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Abstract 

Lower extremity stroke rehabilitation exhausts considerable health care resources, is 

labor intensive, and provides mostly qualitative metrics of patient recovery. To overcome 

these issues, robots can assist patients in physically manipulating their affected limb and 

measure the output motion. The robots that have been currently designed, however, 

provide assistance over a limited set of training motions, are not portable for in-home and 

in-clinic use, have high cost and may not provide sufficient safety or performance. This 

thesis proposes the idea of incorporating a mobile drive base into lower-limb 

rehabilitation robots to create a portable, inherently safe system that provides assistance 

over a wide range of training motions. A set of rehabilitative motion tasks were 

established and a six-degree-of-freedom (DOF) motion and force-sensing system was 

designed to meet high-power, large workspace, and affordability requirements. An 

admittance controller was implemented, and the feasibility of using this portable, low-

cost system for movement assistance was shown through tests on a healthy individual. An 

improved version of the robot was then developed that added torque sensing and known 

joint elasticity for use in future clinical testing with a flexible-joint impedance controller.  

Keywords 

Stroke Rehabilitation, Rehabilitation Robotics, Lower Extremity Rehabilitation, Human 

Machine Interaction, Multi-Degree-of-Freedom Design and Control. 



 

 

iii 

 

Co-Authorship Statement 

 Chapter 2:  

 

- A.Yurkewich – provided the concept, explanation, presentation and CAD design 

of this lower-limb robotic system that were used in a successful funding proposal 

(PI: Dr. R.V. Patel) to fund this project, designed, manufactured, debugged and 

validated the entire system, including the mobile base, 3-DOF platform, force 

sensing system, electronic circuitry, mathematical models, robot control 

architecture, and software implementation, performed all experiments and wrote 

the full conference manuscript, reviewed and submitted the manuscript 

 

- F. Atashzar – contributed to the development of the successful funding proposal 

(PI: Dr. R.V. Patel) that funded this project, helped in the selection of the omni-

drive mechanism over alternatives and the pressure sensors chosen for the 

sensorized footplate, reviewed the manuscript  

 

- A. Ayad – reviewed and gave suggestions on the final mechanical design of the 

six-DOF robot, helped in the in-house manufacturing and assembly of the robot, 

and in the design and manufacture of the custom circuit board 

 
 
  
 

  



 

 

iv 

 

Acknowledgments 

During my Master’s research I gained generous support and guidance from our 

rehabilitation group, the Canadian Surgical Technologies and Advanced Robotics 

(CSTAR) research team, the AGE-WELL NCE research group, and the staff and students 

within the Western University community.  

I would like to thank my supervisor, Dr. Rajni Patel, for his mentorship throughout my 

research development. He has been a major motivator during my undergraduate and 

Masters’ research and discussing ideas and goals with him has broadened my 

perspectives and knowledge in health care robotics research greatly.    

To develop the robotic systems designed, manufactured, and implemented the input and 

support of many colleagues was helpful in improving the system and moving it forward.  

Chris Vandelaar of the University Machine Services provided design and manufacturing 

experience that added rigidity and longevity to the robot structure. He also provided 

machining training so the robot could be manufactured in-house.  

Ahmed Ayad, a research volunteer and undergraduate student played an instrumental role 

in the circuit board design and robot manufacture stages and Ran Xu, a fellow graduate 

student at CSTAR provided insight in the control of the robot. 

Eugen Porter of the Western University Electronics Shop has been a mentor to me during 

my University education, introduced me to robotics and has always been an encouraging 

friend that is full of ideas. He has inspired me to love learning and mentor younger 

students in developing their knowledge and teamwork skills.  

Thank you to my family and my girlfriend Emily, as well as her family, for their love and 

support, and for helping me reflect on the bigger picture of my work.   

 



 

 

v 

 

Table of Contents 

Abstract ............................................................................................................................... ii 

Co-Authorship Statement................................................................................................... iii 

Acknowledgments.............................................................................................................. iv 

Table of Contents ................................................................................................................ v 

List of Tables ................................................................................................................... viii 

List of Figures .................................................................................................................... ix 

List of Appendices ........................................................................................................... xiii 

List of Symbols ................................................................................................................ xiv 

Chapter 1 ............................................................................................................................. 2 

1 Introduction .................................................................................................................... 2 

1.1 Effects of Stroke on Neuromuscular Deficit ........................................................... 2 

1.2 Clinical Therapy & Rehabilitative Impact .............................................................. 4 

1.3 Limitations & Challenges of Current Therapy ....................................................... 6 

1.4 Motivation ............................................................................................................... 8 

1.4.1 Socio-Economic Impact of Robotic Stroke Therapy .................................. 8 

1.4.2 Therapy Techniques .................................................................................. 10 

1.4.3 Rehabilitation Tasks for Clinical & At-Home Therapy ............................ 11 

1.5 Robotic Therapy for Lower-Limb Rehabilitation ................................................. 13 

1.6 Thesis Outline and Organization .......................................................................... 16 

Chapter 2 ........................................................................................................................... 18 

2 Six-Degree-of-Freedom Robotic System for Lower-Limb Stroke Rehabilitation ....... 18 

2.1 Mechanical Design & Manufacturing ................................................................... 20 

2.2 Mathematical Modeling ........................................................................................ 25 



 

 

vi 

 

2.2.1 Inverse Kinematic Model .......................................................................... 26 

2.2.2 Inverse Jacobian Formulation ................................................................... 28 

3.2.3 Forward Kinematics .................................................................................. 30 

2.3 Custom Designed Six-DOF Force Sensor ............................................................ 31 

2.3.1 Sensor Design ........................................................................................... 31 

2.3.2 Sensor Optimization.................................................................................. 34 

2.3.3 Sensor Calibration and Evaluation............................................................ 35 

2.4 Electrical Design ................................................................................................... 41 

3.4.1 Overview of Communication Flow .......................................................... 42 

2.4.1 Custom Circuitry Design & Module Implementation .............................. 43 

2.5 Robot Control........................................................................................................ 53 

2.5.1 Trajectory Control ..................................................................................... 54 

2.5.2 Admittance Control ................................................................................... 56 

2.6 Summary of Six-DOF Rehabilitation System....................................................... 57 

Chapter 3 ........................................................................................................................... 58 

3 Flexible Mobile Robotic System for In-Home Stroke Rehabilitation Motion 

Assistance and Assessment .......................................................................................... 58 

3.1 Mechanical Design................................................................................................ 61 

3.2 Custom Flexible Sensor for Joint Torque Sensing and Three-DOF Force 

Sensing .................................................................................................................. 64 

3.2.1 Sensor Design ........................................................................................... 64 

3.3 Robot Control & Mathematical Modeling ............................................................ 74 

4 Concluding Remarks and Future Work ....................................................................... 79 

4.1 Thesis Contributions ............................................................................................. 79 

4.2 Discussion ............................................................................................................. 80 

4.3 Future Work .......................................................................................................... 81 



 

 

vii 

 

5 References .................................................................................................................... 84 

Appendices ........................................................................................................................ 90 

Curriculum Vitae .............................................................................................................. 96 



 

 

viii 

 

List of Tables 

Table 1: Robot Specifications List .................................................................................... 20 

Table 2: Planar Motion Mechanism Decision Matrix ....................................................... 21 

Table 3: Drive Base Actuator Selection Chart .................................................................. 23 

Table 4: Translation & Rotation Robot Specifications ..................................................... 25 

Table 5: ATI Delta-NET Force/Torque Sensor Specifications, Sensor Comparison ....... 39 

Table 6: Custom Force/Torque Sensor Specifications...................................................... 39 

Table 7: ATI Gamma Force/Torque Sensor Specifications, Used for Calibration ........... 40 

Table 8: Required Specifications for Microcontroller ...................................................... 51 

  

 



 

 

ix 

 

List of Figures 

Figure 1: Sitting Knee Extension Task Prescribed Commonly to Stroke Patients ........... 11 

Figure 2: Toe and Heel Raising Task ............................................................................... 12 

Figure 3: Foot and Ankle Circling Task ........................................................................... 12 

Figure 4: Lower Extremity Rehabilitation Robot: A: Patient Shoe; B: Force Sensor; C: 

3DOF Platform; D: Omni-Directional Drive Base ........................................................... 19 

Figure 5: Functional six-DOF Lower Extremity Rehabilitation Robot Prototype ........... 19 

Figure 6: Three-DOF Omni-Directional Drive Base ........................................................ 23 

Figure 7: Finite Element Analysis of Three-DOF Omni-Directional Drive Base ............ 23 

Figure 8: a) Three-DOF Parallel Platform; b) Finite Element Analysis of the Linear 

Actuation Lead Screw ....................................................................................................... 25 

Figure 9: Robot Coordinate System: a) A top view of the robot, showing the joint-space 

parameters of the drive base and the platform coordinate system “P”. b) A back view of 

the robot, showing the platform link parameters, and the coordinate system of the drive 

base “B” and platform. ...................................................................................................... 27 

Figure 10: Algorithm used for solving the platform forward kinematics. ........................ 31 

Figure 11: Tekscan FlexiForce Sensor Specifications. Image Courtesy of Tekscan 

https://www.tekscan.com/products-solutions/force-sensors/a201 .................................... 32 

Figure 12: Tekscan Pressure Sensor Calibration Curves, from FlexiForce Datasheet ..... 33 

Figure 13: Six-DOF force/torque sensor displaying the location of the installed pressure 

sensors. Sensors 2, 9, 12 & 15 are located between the footplate and the platform base 

plate. The other sensors are placed between the side panels and the footplate. The Z axis 

comes out of the page and intersects the X and Y axes. ................................................... 33 



 

 

x 

 

Figure 14: Custom Force Sensor Calibration Setup: A: Handle; B: ATI Gamma 

Force/Torque Sensor; C: Custom Force/Torque Sensor ................................................... 37 

Figure 15: Relation between the pressure sensor values multiplied by the conversion 

matrix and the readings from the Gamma Force/Torque sensor in a) X; b) Y; c) Z; d) α; e) 

β; f) γ; and the associated line of best fit used for the calibration matrix. ........................ 38 

Figure 16: ATI and custom sensor force readings when the user applied forces in the X 

direction. ........................................................................................................................... 40 

Figure 17: ATI and custom sensor torque readings when the user applied torque about γ.

........................................................................................................................................... 41 

Figure 18: Magnitude of error in force measurement for forces and torques applied in the 

   ,    and   directions individually. ............................................................................. 41 

Figure 19: Communication Flow Diagram. ...................................................................... 43 

Figure 20: Simplified Operational Amplifier Circuit. ...................................................... 45 

Figure 21: Actuator velocity signal a) before and b) after observer tuning. ..................... 47 

Figure 22: Frequency response of low-pass filter implemented in C. .............................. 47 

Figure 23: Motor Velocity Tracking Control Method ...................................................... 49 

Figure 24: Motor Velocity Tracking Control Performance .............................................. 49 

Figure 25: Motor Velocity Tracking Control Step Response ........................................... 50 

Figure 26: PCB design for Manufacturing and Assembly ................................................ 52 

Figure 27: Signal Processing & Control Board ................................................................ 52 

Figure 28: Experimental Setup: A: Optical Tracker; B: Game Interface; C: Micron 

Tracker Display; E: Robot ................................................................................................ 53 



 

 

xi 

 

Figure 29: The trajectory of the robot in a) X and Y when commanded to track a circular 

trajectory; and b)    , and   when each was commanded to follow a sinusoidal 

trajectory ........................................................................................................................... 54 

Figure 30: Real-time Trajectory Control Setup using an HD
2
 haptic device and the six-

DOF lower-limb rehabilitation robot. ............................................................................... 55 

Figure 31: a) The force and motion of the individual’s foot in the X and Y direction 

during assisted motion along Y; b) the force and rotation of the ankle about Y as the 

robot assisted in maintaining a neutral ankle position. ..................................................... 57 

Figure 32: Side View of Three-DOF Robot for In-Home Lower-Limb Rehabilitation ... 60 

Figure 33 Top View of Three-DOF Robot for In-Home Lower-Limb Rehabilitation ..... 60 

Figure 34: Commercial Design of Lower-Limb Rehabilitation Robot ............................. 63 

Figure 35: Mechanical and Electrical Layout of Rehabilitation Robot A) Omni-Wheel; B) 

Flexible Coupling Housing; C) Battery, CPU & Circuit Board Holder; D) Actuator; E) 

EPOS Motor Controller .................................................................................................... 63 

Figure 36: Standard Flexible Coupling: A) Hub; b) Spider .............................................. 65 

Figure 37: Custom Flexible Coupling Rapid Prototyped Mold and Spider Material ....... 66 

Figure 38: Experimental Setup to Calibrate and Evaluate Coupling Stiffness and Sensor 

Performance ...................................................................................................................... 68 

Figure 39: Linear Shaft Rotation vs. Torque for Initial Flexible Coupling Prototype ..... 68 

Figure 40: Validation of the Flexible Torque Sensor using an ATI Gamma Sensor ........ 69 

Figure 41: Rise and Fall Time of the Flexible and Gamma Torque Sensors .................... 69 

Figure 42: Hytrel Coupling Calibration and Validation against an ATI Gamma Sensor . 70 

Figure 43: left: Intermediate; and right: Final Custom Flexible Coupling ....................... 72 



 

 

xii 

 

Figure 44: Modular Flexible Actuation and Torque Sensing Assembly .......................... 73 

Figure 45: The Set of Parts and Tools Required to Assemble the Module....................... 73 

Figure 46: Three Step Assembly for Assembling Actuation Modules ............................. 74 

Figure 47: Coordinate System of the Omni-Directional Drive Base ................................ 77 

Figure 48: Modified Canfield Mechanism Designed to be Mounted to a Mobile Base ... 83 

 

  



 

 

xiii 

 

List of Appendices 

Appendix A: Custom Circuit Board Schematics .............................................................. 90 

Appendix B: Costs Associated with Circuit Board and Six-DOF Lower-Limb Robot .... 94 

 

  



 

 

xiv 

 

List of Symbols 

 

Six-DOF Robot Modeling 

 

            Angular position of each wheel 

                   Translational and rotational components of the robot base 

   Wheel radius 

  Ratio of the base radius to wheel radius 

     Vector of platform link i 

   ,    ,     Cartesian components of each link length vector 

   Ratio of lead screw pitch to gear ratio 

    Vector from the base frame to the platform frame 

     Rotational components of the robot platform with respect to base 

     Vector from the base frame to the universal joint COR of link i 

attached to the base 

     Vector from the platform frame to the universal joint COR of link   

attached to the platform 

    Rotation matrix from platform to base coordinate system 

         Angular position of each platform motor 

                Angular velocity of each wheel 

      ,       ,          Translational and rotational velocities of the robot base 

          Translational and rotational platform velocities  



 

 

xv 

 

Six-DOF Force and Torque Sensing 

 

                  Six-DOF force and torque sensing components 

     One-DOF force sensor resistance 

    Feedback resistance 

     Output voltage from voltage regulator 

      Output voltage to microcontroller 

 

Wheel Velocity Measurement 

 

  Encoder sampling frequency 

    Encoder counts per revolution 

     Maximum wheel velocity 

       Wheel diameter 

    Current velocity estimate 

      Previous velocity estimate 

  Current update parameter 

     Previous update parameter 

      
 Filtered average velocity 

        
 Previous filtered average velocity  

  Kalman filter pole 

  Error estimate 



 

 

xvi 

 

    Low-pass gain 

    Kalman Gain 

  Prediction Error 

  System noise 

  Measurement noise 

 

Admittance Control 

 

    Robot velocity 

    Force applied by the patient 

        Robot trajectory 

       Desired trajectory 

       Stiffness gains 

 

Impedance Control 

 

    Dynamic parameters of the robot 

  Angular position of the wheel 

   Torque applied by the robot  

      Torque applied by the patient 

  Angular position of the motor shaft 

  Actuator inertia 



 

 

xvii 

 

   Reduced actuator inertia 

   Desired stiffness parameter 

   Desired damping parameter 

  Control input 

 

Additional Variables used in Three-DOF Robot Modeling 

 

  Angle between the X axis and the vector from the wheel centre of 

contact to the origin 

   Tilt angle of each wheel 

   Radius of the circle created from the contact point of the wheels 



2 

 

 

 

Chapter 1  

1 Introduction 

Worldwide, 15 million individuals experience a stroke each year, and 50,000 of 

these cases occur in Canada [1]. Approximately two-thirds of these individuals will suffer 

neurological deficit and over half will never fully regain motor skills essential for 

everyday tasks, diminishing their independence in daily living [2, 3, 4]. Ideally, therapists 

are physically involved in the patient rehabilitation process; however, the number of 

therapists is limited [5]; and many patients must perform their rehabilitation exercises 

independently. In these cases, how correctly the patient performs therapy cannot be 

monitored, and the qualitative assessment scales used during patient check-ups (e.g. Fugl-

Meyer Assessment, Berg Balance Scale) lack sensitivity to small changes in recovery that 

can be useful in adapting therapy. Robotic devices can be incorporated into rehabilitation 

regimens to provide greater access to guided therapy, measure patient-specific variables 

important to assessing on-going recovery [6] and improve motion control and 

coordination for both the upper [3, 7] and lower limbs [8]. Through continued support 

from the research, industrial and medical communities, novel devices and applications 

will be conceived and the use of these devices for diagnosis, therapy, and assessment 

throughout recovery will be accepted.        

