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Abstract

Multi-robot systems (MRS) can accomplish more complex tasks with two or more robots and have

produced a broad set of applications. The presence of a human operator in an MRS can guarantee the safety

of the task performing, but the human operators can be subject to heavier stress and cognitive workload

in collaboration with the MRS than the single robot. It is significant for the MRS to have the provable-

correct task and motion planning solution for a complex task. That can reduce the human workload during

supervising the task and improve the reliability of human-MRS collaboration.

This dissertation relies on formal verification to provide the provable-correct solution for the robotic

system. One of the challenges in task and motion planning under temporal logic task specifications is develop-

ing computationally efficient MRS frameworks. The dissertation first presents an automaton-based task and

motion planning framework for MRS to satisfy finite words of linear temporal logic (LTL) task specifications

in parallel and concurrently.

Furthermore, the dissertation develops a computational trust model to improve the human-MRS

collaboration for a motion task. Notably, the current works commonly underemphasize the environmental

attributes when investigating the impacting factors of human trust in robots. Our computational trust model

builds a linear state-space (LSS) equation to capture the influence of environment attributes on human trust

in an MRS. A Bayesian optimization based experimental design (BOED) is proposed to sequentially learn

the human-MRS trust model parameters in a data-efficient way.

Finally, the dissertation shapes a reward function for the human-MRS collaborated complex task by

referring to the above LTL task specification and computational trust model. A Bayesian active reinforce-

ment learning (RL) algorithm is used to concurrently learn the shaped reward function and explore the most

trustworthy task and motion planning solution.
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posed automaton Ǧ1 with event set Ě1 = {πe, πa, πb, πc}, and (c) the event-equivalent
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Chapter 1

Introduction

1.1 Research Motivation and Background

Multi-robot system (MRS) has achieved a broad of applications in areas such as the warehouse

robots, manufacturing manipulators, and vehicle platooning. These application of MRS has significantly

increased the level of autonomy and improved the task efficiency. Despite advances in MRS task performing,

the robot coordination and the possibility of unintended emergent behaviors, etc. remain to be potential risks

that cause the safety issues of MRS task performing.

Temporal logic task [12] can specify the logic sequence of many “go-to-goal” tasks along a timeline

under a task performing scenario, while a simple “go-to-goal” task only requires a robotic system to generate

the trajectory to the goal position. Recently, temporal logic task specifications become increasingly popular in

describing the time property of robot task performing. Many works have achieved the satisfaction of temporal

logic tasks for MRS. However, the task assignment and plan to satisfy the temporal task specification is

not singleton nor obvious to identify. Therefore, the generic problem of temporal logic described task is

guaranteeing the provable-correctness of the robot-task assignment and planning.

The most recent work commonly relies on model checking techniques to obtain the task plan for

temporal logic task. The general idea of model checking [25, 20, 19, 88, 86, 87, 34, 35, 77, 78] based task and

motion planning is that robotic system first obtains the the counter-example in its state transition that violates

the negation form of the temporal task; then the counter-example can be the robot’s task plan satisfying the

temporal task. The model checking is effective in guaranteeing the satisfaction of a robotic system for a task

specification which usually contains the reachability, safety and liveness property of robot task performing.

1



However, the model checking has the state space explosion problem during the generation of the correct task

plan. Then, the focus of the problem becomes developing a computational efficiently framework for robot to

accomplish the task planning [12, 91].

On the other hand, human supervision is still necessary to ensure safe and efficient operations in

uncertain, dynamic, or noisy environments where robot sensing and perception may not be fully reliable. The

reason is humans excel at high-level decision-making in such environments and can help autonomous robots

achieve better performance while keeping design costs low. However, human error is also a main cause of

machine malfunctions, and human performance degrades when overloaded. When designing autonomous

robotic systems, it is therefore important to consider factors related to human-robot interaction (HRI).

Extant HRI solutions highly specialized and focused on human-machine interface (HMI) design

[13]. The design process for robotic systems in high-level decision-making and coordination, is still largely

one of trial and error. The process often lacks quantitative models and real-time analytic approaches that

could be used to provide safety and performance guarantees. Furthermore, the problem that a single human

interacts with multiple autonomous robots is especially challenging due to the problem size, the need for

robot coordination, the possibility of unintended emergent behaviors, etc.

This dissertation considers trust as metric to improve the HRI performance, where trust is defined as

“the attitude that an agent will help achieve an individual’s goals in a situation characterized by uncertainty

and vulnerability”. Humans respond socially to robots, establishing a level of trust to manage workload not

possible with mere human endeavor. The informed trust is an assessment of when and how much autonomy

should be employed, and when to intervene. Then, humans can either gain or lose trust in robots based on

the progress of the task [22]. Finally, trust can be a dynamic feature of HRI that heavily affects a human’s

acceptance and hence use of a robot.

In addition, the task planning of robotic system requires the reward or cost so that system can gener-

ate the optimal task plan. Consideration of trust in HRI as a reward or cost can guarantee the human workload

to be kept within acceptable bounds. It is especially important for the supervisory control of multiple robots.

The originate model checking only concentrates on the counter-example that does not violate the tempo-

ral logic task specification. Therefore, a trust based task and motion planning framework is significant in

improving the usability of the temporal logic task in robot task performing.
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1.2 Contributions

1.2.1 Trust-based Task Assignment for MRS Symbolic Motion Planning

This chapter presents a human-robot trust integrated task allocation and motion planning framework

for MRS in performing a set of tasks concurrently. A set of task specifications in parallel are conjuncted

with MRS to synthesize a task allocation automaton. Each transition of the task allocation automaton is

associated with the total trust value of human in corresponding robots. Here, the human-robot trust model

is constructed with a dynamic Bayesian network (DBN) by considering individual robot performance, safety

coefficient, human cognitive workload and overall evaluation of task allocation. Hence, a task allocation

path with maximum encoded human-robot trust can be searched based on the current trust value of each

robot in the task allocation automaton. Symbolic motion planning (SMP) is implemented for each robot after

they obtain the sequence of actions. The task allocation path can be intermittently updated with this DBN

based trust model. The overall strategy is demonstrated by a simulation with 5 robots and 3 parallel subtask

automata.

The contribution of the chapter is two-fold. First, we synthesize an automatic task (re)allocation

framework that can generate solutions with maximum human-robot trust for the system. It enables real-time

updating of task allocation of robots in a human-like way. Furthermore, we construct a dynamic Bayesian

network (DBN) based human-robot trust model. This model will evaluate the robot performance, safety,

human cognitive workload, and the task (re)allocation framework in a system wide trust setting.

1.2.2 Symbolic Task and Motion Planning of MRS

Chapter 3 presents an automaton-based task and motion planning framework for MRS to satisfy

finite words of linear temporal logic (LTL) task specifications in parallel and concurrently. A parallel de-

composition algorithm is developed to iteratively decompose a global task specification into a set of smaller

subtask automata. Robots are assigned to the smallest task component in each subtask automaton. The capa-

bility transition system of the assigned robots and these subtask automata synthesize a corresponding set of

subtask planning automata (SPA), each of which is either an independent satisfaction of an individual subtask

automaton or a concurrent satisfaction of multiple subtask automata. The overall robot assignments and SPA

can guarantee the MRS to satisfy all the subtask automata. Each SPA can generate a minimal cost task plan

by taking into account the costs of multi-robot tasking. The robots then plan motions to execute the tasks
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associated with the minimal cost task plans. The proposed framework is demonstrated with a multi-robot

experiment for manufacturing tasks in a lab setting. Extensive numerical simulations are also performed to

evaluate the scalability, computational complexity, and execution efficiency of the proposed framework and

show its advantages over the centralized task and motion planning strategy.

The main theoretical contributions of the chapter are summarized as follows:

1. A global task specification is parallel decomposed into a unique set of parallel executable subtask

specifications. The decomposition process considers the generation of variable event sets that can make

the task specification parallel decomposable, which is missing in the extant decomposition frameworks

[45, 20, 77, 78].

2. Assuming robots with overlapping capabilities, the robot assignment to each subtask specification is de-

termined by considering the level of parallelism of multi-robot task and motion planning. The parallel

decomposition based task assignment enables the MRS to satisfy the atomic tasks of task specification

in parallel. It is more efficient in executing the task plan than the centralized task and motion planning

approach, which assigns robots to perform the atomic tasks consecutively.

3. A set of subtask planning automata (SPA) is synthesized from the subtask automata and corresponding

robot state transition systems after the parallel decomposition based robot assignment. These SPA can

guarantee viable switches of robots between different parallel subtask specifications. The optimal task

planning solution can be obtained from these SPA by taking into account the cost of task execution. The

parallel decomposition based SPA have much smaller size of state spaces and require less computation

to obtain the task planning solution compared with the centralized framework.

1.2.3 Computational Trust model for MRS

In a human multi-robot collaborative task, an appropriate level of human trust in the MRS can

release the human operator’s stress and cognitive workload, thus improving collaborative task performance.

Chapter 4 develops a computational trust model to improve the human-MRS collaboration for a motion task

under an offroad environment. The computational trust model describes the decision-making of the MRS

with a time series linear relation between human’s trust in MRS and the MRS situational awareness, such

as traversability and line of sight. Bayesian statistics are first used to learn the computational trust model

parameters with the corresponding human-MRS collaborative task trials. Since human-MRS collaboration

trials are cost-expensive, we perform Bayesian optimization based sequential trials to iteratively collect the
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robot situational awareness information and update the learned trust model parameters. The path for the

robots to travel through in each iteration is determined to be the up-to-date optimal path. Finally, human

subjective tests are conducted for a human-MRS collaborative bounding overwatch task in the ROS Gazebo

simulator. The test results demonstrate that (1) human’s trust in a leading robot has a significant influence

on the trust in its succeeding robot in the MRS bounding overwatch task, (2) the Bayesian optimization

strategy can improve the cost performance of human-MRS trials. The main contribution of Chapter 4 can be

summarized as follows,

1. We assume that the human’s trust in each robot of MRS is a continuous-valued time series data. A

generalized linear state space (LSS) model is developed to capture the inter-robot trust influence for

the human-MRS collaboration.

2. We use Bayesian inference to estimate the parameters of the LSS model. The Bayesian inference

method estimates the posterior probability distribution of the trust model parameters based on the

observations’ likelihood and a prior belief of the model parameters.

3. We rely on Bayesian optimization strategy to obtain the optimal path for the human-MRS collaborated

motion task. It reduces the unnecessary trials on the paths that may not be valuable to observe the robot

behaviors.

4. We deploy multiple ground robots in the ROS Gazebo simulator to perform a bounding overwatch task

to demonstrate the effectiveness of the computational trust model for the human-MRS collaborative

motion task.

1.2.4 Trust-based Reward Function Learning and Optimal Trajectory Exploration

Chapter 5 develops trust-based Bayesian active reinforcement learning (RL) framework for a human

multi-robot collaborative system to accomplish an offroad motion task. On the basis of Chapter 4, Chapter

5 first captures the human trust dynamics evolution in the motion task with a computational human-MRS

trust model, which can encode the human’s trust in the robots as a reward function of the labeled MDP of

human-MRS. Then, it utilizes LTL formulae to encode the human’s task requirements for MRS, such as the

motion reachability and safety, in the offroad environment. The LTL formulae plus the labeled MDP of the

robots’ motion behaviors synthesize a product-MDP for the human-MRS, which guarantees the provably safe

behaviors of human-MRS in the task performing. Next, different query strategies of the Bayesian active RL
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are developed for human-MRS to simultaneously learn the trust-based reward function and find the optimal

trajectory. A case study on human-MRS collaborative offroad motion task illustrates the effectiveness of the

proposed algorithm. The contribution of this chapter is as follows:

1. We shape and learn a trust-based reward function for trajectory planning of the human-MRS collabo-

rative offroad motion tasks.

2. We synthesize the product-MDP to provide the provably correct state-actions for the human-MRS to

satisfy the LTL task specification. It is used to shaped an LTLf -based reward function for human-MRS

trajectory planning which can meet the human’s task requirement for robot reachability and safety in

the task environment.

3. We integrate the human trust-based reward function and LTLf -based reward function into a Bayesian

active RL algorithm, which can explore the most trustworthy trajectory for human-MRS to travel along

and annotate data.

4. We continue the case study of human-MRS collaborative bounding overwatch. It verifies the advan-

tages of our proposed active RL framework in satisfying the human requirement on the MRS offroad

motion task and improving the RL reliability for the human-MRS collaborative task.

1.3 Outline of Dissertation

The remaining chapters of this dissertation are organized as follows. Chapter 2 presents a frame-

work for trust-based task assignment for MRS to accomplish a temporal logic task. Chapter 3 presents a

parallel decomposition framework for multi-Robot task and motion planning under temporal logic specifica-

tions. Chapter 4 investigates a generalized computational trust model for human-MRS collaboration under

an offroad environment. Chapter 5 proposes a human trust-based Bayesian active RL framework to learn the

human’s trust model and find the optimal policy to accomplish temporal logic task. Chapter 6 discusses the

conclusions of this dissertation.
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Chapter 2

Human-Robot Trust Integrated Task

Allocation and Symbolic Motion

Planning

2.1 Introduction

Symbolic motion planning (SMP) solves complex motion planning problems for robots using linear

temporal logic (LTL), languages and automata theory [12]. It enables the automatic control of a robot or

teams of robots from high level with different task specifications. However, computationally efficient frame-

works are often needed to deal with the increasing complexity of task specifications and multi-robot system

(MRS). Many centralized and decentralized frameworks have been developed to deal with the “state-space

explosion” problems. A compositional multi-robot motion planning framework in [76] uses precomputed

motion primitives for robots and employs a satisfiability modulo theory solver to synthesize robot trajecto-

ries. Event-based synchronization approach is proposed in [86] to address interdependencies among robots

in motion planning. In [34, 35], a bottom-up strategy is proposed where each robot is assigned with a local

task and inter-robot dependence is achieved through cooperative motion and task planning. In [25, 20], a

top-down framework is presented for the automatic deployment of a robotic team from a specification by

giving each robot the capabilities to serve the cooperation requirements. Supervisor synthesis with composi-

tional verification techniques is utilized to guarantee robot performance in [23], where a given team mission
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is decomposed into individual tasks.

The above multi-robot motion planning frameworks are however restricted either in scalability in

terms of the size of robot teams, or in complexity of tasks due to the inter-dependencies among robots. The

robot-task pairs are given as fixed in dealing with the global task specifications. That is, these works do

not consider the task allocation problem. In this chapter, we will first establish a multi-robot multi-task task

allocation framework to guarantee the reachability of tasks and optimal assignment of robots. The motion

planning of each robots is implemented sequentially based on the task allocation results. Reallocations can

also be triggered in this automatic process to deal with the uncertainties of the motion planning in the dynamic

environment.

Under our proposed framework, SMP can therefore ensure automatic and scalable solutions for MRS

motion planning. Moreover, human supervision may facilitate the efficiency and safety of MRS in a dynamic

and uncertain environment because humans excel in complex decision-making and robot’s performance in

such scenarios is not usually not satisfactory. Various designs and analyses related with human-robot team co-

operation have been conducted to improve human’s situation awareness of robot. The work in [49] focuses on

the development and evaluation of complex socio-technical system for human-robot teaming in Urban Search

and Rescue with a user-centric design methodology, which ranges from modeling situation awareness, hu-

man robot interaction (HRI), flexible planning, and cognitive system design. In [79], an empirical analysis of

human teamwork is conducted to investigate the ways teammates incorporate coordination behaviors, includ-

ing both verbal and nonverbal cues, into their action planning. Measurable Shared Mental Models (SMMs)

are developed in [64] to promote an effective human-robot teaming by observing a team of expert human

workers prior to task execution, and then robots executing an interactive planning and cross-training process

with a human co-worker to iteratively refine and converge the team model. The framework of discrete-time

stochastic hybrid systems is utilized in [90] to model human-in-the-loop cyber-physical systems with discrete

choices, and pose the question of expected outcome in terms of a stochastic reachability problem. The paper

[18] constructs a POMDP based trust model for human to a single robot to improve performance of the joint

human-robot system.

In this work, we will develop a human-robot trust integrated task allocation and motion planning

framework for MRS in order to enable a human-like automatic decision-making process for multi-robot

tasking. The contribution of the chapter is two-fold. First, we synthesize an automatic task (re)allocation

framework that can generate solutions with maximum human-robot trust for the system. It enables real-time

updating of task allocation of robots in a human-like way. Furthermore, we construct a dynamic Bayesian
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network (DBN) based human-robot trust model. This model will evaluate the robot performance, safety,

human cognitive workload, and the task (re)allocation framework in a system wide trust setting.

The organization of the rest of the chapter is as follows. Section 2.2 provides the problem setup

with a schematic of the human supervised MRS. Section 2.3 describes the human-robot trust associated task

allocation framework and symbolic motion planning of each robot for a set of parallel subtasks. Section 2.4

details the construction of the DBN based human-trust model, and integrates the human-robot trust evalua-

tion into task (re)allocation and motion planning framework. A simulation in Section 2.5 demonstrates the

viability and effectiveness of the proposed framework and Section 2.6 concludes this chapter.

2.2 Problem Setup

The schematic of human-robot trust integrated task allocation and SMP is shown in Figure 2.1.

Initially, a task allocation automaton is synthesized for a task requirement that concurrently implementable

subtasks are to be performed by a set of heterogeneous robots. The subtasks are described by automata and

each robot can perform multiple actions in the subtasks. A task allocation path is generated with the maximum

accumulated trust of robots from the task allocation automaton. Local action and motion specifications of

each robot are mapped from the maximal trust encoded task allocation path so that each robot can execute the

motions and actions sequentially. The SMP will also deal with the obstacle collision avoidance in the discrete

environment. All these performance will be evaluated to contribute to the calculation of the computational

human-robot trust model.

On the other hand, human is allowed to participate into this task allocation and motion planning

process in order to improve system performance and reliability. A system-wide human-robot trust model is

constructed based on the MRS task allocation by considering robot performance on task performing, safety

evaluation on malfunctioning, human cognitive workload of supervision and inter-robot influence from task

allocation. The trust of human in each robot will be updated with the progress of task performing. The

system-wide trust model will increase or decrease the trust of robots involved with task allocation to construct

the interdependence relationship among robots. Once an action is completed by a robot, human will be

inquired for the task reallocation based on his/her trust in the current robot. Finally, the parallel subtasks

will be completed with a maximum trust encoded task allocation solution and motion planning paths by

intermittently updating the task allocation under human supervision.

We summarize the human-robot trust integrated multi-robot task allocation and motion planning
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Figure 2.1: Human-robot trust integrated task allocation and motion planning framework. {a, b}, {c} are
the action sets of parallel subtask automata. T1, · · · , Ti, · · · , TI are the respective trust value of robots. Ψ is
the synthesized task allocation automaton.

with the following assumption and problem.

Assumption 1. Each heterogeneous robot ri ∈ R is associated with an action set Eri describing its capabil-

ities in performing tasks. Assume that ∪Ii=1Eri ⊇ Eg , i.e. all the subtasks can be collaboratively performed

by the MRS. Each robot may be able to perform multiple actions, but it is assumed that a robot can only

perform one action at a time.

Problem of Interest 1. Given a set of parallel subtasks, described with automata {Gk, k = 1, · · · ,K},

each is associated with an action set Ek that robots need to perform, and all actions are scattered in a dy-

namic environment, design a task (re)allocation framework such that these subtasks can be completed by I

heterogeneous robots ri ∈ R with corresponding capability action set Eri, where i ∈ {1, · · · , I}; In the

meantime, a human-robot trust model is integrated into the MRS to enable trust-based task reallocation such

that human-like decision-making can be deployed for multi-robot multi-task allocation.
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2.3 Task Allocation and Symbolic Motion Planning

The subtasks of MRS can be described with a set of automata {Gk, k = 1, · · · ,K}. These subtasks

satisfy a parallel relationship with ∥Kk=1Gk
∼= ((G1∥ · · ·Gk)∥ · · · ∥GK−1)∥GK , which represent a set of

subtask automata Gks that can be concurrently dealt with using a team of robots. We will construct the task

allocation automaton with trust associated transitions for these parallel subtasks and robots so that a maximal

trust encoded task allocation solution can be generated for the MRS.

2.3.1 Human-Robot Trust Associated Task Allocation

In order to find a maximum trust encoded task allocation solution, we synthesize a task allocation

automaton Ψ by taking into account both robot capabilities and subtask automata. A path from task allocation

automaton gives a task allocation solution regarding what actions to be allocated to what robots. To explain

the process of generating a maximum trust encoded path from the task allocation automaton, we introduce

the following definitions.

Definition 1 (Minimal Suffix Set of Language). Given an automaton G with an action set E, the minimal

suffix set of language L(G) is denoted as L = {ℓ ∈ E∗ : ℓ is the suffix of min(s), s ∈ L(G)}, where

min(s) is one of the minimal length paths in L(G) and E∗ is the Kleene-closure of E.

Definition 2 (Implementable Action Set). Given a task automaton G with an action set E, an action e ∈ E

is said to be implementable for a robot r with a capability action set Er if the following two conditions are

satisfied: 1) e ∈ Er, which means the action e can be performed by robot r, and 2) e ∈ {ℓ(0)}, i.e. action

e is ready to be performed at the states of G that match ℓ, where ℓ(0) is the first element of ℓ. Hence, an

implementable action set of automaton G for robot r is denoted as IA = {(r, e) : e ∈ Er ∩ {ℓ(0)}}.

Accordingly, the implementable action set of automaton Gk for all robots in the set R can be given

as IGk = ∪Ii=1IAi,k, where IAi,k = {(ri, ek) : ek ∈ Eri ∩ {ℓk(0)}}.

Definition 3 (Multi-action Set). The set Actψ = {actψ = (ω1, · · · , ωk, · · · , ωK) : ωk = (ri, êk), ri ∈

R, êk ∈ Eri∩{ℓk(0)}∪{ϵ}} defines a multi-action set, where the single-action ωi = (ri, êk), êk ̸= ϵ defines

an action in automaton Gk performed by a robot in ri ∈ R; ωk = (ri, ϵ) means no action in Gk is assigned to

robot ri. A multi-action actψ ∈ Actψ holds if and only if it is (1) effective, i.e. ∃ωk ̸∈ {(ri, ϵ), i = 1, · · · , I},

(2) unique, i.e. ∀ωk, ωk′ ̸∈ {(ri, ϵ), i = 1, · · · , I}, if k ̸= k′, then ri ̸= ri′ . For simplicity of notation, we

further denote ωk = (ri, ϵ) as E .
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Remark 1. The multi-action set combines multiple implementable actions and guarantees not only the state

transition of each subtask automaton but also the mutual exclusion of subtask automata for robots.

Finally, we can define the task allocation automaton for multiple robots to perform multiple tasks as

follows.

Definition 4 (Task Allocation Automaton). The task allocation automaton Ψ describes the assignment of

robots to the actions in subtask automata. It is given by a tuple Ψ = (Xψ, Actψ, δψ, χ0,Wψ) where

1. Xψ = L1 × · · · Lk × · · · LK is the composite state set of task allocation including a set of composite

states χ = (ℓ1, · · · , ℓk, · · · , ℓK) for the parallel processes ∥Kk=1Gk, ℓk ∈ Lk, where Lk is the minimal

suffix set of L(Gk),

2. the multi-action set Actψ ⊆
∏K
k=1(IGk ∪ {E}) (Def. 3) includes a finite set of actions actψ ∈ Actψ

that the heterogeneous robots groupR can perform,

3. the transition relation δψ(χ, actψ) is a process χ
actψ−−−→ χ′, which can be detailed as (ℓ1

ω1−→

ℓ′1, · · · , ℓK
ωK−−→ ℓ′K),

4. χ0 is the initial state of task allocation,

5. Wψ : Actψ → R is the set of accumulated trust of all robots associated with the completion of each

action, Wψ(actψ) =
∑I
i=1 Ti(t), where Ti(t) is the trust of human in a single robot ri at time t.

A finite path SΨ = act
(0)
ψ · · · act

(τ)
ψ · · · act

(T)
ψ with act

(τ)
ψ ∈ Actψ presents a task allocation solution for the

parallel processes ∥Kk=1Gk with robots ri, i = 1, · · · , I .

An initial task allocation Sψ with maximum accumulated trust of all robots max(
∑T
τ=0 Wψ) from

initial state χ0 to final state χF can be generated by searching the task allocation automaton Ψ. The maximum

trust encoded path presents the optimal assignment of robots for all actions in a human-like decision-making

pattern, since the associated trust values in task allocation automaton are evaluated with the impact factors in

Section 2.4, such as robot performance, safety, human cognitive workload, and system wide trust evaluated

task allocation. The accept state is reached when all subtask automata are reduced to be empty and all its

actions are completed. The parallel process based task allocation is conducted among heterogeneous robots

without subtask inter-dependency.
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2.3.2 Symbolic Motion Planning

The maximum trust encoded task allocation path may provide a task performing sequence for each

robot in a human-like decision-making process, but it is also necessary to consider how to deal with the

reachability of all these actions in the dynamic environment. For SMP with a team of robots, paths satisfying

the global specification can be generated by model checking, which encodes each robot a single path in the

abstracted workspace.

In this work, we assume that the task environment is not known a prior, which is also an important

prerequisite for robot performance estimation on obstacle avoidance to be discussed in Section 2.4. The paths

of motion planning for robots are intermittently replanned upon the information they get through exploring

the area. The mapping of Sψ into each ri from initial step to step T will give each robot a task allocation path

sψ,i = ω
(0)
k0
· · ·ω(τ)

kτ
· · ·ω(T)

kT
, where kτ ∈ {1, · · · ,K} is an index of subtask automaton.

Denote sπ,i = π
(0)
k0
· · ·π(τ)

kτ
· · ·π(T)

kT
as the corresponding sequence of motion specifications of ri.

π
(τ)
kτ

describes the reachability of ω(τ)
kτ

with “a robot ri will go to the position of action ek ∈ Ek if and only

if it finds that the previous action ω
(τ−1)
kτ

has been completed”. Thus, it requires each π
(τ)
kτ

to be conducted

before ω(τ)
kτ

. The motion specification can guarantee the actions to be conducted in a logic sequence by robots

in the decentralized multi-robot motion planning, and every robot obtains the information about completion

of action ω
(τ−1)
kτ

by traveling to the location itself.

Definition 5 (Product Automaton of Robot). Given an automaton A = (X,E, f, x0, Xm) and a robot

transition system TS =
(
Q, δ, qinit, π, Lq,Wq

)
. We define the product automaton P = TS × A =

(X̂, E, f̂ , x̂0, X̂m,Wq), where

1. X̂ = Q×X is the state set,

2. E is the event set for the transitions,

3. f̂(x̂, e′) = x̂′ is the transition relation with x̂ = (q, x), x̂′ = (q′, x′), q → q′, f(x, e′) = x′, where

q, q′ ∈ Q and x, x′ ∈ X ,

4. x̂0 = (qinit, x0) is the initial state, X̂m = Q×Xm is the final state set,

5. Wq is the cost set for the transitions in δ.

The transition system of robot ri is abstracted as TS
(τ)
i,k for each action ek ∈ Ek it is going to

perform at step τ in the discrete space (e.g. see Figure 2.3). A(τ)
k,i is an automaton representation of the
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motion specification π
(τ)
kτ

of robot ri regarding subtask automaton Gk. The model checking TS
(τ)
i,k × A

(τ)
k,i

can provide a motion planning path σ
(τ)
i,k satisfying a motion specification π

(τ)
kτ

.

Collision avoidance can be dealt within the transition system through a reactive approach. Each

robot ri detects its abstracted surrounding area and stores the detected obstacles in the obstacle set Obs
(t)
i .

These robots regard the obstacles as inaccessible states in its transition system TS
(τ)
i,k .

In addition, neighboring robots in communication ranges are required to exchange the information

of respective obstacles and next states. The transition system is updated after the robot completes the current

allocated task or detects new obstacles.

2.4 Human-Robot Trust Model of Task Allocation

2.4.1 DBN based Human-Robot Trust Model

The human-robot trust model is developed to improve the task allocation and motion planning of

MRS to be similar as human decision-making. The trust evaluation of human in each robot is involved

with robot performance, risk of occurrence of malfunctioning, and human cognitive workload. The robot

performance evaluation is dependent on the amount of tasks completed and the success of obstacle collision

avoidance. Risks are defined as the occurrence of malfunctioning situations such as robots are unable to

move or perform tasks due to low battery level. The cognitive workload is related with the complexity of

surrounding environment, such as the amount of surrounded obstacles of each robot, as well as the amount

of robots that human has to supervise after a task reallocation. These are all the possible factors that may

influence human’s interaction with multi-robot task allocation and motion planning. Hence, it is favorable

for the MRS to have a human-robot trust model to integrate all these factors in order to enable human-like

decision-making for task allocation.

Besides the above influence from MRS, human and environment, we also consider system-wide trust

based influence (either positive or negative) into human-robot trust evaluation regarding task reallocation.

That is, robots assigned with an action in the task reallocation will be given an opposite trust evaluation with

other robots that have a common implementable action but are not selected for this action. Such influence

on MRS will construct a system-wide trust inter-relationship among robots. Finally, we will utilize a DBN

based human-robot trust model to assist MRS in task (re)allocation and motion planning. Human will be

intermittently inquired whether to allow a task reallocation with this model.
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Figure 2.2: A dynamic Bayesian network (DBN) based model for dynamic, quantitative, and probabilistic
trust estimates.

The DBN trust model1 is shown in Figure 2.2. Based on the DBN model, we denote the belief

update of trust Ti(t) for robot ri as

bel(Ti(t)) =Prob(Ti(t)|PR,i(1 : t), ai(1 : t), Ui(1 : t),

Bri(1 : t), Aci(1 : t), hi(1 : t), Ti(0)),

(2.1)

where
[
PR,i, ai, Ui, Bri, Aci

]T
are the impacting factors of the hidden trust state, denoted by Ωi, and hi

is the observed evidence. To be more specific, PR,i(·) is the accumulated performance evaluation of robot

ri, ai(·) ∈ [0, 1] is the safety coefficient of risk evaluation, Ui(·) is the human cognitive workload due to

the obstacle-crowded environment, Bri(·) is the human cognitive workload on supervising the MRS (e.g.,

monitoring multiple robots decided by the task allocation), Aci(·) is the extra positive or negative influence

on the robots after human accepting of the task (re)allocation. hi(·) is the human intervention on whether

to allow a task reallocation for the MRS. Note that Bri(·), Aci(·) and hi(·) are only intermittently updated

when a task reallocation occurs.

Ωi(t) =


[
PR,i(t), ai(t), Ui(t), Bri(t)

]T
, if no reallocation[

PR,i(t), ai(t), Ui(t), Bri(t), Aci(id)
]T

, otherwise
, (2.2)

A forward algorithm is utilized by applying the principle of dynamic programming to avoid incurring

1The DBN human-robot model in this chapter deals with the human input with respect to each robot individually. In our future work,
we will determine the human input based on the trust of all robots involved in task allocation.
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exponential computation time due to the increase of t. Eqn. (2.1) can be calculated as

bel(Ti(t)) =

∫
bel(Ti(t), Ti(t− 1))dTi(t− 1)∫ ∫

bel(Ti(t), Ti(t− 1))dTi(t− 1)dTi(t)
, (2.3)

where

bel(Ti(t), Ti(t− 1)) = Prob(hi(t)|Ti(t), Ti(t− 1))·

Prob(Ti(t)|Ti(t− 1),Ωi(t),Ωi(t− 1)) · bel(Ti(t− 1)),

(2.4)

To obtain the belief update of each robot trust, Prob(hi(t)|Ti(t), Ti(t − 1)) and Prob(Ti(t)|Ti(t −

1),Ωi(t),Ωi(t− 1)) are respectively calculated with different distribution models as shown in the upcoming

paragraphs.

