have been put forward. They can be sub-
divided into two main parts: global planning and local control. The former is usually conducted
off-line and is based on the complete knowledge of the environment and the robot. It enables
generation of collision-free paths, which are assumed to be executed correctly. The knowledge
about the system and the environment is originated either from the modelling through aprior

knowledge or from the perception through a sensory system. Many attempts such as geometric

1-6



Chapter 1 Introduction, Motivation and Overview of the Thesis

algorithms (Janet et al, 1997), potential fields methods (Khatib, 1986), (Hwang and Ahuja,
1992) and (Guldner and Utkin, 1995), as well as other heuristic or approximating approaches
(Brooks, 1983), (Lozano-Perez, 1983) and (Diamantopoulos et al, 2000) for solving this
problem have been reported. As a pre-specified environment is required for these methods to

plan the path, they fail when the environment is not fully known.

The local control or behavioural strategies, also known as the obstacle avoidance methods, are
more efficient in autonomous mobile robot navigation in an unknown or partially known
environment as has been demonstrated by (Brooks, 1986) and (Arkin, 1998). Such strategies do
not require a global map of the environment but utilises online sensory information to tackle
the uncertainty. Considering the up-to-date status of the robot and the relationships with its
environment the robot motion decision is made. The main advantage of this approach is the
ability to handle changing aspects of the environment because the structural modelling of the
environment is not necessary. Usually the behaviour strategies are well-suited for real-time
implementation, although they suffer from a deadlock problems since the high level planning is

no longer available.

Advanced mobile robotic systems operating in uncertain dynamic environments, combine
information from several sensory sources needed to acknowledge the dynamics of the robot.
Prior knowledge of the domain may be incomplete, and reasoning must be deliberative in nature
and fast enough to respond to unexpected events. Also, the information gained via sensory
subsystems is often incomplete, inaccurate and uncertain. To operate correctly in this type of
environment, planning systems must be reactive, taking into account, information about current
state. Thus advanced mobile robotic systems architectures must combine deliberative planning

with reactive sensor driven operations.
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In this thesis a novel hybrid multi-agent oriented control architecture for navigation of multiple
autonomous mobile robots operating in an unknown and unstructured environment populated by
static and/or dynamic obstacles is proposed. The control architecture integrates deliberative
planning and reactive control with attention focused on the design and co-ordination of robot
behaviours. The complex behaviour is generated by combining simpler behaviours. This
complex behaviour in the robot results from the interaction between the goals, the internal and
global states and the environment itself. Fuzzy logic, neural networks and hybrid solutions form

the basis of the behaviours in order to generate more complex observable robot behaviour.

1.6 Overview of the thesis

The thesis is organised as follows:

Chapter one is this introduction. It presents the motivations for conducting the research, as well

as an overview of the thesis.

Chapter two discusses research related to this thesis. The literature review of related work based
on co-operative robotics and control of multiple mobile robots (multi-agent robotics) is
presented. Background information of the birth and origin of the behaviourbased control is
given. The role of distributed artificial intelligence and distributed systems in the development
of control architectures for multiple autonomous mobile robots is presented. The field of
artificial life is introduced with several numbers of contributions. The origin of intelligent
control including its approaches is illustrated. Recent research in modelling, identification and
control of dynamic systems using methodologies from intelligent control are reviewed. Robot
navigation using intelligent control methods is described. In particular, the chapter reviews
robot navigation techniques up to date, focusing on those utilising fuzzy logic and neural

networks.
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Chapter three proposes, justifies and presents the main methodology adopted for the research
work carried out in this thesis. This has been broken down into nine basic steps. Each step is
presented individually focusing on design/modelling issues followed by a discussion of
advantages or disadvantages when the particular method is adopted. The nine steps include:
conventional control design, constrained optimisation using the norlinear control design tool,
parametric approach, fuzzy systems, neural networks, clustering, design of control system

architecture, multi-agent systems and finite state machines.

Chapter four presents the modelling of MIABOT V2 mobile robot. The robot is small in size

measuring 8cm® and is steered and driven by differential drive utilising two DC motors
enabling robot’s speed up to 1.2m/s. The full non-linear dynamic model of the robot is
established as a complete description of its dynamics. The robot’s dynamic model is used in

chapter six and seven for the design and evaluation of the proposed control architecture.

Chapter five presents control and robust stability analysis of the MIABOT V2 mobile robot and
discovery of fuzzy-neural local models from observation data. The robot’s closed-loop system is
tested under uncertainty in robot dynamics. An algorithmic methodology is presented for
discovery of fuzzy-neural local models from observation data using clustering and supervised

learning.

Chapter six presents the development of a novel hybrid multi-agent based control architecture
called CAROS (Co-operative Autonomous RObotic Systems) for navigation of multiple
autonomous mobile robots in unknown static and/or dynamic environment. The proposed
architecture takes the advantages of various control structures integrating them in a way that

results in an overall increase in synergy.
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Chapter seven evaluates the proposed control architecture. The chapter investigates the validity
of the control architecture when applied to the problem of navigation of single/multiple
autonomous mobile robots. Results are presented to show the effectiveness of the proposed

architecture.

Chapter eight reviews the thesis, draws some conclusions from the work presented, summarises

the contributions of this research and makes recommendations for further work.

The appendices describe lower level details of this work. Appendix A presents the MIABOT V2
mobile robot. The main block diagrams designed in Simulink for the modelling and
implementation of the CAROS control architecture are given in Appendix B. Appendix C gives
a brief overview of the conventional control design. Constrained optimisation using the non-
linear design tool is described in Appendix D. Appendix E presents definitions and theorems
related to robust stability testing based on interval polynomials. The backpropagation algorithm
for training multi-layer feedforward neural networks is presented in Appendix F. Appendix G
contains copies of the publications that have been produced during the course of the research

described in the thesis.

Figure 1-1 depicts a schematic outline of how the thesis is organised.

2 SIMULINK is registered trademark of the Math Works, Inc. Copyright 1990-2000. All rights reserved.
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2. Novel approach for identification of direction of moving obstacles (other robots) using
finite state machines.

3. Novel approach for behavioural encoding using hybrid solutions such as fuzzy/stateflow’
and neural/stateflow for autonomous robot navigation.

4. Proposed a design methodology for developing integrated solutions for autonomous mobile
robotic systems and classification of the main design methodology (properties) of control

systems architectures for autonomous mobile robots.

Less significance contributions are:

1. Literature survey on approaches/methods related to the development of intelligent control
architectures for navigation of multiple autonomous mobile robots.

2. Modelling of MIABOT V2 mobile robot. A generic approach for optimisation and
identification of parameters of physical components (i.c moments of inertia) conducting
experiments and using the non-linear control design tool.

3. Comparison between PI, fuzzy and neural controllers based on their performance criteria
(ISE, ITE and ITAE) and execution time. An algorithmic methodology for discovery of
fuzzy/neural local models from observation data. Use of parametric robustness analysis
approach for robust stability testing of closed-loop control system under uncertainty in robot
dynamics (The approach has not been considered previously within the research community
of autonomous mobile robots).

4. Identification of the relationship of the most important requirements/properties of control
architecture versus the main control architecture specifications using the Quality Function
Deployment (QFT) tool.

5. Modular approach for modelling three types of sensor and sensor sensitivity.

? Stateflow is registered trademark of the Math Works, Inc. Copyright 1997-2000. All rights reserved.
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1.8 Summary

This chapter presented an introduction, motivation and overview of the thesis. The motivation
of conducting the research described in this thesis was given. Some potential application areas
for the results of this thesis were suggested. The list of applications suggested is by no means
exhaustive and appropriate references for these ideas were included. The aim and objectives of
the research carried out here are stated. Theﬁ the main challenges and problems in mobile robot
navigation with brief discussion of how they have been approached in this thesis were
discussed. An outline of the thesis was presented. A brief summary of the main contributions

resulting from the research work described in the thesis was given.

The next chapter presents a literature review of topics related to this thesis.
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Literature Review of Related
Work

21 Introduction

This chapter presents a literature review of topics related to this thesis. Some of the topics
discussed here will be mentioned in more detail than others, since they are more closely related
to the main subject of this thesis. However, it is impossible to refer to all the contributions from
the last two decades or so, therefore, this chapter does not present an exhaustive survey but only
gives an indication of the development of techniques/methods related to this thesis. Further
literature reviews related to this thesis can be found in the contributions of(Dudek et al, 1993),
(Harris, 1994), (Bhattacharyya et al, 1995), (Everett, 1995), (Borestein et al, 1996), (Muller,
1997), (Cao et al, 1997), (Jang et al, 1997), (Zadeh et al, 1997), (Arkin, 1998), (Kortenkamp et
al, 1998), (Senehi and Kramer, 1998), (Ferber, 1999), (Ridao et al, 1999) and (Van Breemen,
2001). Note that some parts of chapters four and five are concerned with modelling and control

of a mobile robot. Brief surveys of related contributions in these fields are provided at the

beginning of each of these two chapters.
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The remainder of this chapter is organised as follows: Section 2.2 introduces the field of
artificial life with a number of related contribution to the work presented in this thesis. Related
research work based on co-operative robot and control of multiple robots is given in sections 2.3
and 2.4. The birth of the behaviour-based control including its advantages/limitations for control
of a mobile robot is described in section 2.5. The influence and importance of distributed
artificial intelligence and distributed systems related to the development of a multi-robot system
is given in section 2.6. Section 2.7 presents the origin of the intelligent control including its
main approaches. Modelling, identification and control of dynamic systems using
methodologies from intelligent control is also discussed in this section. Section2.8 presents a
literature review of related work based on navigation of mobile robot using methodologies from
the intelligent control. In particular the research work to date on mobile robot navigation using
both fuzzy and neural techniques is presented in this section. A discussion follows in section
2.9, and the main summary of the chapter is presented in section 2.10. A list of references is

given at the end of the chapter.

2.2 Artificial life

The field of Atrtificial Life (Alife) focuses on bottom-up modelling of various complex systems.
This scientific field of study, as defined by (Langton, 1989) is the study of man-made systems

that exhibit behaviour characteristics of natural living systems. Alife incorporates a broad,
interdisciplinary approach to the study of a variety of phenomena. Disciplines included in the
study of Alife are Artificial Intelligence, Computer Science, Mathematics, Control Engineering
and Psychology. Knowledge of experimental material from these disciplines is required in order

to develop artificial life. These materials and models may include fuzzy logic, neural networks,
multi-agent systems, control of autonomous mobile robots, modelling and identification of
dynamic systems. These diverse and evolving scientific fields are the source of inspiration for
the work undertaken in this thesis. In fact, the new hybrid control architecture described in

chapter six as well modelling, control and identification techniques developed in this thesis owe
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their design origins to the artificial life. Artificial life relevant to this thesis features
contributions based on simulations of multiple autonomous robots, as described by (Maes and
Brooks, 1990), (Steels, 1990), (Mataric, 1992), (Noreils, 1993), (Lueth and Laengle, 1994),
(Balch and Arkin, 1998), (Arkin and Balch, 1998), (Parker, 1999), (Goldberg and Mataric,

1999) and (Kube and Bonabeau, 2000).

Work in artificial life is related to the work in this thesis in that both are concerned with
exploiting the dynamics of local interactions between agents (agent is either a physical unit or
software, for instance it can be a single mobile robot or a program representing or encoding a

specific task) and the world in order to create complex global behaviours.

23 Co-operative robots

As an integrative engineering discipline, robotics has always had to confront technological
constraints that limit the domains that can be studied. Co-operative mobile robotics has been
subject to these same constraints and tends to be more severe because of the need to cope with
multiple mobile robots. Co-operative robotics is a highly interdisciplinary field that offers the
opportunity to draw influences from many other domains. Therefore developingsystems for co-
operative robotics is a very difficult and challenging task. In particular, the assumption that
multiple robots (or multi-agent robotics) have the potential to solve problems more efficiently
than a single robot has attracted the attention of many researchers in the areas of control
engineering, computer science and psychology. According to (Arkin and Balch, 1998) there are
several reasons why two or more robots can be better than one. Firstly, distributed action:
multiple robots can be in many places at the same time (Jung and Zelinsky, 1999). Secondly,
inherent parallelism: it is quite possible that many applications could be solved much more
quickly if the mission could be divided across a number of robots in parallel (Parker, 1998).
Thirdly, simpler is better: building and using several simple robots, can be easier, cheaper, more

flexible and more fault-tolerant than having a single powerful robot for each separate task
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(Deneubourg et al, 1990). Fourthly, divide and conquer: several problems are well suited for
decomposition and allocation among multi-robot system (Azarm and Schmidt, 1997).
Unfortunately there are also drawbacks, in particular regarding collision avoidance among
individual robots, co-ordination and elimination of interference. The degree of difficulty
imposed depends heavily upon the task, communication (with or without) and the control

strategy chosen.

24 Control of multiple robots (multi-agent robotics)

Research on control of co-operative multiple robots began in the late 1980s. (Fukuda and
Nakagawa, 1987), introduced new project in the field of co-operative robotics called CEBOT
(Cellular Robotic System). Their work is based on co-ordination among mobile multi-robot
systems with emphasis on communication mechanisms, which can be used to support co
ordinated behaviour. About the same time relevant work on co-operative robotics carried out by
(Beni, 1988), SWARM (large numbers of homogeneous robots), and (Asama et al, 1989), with
the ACTRESS (ACTor-based Robot and Equipment Synthetic System), a multi-robot system
designed for heterogeneous agents (robots), with focus on communication issues. The robots act
independently, but if the need arises, they negotiate with other robots to form a cooperative
group to handle the problem. The 1990s decade begins with the works of (Caloud et al, 1990),
on the GOFER architecture, and (Steels, 1990). The latter used the behaviour-based approach to
solve the problem of co-operation between distributed robots. Research activity on co-operative
robots increased dramatically with important work by (Deneubourg et al, 1990), (Asama et al,
1991), (Wang, 1991) and (Arkin, 1992) the latter presents research concerned with sensing,
communication, and social organisation for tasks such as foraging. (Mataric, 1992), has
developed behaviours for multi-robot system using the subsumption style architecture.(Noreils,
1993), proposed a three-layered control architecture that included a planner level, a control
level, and a functional level. Similar work was carried out by (Parker, 1993), (Kube and Zhang,

1993), (Laengle and Lueth, 1994), (Barnes, 1996), (Shim et al, 1997), (Yoshida et al, 1998) and
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(Werger, 1999). There is more work reported in the literature, but the aforementioned is the
most significant within the research community. All the above research activity has attempted to
solve the same problem (control of multiple robots) by adopting different techniques. The
solution to the problem is not straightforward, so many of the researchers prefer to perform
simulation rather than physical implementation. Many of the recent attempts to control multiple
robots, in contrast to the earlier works, are based on a behaviour-based approach (Brooks,
1986). However, the emphasis on the connection between intelligence and environment is
strongly associated with the behaviour-based approach but is not intrinsic to multiple robot

systems.

In terms of co-operation and communication, most of the work cited either uses extensive
explicit communication and co-operation among the robots, or almost none at all. In systems
that are co-operative by design, two or more robots are aware of each other’s existence, and can
sense and recognise each other directly or through communication. This type of research
explores explicit co-operation, usually through the use of direct communication. The other
category includes work on implicit co-operation, in which the robots usually do not recognise
each other but indirectly co-operate by having identical or at least compatible goals. The
research work described in this thesis, falls nearer this end of the spectrum. It is focused on
robots (agents) that can discriminate each other from the rest of the world based on a local

reactive approach and use this ability as a basis to form global behaviour.

25 Behaviour-based control

The real world can be described as a complex and unstructured environment. Robots, which are
designed to operate in the real world, must be able to operate in situations which their designers
only vaguely envisaged and must have the ability to respond appropriately and quickly to
unexpected events. The classical artificial intelligence approach to interacting with an

environment is to divide the task into a number of major subsystems as shown in Figure 2-1.
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sensors ~———p ——p actuators

perception
modelling
planning
task execution
motor control

Figure 2-1 Traditional functional decomposition

The perception subsystem handles the sensing devices connected to the robot. The modelling
subsystem converts the sensor input into a description of where the robot is in relation to its
internal model of the environment. The planning subsystem attempts to work out how it will
achieve its goals given the current world state. The task execution subsystem breaks down the
plan into detailed motion commands and finally the motor control subsystem causes these
commands to be executed. Each of these subsystems is a complex program, and all have to
work together perfectly for the robot to operate at all. In particular perception and world
modelling subsystems are extremely complex. Currently it is only possible to design such
subsystems for structured environments only, as noisy and random environments of the real
world overwhelms them. In addition, as the complexity of the environment increases, the time
needed to perceive, model and plan about the world increases exponentially. In (Watanabe et al,
1992), (Heikkila and Roning, 1992), (Liscano et al, 1995) and (Van Brussel, 1995) the

disadvantages of the classical artificial intelligence approach are discussed in more detail.

The behaviour-based control is an alternative to the classical artificial intelligence approach.
Instead of having a number of complex individual vertical tasks, the behaviour-based approach
tackles the control problem by thinking of it as a number of horizontally arranged layers. This
paradigm is inspired by biology and fostered by the artificial intelligence community. It has

been observed that the number of behaviour patterns of even simple animals exhibits most of
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the characteristics in designing artificial autonomous agents. Complex behaviour patterns can
often be decomposed into hierarchies of simple behavioural patterns. When individual simple
behaviours operate concurrently, new behavioural patterns may emerge. In the subsumption
architecture developed by (Brooks, 1986), behaviours are arranged into horizontall layers as
shown in Figure 2-2. Each layer provides a degree of performance by adding a new behaviour
on top of the previous layers. The new layer overrides some aspects of the low-layer behaviours.
Thus each layer is fully capable of controlling the robot by itself. Major advantages of the
behaviour-based control are rapid response to environment change, robustness in real worlds,

less demanding computation requirements and flexibility.

build map
explore
wander
avoid obstacles

Sensors - - actuators

Figure 2-2 Behaviour-based decomposition

Industrial robots usually operate in a2 more controlled environment than experimental mobile
robots. Working in a controlled structured environment scientifically reduces the perception and
world modelling sub-elements of the control task as described above. Inclusion of advanced
sensory systems such as vision systems does imply an increase in the complexity of control in
the areas of perception, interpretation and world modelling. In addition, flexibility is one of the
most important attributes of robotics over other forms of automation. This flexibility implies
uncertainty in the robot environment. For these reasons, behaviour-based control may therefore
have a useful role to play in certain applications of industrial robotics. However, earlier
behaviour-based systems have suffered from difficulties in systems modularity, state
representation and integration of world models. For instance for a mobile robot to be able to

execute tasks, such as transportation, cleaning, assisting disabled persons it is necessary to have
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a representation of the overall state and to be able to use knowledge of the environment. As the
behaviour-based architectures are usually highly distributed and each behaviour is meant to
implement a specific function, representation and sharing of systems states and knowledge have
been inconvenient. According to (Hartley and Pipitone, 1991) in control architectures, like
subsumption, behaviours usually need to access the internal states of low-level behaviours,
which make implementation of behaviours dependent and modularity difficult. According to
(Wilson et al, 1997) a behaviour-based approach can take away the cognitive bottleneck
provided by the classical artificial intelligence, but on the other hand it is difficult to give the
robot a specific task. All the behaviours are manually designed to respond to specific stimuli.
For a given task, the behaviours must be engineered and combined to provide the complex
interactions with the world. Therefore the success of the behaviours depends on the competence
of their designer. (Schoppers, 1987) proposed a “universal plan” which generates appropriate
actions in unpredictable environments. The activation of parts of the plan depends on the
environment. This method relies on extensive knowledge of the reactive components about the
analysis of the robot world before running. In (Gat, 1992) a version of the subsumption
architecture was used in which higher levels provide information or advice to the lower layers.
A sequencer builds up chains of primitive behaviours using advice from a planning system. In
(Lyons and Hendriks, 1995) the deliberative component was allowed to adapt the reactive
component on-line. Their planner, which has a model of the environment and the knowledge of
the reactive components, was used to tune the performance of the reactive agents, which were
able to trigger independently of the planner. However, it was shown that this may provide
problems in reacting quickly to sudden changes in the environment and still requires knowledge
of the real environment along with the problem of the designer determining appropriate
behaviours. In this thesis the proposed control architecture (CAROS) is introduced to overcome
some shortcomings of the pure behaviour-based architecture, especially where modularity and

task execution capability are concerned. The proposed control system is developed
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incrementally. The overall control system is straightforward but the system exhibits reactivity

and a great degree of autonomy in a completely unknown and unstructured environments.