1.1 Effects of Stroke on Neuromuscular Deficit 

A stroke event can have quite varied effects on neuromuscular functionality based 

on the severity and location of the injury, and as a result, the effectiveness of traditional 

rehabilitative programs on recovering motor skills and somatosensory pathways varies 

greatly among patients. To more fully understand the effects of stroke on reacting to a 

stimulus and completing a desired motion response the sequence of sensory and actuation 

events can be categorized as: sensing, signal interpretation, decision making, signal 

generation, and actuation. In the sensing stage the individual takes in stimuli from his or 

her environment and converts the stimuli to electrical impulses. These impulses travel to 

specialized areas in the brain, such as the visual, auditory and sensory areas and are 
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processed to provide appropriate information to the frontal lobe to decide how best to 

react to the stimulus. The frontal lobe then communicates with the motor cortex to 

determine the appropriate movement response and the motor cortex generates an 

electrical impulse that travels to the muscle fibers. This signal excites the muscle fibers to 

actuate, causing a physical response [9, 10, 11]. In the event of a stroke, in which there is 

a lack of blood flow to an area of the brain, by blockage (ischemic stroke), vessel rupture 

(hemorrhagic stroke) or trauma, cells along the brain’s blood vessel paths die from lack 

of oxygen, causing local brain failure. The functions of the brain are highly 

compartmentalized which causes a wide variety of post-stroke symptoms between 

patients, especially when cell death is localized in the sensory interpretation, cognitive or 

motor control centers. Kolb & Wishaw [12] reference the frontal lobe in that,  

“There is no other part of the brain where lesions can cause such a wide variety of 

symptoms. The frontal lobes are involved in motor function, problem solving, 

spontaneity, memory, language, initiation, judgement, impulse control, and social 

and sexual behavior”.  

The typical neuromuscular symptoms of stroke are muscle rigidity, motor control 

deficit, coordination loss, weakness and pain [13]. In many cases muscle rigidity is 

caused by under-regulation of the motor cortex, causing pain and constant stimulation of 

muscles. The ensuing joint inactivity causes tendons to shorten and joints to stiffen, 

resulting in a low range of motion. Motor control deficit and weakness can be caused by 

many areas of the brain as it can be affected by loss of proprioception and tactile 

feedback, an inability to decide upon movement commands and a reduction in the 

number of muscles fibers that can be recruited to perform the command. The effects of 

these neuromuscular deficits are felt most by the limb contralateral to the side of the brain 

that experienced the injury [14]. Coordination tasks are most affected by damage to the 

cerebellum, having greatest effect on walking gait, reaching tasks and hand motion.  

Although neurological damage is usually localized, it can affect many areas of 

neuromuscular control, requiring a specialized therapy plan for each patient.  
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1.2 Clinical Therapy & Rehabilitative Impact 

Prescribed rehabilitation regimens vary between patients, but a common practice is to 

combine therapist-directed joint movement and self-directed muscle actuation 

immediately after stroke diagnosis to prevent joint stiffening and pain [15]. This therapy 

can also vitalize damaged or unused areas of the brain to change physiologically and 

functionally in order to regain motor skills lost due to stroke [16, 17]. 

During the first six months of traditional therapy patients usually recover a portion of 

their motor control skills, but these gains plateau and individuals are left with limited 

motor functionality [18]. From analysis of patients in traditional and novel rehabilitation 

programs, it has been shown that the time to initiation of guided-limb actuation has the 

greatest effect on patient recovery [19, 20], and focus on functionally-oriented 

rehabilitation (e.g. walking, grasping, and reaching) can provide therapy that helps 

patients develop more fully in the short-term and can provide rehabilitative benefits far 

after the initial six months [21].  

In order to understand why these rehabilitative effects are observed neurological 

studies have been performed.  These studies have shown that after a stroke, patients have 

higher than normal neural activity, due to accelerated synaptogenesis and dendrite 

remodeling, but this higher than normal activity diminishes over time as the lesion heals. 

To accelerate recovery it is important for patients to activate sensing and actuation 

pathways to form connections between the motor cortex and muscles, and between the 

sensory pathways and the brain. After the initial healing phase brain activity subsides to 

normal levels, and memory, learning and neuroplasticity pathways are relied upon to train 

the brain to use its current resources in functional coordination tasks [22]. As such, 

guided movement immediately after stroke, and continued functional training in the later 

stages of recovery are essential to obtaining a maximal improvement in neuromuscular 

function.   

Occupational and physical therapists are the most involved in patient neuromuscular 

rehabilitation, and their focus is on expanding range of motion, improving motor control 

and developing coordinated movement. Therapists assist patients in stretching exercises 
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to regain range of motion, guide patients in controlled movement of individual joints and 

coordination tasks, and teach patients movement strategies that will increase their success 

rate in performing daily tasks. The progression in rehabilitation exercising starts with 

positioning the patient in an orientation that is safe, either sitting or lying down, and 

applying force to their limb to move a single joint along one DOF. The second stage is to 

have the patient focus on actuating the joint to perform motion tasks and the third stage is 

to have the patient perform similar tasks under the weight of the limb and with a weight 

applied. These three stages allow the patient to recover proprioceptive connections on 

what the motion should feel like, followed by creating connections between the motor 

cortex and muscle fibers to actuate and strengthen muscles [23]. Once these three stages 

are complete the patient can then focus on performing functional tasks that require 

coordination between joints.  

The exercises for the upper limb focus on reaching and holding objects, and the 

exercises for the lower-limb are geared toward helping patients walk, sit, stand and lie 

down. For the shoulder and elbow these exercises include raising and lowering the arm 

from various orientations, and moving the arm toward and away from the body, 

concentrating on moving the arm in a controlled motion without twisting the arm. For the 

wrist these exercises include flexion, extension, pronation and supination, with the 

greatest focus on increasing range of motion. The typical issue with the hand is that the 

muscles tend to contract, causing cramping and making it difficult to grasp large objects. 

The initial therapy is to stretch the hand flat and move it along a flat surface, followed by 

practicing picking up and placing objects and performing arm exercises with an open 

palm. The initial hip and knee exercises are similar to the shoulder and elbow exercises, 

followed by practicing transferring body weight between the legs. In ankle rehabilitation 

the exercises are similar to wrist exercises, where the main focus is on flexion and 

extension to protect against drop-foot gait and internal rotation to maintain balance and a 

symmetric gait while walking.  

Patient progress during stroke recovery is heavily dependent on the location and severity 

of the stroke, the timing and quality of rehabilitation training and surgical interventions 

administered to the patient, and the patient’s attitudes. Of the fifty-percent of stroke 
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survivors that are not independent and require special care due to moderate to severe 

motor impairment [24], the most likely candidates to suffer this disability are those who 

have suffered a stroke to the anterior cerebral artery impacting the frontal lobe, and the 

individual with greatest chance of regaining motor skills are those with impairment to the 

deep brain. 

1.3 Limitations & Challenges of Current Therapy 

Worldwide, the demand for physiotherapy-intensive treatment is growing due to higher 

rates of disability linked to aging populations, and stable rates of stroke incidence per 

capita [25, 26]. As a result, it will become increasingly difficult to provide early initiation 

to stroke therapy, provide sufficient daily therapy to produce the maximal rehabilitative 

effect for each patient, and continue functional therapy long-term. In Canada, sixty-three 

percent of stroke victims already do not have access to rehabilitation therapy due to 

insufficient supply of physicians and facilities [5] and the cost of funding these 

rehabilitation programs in substantial [27]. As a result, many candidates that are projected 

to have low potential for recovery are not accepted into or motivated to continue 

rehabilitation programs, causing emotional issues and significantly impacting their 

personal budget if a caregiver is required [5, 28].  

Current estimates state that is takes an average of 11 days, in Ontario, Canada, between 

the time of stroke and the start of acute therapy, a delay that is proven to significantly 

impact final recovery as this is when neural activity and the rate of spontaneous 

rehabilitative gain are highest. This can be attributed to a lack of rehabilitation equipment 

and staff within hospitals, and is pronounced in rural communities where delay times are 

on average 6 days above the average [5, 27, 29, 30].   

For lower-limb therapy in particular, the force the therapist needs to exert and the 

workspace they need to cover is large as the lower-limb is powerful, rigid and heavy. 

Also, certain functional training motions such as walking motions incorporate too many 

joints to be controlled by a single therapist. As a result, therapists need to take breaks 

often as the therapy is physically exhausting and requires the assistance of other 

therapists to offer gait training. At times such therapy is not offered due to the number of 
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patients that need therapy. In addition, such powerful motion can be unsafe to the 

therapist and patient, and the amount of control the therapist has on the patient’s limb is 

low, so treatment may not be ideal. To compensate for the weight of the patient’s limb 

and body, and keep the patient stable throughout therapy, exercise plans have been 

developed that allow the patient to sit or lie down and use braces and standard exercise 

equipment to train movements similar to everyday activities. This type of therapy has 

shown to have value in the recovery process, although some studies show that training 

the patient in the position used in daily tasks yields faster results [31].  

In current rehabilitation programs, the therapist makes decisions on patient recovery 

based on feel and experience. However, this type of therapy does not identify small 

changes in patient improvement, and is heavily reliant on therapist judgment, leading to 

non-optimal adaptation of the patient’s rehabilitation program. Assessments are 

performed on a regular basis and can be used to assess patient improvement and adapt 

therapy as well; however these scales are qualitative and have similar disadvantages. The 

data generated by these assessments is non-specific to the type of stroke experienced by 

each patient and requires intuition to interpret in order to adapt therapy. Typical 

assessment scales used in therapy include the Fugl-Meyer Assessment, Berg Balance 

Scale, Functional Independence Measure, Wolf Motor Function Test, Late Life Function 

and Disability Instrument, Functional Ambulation Category, Rivermead Mobility Index, 

Modified Ashworth Scale, and the Barthel Index [32]. Of these scales, the Fugl-Meyer 

assessment is most used clinically as it is comprehensive, and gives a reliable 

measurement of impairment with respect to independence [33]. This scale evaluates the 

patient in 61 tests and ranks the patient on a scale from 0-2 based on muscle activity, 

flexibility, reflexes, sensing, and coordination. From a therapy optimization point-of-

view, however, this data is difficult to work with as it lacks the detail of information 

required to adapt therapy daily or in real-time. Also, the metrics are not patient-based and 

can give meaningless correlations between patients as stroke survivors have quite varied 

capabilities. Further, patients cannot be transferred easily between therapists without 

sacrificing recovery gains as designing a therapy program requires intuition and 

knowledge about each patient’s recovery trends.   
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1.4 Motivation 

 Rehabilitation robots have been used in therapy for over twenty years and have 

proven to be more useful than receiving no additional rehabilitative support in many 

cases, and have shown to give rehabilitative gains equal to or better than training with 

experienced therapists in some cases. However, the use of these robots is still limited to 

engineering research settings, especially in the case of lower-limb devices, due to their 

current size, weight and cost. As a result, patients must rely on current therapy protocols 

in which they have limited access to therapy, and are only provided therapy opportunities 

in the first few months after stroke. This significantly deteriorates recovery outcomes 

leaving patients unable to walk or get out of bed, and fully reliant on others. By focusing 

on portability, compactness, affordability, safety and specific therapy procedures for 

lower-limb therapy in the robot design stage an innovative device that maximally impacts 

the independence of stroke survivors and is suitable for at-home patient rehabilitation can 

be conceived and developed. 

1.4.1 Socio-Economic Impact of Robotic Stroke Therapy 

Over 60% of Canadian stroke survivors do not have access to stroke therapy, which is 

draining to the Canadian budget, and does not provide adequate recovery results for 

performing daily tasks.  Health care for stroke survivors needs to improve in order for 

these patients to gain independence and participate in society. Through decentralized 

access to neuromuscular rehabilitation therapy and improved techniques in therapy a 

greater number of older adults will recover to a level where they can live independently.  

Developing portable, affordable and safe robotic systems for lower-limb stroke 

rehabilitation therapy will allow each patient to own their own system and use it in their 

home and in the clinic. This will assist them in completing exercises properly and daily. 

The creation of connections from the motor cortex to neuromuscular junctions is most 

active directly after stroke, but decreases to normal levels within the first three months as 

healing slows. For this reason, it is important to begin therapy within the first few days 

after stroke diagnosis. In this time the patient is assessed for their amount of 

neuromuscular deficit and the clinician must make a diagnosis of whether rehabilitative 
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therapy will help the patient.  This process can take two-to-three weeks, and over half of 

patients that need therapy are not even admitted. During this time it would be useful to 

have a portable system for patients to use for simple and safe guided therapy. 

Participating in preselected movement and range of motion exercises daily would give 

patients the opportunity to establish a greater number of functioning muscle activation 

sites to recover greater muscular strength and control, and prevent tendon shortening and 

pain. In addition to increasing muscle activity through initial-stage therapy, a device that 

can train patients to make compound muscle movements with a task-based focus could 

provide rehabilitative benefit to patients throughout their life. The gains from this type of 

therapy are much slower as the brain has to learn how to activate the proper muscles 

using the limited neuromuscular connections the patient has, but the recovery from this 

therapy benefits from frequency and duration. Since current rehabilitation programs are 

in short supply they are less accessible to these patients, but would be suitable for an 

accessible device. In addition to the accessibility issues related to rehabilitation, 40% of 

patients that are admitted to rehabilitation programs drop-out [5], and these drop-outs 

have been linked to emotional causes such as anxiety, depression, lack of control over 

their illness and therapist de-motivation. Through independent therapy patients have the 

opportunity to take control of their rehabilitation, solving many of these issues.  