The term Prob(hi(t)|Ti(t), Ti(t− 1)) is the conditional probability of human intervention given the

current and prior trust, which can follow a similar sigmoid distribution as in [98]. Therefore, the conditional

probability distribution (CPD) of human intervention based on trust can be modeled as follows

Prob(hi(t) =1|Ti(t), Ti(t− 1)) =
1

1 + exp(−α1Ti(t) + α2Ti(t− 1))
, (2.5)

where α1 and α2 are positive weights and this CPD indicates higher willingness for human to allow a task

reallocation when human-robot trust value is higher.

The CPD of human trust in robot ri at time t can be constructed based on the previous trust value,

robot performance, risk coefficient, human cognitive workload, and task allocation evaluation. It is expressed

as a Gaussian distribution with mean value T̄i(t) and variance ρi(t),

Prob(Ti(t)|Ti(t− 1),Ωi(t),Ωi(t− 1)) = N (Ti(t); T̄i(t), ρi(t)),

T̄i(t) =A · T̄i(t− 1) +B1 · ai(t) · PR,i(t)−B2 · ai(t− 1) · PR,i(t−

1) + C1 · Ui(t)− C2 · Ui(t− 1) +D1 ·Bri(t)−D2 ·Bri(t

− 1) + E1 ·Aci(id)− E2 ·Aci(id
′),

(2.6)

where T̄i(t) ∈ (0, 1) represents the mean value of human trust in robot ri at time t, and ρi(t) reflects

the variance in each individual’s trust update. Each parameter is evaluated with a function of respective

influence factors in task allocation and motion planning. The coefficients A,B1, B2, C1, C2, D1, D2, E1, E2
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are determined by data collected from human subject tests [73].

In our scenario, the accumulated performance evaluation PR,i(t) is modeled as a function of rewards

on robot for its completion of actions as well as the avoidance of obstacles,

PR,i(t) = PR,i(t− 1) + w(ri, êk, t) + βi(t) · w(o(t)i ), (2.7)

where PR,i(t − 1) is the performance of robot at t − 1, w(ri, êk, t) ∈ {0, 1} is the reward on robot ri for

completing an action êk ∈ Ek, w(o(t)i ) ∈ {0, 1} is the reward on robot for avoiding a detected obstacle o
(t)
k

at t, βi(t) is the number of obstacles the robot can avoid by re-planning path at t. The safety coefficient ai(t)

is introduced to evaluate the potential of a single robot in completing all the capable actions in Eri . Here,

the risk of malfunction refers to the possibility of low battery level of the robot, which may constrain it to

perform more actions and thus need other robots to substitute it for the remaining uncompleted actions. The

safety coefficient ai(t) is constructed as

ai(t) =


1, ri is in normal state

1
|Eri|

, ri is in low battery state
. (2.8)

This implies the system tends to trust the robot to complete all its capable actions if it has enough electric

capacity. On the other hand, if the battery level is low, the robot is assigned to at most complete the current

allocated action.

The human cognitive workload is a result of interaction with the complex environment and multiple

robots. For the environmental complexity resulted workload, it is constructed as

Ui(t) = 1− γ(t)So,i(t)+1, (2.9)

where So,i(t) is the number of obstacles within sensing range of robot, and γ(t) is the utilization ratio [85, 91].

The human cognitive workload resulted from supervising robots always exists but is only updated after a task

reallocation is implemented. It is estimated by the amount of robots that human can deal with as well as

the actual activated robots in the supervision of a MRS. It is intermittently updated based on the idth task
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reallocation as

Bri(t) =


1− Iact(id)/Imax, if ri is activated

1, otherwise
, (2.10)

where Iact(id) is the actual amount of activated robots in this task reallocation, and Imax is the maximal

number of robots that human feels comfortable in supervising the MRS. Each robot will be updated the same

workload with the system-wide trust theory if it is activated in the task (re)allocation, while Bri(t) = 1 if the

robot is not activated at all.

The extra positive or negative influence of task reallocation on each robot also works according to

the system-wide trust theory after human accepts a task reallocation solution. Recall that each robot has a

task reallocation path sψ,i = ω
(0)
k0
· · ·ω(τ)

kτ
· · ·ω(T)

kT
. Opposite influences can be enforced on the following

situation: (1) the action in path sψ,i is an implementable action of ri, and (2) the implementable action of ri

is not selected in the current task allocation. As a result, an extra influence of idth task reallocation on each

robot is constructed as

Aci(id) =

T∑
τ=0

aci(τ),

aci(τ) =


µ/I, if ω(τ)

kτ
= IAi,k(τ)

µ/I, if ω(τ)
kτ
̸= IAi,k(τ)

,

(2.11)

where aci(τ) is the positive or negative influence of each action in task reallocation path on robot ri, µ > 0

and µ < 0 are the influence coefficients. If the action in task reallocation path is an implementable action of

ri, a positive influence will be added for this robot, which implies a trust increase of this robot in the current

task reallocation; A negative influence will be associated to a robot by decreasing the trust of the robot if the

implementable action of the robot is not selected in the current task allocation.

Remark 2. The network parameters for the DBN such as α1, α2 in Equation (2.5) can be learned by the well-

known expectation maximization (EM) algorithm [59] off-line during the training session and hence will not

affect the functionality of the system and the user experience in real-time operation. Besides, a separate and

personalized trust model should be trained based on each user’s experience since the model strongly depends

on individual human intervention hi(·) as well as the impacting factors
[
PR,i(·), ai(·), Ui(·), EH,i(·), Aci(·)

]
.
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2.4.2 Human-Robot Trust based Real-time Interactive Task Reallocation and Mo-

tion Re-planning

Human trust in robot can be updated at each time step t or intermittently after a task reallocation of

MRS. Consequently, the previous maximum trust encoded task allocation and motion planning solution need

to be updated.

The reallocation request is triggered after an action is completed by a robot in the MRS and the

human-robot trust is higher enough. Human works as a supervisor and will be inquired if he/she would like

to have a task reallocation. The system will reallocate the actions to robots and re-plan the motion path of

individual robot if human allows to have a task reallocation. The task reallocation will be implemented on

these uncompleted actions, i.e. a task allocation automaton is re-synthesized with the unperformed actions

constituted state set. As a result, a new maximum trust encoded path is generated from this automaton for the

remaining task. In the mean time, the human trust in each activated robot will be changed with Aci(id) from

a system-wide trust perspective. However, if human refuses the task reallocation, the MRS will continue the

previous task allocation and motion planning path. On the other hand, the human-robot trust model will be

continuously updated for robot performance, safety coefficient, and human cognitive workload estimations

while the robot is exploring in the work space. Algorithm 1 describes the complete process of human-robot

trust model based interactive task allocation and motion planning. The process is iterated until all actions are

completed.

Algorithm 1 Human-robot trust integrated task (re)allocation and SMP

1: Initial task allocation Sψ,0
2: Update influence Aci(0), trust Ti(t) for ri ∈ I
3: while Exist unperformed actions do
4: if An action completed then
5: Update PR,i(t), ai(t), Ui(t), Bri(t), Ti(t)
6: if Allow reallocation then
7: Task reallocation Sψ,τ
8: Update Aci(id), Ti(t)
9: Motion planning σi for all ri

10: end if
11: end if
12: Execute motions and actions
13: Update PR,i(t), ai(t), Ui(t), Ti(t)
14: end while
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Figure 2.3: Abstracted workspace and paths of motion planning where “cross” marks the obstacle and “star”
marks the allocated task for each robot.

2.5 Simulation

2.5.1 System Configuration and Task Specification

The workspace of MRS is abstracted as a 10×10 grid environment occupied with obstacles and task

stations as shown in Figure 2.3. Each task station is associated with an action that needs a robot to perform.

In the SMP, we assume the motion primitives of each robot are the abstracted from one grid to its adjacent

four grids (north, east, south and west). A robot is also assumed to be unable to enter into grids that are

partially or totally taken by obstacles. The linear quadratic regulator (LQR) is utilized to control the motion

of robots between two grids.

3 parallel subtasks are to be allocated for MRS, each of the subtask is described by an automaton,

see Figure 2.4. The languages of the 3 subtask automata are L(G1) = {abc, acb}, L(G2) = {de}, and

L(G3) = {f, gf}. A team of 5 robots ri, i = 1, · · · , 5 are assigned to perform the actions in the 3 parallel

subtasks. Each robot is associated with its capability: Er1 = {a, c, d}, Er2 = {b, e, f}, Er3 = {a, f, g},

Er4 = {b, d, g}, and Er5 = {c, e}. In addition, we assume omni-directional sensors and set as two-grid

length. The communication radius is set as the same length.

2.5.2 Results

The final motion paths of robots are shown in Figure 2.3. The corresponding trust change of each

robot is shown in Figure 2.5. The initial generated task allocation path is Sψ = ((r3, a), (r1, d), (r4, g))
(0)((r4, b),
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Figure 2.4: Parallel subtask automata G1, G2 and G3.

(r5, e), (r3, f))
(1)((r1, c), E , E)(2). The task allocation mappings into each robot are sψ,1 = (r1, d)

(0)(r1, c)
(2),

sψ,3 = (r3, a)
(0)(r3, f)

(1), sψ,4 = (r4, g)
(0)(r4, b)

(1) and sψ,5 = (r5, e)
(1). As a result, the trust of each

robot will be updated regarding the positive or negative influence of task allocation on each robot.

Actions (r4, g), (r1, d), (r5, e), (r3, a) are first sequentially completed with reference to the current

task allocation solution and motion specification. Each robot verifies the completion state of actions that need

to be performed before their current allocated actions in the subtask automaton. The results are demonstrated

in Figure 2.3, where robot r4, r5 and r3 first go to the neighboring positions of a, d, and g respectively (i.e.

within the robot’s sensing range) to detect the completion states before they perform the current allocated

actions. The action a is almost completed by robot r3 at the same time with (r5, e). The rewards in per-

formance evaluation of each robot are updated immediately after they completed each assigned actions, and

the cognitive workload is also updated during the robot exploration. A reallocation inquiry is triggered after

robot r5 completes its only assigned action e. The reallocation is synthesized for the remaining subtasks

L(G1) = {c} and L(G3) = {f}, while action b is still performed by r4 considering the robot’s previous

effort. The reallocation moment is at 110 time step, and trust change of each robot is demonstrated in the

trust distribution in Figure 2.5. The maximum trust value of each robot before the reallocation are shown in

Table 2.1.

The robots that enable the task allocation associated with the highest accumulated trust are selected
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(a) Color bar of trust distribution
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Figure 2.5: Evolution of trust distribution of each robot. Black curves are the maximum values of trust
distribution.

Table 2.1: Maximum trust of each robot before task reallocation.

robot 1 2 3 4 5
Max trust 0.3566 0.3167 0.2818 0.3267 0.3666

to perform the remaining actions. According to the maximum trust value table above, robot r2 and r5 are

selected respectively to perform action f and c rather than r3 and r1. The updated task allocation path is

S′ψ = ((r3, a)(r1, d)(r4, g))
(0)((r4, b), (r5, e), (r2, f))

(1)((r5, c), E , E)(2). The newly assigned task alloca-

tion mapping into each robot are sψ,2 = (r2, f)
(1), sψ,4 = (r4, b)

(1) and sψ,5 = (r5, c)
(2). Since human

accepted the reallocation, the positive or negative trust influence on each robot get updated. Eventually, the

MRS completes the remaining actions with this updated solution.

2.6 Conclusion

This chapter presents a human supervised task allocation and motion planning framework for MRS

to perform multiple parallel subtasks in a human-like decision making manner. These subtasks are described

by automata and conjuncted with MRS to synthesize a task allocation automaton. Transitions of task allo-

cation automaton are associated with the estimations of robot performance and human cognitive workload.

They are combined with a DBN human-robot trust model and a maximal trust encoded task allocation path
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can be found. This path reflects the maximum trust of human in task assignment of MRS. Symbolic motion

planning (SMP) is implemented for each robot after the task allocation. The task reallocation is triggered

after an action being completed with human permission. The above process is demonstrated to be effective

for MRS task allocation by a simulation with 5 robots and 3 parallel subtasks.
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Chapter 3

Multi-Robot Task and Motion Planning

under Temporal Logic Specifications

3.1 Introduction

In general, robot task planning generates a sequence of actions that robots need to implement to

satisfy the task-performing goals; and motion planning identifies the trajectories associated with the task plan

for the robots. In formal verification of robotic system, the high-level goals of robot task performing can

usually be expressed with the temporal logic syntax and formulae. Model checking theory can obtain the

task or motion plan satisfying the high-level goals in a discretized workspace [12, 81]. The model checking

based task and motion planning accommodates robot constraints and environment complexity with provably

correct solutions for temporal logic task. However, the model checking based task and motion planning

usually has the state-space explosion problem, especially for multi-robot systems (MRS) [12]. Therefore,

one of the challenges in task and motion planning under temporal logic task specifications is to develop

computationally efficient frameworks for MRS.

Many relevant frameworks have been developed for MRS to deal with complex task specifications

that have linear time property, such as linear temporal logic (LTL), computation tree logic (CTL), and regular

expression (RE). These frameworks can be generalized into the centralized and decentralized regarding their

computational framework.

The most straightforward task and motion planning strategy for MRS under temporal logic speci-
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fications is the centralized computational frameworks [76, 30, 42, 43, 89, 44]. The centralized framework

takes all the robots as a whole during the task planing. It composes all the robot transition systems of the

MRS and constructs a concurrent transition system for the MRS. Then, the framework directly synchronizes

the converted automaton of an LTL task specification with the concurrent transition system of the MRS. The

centralized framework is restricted in scalability and only suitable for medium-sized robot teams or specific

types of tasks.

The decentralized framework synchronizes each robot transition system of the MRS with the robot’s

corresponding capable task pieces in the task specification. The framework does not require the composition

of all the robots’ transition system during the formal verification, which reduces the computation signifi-

cantly. Instead, the framework requires that either the task pieces are well assigned to each robot or the task

specification can be decomposed into task pieces with respect to each robot. There are different decompo-

sition strategies developed in the recent years [25, 20, 19, 88, 86, 87, 34, 35, 77, 78]. However, each of the

strategies is only durable for a specific type of task specification.

This chapter develops a decentralized top-down task and motion planning framework for MRS,

which assigns robots to atomic tasks of task specification, reduces the computation of the robot task and

motion planning in a decentralized fashion, and enables these robots to work in parallel and concurrently with

a high level of parallelism. Fig. 3.1 illustrates the proposed automaton based parallel task decomposition,

assignment, and motion planning framework for MRS. The framework first obtains a global task automaton

of an LTL described task specification (see step 1). The global task automaton is then parallel decomposed

into a set of subtask automata utilizing an automaton based iterative parallel decomposition algorithm (step

2). Each generated decomposition component, i.e. subtask automaton, is assigned to a subgroup of robots

that are capable of satisfying the event set of the subtask automaton. These subtask automata and the robot

capability transition systems of the assigned robots are combined to synthesize a set of SPAs for task planning

(step 3). Each SPA can generate the lowest cost task plan by further considering the task performing cost1

(step 4). These robots can get their corresponding initial task plans (step 5). Thus, the hybrid local motion

planner can generate motion trajectories for each robot based on their task plans (step 6 & 7). A dynamic

task redecomposition and replanning process (steps 2 - 8) is triggered intermittently for neighboring robots

that can coordinate with each other. This process continues until the MRS accomplishes all the task plans.

The main theoretical contributions of the chapter are summarized as follows:

1The cost depends on the task objective and can be in different forms, such as the estimated time or energy consumption to complete
a task
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Figure 3.1: Flowchart of the proposed automaton based task decomposition and planning framework for the
MRS.

1. A global task specification is parallel decomposed into a unique set of parallel executable subtask

specifications. The decomposition process considers the generation of variable event sets that can

make the task specification parallel decomposable.

2. Assuming robots with overlapping capabilities, the robot assignment to each subtask specification is de-

termined by considering the level of parallelism of multi-robot task and motion planning. The parallel

decomposition based task assignment enables the MRS to satisfy the atomic tasks of task specification

in parallel. It is more efficient in executing the task plan than the centralized task and motion planning

approach, which assigns robots to perform the atomic tasks consecutively.

3. A set of subtask planning automata (SPA) is synthesized from the subtask automata and corresponding

robot state transition systems after the parallel decomposition based robot assignment. These SPA can

guarantee viable switches of robots between different parallel subtask specifications. The optimal task

planning solution can be obtained from these SPA by taking into account the cost of task execution. The

parallel decomposition based SPA have much smaller size of state spaces and require less computation

to obtain the task planning solution compared with the centralized framework.

The remaining parts of the chapter are as follows. Chapter 3.2 provides the preliminaries and the

problem setup. Chapter 3.3 presents the up-to-date related work of multi-robot task and motion planning

under temporal logic task. Chapter 3.4 details the top-down automaton-based task decomposition algorithm.

Chapter 3.5 and 3.6 explains the robot assignment and task planning process with the decomposition results

as well as the parallel and concurrent execution of the task planning results. Chapter 3.7 presents a set of

MRS experiment and simulations to demonstrate the viability, scalability, and computational efficiency of the
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overall framework. Chapter 3.8 summarizes the work and results in this chapter.

3.2 Preliminaries and Problem Setup

3.2.1 Preliminaries

Definition 6 (Finite Automaton [10]). A finite automaton, denoted by G, is a tuple G := (X,E, f, x0, XF ),

where X is the set of states; E is the finite set of events associated with G; f : X × E → X is the transition

function: f(x, e) = x′ means that there is a transition labeled by event e from state x to x′; x0 is the initial

state; and XF ⊆ X is the set of final states. A deterministic finite automaton (DFA) requires each transition to

satisfy
∣∣f(x, e)∣∣ ≤ 1. In comparison, a nondeterministic finite automaton (NFA) has a transition

∣∣f(x, e)∣∣ > 1.

An event e ∈ E is a “single event” if it only contains an atomic task and needs one robot to complete

(e.g., a robot goes to a goal, or picks up an object), or a “cooperative event” if it is a conjunction of atomic

tasks and needs multiple robots to be completed simultaneously (e.g., one robot holds the door and another

robot goes through the door).

An automaton G will be used to describe the temporal property of the atomic tasks in the event set.

A word of G, denoted by ρ := e(1) · · · e(τ) · · · e(T), is a sequence of events satisfying f(x0, ρ) ∈ XF , where

e(τ) ∈ E. The induced states of word ρ in G, i.e., x(0) · · ·x(τ) · · ·x(T), is the corresponding accepted run of

word ρ. The language generated by an automaton G is L(G) := {ρ ∈ E∗|f(x0, ρ) ∈ XF }, which can be

described concisely with regular expression operations, such as the concatenation (e1 · e2), union (e1 + e2),

and Kleene star (e1∗), with e1, e2 ∈ E.

Definition 7 (Projection and Inverse Projection of Automaton [10]). Denote the projection of word ρ ∈

E∗ to an event set Eb as Pb(ρ). The projection operation can be defined with the following rules: (1)

Pb(ε) := ε, ε is the empty event or word, (2) Pb(e) := e if e ∈ Eb, Pb(e) := ε if e ∈ E \ Eb, (3) Pb(ρe) :=

Pb(ρ)Pb(e) for ρ ∈ E∗, e ∈ E. The projection of automaton G with the event set E into a smaller event

set Eb, i.e., Pb(G), Eb ⊆ E, can be applied over languages of automaton: Pb(L(G)) := {ρb ∈ Eb
∗|ρ ∈

L(G), ρb = Pb(ρ)}; Conversely, the inverse projection of automaton Gb with a smaller event set Eb into the

event set E ⊃ Eb can be described by P−1(L(Gb)) := {ρ ∈ E∗|Pb(ρ) ∈ L(Gb)}.

Definition 8 (Parallel Composition of Automata [10]). The parallel composition of G1 := (X1, E1, f1, x0,1, XF,1)

and G2 := (X2, E2, f2, x0,2, XF,2) is the automaton G1 ∥ G2 := (X1×X2, E1∪E2, f∥, (x0,1, x0,2), XF,1×
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XF,2), where f∥((x1, x2), e) :=



(f1(x1, e), f2(x2, e)) if ∃f1(x1, e) ∧ ∃f2(x2, e), e ∈ E1 ∩ E2

(f1(x1, e), x2) if ∃f1(x1, e), e ∈ E1, e /∈ E2

(x1, f2(x2, e)) if ∃f2(x2, e), e ∈ E2, e /∈ E1

undefined otherwise

The language resulting from a parallel composition can be characterized as: L(G1 ∥ G2) := P−1(L(G1)) ∩

P−1(L(G2)).

Definition 9 (Automaton Parallel Decomposition [45]). An automaton G with the event set E is said to be

strictly decomposable with respect to a set of Pi if ∥Ii=1 Pi(G) ∼= G. Here, Pi is a projection from G into local

event sets Ei, i = 1, · · · , I , E = ∪Ii=1Ei, and ∥Ii=1 Pi(G) = (((P1(G) ∥ P2(G)) ∥ P3(G)) ∥ . . .) ∥ PI(G).

In addition, a strictly decomposable G only allows the cooperative events in the initial or last transition of G.

The bisimulation relationship (∼=) here can be reduced to check the language equivalence between

the parallel compositions of Gis and the automaton G, i.e., L(∥Ii=1 Pi(G)) ≡ L(G) if G is a DFA. Given

an atomic task set AP including all the atomic tasks π that an MRS needs to satisfy, one can then use a DFA

G to describe the desired task specification of an MRS, where the automaton event set is E ⊆ 2AP. The

following example illustrates the concept of automaton based parallel decomposition of a task specification

for an MRS.

Example 1. Given two tasks A and B (e.g., go-to-goal tasks), Fig. 3.2 shows two DFAs based on the

two tasks, where the atomic task πA denotes “a robot achieves task A” and πB describes “a robot achieves

task B”. Then, the DFA Gφ1 in Fig. 3.2(a) describes that “robots in the MRS achieve task B directly; or

they first achieve task A and next achieve task B”. The DFA Gφ2
in Fig. 3.2(b) says “the MRS achieves

tasks A and B in any sequence”. The language of the two automata are L(Gφ1
) = {πAπB , πB}, and

L(Gφ2) = {πAπB , πBπA}.

For the DFA Gφ2
in Fig. 3.2(b), the projection of the automaton into two event subsets E1 = {πA}

and E2 = {πB} are L(P1(Gφ2
)) = {ρ1 | ρ1 = P1(ρ), ρ ∈ L(Gφ2

)} = {πA} and L(P2(Gφ2
)) = {ρ2 | ρ2 =

P2(ρ), ρ ∈ L(Gφ2)} = {πB}, respectively. The two projections of the automaton are shown as G1 =
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Figure 3.2: (a) The DFA of the task specification “robots in the MRS achieve task B directly; or they first
achieve task A and next achieve task B”, (b) the DFA of the task specification “the MRS achieves tasks A
and B in any sequence”, (c) parallel decomposition of DFA Gφ2

, and (d) possible satisfaction processes of
the two DFAs. DFA Gφ1 can be satisfied by “Plan 1”; DFA Gφ2 can be satisfied by either “Plan 1” or “Plan
2”.

P1(Gφ2) and G2 = P2(Gφ2) in Fig. 3.2(c) left. According to Def. 8, the state transitions of parallel composi-

tion of the two projections, i.e., G1∥G2, are {f((0, 1), πA) = (1, 1), f((0, 1), πB) = (0, 0), f((1, 1), πB) =

(1, 0), f((0, 0), πA) = (1, 0)} (see Fig. 3.2(c) right). It satisfies L(P1(Gφ2
)∥P2(Gφ2

)) ≡ L(Gφ2
) ac-

cording to Def. 9. Therefore, Gφ2 can be parallel decomposed into two automata whose languages are

L(G1) = L(P1(Gφ2
)) and L(G2) = L(P2(Gφ2

)). As a result, the words ρ1 = πA and ρ2 = πB , i.e., the

two go-to-goal tasks, can be satisfied consecutively by one robot (Plan 1 in Fig. 3.2(d)) or in parallel by two

independent robots (Plan 2 in Fig. 3.2(d)).

The projections of DFA Gφ1
into two event subsets E1 = {πA} and E2 = {πB} are the same

with that of Gφ2
, i.e., L(P1(Gφ1

)) = {πA} and L(P2(Gφ1
)) = {πB}. However, the state transitions of

parallel composition of the two projections do not satisfy the language equivalence relation with Gφ1 , i.e.,

L(P1(Gφ1
)∥P2(Gφ1

)) ̸≡ L(Gφ1
), according to Def. 9. Therefore, the task specification DFA Gφ1

can

only be achieved sequentially as “Plan 1” but not in parallel as “Plan 2” because it does not satisfy parallel

decomposability. •

One can also describe the linear time property of an MRS in an intuitive and mathematically precise

expression, i.e., LTL.

Definition 10 (LTL Specification [10]). An LTL formula φ is formed from atomic propositions, proposi-

tional logic operators, and temporal operators according to the grammar φ ::= true | π | ¬φ | φ1 ∨ φ2 |
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Figure 3.3: The converted automata DFA of LTL task specifications φ1 and φ2. Note the DFA here is obtained
by removing the transitions that infinitely visit the final states of the converted DBA from software “spot”.

⃝φ | φ1 U φ2, where π is an atomic proposition, ¬ (negation) and ∨ (disjunction) are Boolean operators,

and⃝ (next) and U (until) are temporal operators. More expressive operators can be constructed from the

above operators, such as, conjunction: φ1 ∧ φ2 = ¬(¬φ1 ∨ ¬φ2), eventually: ♢φ = true U φ, and always:

□φ = ¬♢¬φ.

A co-safety LTL formula, which is a subset of LTL formulae only occurring the⃝, ♢ and U tem-

poral operators, can be converted to a deterministic finite automaton2(DFA). The chapter deals with the finite

words of a task specification in the MRS parallel satisfaction process and focuses on the co-safety LTL.

Example 2. Based on the two atomic tasks in Example 1, one can describe different co-safety LTL speci-

fications. Here, let us consider two example LTL specifications: φ1 = ♢πA: “finally a robot in the MRS

achieves the go-to-goal task A” and φ2 = ♢πA ∧ ♢πB : “finally the MRS achieve the go-to-goal tasks A and

B in any sequence”. Each LTL formula can be converted to a DFA as shown in Fig. 3.3. •

3.2.2 Problem Setup

Assume a group of heterogeneous robots R has a set of atomic tasks AP to accomplish, but their

assignment relation is unknown. The atomic tasks in AP are subject to the linear time property and formulate

an LTL task specification φ according to Def. 10. The capability of each robot can be described by a finite

labeled capability transition system TEn according to the definition of the finite transition system in [10].

The process of checking if there are viable transitions in the robot capability transition system to satisfy the

task specification is a verification problem.

2A co-safety LTL specification can be converted into a DFA by first using open source toolboxes “spot”: https://spot.lrde.
epita.fr/app/ to derive a deterministic Büchi automaton (DBA) and further removing the suffix satisfying LTL for infinite times.
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Definition 11 (Finite Labeled Capability Transition System). Given an indexed robot rn ∈ R, the task

execution capability of robot rn in a specific environment can be abstracted as the robot capability transition

system

TEn :=
(
Sn, An, δn, s0,n, APn,Ln,Wn

)
, (3.1)

where the state set Sn contains all the abstracted task performing states of robot rn; An is the action set of

the robot; δn(s, α) = s′ describes the transition of robot from task performing state s ∈ Sn to s′ ∈ Sn

by executing an action α ∈ An; s0,n ∈ Sn is the initial task performing state; APn is the set of atomic

propositions related with task performing states; Ln : Sn → 2APn labels the robot states with the propositions

derived from APn; and Wn : Sn × An → IR+ weighs the cost of robot rn at state sn ∈ Sn with action

α ∈ An.

The label relation Ln from state set Sn to proposition set 2APn represents the tasks that each robot

rn is capable of performing. Each robot rn achieves the atomic task π ∈ AP if it has a task performing state

sn ∈ Sn satisfies π, i.e., Ln(sn) ∋ π. Here, each abstracted task performing state describes that a robot

performs a general task, such as “picking up an object” or “unloading objects”.

Definition 12 (Parallel Composition of Capability Transition Systems [10]). Given two finite la-

beled capability transition systems of robots TE1 :=
(
S1, A1, δ1, s0,1, AP1,L1,W1

)
and TE2 :=(

S2, A2, δ2, s0,2, AP2,L2,W2

)
according to Def. 11, their parallel composition is a transition system

TE1∥TE2 :=
(
S1 × S2, A1 ∪A2, δ1,2, ⟨s0,1, s0,2⟩, AP1 ∪AP2,L1,2,W1 ×W2

)
, where the transition re-

lation δ1,2 can be specified as δ1,2(⟨s1, s2⟩, α) := ⟨s1, s2⟩′ :=



⟨s′1, s2⟩ if α ∈ A1 \Ac ∧ δ1(s1, α) = s′1,

⟨s1, s′2⟩ if α ∈ A2 \Ac ∧ δ2(s2, α) = s′2,

⟨s′1, s′2⟩ if α ∈ Ac ∧ δn(sn, α) = s′n, n = 1, 2,

where Ac := A1 ∩ A2 denotes the set of cooperative actions that need the simultaneous transitions of robots

r1 and r2’s capability states; and the labeled relation L1,2 : S1 × S2 → 2AP1∪AP2 labels each state ⟨s1, s2⟩

through L1,2(⟨s1, s2⟩) := L1(s1) ∪ L2(s2).

Now assume the MRS has N robots, the parallel composition of capability transition systems

TEn, n = 1, · · · , N can be ∥Nn=1TEn := ((TE1∥TE2)∥ · · · )∥TEN according to Def. 12. The paral-
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Figure 3.4: Triangulated 2D workspace. The obstacle polygons are over-estimation of the actual size of the
obstacles.

lel composition ∥Nn=1TEn describes all the states of the MRS and their viable transitions. A sequence of

task performing states of ∥Nn=1TEn is a path ⟨s(0)1 , · · · , s(0)N ⟩ · · · ⟨s
(τ)
1 , · · · , s(τ)N ⟩ · · · ⟨s

(T)
1 , · · · , s(T)N ⟩. Denote

the state transition operator as δR and δR(⟨s(τ)1 , · · · , s(τ)N ⟩, α) = ⟨s(τ+1)
1 , · · · , s(τ+1)

N ⟩. Denote the label

relation of ∥Nn=1TEn as LR, the path is said to satisfy the task specification φ if the corresponding trace

LR(⟨s(0)1 , · · · , s(0)N ⟩) · · · LR(⟨s(τ)1 , · · · , s(τ)N ⟩) · · · LR(⟨s(T)1 , · · · , s(T)N ⟩) has an accepted run of states in the

converted automaton Gφ of φ. In other words, the MRS can work sequentially according to the path to

satisfy the task specification. The path is also called the task plan.

The task plan requires the corresponding robots rn to travel to the designated locations of their

assigned atomic tasks. The hybrid local motion planner in [56] is utilized to generate the trajectory between

each two designated locations of interest. The overall process is summarized as follows. A finite labeled

motion transition system TMn is first introduced based on the discrete workspace (e.g., see Fig. 3.4) for any

robot rn.

Definition 13 (Finite Labeled Motion Transition System). Given an indexed robot rn ∈ R, with a state

set Cn containing all cells of a discretized workspace, the robot motion can be constructed as a finite labeled

transition system

TMn :=
(
Cn, δ

c
n, c0,n, AP cn,Lcn,W c

n

)
, (3.2)

where δcn(c) = c′ describes the robot’s motion transition from cell c ∈ Cn to c′ ∈ Cn; c0,n ∈ Cn is the
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initial cell that the robot is located at; AP cn is the set of atomic propositions related with robot motion states;

Lcn : Cn → 2AP
c
n labels each cell regarding whether it satisfies the propositions derived from AP cn; and W c

n :

δcn → IR+ is the cost set of each motion. A path of TMn is a sequence of states σn := c(0)c(1) · · · c(t) · · · ,

where c(t) ∈ Cn is the state at step t ≥ 0 and δcn(c
(t)) = c(t+1).