2.6 Distributed artificial intelligence and distributed systems

The field of distributed artificial intelligence (DAI) deals with multi-agent interactions and
concerns itself with the study of distributed systems of intelligent agents. According to(Ferber,
1999) the following lines of reasoning can explain the need of distributed intelligence: Problems
are physically distributed. complex problems are often physically distributed such as
transportation network or traffic management. Problems are widely distributed and
heterogeneous in functional terms: for instance, a formula one car requires a large number of
experts to perfect its design. All these experts integrate their knowledge to try to make the best
possible car. The complexity of problems demands a local point of view: when problems are too
complicated to be solved and analysed as a whole, solutions based on local approaches often
allow them to be solved more quickly. Systems should be adaptive to changes in the
environment: it is widely claimed that regarding system complexity is no longer enough to
design efficient and accurate systems, but systems should be able to adapt to changes in the
context of operations. Therefore, the field of distributed artificial intelligence is highly relevant

to multi-robot and co-operative systems.

According to (Bond and Gasser, 1988) distributed artificial intelligence is defined as the sub-
field of artificial intelligence concerned with concurrency in artificial intelligence computations,
at many levels. (Rosenschein, 1993) has divided DAI into two sub-fields: Distributed problem

solving (DPS) and multi-agent systems (MAS) as shown in Figure 2-3.
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Figure 2-3 Origin and sub-fields of distributed artificial intelligence

(Cao et al, 1997) has defined the field of DPS as three possible overlapping phases, problem
decomposition (task allocation), subproblem solution and solution synthesis. The first phase has
attracted the most researchers in the field of DAL (Asama et al, 1989) and (Ozaki et al, 1997).
For instance, (Decker and Lesser, 1993) have addressed the task of fast co-ordination and
reorganisation of agents on a distributed sensor network with the goal of increasing system
performance. DPS deals with centrally designed systems solving global problems using
frameworks for co-operative behaviour between willing agents. In contrast, multi-agent systems
deals with heterogeneous, not necessarily centrally agents faced with the goal of utility-
maximising coexistence using frameworks to enforce co-operation between potentially
incompatible agents. The group of these heterogeneous agents can form a collective behaviour
with potentially conflicting goals. The earliest works in the field of multi-agent systems are

presented in the contributions of (Rosenschein, 1982), (Georgeff, 1983) and (Genesereth ez al,

1986).
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The majority of the research work on multi-agent systems begins in the early 1990s, which
seems to be theoretical and in an abstract domain. A common underlining assumption is that
although the agents may be selfish, they are rational and highly deliberative. In that period
examples of work in MAS includes (Miceli and Cesta, 1993), (Kraus, 1993) and (Durfee et al,
1993). The latter present game theory and different approaches of artificial intelligence in order
to deal with rational agents. As previously mentioned until that period the majority of the work
in MAS is purely theoretical and deals with the difficulty of multi-agent planning and control in
abstract environments. In the late 1990s multi-agent systems become new field in control
engineering. Researchers started to consider how the approach to conventional control theory
could be replaced by a multi-agents system methodology. Chapter three illustrates the main
research methodology adopted in this thesis; background information regarding multi-agent

systems in control engineering and in agent control architectures is presented in that chapter.

According to the aforementioned literature review on distributed artificial intelligence it
becomes quite clear that any kind of multiple-robot system can be a unique or special case of
distributed system. The methodology of the field of distributed systems can therefore be a very
good source for solutions and new ideas in multiple-robot systems. For instance (Beni, 1988)
describes cellular robotics as a subject that belongs to the field of distributed computing shown
in Figure 2-3. However he has accepted that distributed computing can be applied successfully
in theoretical bases which means that further progress is vital in order to extent distributed
computing capabilities into multiple robot systems. In (Cao et al, 1997) an extensive list of
references regarding research work associated with the field of distributed computing can be
found. Most of these research works focus on deadlock detection, resource allocation, pattern
generation and task allocation. In section 2.4 was mentioned that in terms of co-operation and
communication, most of the research work on multiple robots lies at two ends of the spectrum
(explicit and implicit communication). Research works, which evolve explicit communication,

can take an advantage of the techniques used in computer networks. For instance, networking
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issues can be applied successfully to multi-robot systems if explicit communication is assumed.
Some of the research work in this field include (Weiser, 1993) and (Badrinath et al, 1994). As
stated by (Cao et al, 1997) distributed control is a promising framework for the co-ordination of
multiple robots. In an ideal scenario, maximal fault tolerance is possible, modelling of the other

agents can be avoided, and each agent can be controlled by a very simple mechanism.

2.7 Intelligent control and its approaches

Intelligent control, as a discipline, has certainly been one of the main growth areas in the field of
control systems over the last 5-10 years. Although the topic is relatively new in itself, a number
of other research areas, some of them well-established, have effectively been swallowed up
under the overall intelligent control umbrella. Intelligent control was first proposed by (Fu,

1971) and was defined as an approach to generate control actions by employing aspects of
artificial intelligence, operations research and automatic control systems(Saridis and Valanidis,

1988). In the book of (Harris and Billings, 1985) it is shown that in the 1970s and 1980s flexible
control systems were developed that could adapt to plant changes as they occurred. Rapid
improvements in computer capabilities allowed for on-line, real-time control where previously
it had quite simply not been possible. Initially adaptive, self-tuning controllers were designed,
often being based, in some sense, on the classical Kalman filtering techniques of previous years.
Since that time adaptation has turned more to learning and control has become more task
oriented. According to (Warwick, 1998) and (Roberts, 1999) the term “intelligent control”
means a wide variety of things to different people. However, as with any relatively new topic of
study it suffers from a considerable amount of hype and terminology abuse. Currently one of the
most popular definition of intelligent control is given by (Harris, 1994), who suggest that
“intelligent control is defined as an approach to generate control actions by employing aspects
of artificial intelligence, operations research, automatic control systems and computer science”.
Figure 2-4 illustrates the inter-relationships between the various techniques that are utilised in

intelligent control and the functionality and infrastructure that they attempt to incorporate.
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Figure 2-4 Techniques employed in intelligent control (after (Harris, 1994))

(Harris, 1994) also suggests that the main methodologies used in intelligent control are
knowledge based systems (KBS), fuzzy logic and neural networks as shown in Figure 2-5. In
the work presented in this thesis both fuzzy logic and neural network methodologies are used.

The main design methodology of both topics is presented in chapter three.

The concept of fuzzy logic was introduced to model human reasoning by giving definitions to
vague terms and allowing several rules in the rule base to interact with varying degrees of
belief. It is important to note that it is irrelevant whether or not humans store knowledge in this
form, what is important is that fuzzy logic allows the creation of rule base systems with vague

terms using interacting rules which have the property of generalisation.

Artificial neural networks (ANN) and neural engineering/computing in the wide sense are
among today’s most rapidly developing scientific disciplines. ANN are parallel computational

models that consist mainly of interconnected adaptive processing units. These networks are
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considered fine-grained parallel implementation of non-linear dynamic and static systems. An
ANN is an abstract simulation of real nervous system that contains a collection of processing
units or processing elements communicating with each other via axon connections. Such a
model resembles the axons and dendrites of the nervous system. Because of its self-organising
and adaptive nature, the model provides a new parallel and distributed paradigm that has the

potential to be more robust and user-friendly than traditional schemes.

Knowledge
Based Systems

Neural
Networks

Figure 2-5 Methodologies used in intelligent control (after (Harris, 1994))

2.7.1 Modelling, identification and control of dynamic systems

The establishment of an input-output model for a process is very important in systems
engineering. Many deterministic and stochastic methods have been proposed to derive
acceptable mathematical models for both continuous-time and discrete-time processes.
However, in the modelling of complicated processes, precise mathematical models may fail to
give satisfactory results. Some of the modelling, identification and control approaches for
dynamic or static systems that been researched during the last two-three decades are based on
methodologies that are used in intelligent control (Kichert and Mamdani, 1978), (Sugeno and
Kang, 1986), (Yager and Filev, 1994c), (Jang and Sun, 1995), (Hellendoorn and Driankov,

1997) and (Norgaard et al, 2000).

2-14



Chapter 2 Literature Review of Related Work

Traditionally, modelling is seen as a conjunction of a thorough understanding of the system’s
nature and behaviour, and a suitable mathematical treatment that leads to a usable model. This
approach is usually termed “white box” (physical, mechanistic, first-principle) modelling. In
practice, however, when complex and poorly understood systems are considered, the
requirement for a good understanding of the physical background of the system proves to be a
severe limiting factor. The difficulties that can arise in conventional “white-box” modelling
approaches appear from poor understanding of the underlying phenomena, inaccurate values of
various process parameters, or from the complexity of the resulting model. A complete
understanding of the underling mechanisms is virtually impossible for a majority of real
sysfems. However, gathering an acceptable degree of knowledge needed for physical modelling
may be difficult, time-consuming and an expensive task. Even if the structure of the model is
determined, a major problem of obtaining accurate values for the parameters remains. It is the
task of system identification to estimate the parameters from data measured. Identification
methods have been developed to a mature level, mostly, for linear systems. Most real systems

are, however, both non-linear and dynamic and can be approximated by local models.

The accuracy of mathematical models is based on how good are the approximations of the
mathematical functions that are used to describe the system’s characteristics under study. If the
model is not accurate enough, the subsequent steps of analysis, prediction and controller
synthesis, cannot be successful. However, there is an obvious trade-off between the necessary
accuracy of the model and its complexity. Models should provide information at the most
relevant level of precision (abstraction), suppressing unnecessary details when appropriate. If
the model is too simple, it cannot properly represent the characteristics of the system and does
not serve its propose. However, the model should not be too complex if it is to be practically

useful.
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Fuzzy modelling is a method of describing the characteristics of a system using fuzzy rules and
is a topic that has been studied extensively in recent years mostly as a problem of function
approximation instead of a problem of knowledge acquisition (Takagi and Sugeno, 1985) and
(Jang et al, 1997). Compared to other “intelligent” modelling techniques (Haykin, 1999), fuzzy
systems provide a more transparent representation of the non-linear dynamic systems under
study, and can also be given a linguistic interpretation in the form of rules. Moreover, fuzzy sets
serve as a smooth interface between qualitative variables involved in the rules and numerical
domains of the inputs and outputs of the model (Akkizidis and Roberts, 1998). The rule-base
nature of fuzzy models allows the use of information expressed in the form of natural language
statements, and makes the models transparent to interpretation and analysis. At the same time, at
the computational level, fuzzy models can be regarded as flexible mathematical structures,
similar to neural networks, that can approximate a large class of non-linear system to a desired
degree of accuracy (Kosko, 1992) and (Wang, 1997). This duality allows qualitative knowledge
to be combined with quantitative data. Finally, it can be said that the use of linguistic qualitative
terms in the rules can be regarded as a kind of information quantisation. Thus, depending on the
number of qualitative values considered, models at different levels of abstraction and accuracy
can be developed for a given system. Each of the models may serve a different purpose such as

prediction, controller design, monitoring.

Another approach to modelling, identification and control of dynamic systems is to use some
sufficiently general “black-box” structures, such as, Artificial Neural Networks (ANN) (Picton,
1998), used as a general function approximator. The modelling problem is then that of obtaining
an appropriate structure of the approximator, in order to correctly capture the dynamics and the
non-linearity of the system. In “black-box” modelling, the structure of the model is hardly
related to the structure of the real system. The identification problem consists of estimating the
parameters in the model. If representative system data is available, “blackbox” models usually

can be developed quite easily, without requiring system-specific knowledge. A severe drawback
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of this approach is that the structure and parameters of these types of models usually do not
have any physical significance. Additionally such models cannot be used for analysing the
internal system’s behaviour otherwise than by numerical simulation. Finally, it is neither
possible to use prior knowledge to initialise the network, nor can its final state be interpreted in

terms of rules.

The drawback of the conventional “white-box” and “black-box™ techniques in modelling non-
linear system is their trade-off between accuracy and knowledge acquisition as well as that they
are based mostly on quantitative mathematical techniques. The weakness of the traditional
quantitative techniques to adequately describe complex systems was summarised in the well-
known principle of incompatibility, formulated by (Zadeh, 1973). This principle states that “as
the complexity of a system increases, our ability to make precise and yet significant statements
about its behaviour diminishes, until a threshold is reached beyond which precision and

significance (or relevance) become almost mutually exclusive characteristics”.

2.8 Mobile robot navigation using methodologies from intelligent control

One of the most difficult challenges in mobile robotics is autonomous navigation in a real
world. A real world can change suddenly, so a robot in this environment easily makes wrong
estimates of which events can happen and which events can produce unwanted side effects. In
order to overcome such uncertain and drastic changes, methodologies from intelligent control
have been employed. According to (Chatila, 1995) navigation is in general an incremental
process that can be summarised in four main steps: Environment perception and modelling: any
motion requires a representation of the local environment at least, and often a more global
knowledge. Localisation: the robot needs to know where it is with respect to its environment
and goal. Motion decision and planning: the robot has to decide where or which way to go,
locally or at the longer term, and possibly compute a trajectory. Motion execution: the

commands corresponding to the motion decisions are executed by control processes possibly
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sensor-based and using environment features. The reminder of this section presents a literature
review in the area of mobile robot navigation, focusing on intelligent systems techniques for
navigation control. The literature review in this section is closely related with the work
presented in chapter six in which robot behaviours are implemented using fuzzy, neural and
stateflow for navigation control. Therefore the survey in this section is focused on mobile robot

navigation using either fuzzy or neural control.

2.8.1 Mobile robot navigation using fuzzy logic

Fuzzy logic has been successfully used in various knowledge-based systems to control real-time
decision-making in the area of command and control in environments where no mathematical
model can be applied with efficiency. As previously mentioned, robot navigation in unknown
environments is a very complex and difficult task, because the large amount of imprecise and
ambiguous information that has to be considered. In section 2.7.1 a discussion was based on
how human knowledge can satisfactorily deal with such information in an efficient manner.
Therefore human knowledge gained through experience can be modelled to control real-time
navigation systems. The knowledge provided by the human can be represented as IF-THEN
rules as has been modelled in expert systems where the importance has been shown for an
efficient inference mechanism to manipulate the rule base. In this context, in addition to the
imprecision and uncertainty of the information perceived from the environment, other sources
of imprecision/uncertainty have to be considered such as the reasoning process and rule
description. Under these circumstances the quality of the decision is strongly dependent of
fuzzy models that will be implemented to control the movements of the robot. In the following,
examples of research work relating to fuzzy logic for the navigation of mobile robot(s) are

presented.

The use of fuzzy logic in robot navigation begins in late 1980s. (Takeuchi e al, 1988) discussed

fuzzy control of a mobile robot for obstacle avoidance in an indoor environment. Processing the
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floor image in front of the robot, which was obtained with a CCD camera, derived the inputs to
the fuzzy controller. Computer simulations modified fuzzy control rules, which were derived on
the basis of a human’s driving actions. In (Ciliz and Isik, 1989) a rule-based approach for the
motion control for an autonomous mobile robot was discussed. The assumed inexactness in
world description is represented by fuzzy membership functions, and a state space is discretised
into a linguistic vocabulary. Fuzzy motion control rules that have been experimentally derived
are then used in fuzzy inference mechanism to give the final control command to robot

actuators. The work of (Rosa and Garciaalegre, 1990) follows a similar approach.

2.8.1.1 The 1990s: The peak of fuzzy logic in mobile robot navigation

(Martinez et al, 1994) have considered a problem, which consists of achieving sensor-based
motion control of a mobile robot among obstacles in structured and/or unstructured
environments with collision-free motion as the priority. They used fuzzy logic to implement the
approximate reasoning necessary for handling the uncertainty inherent in the collision
avoidance problem. Navigation of a mobile robot using fuzzy logic has also been discussed by
(Li, 1994b), (Li, 1994a) and (Li and He, 1994), they used ultrasonic sensors and fuzzy logic in
order to navigate a single mobile robot in an unknown environment. The output from their
control scheme is command for the speed control unit of two rear wheels of a mobile robot.
They have shown simulation results of the proposed method. In (Lee and Wang, 1994) a fuzzy
logic approach was proposed for a single robot navigation. The authors stated that their
approach needed few modifications if their proposed algorithm was to be used in navigation of
multiple robots. In (Beaufrere and Zeghloul, 1995a) and (Beaufrere and Zeghloul, 1995b) a
fuzzy logic controller was developed using information from a few ultrasonic sensors to control
the navigation of mobile robot in dynamic environment. Their approach reduces the large
quantity and variety of sensors usually used in autonomous vehicles and at the same time
handles uncertain and noisy data. The problem with their approach is that they do not control

the robot’s velocity, which has not been addressed by many researchers. During the same period
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the research work of (Lee, 1995), (Czarneki er al, 1995) and (Maaref and Barret, 1995)

summarises the contributions of fuzzy logic in robot navigation.