Apart from the direct costs of rehabilitation programs, patient independence will ease 

the workload of family members, and these family members will not need to take as 

much time off work. A hands-free method of therapy would also allow therapists to 

monitor the therapy of multiple patients at once, like in a typical workout class. The 

therapist could then take an observatory role from which to critique patient form, focus 

on modifying therapy strategies to speed recovery, and identify unsafe scenarios caused 

by erratic patient movement. This would also minimize therapist fatigue and pain due to 

physical exertion in awkward stances. Safe, accessible care is essential to improving the 

lives of patients and those who care for them, and would also lower the health care costs 

of rehabilitation per patient if these devices are made affordable. 
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1.4.2 Therapy Techniques  

Therapy-oriented design is essential to developing devices with significant 

improvement over current practice that can be commercialized for social, economic 

and/or social impact in the near future. Current technologies (i.e. actuators, controllers, 

sensors) are advanced enough to be used in useful ways to provide therapy. By gaining 

the transdisciplinary expertise necessary to identify deficiencies in elderly care therapy 

and combining this knowledge with technological integration more complete solutions to 

therapy needs can be generated. Once the initial device is developed and evaluated 

clinical trials can be held, following Ethics Review Board approval, to determine the 

recovery benefits of the device.  

From a commercialization perspective, these devices will allow greater access to 

affordable therapy and adherence to therapy programs, as well as allow patients to 

recover more fully than with current therapy techniques alone. This will reduce 

governmental health care costs as therapists will be able to provide therapy to multiple 

patients simultaneously, and reduce the number of long-term care facilities as patients’ 

recover more fully and will be able to perform daily tasks individually and participate 

socially in the community. The rehabilitation devices developed during this Masters’ 

thesis have the potential to significantly change the way rehabilitation therapy is 

performed and deepen our understanding of stroke recovery. This level of impact in 

combination with the knowledge, partnerships and funding within the AGE-WELL NCE 

community will provide ample opportunities for the commercialization of these devices.    

Innovation is essential to economic and social growth as it expands the possibilities 

of what can be accomplished, injects new ideas into the society, and spurs new research 

questions. AGE-WELL’s goal is to provide transdisciplinary innovation, by building on 

knowledge and experience in health sciences, engineering, social sciences, and public 

policy. By involving therapists, patients and industry in the generation of constraints, 

specifications and concept generation, a set of therapy tasks and robot requirements can 

be developed that require a novel robot design and lead to an effective rehabilitation 

solution. To summarize the generated requirements the device should be affordable, 

lightweight, easy to use, portable, and able to perform task-specific movements and 
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measure relevant stroke recovery information. From the completion of the mechanical 

and electrical design it will be important to design a control algorithm that is safe and 

robust when used by various patients with varying neuromuscular disorders. 

1.4.3 Rehabilitation Tasks for Clinical & At-Home Therapy 

The lower-limb rehabilitation robot presented in this thesis was developed to provide 

the following three rehabilitative therapies to stroke patients during recovery.   

1.4.3.1 Early-Stage Motion Assistance  

In the initial months following stroke it is important to assist patients with lower-limb 

deficit to repeatedly actuate their hip, knee and ankle in order to recover neuromuscular 

pathways essential for movement. By actuating each DOF of each joint there is a greater 

potential for each muscle group of the lower-limb to be established in the patient’s 

neuromuscular architecture. In this type of dexterous rehabilitation it is also important to 

actuate over a large range of motion in order to alleviate pain and increase 

proprioception, flexibility and circulation. To provide such dexterous and high range of 

motion manipulation this rehabilitation robot is comprised of a three DOF omni-

directional drive base and a three DOF actuation platform that controls the trajectory of 

the patient’s foot. Since the lower-limb is a redundant mechanism, joints can be braced to 

provide therapy to specific joints as is customary in traditional therapy [34]. Figure 1, 

provided by Stroke-Rehab.com, gives a demonstration of a recommended exercise for 

stroke survivors in which the patient extends and relaxes the knee in a sitting position.  

 

Figure 1: Sitting Knee Extension Task Prescribed Commonly to Stroke Patients 

Image Courtesy of www.stroke-rehab.com 
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1.4.3.2 Ankle Training & Exercise in Dynamic Environments 

The second task involves training the ankle under dynamic knee motion and external 

forces. From this therapy the patient can experience the sensations of dynamic loading in 

everyday activities while being assisted in controlling ankle rotation. In addition, the 

robot’s parallel mechanism provides sufficient torque to be used in ankle strength training 

before beginning demanding exercises in an upright position. Figure 2 and 3, also 

provided by Stroke-Rehab.com, show two ankle exercises recommended for stroke 

survivors.  

 

Figure 2: Toe and Heel Raising Task 

Image Courtesy of www.stroke-rehab.com 

 

 

Figure 3: Foot and Ankle Circling Task 

Image Courtesy of www.stroke-rehab.com 
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1.4.3.3 Functional Motion Therapy 

Providing joint actuation assistance is important in early stage stroke therapy, but 

prolonged therapy should focus more on functional tasks (e.g. walking, turning, sitting 

and standing, climbing stairs). To train a desired foot trajectory personalized for each 

patient, the therapist manipulates the patient’s foot while the robot is actively backdriven. 

Since this robot is attached only at the foot, trajectory personalization is possible for 

patients of varying body proportions without changing the geometry of the robot. As 

patients are seated for this therapy their body weight is supported and they do not have to 

focus on balancing. As a result, they can focus on developing muscle-memory, learning 

and memorizing coordination skills from following task-like trajectories before 

performing functional rehabilitation from an upright position.  

1.5 Robotic Therapy for Lower-Limb Rehabilitation 

To overcome current issues with access to sufficient therapy, and quantitative 

assessment of recovery, a number of mechatronic rehabilitation devices have been 

created that are specialized for the upper and lower limb, and can provide recovery with 

similar or better results than traditional therapy [25, 35, 36, 37]. These robots can also 

adapt therapy in real-time based on patient success, provide a scalable medium for 

therapy as multiple patients can perform therapy at the same time, and motivate patients 

to execute their therapy plan more frequently through the creation of interactive gaming 

environments.  

Robotic devices for upper and lower limb therapy have been developed and clinically 

tested, but the current ankle, balance and gait rehabilitation robots show lower efficacy 

than upper-limb robots. Only one gait trainer has shown recovery results similar to that of 

traditional therapy [38]. Other lower-limb systems have been commercialized and have 

been incorporated into rehabilitation regimens [39, 40, 41, 42]; however, many of these 

devices have a high cost-to-performance ratio and do not allow for personalized therapy 

[25]. The power and workspace required for these robots make them more difficult and 

costly to design, manufacture and control, the patient neuromuscular activation must be 

much stronger to actuate the lower-limb as the limb’s weight greater, and patients lose 
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vision-based feedback (as they cannot see their legs while walking). Further, due to 

therapist fatigue and the complexity of functional therapy there is a great need for these 

devices in rehabilitation clinics. The current systems do not provide active hip 

abduction/adduction therapy, which is critical for changing direction while walking, 

balancing on uneven surfaces, and stretching. To improve performance and 

personalization, it will be important to create devices that patients can access directly 

after a stroke for joint and muscle actuation and continue to use afterward for functional 

training.   

Devices with multiple DOFs and a large workspace provide greater flexibility in hip, 

knee and ankle therapy, and portability is essential for accessibility in clinics and homes. 

For the ankle, which is highly dexterous, Girone et al. [43] designed a Stewart platform 

actuation system with force feedback, to provide resistive forces during orthopedic 

rehabilitation. The workspace of the system was too limited to be extended to hip and 

knee rehabilitation. To expand the workspace of upper-limb rehabilitation devices 

without compromising portability or compactness, Luo et al. [44] developed a mobile 

omni-directional robot that encompassed the planar workspace of the upper-limb, and a 

compliant force-sensing structure was recently added to a similar system [45].  

To control robots to perform stroke therapy many control implementations have been 

proposed and the most commonly implemented forms are trajectory control, impedance 

control, electromyographic (EMG) assistance, and active-resistance [46, 47, 48, 49]. In 

trajectory control applications the robot is in full control of the patient’s motion, teaching 

the patient what a movement will feel like, with the goal of energizing the somatosensory 

system and having the patient actively replay the exercise. However, the joints of stroke 

patients can be very rigid and may lack the range of motion necessary to perform the 

task, in which case the robot could injure the patient. An impedance controlling algorithm 

was then proposed by Hogan for upper limb rehabilitation, where by the robot applies 

guiding forces to the patient while the patient is cued to move along a desired trajectory 

[50]. A desired velocity, final position and system impedance are decided initially, and a 

real-time minimum jerk trajectory calculation was performed to update the real-time 

desired trajectory. From clinical testing and patient recovery data, improvements to this 
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general control strategy have been implemented to increase the rate of patient recovery 

by assisting patients only when force-guidance is required. Common methods for 

applying this assist-as-needed therapy are to establish a region around the desired 

trajectory where the patient will receive no assistance, or to activate this assistance only if 

the patient has not moved for a certain period of time [51, 52, 53]. Impedance parameters 

were also tuned automatically using adaptive and performance-based methods during a 

task or between tasks to challenge patients more as they recover [54]. Patients can be 

quite strong and rigid, especially in the case of the lower-limb deficit, and this has forced 

many robot designs to select powerful motors that are heavy and costly or opt for higher 

gearing that creates backdrivability issues. This lack of passive backdrivability can 

diminish the performance of impedance control algorithms, motivating researchers to use 

admittance control algorithms [55] and/or EMG feedback [56] to capture the patient’s 

movement intent through force feedback and provide motion accordingly. It is still 

unclear which methods of control are most useful in establishing therapy regimens for 

patients with neuromuscular deficit, and through iterative design, control, and clinical 

experimentation, further knowledge will be generated on how to perform rehabilitative 

therapy, both robotically and traditionally, for maximal patient recovery. 

Robotic technology is starting to be incorporated into rehabilitation therapy regimens, 

and as robotic rehabilitation therapy develops, novel techniques to improve therapy will 

be incorporated into existing regimens for improved recovery results, patient screening 

and evaluation, and accident (i.e. fall) prevention training. One interesting research area 

is mirror therapy, where the therapist and the patient hold separate robots and the 

therapist’s movements are used to guide the patient in completing functional therapy 

tasks [57]. This can be extended to tele-robotic applications as well, where the patient can 

be in a rural community and still gain access to the most experienced therapists. In this 

case, with the aid of adaptive control algorithms most of this assistance to patient 

movement can then be controlled by the patient’s robot alone and the therapist can tune 

adaptive parameters or modify exercises intermittently based on experience. This therapy 

can then be extended to at-home use where outpatients can perform effective 

rehabilitation regimens, and further, be used by patients during their everyday life to train 

the tasks that are most useful to them personally. Another interesting area of research is 
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in applying a stimulus to an unaffected area of the body that is proportional to the 

proprioceptive feeling the patient should feel when moving an affected joint. In many 

patients that have severe stroke, there is a low chance that they will recover the 

proprioceptive channels necessary to create smooth or effective motion, but with visual, 

auditory or tactile feedback [58], these patients may regain the ability to perform tasks 

independently. These are just some of the many avenues in rehabilitation robotics to 

explore further, and through continued development in rehabilitation robotics research 

and clinical experimentation, continued improvements in the recovery rate of stroke 

patients will be achieved. 

1.6 Thesis Outline and Organization 

In this thesis, novel robotic systems have been developed to provide feasible solutions 

to motion assistance for in-home lower-limb stroke rehabilitation therapy. Specific 

requirements on workspace, power, safety, cost, and application have motivated the 

incorporation of mobile omni-directional drive bases and cost effective force and torque 

sensors into the robotic systems.  

From here onwards, the robot described in Chapter 2 will be referred to as the six-

DOF robot and the robot described in Chapter 3 will be referred to as the three-DOF 

robot. 

Chapter 2 presents a six-DOF motion assistance system, in which a parallel platform 

is mounted onto a mobile base for end-effector style rehabilitation of the hip, knee and 

ankle. A novel embedded low-cost sensor was designed, manufactured and tested for its 

performance in measuring the six-DOF force/torque generated by the user’s foot while 

the robot was in use.  The performance of the system in providing motion assistance was 

evaluated through in-lab experiments with a healthy individual’s foot attached to the 

robot’s footplate.  

Chapter 3 proposes modifications to the drive base structure and control strategy 

developed in Chapter 2, aimed at improving the usability and performance of the system 

for assist-as-needed training and neuromuscular skills assessment. The modular three-
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DOF drive base developed can be used as a stand-alone system for knee and ankle 

therapy, is lightweight, compact and wireless for portability, adds an easy to don/doff 

ergonomic quick-release foot attachment system for safety and reduces the number of 

actuators to reduce cost and complexity. A novel rotary series elastic joint with high 

resolution and high sampling rate torque-sensing has been designed, manufactured and 

validated for its linear elasticity and torque-sensing performance. The joint and sensing 

module is embedded into the mobile omni-directional drive base and the novel system 

developed provides backdrivable three-DOF actuation with fast and accurate three-DOF 

force/torque feedback for assist-as-needed control algorithms, and patient skills 

assessment. The design concept has been validated via modelling and impedance control 

simulations, and the system’s construction and preliminary testing show improvements in 

backdrivability and portability. 

Chapter 4 gives concluding remarks on the knowledge developed during this thesis 

work, and presents ideas for future directions of this work.  
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Chapter 2  

2 Six-Degree-of-Freedom Robotic System for Lower-Limb 
Stroke Rehabilitation 

Chapter 2 presents the design and implementation of a novel six-degree-of-freedom 

(DOF) rehabilitation robot for post-stroke patients with lower-limb neuromuscular 

deficit
1
. The robot combines a mobile drive base and a three-DOF platform to create a 

portable system for use in homes and clinics, encompasses the dexterity, workspace and 

power of a typical person, and is inherently safe as the maximum force applied is related 

to the robot weight and wheel frictional coefficient. The goal of this device is to provide 

physicians and therapists with a tool for assisting patients in knee, ankle and certain hip 

movements by tuning initial therapy parameters and providing intermittent adaptation to 

these parameters based on patient improvement. Patients are seated and the foot of their 

affected lower-limb is placed on the platform of the robot shown in Figure 4. In this 

position the patient is safely oriented and can focus fully on developing specific motor 

control skills. A motion or force cue is then portrayed to the patient and the patient 

interacts with the device to meet the final goal. When performing assistive therapy the 

patient’s shoe is adhered to the platform using a hook and loop fastener attached to the 

sole of the shoe so that under high frequency force variations the patient’s foot will 

detach from the device. The robot and its custom circuitry were designed, manufactured 

and assembled and the robot is displayed in Figure 5.  

The kinematics and Jacobian of the robot were developed and these models have been 

validated experimentally through optical tracking of the robot end-effector in position 

and velocity control modes. A custom force/torque sensor was designed and implemented 

as a low cost solution to measuring patient forces and torques during therapy and was 

                                                 

1
 The work described in Chapter 2 was presented and published in the International 

Conference on Robotic Rehabilitation (ICORR) [59]. 
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evaluated using a commercial force/torque sensor. Using this information an admittance 

controller was implemented to assist patients with neuromuscular deficit in moving their 

affected lower-limb along a prescribed path.  