Each designated location is labeled with propositions in 2AP
c
n . These propositions can be utilized to

encode safety or liveness specifications, such as avoidance or reachability of a cell. A model checker, such

as NuSMV, can generate a counter-example that violates the negation of safety or liveness specifications in

TMn. Then, each robot can take the counter-example as a discrete path σn to the designated location of s(τ)n

while satisfying the reachability of the desired cell and collision avoidance with obstacles in a cell. Finally,

a hybrid controller generates the trajectory that steers each robot from one discrete cell to an adjacent cell in

the discrete path σn.

Generally, the MRS can accomplish the atomic tasks of task specification according to the central-

ized strategy using ∥Nn=1TEn := ((TE1∥TE2)∥ · · · )∥TEN . Nevertheless, according to Def. 9 and Example

1, the task specification φ can be achieved in parallel by the MRS if φ satisfies the parallel decomposability.

The MRS can be divided into different subgroups of robots and work in parallel for each decomposed subtask

specification. The level of parallelism of MRS can be quantified with the number of independently and si-

multaneously achieved subtask automata. Parallelism will reduce not only the complexity of the multi-robot

multi-task process but also the computation of generating the task plan. However, the MRS may lack enough

robots to work in parallel for these multiple subtask specifications. Then, it may result in concurrent task

performing situations that a subgroup of robots has to work for the composition of several subtask specifica-

tions. Besides, different robots in the MRS can have overlapping capabilities and are capable of performing

the same tasks; and the tasks that all the provided robots are capable of performing can cover the given task

specification, i.e., 2∪
N
n=1APn ⊇ 2AP. In such cases, robot assignments for atomic tasks will lead to different

levels of parallelism for the MRS. Therefore, the MRS needs a generalizable robot assignment and task plan-

ning framework that can guarantee the high level of parallelism. Under the above multi-robot multi-tasking

configuration, the problem of interest can be formulated as follows.

Problem of Interest 2. Given a set of heterogeneous robots R without any preassigned tasks and a task

specification φ composed with a set of atomic propositions AP, design a decentralized top-down task and

motion planning framework for the MRS such that

1. the task specification φ can be decomposed into smaller tasks, and
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2. the robotsR can accomplish the tasks in parallel and concurrently without violating the task specifica-

tion φ.

3.3 Related Work

Although centralized framework of MRS task and motion planning has the high computation, sev-

eral sampling-based algorithm has been developed to reduce the computation. Kantaros and Zavlanos seek to

improve the computation speed of the centralized framework by incrementally building “trees” that can ap-

proximate the state-space and transitions of the synchronization results, i.e., the product automaton, and using

a sampling-based approach to search for the optimal solution [42, 43]. Other relevant works for improving

the computational efficiency of obtaining the optimal solution using sampling-based searching strategies can

be found in [89, 44]. In this chapter, it instead focus on improving the computational efficiency of task and

motion planning for MRS under temporal logic specifications by reducing the state-space of the generated

product automaton, which can be achieved in a decentralized framework. The above sampling-based search-

ing strategy may be applied over the proposed decentralized framework to further improve the computational

efficiency, which is however outside the scope.

Some extant decentralized computational frameworks first synchronize each robot’s transition sys-

tem with the converted automaton of its assigned task; then guarantee the combination of all the synchro-

nization results to satisfy the desired global property of MRS. A few computationally efficient decentralized

task and motion planning frameworks have been developed to deal with the LTL or RE task specifications

[25, 20, 19, 88, 86, 87, 34, 35, 77, 78].

In a top-down framework, the global task specification is decomposed into subtasks under some

prescribed conditions for each robot to accomplish, such as the trace-closedness property in [25, 20, 19, 88]

and the parallel decomposability property in [45, 23]. The satisfaction of global task specification is ensured

by each robot accomplishing its subtask. These top-down frameworks have a predefined and fixed assignment

relation between robots and subtasks such that these robots can satisfy the desired task specifications in

a decentralized form. In comparison, bottom-up strategies design local control rules for each robot and

coordinate among robots so that the prescribed global property can be collaboratively guaranteed [86, 87, 34,

35, 77, 78]. These bottom-up task planning frameworks are developed for specifications featured by loosely

coupled subtasks. The complexity of connections between subtasks affects the inter-dependencies among

robots.
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In the decentralized computational frameworks, by default, the task specifications are achieved in

a sequential manner. For example, in the LTL navigation tasks of ([20, 78]), the frameworks generally

synthesize a single chain of optimal task plan satisfying the task specification. The MRS accomplishes the

mission at each step of the task plan by assigning a single robot or a collaborated subgroup of robots to reach

the designated locations. However, by having multiple robots working simultaneously and independently, the

tasks can be completed faster [32]. A process executing multiple tasks on multiple robots simultaneously (in

parallel) is called parallelism [38]. In the above navigation example, the parallelism can be that the task plan

is split into multiple chains of independent task sub-plans without shared robots. The associated robots of

each task sub-plan navigate to their respective destinations independently from other sub-plans. Parallelism is

usually accompanied by concurrency, where a robot or a group of robots accomplishes multiple tasks through

interleaved executions [38]. In the above navigation example, the concurrency can be that there are shared

robots preventing the task plan from being split into the independent task sub-plans. The associated robots of

each task sub-plan can not navigate to their respective destinations independently from other sub-plans, but

can accomplish all the missions of sub-plans in an interleaved manner. Nevertheless, very few works on task

and motion planning for MRS under temporal logic specifications consider this problem.

Furthermore, it is critical to consider the assignment of robots to task specifications in the task

planning framework. Different robot assignments can lead to various decentralized task planning solutions

with the corresponding computational complexity. In addition, the robot-task assignments that lead to the

higher level of parallelism and concurrency will significantly reduce the coordination difficulty and speed up

the multi-robot multi-task process. However, existing top-down frameworks give a predefined assignment

relation between each robot and atomic task, i.e., the smallest task component in a task specification, while

the majority of the bottom-up frameworks assign each robot to a specific local task specification. These

decentralized frameworks can achieve low computational complexity if and only if the MRS works under

their predefined robot assignment. They fail to consider the situation where the MRS can have different robot-

task assignment relations if robots have partially overlapping capabilities and are capable of accomplishing

the same subset of atomic tasks [33, 104, 83, 47]. Only recent works [78, 11] start to consider the overlapping

capability and allow robots to switch between different subtasks in satisfying the task specification, which

however still begin with a predetermined assignment relationship between robots and task specifications.
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3.4 Parallel Decomposition of Task Specification

Assume a global task automaton Gg :=
(
Xg, Eg, fg, x0,g, XF,g

)
according to Def. 6 and the event

set is Eg ⊆ 2AP. The MRS can work in parallel for a global task specification, if the automaton Gg of the task

specification satisfies the parallel decomposability, i.e., L(Gg) ≡ L(P1(Gg)∥ · · ·Pi(Gg)∥ · · ·PI(Gg)) with

event sets {Ei, i := 1, · · · , I}, and
⋃I
i=1 Ei = Eg according to Def. 9. Additionally, it is possible for an

automaton Gg to generate a set of parallel decomposition components Pi(Gg) if it contains a subautomaton

that strictly satisfies the parallel decomposability, i.e., L(Gg) ⊇ L(∥Ii=1Pi(Gg)). Therefore, one can enhance

the generality of the parallel decomposition algorithm by finding the subset decomposable language from

L(Gg).

Definition 14 (Event-equivalent Words Composed Automaton). Given an automaton G, the words

ρ ∈ L(G) and ρ′ ∈ L(G) are called the event-equivalent words of the automaton G iff (1) the event sets

composing ρ and ρ′ are the same, and (2) the occurrence frequencies of every event in ρ and ρ′ are equal. If

all the words ρ ∈ L(G) are event-equivalent with the event set Ě, denote the automaton as Ǧ.

Let {Ǧl, l ∈ Z} be a collection of event-equivalent words composed subautomata of Gg , where all

the words of each subautomaton Ǧl are event-equivalent with respect to event set Ěl and L(Ǧl) ⊆ L(Gg).

The automaton Gg is also parallel decomposable if it has a subautomaton Ǧl whose language satisfies the

parallel decomposability.

Example 3. A global task DFA Gg is shown in Fig. 3.5 (a). The event-equivalent words composed two

automata can be extracted with event sets Ě1 = {πe, πa, πb, πc} and Ě2 = {πe, πa, πb, πd}. The paths of

each subautomaton have the same event set. The details are shown in Fig. 3.5 (b) and (c). •

To simplify the notation, ignore the subscript of Ǧl and Ěl in the rest of this section. The iterative

parallel decomposition can be summarized with the below process. Denote the single event set of automaton

Ǧ as Ěs, the cooperative event set as Ěc, and Ěc ∪ Ěs = Ě. The power set of all the single events is 2Ě
s

,

which collects all the subsets of Ěs. Denote single event set Es
j ∈ 2Ě

s

, j = 1, · · · , J, as an arbitrary subset

of Ěs. Then, subset Ěs \ Es
j collects the remaining single events in Ěs. One can divide the event set Ě of

automaton Ǧ into a pair of events Ej := Es
j ∪ Ěc, Ej := (Ěs \ Es

j ) ∪ Ěc, and the event set pair (Ej , Ej)

satisfies Ej ∪ Ej = Ě. Then, all the event set pairs can be described as

E := {(Ej , Ej)|E
s
j ∈ 2Ě

s

, Ej := Es
j ∪ Ěc, Ej := (Ěs \ Es

j ) ∪ Ěc}. (3.3)
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Figure 3.5: (a) The global task DFA Gg with event set Eg , (b) the event-equivalent words composed automa-
ton Ǧ1 with event set Ě1 = {πe, πa, πb, πc}, and (c) the event-equivalent words composed automaton Ǧ2

with the event set Ě2 = {πe, πa, πb, πd}.

The parallel decomposition verification is implemented for all event set pairs (Ej , Ej) queued by the size

of Ej (i.e., |E1| ≤ · · · |Ej | ≤ · · · |EJ |) until it finds the pair of projections (Pj(Ǧ), Pj(Ǧ)) that satisfies

Pj(Ǧ)∥Pj(Ǧ) ∼= Ǧ for an arbitrary j. Here, Pj(Ǧ) and Pj(Ǧ) are the corresponding projections of Ǧ into

event set pairs (Ej , Ej), and are taken as the decomposition components G1 = Pj(Ǧ) and G1 = Pj(Ǧ) in the

first decomposition iteration. If none of the event set pairs in E can satisfy the decomposability property, the

automaton Ǧ is indecomposable. Otherwise, a further decomposability verification is implemented on G1 to

obtain new components. The above processes are repeatedly implemented on the decomposition component

Gi in the i+ 1th iteration until it cannot find any new decomposition components. As a result, each parallel

decomposition result of Ǧ contains a maximum amount of indecomposable subtask automata, i.e., each

subtask automaton is the smallest decomposition component. It can guarantee the MRS performs tasks with

a maximum amount of sub-processes, and hence achieves the global task with the highest level of parallelism.

Summarize the above iterative decomposition process in Alg. 2.

Example 4. Take the event-equivalent words composed automata in Exam-

ple 3(c) as an example, one can synthesize all the event set pairs E2 =

{({πe, πa}, {πe, πb, πd}), ({πe, πb}, {πe, πa, πd}), ({πe, πd}, {πe, πa, πb})}. Project the automaton

Ǧ2 (Fig. 3.5(c)) into every event set pair in E2, and verify the language equivalence of the composition of the

projections to Ǧ2. Fig. 3.6(a) shows the projections of Ǧ1 to ({πe, πa}, {πe, πb, πd}) and the composition

result of the projections. The result is not language equivalent to Ǧ2. In comparison, Fig. 3.6(b) shows

the projections of Ǧ2 to ({πe, πb}, {πe, πa, πd}) and the composition result of the projections is language
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Algorithm 2 Iterative Parallel Decomposition of Task

Input: Initial task automaton Ǧ
Output: Decomposition results: subtask automata Gis

1: function TASKDECOM(Ǧ)
2: E← Eqn. (3.3), i← 1, j ← 1

3: while
∣∣∣Ě∣∣∣ > 1 do ▷ Size of Ě

4: for (Ej , Ej) ∈ E do ▷ Ej ∪ Ej = Ě, try all the event set pairs
5: if L(Pj(Ǧ)∥Pj(Ǧ)) ≡ L(Ǧ) then ▷ Language equivalence
6: Ǧ ∼= Pj(Ǧ)∥Pj(Ǧ), Gi ← Pj(Ǧ), i← i+ 1 ▷ Decomposable
7: Ǧ← Pj(Ǧ), Ě ← Ej , E← Eqn. (3.3), j ← 1 ▷ Prepare for the next decomposition
8: break
9: else

10: Ǧ ̸∼= Pj(Ǧ)∥Pj(Ǧ), j ← j + 1 ▷ Indecomposable
11: end if
12: end for
13: J ←|E| ▷ Amount of all the event set pairs
14: if j = J + 1 and Ǧ ̸∼= PJ(Ǧ)∥PJ(Ǧ) then ▷ Stop after trying all event set pairs
15: break
16: end if
17: end while
18: I ← i, GI ← Ǧ
19: return G1, · · · , GI−1, GI ▷ Ǧ ∼= G1∥ · · ·GI−1∥GI

20: end function

equivalent to Ǧ2. As a result, the DFA Ǧ2 can be initially parallel decomposed into the two projections

{L(G1) = {πeπb}, L(G1̄) = {πeπaπd}} in Fig. 3.6 (b).

In the second iteration of parallel decomposition, the remaining (larger size) projection L(G1̄) =

{πeπaπd} has the event set pairs E2 = {({πe, πa}, {πe, πd})}. The projection of automaton G1̄ into the

only event set pair ({πe, πa}, {πe, πd}) generates two components L(P1(G1̄)) = {πeπa} and L(P2(G1̄)) =

{πeπd}. It is obvious that the composition of the two projections is not language equivalent to the automaton

G1̄, i.e., P1(G1̄)∥P2(G1̄) ̸≡ G1̄. Hence, the automaton G1̄ can not be decomposed into any smaller automata

according to the parallel decomposability definition and can be denoted as G2. Finally, the parallel decom-

position results are: {L(G1) = {πeπb}, L(G2) = {πeπaπd}} for automaton in Fig. 3.5(c). •

Theorem 1. The iterative parallel decomposition of a task automaton Ǧl with respect to its event set pairs

El (generated in Eqn. (3.3)) guarantees a unique set of smallest parallel decomposition components, i.e., the

subtask automata.

Proof In the iterative decomposition process, the queuing of the event set pairs in El guarantees the
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Figure 3.6: Automaton Ǧ2 has event set Ě2 = {πe, πa, πb, πd}, and the set of event set pairs E2 =
{({πe, πa}, {πe, πb, πd}), ({πe, πb}, {πe, πa, πd}), ({πe, πd}, {πe, πa, πb})}, (a) the projections of Ǧ2 to
the event set pairs ({πe, πb}, {πe, πa, πd}) and the composition result of the projections; (b) the projections
of Ǧ2 to the event set pairs ({πe, πb}, {πe, πa, πd}) and the composition result of the projections.

projection Gi to be the smallest indecomposable subtask automaton in each decomposition. It is because a

smaller event set can be verified before its event set Ei for the decomposability verification, if Gi can be

further decomposed.

Uniqueness of the decomposition components: Assume there are two different sets

of smallest decomposition components for Ǧl, i.e., {G1, · · · , GI , G
′
1, · · · , G′

I′} with event sets

{E1, · · · , EI , E′
1, · · · , E′

I′} and {G1, · · · , GI , G
′′
1 , · · · , G′′

I′′} with event sets {E1, · · · , EI , E′′
1 , · · · , E′′

I′′}.

Here, {Gi, i = 1, · · · , I} represent possible common decomposition components, which can also be empty

without loss of generality. For all the remaining smallest decomposition components G′
i′ , i

′ = 1, · · · , I ′,

given an event set E′
i′ ⊂ ∪i′′∈IE

′′
i′′ with I ⊆ {1, · · · , I ′′}, it follows that L(G′

i′) = L(Pi′(∥i′′∈IG
′′
i′′)) and

vice versa for all G′′
i′′ . One can also obtain the event set of the projection Pi′(∥i′′∈IG

′′
i′′) as

⋃
i′′∈I(Ei′′ ∩Ei′),

and conclude that L(Pi′(∥i′′∈IG
′′
i′′)) = L(∥i′′∈IPi′(G

′′
i′′)). It is because each Pi′(G

′′
i′′) substitutes transitions

featured by events in Ei′′ \ Ei′ with ϵ, and it does not affect the parallel property. Consequently, G′
i′ can

still satisfy the decomposability, which is contradicted with the assumption about smallest decomposition

component. Therefore, the set of smallest decomposition components is unique.

In the overall decomposition process, enumerate all the event subsets and identify those subsets that

make the parallel decomposition viable. In comparison, the works in [45, 78, 77] conduct the decomposition

of a task specification only concerning the given capability set of each robot. Next, denote the subautomaton
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Ǧl′ as the decomposable automaton in {Ǧl, l ∈ Z} because not all the event-equivalent words composed

automata are decomposable. The corresponding event set of subautomaton Ǧl′ can be denoted as the decom-

posable event set Ěl′ , l′ ∈ Z.

Proposition 2. A global task automaton Gg is said to be loosely decomposable, if there exists a subautomaton

Ǧl′ with L(Ǧl′) ⊆ L(Gg), which is event-equivalent with the event set Ěl′ and satisfies the equivalence

relation Ǧl′
∼= ∥Il′i=1Pi(Ǧl′) according to Thm. 1. Denote the collection of all the decomposable event sets as

Eg := {Ěl′ , l′ ∈ Z} and the collection of all decomposable subautomata of Gg as {Ǧl′ , l
′ ∈ Z}.

Proof The automaton Gg can be decomposed in different ways, if L(Gg) contains the strict decom-

posable language L(Ǧl′) with respect to different decomposable event sets Ěl′ according to Thm. 1. Any

L(Ǧl′) ⊆ L(Gg) with Ěl′ ∈ Eg can satisfy the global task specification, and the words L(Gg) \ L(Ǧl′) do

not affect this satisfaction. Therefore, one can take {Pi(Ǧl′), i = 1, · · · , Il′} as the parallel decomposition

components satisfying the global task specification.

3.5 Parallel Decomposition based Robot Assignment and Task Plan-

ning without Robot Transition System

This section presents an automatic robot and task assignment framework to synthesize an optimal

solution from the sets of subtasks {{Pi(G ↓Σid), i ∈ Z},Σid ∈ ΣD}.

3.5.1 Parallel Task Allocation Automaton of MRS

Definition 15 (Task Allocation Automaton). Given a task automaton G = (X,E, f, x0, Xm) and a robot

set R, a task allocation automaton Ψ = (Xψ, Actψ, δψ, xψ,0, Xψ,m,Wψ) can be synthesized to describe the

assignment of robots to the events in the task automaton, where

1. Xψ = X is the task completion state set, xψ,0 ∈ Xψ is the initial state, Xψ,m ⊆ Xψ is a final state set;

2. Actψ = {(R, e)|R ⊆ R, e ∈ ∪r∈REr
⋂

E} is the set that describes a subset R of robots performing

the event e of the task automaton, where e can be a single or a cooperative event, and ∪r∈REr
⋂
E

ensures the robots in set R are capable of performing the events in G;

3. δψ(xψ, actψ) = x′
ψ iff f(xψ, e) = x′

ψ with xψ, x
′
ψ ∈ Xψ;
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4. Wψ : Actψ → R is the cost set with Wψ(actψ) estimating the total cost of robot set R for event e ∈ E.

The above structure can be used to synthesize a global task allocation automaton for the MRS to

perform tasks in a consecutive way, which does not consider the task concurrency. On the other hand, we

have obtained a set of decompositions Pi(G ↓Σid) that can work in parallel. To add the concurrency of MRS

tasking, we incorporate the concurrent execution ∥i∈ZPi(G ↓Σid) to synthesize a parallel task allocation

automaton, which contains all the concurrent task performing by robot set. We start with a parallel execution

of two of such subtask allocation automata as follows.

Definition 16 (Parallel Execution of Task Allocation Automata). Given two subtask allocation automata

Ψ1 = (Xψ,1, Actψ,1, δψ,1, x
1
ψ,0, X

1
ψ,m,Wψ,1) and Ψ2 = (Xψ,2, Actψ,2, δψ,2, x

2
ψ,0, X

2
ψ,m,Wψ,2), a paral-

lel execution of Ψ1 and Ψ2 is defined as Ψ1 ⊕ Ψ2 = (Xψ,1 × Xψ,2, Act1,2ψ , δ1,2ψ , (x1
ψ,0, x

2
ψ,0), X

1
ψ,m ×

X2
ψ,m,W 1,2

ψ ), where

1. Act1,2ψ = Actψ,1
⋃
Actψ,2

⋃
Act1⊕2

ψ , where Act1⊕2
ψ = {(act1⊕2

ψ,1 , act
1⊕2
ψ,2 )|act

1⊕2
ψ,1 = (R1, e1) ∈

Actψ,1, act
1⊕2
ψ,2 = (R2, e2) ∈ Actψ,2, R1 ∩ R2 = ∅} is the set that describes two subsets of robots

R1 and R2 parallel executing events e1 and e2;

2. δ1,2ψ ((xψ,1, xψ,2), act
1,2
ψ ) =



(x′
ψ,1, x

′
ψ,2), if act1,2ψ ∈ Act1∪2

ψ ,

(x′
ψ,1, xψ,2), if act1,2ψ ∈ Actψ,1 \Act1∪2

ψ,1 ,

(xψ,1, x
′
ψ,2), if act1,2ψ ∈ Actψ,2 \Act1∪2

ψ,2 ;

where Act1∪2
ψ = Act1⊕2

ψ

⋃
(Actψ,1∩Actψ,2). Act1∪2

ψ,1 and Act1∪2
ψ,2 are the respective subsets of Act1∪2

ψ

associated with Ψ1 and Ψ2;

3. W 1,2
ψ : Act1,2ψ → R+ is the set denoting the costs of robots in R1 and R2 for executing events e1 and

e2, where wψ,1 ∈Wψ,1 and wψ,2 ∈Wψ,2.

Remark 3. Note that in the set Act1∪2
ψ , if act1,2ψ ∈ Actψ,1∩Actψ,2, it corresponds to a robot set R ⊆ R1∩R2

performing a cooperative event e ∈ E1 ∩ E2, where R1 and R2 are the respective robots associated with Ψ1

and Ψ2. If act1,2ψ ∈ Act1⊕2
ψ , it describes two sets of robots R1 and R2 performing their corresponding events

e1 ∈ E1 and e2 ∈ E2 in parallel with R1 ∩R2 = ∅. Furthermore, not all events e1 ∈ E1 and e2 ∈ E2 can be

parallel executed in cases R1 ∩R2 ̸= ∅, i.e. a robot cannot perform different tasks at the same time. •
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For a set of parallel subtask allocation automata {Ψi, i = 1, · · · , I}, we can obtain the parallel

execution of these Ψi with
⊕I

i=1 Ψi = ((Ψ1 ⊕ Ψ2) ⊕ · · · ) ⊕ ΨI . We call this automaton the parallel task

allocation automaton, and denote it as
⊕I

i=1 Ψi = (X⊕, Act⊕, δ⊕, x⊕,0, X⊕,m,W⊕). The parallel task

allocation automaton not only explicitly presents the multi-robot parallel task performing, but also reduces

the states of task allocation.

A finite path S⊕ = act
(0)
⊕ · · · act

(τ)
⊕ · · · act

(T)
⊕ presents a task allocation solution to

⊕I
i=1 Ψi, where

act
(τ)
⊕ = (act

(τ)
ψ,1, · · · , act

(τ)
ψ,I) ∈ Act⊕ denotes different sets of robots Ri performing their respective event ei

in parallel. Note that an act
(τ)
ψ,i may be empty, denoted by ϵ, in an act⊕ψ since not all transitions of the parallel

task allocation automaton have I compositions. Denote η(actτ⊕) as the actual number of parallel executions

of subtask allocation automata in actτ⊕. We can lower the costs of the task allocation solutions with higher

concurrency by imposing a discount to the corresponding transitions of
⊕I

i=1 Ψi with αη(act
τ
⊕)−1W⊕(act

τ
⊕),

where α ∈ [0, 1] is a concurrency weight.

3.5.2 Optimal Parallel Task Allocation Solution for MRS

We next aim to obtain an optimal task allocation solution for the MRS, which involves the costs

of (i) concurrency for multi-robot multi-task processing, (ii) task execution considering robot heterogeneity,

and (iii) robot motion considering traveling distance and energy consumption. A minimization of these three

costs contributes to a global optimization of our task allocation. Since
⊕I

i=1 Ψi already takes into account

the costs of concurrency and task execution in each transition, the next step is to add the motion cost and

search for the path with minimal accumulated cost along the transitions of
⊕I

i=1 Ψi.

The costs of motion of each transition in
⊕I

i=1 Ψi are directly related to the reachability of each

event in actψ,i ∈ Actψ,i for robot set Ri. We denote the reachability as a motion specification Mot
(τ)
ψ,i,

which is conducted before each act
(τ)
ψ,i in S⊕. Each specification Mot

(τ)
ψ,i can be described in the LTL form

as ¬L−1
q (act

(τ)
ψ,i) U act

(τ−1)
ψ,i , L−1

q : πi → q, which means that: “At step τ , each robot ri ∈ Ri will go

to the position of its implementable action (ri, πi) |= act
(τ)
ψ,i iff the previous act

(τ−1)
ψ,i in the same subtask

automaton has been completed”. The estimated costs of each robot’s motion specification is propositional

to the distance of planned paths. The transition system of robot rk for Mot
(τ)
ψ,i in a discrete space can be

described as a transition system of robot path planning according to Eqn. (13) at step τ corresponding to

subtask automaton Gi, denoted as TS
(τ)
i,k . The model checking with LTL motion specification Mot

(τ)
ψ,i and

transition system TS
(τ)
i,k can generate a motion planning path σ

(τ)
i,k = q

(τ,0)
i,k · · · q(τ,t)i,k · · · satisfying Mot

(τ)
ψ,i

with the lowest motion cost min(Wq,k(σ
(τ)
i,k )).
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We use the Dijkstra algorithm to search the optimal task allocation solution from the parallel task

allocation automaton
⊕I

i=1 Ψi. Note that the costs of motion at each transition are varied based on the

previous task allocations during the Dijkstra searching process; hence motion costs can only be computed

during this phase. In addition, recall that we may have different sets of decompositions {{Pi(G ↓Σid), i ∈

Z},Σid ∈ ΣD}. Each {Pi(G ↓Σid), i ∈ Z} can synthesize an suboptimal task allocation solution S⊕,id with

respect to Σid. We can finally compare these suboptimal solutions and select the one with the minimal costs,

i.e. S∗⊕, Σ
∗
id ∈ ΣD.

Given an optimal task allocation S∗⊕, the optimal sequence of task allocation and motion specifica-

tions is then given as

MS∗⊕ = Mot
(0)
⊕ act

(0)
⊕ · · ·Mot

(τ)
⊕ act

(τ)
⊕ · · ·Mot

(T)
⊕ act

(T)
⊕ . (3.4)

3.6 Parallel Decomposition based Robot Assignment and Task Plan-

ning with Robot Transition System

The work in the previous section dealt with a set of subtasks in parallel by assuming the robot

states can transit arbitrarily. The work first assigned robots to the automaton corresponding to each subtask

specification. Then the framework composed all the robot-automaton assignment results and sought for the

optimal task planning solution. Fig. 3.7 shows the concept of the preliminary work with two different

robot-automaton assignment examples, each of which has a level of parallelism. However, a practical task

execution process needs viable robot state transitions for the satisfaction of a task specification (see the left

bottom section of Fig. 3.7). It is a verification problem and can become more challenging in situations where

insufficient robot resources are shared among multiple parallel subtask specifications. The reason is one robot

may not be able to switch across the different subtask specifications. That means a limited number of robots

will result in conflicts among the parallel task performing processes, which leads to a deadlock. The parallel

decomposition-based SPA in this section can resolve the above issue and provide a deadlock-free solution.

Given a task automaton Gg and a group of robots with capability transition systems TEn, n =

1, · · · , N , a robot assignment and task planning problem considers which robots shall be assigned to which

atomic tasks so that these robots can satisfy the global task specification. The robot assignment and task

planning solution can be obtained with model checkers, such as SPIN and NuSMV, by verifying the global

automaton Gg with the parallel composition of transition systems ∥Nn=1TEn. However, the synthesized
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Assignment 1

Assignment 2

Subtask 

automata

Robot states without transition constraints

Robot states with transition constraints

Task 

automatons0

s1

s2

s0

s1

s2

π0

π2

π1

Figure 3.7: Illustration of two example robot-task assignments in the paper [103]. Assignment example 1
shows the assignment of the “white” robot to switch across the two corresponding subtask automata and col-
laborate with the “yellow” robot, and the “black” robot to switch across two subtask automata and collaborate
with the “green” and “blue” robots. Assignment example 2 shows the assignment of the “white” and “red”
robots as one subgroup and the “black” and “blue” robots as another subgroup. Both example assignments
assume every robot can transit among states arbitrarily. The validity of the assignments can be pretty different
if each of the robots has state transition restrictions (as the case considered in this paper and illustrated in the
grey shaded box in the left bottom corner). For example, in assignment example 2, assume the “yellow”
robot is assigned to the subtask automaton labeled with π0π2π1. The robot can not accomplish the assigned
subtask automaton given the state transition constraints s0 → s1 → s2, i.e., the task plan s0 → s2 → s1 is
not viable for the “yellow” robot.
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solution merely describes a set of atomic tasks consecutively satisfied by the MRS and is not able to achieve

parallel execution of the task specification.

To enable a parallel execution process, divide the MRS into different subsets of robots and synthesize

an SPA Ψi with each subset of robots and its allocated subtask automaton Pi(Ǧl′), i = 1, · · · , Il′ , Ěl′ ∈ Eg .

Then, an optimal task plan can be searched in each SPA by considering the accumulated costs of performing

atomic tasks. In comparison to the previous section, this section generate the task plan through further verify-

ing the corresponding robot capability transition systems with each decomposition component Pi(Ǧl′) rather

than directly associating the robots with the events of the subtask automaton. The process will guarantee

feasible transitions of robot states between different atomic tasks in the generated task plan. This section

also achieve the concurrent satisfaction of multiple subtask automata Pi(Ǧl′), which deals with these subtask

automata in an interleaved manner so that deadlock-free solutions can be obtained by the MRS to satisfy the

task specifications. For the sake of notation simplicity, this section use Gi to represent the subtask automata

Pi(Ǧl′) for the discussion of the SPA in the rest of this section. All the definitions and theorem in this section

apply directly to the decomposition components Pi(Ǧl′), i = 1, · · · , Il′ , Ěl′ ∈ Eg of the general global task

automaton Gg .

3.6.1 Individual Subtask Planning Automaton

Definition 17 (Robot Assignment to Task Automaton). Given a set of robots Ri and a task automaton Gi

with event set Ei, defineRi as a robot assignment of Gi if (1) each robot rn ∈ Ri is capable of some events

of the automaton Gi, i.e., 2APn ∩ Ei ̸= ∅; and (2) the robot set Ri is capable of all the events of automaton

Gi, i.e., 2∪rn∈RiAPn ⊇ Ei. The satisfaction ofRi to Gi can be described as a robot-automaton pair (Ri, Gi).

Denote Rmin,i ∈ 2Ri as the minimum robot assignment of Gi if Rmin,i has the smallest amount of robots

satisfying 2∪rn∈Rmin,i
APn ⊇ Ei. Denote Rmax,i ∈ 2Ri as the maximum robot assignment if it contains all

the robots withinR that can be utilized to achieve Gi.

Denote each of the robot-automaton pair of the parallel decomposition as (Ri, Gi), where Ri :=

{ri1 , · · · , rin , · · · , riN }, the parallel composition of capability transition systems TEn, n = i1, · · · , iN

can be generated with reference to Def. 12 as ∥iNn=i1TEn := ((TEi1∥TEi2)∥ · · · )∥TEiN . Each subtask

automaton Gi allows only one event to be achieved in each of its state transition, i.e., the robot set Ri needs

to work sequentially for each event in the subtask automaton Gi. Then, it needs to verify whether the robot

assignmentRi with the parallel composition ∥iNn=i1TEn satisfies the subtask automaton Gi sequentially. The
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verification results will form a product automaton containing all the robot-task assignments by taking into

account the transition constraints of events in the subtask automaton Gi. The resulting automaton can be

referred to the following definition.