In the late 1990s the research effort in mobile robot navigation using fuzzy logic increased
dramatically. Researchers investigated different solutions to solve the navigation problem of the
mobile robot, in terms of robot behaviours. The behaviour of a single robot during its
movements towards a target, in an open field with simple obstacles, has been studied by (Xu
and Tso, 1996). They worked out two types of reaction strategies. The first is based on human
experience whereas the second is based on reaction rules. Their technique has only been
demonstrated in simulation and was proved to be suitable for the navigation of a single robot,
but not multiple mobile robots. (Ramirez-Serrano and Boumedine, 1996) study robot navigation
based on a fuzzy logic controller, which was designed in order to deal with the uncertainty and
ambiguity of the information the system receives. They used a set of seven ultrasonic sensors in
order to perceive the environment for the navigation of a single mobile robot. A similar
approach is adopted by (Gasos and Martin, 1996) in which single robot navigation is considered
using sensor observations. Their approach is mainly based on indoor environments. The
research work of (Miyata et al, 1996) considers single robot navigation with a primary goal a
parallel parking. Their method cannot be applied in multiple robot navigation and again only

sitnulation results are available.

(Lin and Wang, 1997) proposed a fuzzy approach to collision avoidance for automated guided
vehicle navigation. Their work was based in sensor modelling and trap recovery. The first topic
is concerned with finding the minimum number of sensor used and their optimal arrangement.
The fuzzy approach to robot trap recovery is demonstrated in simulation. (Benreguieg et al,
1997) developed a fuzzy navigator, which integrates heuristics copying of human behaviour.
They claim that their approach provides several contributions such as a low sensitivity to

erroneous or inaccurate measures. In addition if the inputs of the controllers are normalised, an

2-20



Chapter 2 Literature Review of Related Work

effective portability on various platforms is possible. In order to demonstrate the advantage of
their approach the same fuzzy navigator is implemented on two different mobile robots
(Khepera and RMI). The research work of (Zhang et al, 1997) is concerned with fuzzy logic
based reactive navigation for a mobile robot operating in an unknown environment. They
provide a steering command enabling a mobile robot to avoid collision with obstacles. At that
time the contributions of (Castellano et al, 1997), (Kam et al, 1997), (Jagannathan, 1997),

(Oriolo et al, 1997) and (Hoffmann and Pfister, 1997) are reported in the literature.

(Godjevac, 1998) used fuzzy logic to implement linguistic rules for navigation of a mobile
robot. He demonstrated his approach with a navigation of a single mobile robot in a simple
environment. He did not consider multiple robot navigation. (Oriolo et al, 1998) present an
algorithmic solution method for the problem of autonomous robot motion in unknown
environments. Their approach is based on the alternate execution of two fundamental processes:
map building and navigation. In the former, range measures are collected through the robot
sensors and processed in order to build a local representation of the surrounding area. This
representation is then integrated in the global map so far reconstructed by filtering out
insufficient or conflicting information. In the navigation phase, A*based planner generates a
local path from the current robot position to the goal. The robot follows the path up to the
boundary of the explored area, terminating its motion if unexpected obstacles are encountered.
The most peculiar aspects of their method are the use of fuzzy logic for the efficient building
and modification of the environment map, and the iterative application of A*, a complete
planning algorithm which takes full advantage of local information. Experimental results show
the real-time performance of the proposed method, both in static and moderately dynamic
environments using a single mobile robot (NOMAD 200). (Gasos and Rosetti, 1999) present a
fuzzy-sets based approach to the problem of mobile robot navigation in unknown environments.
Fuzzy sets are used to represent the uncertainty that is inherent to the perception of the

environment through the robot sensors. This uncertainty is then propagated in the process of
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map building so that not only a plausible spatial layout of the environment, but also the
confidence on this layout, is obtained. The initial map built by the robot is then used for self
localization as it continues navigating in the same environment. The new information collected
by the sensors is matched to the initial map and the transformation that brings them together is
used to correct and bound the dead-reckoning errors. The approach is illustrated by experiments
in office environments. In the paper of (Fukuda and Kubota, 1999) a fuzzy-based intelligent
robotic system is presented. The paper, proposed a robotic system with "structured intelligence.”
The authors focused on a mobile robotic system with a fuzzy controller and proposed a sensory
network that allowed the robot to pre-perceive its environment. The effectiveness of the
proposed method is demonstrated through computer simulations of collision avoidance and

path-planning problems.

2.8.1.2 Early 2000: Fuzzy logic in mobile robot navigation continues to grow

(Song and Sheen, 2000) presents a pattern recognition approach to reactive navigation of a
mobile robot. A heuristic fuzzy-neuro network is developed for pattern-mapping between
quantised ultrasonic sensory data and velocity commands to the robot. The design goal was to
enable an autonomous mobile robot to navigate safely and efficiently to a target position in a
previously unknown environment. Useful heuristic rules were combined with the fuzzy
Kohonen clustering network (FKCN) to build the desired mapping between perception and
motion. (Seraji, 2000) introduced Fuzzy Traversability Index as a new and simple measure for
quantifying the ease of traversal of natural terrains by field mobile robots. This index provides a
simple means for incorporating the terrain quality data into the robot navigation strategy and is
used for terrain-based navigation of held mobile robots. A set of fuzzy navigation rules was
developed using the Fuzzy Traversability Index to guide the robot toward the safest and the
most traversable terrain. In addition, another set of fuzzy rules was developed to drive the robot
from its initial position to a user-specified goal position. These two rule sets were integrated in a

two-stage procedure for autonomous robot navigation without a priori map-based knowledge
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about the environment. Three simulation studies were presented to demonstrate the capability of
the mobile robot to reach the goal safely while avoiding impassable terrains.(Xu and Lu, 2000)
studied the cause of the limit cycle (the robot wanders indefinitely in a loop in the course
navigation in unknown environment) using fuzzy logic. The main features of the proposed
strategy were compared with other approaches for handling the local trapping problems.
Efficiency and effectiveness of the proposed approach were verified through simulation and

experiments.

(Nanayakkara et al, 2001) presents an approach for evolving optimum behaviours for a
nonholonomic mobile robot in a class of dynamic environments. A new evolutionary algorithm
reflecting some powerful features in the natural evolutionary process to have flexibility to deal
with changes in the environment is used to evolve optimum behaviours. Furthermore, a fuzzy
set based multi-objective fitness evaluation function is adopted in the evolutionary algorithm.
The multi-objective evaluation function is designed so that it allows incorporating complex
linguistic features that a human observer would desire in the behaviours of the mobile robot
movements. The authors illustrate the effectiveness of the proposed method in simulation.
(Mucientes et al, 2001) described a fuzzy control system for navigation and obstacle avoidance
by a mobile robot. The control system has over 117 rules, which reflects the complexity of the
problem to be tackled. The controller has been subjected to an exhaustive validation process and
simulation results were shown. (Tsourveloudis et al, 2001) proposed an electrostatic potential
field (EPF) path planner, which is combined with a two-layered fuzzy logic inference engine
and implemented for real-time mobile robot navigation in a 2-D dynamic environment. The
environment is first mapped into a resistor network; an electrostatic potential field is then
created through current injection into the network. The path of maximum current through the
network corresponds to the approximately optimum path in the environment. The first layer of
the fuzzy logic inference engine performs sensor fusion from sensor readings into a fuzzy

variable, collision, providing information about possible collisions in four directions, front,
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back, left, and right. The second layer guarantees collision avoidance with dynamic obstacles
while following the trajectory generated by the electrostatic potential field. The proposed

approach was experimentally tested using a mobile robot.

In (Tunstel et al, 2002) an approach to hierarchical control design and synthesis for the case
where the collection of subsystems is comprised of fuzzy logic controllers and fuzzy
knowledge-based decision systems is presented. The approach is used to implement hierarchical
behaviour-based controllers for autonomous navigation of one or more mobile robots.
Theoretical details of the approach are presented, followed by discussions of practical design
and implementation issues. (Maaref and Barret, 2002) considered the problem of the navigation
of a mobile robot either in an unknown indoor environment or in a partially known one. A
navigation method in an unknown environment is based on the combination of elementary
behaviours. Most of these behaviours are achieved by means of fuzzy inference systems. In the
case of a partially known environment, a hybrid method is used in order to exploit the
advantages of global and local navigation strategies. The co-ordination of these strategies is
based on a fuzzy inference system by an on-line comparison between the real scene and a
memorized one. The planning of the itinerary is achieved by visibility graph and A* algorithm.
(Barbera and Skarmeta, 2002) considered the use of fuzzy behaviours in the field of
autonomous mobile robots. They address the problem of conflicts between the different
behaviours that compete with each other to take control of the robot using learning techniques to

efficiently co-ordinate them. They used fuzzy rules to perform such fusion.

2.8.2 Mobile robot navigation using neural networks
Interest in robot navigation using neural networks has increased recently due partly to some
significant breakthroughs in research in learning and training algorithms. Advances in computer

hardware technology that made neural network implementation faster and more efficient have
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also contributed to the progress in research and development in neural networks for mobile

robot navigation.

Humans do not employ an accurate spatial environment model to fulfil a predefined navigation
task (at least not in terms of a co-ordinate system). They use only some abstract, symbolic world
knowledge to plan a route. This symbolic route description defines the necessary actions to be
performed at selected, classifiable places in order to pilot a vehicle from a starting point to a
destination. In addition, the steering and low-level navigation behaviour of humans, like
obstacle avoidance, is based on experience and skills rather than high-level planning procedures.
Human travelling performance can be seen as a small set of basic visual guidance activities,
which are adapted to the current, specific environment configurations. Neural networks have
been shown to be successful in emulating the human behaviour. In the following, some
examples of research work relating to neural networks for the navigation of mobile robot(s) are

presented.

2.8.2.1 The 1990s: The beginning of neural networks in mobile robot navigation

The use of neural networks in mobile robot navigation begins in middle 1990s with the research
works of (Tani and Fukumura, 1994), (Sethi and Yu, 1994) and (Ortega and Camacho, 1994). In
(Pal and Kar, 1996) a neural network was trained to navigate a mobile robot in simulation with
a finite turning radius. Simulation studies were also carried out by (Kodaira ef al, 1996) in
which an intelligent control algorithm for mobile robot navigation was presented. The feasibility
of using neural networks for camera localization and mobile robot control was investigated by
(Choi and Oh, 1997). Their technique has been tested and compared through both simulation
and real-time experiments and was shown to yield more precise localization than analytic
approaches. Furthermore, this neural localisation method is also shown to be directly applicable
to the navigation control of an experimental mobile robot along the hallway purely guided by a

dark wall strip. (Yun et al, 1997) have presented a neural network based path planning

2-25



Chapter 2 Literature Review of Related Work

algorithm for a single mobile robot. Their method integrates both global and local path planning

and has been demonstrated through simulation on a known environment.

In (Chohra et al, 1998) a neural navigation approach essentially based on pattern classification
to acquire target localization and obstacle avoidance behaviours was suggested. Simulation
results displayed the ability of the neural approach to provide a mobile robot with capability to
intelligently navigate in a partially structured environment. (Zhou et al, 1998) discussed the
development of an associative, neural network as an on-line algorithm to train and control a fire
fighting robot. Learning is externally supervised with encoded target actions. The robot acquires
basic navigation skills as well as the ability to detect a fire and to extinguish it.(Floreano and
Mondada, 1998) described a methodology for evolving neuro-controllers of autonomous mobile
robots without human intervention. The implications, of their methodology in engineering,
biology, cognitive science and artificial life are discussed. (GutierrzZOsuma et al, 1998) used
neural network techniques to compute the location of a mobile robot with respect to the
obstacles around it. The knowledge about its position helps the robot to navigate in an unknown
environment. The method is only suitable for navigation of a single mobile robot. (Quoy et al,
1999) present a neural model for the control of a robot, which is based on two structures. The
first one enables visual navigation using landmarks for use in unknown and changing
environments. The second structure enables building a proximity map of the environment.
Using this map, the robot may successfully reach different goals linked to different motivations
and solve various types of action selection problems. (Kassim and Kumar Bvkv, 1999)
discussed the navigation of single robot using neural network techniques. Their paper described
a neural network called the wave expansion neural network (WENN) and shows that it is
capable of developing a variety of artificial potential fields that are useful for path planning. The
discretised environment including information about the target configuration (position and
orientations) and the obstacles are applied to the WENN as input. Activity is then propagated in

the form of waves throughout the WENN neural field. The research work of (Howard and
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kilchen, 1999) also uses neural network techniques in which the mobile robot can plan its path
in two degrees of freedom and avoid obstacles in a simple environment, although environmental
uncertainty was not considered. In (Rivals, 1999) a piloting module of a four-wheel-drive
autonomous vehicle, whose implementation relies entirely on neural network, was introduced.
The authors showed how neural networks can be advantageously used for navigation of a single
mobile robot. A similar approach was adopted by (Jebric et al, 1999) in which a mobile robot

using neural network is able to find the target in an unknown environment.

2.8.2.2 Early 2000: More challenges remain

(Yang and Meng, 2000) discussed a biologically inspired neural network approach to real-time
collision-free motion planning of mobile robots or robot manipulators in a non-stationary
environment. The real-time robot motion is planned through the dynamic activity landscape of
the neural network without a prior knowledge of the dynamic environment, without explicitly
searching over the free workspace or the collision paths, and without any learning procedures.
The effectiveness and efficiency of the proposed approach were demonstrated through
simulation studies. In the paper of (Araujo and De Almeida, 2000) a method for mobile robot
navigation in an unknown world using neural network is presented. The learning approach is
used to construct a world model, and to learn to navigate from a starting position to a known
goal region. Simulation and real-robot results obtained with a Nomad 200 mobile robot were
presented to demonstrate the effectiveness of the discussed method. Quantitative results
demonstrate the exploration and planning improvements of the proposed navigation approach.
(Marichal et al, 2001) presented work in which neural network is used for optimisation of fuzzy
system for guidance of a mobile robot towards the target. A set of fuzzy rules is optimised
according to different criteria. They verified their proposed approach by implementation in two
mobile robots. In (Ayrulu and Barshan, 2001) a study was undertaken to investigate the
processing of sonar signals using neural networks for robust differentiation of commonly

encountered features in indoor robot environments. Their work can find application in areas
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where recognition of patterns hidden in sonar signals is required. Some examples are system
control based on acoustic signal detection and identification, map building, navigation, obstacle
avoidance, and target-tracking applications for mobile robots and other intelligent systems.
(Hamze and Clark, 2001) described a view-based mobile robot navigation system relying on
self-organizing neural networks. A sequence of view images from a test route was obtained, pre-
processed, and used to train a system of self-organizing maps. In (Ma et al, 2001) a hybrid
intelligent method including fuzzy inference and neural network was presented for real-time
self-reaction of a mobile robot in unknown environments. Their method can be used to control a

mobile robot based on the present motion situations of the robot in real-time.

(Mbede et al, 2002) present an integration of fuzzy local planner and modified Elman neural
networks (MENN) approximation-based computed-torque controller for motion control of
autonomous robot in dynamic and partially known environments containing moving obstacles.
The purpose of the controller, which is designed as a Neuro-fuzzy controller, is to generate the
commands for the servo-systems of the robot so it may choose its way to its goal autonomously,
while reacting in real-time to unexpected events. The controller demonstrates good performance
in adaptation to changes in robot dynamics. The paper of (Zalama et al, 2002) describe a neural
network model for the reactive behavioural navigation of a mobile robot. From the information
received through the sensors the robot can navigate, through a competitive neural network. The
robot is able to develop a control strategy depending on sensor information and learning
operation. The proposed method did not consider multiple robot navigation. Finally (Berlanga et
al, 2002) show a new method, in order to learn weights of a neural network controller in
autonomous robots called Uniform Co-evolution. The introduction of their method allows the
environment to be evolved in the process of learning a general behaviour able to solve problems
in different conditions. In particular the proposed method is used to learn reactive robot
behaviour for navigation and collision avoidance. Again, the authors have not reported multiple

robot navigation.
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29 Discussion

This chapter details several of the principle study sources that have inspired or paralleled the
development of the research work in this thesis. As discussed in section 2.2 familiarities with
certain scientific topics facilitates research in which various complex problems can be solve.
The traditional way to problem solving was based on the good knowledge and expertise in a
specific subject. This has been shown to be insufficient for the development of new tools and
techniques. This is the main reason why the filed of artificial life played so important role in the
development of recent research works. Scientists endeavour to merge different fields and
certainly this is a promising approach to the research development. As this thesis is concerned
with the development of modelling, identification and control techniques for the development of
architecture for autonomous mobile robots using hybrid approaches some related research

works and issues have been reviewed and discussed in this chapter.

In sections 2.3 and 2.4 research work based on co-operative robots and control of multiple
robotic systems was discussed. Considering the literature review, it becomes clear that the
problem of multi-robot control is challenging and also great motivation for future research.
Contributions of related work show that development of control with reliable behaviour with
more than one robot co-existing in the same environment still remains a very difficult task.
However, it has been almost established that the solution to the problem lies where centralised,
decentralised or hybrid control is considered. Recent research works shown that gradually the
research community has abandoned the centralised approach as the number of limitations
overcome the number of the advantages. In section 2.5 the concept of behaviour-based control
was discussed with a number of related contributions. Despite the fact that behaviourbased
control is one of the greatest revolutions in robot control, still several issues remain unanswered
which generate motivation for further research. Issues like, robot behaviour design, modularity
and co-ordination is still of interest. Potential solution to solve these issues can be found within

the field of distributed artificial intelligent and distributed systems.
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The filed of distributed artificial intelligent and distributed system seems to be very promising
framework in the research area of development and control of co-operative systems. The
literature review shows that the research work of distributed artificial intelligent is still in
theoretical stage but it is believed that very soon practical implementations will take place.
Already it is shown that the research effort regarding multi-agent systems has well established
in the development of more sophisticated software than traditional approaches. In addition, as
lower-level processes (perception and actuation) are better understood and implemented, and as
computational power increases, the high-level results of distributed artificial intelligence and
distributed systems may become increasingly applicable to many practical applications
including the control and development of multiple robots incorporating highly intelligent

programs.

In section 2.7, background information related to the origin of intelligent control and its use in
modelling, identification and control is given. As section 2.7 shows, intelligent control
comprises three main approaches (methodologies), which are now widely accepted and
established. The use of these methodologies can be successfully implemented to solve several
problems in modelling, identification and control of dynamic systems incorporating a specified
behaviour. The literature review has shown that fuzzy and neural approaches have been
developed for modelling, identification and control of dynamic systems. However, these
approaches are still shown signal of suffering with a great number of choice that the designer
has to make during the development process. For instance, consider the identification and
modelling of a dynamic system using neural network. There are a larger number of learning
algorithms available to be used with different methodological approaches to be followed. The
question is, which method should be used, and how. Therefore a development time can be

dramatically increased or decreased according to a chosen approach.
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Section 2.8 presents a literature review of navigation of mobile robot(s) using methodologies
from intelligent control. The length of the number of the research works outlined, almostcovers
the past two decades. It is clear that fuzzy logic is the oldest method used in robot navigation in
contrasts to neural networks, which is appears to be relatively new. Using both methodologies
the majority of the research works carried out considers a single mobile robot and not
navigation of multiple robots. In addition much of the contributions made focusing on robot
navigation uses kinematic models and not dynamic models. The literature review also shows
that very few works consider solving the problem of robot navigation using behaviours in which
certainly is the most promising way. Many research contributions to robot navigation are based
on both fuzzy and neural methods with the attempt to solve the problem using one or two
models behaviours/models (single fuzzy or neural controller is used with large number of

sensory inputs).