 

Figure 4: Lower Extremity Rehabilitation Robot: A: Patient Shoe; B: Force Sensor; 

C: 3DOF Platform; D: Omni-Directional Drive Base 

 

Figure 5: Functional six-DOF Lower Extremity Rehabilitation Robot Prototype 
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2.1 Mechanical Design & Manufacturing 

Robotic solutions for lower-limb rehabilitation therapy present interesting mechatronic 

challenges as the lower-limb has many DOF and a large workspace, can generate high 

forces and torques and in the case of post-stroke patients, can be extremely rigid. In 

response, the robot must provide sufficient dexterity to train the desired muscle groups, 

move at reasonable speeds to train individuals for everyday motion, and apply forces 

similar to those of the natural environment. As well, minimizing the number of bulky and 

costly components, and providing the ability to disengage the robot from applying force 

to the patient in the case of an unpredicted event is essential to making the device 

portable, affordable and safe for in-home use. From biomechanical data on the typical 

range of motion [60], joint velocities and forces required for walking [61], cost reports on 

the affordability of the HAL lower-limb rehabilitation system [62], and the general 

guidelines above, a specifications list was generated as shown in Table 1. Conceptual 

designs were then generated through research on current robotic upper and lower limb 

devices, as well as functional decomposition, morphological analysis and group 

brainstorming sessions. Through initial concept development and analysis a list of key 

requirements was formulated and a decision matrix was used to quantitatively select the 

appropriate mechanism, as shown in Table 2. This table ranks the robotic system 

requirements on a 1 to 5 scale, with 5 as most important in terms of overall usefulness to 

stroke patients. Engineering complexity and implementation aspects were also considered 

in this table, but given less importance as these challenges are the strengths of the device 

designer and would be met through time and effort in the detailed design stage. 

Table 1: Robot Specifications List 

 

Range of 
Motion 

Force 
Capacity Speed 

Sensor 
Accuracy 

Planar Translation 1m 400N 60 cm/s 1mm 

Vertical Translation 30cm 400N 30cm/s 0.1mm 

Three Rotations 450 10Nm 200/s 0.10 

Overall Robot Specifications 

Maximum Weight 20kg Max Prototype Cost $4000 

Max Diameter 40cm Max Height 60cm 

Other Needs: Supports 1000N vertical load, Mounting not required, 100Hz control frequency 
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To accommodate the therapy tasks and device specifications, and following from the 

quantitative mechanism selection process, a three-DOF omni-directional drive base was 

selected. The drive base provides large-workspace planar motion and rotation for hip and 

knee flexion/extension, hip adduction/abduction and internal/external rotation. A three-

DOF parallel platform was then selected to provide vertical motion for hip and knee 

flexion/extension, and roll and pitch rotation for plantarflexion/dorsiflexion and 

supination/pronation of the ankle. This mechanism provides high force and torque as well 

as structural rigidity and is similar to Stewart platforms which have shown effectiveness 

in musculoskeletal rehabilitation. For ease of use and transportation in clinical and home 

environments, the robot was designed to be lightweight, and communicate wirelessly 

with a host computer.    

Table 2: Planar Motion Mechanism Decision Matrix 

Concepts/  
Customer Requirements 

Rank (1-5) 
5=Best 

Omni-Directional 
Mobile System 

Linear Serial 
Manipulator 

Rotary Serial 
Manipulator 

Lightweight Structure 5 5 2 4 

Inexpensive 5 5 1 3 

Easy to Disengage System 5 5 3 3 

Similarity to Existing in- 
Home Devices 

4 5 1 1 

Control Simplicity 3 2 5 4 

Backdrivability 3 3 2 4 

High Workspace-to-Size 
Ratio 

3 5 1 3 

Low Foot Height 3 2 5 5 

Ease of Manufacture 2 3 4 2 

Compact Structure 2 4 4 2 

Patient View of  
System Complexity  

2 5 3 2 

Structural Rigidity 1 4 3 2 

Total  159 98 116 

To meet the demanding specifications of lower-limb robotic therapy a custom drive 

base was developed and is shown in Figure 6. Wheels with a high radial dynamic friction 

coefficient (0.9 on carpet) were selected to apply sufficient forces while keeping the robot 

at a reasonable weight of 18.6   for transporting up stairs. The robot could also be 

transported along flat ground by actively backdriving the motors. A four-wheel 
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configuration was chosen as opposed to a three-wheel alternative to provide greater 

resistance to tipping, more accurate control of one-DOF ground plane movements, and 

greater force output for the same motor power. A base diameter of 380   was selected 

to avoid tipping due to transverse patient loads. The drive base was constructed from 

sheet aluminum for a high strength to weight ratio, maximal rigidity and space savings 

for embedding electrical components and wiring. To power the wheels inexpensive high-

power brushed DC motors (BaneBots LLC, RS550, 180 Watt, 12V) and planetary 

gearboxes (BaneBots LLC, P60, 132:1) were selected from a list of suitable actuators in 

Table 3, and incremental encoders (US Digital, E6, 1024 CPR) were chosen for odometry 

measurement, with a translational and rotational resolution of 0.31   and 0.087°, 

respectively.  

In the detailed design stage of the robot base, factors to consider included the 

compactness of the robot, orientation of the wheels for maximum rotational torque, 

machinablity of the robot frame, ease of assembly and the weight the robot could support. 

To meet these demands the wheels were positioned at 90
0
 angles to one another, and 

tangent to the robot circumference. The frame was then designed around the actuator 

placement, and was designed for laser cutting and 1DOF bending which was a cost-

effective method for manufacturing. The robot geometry was then optimized iteratively 

using SolidWorks to create a compact base that allowed space for embedding the motor 

controllers and wiring. To optimize the weight of the frame and assure its rigidity a 

SolidWorks Finite Element Analysis study was performed to iterate the design and select 

the thickness of material used for the walls and base of the robot. A 1000N load, equal to 

a typical patient’s weight if they were to stand on the robot, was applied to the robot 

through the three support links to the parallel platform designed and explained below. 

From this study 12 gauge aluminum sheet metal was used for the robot walls and a 1/8” 

aluminum sheet was used for the base frame. The finite element study showed the robot 

base would not yield with a safety factor of 2 (maximum von Mises stress of 27 MPa 

versus yield strength of 55MPa), and the deformation was small, as shown in Figure 7. 
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Table 3: Drive Base Actuator Selection Chart 

Motor + Gearbox / Specification  
BaneBots RS550/ 

BaneBots P60 
Maxon 353295/ 
Maxon 110412 

Harmonic Drive 
LLC FHA-14C 

Power (W) 250 250 250 

Gearbox Ratio 132:1 93:1 50:1 

Motor + Gearbox Efficiency (%) 35 58 70 

Actuator Cost (CAD) 65 1325 2890 

 

Figure 6: Three-DOF Omni-Directional Drive Base 

 

Figure 7: Finite Element Analysis of Three-DOF Omni-Directional Drive Base 
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To provide sufficient rigidity, force and torque a lead screw actuated platform was 

designed and integrated into the drive base to minimize robot height, lower the centre of 

gravity, and enclose the motors and gears for safety. Using precision lead screws for 

actuation, rotary and angular contact bearings, and universal joints the motion of the 

platform was constrained to the three DOF stated above. To drive the 1/8” per turn lead 

screw a motor was attached to a pinion that meshed with the gear on the lead screw for a 

3:1 gear reduction and isolating the motor from loads applied at the footplate. The same 

motors were selected to drive the lead screws as the drive base, and optical encoders (US 

Digital, E4P) were used to sense motor rotation for end effector resolutions of 0.0071mm, 

0.0035° (pitch), 0.0052° (yaw) at a neutral platform position, respectively. Lead screw 

actuation was used as opposed to pneumatic actuation in order to avoid the noise and 

expense of a compressor, as well as for ease of force, and velocity control. Ball screws or 

series elastic mechanisms could also be used but these could increase the device cost 

and/or weight considerably. The universal joint placement was then chosen to maximize 

the ratio of vertical translation to total robot height while ensuring lead screw shear to be 

below the yield strength limit with a safety factor of 2, from a 1000N vertical load and 

full-torque lead screw actuation, as analyzed through Finite Element Analysis. The 

designed structure and associative stress analysis were displayed in Figure 8a and b, 

respectively. To minimize the height of the robot further and keep the lead screw motors 

and gearing concealed from the patient the platform was then embedded into the drive 

base. A lead screw length sufficient for vertical translation was selected and the patient 

can optimally use the robot from a meter-high seated position. From the robot capabilities 

presented in Table 4, this robot exceeds the initial design specifications for providing 

proper foot manipulation and actuation for the predefined rehabilitation tasks. 
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Figure 8: a) Three-DOF Parallel Platform; b) Finite Element Analysis of the Linear 

Actuation Lead Screw 

Table 4: Translation & Rotation Robot Specifications 

 

Direction of Motion/Force 

X, Y Z       

Range of 
Motion 

  200    60° 45° 360° 

Speed 816      373      21.4 °/s* 21.4 °/s* 240.8 °/s 

Maximum 
Force 

498 N 436 N 16.84 Nm* 16.84 Nm* 125.6 Nm 

 
 * values calculated from neutral platform position 

2.2 Mathematical Modeling 

To assist patients in moving their lower-limb along a prescribed path, an admittance 

control scheme was developed to control the velocity of the robot, requiring the current 

and desired position and orientation of the end effector, as well as patient forces and 

torques, as inputs. To control the robot in the velocity domain, the robot’s inverse 

Jacobian was derived. To determine the current position of the robot end effector, an 
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iterative method was implemented to solve the forward kinematics. As the motion of the 

omni-directional base and three-DOF platform are decoupled, in static analysis, the 

models for each are discussed separately.  

 

2.2.1 Inverse Kinematic Model 

The inverse kinematic model of the robot was derived by adapting the model of an 

omni-directional drive system [63] and a three-DOF parallel platform [64]. The base and 

platform coordinate systems are shown in Figure 9a and b. The yellow dots in Figure 9b 

signify the centre of rotation (COR) of the base universal joints. The intersection of the 

axis connecting these two points and the YZ plane of the base gives the vertical height of 

the base coordinate system. The vertical height of the platform coordinate system is 

defined by the COR of the central universal joint. Assuming an ideal case where all 

wheels maintain full contact with the ground, the frictional coefficient between the 

wheels and the ground is sufficient to eliminate wheel slippage, and all wheels move 

synchronously so the least-squares solution of the kinematics is the exact solution, the 

four-wheel omni-directional drive has a linear relationship between the angular position 

of each wheel,               and the translational and rotational components of the robot 

base,                   . The angular position of each wheel is a real number (i.e. not 

restrained between 0 and 360
0
), and these assumptions stated above are used throughout 

system modeling and evaluation. The translational relationship is inversely proportional 

to the wheel radius,    and the rotational component is proportional to the ratio of the 

base radius to wheel radius,  . In order to maintain isotropic manipulability in the X and 

Y direction the steering angle of each wheel is fixed and the system becomes redundantly 

actuated. Given the desired                   of the robot the desired angular position of 

each motor can be calculated as in Eq. 1.  
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Figure 9: Robot Coordinate System: a) A top view of the robot, showing the joint-

space parameters of the drive base and the platform coordinate system “P”. b) A 

back view of the robot, showing the platform link parameters, and the coordinate 

system of the drive base “B” and platform. 

For parallel mechanisms, as opposed to serial manipulators, the inverse kinematics 

model is more straightforward and the kinematics model is usually solved iteratively 

[65]. The inverse kinematics model is solved using vector analysis to find the vector of 

link i,      , from the base universal joint COR to the platform universal joint COR, then 

taking the norm of the resultant vector,       . The ratio of lead screw pitch to gear ratio, 

  , then converts the link length to the angular position of each motor.     is the vector 

from the base frame to the platform frame and      is the vector from the base frame to the 

universal joint COR of link i attached to the base, with respect to the base coordinate 

system.      is the vector from the platform frame to the universal joint COR of link   

attached to the platform, with respect to the platform coordinate system.     is the 

rotation matrix transforming the platform coordinate system to the base coordinate 

system, requiring  the orientations   and  .  

The calculation for the vector       is given in Eq. 2, and the rotation matrix is defined in 
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Eq. 3.  

                         

      

 β  β γ  β γ

  γ   γ

  β  β γ  β γ

  

Given the desired platform parameters    ,  , and   in relation to the base frame, the 

desired angular position of each motor,          can be obtained by calculating the norm 

of each link vector and scaling by   , as in Eq. 4. In the designed link configuration, the 

link length of the central link can be simplified to    , as      and       are zero, which added 

to the vertical accuracy of the system as a single actuator fully defines the vertical DOF.  

  

  

  

  

     

                     

                     

                     

     

  

2.2.2 Inverse Jacobian Formulation 

In order to control the velocity of the robot, which is necessary for flexibility exercises 

as well as rehabilitative therapy using admittance control, the inverse Jacobian is 

required. The omni-directional drive has a linear relationship between the position of the 

drive base and the orientation of the wheels, so the desired wheel velocities 

                can be obtained directly from the translational and rotational velocities 

      ,       ,         by taking the time-derivative of the inverse kinematics.   

  



 
 
 
 
 
  
 

  
 

  
 

  
  
 
 
 
 

  

      
       

 
    

     
 

 
 

   
      

      

  

    

By taking the pseudo-inverse of the inverse Jacobian the least squares approximation of 

the robot Jacobian can be obtained.  

To calculate the length of each link in the parallel platform, first the Cartesian 

components of each link length vector (   ,    ,    ) are calculated from Eq. 6, where 

   ,    ,      and    ,    ,      are the Cartesian components of the vectors from platform 
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and base origins to their respective COR. The length of each link is then calculated by 

taking the norm of the link length vector as in Eq. 7. The inverse Jacobian of the parallel 

platform is then obtained by using the chain rule to take the time-derivative of each link 

length as in Eq. 8.   

  

   

   

   

    

 
 
  

   

          
      

           
   

   
   
   

   

   

   

   

   



           
      

      
    


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   

By taking the partial derivatives of each Cartesian component of each link and 

multiplying the link velocity by the scaling factor    the relationship between the platform 

velocities           and each motor velocity     is obtained, and the result is displayed in 

Eq. 9, with   ,   ,   ,   ,    as intermediate joint variables. 
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From the intermediate variables in Eq. 9, it can be seen that    and   must be obtained 

in order to calculate the inverse Jacobian of the parallel platform. However, there is not a 

direct method for calculating   and   as the platform orientation has many solutions for 

the same set of link lengths. As discussed in the following section, a numerical method 

was used to iteratively find the nearest   and   solution, and the link orientations in the 

solution were assessed for validity.  
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3.2.3 Forward Kinematics 

Due to the difficulty in determining end effector orientation, Tsai et al. [66] developed 

two methods for forward kinematic analysis of a specific three-DOF platform, and Li et 

al. [67] extended this theory for generalized three-DOF platforms. The first method in 

[66] employed polynomial transformation, elimination and analysis of multiple solutions, 

while the second method employed an iterative approach that was more computationally 

efficient. Since only one exact solution gives a feasible orientation of each link, as 

explained by the six rules outlined in [66], the solution from the iterative method can be 

validated before being used for robot control calculations. As the forward kinematics are 

required for real-time control of this lower-limb robot, the latter method was chosen. In 

the current implementation, a Jacobi-based algorithm was selected for iteratively solving 

the forward kinematics from the inverse kinematics,     , and the algorithm is shown in 

Figure 10. This algorithm was selected because the Jacobian could be readily obtained by 

inversion of the inverse Jacobian, and the previous   and   values would be good 

approximations as the sampling rate was high. Using this method, a maximum of five 

iterations was used; however, the convergence to a value within 0.1% was reached within 

the first three iterations throughout velocity profile tracking and control experimentation. 

Using Matlab/Simulink software on a desktop computer (Intel® Core™ i7 4790 CPU 

3.60GHz processor) the time per iteration was 1ms.   
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Figure 10: Algorithm used for solving the platform forward kinematics. 