Definition 18 (Subtask Planning Automaton (SPA)). Given an indecomposable task

automaton G := (X,E, f, x0, XF ) and a parallel composition of transition systems

∥Nn=1TEn := (
∏N
n=1 Sn,

⋃N
n=1 An, δR, ⟨s0,1, · · · , s0,N ⟩,∪Nn=1APn,LR,

∏N
n=1 Wn), an SPA

Ψs := (Xs
ψ, Actsψ, δ

s
ψ, x

s
ψ,0, X

s
ψ,F , AP sψ,Lsψ,W s

ψ) can be synthesized from the operation ∥Nn=1TEn × G to

describe the assignment of robots to the events in the task automaton, where

1. Xs
ψ :=

∏N
n=1 Sn ×X is the state set containing all the composite states composed by states of robot

capability and states of the task automaton;

2. Actsψ := ∪Nn=1Actψ,n
⋃
Actψ,c is the action set, where Actψ,n := {⟨α,Rα⟩|α ∈ An,Rα = rn}

and Actψ,c := {⟨α,Rα⟩|α ∈ Ac,Rα = ⟨r1, · · · , rN ⟩}, describes robots Rα implementing the corre-

sponding actions in their own capability transition systems TE1, · · · , TEN ;

3. the transition relation δsψ(x
s
ψ, act

s
ψ) := xs

′

ψ with xsψ := (⟨s1, · · · , sN ⟩, x), actsψ := ⟨α,Rα⟩ ∈

Actsψ and xs
′

ψ := (⟨s1, · · · , sN ⟩′, x′) iff f(x, e) = x′ ∧ δR(⟨s1, · · · , sN ⟩, α) = ⟨s1, · · · , sN ⟩′ ∧

LR(⟨s1, · · · , sN ⟩′) |= e;

4. the initial state xsψ,0 := (⟨s0,1, · · · , s0,N ⟩, x1) ∈ Xs
ψ if ∃x1 = f(x0, e) ∧ LR(⟨s0,1, · · · , s0,N ⟩) |= e.

5. the accepted state set Xs
ψ,F := {(⟨s1, · · · , sN ⟩, xF )| ⟨s1, · · · , sN ⟩ ∈

∏N
n=1 Sn, xF ∈ XF };

6. AP sψ := ∪Nn=1APn is the proposition set containing atomic propositions and logic propositions and

E ⊆ 2AP
s
ψ ;

7. Lsψ : Xs
ψ → 2AP

s
ψ labels a state xsψ;

8. W s
ψ : Xs

ψ × Actsψ → IR+ is the cost set with W s
ψ(x

s
ψ, act

s
ψ) estimating the total cost of robot set

r1, · · · , rN associated with state ⟨s1, · · · , sN ⟩ for actions αn ∈ An.

Denote Ri := {Ri|Rmin,i ⊆ Ri ⊆ Rmax,i} as the collection of all the robot assignments for each

subtask automaton Gi, i = 1, · · · , I . Each pair (Ri, Gi) can then be utilized to synthesize an SPA Ψsi based

on Def. 18.
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Figure 3.8: (a) Robot transition systems TE1, TE2, and TE3, (b) subtask automaton G1 and SPA Ψs,11

(Ψs,21 and Ψs,31 ) with respect to robot assignment {r1} ({r2} and {r3}), (c) subtask automaton G2, parallel
composition TE1∥TE3, and SPA Ψs2 (in minimized size) synthesized from TE1∥TE3 and G2.

Example 5. Given 3 robots r1, r2, and r3, whose transition systems are shown in Fig. 3.8(a). To better

relate the atomic tasks to the states of the robot transition systems, abuse the state notation and label the

relation for each state as Ln(sk) = {πk}, k = a, b, c, d, e, n = 1, 2, 3. Take two parallel automata G1 and

G2 shown in Fig. 3.8(b) and (c) as examples. As a result, subtask automaton G1 has the robot assignments

R1 = {{r1}, {r2}, {r3}}, and subtask automaton G2 has the robot assignments R2 = {{r1, r3}}. According

to Def. 18, the transition system TE1 (TE2, TE3) and the subtask automaton G1 generate the SPA Ψs,11

(Ψs,21 ,Ψs,31 ), respectively (shown in Fig. 3.8(b)). The parallel composition of transition systems TE1∥TE3

and the subtask automaton G2 synthesize the SPA Ψs2 (shown in Fig. 3.8(c)). •

Remark 4. Note that there are three robot assignment solutions for the two parallel automata in Example

5, i.e., Solution 1: robot assignment {r1} to automaton G1, robot assignment {r1, r3} to automaton G2;

Solution 2: robot assignment {r2} to automaton G1, robot assignment {r1, r3} to automaton G2; and Solution

3: robot assignment {r3} to automaton G1, robot assignment {r1, r3} to automaton G2. In Solution 1, both

automata G1 and G2 will need robot r1 in synthesizing their SPA. A coordination of robot r1 between

automata G1 and G2 is necessary to guarantee the deadlock-free of task performing with Solution 1. The

same situation happens for Solution 3 with robot r3. These situations will be discussed in Sec. 3.6.2.
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In addition, it is possible that an SPA has no effective path to satisfy the subtask automaton Gi even

if the maximum robot assignmentRmax,i is provided with 2∪rn∈Rmax,i
APn ⊇ Ei. In this case, the current set

of provided robotsRi is not capable of achieving the subtask automata Gi, i = 1, · · · , I . A set of competent

robots will need to be supplemented to guarantee the existence of a path for a synthesized SPA. •

3.6.2 Concurrent Subtask Planning Automaton of MRS

The individual SPA in the previous section would satisfy the global automaton Gg if the MRS sat-

isfies the two conditions: (1) there exists robot assignment Ri for each Gi; and (2) each robot assignment

Ri works independently and exclusively for the corresponding subtask automaton Gi (e.g., the robot assign-

ments {r2} for Ψs,21 and {r1, r3} for Ψs2, as shown in Example 5). However, there may exist situations where

robots need to work for multiple subtask automata and switch among these subtask automata (e.g., the robot

assignments {r1} for SPA Ψs,11 and {r1, r3} for Ψs2 in Example 5). One can assign the robot r1 first to work

for SPA Ψs,11 and then for SPA Ψs2, or vice versa. An alternative is to assign robot r1 to work concurrently

for SPA Ψs,11 and Ψs2, which can significantly improve the task performing efficiency. Nevertheless, the latter

needs to guarantee a deadlock-free process, i.e., there exist viable switches for a robot to transit between

states across these subtask automata. Therefore, a concurrent deadlock-free SPA is synthesized to guarantee

valid switches of robots across these subtask automata. In addition, this chapter aim to achieve less frequent

switches across the subtask automata so that the MRS can achieve more subtask automata in parallel. To

realize these, define the topology of robot assignment for subtask automaton as follows.

Definition 19 (Topology of Robot Assignment). Given a set of robot-automaton pairs (Ri, Gi), i = 1, · · · , I ,

describing the automaton Gi and their associated robot assignments Ri, define the topology of robot assign-

ment with a graph G := (V, E), where the vertex set is V := {(Ri, Gi)|i = 1, · · · , I}, and the edge set is

E := {(v, v′)|v = (Ri, Gi) ∈ V, v′ = (Ri′ , Gi′) ∈ V, i ̸= i′,Ri ∩Ri′ ̸= ∅}, where each edge describes that

two automata Gi and Gi′ require the same robots inRi ∩Ri′ .

According to the topology of robot assignment G, the existence of an edge between any two nodes,

i.e., any two robot-automaton pairs, means the two corresponding automata require the same robots. That

implies the two automata can not be achieved in parallel due to the insufficient robots. Therefore, G can

describe the level of parallelism of subtask automata with its isolated subgraphs. Denote an isolated subgraph

as Gy, y ∈ Z. Every isolated subgraph Gy, y ∈ Z of G represents an independent subset of subtask automata

and robot assignments that need to work concurrently. Next, identify the subtask automata belonging to a

48



same isolated subgraph as the concurrent automaton set.

Definition 20 (Concurrent Automaton Set). Given a topology of robot assignment G that is formed with

task automata Gi, i = 1, · · · , I and their associated robot assignments Ri, assume it has Y numbers of

isolated subgraphs Gy := (Vy, Ey), y = 1, · · · , Y . Define the automaton set Gy := {Gi|(Ri, Gi) ∈ Vy, i ∈

{1, · · · , Ĩy}} as the concurrent automaton set, and Ry := {Ri|(Ri, Gi) ∈ Vy, i ∈ {1, · · · , Ĩy}} as the

associated robot assignment set.

Based on the above definition, the set of subtask automata {Gi, i = 1, · · · , I} with robot assign-

ments {Ri, i = 1, · · · , I} can be divided into a set of concurrent automaton sets {Gy, y = 1, · · · , Y }.

The corresponding subgroup of robots in Ry needs to work concurrently for all the subtask automata in Gy

rather than in parallel. That is, each concurrent automaton set Gy identifies the subtask automata that need

robots to switch across them in order to complete the tasks. A concurrent SPA can be synthesized for a set of

concurrent task automata with their corresponding robot assignments.

Definition 21 (Concurrent Subtask Planning Automaton). Given a set of concurrent task au-

tomata Gy = {G1, · · · , GĨy
} with robot set Ry = {R1, · · · ,RĨy}, y ∈ {1, · · · , Y } accord-

ing to Def. 20 and each Gi := (Xi, Ei, fi, x0,i, XF,i), a concurrent SPA can be synthesized as

Ψcy := (Xc
ψ, Actcψ, δ

c
ψ, x

c
ψ,0, X

c
ψ,F , AP cψ,Lcψ,W c

ψ) with the operation ∥rn∈RcTEn × ∥
Ĩy
i=1Gi according to

Def. 18, whereRc = ∪Ĩyi=1Ri.

Remark 5. The concurrent SPA deals with the parallel composition of concurrent automata rather than

each individual subtask automaton in comparison to the individual SPA. In other words, whether the SPA is

concurrent or individual depends on if it is synthesized from multiple subtask automata or a single subtask

automaton. The synthesis process avoids the potential deadlocks that can be caused by the simultaneous

requests for the intersected robots from different concurrent automata. The concurrent SPA verifies feasible

transitions of the robots across subtask automata. •

Example 6. Given 3 robots r4, r5 and r6, whose transition systems are shown in Fig. 3.9(a), where the

labeling relation for each state is Ln(sk) = {πk}, k = a, b, c, d, f, h. The parallel decomposition results

{G3, G4} of a task automaton are shown in Fig. 3.9(b). A robot assignment {r4, r5} is for the decomposition

component G3, and {r4, r6} is for G4. Both G3 and G4 need robot r4, so they are concurrent subtask

automata, and {{r4, r5}, {r4, r6}} is the robot set of {G3, G4}. The concurrent SPA Ψc is synthesized from

∥6n=4TEn × ∥4i=3Gi according to Def. 21, as shown in Fig. 3.9(c). •
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Figure 3.9: (a) Robot transition systems TE4, TE5, and TE6, (b) subtask automaton G3 and G4, and
(c) parallel SPA Ψc (in minimized size) synthesized with (TE4∥TE5∥TE6) × (G3∥G4). The robot index
corresponding to each composite state is ⟨r4, r5, r6⟩ in the parallel composition of transition systems.

3.6.3 Parallelism and Computational Complexity of Parallel Task Planning

According to Secs. 3.6.1 and 3.6.2, individual and concurrent SPA can be synthesized for the subtask

automaton set {Gi, i = 1, · · · , I}. Each subtask automaton here can be assigned to different robot subsets,

i.e., different robot assignmentsRi for each subtask automaton Gi. Then, multiple choices of concurrent au-

tomaton sets {Gy, y = 1, · · · , Y } can be generated, which leads to different sets of corresponding individual

and concurrent SPA according to Defs. 18 and 21. The cardinality of {Gy, y = 1, · · · , Y } is Y and can be

described as the level of parallelism of a task planning solution. A larger Y brings a higher parallelism for

the MRS task performing.

This chapter aim to obtain a task planning solution with the highest level of parallelism for the multi-

robot multi-tasking process given a limited amount of robots. That is, allowing the maximum groups of robots

to work in parallel while avoiding deadlocks. In the previous section, this purpose is achieved by composing

all the task planning results and searching for the optimal solution in the composed results. It however has a

higher computational requirement with an increasing number of parallel decomposition components. In this

section, a new strategy is proposed to avoid the high computation while increasing the parallelism of MRS
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task planning.

Denote Ψy, y = 1, · · · , Y as the generalized description of all the individual (Ψs) and concurrent

(Ψc) SPA. The aim in this section is to synthesize the maximum amount of SPAs Ψy with the given robots

R. Denote
∏I
i=1 Ri as the collection of combinations of all robot assignments for subtask automata Gi.

Each combination of robot assignments (R1, · · · ,RI) ∈
∏I
i=1 Ri and corresponding subtask automata

(G1, · · · , GI) will result in a topology of robot assignment, which has a level of parallelism quantified by the

number of its isolated subgraphs. Select the optimal robot assignment tuple3 (R∗
1, · · · ,R∗

I) ∈
∏I
i=1 Ri that

forms the maximum amount of isolated subgraphs G∗y := (V∗
y , E∗y ), y = 1, · · · , Y in generating the topology

of robot assignment. The optimal robot assignment tuple yields the highest level of parallelism. The included

concurrent automaton sets G∗
y and robot sets R∗

y can synthesize the corresponding individual and concurrent

SPA Ψy .

Theorem 3. Given a set of parallel task automata {Gi, i = 1, · · · , I} and each Gi has a set of different

choices of robot assignments Ri. A group of individual and concurrent SPA Ψy can be synthesized from

the robot assignment tuple (R∗
1, · · · ,R∗

I), which guarantees the highest level of parallelism in completing

the tasks. Furthermore, these individual and concurrent SPA Ψy also reduce the computational complexity

compared to direct synthesis of the task planning, i.e., ∥Nn=1TEn × ∥Ii=1Gi.

Proof Completeness: The parallel subtask planning framework groups Y numbers of concurrent au-

tomaton sets Gy, y = 1, · · · , Y . Each Gy has Ĩy numbers of subtask automata. As a result, this framework en-

tails a set of parallel processes, each of which can be described by an SPA ∥|Ry|n=1TEn×∥
Ĩy
i=1Gi, y = 1, · · · , Y .

Parallel compose these SPA together and obtain the result ∥Yy=1(∥
|Ry|
n=1TEn × ∥

Ĩy
i=1Gi), which presents all the

task planning solutions of the framework. Here, all these subtask automata Gi, i = 1, · · · , Ĩy, y = 1, · · · , Y

are in parallel, which is equivalent to the global task automaton ∥Ii=1Gi, i.e., ∥Yy=1∥
Ĩy
i=1Gi = ∥Ii=1Gi. The

composition of provided robot transition systems, TEn, n = 1, · · · ,
∣∣Ry∣∣ , y = 1, · · · , Y , is the same with

that of the direct centralized synthesis of global task planning, i.e., ∥Yy=1∥
|Ry|
n=1TEn = ∥Nn=1TEn. Then, the

composition result of parallel subtask planning framework is the same as the result of the direct centralized

framework, i.e., ∥Nn=1TEn × ∥Ii=1Gi. Therefore, the parallel subtask planning framework can guarantee the

completeness of task planning for Gi, i = 1, · · · , I .

Parallelism: According to Definitions 18 - 21, the associated automata and robots of each isolated

subgraph Gy form a concurrent (or individual) SPA Ψy that can work in parallel with other SPA. The number
3Note that the optimal robot assignment has to be an effective assignment, which means the assignment can synthesize a non-empty

SPA and provide a task planning solution. In the actual application, the system with a robot assignment may not output a viable task
planning solution. Such an assignment will not be considered as an effective one. More details can be found in the experiment section.
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of isolated subgraphs that are formed in synthesizing the SPA Ψy quantifies the parallelism of task planning.

The optimal robot assignment tuple (R∗
1, · · · ,R∗

I) ∈
∏I
i=1 Ri generates the maximum amount of isolated

subgraphs G∗y := (V∗
y , E∗y ), y = 1, · · · , Y . Therefore, the optimal robot assignment tuple guarantees the

highest level of parallelism in completing the tasks.

Computational Complexity: The direct synthesis of task planning, i.e., ∥Nn=1TEn × ∥Ii=1Gi, will

have the computation with Vd :=
∏N
n=1 |Sn| ×

∏I
i=1 |Xi| states and Vd × Vd edges. In comparison, the

parallel subtask planning, i.e., the individual and concurrent SPA Ψy , will have the computation with Vp :=∑Y
y=1(

∏|Ry|
n=1 |Sn| ×

∏Ĩy
i=1 |Xi|) states and Vp × Vp edges. Because Ry , y = 1, · · · , Y are independent

and
∣∣Ry∣∣ ≤ N , then

∏|Ry|
n=1 |Sn| ×

∏Ĩy
i=1 |Xi| ≤

∏N
n=1 |Sn| ×

∏Ĩy
i=1 |Xi|. As a result, Vp ≤

∏N
n=1 |Sn| ×∑Y

y=1

∏Ĩy
i=1 |Xi| ≤ Vd. In the worst case, the whole group of robots works concurrently for all subtask

automata Gi, i.e., y = Y = 1, Ry ≡ R and Vp = Vd. Except this special case, the parallel subtask planning

framework requires less computation compared to the direct synthesis process.

Example 7. Consider the 6 robots r1 − r6 with their respective capability transition systems as shown in

Examples 5 and 6, as well as the associated subtask automata G1 −G4. Correspondingly, there are different

topologies of robot assignment. Take two of the typologies as examples, as shown in Fig. 3.10. Robots

belonging to the same subgraph of automata need to coordinate with each other in a decentralized manner

to sequentially perform the atomic tasks, while robots in different subgraphs can work in parallel. Denote

the state size of the transition system of each robot rk as |Sk|. As a result, the computation complexity

of topology 1 is Vp,1 = |X1||X2||S1||S3| + |X3||S2||S5| + |X4||S4||S6|, while computation complexity of

topology 2 is Vp,2 = |X1||S2|+|X2||S1||S3|+|X3||X4||S4||S5||S6|. On the other hand, the centralized task

planning framework takes all the robots as a whole and performs product composition of transition systems

with composition of automata. It has computation complexity of Vd =
∏4
i=1|Xi|

∏6
k=1|Sk|. One can easily

see that Vp,1 < Vd and Vp,2 < Vd.

3.6.4 Parallel and Concurrent Execution of MRS Task Planning

According to Prop. 2, a global task automaton Gg can be loosely decomposable if it has a subau-

tomaton Ǧl′ with event set Ěl′ ⊆ Eg satisfying the parallel decomposability. Based on Thm. 3, each resultant

set of decomposition components {Pi(Ǧl′), i = 1, · · · , Il′} can be used to generate its corresponding set of
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({r1,r3},G2)

Figure 3.10: Example typologies of robot assignment.

SPA {Ψy, y = 1, · · · , Yl′}. A path (task plan) from each SPA can be as follows Ψy

Xy := x
(0)
ψ

act
(0)
ψ−→ · · ·x(τ)

ψ

act
(τ)
ψ−→ · · ·x(T)

ψ

act
(T)
ψ−→ x

(T+1)
ψ , (3.5)

where x
(τ)
ψ := (⟨s(τ)1 , · · · , s(τ)n ⟩, x(τ)) and act

(τ)
ψ := ⟨α,Rα⟩(τ). Denote the labeling of Xy as Lψ(Xy) =

Lψ(x(0)
ψ ) · · · Lψ(x(τ)

ψ ) · · · Lψ(x(T)
ψ )Lψ(x(T+1)

ψ ), which satisfies the parallel automata (or single automaton)

of Gy .

The task plan from each SPA is independent with each other. Therefore, the cost of a task plan can

be described as

J(X1, · · · ,Xy, · · · ,XY ) =
Y∑
y=1

J(Xy), (3.6)

where J(Xy) is the cost function of each task plan Xy from the SPA Ψy . Assume the cost of each

state and action pair, i.e., Wψ(x
(τ)
ψ , act

(τ)
ψ ) is independent from past states and actions. Hence, J(Xy) =∑T

τ=0 Wψ(x
(τ)
ψ , act

(τ)
ψ ).

Based on the above process, the minimal cost task plans X∗
y can be searched in each set of SPA

Ψy, y = 1, · · · , Yl′ . The corresponding minimal cost task planning paths S∗n can be obtained for each robot

rn. If the global task automaton Gg has multiple decomposable event-equivalent words composed automata

Ǧl′ , l′∈ Z, the subautomaton Ǧl′ that can generate the lowest cost task plan is selected as the initially syn-

thesized minimal cost solution. Denote the corresponding results of the task plan as {X∗∗
y , y = 1, · · · , Yl∗},

Ěl∗ ∈ Eg . Alg. 3 shows the pseudo code for generating the above minimal cost task plan solution given

different sets of automaton described subtasks.

Furthermore, the concurrency of implementing the minimal cost task plan can be improved. See the
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Algorithm 3 Synthesis of Parallel Task and Motion Plan

Input: {{Pi(Ǧl′), i = 1, · · · , Il′}, Ěl′ ∈ Eg}, {TEn, rn ∈ R} ▷ Prop. 2
Output: Task plan {X∗∗

y , y = 1, · · · , Yl∗} and Ěl∗ ∈ Eg
1: function OPTIMALPATH({{Pi(Ǧl′), i = 1, · · · , Il′}, Ěl′ ∈ Eg}, {TEn, rn ∈ R})
2: for Ěl′ ∈ Eg do ▷ Different event-equivalent words composed automaton Ǧl′

3: Obtain Ri for Pi(Ǧl′), i = 1, · · · , Il′ ▷ All robot assignments
4: for (R1, · · · ,RIl′ ) ∈

∏Il′
i=1 Ri do

5: Generate Gy, y = 1, · · · , Yl′ with all (Ri, Pi(Ǧl′)) ▷ Topology of robot assignment
6: {Gy, Ry, y = 1, · · · , Yl′} ⇐ Gy, y = 1, · · · , Yl′ ▷ Concurrent automaton sets
7: end for
8: Select (R∗

1, · · · ,R∗
Il′
) and {G∗

y, R∗
y, y = 1, · · · , Yl′} ▷ Optimal robot assignment

9: for y = 1, · · · , Yl′ do
10: Ψy ⇐ G∗

y, R∗
y ▷ Individual/Concurrent SPA

11: Dijkstra search Ψy for X∗
y

12: end for
13: Obtain {X∗

y, y = 1, · · · , Yl′} ▷ Optimal task plans for Ǧl′

14: end for
15: Optimal paths {X∗∗

y , y = 1, · · · , Yl∗}, Ěl∗ ∈ Eg ▷ Optimal task plans for Gg

16: end function

following motivation example.

Example 8. Take a path (⟨sa, sf , sh⟩, ⟨2, 1⟩)
⟨αb,r4⟩−−−−→ (⟨sb, sf , sh⟩, ⟨2, 2⟩)

⟨αc,r5⟩−−−−→

(⟨sb, sc, sh⟩, ⟨3, 2⟩)
⟨αd,r6⟩−−−−−→ (⟨sb, sc, sd⟩, ⟨3, 3⟩) from the concurrent SPA Ψc in Fig. 3.9 as an exam-

ple. Assume the MRS is currently at state (⟨sa, sf , sh⟩, ⟨2, 1⟩). Fig. 3.11(a) shows the remaining task plan

of the path executed in a sequential manner. In the figure, each robot has its own progress bar, but the task

performing states of the three robots need to be synchronous at each step.

Nevertheless, the transition of the red robot r4 to step ⟨2, 2⟩ can be in parallel with

the transition of the green robot r5 to step ⟨3, 2⟩. The reason is the parallel composition

Lcψ(⟨sb, sf , sh⟩, ⟨2, 2⟩)∥Lcψ(⟨sb, sc, sh⟩, ⟨3, 2⟩) ⊃ {πbπc, πcπb} does not violate the parallel composition

of the corresponding task automata G3∥G4 of the concurrent SPA Ψc. Therefore, the red robot r4 can work

simultaneously with green robot r5 at steps ⟨2, 2⟩ and ⟨3, 2⟩, which is shown in Fig. 3.11(b). The above

concurrent execution process is an enhancement of the sequential task plan. •

Example 8 shows that different robots rn ∈ Ri ∈ R∗
y and rn′ ∈ Ri′ ∈ R∗

y belonging to the same

subgraph’s robot assignment R∗
y may work in parallel, where rn /∈ Ri′ , rn′ /∈ Ri. Originally, these two

robots rn and rn′ have to work sequentially according to the task plan in the SPA Ψy . However, a section of

events in Gi∥Gi′ may be satisfied by the two robots in parallel because the simultaneous transition of their

states does not conflict with Gi∥Gi′ . Here, Gi ∈ G∗
y and Gi′ ∈ G∗

y are the corresponding two automata of
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Figure 3.11: (a) Task plan implemented in a sequential manner, (b) task plan achieved in parallel at steps
⟨2, 2⟩ and ⟨3, 2⟩ by implementing αb and αc simultaneously. The steps and arrow length do not reflect the
actual time.

the SPA Ψy . The parallel satisfaction for the section of events will further reduce the coordination difficulty

and speed up the multi-robot multi-task process when executing the task plan in SPA Ψy in comparison with

the centralized task planning framework.

Corollary 1. Given a task plan Xy := x
(0)
ψ

act
(0)
ψ−→ · · ·x(τ)

ψ

act
(τ)
ψ−→ x

(τ+1)
ψ · · ·x(T)

ψ

act
(T)
ψ−→ x

(T+1)
ψ from an SPA

Ψy , a section of the task plan starting from a step τ (state x
(τ)
ψ ) to a step τ + ∆ (state x

(τ+∆)
ψ ) can be

executed concurrently if it satisfies (1) the composition results Lψ(x(τ)
ψ )∥ · · · ∥Lψ(x(τ+∆)

ψ ) do not violate

the composition of the task automata Gy of Ψy , and (2) the actions act
(τ)
ψ , · · · , act(τ+∆−1)

ψ can transit

simultaneously in x
(τ+∆)
ψ . As a result, the original T steps task plan can be described as a concurrent plan

in T−∆ steps as X̃y := x
(0)
ψ

act
(0)
ψ−→ · · ·x(τ)

ψ

act
(τ)
ψ ,··· ,act(τ+∆−1)

ψ−−−−−−−−−−−−−→ x
(τ+∆)
ψ

act
(τ+∆)
ψ−→ · · ·x(T)

ψ

act
(T)
ψ−→ x

(T+1)
ψ .

Proof For a section ∆ of the path Xy , i.e., x(τ)
ψ , · · · , x(τ+∆)

ψ , the corresponding sequence of events

are Lψ(x(τ)
ψ ), · · · ,Lψ(x(τ+∆)

ψ ). The sequence of events can be achieved in parallel if it satisfies that (1) the

transition results of concurrent implementation on actions act(τ)ψ , · · · , act(τ+∆−1)
ψ do not violate the subtask

automata of Ψy , which means all the transitions of parallel composition Lψ(x(τ)
ψ )∥ · · · ∥Lψ(x(τ+∆)

ψ ) are

contained in the composition of the task automata of concurrent SPA Ψy (or in the single task automaton of

Ψy if Ψy is an individual SPA); (2) none of the assigned robots at different steps are the same robots so that

they can satisfy the corresponding events Lψ(x(τ)
ψ ), · · · ,Lψ(x(τ+∆)

ψ ) simultaneously. It implies that actions

act
(τ)
ψ and act

(τ+∆−1)
ψ can transit simultaneously. Then, the assigned robots in Xy of this SPA can work

concurrently and transit from state x
(τ)
ψ to x

(τ+∆)
ψ , which can reduce the T steps sequential task plan Xy into
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T−∆ steps.

Accordingly, the subtask plan X∗∗
y may have a concurrently executable plan X̃∗∗

y . The task per-

forming process associated with X∗∗
y can have higher level of parallelism from step τ to τ + ∆, but does

not violate each concurrent SPA. As a result, the efficiency of multi-robot task performing is improved.

The execution cost of the task plan solution does not change either. The generated minimal cost task plan

X∗∗
y , y = 1, · · · , Yl∗ , requires the corresponding robots rn to travel to the designated locations of their as-

signed atomic tasks in S∗∗n . The hybrid local motion planner in [56] is utilized to generate the trajectory using

the motion transition system in Def. 13.

Remark 6. The initial parallel decomposition, robot assignment and task planning process can generate the

task planning solution with the highest level of parallelism and the minimal task performing cost for the MRS.

The task planning solution enables each set of robots in the robot assignment set G∗
y to work independently

for the assigned tasks with the minimal cost. Nevertheless, some of the robots assigned with the initial tasks

may complete their tasks earlier during the task execution process. They can replace or share tasks with other

robots that still have tasks to be completed. These remaining unperformed tasks are reassigned to the robots

with no currently assigned task to expedite the task performing process and improve the concurrency of task

planning. In addition, the remaining subtask automata may also become decomposable. A redecomposition

for the subtask automaton may find new decomposition components to improve the task concurrency and

reduce cost. Hence, a task redecomposition and reallocation is enabled among neighboring robots. Thus, a

dynamically updated optimal task is obtained in each phase of the parallel decomposition, robot assignment,

and task planning. •

3.7 Case Study: Symbolic Task and Motion Planning for MRS Man-

ufacturing Task

A multi-robot experiment for complex manufacturing tasks is designed to demonstrate the MRS

parallel task and motion planning framework. Consider robot manufacturing tasks under temporal logic con-

straints in manufacturing plants where frequent changes of operation sequence are necessary to accommodate

for customized products. Heterogeneous robots are utilized to achieve the manufacturing task specifications.

More specifically, the parallel decomposition technique decomposes the complex manufacturing tasks into

multiple subtasks so that the global manufacturing task can be performed in parallel instead of sequentially.
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The robot assignment and task planning process (Alg. 3) synthesizes a task planning solution with the highest

level of parallelism for these subtasks. The local motion planner generates robot trajectories that satisfy the

liveness and safety specifications, such as reach of the task stations and obstacle avoidance as mentioned in

Def. 13.

The Robotic Operating System (ROS) is utilized to build an architecture for the above task and mo-

tion planning framework and implement the continuous trajectories of MRS. Task specification redecomposi-

tion, replanning and robot reassignment are additionally demonstrated in the overall task performing process.

The task planning and performing process is also simulated with varying complexities of task specifications

and numbers of robots; then is compared with the centralized task planning strategy to show its advantage in

reducing the state size of the SPA, computational time of generating the task plan, level of parallelism, and

actual execution time.

3.7.1 Experimental Setup

Consider a manufacturing environment composed of 7 stations labeled as A− G. Station A is for

providing raw parts so that mobile robots can load parts there and deliver them to the other stations; Station B

is configured with milling machines which can perform common operations such as thickness tapering or hole

drilling; Station C is configured with grinding machines that can perform deburring and finishing operations;

Stations D− F are the assembling stations; Station G is for collecting and packing processed products from

other stations and may require multiple manufacturing robots to cooperate simultaneously. The 2D view of

the manufacturing environment is shown in Fig. 3.4. It is discretized with triangles4 for the local motion

planning. The dark areas represent inaccessible cells that contain static obstacles. Each robot can travel from

one triangle cell to its adjacent cells, but is not allowed to enter into cells that are partially or totally taken

by obstacles. This allows the local motion planner to generate trajectories satisfying the liveness and safety

specifications.