2.10  Summary

The work in this thesis shares motivations and goals with a number of related fields. This
chapter has presented a literature review based on those fields. At the beginning of the chapter
the field of artificial life is introduced. A number of contributions from artificial life based on
simulations of multiple autonomous mobile robots relevant to this thesis are given. The
literature review of related work based on co-operative robotics and control of multiple mobile
robots (multi-agent robotics) is presented, focusing on research contributions in which mobile
robots can discriminate each other from the rest of the world based on a local reactive approach.
Background information of the birth and origin of the behaviour-based control is given.
Advantages and disadvantages of the behaviour-based decomposition control approach in
contrast with the traditional functional decomposition are discussed. The role of distributed
artificial intelligence and distributed systems in the development of control architectures for
multiple autonomous mobile robots is presented. Hence, the more significant sub-fields of

distributed artificial intelligence are discussed in more detail as they relate directly to the work
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of this thesis. The origin of intelligent control including its approaches is illustrated. Three
methodologies in the field of intelligent control are presented two of which are used direct in
this thesis. Recent research in modelling, identification and control of dynamic systems using
methodologies from intelligent control has been reviewed with reference on related work. Robot
navigation using intelligent control methods has been described. In particular the chapter has
reviewed robot navigation techniques up to date, focusing on those utilising fuzzy logic and

neural networks.

The next chapter presents the main research methodology adopted for the research work carried

out in this thesis.
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Research Methodology

3.1 Introduction

The aim of this chapter is to propose, justify and present the main methodology adopted for the
research work carried out in this thesis. Although there is no formal method for developing
integrated solutions for advanced mobile robotic systems, in most cases, robot systems or
different types of controlling robot systems are evaluated using a proof of concept technique, in
which the system or the approach is shown to be capable of accomplishing a particular task.
More often, two methods are compared. The comparison of those two methods may produce an
inaccurate result because a more formal approach needs to be taken to choose which types of

methods to compare and for what type of task.

The demand for complex control systems with or without the use of a mathematical model of
the plant to be controlled and the effort to model, control, identify and build control systems
architectures for autonomous mobile robots has led to recent use of intelligent control methods

such as fuzzy logic, neural networks, genetic algorithms, multi-agents systems, etc. However

3-1



Chapter 3 Research Methodology

the effort for several simple, cheap, flexible and more fault-tolerant mobile robots rather than a
single powerful robot for each separate task needs an integration of both conventional and

intelligent control design techniques.

The proposed methodology for this research work can be broken into the following nine basic

steps, described as follows:

1. Conventional control design. Automatic control has played an important role in the
advance of engineering and science (Gajic and Lelic, 1996) and (Astrom and Wittenmark,
1997). In addition to its extreme significance in the steering of missiles, aircraft-autopilot
systems, spacecrafts, underwater vehicles, mobile robots, automatic control has become a
crucial and usually integral part of modern manufacturing and industrial processes. Design
of Proportional + Integral (PI) speed controller is presented in chapter five r the MIABOT
V2 mobile robot. This method was chosen as conventional control design provides good
performance when mainly based upon knowledge of the process mathematical model. In
addition conventional control is computational simple and fast (this is demonstrated in
chapter five where comparison with fuzzy and neural controllers has been made) and in
general is much more widely understood and easier to tune (only three terms are tuneable).
Appendix C presents the background information of the basic control system structure with

more emphasis on PID control.

2. Optimisation. The subject of optimisation is an interesting blend of heuristics and rigor, of
theory and experiments and may be defined as the science of determining the ‘best’
solutions to certain mathematically defined problems, which are often models of physical

reality. The non-linear control design' (NCD) blockset based on constrained optimisation

' NCD is registered trademark of the Math Works, Inc. Copyright 1993-1997. All rights reserved.
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provided by MATLAB? is used in chapter four and five for tuning/optimisation of physical
and control parameters. The physical parameters (moment of inertial, etc.) were
identified/optimised for more accurate robot model, whereas controller parameters (PI
gains) were tuned to meet desired design requirements. This method is fast, easy to use,
suitable for control design of both linear and non-linear systems and gives good
performance. Appendix D presents an overview of constrained optimisation and the non-

linear control design tool.

Robust stability analysis for interval polynomials based on parametric approach.
Almost all dynamic systems depend on varying or uncertain parameters and this is certainly
true for small mobile robots. For instance, consider the velocity of a mobile robot (i.e. due
to the battery variations), or its mass (i.e. adding or removing components), all these
parameters may vary more or less significantly within certain bounds and they influence the
system dynamics. Traditional control design approaches consider a fixed operating point in
which the controller (compensator) is robust enough to effectively control the plant for
different operating conditions. These approaches produce good results if the parameter
variations are small or the system dynamics are not too sensitive with respect to these
parameters. For significant (large) parameter variations these control design methods reach
their performance limits. The parametric robustness analysis approach (Kharitonov’s
Theorem) is adopted in chapter five as it is an easy to use method and offers fast robust
stability testing and analysis based on interval polynomials. Using this method the closed-
loop control system of the MIABOT V2 mobile robot is proved to be robustly stable under
uncertainty in its dynamics. The interval polynomial problem was first posed by (Faedo,
1953), who attempted to solve it using the Routh-Hurwitz conditions. (Kharitonov, 1978)

gave the complete solution with his theorem for real polynomials, which he then extended

2 MATLARB is registered trademark of the Math Works, Inc. Copyright 1984-2000. All rights reserved.
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to the complex case. Since then many papers have been published based on parametric
approach regarding robust stability of uncertain plant (Siljad, 1989) and (Kontogiannis and
Munro, 1996). Appendix E presents definitions and theorems (Bhattacharyya et al, 1995)
related to robust stability testing of the closed—loop control system of the MIABOT V2

mobile robot under uncertainty in its dynamics.

4. Fuzzy logic systems (FLS). Fuzzy logic systems are employed in chapter five to model
local controller (speed controller) from observation data and in chapter six to model robot
behaviours (obstacle avoidance behaviours) for mobile robot navigation. The reason that
FLS were adopted is because they employ qualitative linguistic terms that take into account
the imprecise nature of real-world processes and systems. Other important advantages of
FLS includes: allows the handling of processes that are either modelled inadequately or not
representable mathematically; they describes process behaviour based on available
empirical or experiential information from sensors systems and/or human operators; they
can cope with complex non-linear, multi-variable and time-varying processes without

requiring them to be defined in precise mathematical terms.

5. Artificial neural networks (ANN). Artificial neural networks are also used in chapter five
to model local controller (speed controller) from observation data and to model robot
behaviours (obstacle avoidance behaviours) in chapter six for mobile robot navigation. The
advantages of using ANN can be summarised as follows: ANN have interesting and
attractive features such as learning, self-organisation and the capability to model a large
class of non-linear systems. ANN can learn a mapping between an input and an output
space and form an associate memory that retrieves the appropriate output when presented
with an unseen input. They can also generalise to produce an output when presented with
previously unseen inputs. Calculations are in principle carried out in parallel resulﬁng in

speed advantages and programming can be done by training rather than defining explicit
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instructions. The major advantage of the ANN methodology is that it can produce learning

controller for a mobile robot that can operate in an uncertain environment.

6. Clustering techniques. Clustering can be an effective technique for dealing with large sets
of data. The principal idea is to distil natural groupings of data from a large data set thereby
allowing concise representation of the model’s behaviour. Subtractive clustering is used in
chapter five for the identification of a fuzzy speed controller from observation data. The
advantage of using subtractive clustering is that computation is simply proportional to the
number of data points and independent of the dimension of the problem under
consideration. Having training data from a PI speed controller, construction of a dynamic
fuzzy model to control the plant is achieved. Such dynamic modelling is complex and
difficult task (large rule base due to many input variables) and is effectively solved using

subtractive clustering.

7. Design of control systems architectures for autonomous mobile robots. The new control
system architecture presented in chapter six is hybrid. In this chapter a description of
different techniques that have been used to build control systems for autonomous mobile
robots (or agents) and how different architectures can be classified is presented. When
comparison between different types of control architectures is undertaken, this comparison
should be made based on a number of important properties. Classification among these

properties is proposed in this chapter.

8. Multi-agent systems (MAS). As mentioned above the new control system architecture in
chapter six is hybrid, but also is multi-agent type constructed and orientated. Multi-agent
systems theory is relatively new field in control and systems engineering. A special role in
the theory and tools for solving complex control problems is attributed to the concept of

agent. An agent represents an abstract entity that is able to solve a particular (partial)
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problem. Agents have the ability to be combined into a multi-agent system, such that the
overall multi-agent system is able to solve a more complex problem. In this chapter brief
background information of MAS and classification of the main multi-agent control
architectures is presented in order to form the basic of the concept to construct local

controllers that consist of several other controllers in chapter six.

9. Stateflow design tool based on finite state machines (FSM) theory. Stateflow design tool
is based on finite state machines (FSM) theory. In this thesis it is used in chapter six as
global state identification mechanism, supervisorlike co-ordination object for several local
controllers-agents and also as tool for identification of direction of neighbour robots. The
advantage of using stateflow is model visualisation and simulation of complex reactive
systems based on the theory of FSM. However, the design can be easily modified,
evaluation of results and verification of system’s behaviour at any stage of the design can be
done successfully. In this chapter the main idea behind of FSM is highlighted followed by

description of stateflow’s main design steps.

This chapter is organised as follows: The main methodology of fuzzy logic systems and
artificial neural network is presented in sections 3.2 and 3.3 respectively. Clustering techniques
are discussed in section 3.4. Section 3.5 presents the design methodology of control systems
architectures for autonomous mobile robot. Section 3.6 discuss multi-agent systems and their
role of how can solve complex control problems. Stateflow design tool based on FSM theory is
outlined in section 3.7. A discussion follows in section 3.8 and finally the summary of the

chapter is presented in section 3.9.

3.2 Fuzzy logic systems (FLS)

As mentioned in the introduction of this chapter fuzzy logic is used in chapters four and five for

modelling and control of local controllers. Therefore this section forms a brief outline of the
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theoretical background of fuzzy logic systems highlighting the structure of fuzzy logic and
fuzzy control followed by classification of different types of fuzzy models. More details and
background information can be found in (Mamdani and Gaines, 1981), (Zimmermann, 1991),
(Heske and Heske, 1996), (Berkan and Trubatch, 1997), (Yen and Langari, 1999) and (Nguyen

and Walker, 2000).

Every history of logic seems to start with Aristotle (384322 B.C). Aristotle, the student of
Plato, thought of Logic as the science of knowing. Aristotle’s most germane, and certainly his
most quoted contributions to the foundations of fuzzy logic are two axioms named the Law of
Contradiction and the Law of the Excluded Middle. The Law of Contradiction says that a thing
cannot belong to a class and not belong to a class at the same time. This is like saying that it
cannot be both raining and not raining at the same time. The Law of the Excluded Middle says
that a thing must either belong to a class or not belong to a class. In other words, it must be
raining or not raining. Together these two axioms leave no room for such concepts as sort-of

raining or slightly raining.

The next, and certainly most significant, steps in the development of logic were taken in 1965 in
a paper called Fuzzy Sets (Zadeh, 1965). Lofti A. Zadeh of the University of California at
Berkeley took those steps by coining the name fuzzy logic and defining the mathematical
notions of inclusion, union, intersection, complement, etc. for such sets. Zadeh then turned his
attention to applying his newly minted fuzzy framework to modelling and automating models of
human reasoning. Approximate Reasoning is the term used by Zadeh to describe the human
ability to process imprecise, incomplete, and possibly unreliable information while reaching
concrete conclusions. Since then the development of fuzzy logic theory stimulated alternative

means to solve several problems in automatic control.
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3.2.1 What is fuzzy logic

Fuzzy logic is a powerful problem-solving methodology with a myriad of applications in
embedded control and information processing. Fuzzy provides a remarkably simple way to draw
definite conclusions from vague, ambiguous or imprecise information. In a sense, fuzzy logic
resembles human decision making with its ability to work from approximate data and find
precise solutions. Unlike classical logic, which requires a deep understanding of a system, exact
equations, and precise numeric values, fuzzy logic incorporates an alternative way of thinking,
which allows modelling complex systems using a higher level of abstraction originating from
human knowledge and experience. Fuzzy Logic allows expressing this knowledge with
subjective concepts such as very hot, bright red, and a long time, which are mapped into exact

numeric ranges.

3.2.2  Structure of fuzzy logic

A logic based on the two truth values frue and false is sometimes inadequate when describing
human reasoning. Fuzzy logic uses the whole interval between 0 (false) and 1 (true) to describe

human reasoning,.

3.2.2.1 Fuzzy sets

A fuzzy set is a set without crisp or clearly defined boundary. Fuzzy sets can be used to describe
vague concepts or linguistic variables. Take for example the set of young people. A one year old
baby will clearly be a member of the set, and a 100 years old person, will not be a member of
this set, but what about people at the age 20, 30 and 40 years? Zadeh proposed a grade of
membership such that the transition from membership to non-membership is gradual rather than
abrupt. The grade of membership for all its members thus describes a fuzzy set. An item's grade

of membership is normally a real number between 0 and 1 as shown in Figure 3-1, often

denoted by the Greek letter p . The higher the number the higher the membership.
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Figure 3-1 The sets more less old, very young, and not very young are derived from young and
old

3.2.2.2 Universe

Elements of a fuzzy set are taken from a universe of discourse, or universe for short. The
universe contains all elements that can come into consideration. Even the universe depends on
the context, as for instance the set of young people could have all human beings in the world as
its universe. Alternatively it could be the numbers between 0 and 100. These would then

represent age as shown in Figure 3-1.

3.2.2.3 Membership functions

Every element in the universe of discourse is a member of the fuzzy set to some grade, maybe
even zero. The function that ties a number to each element x of the universe is called the
membership function p(x). A fuzzy set can be described by a membership function whose
membership values are strictly monotonically increasing, monotonically decreasing or
monotonically increasing then monotonically decreasing for elements in the universe of
discourse. Several types of basic functions can be used for membership functions, examples
includes singleton, triangular, trapezoidal, s-shaped (called an s-curve), bell shaped (called = -
curve), and a reverse s-shaped (called z-curve). Figure 3-2 shows an example of both triangular

and trapezoid- shaped build in membership functions.
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Figure 3-2 Examples of membership functions: (a) triangular-shaped (b) trapezoidal-shaped

The mathematical expression of the most commonly used membership functions is given in the
following. The mathematical expression of all currently used membership functions can be

found in several sources such as (Klir and Yuan, 1995) and (Passino and Yurkovich, 1998).

Triangular. Equation (3.1) represents triangular membership function in which b is a modal
value, and a and c¢ denote the lover and upper bounds, respectively, for non-zero of

f(x;a, b,c).

f(x;a,b,c)= B" 3.1

Sometimes it is more convenient to use the notation explicitly highlighting the membership

function's parameters. In this case the result is:
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f(x;a,m,b)= max(min();:: ,Z:’;),OJ (3.2)

Trapezoidal. A trapezoidal membership function (3.3) is specified by four parameters

(a,b,c,d) and is defined by:

0, if <a
E”a' if a<x<b
—a
fcabed)={ I if bsxs<c (3.3)
d—x if c<x<d
d-c
0, if <X

Singleton. A singleton membership function is defined by one parameteronly. This model can

be used to translate the precise crisp input for fuzzification or to represent the inference solution.

When variable x is a, its membership p(x) takes value 1 as defined in (3.4).

1 if x=a
flx:a)={" 3.4
(x, a) {0, if x=za (3-4)

3.2.2.4 Fuzzy sets operations

The membership function is obviously a crucial component of a fuzzy set. It is therefore natural
to define operations on fuzzy sets by means of their membership functions. In fact a fuzzy set
operation creates a new set from one or several given sets. In more general terms, the most
commonly used fuzzy sets operations are defined as Intersection (AND), Union (OR) and
Complement (NOT). For example, consider two fuzzy sets Aand B on the universe X, for a

given element x of the universe, the intersection is defined as:
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Ranp (%) = 1A (X) THp(x) (.5)
where 1 is the notation of the triangular norm or f-norm, which is a fuzzy conjunction operator
(Yen and Langari, 1999). The Minimum and Algebraic Product are most commonly used to

calculate the -norm for a fuzzy intersection (Pedrycz and Gomide, 1998) as shown in (3.6) and

(3.7):

Hans (X)=pa (X) Apg(x)=min[p, (), up (x)] (3-6)

BanB(X)=pa (X) A pp(X)=pa (X)pp(X) 3.7

The union is defined as:

HauB(X) = pa (X)Spp(X) (3.8)

where § is the notation of the triangular ssnorm, which is a fuzzy disjunction operator (Yen and
Langari, 1999). The Maximum is suggested and most commonly used to calculate the s-norm

for a fuzzy union (Zadeh, 1965) as shown in (3.9):

Maup (x)=max(u, (X),up (x)) 39

Finally the complement is defined by:

Hg () =1 - s (%) (3.10)
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backwards in time. These are created in the pre-processor thus making the controller multi-
dimensional, which requires many rules and makes it more difficult to design. The pre

processor then passes the data on to the controller.

3.2.3.2 Fuzzification

The first block inside the controller is fuzzification, which converts each piece of input data to
degrees of membership by a lookup in one or several membership functions. The fuzzification
block matches the input data with the conditions of the rules to determine how well the
condition of each rule matches that particular input instance. There is a degree of membership
for each linguistic term that applies to that input variable. In other words fuzzification interface
involves the following functions: measures the value of input variables; performs a scale
mapping that transfers the range of values of input variables into corresponding universes of
discourse; performs the function that converts input data into suitable linguistic values, which
may be viewed as labels of fuzzy sets. At this design stage it is important to set up parameters

such as type and number of membership functions.

3.2.3.3 Rule base

The rules may use several variables both in the condition and the conclusion of the rules. The
controllers can therefore be applied to both multi-input multi-output (MIMO) problems and
single-input single-output (SISO) problems. The controller may actually need both the error and
the change of error as inputs. To simplify, this section assumes that the control objective is to
regulate some process output around a prescribed setpoint or reference. Therefore the rule base
will contain rules in the if-then format. Usually different formats are used to represent the rule

base. One example can be the rule format in the following:

IF error is Neg and change in error is Pos THEN output is Zero
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The names Neg, Pos and Zero are labels of fuzzy sets. The same set of rules could be presented

in a relational format or the tabular linguistic format for shorter representation.

3.2.3.4 Inference engine

Inference is the act of drawing a conclusion based on a premise. In the case of fuzzy logic mle
based systems, premises are spelled out as a combination of antecedents on the IF-side of rules.
The consequents of a fuzzy rule can be interpreted as the conclusions drawn if the premises of a
fuzzy rule are satisfied. The fuzzy inference procedure specifies how the IF-side truth value
applies to the consequents specified in the rule. The strength of the conclusion simply indicates

a degree of belief in the actual value or action specified in the rule consequent.