2.3 Custom Designed Six-DOF Force Sensor 

2.3.1 Sensor Design 

To assist patients in moving their lower-limb along a desired trajectory, it is important 

to measure the force and torque applied by the patient’s foot on the robot. For this 

purpose, a custom six-DOF force/torque sensor comprised of sixteen one-DOF high load 

capacity resistive force sensors (Tekscan
®

, FlexiForce A201) was designed and 

developed, and the pressure sensor specifications are shown in Figure 11. These sensors 

were selected because they had a linear relationship between electrical conductance and 

force applied, as shown in Figure 12, and were of low cost in comparison to force or 

strain sensing alternatives. The design minimized footplate inertia and robot height, 

provided high-force/torque measurement and wireless capability, and was of much lower 

cost than commercially available force/torque sensors of comparable maximum loading, 

such as the ATI Delta-NET shown in Table 5. The one-DOF sensors were fixed to the 

outer aluminum walls, and rubber cylinders (McMasterCarr, 60A Durometer) were 

placed between the sensors and the footplate to direct the force uniformly to the sensors 
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and add pre-stress. The sensors were positioned in a symmetric configuration, as shown 

in Figure 13, to cancel loading and unloading non-linearity, allowing the six-DOF sensor 

to maintain its performance without a decoupling matrix, under simultaneous loading in 

multiple directions. Figure 13 also shows the coordinate frame of the six-DOF sensor, 

which is constant in relation to the patient’s foot. As the orientation of the patient’s foot 

changes in relation to the robot base frame (e.g. during motion therapy), the force can be 

transformed from the coordinate frame of the foot to the coordinate frame of the robot 

base using the platform   and   values.   

 

Figure 11: Tekscan FlexiForce Sensor Specifications. Image Courtesy of Tekscan 

https://www.tekscan.com/products-solutions/force-sensors/a201 
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Figure 12: Tekscan Pressure Sensor Calibration Curves, from FlexiForce Datasheet 

 

Figure 13: Six-DOF force/torque sensor displaying the location of the installed 

pressure sensors. Sensors 2, 9, 12 & 15 are located between the footplate and the 

platform base plate. The other sensors are placed between the side panels and the 

footplate. The Z axis comes out of the page and intersects the X and Y axes. 
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2.3.2 Sensor Optimization 

Theoretically this force sensing structure should provide six-DOF force readings using 

just six pressure sensors placed at specific locations, but through past experimentation 

with the Tekscan sensor, and other pressure sensing pads of lower force ranges, it was 

found that sensor noise, drift and hysteresis may be of concern [68]. To accommodate 

these sensor deficiencies, ten more sensors we added to the design and ordered. Four of 

the ordered sensors were defective; however, this did not significantly affect the 

performance of the force-torque sensor as the twelve remaining sensors were installed to 

maintain symmetry, and the vertical preload was sufficient. Using this fabricated system, 

the six-DOF force/torque that the patient exerted on the footplate was calculated from the 

linear calibration matrix (6x6), conversion matrix (6x16), and pressure sensor vector 

(16x1) as shown in Eq. 10. 
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 



In sensor design, it is important to analyze the condition number of the conversion 

(compliance) matrix from the sensor values to the force/torque values as the 2-norm 

condition number gives a bound on the sensitivity of the force/torque values calculated in 
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relation to the error in each sensor [69, 70, 71, 72]. More specifically, the maximum 

sensor error multiplied by the condition number (or the reciprocal of the condition 

number if less than 1) gives a bound of system error that can be created by sensor errors. 

In some cases the system may operate in an error region much smaller than the bound. 

Scaling can reduce the condition number further but should be done with knowledge of 

the scaling relation between forces and torques for the specific application, otherwise the 

scaling will be negated through calculations using the force and torque information (e.g. 

in robot control). The best possible condition number for a system is 1, meaning that the 

scaling of the sensor readings to the force/torque calculated is equal in all directions. By 

optimizing the orientation of the sensors to decouple X, Y, and Z forces, and developing 

custom circuitry that measured the pressure sensor conductance, the conversion matrix 

condition number was 1.414 for force sensing, which is very close to optimal. Further 

iterative optimization of the distance of each sensor from the neutral ankle position gave 

similar force and torque scaling and a low theoretical condition number for the system of 

2.0. The scaling units for force and torque used to calculate this condition number are N 

and (Nm/10) since the amount of effort a healthy individual must exert to produce a 

100N force is similar to the amount of effort to produce a 10Nm torque. It is assumed, 

although not validated, that this effort comparison is similar for stroke patients. After 

calibration of the system as presented in section 3.3.3 below, the overall condition 

number was 2.6, which was much closer to one than other six-DOF force/torque sensors 

[73]. Possible causes for the change in the compliance matrix (and the associate condition 

number) between the experimental setup and theoretical calculations were the unequal 

responses to force between sensors and unequal preloading of between sensors. 

2.3.3 Sensor Calibration and Evaluation 

The calibration setup in Figure 14 used a commercial six-DOF force/torque sensor 

(ATI Gamma SI-32-2.5), as the gold standard from which to calibrate the newly designed 

sensor using human forces applied through a handle. The Gamma sensor was positioned 

at a height where the tool end was at the same height as the median ankle height so the 

torque read from the Gamma sensor would be the same as those applied by a patients 

ankle torque centre. The commercial sensor’s resolution and sampling frequency was 
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suitable for calibrating the custom sensor up to the commercial sensor’s force limit, as 

shown in Table 7. The Gamma sensor was connected to the host computer by a PCI-6224 

DAQ card and was read by a MATLAB/Simulink/Quarc at a 0.25kHz rate. The pressure 

sensor values were converted to digital signals within the microcontroller and output 

through UART to Serial USB communication to the host computer. A C++ UDP code 

was then implemented to send the serial values into the same MATLAB/Simulink/Quarc 

program. The one-way communication delay was 4ms for the custom sensor and is why a 

0.25kHz update rate was chosen. By applying approximately-sinusoidal forces through 

the handle, the custom sensor was calibrated and a linear relationship was used to fit the 

one-DOF sensor values captured by the robot’s microprocessor multiplied by the 

conversion matrix to the ATI force/torque values. Both sensors were biased before 

starting experiments each day, and the custom sensor did not need to be recalibrated even 

after months of extensive testing. Figure 15a through f show the relationship between the 

sensor values and the Gamma force readings used to make the linear calibration matrix. 

Some sensors show a decreasing trend of force/torque to pressure value due to the way 

the signals were communicated from the microcontroller to the host, so the sign of these 

slopes was flipped before the calibration matrix. Calibration sign flips did not affect the 

condition number of the sensor so this was a valid solution. From the calibration slopes 

shown divided by the scaling factor in the y-axis label the calibration matrix used during 

sensor and robot validation was calculated and is shown in Eq. 11. From the graphs 

below the sensor shows repeatability over multiple loading and unloading cycles, and 

follows the actual force measured linearly. The X and Y forces and α torque show the 

greatest hysteresis and backlash of the six-DOF, in the range of 1 N and 0.05 N.m. This is 

mostly due to difficulties in accurately tuning the pre-stress in the X and Y directions, 

and the response time of the thermosetting elastomer used between the sensor and the 

footplate. This creates larger inaccuracy at higher frequencies of force application and 

could be improved through further design iterations, such as using an easier to adjust pre-

stress technique and switching to more linear elastic material such as the silicone rubber 

Rebound 25 (discussed in Chapter 3). However, the forces and torques that are assumed 

to be applied to the robot during usual therapy routines can be 100 times greater so these 

resolutions should be acceptable. A summary of the results of the custom developed six-
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DOF force torque sensor are shown in Table 6, including the prototype material cost of 

the pressure sensors ($230), material ($100), and custom sensing circuitry ($70). 

 

 

Figure 14: Custom Force Sensor Calibration Setup: A: Handle; B: ATI Gamma 

Force/Torque Sensor; C: Custom Force/Torque Sensor 
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Figure 15: Relation between the pressure sensor values multiplied by the conversion 

matrix and the readings from the Gamma Force/Torque sensor in a) X; b) Y; c) Z; 

d) α; e) β; f) γ; and the associated line of best fit used for the calibration matrix.  

            
           

 

 
 
 
 
 
 
 
 
 
 
 
           

            

            

            

            

             
 
 
 
 
 
 
 
 
 
 

  (11)    

After calibration, the handle was manipulated in each direction separately at varying 

frequencies and the sensor showed a mean accuracy within 2% of the ATI readings at 

frequencies below 0.5Hz, and was able to follow the force profiles at frequencies under 
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2Hz. This data was used to develop the resolution characteristics in Table 7.  Figure 16 

and 17 show the force profile of the ATI and custom sensor in the X and γ directions, 

respectively, during experimentation. Figure 18 shows the error magnitude in the other 

four DOF as force/torque amplitudes and profiles similar to those in the X and γ 

directions were applied. The handle was then manipulated along non-specific trajectories 

to provide force and torque in many DOF at once. The sensor maintained its performance 

with a mean error of 3% of the ATI readings for all DOF.  As validated by these results, 

this custom force sensor provides good accuracy and responds quickly. It is expected that 

the sensor readings will be suitable for controlling the robot to provide early-stage 

assisted movement therapy to stroke patients. 

Table 5: ATI Delta-NET Force/Torque Sensor Specifications, Sensor Comparison 

 

Direction of Force/Torque 

Fx, Fy Fz Tx, Ty Tz 

Maximum Load 330 N 495 N 15 Nm 15 Nm 

Resolution 1/32 N 1/16 N 1/528 Nm 1/528 Nm 

Cost $7900 

Table 6: Custom Force/Torque Sensor Specifications 

 

Direction of Force/Torque 

Fx, Fy Fz Tx, Ty Tz 

Maximum Load 222 N 444 N 25 Nm 50 Nm 

Resolution 1/2 N 1/2 N 1/20Nm 1/10 Nm 

Cost $400 
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Table 7: ATI Gamma Force/Torque Sensor Specifications, Used for Calibration 

 

Direction of Force/Torque 

Fx, Fy Fz Tx, Ty Tz 

Maximum Load 32 N 100 N 2.5 Nm 2.5 Nm 

Resolution 1/160N 1/80N 1/2000Nm 1/2000Nm 

 

 

Figure 16: ATI and custom sensor force readings when the user applied forces in the 

X direction. 
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Figure 17: ATI and custom sensor torque readings when the user applied torque 

about γ. 

 

Figure 18: Magnitude of error in force measurement for forces and torques applied 

in the    ,    and   directions individually.  

2.4 Electrical Design 

The robot was designed to be used in the early recovery of stroke patients for in-home 

environments. The main motion control issues these patients have are related to range of 

motion, initiating motion, coordinating joint, and to a lesser extent spasticity. In 

designing a robot that is usable by stroke survivors the device had to be portable and 
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compact, communicate wirelessly with off-board devices as many patients have very 

limited hand motion for plugging in devices, and operate at a fast enough frequency to 

gain accurate force and velocity information and control the robot to move smoothly and 

perform well in admittance control mode.  

3.4.1 Overview of Communication Flow 

To accommodate these specifications a distributed network of computing devices was 

used to process sensor signals and provide real-time control at a frequency that met the 

controller pulse-width modulation frequency (200Hz) as shown in Figure 19. To define a 

desired trajectory profile or update the desired trajectory in real-time various joysticks 

can be used. In this setup the Quanser HD
2 

six-DOF robot was used as the joystick as it 

was easily backdrivable and encompassed the DOF of the rehabilitation robot designed. 

The joystick communicated with a host computer which could be stationed at the 

therapist’s office and was not needed to be easily transportable. The host computer then 

performed admittance control mathematical operations and sent the resulting velocity 

commands to the mobile computer (Raspberry PI) mounted to the robot through User 

Datagram Protocol (UDP). The Raspberry PI was connected to the wireless network 

through a wireless to USB adapter (Edimax EW7811UN) for receiving these commands 

and sending position, velocity, patient force and patient torque sensor information back to 

the host computer. As the Raspberry Pi is a standalone computer future developments of 

coding architecture could see implementing the control algorithm on the Raspberry Pi, 

and receiving only velocity profiles or trajectories from the host computer wirelessly for 

a stand-alone solution. To capture and process sensor data, control the robot velocity, and 

perform software safety limits a compact control board was designed, manufactured and 

programmed in C. The control board communicated via Universal Asynchronous 

Receiver/Transmitter (UART) to serial USB with the Raspberry PI and provided the 

option to directly connect to a host computer easily for testing the system and debugging 

in at-home environments. Also, an SPI communication interface was built into the 

custom circuit board for high frequency synchronous communication with the Raspberry 

PI. The asynchronous serial communication method did create a bottleneck in data 

transfer due to its low communication rate and delay with the host computer and 
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Raspberry PI due to the maximum recommended baud rate of 38400bps in QT software 

used to transfer serial data to MATLAB/Simulink/Quarc and in the Raspberry PI’s Linux 

operating system as well. In all, the wireless and compact communication platform 

developed met the system specifications, provided easy interfacing to program each 

computing device, and added functionality for stand-alone therapy and faster more-

reliable communication.  

 

Figure 19: Communication Flow Diagram. 

2.4.1 Custom Circuitry Design & Module Implementation 

In creating a stand-alone at-home mobile therapy robot on-board distributed processing 

was necessary because of possible wireless communication delays to a host computer, 

and size and weight constraints within the robot. Mobile computing devices provide the 

flexibility and power to run software programs that make updating programs easier and 

calculating matrices more efficient; however their lack of high-frequency I/O, specialized 

registers, and analog circuitry affect their performance in sensor processing and motor 

control. For these purposes it was necessary to design and program compact on-board 
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circuitry using a high-performance microcontroller and other specialized microchips to 

perform linearized analog signal capture, signal processing of position, velocity and 

pressure data, and low-level motor control. Interrupt-generated software architecture was 

used to create a high-frequency processing system that was robust to system stalls or 

crashes as no internal programming loops were necessary. A list of registers required was 

generated from the tasks described below and were used to select the microcontroller. 

The schematics used to design the final circuit board were produced using CadSoft Eagle 

PCB Design Software and are displayed in Appendix A. 

Sensor Capture & Signal Processing 

The relation between the FlexiForce pressure sensor conductance and the force applied 

to the sensors was linearly related, so by creating a circuit that measured the sensor 

conductance the force sensing system condition number would remain low and the 

conversion matrix would remain linear. Within the FlexiForce datasheet [74] a simple 

circuit diagram was displayed showing an inverting op-amp configuration to perform this 

conductance measurement. However, this system required excess circuitry to apply 

negative voltages to the pressure. Instead, a modified circuit for using this sensor at the 

full microcontroller ADC resolution was design. Minimal components were used in the 

circuit design, which incorporated a voltage regulator (LinearTechnology, LT3021ES) 

and an operational amplifier (STMicroelectronics, TSV914A). The output voltage,     , 

was linearly related to the sensor conductance (
 

    
  as shown by Eq. 12, with    as the 

feedback resistance and      as the regulator’s output voltage. A simplified version of the 

circuit is shown in Figure 20, for sensing a linear change in voltage based on the force 

applied to the sensor. Connecting the Voltage Reference Low pin of the microcontroller 

to the regulator voltage (0.4V) gives maximum resolution for 50 lb forces when 

Rs=1MΩ, and Rs can be swapped with a potentiometer to tune this resolution.  

             
  

    
       (12) 
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Figure 20: Simplified Operational Amplifier Circuit. 

The analog pressure sensor signals showed significant noise and hysteresis at the 5kHz 

sampling rate that each sensor was sampled by the microcontroller ADC converter, and 

sufficient cancellation of noise was seen using a 100Hz low-pass filter. This low 

frequency filter affected the dynamic response of the sensor, but significantly helped in 

signal stabilization which kept the robot motion smooth during admittance controlled 

therapy. One analog input channel was required per pressure sensor for a total of sixteen 

channels and an interrupt was generated at the end of each conversion to signal the 

automatic conversion of the next channel to begin. 