Two Khepera robots r1, r2 and two Turtlebot3 robots r3, r4 are provided to assist the manufacturing

tasks at each station. Each mobile robot can either provide spare parts for the specific stations A− C or

perform auxiliary operations at stations D− G. Turtlebot3 is equipped with a LiDAR and can achieve better

navigation. Hence, Turtlebot3 is assigned to move among all the stations A− G, while restricting Khepera

among the machining stations B, C and related stations A, G. In addition, the motion of each robot is restricted

4The offline triangulation for the working environment can be achieved with the package in the link: https://www.cs.cmu.
edu/˜quake/triangle.html
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Figure 3.12: Triangulated 2D workspace. The obstacle polygons are over-estimation of the actual size of the
obstacles.

between a station i ∈ {A, · · · , G} and its designated stations j ∈ Γi, which can lower the planning complexity

of the delivery process. Here, the designated station set Γi of a station i is listed in Table 3.1.

i A B C D E F G

Γi B, C A, C, D, A, B, D, B, C, B, C, D, B, C, D, E,
E, F E, F E, G F, G E, G F, G

Table 3.1: Robot’s mobility between each station i and its designated station set Γi

Then, each task performing state sin abstracts that robot rn provides parts or performs auxiliary

operations at station i. Each state sin can be labeled with a set of atomic propositions πi by Ln(sin) = {πi},

where πi corresponds to the satisfaction of the defined manufacturing tasks at each station. An idle state sϵn

is added for each robot and its labeling is empty, i.e., Ln(sϵn) = ∅. Furthermore, the atomic proposition πG

is a cooperative event depending on the type of the packaging at station G. All the other atomic propositions

are single events. Finally, the discrete states sin can be used to construct the transition systems TEn of each

robot rn according to Def. 11, as shown in Fig. 3.13. The action αi triggers a state of rn transiting to state

sin, i := A, · · · , G. The capable states and corresponding costs of each robot rn are listed in Table 3.2, where

“-” means that the robot does not have the capability. The cost of each state sin here is the estimated average

time units that each mobile robot takes to complete an auxiliary operation task at the station i.

sA sB sC sD sE sF sG sϵ
r1/r2 5.0 10.0 10.0 - - - 3.0 1.0
r3/r4 7.0 12.0 12.0 12.0 12.0 12.0 5.0 1.0

Table 3.2: Robot capable states and the corresponding average time costs
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Figure 3.13: Transition system of each robot based on its capabilities and the abstracted environment. Each
state sin is labeled with πi, i = ϵ, A, · · · , G. To make better visualization, simplify the graph here by saying
each idle state sϵ can transit to all the other normal working states inside the dotted circle and vice versa.

3.7.2 Task Specification and Planning Results

(Task specification 1) Consider a complex task specification for the manufacturing process, which

requires that (1) the system first provides some raw parts at station A, then finally performs assembling

operations with these parts at station F; (2) the system mills the parts at station B, then finally assem-

bles the parts at station D and also finally assembles them at station E; (3) the system needs to finally

satisfy each specification of (1) and (2). The above task specifications can be described by an LTL for-

mula φ1 = ♢(πB ∧ ⃝(♢πD ∧ ♢πE)) ∧ ♢(πA ∧ ⃝♢πF). Derive the DFA of this LTL task specifica-

tion, and extract an event-equivalent words composed task automaton Ǧg1 , whose atomic propositions

APg1 = {πA, πB, πD, πE, πF}. Let Ěg1 = 2APg1 . The automaton Ǧg1 can be parallel decomposed into two

subtask automaton G1 and G2, whose language can be described as L(G1) = (Ěg1)
∗πA(Ěg1)

∗πF(Ěg1)
∗ and

L(G2) = (Ěg1)
∗πB(Ěg1)

∗(πE(Ěg1)
∗πD + πD(Ěg1)

∗πE)(Ěg1)
∗.

Robots r1 − r4 can satisfy the above two subtasks through an appropriate robot assignment. The

robot assignment set {{r3}, {r4}, {r1, r3}, {r1, r4}, {r2, r3}, {r2, r4}, {r3, r4}, {r1, r3, r4}, {r2, r3, r4},

{r1, r2, r3, r4}}5 includes all the robot assignments of subtask automaton G1, while {{r3}, {r4}, {r3, r4},

{r1, r3, r4}, {r2, r3, r4}, {r1, r2, r3, r4}} presents all the robot assignments of subtask automaton G2. The

robot assignment tuple ({r2, r3}, {r4}) can provide the robot-automaton assignments for MRS to satisfy

the task specification with the highest level of parallelism. Then, the robot assignment {r2, r3} and the

subtask automaton G1 generate an SPA, which has the minimal cost task plan X∗∗
1 := (⟨sA2, sϵ3⟩, 2)

⟨αF,r3⟩−−−−→

(⟨sA2, sF3⟩, 1). The task plan X∗∗
1 is implemented as follows: robot r2 first reaches the state sA2 to initialize

5The robot assignments {r3}, {r4} output an empty task planning solution. Hence, they will not be the effective assignments.
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the SPA process, and r3 transits to state sF3 by executing αF. In parallel with the above process, the robot

assignment {r4} and the subtask automaton G2 synthesize an SPA that has the minimal cost task plan X∗∗
2 :=

(sB4, 3)
⟨αD,r4⟩−−−−→ (sD4, 4)

⟨αE,r4⟩−−−−→ (sE4, 2). It can be seen that robot r4 satisfies the task plan X∗∗
2 by working in

parallel with r2 and r3.

The language of the remaining subtask automata become L(G1) = (Ěg1)
∗πF(Ěg1)

∗ and L(G2) =

(Ěg1)
∗(πE(Ěg1)

∗πD+πD(Ěg1)
∗πE)(Ěg1)

∗ after robots complete the atomic tasks πA and πB. In addition, the

redecomposition and replanning request is triggered after each time an atomic task is completed. A success-

ful redecomposition and replanning happens after robots complete atomic tasks πA and πB. The remaining

task specification G2 can be redecomposed into two automata L(G3) = (Ěg1)
∗πD(Ěg1)

∗ and L(G4) =

(Ěg1)
∗πE(Ěg1)

∗. At that moment, r3 implements its action at station F and communicates with r4. The min-

imal cost solution is updated as robot r3 performs the new task plan X∗∗
1 = (sF3, ⟨1, 1⟩)

⟨αE,r3⟩−−−−→ (sE3, ⟨1, 0⟩)

and r4 performs the new task plan X∗∗
2 = (sD4, 1). The MRS completes the remaining tasks with the updated

task planning solution.

Note that the above process only concerns the satisfaction of the task specifications with the task

plan. To accomplish the task plan, each robot still need to achieve the physical transition from one station

to another in the triangulated environment based on the motion transition system and hybrid controller. The

final paths of all the robots are shown in Fig. 3.14 (a).

(Task Specification 2) Given a global task specification for the whole manufacturing process: (1)

the system first obtains raw parts from station A, and next performs the milling operation for them at station B.

Grinding operation at station C can be either repetitively performed after milling operation or not performed at

all. Then, assembling operations are encoded in a complex form, which is (2) finally assembling products at

each station of D, E and F in any sequence and then pack them at station G. The corresponding LTL specifica-

tion is φ2 = πA∧⃝(πB∧⃝(πCU (♢(πD∧⃝πG)∧♢(πE∧⃝πG)∧♢(πF∧⃝πG)))). The converted automaton

Ǧg2 of this task specification can be obtained and its atomic propositions APg2 = {πA, πB, πC, πD, πE, πF, πG}.

Here, the atomic proposition πG is a cooperative event that needs multiple robots to coordinate with each

other simultaneously to pack finished products at station G. Let Ěg2 = 2APg2 . All the subautomata that

can be extracted from Ǧg2 and satisfy event-equivalent words according to Def. 14 are initially not parallel

decomposable. Thus, this global task automaton needs to be dealt with as a whole. A set of robot assign-

ments {{r3}, {r4}, {r1, r3}, {r1, r4}, {r2, r3}, {r2, r4}, {r3, r4}, {r1, r3, r4}, {r2, r3, r4}, {r1, r2, r3, r4}}

can be generated to achieve the indecomposable task subautomaton according to Def. 17. The optimal

robot assignment {r2, r3} is selected to synthesize the SPA for the task subautomaton. The minimal cost
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Figure 3.14: The paths of MRS in the working environment for completing the manufacturing tasks.

task plan X∗∗ = (⟨sA2, sϵ3⟩, 0)
⟨αB,r2⟩−−−−→ (⟨sB2, sϵ3⟩, 5)

⟨αC,r2⟩−−−−→ (⟨sC2, sϵ3⟩, 11)
⟨αF,r3⟩−−−−→ (⟨sC2, sF3⟩, 1)

⟨αE,r3⟩−−−−→

(⟨sC2, sE3⟩, 6)
⟨αD,r3⟩)−−−−−→ (⟨sC2, sD3⟩, 3)

⟨αG,r2,r3⟩−−−−−−→ (⟨sG2, sG3⟩, 2) is searched in the SPA.

A redecomposition request for the remaining task specification is sent when each time r2 or r3 com-

pletes one of its atomic tasks. After robot r3 enters into state sC2, three new subtask automata are obtained by

decomposing the automaton of remaining task specification φ′
2 = ♢(πD∧⃝πG)∧♢(πE∧⃝πG)∧♢(πF∧⃝πG).

The corresponding languages of the three new subtask automata are L(G1) = (Ěg2)
∗πD(Ěg2)

∗πG(Ěg2)
∗,

L(G2) = (Ěg2)
∗πE(Ěg2)

∗πG(Ěg2)
∗, and L(G3) = (Ěg2)

∗πF(Ěg2)
∗πG(Ěg2)

∗. Robots r1 and r4 are the

robots without any assigned tasks and robot r4 has the capability of assisting r3 for its assigned tasks.

Then, the SPA is synthesized from the parallel composition TE3∥TE4 and the unperformed tasks of r3, i.e.,

P3(Lcψ(X∗∗)). The generated SPA is a single path automaton and gives the reassigned task plan for r3 and

r4. The parallel execution format of reassigned task plan X̃∗∗ includes (⟨sC2, sF3⟩, 1)
⟨αG,r2,r3⟩−−−−−−→ (⟨sG2, sG3⟩, 2)

and (sE4, 6)
⟨αD,r4⟩−−−−→ (sD4, 3)

⟨αG,r4⟩−−−−→ (sG4, 2) according to Cor. 1. Each robot then achieves the generated task

plans with the paths shown in Fig. 3.14 (b).
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3.7.3 Scalability and Computation Evaluation

This section evaluate the scalability and computational complexity of the proposed framework with

respect to the number of atomic tasks and robots. A computer with Intel Core i5 2.3 GHz processor and

8 GB RAM is used to run the algorithm. The results are listed in Table 3.3. The basic task specification

is φz = ♢(πzB ∧ ⃝(πzB U πzE )) ∧ ♢(πzC ∧ ⃝(πzC U πzF )), z ∈ Z, which is synthesized from four atomic

tasks in a similar workspace as shown in Fig. 3.4. Increase the complexity of task specification through

integrating more φz into the LTL formula. The corresponding task performing environment is a workspace

composed of multiple subspaces, each of which is the same as the one shown in Fig. 3.4. Thus, a general

form for the task specification can be described as φgZ =
∧Z
z=1 φz , Z ∈ Z, where Z is the total number of

subspaces and corresponds to Column 1 in Table 3.3. The converted automaton and decomposition results

of the LTL are shown in Column 2 of Table 3.3. A varied numbers of robots are also provided for each

task specification, which corresponds to Column 3 of Table 3.3. The transition system of each robot is

the same as TE3 in Fig. 3.13 and all the provided robots in each row are assigned with atomic tasks.

The corresponding robot assignment is shown in Column 4. The provided robots and their configurations

can demonstrate not only the scalability of the task planning framework regarding the robot amount, but

also the influence of robot assignment on the computational complexity and task execution efficiency. The

subtask automata are assigned with corresponding robots for the task planning process. The corresponding

computational complexity and task execution efficiency are represented with the resulting state size of the

SPA (see Column 5), average runtime of generating the task plan (Column 6), level of parallelism (Column

7), and the average time required to complete the tasks (Column 8). Compare the above four results (Columns

5 - 8) of the framework with those of the centralized task planning (values in the bracket of Columns 5 - 8),

which directly synchronizes MRS transition system ∥Nn=1TEn with the global task automaton.

The evaluation results show that the state size of SPA and runtime of generating task plan increase

exponentially with respect to the increasing robot amount and complexity of task specification in the cen-

tralized framework. “N/A” means that the runtime is too long to be available. The task planning framework

has to additionally consider the runtime for the parallel decomposition of task specification. Even though

the computation of parallel decomposition based task planning needs the additional computational cost, it

grows at a much slower speed compared to the centralized one. In addition, the decentralized SMP frame-

work has the lowest computation for each task specification only under the particular robot assignments (see

the highlighted rows with bold fonts in Table 3.3), which provides the minimum amount of robots for each
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decomposition and result in the highest level of parallelism. Robot assignment with too few robots (see the

rows before the highlighted ones in each task specification case in Table 3.3) can result in more concurrent

SPA in the proposed framework, which approaches to the centralized strategy. In the worst-case scenario that

only one robot is assigned to the task specification, the framework becomes the centralized fashion. Robot

assignment with too many robots can result in unnecessarily large-size SPA (see the rows after the highlighted

ones in each task specification case in Table 3.3). In conclusion, the proposed parallel decomposition and

robot assignment strategy can help to reduce the computation of the task planning.

The parallel decomposition based task planning framework also improves the level of parallelism.

Robot assignment with more robots can result in a higher level of parallelism in each task specification case

(see the rows at and before the highlighted ones in each task specification case in Table 3.3). That is because

more robots can work simultaneously and satisfy the subtask automata in parallel. However, the level of

parallelism at most equals to the number of decomposition components (see the rows after the highlighted

ones in each task specification case in Table 3.3). The corresponding average time of completing the task

specification is reduced as well compared with the centralized strategy. Their changes are consistent with

the level of parallelism. Therefore, the parallel decomposition based robot assignment and task planning

framework can greatly improve the task performing efficiency.

There are several existing representative MRS decentralized task planning frameworks [20, 45, 78],

as mentioned in the introduction. Both the parallel decomposition based task planning framework and these

existing frameworks aim to reduce the computation in the MRS task planning by decomposing the task

specification into smaller pieces. However, every framework requires the temporal logic task specification to

satisfy its defined property before applying the decentralized computation for the task planning. For example,

the parallel decomposition based task planning framework requires the task specification to satisfy the parallel

decomposability; and work in [20] requires the trace-closedness property of a task specification under its

provided robot configuration. A task specification can hardly satisfy both of the required properties. The

situation applies to other frameworks. That implies every task planning framework commonly can not deal

with any other task planning frameworks’ task specifications. Hence, it is difficult to quantitatively compare

these frameworks and conclude that one strategy provides more advantages than others. Nevertheless, the

results of the experiments and comparison in Table 3.3 show the uniqueness of the work by presenting the

task specifications satisfying the parallel decomposability that others may not achieve.
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Z Automaton Robot # Robot Assignment SPA State size Average runtime Parallelism Tasking time

1
State size: 9,
(G1: 3 states,
G2: 3 states)

1 (r1, {G1, G2}) 72 74 ms 1 113s
2 (r1, G1), (r2, G2) 48 [576] 72 ms [173 ms] 2 [1] 54s [107s]

4
({r1, r2}, G1),
({r3, r4}, G2)

384 [36864] 152 ms [1.85 s] 2 [1] 56s [110s]

2
State size: 81,
(Gi: 3 states,
i = 1, · · · , 4)

2
(r1, {G1, G2}),
(r2, {G3, G4})

144 [5184] 431 ms [3.27 s] 2 [1] 112s [220s]

4 (rn, Gi), n = i 96 [331776] 416 ms
[1950.018 s] 4 [1] 54s [208s]

8
({rn, rn′}, Gi),
n = 2i− 1, n′ = 2i

768
[1.36× 109]

580 ms
[N/A]

4
[1]

56s
[214s]

3

State size:
729,
(Gi 3 states,
i = 1, · · · , 6)

2
(r1, {G1, G2, G3}),
(r2, {G4, G5, G6})

432
[46656]

6.973 s
[211 s]

2
[1] N/A

4
(r1, G1), (r2, G2),
(r3, {G3, G4}),
(r4, {G5, G6})

192
[2.99× 106]

6.764 s
[N/A]

4
[1] N/A

6 (rn, Gi), n = i
144

[1.91× 108]
6.751 s
[N/A] 6 [1] N/A

8
(rn, Gi), n = i ≤ 4
({r5, r6}, G5),
({r7, r8}, G6)

480
[1.22× 1010]

6.828 s
[N/A]

6
[1] N/A

12
({rn, rn′}, Gi),
n = 2i− 1, n′ = 2i

1152
[5.0× 1013]

6.923 s
[N/A]

6
[1] N/A

4

State size:
6561,
(Gi: 3 states,
i = 1, · · · , 8)

2
(r1, {G1, · · · , G4}),
(r2, {G5, · · · , G8})

1296
[419904]

1906.107 s
[4.65 hr]

2
[1] N/A

4

(r1, {G1, G2}),
(r2, {G3, G4}),
(r3, {G5, G6}),
(r4, {G7, G8})

288
[2.69× 107]

1905.675 s
[N/A]

4
[1] N/A

8 (rn, Gi), n = i
192

[1.10× 1011]
1905.658 s

[N/A] 8 [1] N/A

12

(rn, Gi), n = i ≤ 4
({rn′ , rn′′}, Gi′),
i′ = 5, · · · , 8,
n′ = 2i′ − 1,
n′′ = 2i′

864
[4.51× 1014]

1905.801 s
[N/A]

8
[1] N/A

16
({rn, rn′}, Gi),
n = 2i− 1, n′ = 2i

1536
[1.85× 1018]

1905.864 s
[N/A]

8
[1] N/A

Table 3.3: Scalability, computation and execution comparison between the parallel decomposition based task
planning framework and centralized task planning.
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3.8 Conclusion

This chapter presented a top-down framework for the parallel task and motion planning of MRS

to achieve a global task specification with automaton theories. We first introduced an iterative parallel de-

composition algorithm and its enhanced version to decompose the global specification. The decomposition

components were a unique set of smallest parallel subtask automaton and each component was assigned a

set of heterogeneous robots. A maximum amount of individual and concurrent SPA were then synthesized

with these subtask automata and the capability transition systems of the assigned robots. Each SPA provided

a minimal cost task plan for the MRS and all the task plans were executed in parallel. The task planning

process provided higher level of parallelism task plans for MRS compared with the centralized approach that

directly synthesizes task plans with the global task automaton and robot transition systems. The parallel task

planning process was also proved to be more computationally efficient compared to the centralized approach.

Furthermore, dynamic concurrent execution was performed for the task plan from each parallel SPA in order

to improve the concurrency of the task performing process.
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Chapter 4

Bayesian-based Trust Model for Human

Multi-Robot Collaborative Motion Tasks

4.1 Introduction

In human-robot collaborative task performing, human’s trust in robot describes human’s willingness

to collaborate with the robot at the risks of robot reliability in uncertain situations [26, 39, 91]. Trust is an

important determinant of the human’s acceptance of robotic system performance, given that the robot is of

integrity and has good intent in collaborating with the human. A robot’s gaining an appropriate level of trust

from a human can reduce the human stress and cognitive workload during the collaboration [26, 3].

Despite the recent surge in human-robot trust research, many works remain at a descriptive level

[39, 21]. These works analyze impacting factors of human trust in robotic systems with different experimental

designs in the corresponding scenarios. It is not enough to achieve the planning and control of robot behaviors

through trust analysis. Quantification of trust can help explain the trustworthiness of robot behaviors and

guide the robot to gain more trust from the operator during human-robot collaboration. However, the human’s

trust in a robot is often latent and complex to quantify [26]. It is challenging to construct a computational

model to capture the temporal nature of human trust in robots. Hence, it is significant for a human-robot

collaborative system to quantify the trust with a computational model.

This chapter focuses on the interpretability of causality between trust and its impacting factors in

a human’s decision-making process. We assume that the human’s trust in each robot is a continuous-valued
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time series data. Then, we build a linear state space (LSS) model to capture the human’s trust in all the robots

during a human-MRS collaborated motion task. The human-MRS collaborated motion task is deployed in

an offroad environment, where a group of ground robots accomplishes the motion task and is subject to the

influence of the environment’s characteristics. Compared with the time series trust models in [74, 75], the

LSS model takes into account both the impacting factors of the environment and the uncertainties of the trust

evaluation. The LSS model also considers the unobservable property of human trust during the collaboration

process. It takes the human’s feedback as the observations of human trust instead of directly taking it as the

trust value. In addition, we provide a generalized state-space equation in our LSS model to capture the inter-

robot trust influence for the human-MRS collaboration compared with [98, 91, 101, 55]. We take the LSS

trust model that does not consider human’s trust influence among robots as a baseline. Then, we compare the

model that considers the inter-robot trust influence with the baseline regarding the prediction accuracy.

We use Bayesian inference to estimate the parameters of the LSS model. The Bayesian inference

method estimates the posterior probability distribution of the trust model parameters based on the observa-

tions’ likelihood and a prior belief of the model parameters. The obtained posterior probability distribution

of the trust model parameters can then be taken as the model parameters’ prior belief as more observations

become available. The iterated updating of the posterior distribution of the trust model parameters brings

convenient computation and requires less data under the LSS model. In addition, it is challenging to estimate

the latent variables in the LSS model. In this chapter, we utilize Kalman filter and smoother with a forward

filtering and backward sampling (FFBS) algorithm to sample the unobserved trust values.

We also aim to obtain the optimal path for the human-MRS collaborated motion task based on the

estimated LSS model parameters. Traditionally, people first design a standard sequential experiment to obtain

the LSS model parameters and then predict the optimal path with the trained LSS model. The procedure of

the standard experiment typically has a predetermined sequence of trials on a set of paths of environment.

This chapter relies on the Bayesian optimization strategy to design the experiment (see Fig. 4.1). That is

we use the up-to-date estimated LSS trust model parameters to plan the optimal path and allocate this path

for the human-MRS to perform the subsequent trial; the estimation of the LSS model and planning for the

optimal path are sequentially iterated within the environment. The Bayesian optimization strategy is built

on the Bayesian inference based trust model estimation. It reduces the unnecessary trials on the paths that

may not be valuable to observe the robot behaviors. The strategy can improve the cost performance, such as

operator’s perceived workload, usability, and situational awareness, of deploying the human-MRS trials and

generate the optimal path more cost-effectively than the standard experimental design.
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Figure 4.1: Architecture of the Bayesian optimization based trust model for human-MRS collaborative mo-
tion task. The left figure describes the overall procedure of the sequential experiment of BOED. The right
figure presents the detailed processes of estimating the trust model parameters’ posterior distribution and ob-
taining the preferable path in trial s.

The organization of the rest of the chapter is as follows. Chapter 4.2 provides the preliminaries and

problem setup. Chapter 4.3 introduces our computational trust model for human-MRS collaboration with

Bayesian inference and MCMC. Chapter 4.3 discusses the exploration of the preferable path with the BOED.

Chapter 4.5 demonstrates the overall strategy with a case study on human-MRS bounding overwatch tasks in

offroad environments. Chapter 4.6 analyzes the experimental results of the case study. Chapter 4.7 concludes

the work.

4.2 Preliminaries and Problem Setup

4.2.1 Human’s trust in robots and MRS motion planning

We give the formal definition of human’s trust in ground robot under a human-MRS collaboration

scenario according to [39]. That is, trust describes a human’s willingness to accept ground robot-produced

paths and motion behaviors so that the human can assign tasks to the robots and utilize the benefit of robotic

systems. The impacting factors that can affect human’s trust in a ground robotic system can be generally

concluded into: (1) the ground robot characteristics and capability, (2) the terrain environment and human-
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MRS teaming formalism, (3) human operator psychological, physical states and attributes.

This chapter aims to estimate the human’s trust in a ground MRS with the above impacting factors

and explore for the optimal path for the MRS in an iterated process. We present a general process to achieve

the objective as follows, (1) the system learns the human decision-making mechanism, i.e., human’s trust

model, based on the related impacting factors and operator’s interaction history with the MRS; (2) the system

computes the trustworthiness of all the paths with the human’s trust model and the motion planner generates

the probabilistic optimal path for the human-MRS to perform the motion task in the environment; (3) the

system keeps updating the human’s trust model and generating the optimal path for the MRS to navigate.

The workflow of the above process is summarized in Fig. 4.2.

Infer & plan

BehaviorFeedback

Planner:

human 
decision-
making

Figure 4.2: Trust-based motion planning in human-MRS collaboration

Among all the different impacting factors of trust, we focus on the influence of the offroad terrain

environment on the human’s trust in the ground robotic system. We reply on the robots’ perception of terrain

environment attributes, such as slope, visibility, etc., to describe the influence. Then, robots’ situational

awareness, such as traversability and line of sight, can be the two representative perceptions of environment

attributes. Here, the traversability describes the capability of a robot to reside over a terrain region under

an admissible state wherein it can enter given its current state. This capability can be quantified with the

kinematic constraints of the vehicle model in a terrain. Works [58, 9, 99, 68] extract traversability as a cost

with the geological information of terrain and utilize the cost to perform motion planning for the unmanned

vehicles. The line of sight describes the unobstructed vision from an observer to the target in the motion.

One can estimate the line of sight with the observer’s viewshed which is the visible geographic area with a

sensor from a specific location. Works [51, 7, 97] conduct the motion planning for unmanned surface vehicle

with the viewshed information. However, a path with good traversability may not be characterized with a

superior line of sight in the motion process and vice versa. It is necessary to generate a path that can take care

of both traversability and line of sight so that the robots can achieve the best performance with their inherent
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mobility and sensing capability. Therefore, a computational trust model can be meaningful in including the

traversability and line of sight information in the human-MRS collaboration.

4.2.2 Problem Setup

Every form of coordination among robot members has a specific motion mechanism and the asso-

ciated decision-making mechanism will be distinct. This chapter exemplifies the human’s trust in an MRS

coordination scenario where two subteams of robots navigating abreast in an offroad environment. The robot

members of each subteam coordinate in a line formation as usually adapted in infantry platoon, convoy, etc.1

In addition, one subteam that contains all the autonomous robots always moves ahead of the other human-

operated subteam and inspects the environment to avoid the potential risks, as shown in Fig. 4.4. The human

operator controls the manned subteam following the autonomous one. Therefore, it is crucial to estimate the

trustworthiness of the autonomous subteam’s behaviors and protection in the above navigation.

Next, we illustrate the trust causality of MRS in the motion process. We assume that the human

operator’s psychological and physical states keep stable, and the MRS’ mechanical characteristics and sensor

functions are also consistent during the task performing. Then, the robots’ situational awareness in the envi-

ronment will be the main factors influencing the human’s trust if the above human-MRS teaming formalism

keeps constant. Assume the autonomous subteam has I robots ri, i = 1, · · · , I . Denote the human operator’s

trust in each robot ri at a time step k to be xki , and the situational awareness of each robot at time step k to be

zki = [zki,1, · · · , zki,m, · · · , zki,M ]⊤, where time step k = 1, · · · ,K and each attribute zki,m, m = 1, · · · ,M

can be robot ri’s traversability, or line of sight and so on in the terrain. According to the previous section, we

consider the human’s trust xki in each robot ri to be affected by its situational awareness zki . Furthermore,

because each robot ri, 2 ≤ i ≤ I follows a preceding robot ri−1, the human’s trust xki is additionally af-

fected by the trust xki−1 of its preceding robot. Finally, the human’s trust xki also has a temporal effect, i.e.,

humans may make decisions based on their memories of the previous trust xk−1
i . Therefore, we set the trust

xki to be affected by the previous trust xk−1
i . A visual description of the causality between the trust xki−1

and situational awareness zki is shown in Fig. 4.3. Ideally, we can measure the human’s trust xki in every

robot ri and then infer the trust model parameter. However, it is often challenging to conduct an accurate

and robust measurement for human trust by referring to the human psychological and physical state with any

sensor. Therefore, we consider the actual trust value xki to be a latent variable (hidden state) and do not ob-

serve it directly. We develop an human-computer interface for the human operator to provide the trust change

1https://www.presby.edu/doc/military/FM3-21-8.pdf
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Figure 4.3: The causality graph of the computational trust model in human-MRS collaboration.

yki = xki − xk−1
i at the moment of time step k and take the trust change as the observation for the system.

Then, we can derive computational model between trust and robot situational awareness based on

the above causal relationship.

Finally, we can formulate our problem as follows,

Problem of Interest 3. Given a go-to-goal human-MRS collaborative motion task, (1) design an HRI system

to dynamically learn the trust-based decision-making mechanism that the human set in mind by referring to

the causality in Fig. 4.3; (2) find the optimal path for the human-MRS, which approaches the human-like

decision-making and gains the highest level of trust from the human operator.

4.3 Related Work

There have been several computational trust models developed recently in human single-robot col-

laboration [98, 74, 18, 75, 3, 2, 8]. According to the structure of the trust models, they can be generally

categorized into the discrete-valued partially observable Markov decision process (POMDP) models and

continuous-valued time series models.

The discrete-valued POMDP models generally formulate the state evolution of trust as a Markov

chain. Chen et al. in [18] propose a POMDP to improve the performance of a table-clearing task in a

human-manipulator collaborated team. The work approximates human’s trust value with the HRI history; and

composes the environment state with the human’s trust value to be the state of the POMDP. The performance-
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centric model uses the estimated trust value to decide the upcoming actions of the human-manipulator. In the

ground vehicle scenario, works [3, 2] integrate a human’s trust and workload to be a POMDP state and use

the POMDP to capture the dynamic change of human’s trust in reconnaissance missions. The model aims to

trade off the operator workload and the transparency, i.e., the amount of information provided to the human.

Overall, the discrete-valued POMDP models use a large amount of data to capture the dynamics of the trust,

but they lack the interpretability regarding the influence of impacting factors on the trust change.

The continuous-valued time series models commonly describe a human’s trust evolution with a

linear equation and an auto-regression term captures the influence of the previous trust state on the current

trust state. Sadrfaridpour et al. in [74] develop a first-order Autoregressive Moving Average (ARMA) model

to capture the trust variation in their human-manipulator collaboration scenario. The human trust model is

formulated as a constraint function of optimal control during the manipulator’s pickup task. Saeidi et al.

in [75] utilize the weighted human and robot performance to build a linear trust model, where the robot

performance is captured with an Auto-regression with extra inputs (ARX) model. The hierarchical time

series model reduces the human operator’s workload in the teleoperated UVA task by using trust as a metric

to allocate human autonomy tasks. Xu et al. in [98] developed an Online Probabilistic Trust Inference

Model (OPTIMo) to capture the causality between robot performance and human’s trust in a human-UAV

supervisory collaborative task. This time series model obtains the maximum likelihood estimate of trust

model parameters based on a 2-step temporal Bayesian network. Azevedo et al. in [8] utilize a linear time

invariant state space model to describe the evolution of operator’s trust with respect to the autonomous driving

systems’ sensor behaviors. Their trust estimation framework can successfully compute the trust based on

the interactions between the drivers and autonomous driving systems. These continuous-valued time series

models have good interpretability and can be integrated well into the control of robot behaviors. However,

these performance-centric trust models fail to capture the influence from environmental attributes in inferring

the human’s trust. More impacting factors, such as environment and human characteristics, remain to be

investigated for the human-robot collaboration.

Furthermore, multi-robot systems (MRS) can accomplish more complex tasks with two or more

robots and have produced a broad set of applications. The presence of a human operator in an MRS can

guarantee the safety of the task performing and is necessary for many scenarios [62, 91, 63, 55]. In this

circumstance, human operators can be subject to heavier stress and cognitive workload in collaboration with

the MRS than in the single robot scenario. However, there are seldom computational trust models devel-

oped for the human-MRS collaborative task except [62, 63]. Nam et al. in [62, 63] develop a human-
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robotic swarm trust model for a search mission. The trust model composes human’s trust in a swarm and

swarm physical characteristics as a state of Markov decision process (MDP) and captures the dynamics of the

states with inverse reinforcement learning. Though the model can evaluate the human’s trust in the swarm,

the direct causality between trust and swarm characteristics remains unknown. The provided assistance for

the human-swarm environment exploration lacks interpretability regarding the underlying human decision-

making mechanism. In addition, though the discrete-valued MDP models can accurately predict the human’s

trust, they tend to overfit the human decision-making process’s model parameters.