Characteristically, the degree to which the premise of a fuzzy rule is satisfied lies on the
continuum of values [0,1]. What it is expected for any inference procedure is that the strength of
the conclusion should track with the strength of its associated premises. A premise truth of zero
should lead to a conclusion with zero strength, and a premise truth of one should lead to a
conclusion with maximal strength. In between the extremes of premise truth, the strength of a
conclusion should increase as the strength of its premise increases. Implication and aggregation
both are operating within the inference engine mechanism. In general there are three methods of
inference engine: correlation minimum, correlation product and min-max (Heske and Heske,

1996).

3.2.3.5 Defuzzification

Defuzzification is needed to translate the fuzzy output of a fuzzy controller to a numerical
representation (crisp). When a fuzzy controller is considered from the theoretical point of view,
the fuzzy output can be a multi-dimensional fuzzy set (fuzzy relation). This assumes that the
controller can have multiple outputs (SISO or MIMO system) which causes the fuzzy output of

the controller to be a multi-dimensional fuzzy set. Some of the most commonly defuzzification
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methods include: centre of gravity, centre of largest area, mean of maxima, first of maxima,
middle of maxima, height, left most, right most and weighted average defuzzification. The
choice of defuzzification method depends on the context of the control problem (Ross, 1995)
and (Reznik ef al, 2000). In the following only the centre of gravity defuzzification method is
described due to its popularity whereas the other methods can be found in several sources such

as (Klir and Yuan, 1995) and (Yen and Langari, 1999).

(3.11)

The crisp output value u is the abscissa under the centre of gravity of a fuzzy set. Here x; is a

running point in a discrete universe, and p(xi) is its membership value in the membership
function. For the continuous case, replace the summations by integrals. It is much usedmethod

although its computational complexity is relatively high.

3.2.3.6 Post-processing

Output scaling is also very important operation in the design of fuzzy logic controllers. In case
the output is defined on a standard universe, this must be scaled to engineering units, for

instance, volts, meters, etc.

3.24 Types of fuzzy models

Given a model (heuristic or analytical) of the physical system to be controlled and specifications
for its desired behaviour, the design objective in fuzzy control is to design a feedback control
law in the form of a set of fuzzy rules such as that the closed loop system exhibit the desired
behaviour. To achieve this design goal different types of fuzzy model can be employed.

(Driankov and Palm, 1998) has classified these types of fuzzy models as follows: Mamdani
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fuzzy model, Takagi-Sugeno (TS) fuzzy model, relational fuzzy model, differential equations
non-linear model and modified TS fuzzy model approximating a given differential equations
non-linear model. In this thesis both Mamdani and Takagi-Sugeno fuzzy models are used. Each
fuzzy model has to offer advantages over the other. In the following an overview is given for

both Mamdani and Takagi-Sugeno fuzzy models.

3.2.4.1 Mamdani model

The Mamdani fuzzy model was first introduced by (Mamdani and Assilean, 1975). Using this
model, Mamdani, developed the first fuzzy logic controller. Most fuzzy control systems
developed in the 80’s use the Mamdani model. The main idea of the Mamdani controller is to
describe process states by means of linguistic variables and to use these variables as inputs to
control rules. The Mamdani method is more intuitive and well-suited to human input and also
more widespread method. However, this model is computational expensive and cannot be used

for optimisation. In the following the Mamdani model is described.

Consider the following rule base, where X, Y and Z are linguistic variables:

R,:IF X is A, and Y is B; THEN Z is C; (i=12,...,n) (3.12)

Given the input fact (x,,y,), the goal is to determine the output “Z is C”. The first step to
make is to fuzzify the given input. The fuzzifier maps the input data x, € U, into the fuzzy set
A and y, €U, into fuzzy set B. The next step is to evaluate the truth-value for the premise for

each rule, and then apply the result to the conclusion part of each rule using the fuzzy
implication. The Membership functions defined on the input variables are applied to their actual
values to determine the degree of truth for each rule premise. The degree of truth for a rule’s

premise is computed for the rule base in equation (3.12) as follows:
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a; =M A andB; (xo,y0)=min(pAi (Xo)’MBi ()’o)) (3.13)

If a rule’s premise has nonzero degree of truth the rule is activated. The next step is to find the

output, C';, of each of the rules:

ke, (W)= (aamdp )sc, (X0,¥0: W) VweW (.14

In MIN inferencing (or Mamdani implication rule) the implication is interpreted as a fuzzyAND

operator:

Key (w)= M A, andB; (x0,¥0) and Hey(w) = min(]"'AiandBi (x0. Yo b bic, (W)) (3.15)

In the rule aggregation step, all fuzzy subsets assigned to each output variable are combined
together to form a single fuzzy subset for each output variable. The purpose is to aggregate all
individual rule outputs to obtain the overall system output. In the MAX composition, the
combined output fuzzy subset C* is constructed by taking the maximum over all the fuzzy

subsets assigned to the output variable by the inferencerule:

nex(w)= max(pc.l (w), Hey, (w),..., e (w)) (3.16)

Normally, the defuzzification step is executed as the last step and the most commonly used

method in the centre of gravity described in section 3.2.3.5.
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3.2.4.2 Takagi-Sugeno model

The Takagi-Sugeno (TS) model was introduced by (Takagi and Sugeno, 1985) about one
decade after the Mamdani model. The main motivation for developing this model is to reduce
the number of rules required by the Mamdani model, especially for complex and high-
dimensional problems. The Takagi-Sugeno model is computationally more efficient and well
suited to optimisation and adaptive techniques and to mathematical analysis. It has also
guaranteed continuity of the output space and it works well with linear techniques such as PID
control. The fuzzification of the inputs and the application of the fuzzy operator are similar to
Mamdani model. However the Takagi-Sugeno model differs from Mamdani model by
introducing crisp functions as the consequences of the rules. This structure offers a systematic
approach to generate fuzzy rules from a given input-output data set. A Takagi-Sugeno rule set is

of the following form:

R;:IF X is A; and Y is B; THEN z; =f;(x,,yo) (i=12,...n) (3.17)

Where, (xo,yo) is the input. The antecedent of each rule is a set of fuzzy propositions
connected with the AND operator. The consequent of each rule is a crisp function of the input
vector [xo,yo]. By means of the fuzzy sets to the antecedent propositions the input domain is
softly partitioned in smaller regions where the mapping is locally approximated by the crisp
functions f;. Combining the rules and their affects differs from the Mamdani method
considerably. One variation of the TS inference system uses the weighted sum criterion to

combine all the local representations in a global approximator, by:

r
) E”‘Zi (3.18)

}:ui

Z
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Where, p; is the degree of fulfilment of the ith rule and r is the number of the rules in the rule

base.

33 Artificial neural networks (ANN)

Artificial neural networks are employed in chapters five and six for modelling and control of
local controllers. This section forms a brief introduction of the theoretical background of ANN.
More details and background information can be found in literature in the contributions of
(Kosko, 1992), (Taylor and Lisboa, 1993), (Harris, 1994), (Welstead, 1994), (Jang et al, 1997),

(Ng, 1997), (Picton, 1998), (Haykin, 1999) and (Li ef al, 2001).

The aim of ANN is to model networks of biological neurons in the brain. The human brain and
nervous system have amassing properties. Although brain cells operates about seven orders of
magnitude slower than switching elements of modern computers, the brain is capable of
performing tasks which are impossible for computers. The main reasons behind this statement
are massive parallelism and asynchronous operation of the human brain. The ANN structure is

parallel composed of many computational elements connected by links with variable weights.

3.3.1 Biological neuron

The human brain consists of about hundred billions (10'!) different types of neurons. Each of
them has about 1,000 — 10,000 connections to other neurons. The nervous system has several
kinds of nerve cells (neurons), but they all share common features. Figure 3-4 shows the
structure of a typical biological neuron. The neuron is formed of a soma (i.e., cell body),
dendrites, and an axon. The dendrites receive signals from the other neurons, and the axon

passes a signal to the other neurons. A junction between the axon and the dentate is called a
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Figure 3-5 Model of a neuron

Synaptic weights. This is a set of synapses or connecting links, each of which is characterised

by a weight or strength on its own. Specifically, a signal x; at the input of synapse j connected

to neuron k is multiplied by the synaptic weight w;.

Summing junction. This an adder for summing the inputs signals, after they have been

weighted by the respective synapses of the neuron.

Activation function. This transforms the result of the adder and limits the amplitude of the

output of a neuron. Generally, the normalised amplitude range of the output of the neuron is

given as the closed unit interval [0,1] , or alternative [— 1,1].

Bias. This is has the affect of increasing or lowering the net input of the activation function,

depending on whether it is positive or negative, respectively.
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In mathematical terms the activation functions shown in Figure 3-6 can be expressed as follows:

Linear. A linear (Figure 3-6(a)) activation function’s output is simply equal to its input as

shown in equation (3.21).

f(x)=x (3.21)

Symmetric hard limit. A symmetric hard limit (Figure 3-6(b)) activation function’s output is

defined by:

1 x20
f(X)={_1 z:o (3.22)

Symmetric saturating linear. A symmetric saturating linear (Figure 3-6(c)) activation

function’s output is defined in equation (3.23) where k is constant and greater than zero.

1 x> (1/k)
f(x)={kx (-1/k)<x<(1/k) (3.23)
-1 x<(—1/k)

Hard limit (or step). A hard limit (Figure 3-6(d)) activation function’s output is defined by:

f(x)= {(1) * i g (3.24)
X

Hyperbolic tangent sigmoid. A hyperbolic tangent sigmoid (Figure 3-6(e)) activation

function’s output is defined by:
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f(x)=(e" —-e ¥ )/(ex +e"") (3.25)

Logarithmic sigmoid. A logarithmic sigmoid (Figure 3-6(f)) activation function’s output is

defined by:

fx)=1/(1+¢™) (3.26)

The construction of a neural network deepens upon many parameters. These parameters include:
type of activation function, network architecture and learning method. In the following section

the main types of ANN architectures are presented.

3.33 ANN architectures

ANN architectures can be divided into two main categories depending on the kind of learning
that is incorporated in the network (Pfeifer and Scheier, 1999). In the first category are neural
networks that require no teacher and are said to be unsupervised. Unsupervised ANN usually
divided into two types; Hebbian learning and Kohonen maps. Hebbian learning comes in many
variations but usually takes place when the nodes on both sides of the connection are
simultaneously active (sometimes within a given interval). The advantages of Hebbian learning
includes: it is simple and requires little computation; it is purely local, meaning that for learning,
only the neuron itself and its neighbours need to be considered; it is biologically plausible
(Churchland and Sejnowski, 1992). Kohonen maps (Kohonen, 1982) are widely used in many
applications such motor control, navigation, etc. The basic architecture of Kohonen map is
described as follows: In the map layer, lateral (connections are called lateral if they link nodes
within a layer, rather than between layers) connections are excitatory for close neighbours,

inhibitory for those further away and neutral for the ones still further out. Patterns are presented
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to the model at the input layer, and depending on the particular architecture and choice of
parameters, the system will eventually learn a particular categorisation of the input space. The
Kohonen maps can be used if the classification data are unknown, can be used to map high-
dimensional spaces into law-dimensional ones and as does Hebbian learning, Kohonen maps
have certain neurobiological plausibility (Kohonen, 1989). The second category comprises
neural networks that require a teacher and are said to be supervised. Supervised ANN usually
divided into two network topologies; feedforward neural networks (FNN) and recurrent (or
feedback) neural networks (RNN). Supervised FNN and RNN are discussed in more detail in
the following section. However more emphasis will be given to FNN as used both in chapters

five and six.

3.3.3.1 Feedforward neural networks (FNN)

FNN are constructed of one (perceptron neural network) or more (multilayer perceptron neural
network) hidden layers between the input and output layers as shown in Figure 3-7. As can be
observed from Figure 3-7 the network is divided into input layer, output layer and hidden
layer(s). The neurons are forward connected between adjacent layers, signals propagate only in
the direction from the input layer, through intermediate hidden layers neurons, to the output
layer. FNN are classified as fully connected, if every neuron in the layer of the network is
connected to every neuron in the adjacent forward layer. However, if some of the
communication links (synaptic connections) are missing from the network, it is said that the
network is partially connected. It has been proved that any non-lincar function can be
approximated using FNN with one hidden layer having non-linear activation functions
(Cybenko, 1989), (Hornik et al, 1989) and (Funahashi, 1989). The same result or even better
can be achieved if more than one non-linear hidden layers form the network. (De Villiers and
Barnard, 1993) have demonstrated that FNN with two hidden layers are more prone to fall into

local minima, which might give better approximation for some specific problems.
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Input Hidden Hidden Output
Layer Layer 1 Layer 2 Layer

Figure 3-7 Feedforward neural network

The general relationship in a FNN between the input x and the output y is represented by the

following equation (3.27).

y(&,x)= f[%: gnf[g 3 jf(...f[z £, DD (3.27)

In the particular case in Figure 3-7 with two hidden layers, equation (3.27) can be expressed as

follows:

y(&, x)= £, (E4f3 €352 211 E1%))) (3.28)

Where &; = [wi,b,-] with i=1,2,3,4 is the vector parameter of each layer, w are the weights,

b are the biases, x is the input vector and f are the activation functions for each layer of
neurons. In order to allow the output of the network to be any real number within a certain
bound, the activation function of the output layer is usually chosen to be a linear function. In

order to guarantee the approximation properties of the network, the hidden layers activation
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functions are chosen to be a non-linear function with known derivatives (this requirement is due
to the backpropagation algorithm). Two of the commonly used non-linear functions in the
hidden layer are: the hyperbolic tangent sigmoid function shown in equation (3.25) with values

in [-1,1] and logarithmic sigmoid function shown in equation (3.26) with values in [0,1].

3.3.3.2 Recurrent neural networks (RNN)

RNN are different from FNN in that their structure incorporates at least one feedback loop as
shown in Figure 3-8. In general, the output of every neuron is fed back with varying gains
(weights) to the input of all neurons. It is claimed that the presence of feedback loops has a
profound impact on the learning capability of the network and on its performance (Ku and Lee,
1995). The feedback loops commonly involve unit delays if dealing with discrete-time systems,
or integrators in the continuous-time case. The RNN may be preferred to FNN when the
measured plant outputs are highly corrupted by noise and the dynamics of the non-linear

process are complex and unknown

Input Hidden Output
Layer Layer Layer

Figure 3-8 Recurrent neural network
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3.3.4 Training of feedforward multilayer perceptron NN

The multilayer perceptron (MLP) neural networks were not used in the past because of lack of
an effective training technique. (Werbos, 1974) developed an algorithm called back-propagation
in 1974, but his achievement remained almost unknown for almost a decade. (Rumelhart et a/,
1986) re-discovered the technique and later a closely related approach was proposed in
(Cichocki and Unbehauen, 1994) and (Faussett, 1994). Since the work of (Rumelhart et al,
1986) back-propagation algorithm has been successfully used for training of MLP networks. In
addition, more recently, the back-propagation algorithm has also been adopted for training of
RNN. A feedforward MLP network should perform a specific non-linear mapping or association
task which can be expressed in terms of a given input/output pattern (pairs). These input/output
relations are called a set of training examples. Training of the MLP network consists of the
adaptation of all synaptic or connection weights in such a way that the discrepancy between the
actual output signals and the desired signals, averaged over all training input examples, is as
sinall as possible. In other words, the back-propagation algorithm can be considered as an
unconstrained optimisation training problem of a suitably constructed error or cost function. A
full description of the back-propagation algorithm is given in Appendix F. There are several
different back-propagation training algorithms available in the literature. They have a variety of
different computation and storage requirements and no one algorithm is best suited to all
situations. The MATLAB library offers a wide range of different back-propagation training
algorithms some of which include: basic gradient descent algorithm, gradient descent with
momentum algorithm, Resilient back-propagation algorithm, F letcher-Reeves conjugate
gradient algorithm, Polak-Ribiere conjugate gradient algorithm, Powell-Beale conjugate
gradient algorithm, Scaled conjugate gradient algorithm, BFGS quasi-Newton method
algorithm, one step secant method algorithm, adaptive learning rate algorithm, Levenberg-
Marquardt algorithm and Bayesian regularisation algorithm. It is very difficult to know which

of the above algorithms will be the faster for a given problem as this depends upon many
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factors. Some of this factors include complexity of the problem, number of data points in the
training set, number of weights and biases in the network and the error goal. The training
algorithm used for the feedforward MLP networks in chapters five and six is Levenberg-
Marquardt (Levenberg, 1944) and (Marquardt, 1963). This algorithm was chosen because it was
found to have the fastest convergence over the others with accurate training. More details of the

Levenberg-Marquardt algorithm can be found in Appendix F.

34 Clustering

Clustering is used in chapter five for the identification of a dynamic model (fuzzy model from
PI speed controller). The problem of automatic generation of fuzzy IF-THEN rules is one of the
most important issues in the development of fuzzy systems models. Clustering of numerical
data, which is one of the most fundamental issues in pattern recognition and system modelling
algorithms, can be successfully used to solve the aforementioned problem. The main purpose of
clustering is to distill natural groupings of data from a large data set, producing a concise
representation of the system’s behaviour. To demonstrate the importance of clustering
techniques consider the clustering problem in Figure 3-9. It is obvious that there are four
clusters in Figure 3-9a when the objective function is based on distance between the elements.
In this case reasoning easily can create clusters, such as IF X and Y are small THEN it is cluster
1; IF X and Y are large THEN it is cluster 2, and so forth. On the other hand the clustering
problem in Figure 3-9b is complex since every data point appears to be equidistance from each
other. The important question here is whether a mathematical technique can do better job than
the human brain for cases depicted in Figure 3-9b. In the following sections some definitions
and notation in general cluster analysis is given. The main three offline clustering techniques
are also discussed with more emphasis on subtractive clustering as this technique is

implemented in chapter five for identification of dynamic fuzzy controller.
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Figure 3-9 Clustering based on distance: (a) Interpretable by human, (b) ambiguous to human.

34.1

Definitions and notations in cluster analysis

Prior the description of the off-line clustering techniques that can be used in identification,

modelling and control strategies, some definitions and notations used in the cluster analysis are

given. Note that the following sections only indicate the main definitions and notations of the

cluster analysis whereas more details can be found in the literature (Bezdek, 1981), (Klir and

Yuan, 1995), (Yen and Langari, 1999) and (Bezdek et al, 1999).