To detect each rising or falling edge from the quadrature encoders a pull-up resistor 

connected to a 5V regulator was applied to the A, B and I encoding channels. These 

output signals were then connected to the input capture channels on the microcontroller 

to give interrupt driven position calculation. Since the encoders were placed on the wheel 

side of the gearboxes any backlash from the low-cost gearboxes was detected and could 

be used for more accurate position and velocity control. As well, the encoder sampling 

rate necessary was decreased proportionally to the gearbox ratio. Using this interrupt 

based approach the position values were directly accessible for velocity calculation and 

the only criteria was that the microcontroller clock frequency had to be faster than the 

necessary encoder frequency of 2kHz as shown in Eq. 13, where                   are 

the encoder frequency in Hz, encoder counts per revolution, maximum velocity and 

wheel diameter, respectively.  
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                         (13) 

An external oscillator was added to the circuit to give a 40MHz clock frequency to 

easily meet this condition. 

From a position control standpoint the encoder placement was ideal as the gearbox 

backlash was large (3
0
), but did create some difficulties in velocity control as the 

backlash, friction and inertia non-linearity of the gearbox, and a reduction in resolution 

by the gearbox resolution had an effect on the simplicity of the motor velocity control. To 

test the wheel encoders’ ability to read the wheel velocity an actuator was swept through 

an open-loop velocity sequence. The encoder position was sampled at a high frequency 

(20 kHz) and an observer [75] was used to calculate the wheel velocity. Initially the 

observer calculation gave very noisy results as shown in Figure 21a, but through careful 

tuning of the system poles and the addition of a first-order low pass filter the velocity 

calculated became much smoother as shown in Figure 21b.  Eq. 14 and 15 show the 

observer and low pass filter calculations implemented in C to give a smooth velocity 

output, and Figure 22 shows the low-pass filter frequency response. The sampling 

frequency of the encoder position, current wheel position, current velocity estimate, 

previous velocity estimate, current update parameter, previous update parameter, filtered 

average velocity, and previous filtered average velocity average are denoted 

                           
         

, respectively. The tunable parameters are the pole, 

 , the error estimate,  , and the low-pass gain,    . Values of 25, 0.4, and 0.8, 

respectively, were chosen from observational testing to give a smooth response with a 

0.1sec time-lag. The low-pass filter was later substituted by a Kalman filter as it attained 

a similar smoothness with less phase lag. The Kalman filter implemented is shown in Eq. 

16, where continuing from the previous notation, the Kalman Gain, Prediction Error are 

denoted     and the tunable parameters are the system noise,   and the measurement 

noise,  .  In controlling the linear actuators the resolution of the encoders to vertical 

height and angular resolution was much higher so only a properly tuned observer was 

required to calculate smooth motion accurately.  
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Figure 21: Actuator velocity signal a) before and b) after observer tuning. 

 

Figure 22: Frequency response of low-pass filter implemented in C. 

   

  
                      

       
     (14) 
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Motor Control 

To meet the robot power and cost specifications and isolate high current from the 

control circuit a Talon SR speed controller from Cross The Road Electronics was 

selected. Since lower voltage devices (under 30V) are easier to gain CSA approval for the 

robot was designed for 12V operation and 85A of peak current was specified. The 

controller specified met these capabilities and its PWM communication method was ideal 

for interfacing with the output compare module of a microcontroller for automatic duty-

cycle implementation through digital output pins. The custom circuit would relay PWM 

commands directly to the low current (<1mA) PWM interface on the controller and the 

controller would regulate the voltage in relation to the input battery voltage. As the motor 

input voltage is proportional to speed, voltage regulation was suitable for admittance 

control.   

A PID controller was then used with encoder velocity feedback to accurately control 

the actuator velocity in the range of speeds required for therapy. The battery voltage was 

also required as input to the controller as the speed controller regulated the voltage in 

relation to the input voltage. A compact, lightweight, high current draw, and high storage 

capacity lithium polymer battery (ZIPPY Traxxas compatible 6400mAh 3S1P 30C Lipo 

Pack) was selected to power the robot, did not cause significant voltage drops during 

operation and allowed the system to run for an hour of consistent use before recharging. 

As opposed to purchasing expensive and bulky circuitry to regulate the high current input 

voltage, a simple low-current voltage divider provided high resolution battery voltage 

measurement by the microcontroller ADC. Due to the effects of motor cogging (400mA 

required starting torque) as well as gearbox inertia and friction, and encoder resolution 

the initial PID controller implemented required was very sensitive to the gain values. 

Also a very large integral term was needed to track the current velocity and the derivative 

term to increase the frequency response caused instability. For this reason, a simple 

actuator velocity to duty cycle model was developed for feed-forward control of the 

PWM duty cycle through experimental modeling. This model significantly benefitted the 

velocity tracking controller, especially at low speeds (<5 rpm at the gearbox output shaft) 

and considerably reduced the gain values of the PID controller that followed. The PID 
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controller was then tuned experimentally to give accurate velocity tracking in free space 

and under applied loads and the resulting control structure is shown in Figure 23. The 

system response was analyzed and Figure 24 and 25 show the tracking performance for a 

0.1Hz sine wave at a 60rpm output shaft amplitude, and the step response for a 30rpm 

amplitude. The under-damped nature of the step response was necessary to provide good 

control performance at higher-frequencies as high current pulses were required to 

overcome motor cogging and the gearbox inertia then maintained the higher speed. 

Through a more sophisticated velocity to duty cycle model this step response could be 

improved in the future, but the current system functioned well enough for in-lab 

experimentation. 

 

Figure 23: Motor Velocity Tracking Control Method 

 

Figure 24: Motor Velocity Tracking Control Performance 
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Figure 25: Motor Velocity Tracking Control Step Response 

This feed-forward control strategy was then implemented for the upper platform as well 

and performed better than the wheel velocity tracking control as the lead screw friction 

was less than the gearbox friction and the encoder resolution was much higher. Safety 

limits on maximum velocity and maximum velocity error were added to the control 

circuit to stop the robot automatically in potential unpredicted situations. An on-off 

switch, a circuit breaker, and additional LEDs were added to the circuit and robot so 

users and developers could easily shut-down the robot in case of emergency and to save 

power, and monitor the system from afar. Accelerometer circuitry was also implemented 

and communicated to the microcontroller through I
2
C communication for monitoring the 

global acceleration, velocity and position of the robot for safety and to potentially 

account for wheel slippage in odometry measurements.  

Communication 

Distributed processing was used to acquire sensor data and send motor commands at a 

high frequency. The post processed data then needed to be transferred between devices so 

a combination of serial, UART, SPI, Bluetooth, I
2
C and wireless methods were used. To 

transfer data between on-board computing devices the circuit board included UART to 

serial USB communication for easy setup, with SPI functionality for higher frequency 

data transfer through unallocated test pins or available PWM or encoder ports. Bluetooth 
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communication was added for communication with mobile devices, and in areas with 

weak wireless signals. I
2
C was then used to communicate with the in-circuit 

accelerometer for global reference frame information.  

Microcontroller Selection 

The modules listed above required a select microcontroller with high functionality and 

detailed specifications as listed in Table 8. To meet these specifications, and because the 

Microchip PIC family had a large selection of devices the dsPIC33EP512MU814 was 

chosen [76]. 

Table 8: Required Specifications for Microcontroller 

Processing Speed 40MHz, 10MIPS 

Input Capture 14 

Output Compare 7 

ADC 17 

Timers 2 @ 32-bit 

Communication 2-UART, SPI, I2C 

A chart listing the circuit board components selected and the associative cost of the 

board is presented in Appendix B. 

Circuit Board Design 

From the schematic the board layout was created using CadSoft Eagle PCB Design 

Software, with the specifications that the board have a maximum of 4in by 4in for 

compactness on the robot, and meet the further specifications of MyRO PCB’s standard 

board designs for easy manufacture and cost-savings. From these specifications the PCB 

board in Figure 26 was designed and manufactured. The PCB was then hand soldered in-

house and the microcontroller was programmed for the signal processing, motor control 

and communication needs specified above. Figure 27 shows the final circuit board 

product, labeled to show as summary its functionality. 
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Figure 26: PCB design for Manufacturing and Assembly 

 

Figure 27: Signal Processing & Control Board 
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2.5 Robot Control 

The rehabilitative tasks stated previously require the robot to assist patients in moving 

along desired trajectories. To analyze the robot’s functionality, a free-space trajectory 

controller was implemented to evaluate the robot’s tracking performance, and an 

admittance controller was developed to validate the robot’s ability to perform motion 

assistance. For each of these evaluations an optical tracking system (Micron Tracker 2, 

Claron Technology) was used to validate the position and orientation of the platform 

using the experimental setup shown in Figure 28. 

 

Figure 28: Experimental Setup: A: Optical Tracker; B: Game Interface; C: Micron 

Tracker Display; E: Robot 
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2.5.1 Trajectory Control 

To evaluate the robot’s ability to track planar motion the robot drive base was 

commanded to follow a 0.1Hz, 140   amplitude sinusoidal trajectory in both the   and 

  directions for 50 seconds, forming five circular trajectories. As shown in Figure 29a, 

the robot’s mean error in tracking was less than 1   per rotation and the accumulated 

maximum error was 4   due to wheel slippage. The robot was then commanded to 

follow a 0.1Hz sinusoidal trajectory along all rotation axes, and the results in Figure 29b 

show a mean error of 0.2°.  

  

Figure 29: The trajectory of the robot in a) X and Y when commanded to track a 

circular trajectory; and b)    , and   when each was commanded to follow a 

sinusoidal trajectory 

The host computer was then connected to a Quanser HD
2
 haptics-enabled device, and 

the robot was commanded to follow joystick directed movement as shown in Figure 30. 

The robot showed good qualitative results in tracking performance but lagged the joystick 

due to a low communication rate between the computer and robot. This experiment was a 

proof of concept that the robot could be used by a therapist to control the motion of a 

patient’s limb. This would reduce the therapist’s fatigue during procedures and allow 

them to attain quantitative data on patient performance during the task from the footplate 

force/torque sensor. As an extension to this method of therapy, the patient could use the 
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joystick with his or her unaffected arm or leg to train their affected limb. This may create 

a more natural experience for the patient, and allow the patient to recover proprioceptive 

and neuromuscular connections faster or more completely as was recently demonstrated 

in [77]. Within this real-time trajectory modification framework there are still many 

robotics and medical questions to be explored and is provided here as a motivation to 

future work. For individuals without neurological injury, there is some evidence to 

suggest that upper limb activities can enhance lower-limb muscle activity during 

locomotor-like tasks. In participants with stroke, however, despite a correlation between 

paretic upper limb function and independent ambulation, there is insufficient data 

indicating that differences in upper limb activity alter lower-limb activity and/or recovery 

[78]. 

 

Figure 30: Real-time Trajectory Control Setup using an HD
2
 haptic device and the 

six-DOF lower-limb rehabilitation robot.   
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2.5.2 Admittance Control 

In lower-limb rehabilitation robots, the forces and torques required to provide motion 

assistance to stroke patients is large. To meet these requirements high gearing is used 

which introduces non-backdrivability into the system and creates a non-linear 

relationship between input current and output torque. Without the use of torque sensors it 

is difficult to control the torque applied to the system, while using encoder feedback it is 

more straightforward to control the motor velocity. Also, as these systems are not easily 

backdrivable, the patient cannot dictate the robot velocity. By adding a patient force 

sensor to the system an admittance controller could be developed, with the added benefit 

that if the patient’s foot releases from the robot or the robot slides the robot would be less 

likely to go unstable than if an impedance controller was use. 

A zero-order admittance controller was developed to control the robot velocity     based 

on the force applied by the patient,    , the deviation of the robot trajectory        from the 

desired trajectory       , and gains,        as in Eq. 17, to validate the robot’s 

performance in assisting movement. 

                                  

For evaluation, a healthy individual was asked to place his foot on the robot and 

attempt to track the desired position portrayed by the red circle on the computer display 

in Figure 28. The desired trajectory was along the   axis, and to test the performance of 

the system the individual applied deviating forces in the X direction as shown in Figure 

31a. As the deviation from the desired trajectory grew, the robot velocity was modulated 

to apply steering forces toward the desired trajectory. In the next task the individual 

applied torques about   and the robot applied restraining forces to keep a neutral foot 

angle as shown in Figure 31b.  
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Figure 31: a) The force and motion of the individual’s foot in the X and Y direction 

during assisted motion along Y; b) the force and rotation of the ankle about Y as the 

robot assisted in maintaining a neutral ankle position. 

2.6 Summary of Six-DOF Rehabilitation System 

To provide assisted lower-limb rehabilitation to post-stroke patients a safe and portable 

six-DOF robot has been designed that encompasses the power and workspace of the 

lower-limb. A low-cost force/torque sensor was designed and utilized in controlling the 

robot’s admittance for a total robot cost of $3,536, which is summarized in Appendix B. 

Experimental results show the reliability of this device in performing motion assistance to 

a healthy individual, and extensive testing will be completed in the future on healthy 

individuals with varying physical characteristics, and on post-stroke patients with a 

specific level of impairment. 
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Chapter 3  

3 Flexible Mobile Robotic System for In-Home Stroke 
Rehabilitation Motion Assistance and Assessment  

From the design, implementation and validation of the six-DOF system presented in 

Chapter 2 technical and experiential knowledge was gained, from which an improved 

system can be developed that is ready for clinical testing, is useful for in-home therapy 

and has potential for commercialization. The design, mathematical models and control 

strategy of the improved system are presented here in Chapter 3, and the focus of this 

system is to provide stroke survivors with neuromuscular rehabilitation therapy in their 

home within the first six months following a stroke. As stated in Chapter 1, the 

regeneration of neuromuscular pathways occurs mostly in the first six-months and the 

time to initiation of rehabilitation therapy and participation rate in daily therapy play a 

large role in the patient’s final recovery. To target this time-period after stroke a device 

that is inherently safe, easy-to-use and allows patients to exercise from a safe posture is 

required. It is less important to be oriented in a task-like position during this stage in 

recovery as dendrite remodeling and synaptogenesis are the two main mediums for 

recovery in this time-period, as opposed to muscle memory or neuroplasticity. As such, 

devices that patients could interact with while seated would have value over gait-training 

devices, and by reducing system complexity the cost could be reduced to affordable 

levels and the system could be made less bulky for better performance during assistance 

tasks.   

In designing a useful and commercializable solution for lower-limb therapy, 

rehabilitation systems that have been proven to be successful for patient recovery and 

commercialization were analyzed to discover prevailing themes. In the past many lower-

limb solutions have focused on complexity over modularity [80], [81], but their success 

in showing recovery results has been limited. Modularity, on the other hand, provides 

either bulk movement for heavy or muscular limb segments, or dexterous therapy for the 

ankle, as opposed to one complex system that provides therapy for all joints. This allows 

the weight and back-driving torque of ankle modules to be significantly reduced due to 
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their lesser workspace and power requirements, and provides better performance in 

impedance controlled therapy. 

As patients generally need to dedicate their focus to one or a few movements at a time 

to recover effectively not all modules need to be incorporated in all therapy regimens, so 

the modular design can provide more affordable and portable therapy. Presently many 

groups have begun to take a modularity approach, developing successful ankle therapy 

systems [6], [43], [82], [83], [84], [85]. The next step for providing robotic lower-limb 

therapy is to develop a system for bulk movement of the knee and/or hip.  