Our previous works [101, 91] investigate human’s trust in every robot of an MRS with a linear time

series model for a temporal logic described motion planning task. We build a Dynamic Bayesian Network

to capture the causality of human trust in the MRS motion task. Similarly, Mahani et al. in [55] develop

an Input-Output Hidden Markov Model (IOHMM) to describe the trust evolution of multi-UVA rescue task.

The work utilizes expectation maximization (EM) algorithm to estimate the parameters of the discrete-valued

time series model. The above trust models can capture human trust dynamics in all the individual robots of

MRS. They also have good interpretability regarding the causality of trust. However, there could exist trust

influence between each two robot members in the MRS. These computational trust models of MRS do not

consider the explicit trust causality between different robots.

4.4 Time-series Trust Model of Human Multi-Robot Collaboration

According to the summarized cognitive models in [16], the human’s decision-making under risks and

uncertainty mainly depends on their attention to different attributes of events. A weighted combination of an

event’s attributes can be used as the utilities of a human’s decision-making, where each weight represents the

allocated attention. Then, we can use an LSS model to combine the MRS situational awareness and interpret

the trust-based decision-making in the human-MRS collaborative motion tasks.

On the basis of the causality in Fig. 4.3, we use a linear state-space equation to describe the gen-

eral relationship between the pairs among MRS situational awareness Zk1:I =
[
zk1 , · · · , zkI

]⊤
, human trust

xk1:I =
[
xk1 , · · · , xkI

]⊤
and human feedback yk1:I =

[
yk1 , · · · , ykI

]⊤
. The state space equations are as
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follows,

xk1:I = B0x
k−1
1:I +

M∑
m=1

Bmzk1:I,m + b+ ϵϵϵkw, (4.1)

yk1:I = xk1:I − xk−1
1:I + ϵϵϵkv , (4.2)

where the I×I coefficient matrix B0 is the autoregression term and discounts the previous trust xk−1
1:I . It cap-

tures the temporal nature of the human trust. Each of the I×I coefficient matrices Bm, m = 1, · · · ,M is the

dynamic feature term and quantifies the weight of robots’ mth column attribute zk1:I,m = [zk1,m, · · · , zkI,m]⊤

in situational awareness matrix Zk1:I . The constant vector b describes the unchanging bias of human’s trust

in the MRS. The residue ϵϵϵkw is a zero-mean process noise and follows a multivariate normal distribution, i.e.,

ϵϵϵkw ∼ N(0, ∆w). The residue ϵϵϵkv is a zero-mean observation noise ϵϵϵkv ∼ N(0, ∆v) during the measurement

of the trust change yk1:I .

In the human-MRS collaboration, we expect to analyze the trust influence of the preceding robot on

the succeeding robot, i.e., the causality labeled with dotted arrows in Fig. 4.3. In Subsec. 4.4.1, we introduce

trust model without considering the influence of human’s trust in each preceding robot ri−1 on that of its

succeeding robot ri. In Subsec. 4.4.3, we capture the influence of human’s trust in each preceding robot ri−1

on that of its succeeding robot ri under a line formation of MRS.

4.4.1 Computational trust model without inter-robot trust influence

For the sake of illustration simplicity, we first introduce the linear dynamic trust model without the

influences from each preceding robot ri−1 on its succeeding robot ri. We quantify the relation between trust

xki ∈ xk1:I and the situational awareness zki,m ∈ zk1:I,m of individual robot ri at time step k. The linear

dynamic model for any individual robot ri becomes

xki = β0x
k−1
i +

M∑
m=1

βmzki,m + b+ ϵkw,i, (4.3)

where coefficient β0 is the weight for the previous trust xk−1
i , coefficients β1, · · · , βM are the weights for

the situational awareness zki,m, m = 1, · · · ,M , the term b is the constant bias, and the zero-mean residue

ϵkw,i ∼ N(0, δ2w). Given all the above information, we can have the trust xki following a normal distribution,
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i.e.,

xki | xk−1
i , zki , βββ, δ

2
w ∼ N(βββ⊤z̃ki , δ

2
w), (4.4)

where trust model coefficients βββ = [β0, β1, · · · , βM , b]
⊤, and vector z̃ki =

[
xk−1
i , zki,1, · · · , zki,M , 1

]⊤
.

Similarly, the observation, i.e., the trust change yki ∈ yk1:I of human operator, is

yki = xki − xk−1
i + ϵkv,i, (4.5)

where the zero-mean residue ϵkv,i ∼ N(0, δ2v). Then, we can have trust change yki following a normal

distribution

yki | xki , xk−1
i , δ2v ∼ N(xki − xk−1

i , δ2v). (4.6)

We assume that all the robots will subject to a same trust evaluation process from an operator. The

details of model parameters θθθ = (B0, B1, · · · , BM , b, ∆w, ∆v) in Eqns. (1) and (2) become

Bm = diag(βm, · · · , βm)I×I ,

b = [b, · · · , b]⊤I×1 ,

∆w = diag(δ2w, · · · , δ2w)I×I ,

∆v = diag(δ2v , · · · , δ2v)I×I .

Hence, the trust model parameters can be simplified to be θθθ = (βββ, δ2w, δ
2
v).

To simplify the notations, we can conclude the vectors z̃k1 , · · · , z̃kI to be the matrix Z̃k1:I =

[z̃k1 , · · · , z̃kI ]⊤I×(M+2). Furthermore, we denote each of the K time steps data as follows

Z1:K
1:I = [Z1

1:I ,Z
2
1:I , · · · ,ZK1:I ]K×I×M ,

Z̃1:K
1:I = [Z̃1

1:I , Z̃
2
1:I , · · · , Z̃K1:I ]K×I×(M+2),

X1:K
1:I = [x1

1:I , x
2
1:I , · · · , xK1:I ]I×K ,

Y1:K
1:I = [y1

1:I , y
2
1:I , · · · , yK1:I ]I×K .

We use the Bayesian inference to estimate the computational trust model parameters θθθ in Eqns. (4.3) and (4.5)

(or equivalently in Eqns. (4.1) and (4.2)). Bayesian inference infers the model parameters θθθ by combining

the likelihood of observing the trust change Y1:K
1:I , i.e., Pr(Y1:K

1:I ,X1:K
1:I | Z1:K

1:I , θθθ), with the prior distribution
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π0(θθθ). Given the prior distribution of θθθ as π0(θθθ) and the trust distribution information of Eqns. (4.4) and

(4.6), the posterior distribution2 of trust model parameters θθθ is

π(θθθ | Y1:K
1:I ,X1:K

1:I ,Z1:K
1:I )

∝ Pr(Y1:K
1:I | X1:K

1:I ,Z1:K
1:I , θθθ) Pr(X1:K

1:I | Z1:K
1:I , θθθ)π0(θθθ)

= (2πδ2v)
− IK

2 exp

−
K∑
k=1

I∑
i=1

(yki − (xki − xk−1
i ))2

2δ2v



(2πδ2w)
− IK

2 exp

−
K∑
k=1

I∑
i=1

(xki − βββ⊤z̃ki )
2

2δ2w

π0(θθθ).

(4.7)

4.4.2 Bayesian inference of computational trust model parameters

It is often impossible to obtain the analytical solution from Eqn. (4.7) for the hyperparameters

of LSS model in Eqns. (4.1) and (4.2). Markov chain Monte Carlo (MCMC) sampling is a sequential

sampling approach and commonly used to obtain the approximated values of the posterior distribution’s

hyperparameters. Denote (X1:K
1:I )(l−1) and θθθ(l−1) to be the sampled value at l − 1 iteration of MCMC. A

general iteration of the MCMC sampling for the model with latent variables can be summarized with the

following two steps [17]:

• given values of (X1:K
1:I )(l−1), sample trust model parameters θθθ(l) from their posterior distribution π(θθθ |

Y1:K
1:I , (X1:K

1:I )(l−1),Z1:K
1:I ) in Eqn. (7);

• given values of θθθ(l), sample latent variable (X1:K
1:I )(l) from the distribution function Pr(X1:K

1:I |

Y1:K
1:I ,Z1:K

1:I , θθθ(l−1)) in Eqn. (4.10).

MCMC can sequentially sample a set of value D =

{(θθθ(0), (X1:K
1:I )(0)), · · · , (θθθ(l), (X1:K

1:I )(l)), · · · }, l = 0, 1, · · · , to approach to the actual distribu-

tion of trust model parameters θθθ if l → ∞. The approximation is supportive because the likelihood

function without latent variable X1:K
1:I satisfies Pr(Y1:K

1:I | θθθ,Z1:K
1:I ) ≈

∑
(X1:K

1:I )(l)∈D Pr(Y1:K
1:I |

(X1:K
1:I )(l), Z1:K

1:I , θθθ) Pr((X1:K
1:I )(l) | Z1:K

1:I , θθθ) under the sampled data set D.

More specifically, we use the Gibbs sampler of MCMC to sample the model parameters θθθ in a step-

wise manner, i.e., sampling each parameter in θθθ: βββ, δ2w, δ2v separately based on its conditional posterior
2The full process of deriving the posterior distribution of θθθ is shown in Appendix A.1 Eqns. (1) - (9)
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distribution3. The derived posterior distributions of all the model parameters are

βββ | Y1:K
1:I ,X1:K

1:I ,Z1:K
1:I , δ2w, δ

2
v ∼ N(E, V),

δ2w | Y1:K
1:I ,X1:K

1:I ,Z1:K
1:I ,βββ, δ2v ∼ IG (aK , bK) ,

δ2v | Y1:K
1:I ,X1:K

1:I ,Z1:K
1:I ,βββ, δ2w ∼ IG (cK , dK) ,

where E, V, aK , bK , cK , dK are the hyperparameters of the corresponding posterior distributions. The

details of deriving the above posterior distributions and their hyperparameters are shown in Appendix A.1

Eqns. (10)-(15).

We can achieve the sampling of model parameters θθθ(l) =
(
βββ(l), (δ2w)

(l), (δ2v)
(l)
)

in each iteration

of MCMC by referring to the above conditional posterior distribution. Then, it comes to the sampling of

X1:K
1:I conditional on θθθ(l). We utilize the forward filtering backward sampling (FFBS) in [84] to sample all

the latent variables xk1:I . Rearrange the Eqn. (1) and (2) to be the canonical form as follows,

 xk1:I

xk−1
1:I

 = B̃0

xk−1
1:I

xk−2
1:I

+ B̃1



zk1:I,1
...

zk1:I,M

1I×1


+

 ϵϵϵkw

0I×1

 , (4.8)

yk1:I =

[
1I×I −1I×I

] xk1:I

xk−1
1:I

+ ϵϵϵkv , (4.9)

where matrix B̃0 =

 B0 0I×I

1I×I 0I×I

, matrix B̃1 =

 B1 · · · BM bI×I

0I×I · · · 0I×I 0I×I

, 1I×I is the I × I identity

matrix, 0I×I is the I × I zero matrix, 1I×1 is the vector with all elements 1, and 0I×1 is the vector with all

elements 0.

Denote x̃k1:I = [xk1:I , xk−1
1:I ]⊤. Correspondingly, we can rearrange the K steps of trust value

X1:K
1:I ≡ [x̃1

1:I , x̃
2
1:I , · · · , x̃K1:I ]2I×K . The FFBS can estimate the posterior distribution of state x̃k1:I with

3Though Metropolis algorithm of MCMC can perform a random-walk sampling for the entire model parameters θθθ at once with the
probability density functions (4.7); the Gibbs sampling approach is more efficient and can shorten the amount of time of obtaining the
converged posterior distribution of model parameters.
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the probabilistic function

Pr(X1:K
1:I | Y1:K

1:I ,Z1:K
1:I , θθθ)

= Pr(x0
1:I | x̃1

1:I , θθθ)

K∏
k=2

Pr(x̃k−1
1:I | x̃

k
1:I ,Y

1:k−1
1:I ,

Z1:k−1
1:I , θθθ) Pr(x̃K1:I | Y1:K

1:I ,Z1:K
1:I , θθθ).

(4.10)

It is obvious that sampling the entire X1:K
1:I at once is impossible because each state x̃k−1

1:I is dependent on

x̃k1:I . The FFBS first uses Kalman filter to obtain the one-step ahead prediction mean x̃
k+1|k
1:I , covariance

P
k+1|k
1:I and the filtering mean x̃

k|k
1:I , covariance P k|k1:I for every step’s trust x̃k1:I . Then, the FFBS samples trust

value x̃k1:I , k = K,K − 1, · · · , 1 backward from the Kalman smoother of Eqns. (4.8) and (4.9). Finally, we

can obtain the entire estimated latent variable X1:K
1:I . The details of deriving the Kalman filter and smoother

are shown in Appendix A.2.

We summarize the FBFS in Alg. 4. The input to the algorithm is the sampled value of model

parameters θθθ(l) : βββ(l), (δ2w)
(l), (δ2v)

(l) at sampling step l, the sampled trust values (X1:K
1:I )(l−1) at the

previous sampling step l − 1, and the observed data Y1:K
1:I , Z1:K

1:I . The results of the FFBS are the sampled

trust values (X1:K
1:I )(l) at current sampling step l. Lines 2-4 present the mean and variance values of the

one-step ahead prediction value and filtering result of (X1:K
1:I )(l). Lines 5-8 smooth the prediction value and

filtering result backward and sample the trust value (X1:K
1:I )(l) in the meantime.

Algorithm 4 FFBS for the latent variable X1:K
1:I

Input: parameters θθθ(l) : βββ(l), (δ2w)
(l), (δ2v)

(l), latent variable (X1:K
1:I )(l−1), data Y1:K

1:I , Z1:K
1:I

Output: latent variable (X1:K
1:I )(l)

1: function FFBS(θθθ(l), (X1:K
1:I )(l−1), Y1:K

1:I , Z1:K
1:I )

2: for k = 1, · · · ,K do
3: x̃

k+1|k
1:I , P k+1|k

1:I , x̃k|k1:I , P k|k1:I ← KalmanFilter
4: end for
5: for k = K, · · · , 1 do
6: µk, νk ← KalmanSmoother
7: sample (x̃k1:I)

(l) ∼ N(µk, νk)
8: end for
9: return (X1:K

1:I )(l) : (x̃1
1:I)

(l), · · · , (x̃K1:I)(l)
10: end function

The step-wise MCMC process is summarized in Alg. 5. The inputs to the algorithm are the initial

prior distribution of the model parameter π0(θθθ) and the observed data Y1:K
1:I , Z1:K

1:I . The results are the

converged posterior distribution of model parameter π(θθθ) and distribution of latent trust value X1:K
1:I .
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The algorithm first samples an initial value θθθ(0) : βββ(0), (δ2w)
(0), (δ2v)

(0) for model parameters

θθθ based on the prior distribution π0(θθθ) in line 2. Then, it starts the L-step MCMC sampling from line 3.

Lines 3-8 rearrange all the input variables z̃ki of LSS model since the input variables contain the trust value

(xk−1
i )(l−1) at previous time step k − 1. Note lines 5 and 6 also present the initial sampled trust value

(X1:K
1:I )(0) .

The algorithm starts to sample the model parameter βββ(l) conditional on the previous sampled pa-

rameter (δ2w)
(l−1) and the previous sampled trust value (X1:K

1:I )(l−1) in lines 9 and 10. In lines 11 and 12,

the sampling of model parameter (δ2w)
(l) is conditional on the latest sampled parameter βββ(l) and the previous

sampled trust value (X1:K
1:I )(l−1) which is included in Z̃1:K

1:I . In lines 13 and 14, the sampling of the model

parameter (δ2v)
(l) is conditional on the previous sampled trust value (X1:K

1:I )(l−1) .

Finally, the algorithm utilizes the FFBS (Alg. 4) to sample the trust value (X1:K
1:I )(l) conditional on

the latest sampled model parameters βββ(l), (δ2w)
(l), (δ2v)

(l).

Algorithm 5 Gibbs sampling for the posterior trust model

Input: hyperparameters of prior π0(θθθ) : (βββ0, Σ0), (a0, b0), (c0, d0), data: Y1:K
1:I , Z1:K

1:I

Output: posterior of βββ, δ2w, δ2v and X1:K
1:I

1: function MCMC(π0(θθθ), Y1:K
1:I , Z1:K

1:I )
2: Sample θθθ(0) ∼ π0(θθθ), set x0

1:I = 0
3: for l = 1, · · · , L do
4: if l == 1 then
5: Sample (xki )

(0) ∼ N(βββ(0)⊤z̃ki , δ
2(0)
w )

6: Obtain (X1:K
1:I )(0)

7: end if
8: Z̃1:K

1:I ← [z̃11, · · · , z̃1I ], · · · , [z̃K1 , · · · , z̃KI ]

9: Update V,E based on Z̃1:K
1:I

10: Sample βββ(l) ∼ N(E, V)
11: Update aK , bK based on Z̃1:K

1:I and βββ(l)

12: Sample (δ2w)
(l) ∼ IG(aK , bK)

13: Update cK , dK based on (X1:K
1:I )(l−1)

14: Sample (δ2v)
(l) ∼ IG(cK , dK)

15: (X1:K
1:I )(l) ← FFBS(θθθ(l), (X1:K

1:I )(l−1), Y1:K
1:I , Z1:K

1:I ) with θθθ(l) : βββ(l), (δ2w)
(l), (δ2v)

(l)

16: end for
17: return θθθ(0), (X1:K

1:I )(0), · · · , θθθ(L), (X1:K
1:I )(L)

18: end function

4.4.3 Computational trust model with inter-robot trust influence

In this section, we investigate the trust influence of every preceding robot ri−1, 2 ≤ i ≤ I on its

succeeding robot ri. We add xki−1, i.e., the human’s trust in the preceding robot ri−1, into the linear dynamic
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model in Eqn. (4.3),

xki = β−1x
k
i−1 + β0x

k−1
i +

M∑
m=1

βmzki,m + b+ ϵkv,i, (4.11)

where parameter β−1 is the weight of human’s trust in the preceding robot ri−1. Accordingly, we can upgrade

the trust to be

xki | xki−1, x
k−1
i , zki , β−1, βββ, δ

2
w ∼ N(β−1x

k
i−1 + βββ⊤z̃ki , δ

2
w). (4.12)

Note that though the leading robot r1 in the autonomous subteam does not have a preceding robot, we can still

use Eqns. (4.11) and (4.12) to include this robot by setting the variable xki−1 = 0 if i = 1. The corresponding

linear dynamic model of robot r1 remains consistent with Eqn (4.3).

In comparison with Eqns. (4.1) and (4.2), the upgraded state space equations of trust model are as

follows,

xk1:I = B̌0x
k−1
1:I +

M∑
m=1

B̌mzk1:I,m + b̌+B−1ϵϵϵ
k
w, (4.13)

yk1:I = xk1:I − xk−1
1:I + ϵϵϵkv , (4.14)

where the model parameters composed matrices

B̌m = B−1 ·Bm,

b̌ = B−1 · b,

B−1 =



1

β−1 1

. . . . . .

β−1 1


I×I

.
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The resulting residue B−1ϵϵϵ
k
w ∼ N(0, ∆̌w), where

∆̌w =



δ2w β−1δ
2
w

β−1δ
2
w (β2

−1 + 1)δ2w
. . .

. . . . . . β−1δ
2
w

β−1δ
2
w (β2

−1 + 1)δ2w


I×I

,

and the residue ϵϵϵkv ∼ N(0, ∆v) are the same to the case of Subsec. 4.4.1 that does not consider the inter-robot

trust influence.

Next, we conclude the model parameters and variables by denoting

β̌ββ = [β−1, β0, β1, · · · , βM , b]
⊤
,

žki =
[
xki−1, x

k−1
i , zki,1, · · · , zki,M , 1

]⊤
,

Žk1:I =
[
žk1 , · · · , žkI

]⊤
,

Ž1:K
1:I =

[
Ž1

1:I , · · · , ŽK1:I
]⊤

.

The corresponding trust model parameters are summarized as θ̌θθ = (β̌ββ, δ2w, δ
2
v). We can have the upgraded

conditional posterior distribution function of each model parameter as following,

β̌ββ | Y1:K
1:I ,X1:K

1:I ,Z1:K
1:I , δ̌w, δ

2
v ∼ N(Ě, V̌),

δ2w | Y1:K
1:I ,X1:K

1:I ,Z1:K
1:I , β̌ββ, δ2v ∼ IG(ǎK , b̌K),

where Ě, V̌, ǎK , b̌K , čK , ďK are the hyperparameters of corresponding model parameters’ posterior dis-

tribution. The details of deriving the above posterior distributions and their hyperparameters are shown in

Appendix A.3 Eqns. (16)-(20). The posterior distribution function of variance δ2v is the same as the one in

Subsec. 4.4.1.

Then, we rely on the MCMC in Alg. 5 to obtain the posterior distribution of model parameter θ̌θθ and

latent variable X1:K
1:I . The inputs of the algorithm are the corresponding hyperparameters of prior π0(θ̌θθ) and

data Y1:K
1:I , Ž1:K

1:I . The FFBS in Alg. 4 samples the latent variable X1:K
1:I based on the sampled model param-

eters θ̌θθ
(l)

. In addition, we update the parameters of Kalman filter and smoother in FFBS by rearranging ma-
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trices B̃0 and B̃1 in Eqns. (11) and (12) to be B̃0 =

 B̌0 0I×I

1I×I 0I×I

, B̃1 =

 B̌1 · · · B̌M bB−1

0I×I · · · 0I×I 0I×I

,

and the residue to be B−1ϵϵϵ
k
w ∼ N(0, ∆̌w). Finally, we can obtain the posterior distribution of trust model

parameter θ̌θθ
(l)

and trust value X1:K
1:I for the case of considering inter-robot trust influence.

Remark 7. We can take the Eqns. (4.1) and (4.2) as the generalized description of any linear computational

trust model. Each type of MRS formation has a corresponding set of coefficient matrices B0, B1, · · · , BM

in the state space equations (4.1) and (4.2). We can upgrade the coefficients matrices based on the associated

trust causal relationship of the specific MRS formation as shown in sections 4.4.1 and 4.4.3. In addition,

Eqns. (4.8) and (4.9) are the generalized canonical form of the state space equations. As a result, we can

describe the trust model of any MRS formation with the above equations and derive the posterior distribution

of the model parameter with the MCMC and FFBS.

4.5 Bayesian Optimization Based Experimental Design

In this section, we present the experimental design and data collection process for the computational

trust model. Denote a K time-step discrete path as ρj , j = 1, · · · , J . Then, we can obtain human’s trust

change data Y1:K
1:I and all the associated environment attributes Z1:K

1:I of robots after the human-MRS travels

along the path ρj .

4.5.1 Bayesian Optimization

The computational trust model in this paper is designed to be personalized. During the experiment

data collection phase, we will have each participant interact with the MRS to collect personalized data in a

sequence of trials. Each trial consists of multiple rounds of the human participant operating the MRS to travel

along a path and collect data. According to the standard approach for experimental design (e.g.,[55]), we can

estimate (e.g., Bayesian LSS model and MCMC sampling in this paper) the trust model parameters after the

human-MRS travels along all the predetermined paths ρj and collects all the associated data. The standard

approach commonly uses equal or random assignment (e.g., Latin squares) of paths for the sequential trials

[74, 75, 55, 18, 7]. However, many of the paths can be challenging for the human-MRS to travel through.

The operator’s workload will be heavy and the MRS task performance will be relatively poor with these

challenging paths. Hence, the human-MRS in the standard experiment design will inevitably yield large
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costs.

On the other hand, Bayesian optimization is a strategy of finding the global maximizer of an un-

known objective function (e.g., the latent trust we seek to model in this paper) by sequentially exploring its

variables (e.g., paths ρj) [80]. The generic process of Bayesian optimization is:

1. a prior distribution (e.g., prior π0(θθθ)) over the objective function initially is proposed based on the

preknowledge about the objective function without any data;

2. a new query data point (e.g., path ρj with data Y1:K
1:I ,Z1:K

1:I ) is determined based on the current belief

of objective function and an exploration strategy (e.g., find the human preferable path);

3. a corresponding posterior distribution (e.g., posterior π(θθθ)) describing the updated beliefs about the

objective function is obtained via Bayesian inference once data of step 2 is accumulated through ob-

servation;

4. repeat steps 2 and 3 for a number of iterations.

Acquisition function of Bayesian optimization can balance the exploration, i.e., trying a variable (e.g., path

ρj with data Y1:K
1:I ,Z1:K

1:I ) where the objective function has a high uncertainty, and the exploitation, i.e., trying

a variable (e.g., path ρ′j with data Y1:K
1:I ,Z1:K

1:I ) where the objective function can have a high value. There are

different acquisition functions, e.g., probability of improvement, expected improvement, upper confidence

bound, and Thompson sampling in the Bayesian optimization [80]. Each acquisition function can describe

an exploration strategy to find a path ρ to collect data for learning the objective function.

4.5.2 Decision Field Theory based Acquisition Function

We aim to reduce human workload and improve robot task performance through a strategic explo-

ration of the MRS paths for data collection. Instead of directly using the myopic acquisition function, we

apply the decision field theory to build the acquisition function and explore path for each of our sequential

trials [71]. The decision field theory describes that a decision maker’s preference for each option in mul-

tialternative choices evolves by comparing among options for their evaluations on respective attributes over

time during his/her deliberation process (e.g., uncertainty and risks). For example, a human needs to compare

different attributes in selecting a preferable hiking trail, such as trail length, slopes, vegetation situations, po-

tential dangers, and other users’ ratings. Initially, the decision maker is less certain about the advantages and

disadvantages of different trails. Human preference can change among multiple options with close attributes.
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Later, after the decision maker obtains more precise information about the trails through exploration, he/she

can combine the information into the previous preference for further comparison of the options. Eventually,

the human makes the determined decision before an imposed deadline.

In our work, path exploration based on human preference can potentially increase the human’s will-

ingness to collaborate with the autonomous system and reduce human workload. The human’s trust xki can

reflect his/her willingness to travel along the path. Therefore, we formulate the human preference value for

every path ρj based on the predicted human trust value. Then, the sequential trials can assign more explo-

rations into these human preferable paths rather than equal or random exploration to all the provided paths.

Based on the above analysis, we can quantify human preference value fs of path ρj among multialternative

choices ρ1, · · · , ρJ as follows

fs(ρj) = γ · fs−1(ρj) + ∆xs(ρj), (4.15)

∆xs(ρj) = xs(ρj)−

J∑̃
j=1

xs(ρj̃)− xs(ρj)

J − 1
, (4.16)

xs(ρj) =

K∑
k=1

I∑
i=1

βββ⊤z̃ki

KI
, (4.17)

where fs(ρj) is the human’s dynamic preference value of path ρj over all the other paths, the coefficient γ

determines the memory of the previous preference fs−1(ρj) over the time interval, βββ⊤z̃ki is the predicted

trust value of robot ri at the k-th step while traveling along path ρj , xs(ρj) is the predicted trust value of a

path ρj at the s-th trial, and ∆xs(ρj) describes the advantages of path ρj over all the other paths regarding

their predicted trust value at the s-th trial.

Denote the sampled values of the posterior distribution π(θθθ) at the end of each trial as Θ =

{θθθ(0), · · · , θθθ(L)}. If fs(ρj) > 0 conditional on Θ, it means path ρj is preferred rather than the other

paths at the s-th trial. Then, we integrate the above decision field theory into the BOED by assigning the

acquisition function as

α(ρj | Θ) =
Pr[fs(ρj) > 0 | Θ]
J∑
j=1

Pr[fs(ρj) > 0 | Θ]

. (4.18)

This function describes the probability of path ρj being preferred rather than others under the current belief

of human trust model parameters. We sample the most likely preferable path ρ∗ ∈ {ρ1, · · · , ρJ} for the

human-MRS to collect data at each trial with multinomial distribution ρj ∼ α(ρj | Θ), j = 1, · · · , J .
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The acquisition function enables the human-MRS to explore the path in a human-like decision-

making pattern. Initially, the trust model is less certain due to the limited human-MRS collaboration experi-

ence. The acquisition function can hardly distinguish the human’s preference to different paths and can only

identify the more obviously advantageous paths. After a period of collaboration, more data is obtained and

hence the trust evaluation becomes more determined and consistent. As a result, the acquisition function is

capable of comparing among the less obviously advantageous paths and finds the preferable one.

We summarize the BOED for data collection and trust model parameters estimation in Alg. 6.

The inputs to the algorithm are the initial prior distribution of the model parameter π0(θθθ), the number of

sequential trials S, and all the candidate paths ρj , j = 1, · · · , J . The results are the posterior distribution of

model parameter π(θθθ) and the ultimate most likely preferable path ρ∗. The algorithm first initializes the data

set Θ with the sampled value from the prior distribution π0(θθθ) in line 2. Then, the algorithm starts the iterated

sequential trials from line 3. Inside each iteration, it estimates the probability of every path to be preferred in

lines 4 - 9 and obtains the most possibly preferable path ρ∗ in line 10. In line 11, the human-MRS collects the

environment attributes Z1:K
1:I and human feedback data Y1:K

1:I while traveling along the path ρ∗. The MCMC

sampling (Alg. 2) approximates the updated posterior distribution of model parameter θθθ with the sampled

data set Θ in lines 12 and 13.

Algorithm 6 Decision field theory based Bayesian optimization (DFTBO)

Input: prior distribution π0(θθθ), number of trials S, paths ρj , j = 1, · · · , J
Output: posterior π(θθθ), path ρ∗

1: function DFTBO(π0(θθθ), S, {ρ1, · · · , ρJ})
2: Θ← sample θθθ ∼ π0(θθθ), π(θθθ)← π0(θθθ)
3: for s = 1, · · · , S do
4: for j = 1, · · · , J do
5: for θθθ ∈ Θ do
6: fs(ρj)← xs(ρj), ∆xs(ρj)
7: end for
8: α(ρj | Θ)← fs(ρj) | Θ
9: end for

10: ρ∗ ← ρj ∼ α(ρj | Θ), j = 1, · · · , J
11: Obtain Z1:K

1:I ,Y1:K
1:I from path ρ∗

12: Θ← MCMC(π(θθθ), Y1:K
1:I ,Z1:K

1:I )
13: π(θθθ)← Θ
14: end for
15: return π(θθθ), ρ∗

16: end function
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4.6 Case Study: Human Multi-Robot Collaboration for Bounding

Overwatch Task

In this section, we consider a case study on human multi-robot collaborative bounding overwatch

tasks in offroad environment to evaluate the effectiveness of our proposed trust model and BOED. The human-

in-the-loop multi-robot bounding overwatch has a complex task performing process. Investigating the trust

dynamics of human in the MRS is crucial in reducing workload and increasing task performance.

A human multi-robot collaborative successive bounding overwatch task follows the motion process

shown in Fig. 4.4. First, the human operates one subteam of robots (T1) to advance under the protection

of the other subteam of autonomous robots (T2), while T2 takes an overwatch posture to protect T1 from

potential disturbances and adversaries (see the process A1-A2 of Fig. 4.4). Then, T1 and T2 alternate their

advance and overwatch roles to move forward (see B1-B2 of Fig. 4.4). In addition, T2 always advances

earlier than T1 and inspects the environment to avoid the potential risks.

T1T1
T2

+

+

T1

T2

+

+

+

..
.

r1

r2

rI

T1
T2

+

(A1) (A2) (B1) (B2)

T2

Figure 4.4: The MRS navigation process, where T1 is the human-operated subteam of robots, and T2 is
the autonomous subteam. Each subteam moves forward in a line formation, and the two subteams move
abreast in a column formation. Each square represents a cell region for the robot teams to perform bounding
overwatch. The red sectors denote that the robots are observing the bounding team to cover them in case of
any dangerous or uncertainty situations. The gray lines label the footprints of the robots.