34.1.1 The data used in cluster analysis

One of the most important advantages of clustering techniques is that they can be applied to

data that is quantitative (numerical), qualitative (categoric) or mixture of both. In chapter five

where cluster analysis takes place for the identification of dynamic model the data considered

are quantitative. In general, the data are typically observations and/or records of some physical

process of a real system and/or control action. Each observation and/or record consists of n

. . . . . n
measured variables, grouped into an n-dimensional Euclidean space R column vector
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Yy =[Wlk’\|’2k’""\|’nk ]T, yi €eR". A set of N observations and/or records is denoted by

Y= {zk |k = 1,2,...,N} and is represented as an n x N matrix as follows:

Y VY2 - VIN
Yo VY2 - VonN

Y= S (3.29)

_\an Yna - \VnNJ

In pattern recognition terminology, the columns of the matrix are called patters or objects, the
rows are called the features or attributes, and W is called the pattern or data matrix. The

meaning of the columns and rows of ¥ depends on the context of the classification problem.

3.4.1.2 Definition of clusters

Various definitions of a cluster can be formulated, depending of the objective of clustering.
(Bezdek, 1981) defined a cluster as a group of homogeneous classes or objects that are more
similar to one another than to members of other clusters. The term “similarity measure” has an
important effect on the clustering analysis results since it indicates which mathematical
properties of the data set, i.e. distance, connectivity, intensity should be used and in what way in
order to identify the clusters. Distance can be measured among the data vectors themselves, or
as a distance from a data vector to some prototypical object of the cluster. The prototypes
(which are usually the centre of the clusters) or centroids are usually not known in advance, and
are sought by the clustering algorithms simultaneously with the partitioning of the data. The
centre of clusters may be vectors of the same dimension as the data objects, but they can also be

defined as high-level geometrical objects, such as linear or non-linear subspaces or functions.
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34.2 Clustering algorithms (off-line)

This section presents three of the most representative offline clustering techniques frequently
used for fuzzy modelling (fuzzy c-means, mountain and subtractive). According to (Jang et al,

1997) clustering techniques are validated on the basis of the following two assumptions.

1. Similar inputs to the target system to be modelled should produce similar outputs. In other

words the target system to be modelled is a smooth input-output mapping.

2. These similar input-output pairs are bundled into clusters in the training data set. This
means that the data set required conforming to some specific type of distribution. (Jang et
al, 1997) claims that this is not always true. Therefore clustering techniques used for fuzzy
modelling are highly heuristic, and finding a data set to which clustering techniques cannot

be applied satisfactory is not uncommon.

3.4.2.1 Fuzzy C-means clustering

The Fuzzy C-means’ (FCM) clustering method was proposed by (Bezdek, 1974), as an
improvement over previous clustering method called C-means (Dunn, 1974). FCM clustering
method clusters the data by minimising the total “distance” of each data point to the cluster
centre. In particular, FCM algorithm is an iterative optimisation algorithm that minimises the

following cost function.

n C
1= 3> e -vil 630

,g.
il
R
0
LR

* C-means clustering method very often called K-means or hard C-means
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Where, n is the number of data points, ¢ is the number of clusters, x, is the kth data point,
v; is the ith cluster centre, p; is the degree of membership (between 0 and 1) of the kth data
in the ith cluster and m is a weighting exponent greater then 1 (typically m=2, me [1, oo)). The

degree of membership ;. is defined by equation (3.31).

1

Hik = 2/(m-1)
c [ka _vi"} (3.31)
=il = vif

Starting with a desired number of clusters ¢ and an initial guess for each cluster centre v;,

i=12,....,c, FCM clustering method will converge to a solution for v; that represents either a
local minimum or a saddle point of the cost function (Bezdek et al, 1999). The quality of the
FCM solution depends strongly on the choice of initial values such as the number of clusters,
clusters centres, etc. This is can be concluded as disadvantage of FCM, as the critical problem is
how to determine the optimal number of clusters. To overcome this problem another fast
algorithin is needed to determine the initial cluster centres or the FCM algorithm must run
several times with a different sets of initial clusters. For detailed treatment of FCM clustering
algorithm including its variants and convergence properties, the reader is referred to (Bezdek,

1981).

3.4.2.2 Mountain clustering method

The mountain clustering method, proposed by (Yager and Filev, 1994a), (Yager and Filev,
1994b), (Yager and Filev, 1994c), is a relatively simple and effective approach for estimating
the number and initial locations of cluster centres on the basis of a density measure called the
mountain function. This method makes a grid of the data space and computes a potential value

of each grid point based on the distance to the actual data points (a grid point with many data
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points nearby will have a high potential value). The first cluster centre is chosen the grid point
with the highest potential value. The main philosophy behind this method is that once the first
cluster centre is chosen, the potential of all grid point are reduced according to their distance
from the cluster centre (a greatly reduced potential will have grid point near the first cluster
centre). The next cluster centre is placed at the grid point with the highest remaining potential
value. This procedure (acquiring new cluster centre and reducing the potential of surrounding
grid point) is repeated until the potential of all grid points falls below a threshold. The general

form of the mountain method can be divided into three steps as follows:

1. Step one involves forming a grid on the data space, where the intersections of the grid

lines constitute the candidates fro cluster centres, denoted asaset Y .

2. Step two involves the construction of the mountain function representing a data density

measure. The height of the mountain function at an a point e Y is given as follows:
N v—w.|?
h™(v)=> exp| - l—z“’—'"— (3.32)

Where ; is the ith data point and o is an application-specific constant, which determines

the height as well the smoothness of the resultant mountain function. Equation (3.32) shows

that each data point ; contributes to the height of the mountain function h™ (v) at v. This

contribution is inversely proportional to the distance between y; and v. The higher the

mountain function value at a point the higher is its potential to be a cluster centre.

3. Step three involves the use of mountain function to define the cluster centres (this is

achieved by sequentially destruction of the mountain function). The first cluster centre
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c, is the point in the candidate centres Y that has the greatest value for the mountain

function i.e., c= max(hm(u)). Obtaining the next cluster centre requires eliminating the
effect of the just-identified centre, which is typically surrounded by a number of points
that also have high-density scores. This is can be done by revising the mountain function

as follows:

2
hP(v)=h, (0)-h"™(c, Jexp -"DTC;H— (3.33)
S

Where £ is the number of the cluster and ¢ is a positive constant similar to the parameter
c. The subtracted exponential part in equation (3.33) is a Gaussian function inversely

proportional to the distance between v and c., as well as being proportional to the height

h™(c, ) at the centre. Note that after subtraction, the new mountain function reduces to zero

at v=c,. The € cluster centre is again selected as the point in Y that has the largest value
for the new mountain function. This process of revising the mountain function and finding

the next cluster continuous until a sufficient number of cluster centres is attained.

The main advantage of the mountain clustering method is that it does not required a predefined
number of clusters and also is less sensitive to noise than other clustering methods such as FCM
(Pal and Chakraborty, 2000). The main disadvantage of the mountain clustering method is that
is computationally expensive and the amount of computation grows rapidly with the increase in

the dimensionality of the data.
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3.4.2.3 Subtractive clustering

Subtractive clustering is used in chapter five for the identification/construction of local models
(fuzzy speed controller). In sections 3.4.2.1 and 3.4.2.2 two well-established clustering
algorithms for fuzzy model identification were presented. It was shown that both algorithms had
disadvantages such as determination of optimal number of clusters (FCM) and increase in
computation as the dimensionality of the problem increases (mountain clustering). To overcome
these problems subtractive clustering is an alternative approach to solve complex and high-
dimensional problem. In the following, a subtractive clustering algorithm is presented in more

details than the previously presented algorithms as this has been used extensively in this thesis.

Subtractive clustering proposed by (Chiu, 1994) is an extension of the mountain clustering
method. Using subtractive clustering data points (not grid points) are considered as the
candidates for cluster centres. The computation is simply proportional to the number of data

points and independent of the dimension of the problem under consideration. Consider a
collection of n data points {x;,. . . X, } in an M -dimensional space. Without the loss of
generality, the data points are assumed to have been normalised within a hypercube. Since each

data point is a candidate for cluster centres, a density measure at data x; is defined as:

SR .
Di=Ye "N Ja=—,1,>0 (3.34)
=l Ta

Hence, a data point will have a high-density value if it has many neighbouring data points. The
radius r, defines a neighbourhood. Data points outside this radius contribute only slightly to the
density measure. After computing the density measure for each point, the one with the higher

density is selected as the first cluster centre. Let X be the centre of the first group and D its

density. Then, the density measure for each data point x; is revised by the formula:
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2
D, =D; ~Dge Pl gt oo (335)

The radius r,, represents the radius of the neighbourhood for which significant density measure
reduction will occur. The radius for reduction of density should be to some extent higher than
the neighbourhood radius to avoid closely spaced clusters. The value is typically, r, =1.5r,.

Since the points closer to the cluster centre will have their density measure strongly reduced, the
probability for those points to be chosen as the next cluster is lower. This procedure is carried

out iteratively, until the stopping criteria are reached. The algorithm is presented as follows.

Subtractive clustering algorithm

if D, >&"D_ (D is the density of location of the kth cluster centre X ¢, )

Accept X, as the next cluster centre and continue
else if Dy <sd°"""Dcl

Reject x¢, and end the clustering process
else

Let d_,;, be the shortest distance between x, and all previously found cluster centres

if dmin. + Dy >1
Iy Dc,
Accept x, as the next cluster centre and continue

else

Reject x o, and set the density at x¢ to 0

Select the data point with the next highest density as the new X¢y and re-test

end if

end if
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Here, €' specifies a threshold above which the point is selected as a centre, and %"
specifies the threshold below which the point is definitely rejected. Typically, e® =0.5 and

gdo%m = (.15 . If the density measure fails in the gray region, then checking of data points is
required to identify where they provide a good trade-off between having a significant density
measure and being sufficiently far from existing clusters. At the end of clustering procedure, a
set of fuzzy rules will have been obtained. Each cluster will represent a rule. However, since the
clustering procedure is conducted in a multidimensional space, fuzzy sets must be obtained. As
each axis of the multidimensional space refers to a variable, the centres of the membership
functions for that variable are obtained by projecting the centre of each cluster in the

corresponding axis. As for the widths, they are obtained on the basis of the neighbourhood
radius r,, defined while performing subtractive clustering. Since Gaussian membership

functions are used, their standard deviations are computed as follows:

oy =1, max(xkj)_min(xkj),kﬂ, . ,N (3.36)

N

35 Design of control systems architectures for autonomous mobile robots

The control architecture for autonomous mobile robots presented in chapter six is hybrid. The
scope of this section is to classify and discuss the main design methodology of control systems
architectures for autonomous mobile robots. In section 3.5.1 some definitions related to design
of control system architectures are given. Section 3.5.2 presents a short classification of the
currently used control architectures. The main key issues when designing such control system

architectures for complex control systems are discussed in section 3.5.3. In section 3.5.4 the
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most important properties, which can characterise a control system architecture for autonomous

mobile robots, is discussed.

3.5.1 Definitions used in design of control system architectures for autonomous
mobile robots

In most books and articles terms such as robot, autonomy, etc, are used without any explicit
definition. Sometimes this is confusing as definitions regarding the same thing are variance to
each other. Some definitions of the main terms used in this thesis are given in the following, just
for consistency purposes. Note, that the following definitions cannot be treated or considered to

be unique or the best.

Robot: According to the Robotics Industry Association (RIA) “a robot is a programmable,
multi-functional, manipulator designed to move material, parts, tools, or specialised devices
through variable programmed motions for the performance of a variety of tasks”. This
definition is quite restrictive, excluding mobile robots, among other things. In this thesis the
robot’s definition used is the one by (Arkin, 1998) in which “robot is a machine able to extract
information from its environment and use knowledge about its world to move safely in a

meaningful and prospective manner”.

Autonomy: For the scope of this thesis autonomy will be defined “as the ability of a system to
perform complex tasks without human guidance while coping with an unknown and changing

environment”.

Autonomous mobile robot: (Russel and Norvig, 1995) has given the following definition for
an autonomous mobile robot. “4An autonomous mobile robot can make decisions on its own,
guided by the feedback it gets from its physical sensors”. This definition fully defines the term

of autonomous robot used in this thesis.
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Behaviour: What an autonomous robot is observed doing. It can be seen also as the result of an

interaction of a robot with its environment (Pfeifer and Scheier, 1999).

Behaviour control: Set of mechanisms that determine the behaviour in which the robot will

engage (Pfeifer and Scheier, 1999).

Behaviour-based robotics: When the overall robot design is decomposed, not into functional
components (learning, planning, etc.) but into a number of behaviours such as avoid obstacle,

reach target, etc (Brooks, 1986).

Control architecture: Two definitions have been chosen to define control architecture. The
first is by (Pfeifer and Scheier, 1999) which states: “structure that determines the robot-
environment coupling, that is how the sensory and motor signals are processed to produce
behaviour”. The second definition is also given by (Pfeifer and Scheier, 1999) and states: “the
control architecture of a robot defines how the job of generating actions from percepls is

organised”

3.52 Classification of control architectures

According to (Ridao ef al, 1999) the control architectures can be classified in three main
categories: deliberative, reactive and hybrid. Each category is discussed in brief in the following
sections. More details can be found in (Muller, 1997), (Ridao ef dl, 1999) and (Senehi and

Kramer, 1998).

3.5.2.1 Deliberative architectures

These architectures are strongly based on traditional artificial intelligence techniques based on

planning and also on a world model. Deliberative architectures are usually very difficult to
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adapt in a dynamic environment where changes are taking place very fast. In general, they
present a predictable behaviour with some degree of reactivity through re-planning. Two major
architectural principles that are often incorporated in a deliberative architecture are the
hierarchical and centralised structure. Hierarchical architectures use a functional and
hierarchical decomposition where the tasks are decomposed into subtasks and the control is
organised in progressive levels with different levels of data abstraction. Centralised
architectures (see section 3.5.3.1) are organised as a set of modules communicated through a

central control module.

3.5.2.2 Reactive architectures

The main philosophy behind the reactive architectures (Brooks, 1986), also known as
behavioural architectures, is that the modules in which the system is built up of are behaviour
producing instead of functional as in deliberative architectures. Normally, the missions are
described as a sequence of phases with a set of active behaviours. The behaviours continuously
react to the situation sensed by the perception system. Each of these behaviours pursues its own
goal and can be defined using rules or any kind of link between sensor and actuator module.
The main robot’s global behaviour emerges from the combination of the elemental active
behaviours. These types of architectures are more suited for dynamic environments where

changes are taking place very fast.

3.5.2.3 Hybrid architectures

Hybrid architectures are integrating deliberative and reactive activities, where deliberative
elements are used for planning and problem solving and reactive elements are used for obtaining
a quick response action to situations that the system is not able to predict (real-time control).
According to (Ridao et al, 1999) hybrid architectures are normally structured into three layers:
planning layer, control execution layer and functional reactive layer. At the upper layer a

planner transforms the mission into a set of tasks to be executed by the control system
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(symbolic reasoning takes places at this layer). The second layer may be seen as a task
refinement layer plus its execution control. In this case the execution control drives the system
into a sequence of phases, where each phase is characterised by a set of active behaviours.
Finally the last layer is a function reactive layer, normally executed asynchronously to the rest

of the system.

3.5.3 Main key issues of the design of control systems architectures for multiple
autonomous mobile robots

As mentioned in the introduction of this thesis the use of multiple robots offers a wide range of
advantages over the use of a single robot. However, the architecture design requirements far a
multiple mobile co-operative robot system are complex and have several differences compared
to single robot architecture. In the following sections the six key issues, regarding the

architecture design of multiple autonomous mobile robots is discussed in brief.

3.5.3.1 Centralised, decentralised or hybrid control

The first decision that has to be made is whether the control architecture will be centralised,
decentralised or one form of hybrid. There is no specific law or any particular restriction of
which control form is the best. This is because the control architecture that is suitable for a
given task may not be flexible and suitable for another. In centralised control architecture,
decisions are made in a central mechanism or in a single control unit (agent), and afterwards
transmitted to the executive components (robots). Due to the complexity of the hierarchical
planning system the development of these architectures is difficult because it is not easy to
determine the suitability of this concept in advance. With the decentralised control architecture,
each robot makes its own decisions and performs only these decisions without having any
connection with a central mechanism or single control unit. This is very important for a multiple
mobile co-operative robot system, because problems such as fault-tolerance, the difficulty of

adding new features into the system, and re-implementation of the system are automatically
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avoided. The research literature has been dominated with works on decentralised control
architecture, avoiding the centralised approach. Hybrid control architecture - often designers
decide to adopt a hybrid solution of the decentralised and centralised approach. If the problem
lies where the decentralised system needs an internal central unit a hybrid solution has to be

adopted.

3.5.3.2 Heterogeneous or homogeneous robots

A second step in the design of the architecture for multiple mobile co-operative robots is the
selection between heterogeneous and homogeneous robot characteristics. The robots should be
either homogeneous or heterogeneous, depending on the task being undertaken. A homogeneous
robot team consists of a number of robots, which have the same skills and capabilities. Most of
the research projects involve homogeneous robot teams. This choice makes the design process
much easier, because it minimises the complexity of task allocation. Co-operation may involve
a team of robots provided with different skills (the mechanical design may be different also),
referred to as heterogeneous robots. The complexity of the design is increased dramatically

compared with the design process with homogeneous robots.

3.5.3.3 Co-operation with or without communication

Communication between multiple robots may make the team able to perform some cooperative
tasks more efficiently. However, achieving co-operation within the robot team with
communication produces several advantage i.e. achieving very complex tasks and also
disadvantages i.e. waiting time, and transmission error. The above benefits and restrictions of
communication led the research community to distinguish between explicit (with) or implicit
(without) communication. If the robots (agents) communicate with each other directly, or if
there is broadcast communication between them, then, this form of communication is called

explicit communication. If the robots do not communicate with each other, or there is no

3-44



Chapter 3 Research Methodology

broadcast communication between them, but there is communication through the world

environment, then this form of communication is called implicit communication.

3.5.3.4 Making robots that work as a team

The key issue in team working is how well the modelling between robots and environment has
been developed. This key issue has a strong relationship with the communication key issue

(modelling of purely communicating robots, or not).

3.5.3.5 Multiple robots path planning

Multiple robot path planning differs from single robot path planning in several ways. A mobile
robot has to avoid obstacles and also other robots. To address this particular problem is very
complicated problem, which should be taking into account when designing control architecture

of autonomous mobile robots.

3.5.3.6 Learning

The final key issue in architecture design is learning in multiple robot systems. Changes within
the robot’s environment can result in poor robot performance and decreases the ability to
achieve a given task. One solution to this problem is to introduce a learning method. The chosen
method will increase the robot’s performance and its ability to respond correctly to environment
changes. This desirable result will be achieved by learning, so the robot system will be able to
optimise and set its own control features. The main problem is that compared to single robot
learning, co-operative learning adds the challenge of a much larger search space, awareness of
other team members, and also the synthesis of the individual behaviours with respect to the task

given to the group.
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3.54 Properties of control architectures

When comparison between different types of control architectures is undertaken, this
comparison should be made based on a2 number of important properties. (Pettersson, 1997) and
(Yavuz and Bradshaw, 2002) have proposed a number of properties for comparison between
different types of control architectures. Classification among these properties is proposed and

discussed in brief as follows:

Modularity. In order to facilitate adding of new components or functionality into a control
architecture then modularity is important. A modular architecture can produce a flexible
robot(s) that can be easily adapted to different applications and environments. Modularity can

be achieved either by focusing on independent modules or independent behaviours.