To provide a solution to this need, a novel mobile omni-directional drive system was 

developed, following from the advantages of such a system explained in Chapter 2, for 

the motions discussed in Section 2.1. A novel joint flexibility and torque sensing 

coupling was designed, validated and incorporated into the system for smooth human-

robot interaction during impedance control. The mechanical and electrical design 

overcomes the limitations imposed by the robot presented in Chapter 2, reduces the 

number of actuators for a more portable and affordable solution, and incorporates an 

ergonomic foot attachment method that makes donning and doffing simple and 

comfortable. The manufactured robot is shown in Figure 32 and Figure 33. An 

impedance algorithm was selected from the literature to provide assist-as-needed control 

and the mathematical models of the robot have been derived for use with this algorithm. 

Through the design, modeling and control algorithms developed, the robot can provide 

assist-as-needed training, as well as skill assessment using the robot in a fully-passive 

declutched state, and static resistance tests to measure the amount of force the patient can 

generate.  
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Figure 32: Side View of Three-DOF Robot for In-Home Lower-Limb Rehabilitation 

 

Figure 33 Top View of Three-DOF Robot for In-Home Lower-Limb Rehabilitation 
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3.1 Mechanical Design 

 The lower-limb rehabilitation robot presented here is an affordable solution to in-home 

lower-limb rehabilitation. Building on the design methodology and lessons learned from 

designing and controlling the robot presented in Chapter 2, the novel patient-safe, 

compact, lightweight, backdrivable, affordable, and easy to assemble design in Chapter 3 

is capable of providing assist-as-needed training for specific rehabilitation tasks. 

To create an easy to use robot suitable for in-home therapy the robot needed to have 

only the DOF required for therapy and be patient-safe, compact, and lightweight. These 

features allow the robot to be used in unsupervised therapy and portable for use 

throughout a home or clinic. The actuators are fully isolated from the patient and a cover 

can be placed around the robot as shown in Figure 34 for further protection during patient 

use. An ergonomic one-size-fits-all kiteboard binding is mounted on the robot using 

quick-release screws and the patient slides their foot into the binding for use. For 

intensive exercise a single strap can be tightened to affix the patient’s foot. The mobile 

drive system mechanically limits the maximum force that can be applied to the patient as 

the wheels will slip at large forces, and a simple frame can be placed around the desired 

robot workspace if mechanical motion stops are required. To minimize the robot diameter 

to 380mm, decrease the system weight, and reduce the robot cost a three-wheel design 

was selected. Although the four-wheel design made control of linear motions simpler, the 

wheel slippage experienced due to over-constrained movement of the wheel during fast 

motion was significant, and the need for a suspension system to apply an equal pressure 

distribution across all wheels is needed which can significantly increases the chance of 

system failures, weight, and cost. A tilted wheel configuration was used to minimize the 

robot diameter further and increase the pushing force. The robot frame was then designed 

around the wheels, flexible torque sensor, motor and gearbox to minimize the length of 

each actuating mechanism and the robot height, and the mechanical and electrical layout 

is shown in Figure 35. This design allows the patient to be seated in a standard chair and 

use the robot with their foot at a comfortable height. The three-DOF mobile system 

designed minimizes robot height and weight, and is patient-safe and ergonomic for use in 

in-home therapy. 
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 In creating an affordable robot many factors need to be considered that can be assumed 

to be negligible if cost is not of great concern. An aluminum sheet metal frame with only 

1-DOF bending was selected to reduce weight and cost of manufacture while providing a 

rigid robot structure as in Chapter 2.1. The machining tolerance of 0.1mm for hole 

alignment and 0.3mm for bend lengths was sufficient for assembling the robot as the 

sheet metal is flexible and care was taken to specify the critical tolerance dimensions. As 

was experienced while controlling the six-DOF robot in Chapter 2, low-cost motors and 

gearboxes reduce actuation efficiency, and the cogging effect of these motors cause 

difficulties in motor control. The link between efficiency and cost is associated with the 

manufacturing processes required. In low cost gearboxes gear teeth are not post-

processed after the broaching process, and the gears ride on a metal surface for axial 

retention and are placed on a metal shaft for radial retention, adding friction and 

backlash. Motor cogging occurs when the permanent magnets on the stator of the brushed 

DC motor align with the slotted ferromagnetic core on the rotor where the copper wire is 

wound [86]. Special designs that skew the core slots or permanents magnets, change the 

core construction or eliminate the need for a core can reduce the effects of cogging, but 

also reduce efficiency or power output and incur large manufacturing costs. As cogging 

affected both the motor control and backdrivability of the system significantly, and the 

gear ratio amplified the effect of cogging on backdrivability, a low-cost motor with a 

lower no load RPM and a greater stall torque was selected (BaneBots LLC, RS775, 360 

Watt, 18V), and a gear ratio of 64:1 was used (BaneBots LLC, P60, 64:1). As the robot 

does not require gravity compensation, and the 120g change in weight per actuator should 

not affect the robot performance in dynamic applications much as the robot was 10kg. 

Experiments were performed using the low-cost motors (Banebots RS775, Banebots 

RS550) as well as a Maxon motor (Maxon 305007) to validate their rated no load RPM 

and backdrivability. A Maxon EPOS controller and a current sensing power supply (BK 

Precision, 30V/1A) were used to drive each actuator. From these experiments it was 

shown that the rated no load current was quite accurate for the RS550 (1.4A) and Maxon 

(80mA) motors and the no load current was lower than specified (800mA) for the RS775 

motor. Through further experimentation with the RS775 motor in this setup, the EPOS 
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controller was able to control the motor velocity, current and position well under no load 

and loaded conditions, with the gearbox attached. 

 

Figure 34: Commercial Design of Lower-Limb Rehabilitation Robot 

 

Figure 35: Mechanical and Electrical Layout of Rehabilitation Robot A) Omni-

Wheel; B) Flexible Coupling Housing; C) Battery, CPU & Circuit Board Holder; D) 

Actuator; E) EPOS Motor Controller 
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3.2 Custom Flexible Sensor for Joint Torque Sensing and 
Three-DOF Force Sensing 

3.2.1 Sensor Design 

There is a common issue in lower-limb rehabilitation robots that, due to the power and 

torque required for motion assistance, the speed reduction (gearing or ball-screw pitch) 

and inertia required for the patient to easily backdrive the system is too large, even when 

high-quality high-cost components are used. As a solution to this issue, many systems 

incorporate joint flexibility in the form of series elastic actuators [6], [87]. This joint 

flexibility allows the patient to move smoothly without requiring the robot system to 

operate at a lower bandwidth, avoiding high dynamics [88]. The tradeoff is that it is 

difficult to control the system to feel very rigid as controlling the robot to feel stiffer than 

the joint flexibility can cause non-passivity, which is especially an issue in non-minimum 

phase systems. Recently, several researchers have focused on creating a rotary series 

elastic actuator that has a constant spring stiffness in the range of 100Nm/rad to 

300Nm/rad for knee rehabilitation [88], [89]. Current issues with these flexible 

mechanisms are that under high rehabilitative loading, the force-to-deformation profile is 

nonlinear and the material stress is exceeded. For a typical knee-to-ankle length of 0.45m, 

a 100Nm/rad stiffness gives ~217N/rad stiffness at the ankle, and a stiffness of 10 

Nm/rad for flexible series elastic actuation in mobile platforms with 4in wheels. From 

these initial specifications a range of custom rotary series elastic joints were then 

developed. The flexible joints designed, manufactured and validated experimentally gave 

a uniform stress during actuation, linear elasticity throughout its desired torque range and 

low backlash and hysteresis. 

The flexible coupling developed is required to provide backdrivability and passive 

assistance to patients with high frequency motion, and allow the robot to be controlled in 

impedance control mode in situations where the output torque of the actuator is not 

reliably modeled by the motor current. After researching previous flexible joint designs, 

it was found that many flexible couplings for industrial applications had been developed 

for joint alignment and over load protection. However, in these applications, the desired 

joint flexibility is much too stiff, typically over 3000 Nm/rad. Due to the flexibility 
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specifications driven by mobile lower-limb rehabilitation, a custom design was required 

to adapt commercial couplings to a useful rehabilitation solution.  

From an analysis of commercial devices, it was shown that spider-type couplings gave 

the most linear force displacement response of all flexible couplings as governed by Eq. 

18. They are used in start and stop applications and can be adapted for zero-backlash 

solutions [90]. Eq. 19 then gives the formula for specifying coupling parameters and 

Figure 36 shows the typical design of a commercial flexible coupling. 

                     
                          

                                        
   (18) 

                            
                                         

                    
              

(19) 

 

Figure 36: Standard Flexible Coupling: A) Hub; b) Spider 

Using a commercial spider coupling hub as the exterior for strength and ease of 

manufacture, a custom spider was then designed that provided linear elasticity at the 

desired stiffness throughout the range of torques applied during therapy. To design a 

spider that met the above specifications, an ideal material was selected, a spider shape 

was conceived and modeled in finite element analysis to attain a low-backlash linear 

elastic structure, and a digital torque sensing enclosure was added for high-resolution 
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torque measurements. Following from Eq. 19, a spider material was selected to reduce 

the elastic modulus of standard spiders (roughly 6.2GPa for Hytrel spiders) for added 

flexibility while maintaining linear elasticity. As smaller spacing between hub teeth 

would give a more linear application of force, a superelastic material (elongation >10%) 

was required to give the deformation required, while having low hysteresis. From these 

specifications and preliminary material testing against other materials, a silicone rubber 

Rebound 25A was selected as it gave the lowest elastic modulus, with a fast response and 

low hysteresis. As elastomers are rated by hardness instead of elastic modulus the 

conversion below gives the elastic modulus of the chosen material, which is 0.947 GPa. 

                                                             (20) 

The custom elastomeric spider was created by mixing and pouring a two-part Rebound 

25A compound into the 3D-printed and sealed mold shown in Figure 37. The spider was 

designed using the basic shape of the standard spider and adding material at the edges to 

reduce backlash and give pre-stress to the coupling for faster response. 

 

Figure 37: Custom Flexible Coupling Rapid Prototyped Mold and Spider Material 

To select an appropriate coupling, the 100Nm/rad specification for previous knee series 

elastic actuators was used. As these actuators were used as exoskeletons attached at the 

knee joint, the stiffness needed to be scaled based on the length from the knee joint to the 

ankle joint, and the mobile base wheel diameter. Assuming a typical length of 0.45m and 

a wheel radius of 0.0508m (2in) the actuator joint stiffness should be about 10 Nm/rad for 

this mobile base. This calculation approximated the joint stiffness to robot stiffness ratio 

as one because this is the average stiffness for all directions of motion although the 
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stiffness is not isotropic and varies depending on the force direction. This relation is 

shown in more detail in Chapter 3.3. Eq. 19 was then used to select a stock 54mm 

diameter spider coupling (McMasterCarr, 6408K14), as the area (13mm x 12mm), length 

(9mm) and contact radius (25mm) parameters of this coupling gave a theoretical joint 

stiffness of 10.83Nm.  

To validate the stiffness of the selected coupling and custom spider an experimental 

setup was designed that allowed isolated torques to be applied to the coupling as in 

Figure 38. The experimental setup is composed of a handle for applying torque by hand, 

an ATI Gamma SI 32.5 – 2.5 commercial force/torque sensor for measuring 1-DOF 

torque, a 1024 count per revolution encoder (US Digital, E6), a bearing for restraining 

lateral movement, and the custom flexible coupling. The encoder specified was then 

changed to a 10,000 count per revolution encoder (from US Digital) for implementation 

in the robot, as this increased the sensor resolution ten-fold. The resulting torque to 

angular displacement plot is shown in Figure 39 showing linear elasticity throughout the 

torque range limited by the Gamma sensor. The slope of the plot showed an actual 

stiffness of 13 Nm/rad with this coupling which is within 10% of the theoretical value 

and is most probably caused by the retaining force of the central material and friction 

between the spider and hub. From this experimental setup, it was also shown that a digital 

encoder would be able to measure torque accurately, and would allow for impedance 

control of less efficient, less backdrivable actuators where the motor current to actuator 

torque relation is complex. The digital measurement would also eliminate drift, provide 

an update rate above 1kHz, be reliable in long-term use and give an affordable solution 

compared to commercial torque sensors which cost about $5000. This digital encoder 

was then used to sense torque when oscillating frequencies between 0.2Hz to 5Hz were 

applied, as limited by the speed of the hand in applying torque. The resulting plot in 

Figure 40 shows that the sensed torque was accurate to within 10% of the full scale value 

for all frequencies tested using this linear fit, and the resolution was 0.05Nm with the 

1024 CPR encoder as shown by the step size in the sensed values. Impulse torques were 

then applied to the sensor to observe the settling time of the coupling although the 

flexibility was quite low for oscillations to be identified. The sensor tracked the impulse 

torque well at a 1kHz sampling rate as shown in Figure 41 with low settling time; 

http://www.mcmaster.com/#6408K14
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however it was identified from this plot that the sensor experienced backlash of 0.2Nm, 

which could be detrimental to torque control at low torques. This proof-of-concept 

highly-flexible coupling sensor showed that a linear elastic response could be achieved 

through material selection and the sensor was able to attain high resolution at a high 

sampling rate.    

 

Figure 38: Experimental Setup to Calibrate and Evaluate Coupling Stiffness and 

Sensor Performance 

 

Figure 39: Linear Shaft Rotation vs. Torque for Initial Flexible Coupling Prototype 
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Figure 40: Validation of the Flexible Torque Sensor using an ATI Gamma Sensor 

 

Figure 41: Rise and Fall Time of the Flexible and Gamma Torque Sensors 

     The proof-of concept sensor above performed well in flexibility and sensing 

experiments, but had large inertia and some backlash. To miniaturize the sensor and 

reduce backlash while maintaining a stiffness of 9 Nm/rad, further research on 

specialized couplings was conducted and the stiffness model, Eq. 19, was used to select 

an ideal coupling. As the coupling stiffness is proportional to r
2
 miniaturizing the 

coupling diameter brought a commercial sensor into the stiffness range specified. The 

components selected were an aluminum coupling hub with a 33.2 mm diameter and a 60g 

mass (McMasterCarr, 6408K11) and a zero-backlash Hytrel spider (McMasterCarr, 

6408K91). The elastic modulus of this material was about 6.2 GPa, the area was 11mm 

http://www.mcmaster.com/#6408K11
http://www.mcmaster.com/#6408K91
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by 8mm, the length was 9.5mm and the average contact radius was 12.5mm for a 

theoretical stiffness of 8.974Nm/rad. Using the experimental setup in Figure 38 with the 

new coupling the evaluated stiffness was 12Nm/rad and was mostly due to differences in 

the elastic modulus from the modulus specified in the datasheet. The calibration result 

and sensing performance are shown in Figure 42, which shows linear elasticity and very 

low backlash. Errors in linearity and torque sensing are attributed to inefficiencies in the 

experimental setup as at lower flexibility shaft misalignment is a bigger issue. In the 

future it would be beneficial to create an improved testing apparatus with two bearing 

supports to hold the shaft vertical. 

 

Figure 42: Hytrel Coupling Calibration and Validation against an ATI Gamma 

Sensor 

The robot was assembled once the desired couplings mentioned above were 

selected, and the system flexibility gave a smooth motion transition into the actuator 

backdrivability range (2N) through in-lab experimentation. A concern with the system is 

that the robot feels quite stiff (when unpowered) for early-stage neuromuscular therapy. 

The joint flexibility initially specified was determined by long-term gait rehabilitation 

training researchers, but in early-stage therapy, the stiffness of the system should be 

lower to allow for larger spasticity without requiring highly dynamic robot actuation. 