Traversability and LoS are the two mainly referred metrics to conduct safe and reliable motion

planning for robots in offroad environment [40, 7, 97, 99, 68]. Traversability describes the capability of a
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robot to reside over a terrain region under an admissible state wherein it can enter given its current state. This

capability can be quantified with the kinematic constraints of the robot T2 in a terrain. The LoS describes

the unobstructed vision from an observer to the target in the motion. One can estimate the LoS with the

observer’s viewshed which is the visible geographic area with a sensor from a specific location. In this case

study, we aim to find a path with reference to traversability and LoS such that the robots can achieve the

overall best performance in terms of both mobility and sensing. Hence, we consider traversability and LoS of

a robot in T2 at the specific locations to be the two representative impacting factors of human’s trust in this

bounding overwatch task. Note that the impacting factors are closely related to the specific task. A task other

than bounding overwatch, e.g., reconnaissance, may require other metrics, such as a robot’s information

collection capability, to be the critical impacting factors. In addition, we assume the human is reliable in

performing the bounding overwatch and do not evaluate the robots’ trust in human.

In the following sections, we first introduce the experimental setup of the human-MRS collaborative

bounding overwatch task in the ROS Gazebo simulator (Sec. 4.6.1). We then use a simulated human to

show the capability of the decision field theory based Bayesian optimization in obtaining the computational

trust model parameters (Sec. 4.6.2). Finally, we run a set of human subject tests to verify the usability of

computational trust model and the benefits of the BOED (Sec. 4.6.3).

4.6.1 Experimental Setup

First, we use the geological LiDAR information of an area (250m× 250m) in Mississippi from the

United States Geological Survey (USGS)4 to generate the offroad environment for the human-MRS. Fig. 4.5

shows the generated environment in the Gazebo simulator. We simplify the human-operated subteam into

one human-operated robot r0 for the ease of simulation. The autonomous robot subteam contains robots

r1, r2 and r3. Then, we discretize the workspace into a grid environment from the top view, as shown in

Fig. 4.6. Each bounding overwatch process happens between two neighboring cells. Robots can return the

traversability and visibility based on their perception in these cells. We provide five verified transversable

candidate paths (see paths ρ1 − ρ5 in Fig. 4.6) with which the human-MRS can accomplish the bounding

overwatch task to collect data for the computational trust model.

We estimate the traversability of every autonomous robot by utilizing both the geological digital

elevation model (DEM) [58] of the off-road environment and the real-time inertial measurement unit (IMU)

data onboard the robot. Here, the DEM contains the height information of the environment’s barren ground

4https://prd-tnm.s3.amazonaws.com/LidarExplorer/index.html
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r0

r1
r2r3

r0

r1

r2

r3

Figure 4.5: (Left) A global view of the geological LiDAR information generated human-MRS bounding
overwatch environment. Trees are simplified as triangular prisms. (Right) A local view of human-MRS
bounding overwatch in Gazebo simulator. Robot r0 is the human-operated robot. Robots r1, r2 and r3 are
the autonomous robots.

ρ1

B

A

(a) (b) (c)

(d) (e)

ρ2

B

A

B

A

ρ4

B

A

ρ5

B

Figure 4.6: (a) - (e) present five discrete paths ρ1 - ρ5. The human-MRS performs bounding overwatch
between each two discrete cells according to Fig. 4.4. The white patches are the top view of the environmental
obstacles. Trees are scattered in the environment though not visible in appearance. The cells with cross are the
risky regions where robots have high potential to collide with obstacles or turn over due to low traversability.
The circle labeled cells are the risky regions where the human operator may lose track of the autonomous
team members due to low visibility.
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without trees and buildings. We can derive the barren ground’s surface variation information with the DEM in

ArcGIS Pro [69]. Then, we estimate the traversability of a robot in a cell with the weighted sum of the surface

variation of the cell and the robot’s real-time IMU data in that cell. Similarly, we estimate the visibility of an

autonomous robot by referring to the geological digital surface model (DSM) [58] of the off-road environment

and the robot LiDAR’s real-time sensing distance. The DSM captures the environment’s natural and artificial

features on the surface of the barren terrain, such as the tops of surface obstacles and trees. We can derive the

height information of these surface objects by obtaining the difference between DEM and DSM in ArcGIS

Pro. The weighted sum of the height of surface objects and the robot Lidar’s real-time sensing range at the

cell produces the visibility of the robot in the cell.

In the sequential trials of the experiment design, every trial follows the six following steps: (1)

A discrete path for the human-MRS is generated according to the decision field theory based acquisition

function; (2) the three-robot formed subteam autonomously navigates from the current cell to a temporary

destination in the neighboring cell along the selected discrete path. The team then stops temporarily; (3) the

human operator provides trust change in each autonomous robots by referring to the recorded traversability

and visibility information of autonomous robots (see Fig. 4.7); (4) the human operator manipulates the

manned ground robot to bound to the autonomous robots along the same discrete path; (5) meanwhile, the

autonomous robots overwatch the surrounding environment; (6) the operator repeats steps (2) - (5) until all

the ground robots reach the ultimate destination.

4.6.2 Simulated Human Agent

We assume a simulated human has the known ground truth value of the LSS model parameters

βββtrue = [β−1,true, β0,true, β1,true, β2,true, btrue]
⊤, δ2w,true and δ2v,true. We rely on this simulated human

agent to provide trust change value in every autonomous robot.

We provide a non-informative initial prior distribution for the model parameter βββ, which has a large

variance value Σ(0) associated with the randomly assigned mean value βββ(0). Fig. 4.8 (top left) shows the

prior distribution of the model parameters5. The BOED starts with this prior distribution and predicts the

preferable path based on the acquisition function (4.18). Fig. 4.8 shows the Bayesian updating of the model

parameter βββ’s posterior distribution in one run of 20 sequential trials. The associated preferable path at each

trial of that run is as follows, trial 1: ρ4, trial 2: ρ1, trial 3: ρ2, trial 4: ρ5, trials 5 - 20: ρ1. The run was
5The model parameters θθθ also include the residue’s variance δ2w and δ2v . However, we are only interested in the weights βββ of trust

model. Hence, in this and next sections, we mainly analyze the parameter βββ.
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Figure 4.7: Human-MRS interaction interface. The human operator provides trust through clicking the sliders
(left panel). The front camera view of each robot is shown (middle panel). Traversability and visibility for
each robot (right panel) are plotted in real-time for human reference.

stopped at the 20th trial where we obtained the satisfactory results. As the number of trials increases, the

simulated human agent provides more data for the model parameter estimation. The posterior distribution

of the trust model parameters gets updated and the resultant credible intervals also become condensed. As

a result, the system becomes more and more certain about the ground truth of trust model parameters. We

can observe that the posterior distribution of βββ at the 20th trial approximates to the ground truth values. The

preferable path ρ1 at the 20th trial is actually the path with the highest preference value under the utility Eqn.

(4.15) and ground truth parameter βββtrue.

We perform ten runs of the above BOED to confirm its replicability. At the end of the 20 sequential

trials of each run, the posterior distribution of model parameters approximates the ground truth value. The

corresponding preferable paths are all finally ρ1.

The experiment results with simulated human agents demonstrate that the BOED can successfully

obtain the computational trust model parameters of the human-MRS in the bounding overwatch motion task.

In the case of a simulated human agent with known uncertainty of trust and observation residues, i.e., δ2w

and δ2v , the BOED presents replicable results of the most likely preferable path and posterior distribution of

model parameter.
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1 5

10 15 20

Figure 4.8: A Bayesian update of the posterior probability density function (PDF) of model parameter βββ
under the BOED at trials 1, 5, 10, 15, and 20. The credible interval of the posterior distribution gets more
and more condensed as the number of trials increase. The vertical dot-dash lines represent the location of the
ground truth values of the simulated human’s trust model parametersβββ. The mean of the posterior distribution
also approximates to the ground truth.

4.6.3 Human Subject Test

4.6.3.1 Procedure

We recruited 32 participants (8 females and 24 males with the age ranging from 18 to 32 years old

and average age 27) to perform the human-MRS collaborative bounding overwatch task. All participants have

experience in driving vehicles or playing 3D computer games. The research was approved by the Clemson

University Institutional Review Board (IRB). We randomly divide the participants into two groups. Each

group has 16 participants. Each participant in group one performs 6 sequential trials by referring to the

procedures in the standard experiment design, while each participant in group two performs 6 sequential

trials according to the BOED. Both take the 0.5 hour training and around 1 hour formal operation.

4.6.3.2 Goodness-of-fit of Trust Model

We select the sixteen participants in group one to evaluate the goodness-of-fit of our trust model.

Every participant’s data from the first five trials is taken as the training data, while data in the sixth trial is

taken as the testing data. We evaluate the forecasting accuracy of our proposed time series trust model with

the mean absolute scale error (MASE) of the sixteen participant’s testing data. The MASE is an average value
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of the scaled prediction errors of the output in testing data, i.e.,

MASE = mean(|q11 |, · · · , |qki |, · · · , |qKI |),

qki =
ŷki − yki

1
K−k

∑K
t=k+1|yti − yki |

,

where ŷki is the predicted output, i.e., the predicted human trust change in robot ri at time step k, and

qki is the scaled error6 of the prediction for robot ri at time step k. The expectation of our trust model

parameters’ posterior distribution is also the maximum likelihood estimate, which is used to predict the

human’s trust change yki and assess the forecasting accuracy. The sixteen participants’ MASE values have

the mean=0.72< 1 with a standard deviation sd=0.16, which suggests that our trust model achieves acceptable

accuracy for the general participants.

In addition, Fig. 4.9 presents one of the participant’s associated traversability, visibility and the

predicted human trust change values along the path ρ1. The path presents good traversability in all the cells

and only the initial position and 9-th (x-axis: 8) cell have relatively low visibility. Overall, the plots show

that the estimated model parameters and their predicted trust change values can follow the trend of human

provided actual trust change data in the testing data. The trust change of robots are positively correlated with

the traversability and visibility according to the curves. However, due to the uncertainties of human self-

report of trust change, several locations, such as the 7-th (x-axis: 6), 9-th (x-axis: 8), and 10-th (x-axis: 9)

cells of path ρ1, present higher discrepancies between the predicted values and observations. In addition, the

three autonomous robots follow the similar trajectories, so their traversability, visibility and predicted trust,

and predicted trust change curves present the similar patterns.

A benchmark computational trust model (CTM0) that does not consider inter-robot causality can be

obtained by removing the coefficient β−1 and term xki−1, i.e., the human’s trust value in the preceding robot

ri−1, on the basis of Eqns. (4.1), (4.3), and (4.4). We first use the Bayesian information criterion7(BIC)

with the training data to compare our proposed computational trust model (CTM) with CTM0. The BIC is

6A naive prediction for time series data is assuming all the future prediction outputs are equal to the current output. The scaled error
is the proportion of our prediction error to the naive prediction error. The scaled error smaller than 1 means the forecasting is better than
the naive prediction. It is an alternative to the percentage errors.

7BIC describes the deviation of the fitted model from the observed data (in the training). The lower BIC value, the better fit of a
model. It also penalizes more on the more complicated models.
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Figure 4.9: The information of the sixth trial of a participant: traversability, visibility, predicted trust, pre-
dicted trust change (curve “prediction”) as well as the human provided actual trust change of robots (curve
“observation”).

evaluated as

BIC = (M + 5) log(IK)− 2 log
(
L̂
)
,

L̂ = max
(
Pr(Y1:K

1:I | X1:K
1:I , δ2v)

)
,

where L̂ is the maximized value of the likelihood function, M + 5 is the total number of model parameters,

and IK is the number of observations used in the parameter estimation. We derive the BIC difference, i.e.,

the BIC of CTM0 minus the BIC of CTM, of every participant. Fig. 4.10 (Top) shows the pair of BIC values

of every participant and Fig. 4.10 (bottom) presents the BIC difference value of every participant.

81% of the participants have the BIC difference larger than 0, and 75% of them have the difference

larger than 10 (significant difference). To verify whether the CTM makes the difference, we performed a

Wilcoxon signed-rank test [57] on the BIC values of the two models with the sixteen participants. The

sixteen participants satisfy the minimum sample size requirement of the nonparametric test [60]. We rank the

BIC difference and find that the median of BIC difference is smaller than 0 (w = 18.5, p = 0.01). Therefore,

we reject the null hypothesis and conclude that the CTM is a better model than CTM0 in fitting the observed

data. The more complicated trust model CTM that additionally captures human’s trust value in the preceding

robot ri−1 makes a difference.
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Figure 4.10: (Top) BIC of CTM0 and CTM; (Bottom) BIC difference value between CTM0 and CTM of
every participant. BIC difference larger than 0 (labeled “+”) indicates that the CTM fits better than the
CTM0 for the participant. BIC difference smaller than 0 (labeled “−”) indicates that the CTM0 fits better
than the CTM.

4.6.3.3 Comparison of Experimental Design Results

We perform the Kruskal–Wallis one-way analysis of variance (ANOVA) [57] to figure out whether

it is statistically significant to have C2: the BOED compared with C1: the standard experimental design. We

take the experimental design approach as the independent variable (IV) and select the following indices as

the dependent variables (DV):

• number of collisions: the number of collisions that the human-MRS is subject to during the bounding

overwatch in the cells labeled with circles in Fig. 4.6;

• frequency of losing contact: the frequency of losing contact that the human-MRS is subject to during

the bounding overwatch in the cells labeled with crosses in Fig. 4.6;

• time of completing the task: the time that human-MRS takes to complete the task;

• workload: the human’s overall subjective workload measured using the NASA task load index (TLX)

[36] at the end of the experiment;

• usability: the subjective satisfaction with the usability of the HCI and autonomous robots. It is mea-

sured with the IBM usability satisfaction questionnaire [50] at the end of each experiment;

• situational awareness: the human’s subjective ratings based on the demands on attention, supply of

attention, and understanding of the situation that are measured with the Situation Awareness Rating
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Technique (SART) [28] at the end of the experiment.

Fig. 4.11 presents the comparison results of all the above six DVs for the 32 participants. Fig.

4.11(a) shows a statistically significant difference (χ2 = 11.63, p = 0.0006) between C1 (median= 5)

and C2 (median= 2) in the number of collisions. Fig. 4.11(b) shows a statistically significant difference

(χ2 = 19.06, p = 0.000013) between C1 (median= 6) and C2 (median= 3) in the frequency of contact loss.

Fig. 4.11(c) shows a statistically significant difference (χ2 = 5.22, p = 0.022) between C1 (median= 61.5)

and C2 (median= 55.5) in the time of completing the task. Fig. 4.11(d) shows a statistically significant

difference (χ2 = 4.09, p = 0.043) between C1 (median= 45.22) and C2 (median= 36.61) in workload. Fig.

4.11(e) shows a statistically significant difference (χ2 = 7.26, p = 0.007) between C1 (median= 61.36)

and C2 (median= 81.06) in usability. Fig. 4.11(f) shows a statistically significant difference (χ2 = 5.12,

p = 0.024) between C1 (median= 33.33) and C2 (median= 25) in situational awareness.

The overall test results reveal that the BOED reduces the number of collisions, improves the robot

subteams’ contact, and decreases the time of task performing compared to the standard experimental design.

(a) (b) (c)

(d) (e) (f)

Figure 4.11: Comparison of C1 and C2 with the 32 participants regarding the number of collisions, frequency
of losing contact between robot subteams, time of completing the task, workload, usability, and situational
awareness.
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The BOED also lowers the operator’s workload, improves the system’s usability, and releases the operator’s

situational awareness compared to the standard experimental design.

4.6.4 Discussion

In general, a more complex model structure is less interpretable and requires more data to estimate

the model parameters. Hence, the less complicated model is preferred in the model selection. The BIC

penalizes more on the CTM2 due to its more complicated model structure. Nevertheless, our Wilcoxon

signed-rank test with BIC shows that the CTM is better in fitting the observation data of participants. That

means the gain from the fitting with CTM is higher than the penalty from the complexity of CTM. It is

worthwhile to consider the inter-robot trust causality in building the trust model for the MRS.

Our BOED always tends to determine the preferable paths for each participant to travel through in

the sequential trials of the experiment. In the human subject test experiment, we found that the preferable

paths for most participants are paths ρ1 and ρ5. These two paths are less likely to cause robot turnover

and contact loss (see the circle and cross labeled cells in Fig. 4.5) and the associated cells are overall with

higher traversability and visibility. This explains why our BOED improves the performance of human-MRS

collaboration (fewer collisions, less contact losses and task completion time). In return, travelling with the

preferable paths can reduce human workload and increase usability. Last but not least, the BOED has a trade-

off between the above five metrics and the situational awareness. The more frequent travel with the preferable

path decreases the complexity of the situation and the variability of each participant’s subjective experience.

As a result, the participant in BOED may become more familiar and relaxed with the task, thus having the

relatively lower overall situational awareness in comparison to the standard experimental design.

4.7 Conclusion

This chapter developed two LSS models to capture the quantitative relationship between human

trust in MRS and the offroad environmental characteristics, such as traversability and line of sight. One LSS

model, i.e., “CTM1”, quantifies the causality of trust by assuming that human’s trust in each leading robot

does not influence the trust in its succeeding robot in the line formation of MRS team; while the other LSS

model, i.e., “CTM2”, assumes the existence of such a causality between robots. Bayesian inference and

MCMC sampling are used to derive the parameters of each computational trust model. In addition, Bayesian

optimization based experimental design was applied to collect the data, update the trust model parameters
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and obtain the optimal path for MRS motion task.
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Chapter 5

Bayesian Active Reinforcement

Learning for Human Multi-robot

Collaboration

5.1 Introduction

Reinforcement learning (RL) for human-robots collaborative tasks has gained a considerable amount

of attention recently [61]. Since the robots work side by side with human partners in a collaborative task,

it is critical for the robots to behave in a trustworthy manner and obtain an appropriate level of trust from

the human collaborator. Many works achieve the objective by dividing the autonomous robots from the

human-robots collaborative system and utilizing RL algorithms to strengthen robots’ capability of assisting

the human counterpart [100]. However, one of the challenges in the RL for human-robots collaborative tasks

is designing a reward function by hand that can precisely translate the human desired objective. A reward

function that cannot precisely reflect the human desired robot behaviors may cause the robot to fail the goal

of the collaborative task.

Providing the rewards online for all the possible state actions can work but are very expensive and

workload heavy. In addition, due to the time limits of human participation in a collaboration experiment, it

needs to find the solution to the sequential decision-making problems with a durable amount of exploration

of the environment. Therefore, it remains potential to develop RL frameworks that can concretely resolve the
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human-centric issues for the human-robots collaborative task.

This chapter develops a trust-based active RL to deal with a human-MRS collaborative offroad

motion task under the LTLf specifications described objective, see Fig. 5.1. The LTLf specifications capture

the system requirements, such as safety and reachability issues of robot offroad motion. Given a labeled MDP

that describes the human-MRS motion behaviors in the offroad environment, we first use formal synthesis

to generate a product-MDP. The product-MDP specifies the provably correct robot behaviors with its state-

action transition function and can guarantee that the robots always explore the offroad environment in a way

satisfying the prescribed system requirements. Hence, the formal synthesis can reduce the risks of unsafe

robot behaviors during the training loop of the RL. In comparison, the general RL algorithms [65] purely rely

on the trials-and-errors strategy to explore the environment and find the optimal policy for a task, which can

probably violate the system requirements during the training process.

Q-learning

Rreward 
shaping

Active RL

Figure 5.1: A graph representation of the labeled MDP for a robot.

Furthermore, we rely on the human collaborator to shape a personalized reward function for the

state-action of the above product-MDP. Here, the personalized reward function is built on the human’s trust

in the MRS and varies with the human-MRS subjected environmental attributes, which can drive the human-

MRS to behave in a human-trusted manner within the state space of the product-MDP. The human intermit-
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tently provides trust feedback to the MRS based on the subjected environmental attributes in the training loop

of the RL. The posterior probability distribution of the reward function’s parameter is updated as more hu-

man trust feedback data becomes available in each episode of the RL training loop. The periodic update can

gradually decrease the uncertainties of the personalized reward function. Although many HITL-RL works

also learn the human-shaped reward function, they are generally trained on the weighted linear function,

softmax function, or Gaussian process function [95, 94, 4]. That cannot capture the temporal property of

human cognition, i.e., the human’s memory of the previous experience could cumulatively influence the hu-

man’s current decision-making. Our previous investigation [102] indicates that the human’s trust feedback is

a time-series data and utilizes a linear state space model to capture the human’s trust dynamics. Hence, our

personalized reward function derived from the human’s computational trust can better describe the human

desired behaviors than the current start-of-art reward functions. In addition, most reward functions of the

PbRL work for the trajectory instead of the state action of an MDP. Although the setup can reduce the human

annotation workload, it will underemphasize the decision-making mechanism of the human in each step of

our collaborative motion task and reduce the amount of annotated data from the human.

Last but not least, we develop a trust-based sampling strategy for human-MRS to explore the state

space of the product-MDP. The trust-based sampling strategy utilizes human decision field theory in multial-

ternative choice to explore the most likely human preferable trajectory and assign it for the human to annotate

the human-MRS interactive data, i.e., the observable human’s trust change. Many paths in offroad motion are

challenging for human-MRS to travel through, and the trust-based sampling strategy can reduce or avoid the

visit on those unfavorable trajectories. In comparison, the sampling strategy of the state-of-art active PbRL

often focuses on finding the more valuable data objects based on the learning objective [4, 95, 94, 93]. The

strategy will find better quality data for the human annotation but cannot take account of the human-MRS

collaborative performance and workload in the RL training loop. Compared with these works, our framework

considers the cost of the human operational workload in determining the trajectory for the human to annotate

data.

The organization of the rest of the chapter is as follows. Chapter 5.2 provides the preliminaries and

problem setup. Chapter 5.3 introduces the shaping of human trust-based and LTLf -based reward functions

for human-MRS collaborative motion task. Chapter 5.4 presents the details of Bayesian active RL algorithm

with different query strategies. Chapter 5.5 provides the verification and validation results of the Bayesian

active RL under the bounding overwatch experiment.
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5.2 Preliminaries and Problem Setup

5.2.1 Preliminaries of MDP and RL

Definition 22 (Labeled MDP [37]). Given a robot r with an abstracted state set S, a labeled MDP of robot

r in an environment can be constructed as the tupleM = (S, A, P, s0, AP, L, R, γ), where

• A is an action set of the robot;

• P : S × A × S → [0, 1] describes the transition probability of the robot from a state s ∈ S to a state

s′ ∈ S with an action a ∈ A, and P (s, a, s′) = Pr(s′|s, a);

• s0 ∈ S is the initial state;

• AP is a set of atomic propositions;

• L : S → 2AP labels the robot states with the propositions derived from AP;

• R : S ×A× S → IR is the reward function;

• γ is the discount factor for the reward.

Compared with a conventional MDP, the labeled MDP also has the initial state s0, the atomic propo-

sitions AP containing the observable properties of the MDP states, and the labeling function L(·) mapping

every MDP state into its observable properties. In this paper, we mainly use the atomic propositions AP to

describe the environment-relevant properties of robot state in offroad motion, such as “robot is in a region

filled with obstacles”, “robot is in a state with low visibility”, “robot is on the top of a mountain”, etc.

Example 9. We provide an exmp of 3-states-composed labeled MDP for a robot that works in offroad en-

vironments (see Fig. 5.2). Robot has the probabilistic transitions among states s0, s1 and s2. The actions

triggering state transition are a1 and a2. We label the probabilities of transition s1
a1→ s2 with value p and

transition s1
a1→ s1 with 1.0 − p. All the other transitions have probabilities of 1.0 and are not labeled in

the graph for simplicity. States s1 and s2 are associated with observable properties and labeled with atomic

positions ap1 = {rocky} and ap2 = {woody}, while state s0 is not labeled.

Definition 23 (Deterministic Policy). A deterministic policy π in the labeled MDPM is with π : S → A.

Definition 24 (Trajectory). A finite trajectory ρ in the labeled MDPM is a sequence of state-action pairs

from time step 0 to K with ρ = s0
a1→ s1

a2→ · · · sK , where K ∈ N+.
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Figure 5.2: A graph representation of the labeled MDP for a robot.

Given a policy π, we can explore a sequence of state-action pairs in the labeled MDPM and obtain

a finite trajectory ρ.

Definition 25 (Discounted Return). A discounted return of a trajectory ρ in the labeled MDPM is denoted

as

J(ρ) =

K−1∑
k=0

γkR(sk, ak, sk+1), (5.1)

where R(·) is the reward function of the labeled MDPM.

An RL algorithm aims to obtain the optimal policy with the maximum discounted return of an MDP.

Similarly, we expect to obtain the optimal policy π∗ of the labeled MDP from the initial state s0 with

π∗ = argmax
π

Eπ[J(ρ)]. (5.2)

A state value function describing the expected discounted return of a state st = s ∈ S at a time t under a

policy π can be defined as

V π(s) = Eπ

K−1∑
k=t

γk−tR(sk, ak, sk+1) | st = s

 .

Denote the state-value function of the state st = s under the optimal policy π∗ as V ∗(s)

V ∗(s) = max
a∈A

∑
s′∈S

Pr(s′|s, a)
[
R(s, a, s′) + γV ∗(s′)

]
, (5.3)

and π∗(s) = argmaxπ V
∗(s). A state-action value function describing the expected discounted return from
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a state-action (s, a) under a policy π can be defined as

Qπ(s, a) = Eπ

K−1∑
k=t

γk−tR(sk, ak, sk+1) | st = s, at = a

 .

Correspondingly, the state-action value function Q∗(s, a) of a state-action pair (s, a) under the optimal policy

π∗ is

Q∗(s, a) =
∑
s′

Pr(s′|s, a)
[
R(s, a, s′) + γmax

a′∈A
Q∗(s′, a′)

]
, (5.4)

and π∗(s) = argmax
π

Q∗(s, a).

5.2.2 Preliminaries of LTLf specification

Definition 26 (LTLf Specification [10]). An LTLf formula φ is formed from atomic propositions (AP),

propositional logic operators, and temporal operators according to the grammar

φ ::= ⊤ |⊥| ap | ¬φ | φ1 ∨ φ2 | ⃝φ | φ1 U φ2,

where ⊤ represents true, ⊥ denotes false, ap is an atomic proposition, ¬ (negation) and ∨ (disjunction)

are Boolean operators, and ⃝ (next) and U (until) are temporal operators. More expressive operators can

be constructed from the above operators, such as, conjunction: φ1 ∧ φ2 = ¬(¬φ1 ∨ ¬φ2), eventually:

♢φ = true U φ, and always: □φ = ¬♢¬φ. A finite word w over the alphabet 2AP is defined as a finite

sequence w = l0l1l2l3 . . . ∈
(
2AP)∗, where ∗ denotes finite repetition and li ∈ 2AP ,∀i ∈ N. The language

{w ∈
(
2AP)∗ s.t. w |= φ} is defined as the set of words that satisfies the LTLf formula φ, where |= is the

satisfaction relation.

LTLf formulas are interpreted over finite words. Let w[i] ∈ 2AP (i ≥ 0) be the i-th point of w.

Intuitively, w[i] is the set of propositions that are true at instant i. Additionally, |w| represents the length of

w. Given a finite word w and an LTLf formula φ, we can inductively define when φ is true for w at point

i (0 ≤ i < |w|), written w, i |= φ, as follows:

- w, i |= ⊤ and w, i ̸|=⊥;

- w, i |= ap iff ap ∈ w[i];

- w, i |= ¬φ iff w, i ̸|= φ;
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- w, i |= φ1 ∨ φ2, iff w, i |= φ1 or w, i |= φ2;

- w, i |=⃝φ, iff i+ 1 < |w| and w, i+ 1 |= φ;

- w, i |= φ1Uφ2, iff there exists i′ ∈ [i, |w|) satisfying w, i′ |= φ2, and for all i′′ ∈ [i, i′), they satisfy

w, i′′ |= φ1.

The LTLf formula can also be converted into a deterministic finite automaton (DFA)1.

Definition 27 (Deterministic Finite Automaton [10]). A DFA, denoted by A, is a tuple

A = (Q,Σ, δ, q0, F ), where Q is a finite set of states; Σ is an alphabet; δ : Q × Σ → Q is a transition

function; q0 is an initial state; and F ⊆ Q is a set of accept states.

Given event eτ ∈ Σ, automaton state qτ ∈ Q, and automaton transition δ(qτ−1, eτ ) = qτ under

indices τ = 1, 2, · · · , a run on a word w = e1 · · · eτ · · · is a finite sequence of states q0q1 · · · qτ · · · in

the DFA A. The run q0q1 · · · qτ · · · is accepting if it has a finite amount of indices τ ∈ N+ and qτ ∈ F .

The language generated by the DFA A is L(A) = {w ∈ Σ∗ | w brings an accepting run for A}, where Σ∗

denotes the set of all the finite words over Σ. The LTLf φ and its DFA can describe the task specification of

a robotic system (e.g., the labeled MDP in exmp 1) in offroad environments.

Example 10. In this exmp, we provide an instance of an LTLf formula. Given a task specification requiring

that the robot in exmp 1 “always avoids the woody area and eventually reaches the rocky area in the offroad

environment”, an LTL formula φ = □¬woody∧♢rocky can be used to encode the temporal logic objective.

The LTLf formula can be converted to a DFA, as shown in Fig. 5.3.

0 1

¬rocky∧¬woody

rocky∧¬woody

¬woody

Figure 5.3: A graph representation of the converted DFA for LTLf φ = □¬woody ∧ ♢rocky.

The finite word w = (¬rocky ∧ ¬woody)∗(rocky ∧ ¬woody)(¬woody)∗ includes all the finite

words of the converted DFA in Fig. 5.3. A trajectory, such as ρ = s0 → s1 → s1, of the labeled MDP in

exmp 1 can satisfy the LTLf or DFA since the sequence of associated propositions ∅ {rocky} {rocky} does

not violate the DFA under the word (¬rocky ∧ ¬woody)(rocky ∧ ¬woody)(¬woody).
1An LTLf can be converted to an DFA with the tool “ltl2tgba” on the “Spot” platform: https://spot.lrde.epita.fr/

ltl2tgba.html.
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5.2.3 Problem Setup

In this paper, we consider a human and an MRS collaborative offroad motion task, where humans

and MRS depend on each other to explore unknown offroad environments. We aim to find the most reliable

MRS behaviors for humans to rely on in the collaborative offroad motion task. It is significant for the

MRS to compute and predict human trust in them so that the MRS can plan dependable behaviors for the

human during the collaboration. Hence, we will also learn the human trust based cognition pattern in the

collaborative offroad motion task.

We assume that the motion of the human-MRS team as a whole can be formulated as a labeled MDP

by referring to Def. 22. The labeled MDP has unknown transition dynamics and reward function, which are

necessary to guide the human-MRS to explore the optimal policy satisfying the offroad motion task objective.

Hence, we will deal with the problem by shaping and learning the reward function for the labeled MDP and

exploring the optimal policy concurrently under human assistance.

Human trust in a robot describes a human’s willingness to collaborate with the robot at the risk

of robot reliability in uncertain situations [26, 39, 91]. In addition, we focus on the offroad environment

attributes and their impacts on the robot performance since they are the most prominent factors in robot

offroad motion planning [97, 99, 68]. Then, we shape a human trust based reward function of the labeled MDP

by referring to the relation between the human trust in MRS and the MRS-perceived offroad environmental

attributes. This a human trust based reward function can guide the MRS to behave in a human-trusted manner.

Furthermore, due to the limitations of robot sensors and perception techniques, the MRS can have

difficulties in fully recognizing the offroad environment and thus fail the environment exploration task. In

that situation, we can refer to the geological information map of an area and identify the critical regions that

may fail the robot motion or cause great difficulties for robot motion in the offroad environment. Then, we

can use an LTLf specification φ to encode the safety-related system requirements for the human-MRS. The

specification φ can guide the motion planning of the MRS and avoid the unsafe MRS motion behaviors. On

the above basis, we can shape an LTLf based reward function of the labeled MDP by referring to the state

evolution process of the LTLf converted DFA. The LTLf based reward function can reduce the risks of robot

environment exploration.