Robustness. The control architecture should be able to continue to function during unexpected

situations. Reactive and hybrid architectures are generally more robust than deliberative ones.

Fault tolerance. In order for a robot to be able to achieve its goal in an environment that is
dangerous or unsuitable for humans despite component failures it must be able to function
without any possibility of repair. In that case the robot must be able to detect and isolate

possible faults.

Distribution. Related to the fault tolerance of architecture is its distribution. As mentioned in
section 3.5.3.1 the problem of centralised architecture is that the central parts become a
bottleneck that slows down the control system. The problem, which may occur utilising
distributed architecture, is communication and co-ordination that can be very difficult. An
example of a fully distributed architecture is ALLIANCE developed by (Parker, 1999) which is

tolerant to faults in the distributed modules.
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Reactivity. This property of control architecture provides the robot(s) with the ability to act in
short and predictable time on any sensory input. Reactivity is very important if the mobile robot
has to operate in unknown and unstructured environment. Behavioural architectures are more
suited to this property whereas this can often be a problem with deliberative ones as some type

of modelling before acting on the sensory input is required.

Adaptability. Adaptability is considerable property, since control architectures will need to be
adapted and extended during the lifetime of the robot. An important aspect of adaptability is the
ability to adapt to changes in the environment by dynamic learning or dynamic switching. In
same cases in order to achieve adaptability, integration of problem solving and learning in the

control system is considered.

Planning. This property allows the robot to simulate itself and its environment in real time

(unsuitable for reactive architectures).

Co-operation. One-way to increase modularity, distribution and robustness is to use co-
operative agents. Co-operative agents having different skills and capabilities for specific
subtasks, have the ability to solve problems more efficiently and effectively than single agent.
An important aspect of co-operation is communication between the agents (communication of

goals, states, etc.).

Uncertainty. Uncertainty has been one of the main aspects of study in mobile robotics because
plays an important role in many real-time applications(Min et al, 1997). As prior knowledge of
the environment may be incomplete and time variant, therefore uncertainty is one of the main

design constraints in control systems architecture. The control architecture should be able to
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cope with the dynamic changes in the environment that occur simultaneously with the operation

of the robot.

Learning. On-line learning also is an important issue to be considered as it has promising
features for design and implementation of more flexible and adaptive control systems

architectures.

Goal oriented. Navigation of the mobile robot implies the meaningful progress towards the
achievement of the goal. Therefore control architectures must combine deliberative with

reactive planning in order to be successful in navigational tasks.

Efficiency. Control architecture designed for complex- real-time systems must provide the
means by which the system may accomplish its objectives efficiently. The control architecture

must be able to satisfy real-time constraints, safety and promote fault-tolerance.

Easy of application. Crucial consideration in the design of control architectures for mobile

robots is the ease with which a system may be developed, tested, debugged and understood.

Optimal control (operation). Control architectures must be able to provide control design
methods to choose the best behaviour or controller in an optimal manner. Therefore control

architectures must incorporate deliberative reasoning and hierarchical structures.

3.6 Multi-agent systems (MAS) in control engineering

As mentioned previously the new control system architecture in chapter six is hybrid but also is
multi-agent type constructed and orientated. During the past few years, the need for large scale
and complex systems has become obvious. The main problem is often the design of the

intelligent control structure for such complex systems, and also for system components if the
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overall system consists of several separate systems (i.e., controllers). Multi-agent systems
(MAS) theory is a relatively new field in control and systems engineering and can be used
successfully to solve the aforementioned problem. A special role in the theory and tools for
solving complex control problems is attributed to the concept of agent’. An agent represents an
abstract entity that is able to solve a particular (partial) problem. Agents have the ability to be
combined into a multi-agent system, such that the overall multi-agent system is able to solve a
more complex problem. In this section the background information of MAS, classification of
the main agent control architectures and the concept to construct local controllers that consist of

several other controllers using MAS is presented.

3.6.1 Autonomous agents

In traditional artificial intelligence (AI) and cognitive science, computer models have been the
predominant tools. Synthetic methodology, however, can be extended to include not only
simulations, but also physical systems, artificial creatures, behaving in the real world (Pfeifer
and Scheier, 1999). As mentioned in section 3.5.1 “autonomous” designates independence from
human control. Typically, autonomous agents have the form of mobile robots and can be used
as models of biological systems, human or animals. To date, autonomous agents behave in the
real world without the intervention of a human. They have sensors to perceive the environment,
and they perform actions that change the environment. In other words autonomous agents are
systems in their own right as shown in Figure 3-10. This is the main reason why autonomous
agents are well suited to explore issues in the study of control engineering and artificial

intelligence in general.

4 Introducing the concept of an agent in a precise and technical manner is a difficult thing to do, as there no generally
accepted definition of it (Van Breemen and De Vries, 2001). In this thesis the word agent is used to represent both a
physical entity (i.e., robot) and virtual entity (software component). Good source of reference regarding variety of
agent definitions is given in (Ferber, 1999).
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easier than implementing one overall centralised system), and parallelism (to speed up the
computation time needed for solving a problem, some parts could be executed in parallel).
Detail background information about design aspects, co-ordination, structure and some of the
key issues in agent technology of MAS, can be in found in the work of (Lesser, 1998), (Ferber,

1999) and (Van Breemen and De Vries, 2000).

3.6.3 Agent control architectures

Agents are not common in control engineering. Possible reasons behind this could be the
following. Firstly, the field of multi-agent systems is relatively new. This means that merging
MAS and control engineering has not get happened. Secondly, merging MAS and control
engineering is very challenging and difficult task, because control theory has a strong
mathematical foundations, whereas the field of MAS is mainly focused on abstract descriptions

of the system.

At the present time, it is a non-trivial problem to design the architecture of an agent, given a
specification of its behaviour. In the literature it has been documented that there are several
different reasoning models which an agent can possess (Pfeifer and Scheier, 1999). However
each particular model can be implemented by several different control architectures. (Ferber,
1999) presents and discuss a list of the main agent control architectures based on type of
approach, subordination structure, pairing and constitution as shown inTable 1, along with their
associated parameters. The new hybrid control architecture presented in chapter six draws its
design from the most of the main agent control architectures shown in Table 1 but most from
competitive tasks architecture, production rules architecture, connectionist, dynamic system and

multi-agent architecture.
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Type of Typeof  Subordination Coupling o
architecture Approach component structure structure Constitution
Horizontal Horizontal . . Fixed (but
modular functional Module Hierarchical progressive) Predefined
Blackboard Functional Task Hliﬁ?tg;cal Variable Predefined
. Vertical Primitive . . .
Subsumption functional task Hierarchical Fixed Predefined
. . Task + . .
Competitive Vertical Lo Hierarchical .
tasks functional Pntr:sllt(lve (Competition) Variable Predefined
Production . Hierarchical .
rules Functional Rule (Meta) Variable Predefined
. Vertical . . .
Classifiers functional Rule Hierarchical  Evolutionary  Predefined
I Vertical Formal I Fixed (by
Connectionist functional neuron Egalitarian weight) Predefined
. . Stimuli- .
Dynamic Vert.lcal command Egalitarian Fixed (I?ut Emergent
system functional . . progressive)
relationship
Multi-agent  Object/functional Agent Egalitarian Variable Emergent
Table 1 Main agent control architectures (after (Ferber, 1999))
3.7 Stateflow design tool based on finite state machines theory

The methodology chosen in chapter six for the design and modelling of global state
identification mechanism, supervisor-like co-ordination object responsible for several local
controller-agents and also the tool for identification of direction of neighbour robots is

stateflow, which is based on the theory of finite state machines (FSM).

3.7.1 Finite state machines (FSM)

Finite state machines are widely used in the modelling and control of system in various areas
(Moor and Raisch, 1999), (Singh and Nowick, 2000), (Carter, 2001), (Sato and Gohara, 2001),
(Giua, 2001) and (Roze and Cordier, 2002). Descriptions using FSM are useful to represent the
flow of complex control problems and are amenable to formal analysis such as model and
control algorithm checking. An FSM consists of a finite number of states and conditional
transitions between them. The FSM reads input symbols from the finite alphabet and produces

output symbols (actions) taken from another (or possible the same) finite alphabet, while
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jumping between the different states. More details in the operation of FSM can be found in
(Gill, 1962), (Harel, 1987), (Hatley and Imtiaz, 1988), (Villa et al, 1997) and (Kam et al, 1997).
In the following, the basic definition of a FSM either as non-deterministic or deterministic is

given.

Definition 3-14 (non-deterministic finite state machine or simple FSM): A NDFSM is defined
as a 5-tuple M = (S, IL,O,T, R) where S represents the finite state space, I represents the finite

input space and O represents the finite output space. T is the transition relation defined as a

characteristic function T:IxSxSxO —B. On an input i, the FSM at present state p can
transit to a next state n and output o if and only if T(i,p,n,o)=1 (ie., (i,p,n,0) is a
transition). There exist one or more transitions for each combination of present state p and

input i. R c S represents the set of reset states.

Definition 3-15 (deterministic finite state machine or completely specified FSM): A DFSM is
defined as a 6-tuple M=(S,1,0,8,1, r) where S represents the finite state space, [ represents

the finite input space and O represents the finite output space. & is the next state function

defined as 5:1xS—>S where neS is the next state of present state pe S on input i<l if and
only if n=38(,p). A is the output function defined as A:IxS— O where 0O is the output

of the present state pe'S on input i€l if and only if 0= Ai,p). reS represents the unique

reset state.

3.7.2 Stateflow

The stateflow design tool provided by (The MathWorks, 1997) is a powerful graphical design
and development tool for complex control and supervisory logic problems. The advantages of

using stateflow can be summarised as follows: model visualisation, simulation of complex
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reactive systems based on FSM, design and development of deterministic supervisory control
systems, easily design modification, evaluation of results, verification of system’s performance
at any stage of the design and integration with Simulink platform for system analysis and
modelling. Another, important property of stateflow is that enables the representation of
hierarchy, parallelism and history. Hierarchy is useful for designing very complex control
systems, parallelism is useful as two or more orthogonal states can be active at the same time
and history provides the means to specify the destination state of a transition based on historical
information. An example of stateflow diagram is shown in Figure 3-11. The main components

of the diagram are briefly discussed in the following.

Transition

[sensor > threshold]

State 1
No
Obstacles

State 2
Obstacles
Found

, Condition

[ge/nsor = = threshold]

Figure 3-11 An example of 2-state stateflow diagram based on FSM theory

As can be observed from Figure 3-11, state’, transition and condition are the main components
of the stateflow diagram (more details of all components comprising a stateflow diagram can be
found in (The MathWorks, 1997)). State describes a mode of an event-driven system. The
activity or inactivity of the state dynamically changes based on events and conditions (events
are non-graphical objects and thus not represented directly in the Figure 3-11). A transition is a
graphical object that links, in most cases, one object to another. One end of the transition is

attached to a source object and the other end to a destination object. The source is where the

* The idea of “state” as a concept in the representation of systems was first introduced in 1936 by Turing, A. M.
(TURING, A. M. 1936. On Computable Numbers, with an Application to the Entscheidungsproblem. Proc. London
Math. Soc., 42 (2), pp. 230-265)

3-54



Chapter 3 Research Methodology

transition begins and the destination is where the transition ends. A transition describes the
circumstances under which the system moves from one state to another. A condition is a
Boolean expression specifying that a transition occur, given that the specific expressionis true.
Figure 3-11 shows that if a sensor is equal to threshold then no obstacle has been found, thus the
system it will stay in state 1. If the sensor is grater than the threshold then the system will jump

to state 2. The system will return to state 1 if the sensor reading is equal to a threshold.

3.8 Discussion

As mentioned in the introduction the main scope of this chapter is to propose, justify and
present the main research methodology adopted for the research work carried out in this thesis.
The main methodology was broken down into nine basic steps. Steps one, two and three present
the design methodology for the low-level control of the proposed control architecture, which is
modelling and control of the MIABOT V2 mobile robot. A new concept within the first three
design steps is the constrained optimisation using the non-linear design (NCD) tool. Although
constrained optimisation is well documented in the literature NCD is a relatively new tool
providing both tuning of control parameters (controller gains) and optimisation/identification of
either physical parameters (optimisation of physical parameters, such as moment of inertia can
be achieved). The next three steps propose the design methodology of fuzzy, neural and
clustering techniques. One of the main advantages of fuzzy systems is that there is no need to
have a mathematical model of the system, it is possible to control non-linear plants and using
comprehensive linguistic rules and it is possible to implement expert human knowledge and
experience. However, it is impropriate to note that fuzzy systems cannot solve all control
problems. Like any other design methodology the use of fuzzy logic has some drawbacks, such
as no global or systematic method for the transformation of the human experience into the rule
base of the fuzzy system. In addition, it is not possible to demonstrate stability of the controlled
system since the model is not known and it is not guaranteed that rules are coherent (the

possibility of mismatch between the rules exists). The advantages of neural networks have
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already discussed in the introduction of this chapter. However, it is important to discuss and
identify drawbacks of ANN, if any, and possible similarities with fuzzy systems. A considerable
drawback of ANN is that knowledge extraction and knowledge representation are difficult. This
results in some kind of integration between fuzzy and neural systems. For instance, automatic
design and fine-tuning of the membership functions used in fuzzy control through learning by
neural networks. Clustering techniques described in section 3.4 can be considered as a helping
tool for developing both fuzzy and neural systems. The final three steps of the proposed design
methodology are very closely related. In chapter six, the final three steps of the proposed
methodology are merged for the total integration of the control system. In section3.5 it was
shown the background information of the design of control systems architecture for autonomous
mobile robot followed by the main design methodology of multi-agent systems in section3.6
and stateflow design in section 3.7. It was shown that there are still open areas for research on

merging of different fields, such as multi-agent systems and control engineering.

3.9 Summary

As mentioned in the introduction of this chapter there is no formal method for developing
integrated solutions for advanced mobile robotic systems. This chapter proposes, justifies and
presents the main methodology adopted for the research work carried out in this thesis. The
main methodology has been broken down into nine basic steps. Each step is presented
individually focusing on design/modelling issues following a discussion of either advantages or
disadvantages when the particular method is adopted. The first step concerns conventional
control design, which is used in chapter five to model speed controller for the mobile robot. The
second step refers to constrained optimisation using nomlinear control design tool for
tuning/optimisation of physical and control parameters in chapters four and five. The design
methodology for fast robust stability testing and analysis based on interval polynomials is
discussed in the third step, where, using the parametric robustness analysis approach

(Kharitonov’s Theorem) the closed-loop control system (controller and plant) is proved to be
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robustly stable under uncertainty in robot dynamics. Steps four, five and six discuss the main
methodology for modelling and identification of local controllers using fuzzy logic systems,
artificial neural networks and clustering techniques. Steps seven and eight define the
methodology regarding the design of control systems architectures of mobile robots and multi-
agent systems as additional tool in development of control architectures. The stateflow design
tool based on finite state machines theory is the final step of the proposed design methodology.
Using this tool, model visualisation and construction of complex reactive systems can be
achieved. In particular this design tool is used in chapter six as a global state identification
mechanism, supervisor-like co-ordination object for several local controllersagents and also as

tool for identification of direction of neighbour robots.

The contributions of this chapter are: A proposed design methodology for developing integrated
solutions for autonomous mobile robotic systems and classification of the main design
methodology (properties) of control systems architectures for autonomous mobile robots. Fuzzy
systems, neural networks and clustering techniques are described under a unifying theory.

Discussion based on merging multi-agent systems and control engineering.

In the next chapter the design methodology of steps one and two is used for the derivation and

establishment of a dynamic model of the MIABOT V2 mobile robot.
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Modelling of MIABOT V2
Mobile Robot

4.1 Introduction

As mentioned in the introduction of this thesis the design and testing of the new hybrid multi-
agent control architecture presented in chapter six and seven is highly dependent on the
accuracy of the mathematical model describing the system to be controlled. Therefore the main
purpose of this chapter is to derive and establish a dynamic model of the MIABOT V2 mobile

robot.

In the research on autonomous mobile robots, experiments are very important and many
experimental approaches towards mobile robot research have been done. However, the heavy
cost of a large number of experiments is a serious problem in the development of control
algorithms. To avoid the cost of experiments, simulations using mathematical models of the

plant have been a popular method for research on mobile robotics. For instance, to show results
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that are compatible with the selected control design technique, while the latter it is important

that the discrepancies between the real plant response and the model response is reduced.

In a general case, any mobile robot can be modelled with both a kinematic and a dynamic
model. The kinematic model of a mobile robot is required to give its global description and to
understand its manoeuvrability properties. However, there are cases in which the kinematic
model is necessary in order to analyse the behaviour of the robot within the framework of the
theory of nonholonomic systems. In this case the controllability, the reducibility, and the
stabilisability of the kinematic model are also analysed. The dynamic model will give a
complete description of the dynamics of the system including the generalised forces produced
by the actuators. Similar to the kinematic model, the dynamic model can be used also to analyse

controllability, reducibility, and the stabilisability.

However, the position accuracy of the robot is mainly affected by mechanical disturbances in
which the most severe is wheel slippage (due to accelerations and fast turning). Most of the

disturbances have been identified and are discussed below.

In order to minimise slip, the contact surface between wheels and floor should have a high
friction coefficient, so rubber tyres are used. However, it is difficult to obtain rubber tyres with
exactly the same diameter. In addition, distributed loads will slightly compress one tyre more
than the other, thus changing its rolling radius. Wheels with different diameters cause the robot
to travel along an arc, rather along a straight line, even if the motors are running at equal speeds.
There is a contact area, rather than a contact point, between the wheel and the floor. This causes
an uncertainty about the effective distance between the drive wheels, creating inaccuracies when
turning. Another major mechanical disturbance is caused by misalignment of the drive wheels.
This affect will produce a lateral drag force resulting in a curved path even when both wheels

are exactly of the same diameter and are rotating at the same velocity. The condition of the
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batteries affects the robot performance a great deal. If the batteries are ‘down’ there is a greater
drop in voltage when they are loaded and vice versa. Finally it was found that at slow speeds the
motors are not very reliable. This is more obvious particularly at starting when the input is low
(this is basically due to friction). Taking into consideration all these disturbances, it is

worthwhile to note that the modelling process is quite a complex and challenging task.