This reduces the required system bandwidth and motor current draw, making the system 

more reliable and safe. To allow the patient to move within their spasticity region with 

under 10N of force, a joint flexibility of 5mm/N (or 0.4Nm/rad at each joint) was 
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specified based on clinical spasticity measurements [91]. To reduce the stiffness of the 

current spider, the material could be changed or the shape could be redesigned. As 

previous designs incorporated Rebound silicone rubber and showed large deformation 

while maintaining linear elasticity, this material was selected for the next coupling 

prototype. The same hubs as for the Hytrel coupling were used for easy modification, and 

for adapting the robot over time to patient needs. Through experimental calibration, the 

new spider showed linear behavior and a stiffness of 0.36 Nm/rad as per the specification. 

The sensor was then tested for its performance in low and higher frequency sensing. 

     This sensor responded very well in experimental testing and replaced the original 

couplings in the robot. With these couplings the robot felt much more forgiving to shaky 

or incorrect movement, providing patients with neuromuscular deficit to train to move in 

the correct general path without having the robot give too much assistance that the patient 

would not be given the opportunity to learn. As a final iteration to the spider design, 

multiple shapes were studied using finite element analysis to reduce backlash, and give 

linear stress distribution through the coupling. The finite element studies showed that 

incorporating a ring around the sensor would give an almost constant stress distribution 

throughout the spider arms and would provide support between arms to reduce backlash. 

The final design of this coupling was developed; however only slight improvement to 

backlash and linearity was seen and the stiffness remained similar. The intermediate and 

final flexible couplings are shown in Figure 43. 
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Figure 43: left: Intermediate; and right: Final Custom Flexible Coupling 

In conclusion, a flexible commercial coupling was selected to meet the stiffness 

criteria stated in the literature. As this criterion was determined through gait-training 

tasks with patients in long-term rehabilitation training programs, the stiffness seemed 

very high for patients with low neuromuscular control and increased spasticity. The new 

flexibility specifications required low stiffness not available commercially, or discussed 

in research, so a custom joint needed to be designed. Using the same coupling hubs as 

selected above, and adapting the material and spider shape to give a linear torque to 

rotation profile with low backlash, a modular solution was achieved. In impedance 

control tasks, it is important not only to add passive structures for soft interaction but also 

to control joint torque for applying guiding forces to the patient. The relation between 

motor current and joint torque is nonlinear, and time and temperature varying in high-

power, highly-geared actuators, so torque sensing is required to control the apparent 

stiffness of the robot with higher accuracy. The joint torque was sensed using encoders 

(US Digital, E6, 10,000CPR) on the input and output shafts of the couplings, giving 

0.005Nm and 0.0005Nm resolutions, respectively, for the stiffer and more flexible 

coupling. Having the motor, gearbox, encoder, coupling and wheel selected, a final 

actuator design could be developed. The design goals were to create modular actuation 

system for easy assembly that was compact and low weight. A sheet metal frame was 
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chosen to create a rigid housing, and hole placement was selected so there were no hard 

to reach screw locations and the motors and gearboxes could be easily removed. The 

system could also be riveted as opposed to using fasteners, but for research systems 

experience suggest that easy to assemble and disassemble systems are beneficial in future 

experimentation. Figure 44 shows the design of the flexible actuation and torque sensing 

module, Figure 45 shows the part and tool layout before assembly and Figure 46 shows 

the three step assembly of each module. The modules can then be easily installed on the 

main foot plate as in Figure 32 above. 

 

Figure 44: Modular Flexible Actuation and Torque Sensing Assembly 

 

Figure 45: The Set of Parts and Tools Required to Assemble the Module  
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Figure 46: Three Step Assembly for Assembling Actuation Modules 

3.3 Robot Control & Mathematical Modeling 

 The mechanical design of the three wheel robot was completed to overcome issues that 

hindered the control of the six-DOF robot in Chapter 2. By reducing the number of 

actuators, the gear reduction, and the degrees of freedom the modified system decreases 

inertia and increases backdrivability. Further, embedded flexible couplings have been 

custom designed to provide linear joint flexibility and torque sensing. EPOS 24/5 

controllers from Maxon Motors were selected for the research and clinical version of this 

robot as the documentation and programming community for these controllers would 

speed code development. These controllers communicate directly with the on-board CPU 

to reduce communication delays, and function at a 1kHz update rate for high frequency 

control if needed. Simple current controllers could replace the EPOS controllers for the 

in-home affordable version of the device once the system is properly tested clinically. An 

impedance control algorithm was selected to control this robot for assist-as-needed 
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training, and mathematical models of the kinematics, Jacobian and dynamics models 

were researched and selected as required for this algorithm. As the flexible couplings can 

also be declutched from the output shaft, the robot can be used with a simple kinematic 

model to evaluate the patient’s performance in free-space motion. As well, the robot can 

be used in an unpowered, clutched state to train and evaluate patients in isometric 

strength training using the passive resistance of the sensorized flexible joints.   

 To control the robot to act as a spring-mass-damper system with variable 

impedance parameters that could be tuned by therapists or adapted over time, an 

impedance control algorithm was selected. This algorithm was chosen over an admittance 

control algorithm for safety reasons, as an admittance controlled system may respond 

dangerously when the patient’s joint limits or range of motion is reached to maintain a 

desired velocity [50].  The tradeoff is that if the patient’s foot is detached from the 

system, an impedance controller may not respond safely; but a pressure sensor can be 

used to detect foot detachment and power down the system to address this issue. As in 

many rehabilitation systems, flexibility has been incorporated into the system to give the 

system a softer feel, and a flexible joint impedance controller developed by DLR [92], 

[93] was selected and is shown below; 

                                 

            

      
          

        

                    

The dynamics parameters M, and C are the dynamics parameters of the robot as 

calculated using the equations in [95], q represents the angular position of the wheels 

(real numbers),   and      are the torques applied by the robot and the patient,   is the 

angular position of the motor shafts (real numbers),   is the actuator inertia,    is the 

reduced actuator inertia,    and    are the desired stiffness and damping parameters, and 

  is the control input.   

Recently, this control algorithm has been implemented for a knee exoskeleton and has 

shown good performance [89]. From Eq. 20 to 23, it was identified that the kinematic and 
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Jacobian model was needed to convert from patient forces Fext to external torques  ext, 

and the Lagrangian parameters were needed for the dynamics equations. In addition, as 

the robot provides planar motion, the gravity compensation term is zero, simplifying the 

control. 

 

The inverse kinematic model for the three wheel omni-directional drive base was 

presented in [63], and [94] and shows the manipulability profile of the three wheel 

system. The three-leaf clover profile gives a general view of the world frame stiffness felt 

by the flexible joints in each direction. Adapting these equations for the tilted-wheel 

design developed gives the kinematic model in Eq. 24 and the coordinate system and 

joint variables are shown in Figure 47, where   is the angle that the line connecting the 

origin and the wheel centre of contact make with the X axis, and   is the tilt angle of the 

wheel. To transform this equation into world frame coordinates, Eq. 25 can be used, 

assuming no wheel slippage. The inverse Jacobian can be found by taking the time-

derivative of the inverse kinematic model and the kinematic and Jacobian models can be 

solved by inversion as the matrix is square and of constant value. As these models are 

being used for force to torque conversion as opposed to position or velocity 

measurement, the shaft flexibility does not need to be incorporated into this model. For 

position, velocity and acceleration measurement, the two-encoder system also gives 

direct measurement of the wheel rotation (not just the motor rotation), and as such the 

robot position is completely known from the equations below, taking    as the wheel 

radius and    as the radius of the circle created from the contact point of the three wheels.    
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The dynamic parameters of the robot were then calculated using the equations in [95]. 

These variables could be experimentally obtained in future work if needed for further 

precision using the method presented in [96]. The mathematical models and impedance 

control algorithm were simulated in MATLAB/SIMULINK to validate the system’s 

response for varying apparent stiffness values, and a range of stiffness values that showed 

stability when considerable noise was injected were observed.   



 

Figure 47: Coordinate System of the Omni-Directional Drive Base 

 

From the experimental results shown in Chapter 2, and the improved design of the 

mobile base, the three-DOF system should perform equally well or better in velocity 

control and impedance/admittance control tasks than the six-DOF system. Through the 

formulation and acceptance of an ethics proposal for evaluating the system’s performance 

in impedance control tasks with healthy individuals, this three-DOF system will be 

assessed for its clinical readiness and efficacy. From a robotics perspective this research 



78 

 

 

 

platform provides a new direction for in-home neuromuscular therapy, and allows for 

future development of advanced robot control and serious game strategies that can help 

patients recover faster and more completely, as well as provide an open structure for the 

development of novel ankle therapy solutions.    
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Chapter 4 

4 Concluding Remarks and Future Work  

The knowledge gained on the design and control of rehabilitation robots during this thesis 

will give guidance in the development of future rehabilitation systems for in-home use. 

The novel robotic systems developed in this work demonstrate the functionality of mobile 

drive systems in performing motion guidance and assist-as-needed training and the 

contributions of the developed systems are outlined in Section 4.1. A discussion on the 

design and implementation of rehabilitation systems for in-home use is provided in 

Section 4.2, and future work involves evaluating the rehabilitative efficacy of these 

robotic systems as explained in Section 4.3.  

4.1 Thesis Contributions 

The overarching goal of the devices presented in this thesis is to give stroke survivors 

with lower-limb neuromuscular deficit the opportunity to perform common rehabilitation 

exercises outside of scheduled occupational therapy hours (e.g. in a therapist’s waiting 

room, at the patient’s home). The motivation for this goal is that clinical studies show 

robotic therapy combined with occupational therapy produces better recovery outcomes 

than occupational therapy alone. This is due to an increase in the number of exercise 

repetitions performed while mental and physical exertion is maintained. For usage in 

clinics and homes these devices need to be portable and affordable so they can be easily 

incorporated into daily routines without burdening the patient or therapist or using 

considerable health care resources.    

A summary of the major contributions of this thesis are presented below: 

 Design of a novel six-DOF robotic system for lower-limb rehabilitation. The 

device is low-cost ($3,500 prototype), portable and incorporates an omni-

directional drive base and three-DOF platform. 
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 Design of a novel six-DOF force and torque sensing system. The device 

consists of low-cost one-DOF force sensors embedded into an optimized 

structure for high accuracy force and torque measurement.   

 Validation of the performance of the six-DOF sensing and actuation system in 

trajectory guidance and motion assistance therapies with a healthy individual. 

 Design of a novel rotary series elastic joint that provides linear elasticity and 

torque sensing capability. The joint is low-cost and provides high accuracy, 

resolution and sampling rate torque measurements using two encoders and a 

custom flexible spider coupling.  

 Design of a novel three-DOF robotic system for in-home lower-limb 

rehabilitation. The design incorporates the rotary series elastic joint discussed 

above into modular actuation units for use in impedance-controlled motion 

assistance therapy. This design also has lower inertia than the previous system 

and is easier to backdrive. This device is low-cost ($1,500 prototype), portable 

and easy to use for motion assistance and assessment of recovery after stroke. 

4.2 Discussion 

When creating systems for end users, it is important to generate detailed and accurate 

specifications in order to meet their needs, create a useful product, and avoid 

overdesigning areas of the system. By conducting experiments when the useful data has 

not already been gathered previously, accurate specifications can be outlined and this 

information can be used by other researchers as well. In the field of rehabilitation 

robotics, this requires close collaboration between therapists, patients and researchers to 

design experiments in a meaningful way, and understand the underlying reasons for 

difficulties in rehabilitation therapy.  

In performing the research described in this thesis, the tradeoff between affordability, 

complexity, and performance was understood more fully. It is usually possible to attain 

two of these characteristics but in attaining all three, there may be large delays in design 
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and presentation of ideas. In simplifying the design and focusing on developing one idea 

at a time, the attainable outcomes of the product become much clearer, and the system 

has a higher chance of attaining performance levels that are acceptable for therapy. A 

common example of this is in the design of modular rehabilitation robotic systems. By 

focusing on a single joint, or a single therapy task, the device can help the patient perform 

that task much better than a therapist can. If a complex system, such as a gait training 

device is developed, it becomes much more difficult to provide clear rehabilitative 

benefit over standard therapy, whether the reasons are due to the robotic system or the 

mental and physical learning capabilities of the patient.   

4.3 Future Work 

In Chapter 2, the six-DOF version of the lower-limb rehabilitation robot was 

developed. There are some aspects of this work that can be improved or augmented. The 

robot currently feels fairly stiff due to the low motor control update rate, the non-

backdrivability of the actuators, and the slowness of the communication. Also, the system 

inertia, sensing resolution and difficulty in defining a dynamic model of the parallel 

mechanism made the control of the robot in start/stop applications somewhat difficult. 

The direction chosen in Chapter 3 to overcome these issues was to make the system less 

complex and focus on assistance in important exercising tasks. In continuing with this 

direction, the next steps would be to: 

1) Obtain ethics approval to validate the robot’s functionality with healthy individuals. 

2) Observe how well the robot performs when healthy individuals are asked to 

perform a task that requires learning. 

3) Validate the safety of the system and test its efficacy in neuromuscular 

rehabilitation. 

From the completion of these three steps the value of mobile systems in lower-limb 

rehabilitation can be assessed and new ideas to develop this system further can be 

conceived. Some possible issues that may need to be addressed are: 
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1) Detecting and measuring wheel slippage, with possible solutions being to 

incorporate accelerometer information or visual tracking information to calculate 

the motion of the robot in the world frame 

2) Ensuring that the device is safe for use by patients with neuromuscular and/or 

cognitive disability, through fault-detection software or adding redundant sensors. 

The two-encoder system does provide some redundancy, but the addition of safety 

stop buttons and sound/visual functionality may be useful in case of unexpected 

issues and for reminding the patient to do their exercises.    

From a therapy perspective, new functionalities that could be tested with this device 

could involve modifying assistance parameters or trajectories in real-time to provide 

better therapy, analyzing muscle rigidity and reaction time, and training individuals for 

critical situations such as fall recovery and obstacle avoidance.  

As a different approach, one could redesign the parallel structure of the six-DOF system 

in Chapter 2 for mounting to the drive base presented in Chapter 3, or as a stand-alone 

unit. It would be important to discuss with therapists before taking on this endeavor 

however, as the design may affect the system performance or be quite expensive. So it 

would be important to establish specifications first. One such mechanism that could be 

developed would be a Canfield mechanism [97] as it provides the three-DOF not applied 

by the drive base, for a six motor six-DOF solution. A proof-of-concept system was 

designed in SolidWorks that uses harmonic drive motors to keep the low-profile of the 

robot, as shown in Figure 48. This mechanism has been studied in detail and several 

applications for its use have been found. The downside of this mechanism is that it is 

difficult to create a compact mechanism that would rotate about the patient’s ankle joint 

so the drive wheels may need to be activated even for isolated ankle therapy. In 

conclusion, the robotic platforms developed in this thesis, for clinical analysis of mobile 

rehabilitation, provide many opportunities for future work in studying and advancing 

lower-limb rehabilitation therapy using robots.   
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Figure 48: Modified Canfield Mechanism Designed to be Mounted to a Mobile Base 
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Appendices 

Appendix A: Custom Circuit Board Schematics 

 

Figure A.1: Linearizing voltage amplification circuit for 4 pressure sensors. 

   

Figure A.2: Circuit design for a) one of the seven encoders and b) the oscillator. 
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Figure A.3: Schematic for PWM 

 

Figure A.4: Schematic for Accelerometer 
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Figure A.5: Schematic for Serial communication 

 

Figure A.6: Schematic for Bluetooth communication 
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Figure A.7: Microcontroller Schematic 
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Figure A.8: Schematic for a) voltage regulators; b) microcontroller programmer 

Appendix B: Costs Associated with Circuit Board and Six-DOF Lower-Limb Robot 

 

Figure B.1: Circuit board components chart 
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Figure B.2: Cost summary for six-DOF lower-limb rehabilitation robot 
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