This chapter is organised as follows: Section 4.2 introduce the main features of the MIABOT
V2 mobile robot. Analytically, from section 4.2.1 to 4.2.3 the main components of the mobile
robot, the drive train and the DC motors are presented. In section 4.3 the kinematic model is
derived with some discussion based on nonholonomic systems. Section 4.4 gives the full non-
linear dynamic model of the robot, followed by, in section4.5, the illustration of the linearised
model. To verify the accuracy of the model both experiments and simulation studies were
conducted. The main results of this chapter are presented in Section0. A discussion follows in

section 4.7 and finally the summary of the chapter is presented in section 4.8.

4.2 Main features of MIABOT V2 mobile robot

Merlin Systems Corporation Ltd, manufacture the MIABOT V2 mobile robot. The robot is
currently used as a robot footballer in the Mechatronics Research Centre and in other
Universities throughout the UK (Plymouth University, Salford University, Open University,
Essex University, etc.). Therefore a précised dynamic model is required for construction and
testing of control algorithms. Such a model is not available from the manufacturer. Prior to the
derivation of both the kinematic and dynamic equations a brief description of the mobile robot
is given (only the main components will be presented here, more details can be found in

Appendix A).
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provide feedback for the ATMEL (AT90s8515) microprocessor. All the information is gathered

by the microprocessor and each motor is driven independently.

4.2.3 DC motors

The DC motors used by the drive train are produced by Mabuchi RC-280SA-20120 giving
29g.cm torque at 6400rpm taking 0.57A from a 6V supply at maximum power. The stall
torque from a 6V supply is 175g.cm at a current of 2.85A. The armature resistance of the

motor is 2.11ohm . Back electromagnetic force EMF is 2.16V at 3000rpm . The robot is able

to achieve speeds of up to 1.2m/s.

4.3 Establishing the kinematic model

As mentioned in the introduction of this chapter the kinematic model of a mobile robot is
required to give its global description and to understand its manoeuvrability properties. Most
conventional mobile robots use either a tricycle design where one wheel is steered and driven or
a differential drive design (i.e. two drive wheels, each with its own motor; note that this is the
type of design of the MIABOT V2 mobile robot). In(Campion et al, 1996) structural properties
and classification of general kinematic models of wheeled mobile robots (WMR) can be found.
Several other examples of derivation of kinematic models of WMR are available in the
literature. For example, (Muir and Neuman, 1987), (Killough and Pin, 1992), (Dudek et al,

1993) and (Borestein et al, 1996).

Before the derivations of the kinematic equation it is important to state the difference between
holonomic and nonholonomic robot (this is an important property due to the difficulty of
nonholonomic systems to be stabilised in a posture by a smooth time-invariant state feedback).
It is necessary to draw the distinction between what the actuators do, namely, turning or steering

the wheels, and what these motions do in the environment. In this case, the side effect of the
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wheel motion is to move the robot to any point in a three-dimensional space. If the number of
controllable degrees of freedom is only two, and the total degrees of freedom is three this is
nonholonomic robot. In general, a nonholonomic robot has fewer controllable degrees of
freedom than total degrees of freedom. As a rule, the greater the difference between controllable
and total degrees of freedom, the harder it is to control the robot. A robot with a trailer has four
degrees of freedom but only two are controllable, and takes considerable skill to drive in
reverse. If the number of total and controllable degrees of freedom of the system is the same, the

robot is holonomic. MIABOT V2 is a nonholonomic robot as the number of controllable
degrees of freedom is two (v, or uj,u, ), which is less than the total degrees of freedom
(x,Y,9). Therefore the mathematical expression of this kind of system can be represented as

follows:

Mobile robots whose motion is subjected to a set of p nonintegrable constraints involving time
derivatives of the configuration vector q are classified as nonholonomic systems (Neimark and

Fufaen, 1972). The constraints usually take the form:

Glq)a=0 4.1)

with the (n—p) independent columns of the pxn matrix G(q) forming the base for the

nonholonomic constraint condition:

q= K(q)u 4.2)

Note that the number of control inputs is less than the dimension of the system, i.e. under

actuation with ueR"™P follows from Equation (4.1). Consider a set of wheels with

independent wheel motors as the MIABOT V2 mobile robot with nonholonomic kinematics, as
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P. Let § be the time derivative of the global orientation angle (angle from the X, axis in

Figure 4-3). Also, let B=2b, where b is defined as the half distance between the two wheels.

Then the first order kinematic equations of the mobile robot are defined as follows:

X =—;—*c059*u]+%*cos\9*ur 4.3)
1. | S
y =—2-*sm9*u,+5*smS*u, 4.4)
; 1 1
8=—§*u]+5*ur (45)

The general form of Equations (4.3), (4.4) and (4.5) can be represented in the following if

control inputs are v (linear velocity) and @ (angular velocity).

X =v¥*cos$ (4.6)
y =v¥*sind 4.7
=0 (4.8)

4.4 Establishing the dynamic model

(Yamamoto and Yun, 1994) considered dynamic modelling of a wheeled mobile robot taking
into consideration nonholonomic constraints. Their work is mainly based on control of a mobile
platform with a manipulator. Lagrange multipliers were used in order to implement the
Lagrange equations of motion of the mobile platform. (Bloch et al, 1992) have also discussed
more complicated dynamic modelling of mobile robots. The derivation of the equations of
motion of MIABOT V2 is similar to (Kimoto. K. and Yuta, 1995) and (Feddema et al, 1997)

except that wheel slippage is added due to linear accelerations and fast turning. Also the
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parameters of the right and left sides are assumed equal. The following notations will be used in

the derivation of the constrained and dynamic equations.

B: Wheel base
D: Friction constant of the wheel
J: Rotational moment of inertia

Active moment of inertia
J,: Moment of inertia about the wheel
J, Moment of inertia about the motor axis
Kp: Motor’s back EMF
K;: Torque constant

M: Mass

M,y : Active mass

R: Radius of each driving wheel

V;: Left motor voltage
Right motor voltage

P: Center of mass of the robot
Q: Motor armature resistance

b: Distance between the driving wheel and the axis of symmetry

Force generated by the right wheel
f,: Force generated by the left wheel
y: Ratio of the motor gearbox

8: Robot’s orientation (heading angle)

1,: Left motor torque value
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1,: Right motor torque value

v: Linear velocity

u,: Forward velocity of the left wheel
Forward velocity of the right wheel

®: Angular velocity

o,: Left wheel angular velocity
o,: Right wheel angular velocity

X! Direction on x axis in the global co-ordinate frame (xg Y g)

o: Slippage factor

Gyt Slippage factor due to linear accelerations

oy Slippage factor due to angular accelerations

o,: Slippage factor for left wheel

o,: Slippage factor for right wheel

y: Direction on y-axis in the global co-ordinate frame (xg, yg)
x_- X-axis of robot co-ordinate frame
y,: Y-axis of robot co-ordinate frame

X-axis of global co-ordinate frame

y,: Y-axis of global co-ordinate frame
g

Referring to Figure 4-3 the robot’s equations of motion are:

M%:f, ) 4.9)
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dw B
th—_z(fr -f}) (4.10)

Assuming no slippage, the linear and angular velocities of the robot from the odometry are:

v=—12—(Rco, +Ro;) (4.11)

m:%(Rm, ~Rw,) (4.12)

In reality this assumption is not true. In this case the odometry is based on simple equations that
are easily implemented and that utilise data from inexpensive incremental wheel encoders.
However, odometry is also based on the assumption that wheel revolutions can be translated
into linear displacement relative to the ground. This assumption is only of limited validity
(Borenstein and Koren, 1995). One extreme example is wheel slippage: if one wheel was to slip
then the associated encoder would register wheel revolutions even though these revolutions
would not correspond to a linear displacement of the wheel. In (Borestein ef al, 1996) two
categories are listed in which inaccuracies in the translation of wheel encoder readings into a
linear motion can occur. In this work the wheel slippage is of interest, as the mass of the robot is
very small in accordance with very fast DC motors. In general, the main reasons for wheel
slippage is slippery floors, robot accelerations, fast turning, poor contact with the floor and

finally due to both external and internal forces (interaction with other objects and castor wheels)

Therefore the model of the MIABOT V2 mobile robot contains two different types of slippage.
The first slippage has been modelled due to the linear accelerations and the second due to the
angular accelerations (fast turning). The general form of the slippage factor ¢ is given within

the interval 0 <o <1.
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The wheel slippage was calculated conducting experiments with different initial robot
acceleratioﬁs. Comparison was made on the feedback information from the wheel encoders
(wheel revolutions were counted) against the robot’s actual linear displacement on the ground.
The value of slippage factor shown in Figure 4-4 and Figure 4-5 was based on averaged results.
The slippage factors of the MIABOT V2 mobile robot due to linear (Figure 4-4) and angular

(Figure 4-5) accelerations were estimated to be:

. . 5 . 4 . . .
G", =fl (V)=3.5V +a4V +a3V3 +3.2V2 +a1V+a0 (4.13)
o5 =£(8)=bs8%b,8* +b,8% +b,82 + b, 8+ b
§ =12\9)=bs37b, 3 297 +b 3+ by (4.14)
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Figure 4-4 Approximation of slippage factor due to robot linear acceleration
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Figure 4-5 Approximation of slippage factor due to robot angular acceleration
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Where v and 8 denotes the linear and angular acceleration of the robot respectively. Then the

slippage factors for the left and right wheel are:

o) =max(c‘-,,cg) (4.15)

o, =max(cs;,,cf§) (4.16)

Equations (4.15), (4.16) show that the dominant slippage factor will be used to derive the final
linear and angular velocities of the wheels. Referring to Equations (4.11), (4.12) the linear and

angular velocities of the mobile robot are obtained from the following:

v=%(R(l—c,)w,+R(l—c,)m,) (4.17)

m:%(R(l—c,)m, —-R(l-o)o) (4.18)

The force generated by each wheel is related to the motor torque, which in turn is related to the

applied voltage of the motor by (note y is the gear ratio):

T, =Y @, +l(on')r + Do, +Rf,) (4.19)
Y
3] ZYJm(:Ol +'1—(Jw(b] +D0)l +Rfl) (420)
Y
K
SIS EVANN LS LS W 4.21)
Q Q
S SRV Lo Lo (4.22)
Q Q

The velocity and acceleration of the robot in the x and y directions are:
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X _ [cos 9
e (4.23)
X v cosS_+ 3 -sin 9 4
= v
y sin 9 | cos 9 (4.24)

Note that ®=9 and v=\/5c2 +y2 . Combining Equations (4.23) and (4.24), the resulting

equations of motion are:

x| |cos8|| yK, 2 VKoK, | 53 -sin8 ). 5
= V. +V,)-
[y] LinS]{RQM (v, +Vv)) ove [D+ o 4yt 952 +y (4.25)

act cos 9

.. K 2 2 )
§=_1BK1 (v _v,)-_B [D+Y KbK’Js (4.26)

Where the active mass and moment of inertia are:

2

1Y I =M+—R—2(72Jm +Jw) (4.27)
2

Jact =J+———;2 (Ysz +Jw) (4.28)

The dynamic model of the mobile robot has been modelled in Simulink and for simplicity

reasons the following four factors were used:
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4.5 Linearised model

Most physical systems have non-linear elements, but in some circumstances it may be possible
to treat them as linear. Then the edifice of linear mathematics, which is very highly developed,
can be employed to yield solutions. Sometimes the system operates over a small range of input
values, and then the non-linearities can often be effectively approximated by linear functions.
This is referred to as operation about some reference point or nominal trajectory. However if the
non-linear equations are known, then the linearised form of these equations are often called
perturbation equations. When designing and considering a linear controller or stability analysis
takes place for a vehicle (mobile robot), it is often necessary to establish linearised models
around representative operating points. In this case the linearised model is extracted from the
full non-linear model of the vehicle. For the MIABOT V2 mobile robot, the non-linear model is
composed of the non-linear equations of motion described in Equations (4.25) and (4.26).
Although in chapter five the control design is based on the non-linear model of the robot the
linear model is required for the robust stability testing, which takes place also in chapter five.

The non-linear model can be written in the state-space form as:

% =f(x,u) (4.29)

y=h(x,u) (4.30)

Where, x, u and y denote states, control inputs and outputs respectively.

By linearising the non-linear model Equations (4.29), (4.30) around a steady operating point

Xg,U,, a linearised state-space model can be obtained in the following form:

Ax = AAX + BAu (4.31)

4-18



Chapter 4 Modeliing of MIABOT V2 Mobile Robot

Ay = CAx + DAu 4.32)
Where,
AX =X —Xg, Au=u-ug, Ay=y—y0=h(x,u)—h(x0,u0)
And,
of of oh ox
A=—|xomo) BTl CTbem) D=5 (o)

Once a linearised state-space has been established, the transfer function can be obtained directly

from Equations (4.31) and (4.32), i.e.

AY(s)=G(s)-AU(s) (4.33)

Where,

G(s)=C[sl-A]'B+D (4.34)

Around a representative operating point of (xq,u,) the linearised state-space model is

established using the /inmodv5 MATLAB function. The matrices A, B, C and D are:
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.

=
il

o)

The state vector of the state-space model is:

[x]

8

-63 0 0 0 0
0 0 0 000
0 0 -450 0 0
1 0 0 000
0 ] 0 000
0 0 1 000

[6.45 6.45]

0 0

B -105 105

0 0

0 0

L 0 0 =
1.03 1.03 —-0.04 0 0 0
1.03 1.03 004 0 0 O

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

From the linearised state-space model and using the Equation (4.34), the transfer function

matrix can be obtained in the following:
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(4.40)

66 _[gn(S) glz(S)}

- 821 (S) g2 (5)

Where, after pole-zero cancellation becomes:

10.99s + 572.4 2.317s +26.24

2 2
—1s°+108s+ 2835 s“ +108s+ 2835
G(s) 23175 +2624  10.99s +572.4 (4.41)

s2 +108s+2835 s% +108s+ 2835

4.6 Results

To verify the robot model, experiments took place in order to compare real and simulated robot
trajectory. Figure 4-9 shows a comparison of both trajectories when the control input was 3.5V

for both motors at t =0 and 4.5V on right and 3.5V on left motor at t =2s (note that the input
command was transmitted to it from PC host through the serial port). It can be observed that the
non-linear robot’s dynamic model is very close to the real dynamics of the plant. The root mean
square error (RMSE) was found to be 1.51. Measuring errors were not considered for the real

trajectory shown in Figure 4-9 as they were obtained using a pen on the robot moving on a fixed

grid.

Following the non-linear model linearisation it is necessary to verify the linearised model
established. The direct way of verification is to compare the responses of the linearised model
and the non-linear model from which the linearised model is extracted under the same
perturbations of the control inputs. The comparison of the responses under perturbations of
control inputs is shown in Figure 4-10 and Figure 4-11. In Figure 4-10 the left motor is
perturbed to achieve left wheel linear velocity 0.lm/s at t=0 and Im/s at t =1Is. In Figure

4-11 the right motor is perturbed to achieve a right wheel linear velocity 0.8m/s at t= 0 and
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concluded that the linearised model is acceptable. The RMSE in Figure 4-10 is 0.05 and in
Figure 4-11 is 0.03. The peaks in Figure 4-10 at t =2s and in Figure 4-11 at time t =1Is are due
to the influence of one wheel to another (system is coupled). As mentioned earlier the non-linear
model will be used in chapter five for control system design and the linearised model for the

robust stability analysis of the uncertain closed-loop dynamic system.

—— Simulated trajectory
-- Real trajectory -

N
'
*
]
'
.
]
1}
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‘
)
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Figure 4-9 Comparison of real and simulated robot trajectory (RMSE=1.51)
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Figure 4-10 Comparison of non-linear and linear response for the left wheel linear velocity
under perturbations of control inputs (RMSE=0.05).
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Figure 4-11 Comparison of non-linear and linear response for the right wheel linear velocity
under perturbations of control inputs (RMSE=0.03)

4.7 Discussion

As nentioned in the introduction of this chapter, the main objective is to derive both kinematic
and dynamic model of the differential drive MIABOT V2 mobile robot. A discussion of some

of the modelling issues as well as the results is presented in this section.

At the introduction of this chapter was discussed the difficulty to model mobile robots due to
mechanical disturbances in which affects their position accuracy. For this reason several factors
were identified showing that obtaining a good model of a mobile robot is very difficult and
challenging task. Conducting experiments and optimising physical parameters the robot
dynamic model was established. Figure 4-9 demonstrates verification on a dynamic model of
the mobile robot compared to the real system’s dynamics, in which the resultant position errors
are significant small. The RMSE of the comparison between real and simulated trajectory found
to be 1.51. This very good result taking into consideration that the most mechanical

disturbances that affect the mobile robot were overcome.
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Finally having representative dynamic model results in representative linearised model as
shown in Figure 4-10 and Figure 4-11. This is desirable and useful result that provides the

opportunity for reliable robust stability testing for uncertainty in robot dynamics.

4.8 Summary

This chapter presents the modelling of MIABOT V2 mobile robot. The robot is small size

measuring 8cm® and is steered and driven by differential drive design utilising two DC motors
enabling robot’s speed up to 1.2m/s. The first order kinematic model of the robot was derived
in order to understand its manoeuvrability properties and to produce information about its global
description. However, as the robot behaviour is related to the framework and theory of
holonomic and nonholonomic systems some discussions were made to show in which category
MIABOT V2 falls (holonomic or nonholonomic). Then the full non-linear dynamic model of
the robot was established for complete description of its system’s dynamics. To improve the
model accuracy real experiments took place. The non-linear control design blockset based on
constrained optimisation method was used for identification of several robot physical
parameters. However, to further improve the model, wheel slippage was introduced and
modelled. Contacting real experiments, two different types of slippage were considered, one due
to linear accelerations and another due to angular accelerations (fast turning). The robot model
found to be very close to the real dynamics of the plant considered. The linearised model of the
robot was extracted and some comparisons were made to show the validity of the linearised
model against the non-linear. Results were presented, and show that the linearised model is
acceptable, comparing non-linear and linear response under perturbations of the same control

inputs,

The contributions of this chapter are: Modelling of MIABOT V2 mobile robot with both a

kinematic and a dynamic model. Optimisation and identification of parameters of physical
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components (i.e moments of inertia) conducting experiments and using the nonlinear control

design tool. Modelling of wheel slippage based on experiments for more accurate feedback

control design.

In the next chapter the full non-linear model is used for the design of a speed controller and the
linearised model is used for verification of the robust stability of the closed-loop system under

uncertainty in robot dynamics.
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Control, Robust Stability
Analysis and Discovery of
Fuzzy/Neural Local Models

5.1 Introduction

The aims of this chapter is to present the control, the robust stability analysis of the MIABOT
V2 mobile robot and the discovery of fuzzy-neural local models from observation data. Three
speed controllers have been developed and comparison is made based on performance criteria
and length of execution time. Reliable speed controller for the MIABOT V2 mobile robot is
vital in this thesis for credible control strategy development and testing in chapters six and

seven.
In a general control scheme, the plant is affected by input signals, some of which (the control

inputs) are accessible to the controller, and some of which (the disturbance inputs) are not.

Some of the plant signals (the tracking outputs) are to be controlled, and some of the plant
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