An RL algorithm with the human trust and LTLf shaped reward function can explore the trustworthy

and safe optimal policy from the labeled MDPM for the human-MRS. We formulate our problem as follows.

Problem of Interest 4. Given a labeled MDPM of the human-MRS offroad motion and an LTLf specifica-
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tion φ of offroad motion task, design a human-in-the-loop active RL framework that can

1. shape a reward function for the labeled MDP based on human trust in MRS and LTLf specification φ

to guarantee trustworthy and safe motion behaviors of the human-MRS team,

2. learn the shaped reward function based on human-MRS interaction data and find the optimal policy π∗

that maximizes the discounted return of the labeled MDPM.

5.3 Related work

Human-in-the-loop (HITL) RL relies on a human trainer to shape the rewards for the selective state-

actions of the MDP instead of providing a stationary reward function in advance or specifying online rewards

for all the state-actions [29, 46, 54]. Many state-of-art active RL works have been developed to maximize

the rewards for the trajectory in the long term. Those works design different query strategies to select the

instances that can provide noiseless and useful features for human or system to annotate the reward. They

can reduce the learning costs through exploring the sensitive actions that can most efficiently maximize the

discounted sum of rewards [48]. On the basis of active RL, active preference based reinforcement learning

(PbRL) directly learns an expert’s preferences on data objects instead of a hand-designed reward function

[4, 95, 94, 93]. The preference-based feedback is signaled based on pairwise comparison between data objects

and indicates the relative instead of absolute utility values of robot performance. Besides the above RL that

uses human feedback data to shape the reward function, there are other human centered RL frameworks, such

as imitation learning, inverse reinforcement learning [6, 41]. However, they rely on human demonstration to

infer the human desired behaviors and beyond the scope of this paper.

The active RL and active PbRL can improve the learning efficiency of RL though obtaining high

quality data. However, they do not consider the human’s operational workload in the collaboration, where

human and robots depend on each other’s advantages to deal with a complex task. In such a task scenario,

the human workload will be aggregated by the physical burden of collaboration and cognition burden of

data annotation. In addition, it also needs to maintain a good level of human’s trust in robot since human’s

trust in robot describes the human’s willingness to collaborate with the robot at the risks of robot reliability

in uncertain situations [26, 39, 91]. The strategy that only considers satisfying the learning efficiency with

high quality data will not be enough to maintain the trust since the robots can frequently fail the task in the

trial-and-error of RL. A difficult and high-risk choice in the training loop can result in the human losing
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trust in the collaborated robots, which can undermine human’s willingness to collaborate with the robots.

The current active RL works seldom consider the human robot collaborative task issues and the associated

human workload. Last but not least, the state-action exploration strategies in the current active PbRL often

rely on simplified human cognition models, i.e., the softmax equations, which cannot fully represent human’s

decision-making in a complex motion task.

Furthermore, the uncertain and risky choices that robots face with under the RL can cause crashes

of the robots during the interactions with the environment. A safe exploration of the robot’s state-actions in

an RL task is critical to reduce the training costs and increase the trustworthiness of the robots. Many RL

works integrate temporal logic described objective into robot task performing and aim to improve the robot

safety during the robot’s interaction with the environment [96, 72, 53, 15, 14, 67, 92]. Here, temporal logic

task specification, such as linear temporal logic (LTL) and signal temporal logic (STL), can describe a desired

task objective regarding the time property of a robotic system’s behaviors with logic expressions [10, 5]. The

specification can impose a safety or liveness requirement for the robot’s future behaviors, such as “always

avoid a risky area”, or “always eventually reach multiple desired locations in sequence”. Formal verification

or synthesis is conducted to generate the policies satisfying the temporal logic task objective within the MDP

of robot behaviors and can guarantee the robots’ safe exploration of environment under the RL frameworks.

The above formal synthesis and verification can have an exhaustive check on the state space of the

abstracted autonomous robots’ behaviors. However, the associated state-actions and temporal logic objective

are not precise enough to guarantee the risk-free of robot physical dynamics in the motion. There are seldom

formal method considering human decision-making in the task performing except that works [31, 27] model

human operator as an MDP in the human-robot collaborative tasks. Their combination of formal method with

human can guarantee both the correctness of robotic behaviors and flexibility of the human-MRS collabo-

ration. However, they generally lack the consideration of human’s willingness to accept the generated safe

strategies. In addition, it is very challenging to build a robust MDP to capture human’s psychology state due

to the measurement difficulty.

5.4 Reward Shaping for Human-MRS Collaboration

We shape the reward function for the labeled MDP of human-MRS by referring to the human trust

in MRS and the LTLf encoded system requirements. In Sec. 5.4.1, we formulate a trust-based novel reward

function by considering the influence of human memory on historical trust and the inter-robot causality of
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human trust among MRS. In Sec. 5.4.2, we integrate the trust-based reward function with a reward quantify-

ing the task evolution process of satisfying the LTLf encoded system requirements φ, which can reduce the

safety risks of MRS offroad exploration.

5.4.1 Reward Shaping from Human Trust in MRS

Given human trust xt1:I at a time step t, we predict the human’s future trust x̂K|t
1:I in the robots

r1, · · · , rI over K − t time steps further from t with the following equation

x̂
K|t
1:I = B0x

t
1:I +

K−1∑
k=t

γk−tB̃z̃k+1
1:I , (5.5)

where matrix B̃ = [B1, · · · , BM , diag(b)]I×I(M+1) and the 1 × I(M + 1) dimensional vector z̃k+1
1:I =

[zk+1
1,1 , · · · , zk+1

I,1 , · · · , zk+1
1,M , · · · , zk+1

I,M , 1, · · · , 1]⊤ contains the environment attributes that the robots are go-

ing to subject to in the future time step k.

Eqn. (5.5) weighs on the future environment attributes in a discounted manner based on the human

trust xt1:I at time t. We can just estimate the value of J =
∑K−1
k=t γk−tB̃z̃k+1

1:I in Eqn. (5.5) and select the

highest one if we want to find the trajectory that has the maximum predicted trust. Therefore, we can just

estimate the value of J instead of evaluating the x̂
K|t
1:I .

Then, we can shape a reward function for the human-MRS offroad motion task as follows,

R1(sk, ak, sk+1) = 11×IB̃z̃k+1
1:I . (5.6)

The resulting discounted return over the K − t time steps horizon is

J =

K−1∑
k=t

γk−tR1(sk, ak, sk+1)

=

K−1∑
k=t

γk−t11×IB̃z̃k+1
1:I

= 11×I x̂
K|t
1:I − 11×Ix

t
1:I .

(5.7)

Theorem 4. We can use the reward function in Eqn. (5.6) and the state value function V ∗
π (sk) = maxπ Eπ[J ]

to find the optimal policy π∗.

Proof Given a policy π under the labeled MDP of human-MRS, we can derive the expected sum
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value of the predicted trust x̂K|t
1:I over K− t time steps horizon as Eπ[11×I x̂

K|t
1:I ], where 11×I is a vector with

all elements 1. The corresponding maximum expected sum value of the prediction is maxπ Eπ[11×I x̂
K|t
1:I ].

The discounted return J satisfies argmaxπ Eπ[J ] ≡ argmaxπ Eπ[11×I x̂
K|t
1:I ] since E[11×Ix

t
1:I ] is already

known at time step t and hence a constant. That is to say, the policy maximizing the sum value of the

prediction Eπ[11×I x̂
K|t
1:I ] is equivalent to the policy that maximizes the function Eπ[J ].

The obtained trajectory ρ∗ can provide the highest predicted trust value for the human-MRS. Thus,

the trust-based reward function Eqn. (5.6) can drive the human-MRS to behave in a human trusted manner

and increase human’s willingness to collaborate with the MRS.

Remark 8. Note that the preference model in the state-of-art PbRL doesn’t consider the temporal effect of

human rating. The human annotation can inevitably have the human memory influence. We separate the

temporal effect of human trust from the trust model and utilize the weights of environment attributes to shape

the reward function. It provides more accurate reward shaping based on human annotation.

5.4.2 Reward Shaping from LTLf Encoded System Requirements

In this section, we further shape the reward function of the labeled MDP through integrating the

LTLf specification described system requirements. It is known that a formal synthesis with the labeled MDP

in Def. 22 and the DFA in Def. 27 can satisfy the required LTLf specification in a correct-by-construction

approach. Then, given a labeled MDP with unknown transition dynamics and reward function, we can syn-

thesize a product-MDP with the following definition.

Definition 28 (Product-MDP). Given a labeled MDPM = (S, A, P, s0, AP, L, R, γ) and the DFAA =

(Q, Σ, δ, q0, F ) of an LTL specification, a product-MDP G =M×A = (Sp, Ap, Pp, sp,0, Fp, Rp, γ)

can be synthesized, where

• Sp = S ×Q is the state set of the product-MDP;

• Ap = A is the action set of product-MDP;

• Pp : Sp×Ap×Sp → [0, 1] describes the transition probability from a state sp = ⟨s, q⟩ ∈ Sp to another

state s′p = ⟨s′, q′⟩ ∈ Sp with an action a ∈ Ap and it satisfies

Pp(sp, a, s
′
p) =


P (s, a, s′) if q

L(s′)−→ q′,

0 otherwise;
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• sp,0 = ⟨s0, q1⟩ is the initial state of product-MDP if ∃q0
L(s0)−→ q1;

• Fp = S × F is the set of accepting states;

• Rp : Sp ×Ap × Sp → R+ is the reward function of product-MDP.

The product-MDP enumerates all the state-action transitions for the composition of the labeled MDP

and the DFA. Any state-action (sp, ap) or trajectory ρp of the product-MDP is provably correct regarding the

DFA transitions, i.e., the task evolution process of the LTLf specification. In other words, the transition

probability function Pp(sp, a, s
′
p) = 0 ensures that any state-action (s, a) or trajectory ρ in the labeled MDP

will not violate the DFA. In the above manner, the product-MDP can guarantee the reliability of the MRS

behaviors.

Example 11. Given a labeled MDP with the states in exmp 1, we can synthesize a product-MDP with the

DFA in Example 2 according to Def. 28. The result is shown in Fig 5.4. The dashed arrows show labeled

transitions that do not exist according to the actual dynamics of the labeled MDP. Initially, we cannot identify

the labeled transitions represented by the dashed arrows and consider both solid and dashed situations can

exist in the product-MDP. However, the labeled transitions represented by the dashed arrows will not be

viable in an RL process since the actual dynamics of the labeled MDP do not support them. Therefore,

dashed arrows are removed. As a result, an RL process under the product-MDP will not violate the labeled

MDP. In the meantime, the transitions between the unconnected states, such as from state ⟨s1, 0⟩ to state

⟨s2, 0⟩, have the probability of 0 since they violate the DFA in Example 2.

s1 s2
0 0

s0 s1 s2
1 1 1

a1

a1

a2

a2

a1

a1

a1

a1

a1

a1

s0
0

a2

a1

a2

a1

a1

a1

Figure 5.4: A graph representation of the product-MDP. Node ⟨s0, 0⟩ is the initial state of the product-MDP.
Nodes ⟨s0, 1⟩, ⟨s1, 1⟩ and ⟨s2, 1⟩ are the accepting states. The state transition probabilities between the solid
arrows are unknown, while the state transition probability between any two unconnected nodes is 0.

The nodes labeled with the gray color in Fig. 5.4 are the reachable states of the product-MDP.

Then, the product-MDP can have the trajectories ⟨s0, 0⟩
a1→ ⟨s1, 1⟩

a1→ ⟨s1, 1⟩
a1→ ⟨s1, 1⟩ · · · and ⟨s0, 0⟩

a1→
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⟨s1, 1⟩
a2→ ⟨s0, 1⟩

a1→ ⟨s1, 1⟩
a2→ ⟨s0, 1⟩ · · · . The corresponding finite trajectories ρ1 = s0s1s1 · · · and

ρ2 = s0s1s0s1s0s1 · · · in the labeled MDP can satisfy the DFA or LTLf specification of Example 2. •

Hence, we shape an LTLf based reward function based on the synthesized product-MDP. We aim to

achieve the following objectives:

1. robots always avoid exploring the path violating the LTLf specification as much as possible in each

episode of the RL;

2. robots always terminate exploring the environment once they reach a state that can satisfy the LTLf

specification in each episode of the RL.

Denote A(sp) as the available outgoing actions at state sp, we define a reward function under the condition

that Pp(sp, a, s′p) ̸= 0 to be

R2(sp, a, s
′
p) =



c if s′p ∈ Fp

−c if sp ̸= s′p ∧ sp ∈ Fp

−∞ if A(s′p) = ∅ ∧ s′p ̸∈ Fp

−∞ if maxa′∈A(s′p)
R2(s

′
p, a

′, s′′p) = −∞∧ s′p ̸∈ Fp

0 otherwise

(5.8)

where c is a constant that is much larger than any value of R1(s, a, s
′). More specifically, this reward function

can achieve the above two objectives with the following principles of RL trajectory exploration

1. always select an action a if it can make the behavior (sp, a, s′p) of human-MRS satisfies s′p ∈ Fp;

2. always stop at one of the accepting states of the product-MDP. More specifically, the human-MRS

avoids sequentially visiting two different accepting states in the product-MDP if the behavior (sp, a, s′p)

of human-MRS satisfies sp ̸= s′p ∧ sp ∈ Fp;

3. always avoid visiting states where the behavior (sp, a, s
′
p) of human-MRS satisfies

maxa′∈A(s′p)
R2(s

′
p, a

′, s′′p) = −∞ ∧ s′p ̸∈ Fp, whose base case is the sink state2 condition

A(s′p) = ∅ ∧ s′p ̸∈ Fp;

2Sink state is a non-accepting state that does not have outgoing transitions.
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The shaped reward function R2(sp, ap, s
′
p) can improve the reliability of MRS behaviors in the

trajectory planning by directly avoiding the MRS behaviors whose transitions Pp(sp, a, s′p) = 0. As a com-

plement, the shaped trust-based reward function R1(s, a, s
′) can quantitatively label the reward of transitions

Pp(sp, a, s
′
p) ̸= 0 in the product-MDP. Hence, we integrate the LTLf shaped reward and the human trust

shaped reward as reward function

Rp(sp, a, s
′
p) =



c if s′p ∈ Fp

−c if sp ̸= s′p ∧ sp ∈ Fp

−∞ if A(s′p) = ∅ ∧ s′p ̸∈ Fp

−∞ if maxa′∈A(s′p)
Rp(s

′
p, a

′, s′′p) = −∞∧ s′p ̸∈ Fp

R1(s, a, s
′) otherwise

(5.9)

We present Alg. 7 to simultaneously generate the product-MDP according to Def. 28 and the

associated reward function in Eqn. (5.8). The input of the algorithm is the labeled MDPM and the LTLf

converted DFA. The output of the algorithm is the product-MDP and the associated reward function. Lines 2

- 5 find the initial state and accepting states of the product-MDP. Lines 6 - 20 start with the initial state and

recursively generate the successive states, transitions, and reward functions of the product-MDP. Lines 10 -14

and 17 -19 formulate the reward function Rp(sp, a, s
′
p) according to the reward shaping rules in Eqn. (5.8).

5.5 Bayesian Active Reinforcement learning

In this section, we utilize a Bayesian active RL framework to concurrently learn the unknown pa-

rameters Bm, m = 1, · · · ,M and b of the human trust shaped reward R(sp, a, s
′
p) and explore the optimal

policy and trajectory for the human-MRS. Bayesian inference and MCMC sampling first estimate the ap-

proximate posterior distribution of the unknown model parameters of the human trust shaped reward in Sec.

5.5.1. Then, Sec. 5.5.2 presents different query strategies to generate the trajectory for human-MRS to travel

along and the human to annotate the trust shaped reward under an active RL framework.
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Algorithm 7 Reward shaping of product-MDP

Input: labeled MDPM = (S, A, P, s0, AP, L, R, γ), DFA A = (Q, Σ, δ, q0, F )
Output: product-MDP Gp = (Sp, Ap, Pp, sp,0, Fp, Rp, γ)

1: function PRODUCT-MDP(M, A)
2: Sp ← ∅
3: Initial state sp,0 ← ⟨s0, q1⟩ if ∃q0

L(s0)−→ q1
4: Accepting states Fp = S × F
5: sp = sp,0, Sp ← add sp,0
6: function RECURSION(sp)
7: list1← ∅
8: successors←

{
all s′p satisfies Pp(sp, a, s′p) ̸= 0

}
9: for s′p ∈ successors do

10: if sp ̸= s′p ∧ sp ∈ Fp then Rp(sp, a, s
′
p) = −c

11: else if s′p ∈ Fp then Rp(sp, a, s
′
p) = c

12: else if A(s′p) = ∅ ∧ s′p ̸∈ Fp then Rp(sp, a, s
′
p) = −∞

13: else Rp(sp, a, s
′
p) = R1(sp, a, s

′
p)

14: end if
15: list1← add Rp(sp, a, s

′
p)

16: if s′p ∈ Sp then continue
17: end if
18: Sp ← add s′p
19: list2← RECURSION(s′p)
20: if max(list2) = −∞∧ s′p ̸∈ Fp then
21: list1← update Rp(sp, a, s

′
p) = −∞

22: end if
23: end for
24: return list1
25: end function
26: return Sp, Ap, Pp, sp,0, Fp, Rp, γ
27: end function
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5.5.1 Bayesian Inference for Parameters of Reward Function

In this subsection, we estimate the posterior distribution of the unknown parameters θθθ of the human

trust shaped reward. The estimation requires the environment attributes Zk1:I data along a trajectory ρ and the

corresponding human trust xk1:I . We rely on the robot sensors to record the perceived offroad environment

attributes Zk1:I and present the plots of Zk1:I on a human computer interface. The human’s trust xk1:I is a self-

reported time-series value which can exceed the measurement range of the human computer interface. There-

fore, we design the human computer interface to measure the human’s trust change yk1:I =
[
yk1 , · · · , ykI

]⊤
with

yk1:I = xk1:I − xk−1
1:I + ϵϵϵkv , (5.10)

where the trust xk1:I becomes a latent variable; the trust change yk1:I is the actual observation on trust xk1:I ;

and the vector ϵϵϵkv describes the measurement error of the self-reported trust change.

The human trust change Y1:K
1:I and offroad environment attributes Z1:K

1:I are the collected data at each

episode of the active RL. Denote Ds−1 as a collection of s − 1 episodes of data, we use Bayesian inference

to infer the latent variable X1:K
1:I and update the posterior distribution of trust model parameters θθθ at each

episode of the active RL. More specifically, we can first infer a conditional posterior distribution of trust

model parameters θθθ with equation

Prs(θθθ | Y1:K
1:I , (X1:K

1:I )(l−1),Z1:K
1:I ) ∝

Pr(Y1:K
1:I | (X1:K

1:I )(l−1),Z1:K
1:I , θθθ)Pr((X1:K

1:I )(l−1) |

Z1:K
1:I , θθθ)Prs−1(θθθ | Ds−1).

(5.11)

It is obvious that an estimation of (X1:K
1:I )(l−1) is necessary for the posterior distribution Prs(θθθ |

Y1:K
1:I , (X1:K

1:I )(l−1),Z1:K
1:I ). Hence, we further infer the conditional posterior distribution of (X1:K

1:I )(l−1)

with equation

Pr(X1:K
1:I | Y1:K

1:I ,Z1:K
1:I , θθθ(l−1)) =

Pr(x0
1:I | x̃1

1:I , θθθ
(l−1))

K∏
k=2

Pr(x̃k−1
1:I | x̃

k
1:I ,Y

1:k−1
1:I ,

Z1:k−1
1:I , θθθ(l−1)) Pr(x̃K1:I | Y1:K

1:I ,Z1:K
1:I , θθθ(l−1)),

(5.12)
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where x̃k1:I = [xk1:I , xk−1
1:I ]⊤. As a result, the inference of the latent variable X1:K

1:I and model parameters

θθθ depend on each other. Therefore, we utilize the Markov chain Monte Carlo (MCMC) sampling method

to concurrently infer the latent variable X1:K
1:I and the trust model parameters θθθ. The sampled values can

approximate the numerical solution of the posterior distribution of X1:K
1:I and θθθ.

5.5.2 Trajectory Query Strategies for Bayesian Active RL

Active learning aims to select the most useful samples, i.e., trajectories, from the unlabeled data set

and hand them over to the oracle, i.e., human annotator, for labeling [70]. Query strategy of active learning

achieves the objective by selecting a trajectory that optimizes a utility function which counts both the labeling

costs and the learning performance. Therefore, we present two query strategies for our Bayesian active RL

framework to find the most useful trajectory in each episode, i.e, the Thompson sampling based random query

(benchmark) and the workload-based query.

5.5.2.1 Thompson Sampling based Random Query

Thompson sampling is a randomized strategy which samples a reward function from the posterior

of trust model parameters and selects the trajectory with the highest simulated reward. Therefore, Thompson

sampling is easy to implement as long as the the prior hyperparameters of the trust model are available. We

apply the Thompson sampling into the query strategy of our Bayesian active RL. In each episode s of the

Bayesian active RL, we take the posterior distribution Prs−1(θθθ | Y1:K
1:I ,Ds−1) as the prior distribution of

θθθ of the s-th episode. We can sample a parameter θθθs from Prs−1(θθθ | Y1:K
1:I ,Ds−1) and formulate a reward

functions Rp(sp, a, s′p | θθθs) at the s-th episode of the Bayesian active RL. Then, we can rely on the Q-learning

to explore the optimal policy π∗
s with Rp(sp, a, s

′
p | θθθs) and obtain the optimal trajectory ρ∗s .

The Thompson sampling based query strategy can trade off the exploration and exploitation of the

Bayesian active RL. Under this query strategy, a trajectory is explored based on how it is likely (under the

posterior) to be optimal. On one side, the sampled parameter θθθs can be any value of the posterior distribution

Prs−1(θθθ | Y1:K
1:I ,Ds−1), which may not be or close to the ground truth value of human trust model. The

generated the optimal policy π∗
s and trajectory ρ∗s under the sampled parameter θθθs at each episode s doesn’t

reflect the actual human trusted optimal policy and trajectory. However, it guarantees the trajectory explo-

ration of the product-MDP Gp and data variety of learning the human trust model. One the other side, the

posterior distribution Prs(θθθ | Y1:K
1:I ,Ds) will become condensed after multiple episodes of online estimation
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of human trust model parameter. Then, it will be much more likely to sample the parameter θθθs at or close to

the ground truth value of human trust model. As a result, the optimal policy π∗
s and trajectory ρ∗s eventually

will be stabilized around the human actually trusted ones.

Alg. 8 summarizes the overall process of integrating the Thompson sampling into the Bayesian

Active RL. The input of the algorithm is the product-MDP Gp and the initial prior distribution Pr0(θθθ | D0) of

the human trust model. The outputs of the algorithm are the optimal policy π∗
S and trajectory ρ∗S . Lines 4 - 6

describe the process of Thompson sampling based query strategy generating the optimal policy and trajectory

at the s-th episode of the Bayesian active RL. Lines 7 - 10 present the Bayesian inference and MCMC based

online estimation of human trust model parameter.

Algorithm 8 Bayesian Active RL with Thompson Sampling

Input: prior Pr0(θθθ | D0), product-MDP Gp
Output: updated optimal policy π∗

S , posterior PrS(θθθ | DS)
1: function BARL-TS(Pr0(θθθ | D0), Gp)
2: Θ0 ← sample θθθ ∼ Pr0(θθθ | D0)
3: for s = 1, · · · , S do
4: θs → Prs−1(θθθ | Ds−1) ▷ Sample a parameter
5: Rp(sp, a, s

′
p | θθθs)← θθθs ▷ Update reward function

6: ρ∗s, π
∗
s ← Q-LEARNING(Gp, Rp)

7: Obtain data Z1:K
1:I ,Y1:K

1:I from path ρ∗s
8: Θs ← MCMC

(
Prs−1(θθθ | Ds−1),Y

1:K
1:I ,Z1:K

1:I

)
9: Ds ← Ds−1 ∪ {(Y1:K

1:I ,Z1:K
1:I )}

10: Prs(θθθ | Ds)← Θs ▷ Posterior
11: end for
12: return π∗

S , PrS(θθθ)
13: end function

5.5.2.2 Workload-based Query

Many active learning works focus on increasing the diversity of data annotation and decreasing the

uncertainty of parameter estimation. However, the selected trajectories under these query strategies can be

difficult for human to annotate. Human can have high cognition workload to label correctly and objectively

[66]. Limited active learning works discuss the human annotation workload that comes from the data annota-

tion difficulty. According to [70, 66], the labeling difficulty is depends the feature dissimilarity between data

objects. A larger feature difference between two sequentially labeled data objects brings in higher human

cognition workload. Therefore, we construct a utility function Wa(Z1:K
1:I | ρ) to describe the data annotation

workload for the data Z1:K
1:I of a trajectory ρ,
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Wa(Z1:K
1:I | ρ) =

I∑
i=1

K∑
k=1

(
1− e−∥zki−zk−1

i ∥
)
. (5.13)

A trajectory ρ will have a high data annotation workload if the neighboring time-steps of data zki are dissim-

ilar, i.e., a large Euclidean distance.

Furthermore, the human can subject to different levels of operational difficulty and workload when

operating the robot r0 along the trajectories. The learning cost in our human-MRS collaborative task can

additionally come from the human operational workload in collaborating with the autonomous robots ri, i =

1, · · · , I of the MRS. According to [52, 82], human operation workload in collaborating with robots is related

to the task complexity and duration of task performing time. The more complex of a task and longer task

performing time, the higher of the human operational workload. We relate the task complexity of a trajectory

to its environmental attributes Z1:K
1:I and build a utility function Wo(Z1:K

1:I | ρ) to describe the an operational

workload as follows,

Wo(Z1:K
1:I | ρ) =

I∑
i=1

K∑
k=1

(
1− e−∥zki,max−zki ∥k

)
, (5.14)

where zki,max is the maximal value of the environment attributes. A trajectory ρ will have a high operational

workload if the data zki is less advantageous, i.e., a lower value of the environment attributes.

We develop a workload-based query strategy for the Bayesian active RL to generate the trajectory

for human’s annotation of the human trust shaped reward. There are three steps for this process. First, we

formulate a set of reward functions Rp(sp, a, s
′
p | θθθs,l), θθθs,l ∈ Θb

s−1, l ∈ N+ at the s-th episode of the

active RL, where θθθs,l ∼ Prs−1(θθθ | Ds−1). Second, we rely on a general Q-learning algorithm to roll out a

pool of optimal policy Hπ and trajectories Hρ with the above set of reward functions. This process can be

summarized with Alg. 9. The input of the algorithm is the product-MDP Gp and the posterior distribution

Prs−1(θθθ | Ds−1) of the human trust model at the s−1-th episode of the active RL. The posterior distribution

Prs−1(θθθ | Ds−1) is taken as the prior information of the human trust shaped reward function at the s-

th episode of the active RL. The outputs of the algorithm are a set of explored optimal policies Hπ and

trajectories Hρ. Each of the optimal policy and trajectory are generated based on a sampled value θθθs,l in

Θb
s−1 and its resultant reward function Rp(sp, a, s

′
p | θθθs,l), see lines 4 - 6. Third, a workload-based query

strategy compares among the rollout trajectoriesHρ and selects the one that has the minimal data annotation
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Algorithm 9 Trajectory Rollout of Product-MDP

Input: product-MDP Gp, posterior Prs−1(θθθ | Ds−1)
Output: updated policyHπ , trajectory poolHρ

1: function ROLLOUT(Prs−1(θθθ | Ds−1), Gp)
2: Hρ ← ∅,Hπ ← ∅ ▷ Pool of path & policy
3: Θb

s−1 → Prs−1(θθθ | Ds−1)
4: for θθθs,l ∈ Θb

s−1 do
5: Rp(sp, a, s

′
p | θθθs,l)← θθθs,l ▷ Reward function

6: ρl, πl ← Q-LEARNING(Gp, Rp)
7: Hρ ← Hρ ∪ {ρl},Hπ ← Hπ ∪ {πl}
8: end for
9: returnHρ,Hπ

10: end function

and operational workload with the following equation

ρ∗ = argmax
ρj∈Hρ,s

[
ξ1Wa(Z1:K

1:I | ρj) + ξ2Wo(Z1:K
1:I | ρj)

]
. (5.15)

We integrate the online update of reward function in Sec. 5.5.1 with the trajectory query strategies

in Sec. 5.5.2 and summarize the overall process in Alg. 10. The input and the output of the algorithm are the

same to the Alg. 8. Line 4 rolls out a pool of optimal trajectories with Alg. 9. Line 5 refers to Eqn. (5.15) and

selects the trajectory that has the minimal workload. Lines 6 - 9 present the Bayesian inference and MCMC

based online estimation of human trust model parameter. Line 10 outputs the optimal policy with respect to

the selected trajectory in the poolHρ,s.

Algorithm 10 Bayesian Active RL with Workload-based Query

Input: prior Pr0(θθθ | D0), product-MDP Gp
Output: updated policy πS , posterior PrS(θθθ | DS)

1: function BARL-W(Pr0(θθθ | D0), Gp)
2: Θ0 ← sample θθθ ∼ Pr0(θθθ | D0)
3: for s = 1, · · · , S do
4: Hρ,s,Hπ,s ← ROLLOUT(Θs−1,Gp)
5: ρ∗s ← Query(Hρ,s, Θs−1) ▷ Query a path
6: Obtain data Z1:K

1:I ,Y1:K
1:I from path ρ∗s

7: Θs ← MCMC(Prs−1(θθθ | Ds−1), Y1:K
1:I ,Z1:K

1:I )
8: Ds ← Ds−1 ∪ {(Y1:K

1:I ,Z1:K
1:I )}

9: Prs(θθθ | Ds)← Θs ▷ Posterior
10: πs ← Hπ,s ▷ Update policy
11: end for
12: return πS , PrS(θθθ)
13: end function

The probability distribution of the trust model parameters θθθ will become more certain as more obser-
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vation data on environmental attributes Z1:K
1:I and human trust change Y1:K

1:I become available. Eventually, the

corresponding human trust shaped reward function can be very certain, thus generates deterministic trajec-

tory. This deterministic trajectory and the corresponding policy are the desired solution for the human-MRS

collaborative task.

5.5.2.3 Decision Field Theory based Query

A decision maker’s preference for each option in multialternative choices evolves by comparing

among options for their evaluations on respective attributes over time during his/her deliberation process

(e.g., uncertainty and risks) [71]. In our work, trajectory exploration based on human’s trust can potentially

increase the human’s willingness to collaborate with the autonomous system and reduce human workload.

The human’s trust xki can reflect his/her willingness to travel along the path. Therefore, we formulate the

human preference value for every path ρj based on the predicted human trust value. Then, the active RL can

assign the preferable trajectory for human-MRS to perform task and human to label trust.

According to Alg. 2, we can roll out a set of trajectories Hρ,s based on the lower-confidence and

upper-confidence bound values of posterior distribution Prs−1(θθθ | Y1:K
1:I ,X1:K

1:I ,Z1:K
1:I ). We quantify human

preference value fs of path ρj among multialternative choicesHρ,s = {ρ1, · · · , ρJ} as follows

fs(ρj) = λ · fs−1(ρj) + ∆xs(ρj),

∆xs(ρj) = xs(ρj)−
1

J − 1

 J∑
j̃=1

xs(ρj̃)− xs(ρj)

 ,

xs(ρj) =
1

KI

K∑
k=1

I∑
i=1

βββ⊤z̃ki ,

(5.16)

where fs(ρj) is the human’s dynamic preference value of path ρj over all the other paths, the coefficient λ

determines the memory of the previous preference fs−1(ρj) over the time interval, βββ⊤z̃ki is the predicted

trust value of robot ri at the k-th step while traveling along path ρj , xs(ρj) is the predicted trust value of a

path ρj at the s-th episode of the active RL, and ∆xs(ρj) describes the advantages of path ρj over all the

other paths regarding their predicted trust value at the s-th episode.

If fs(ρj) > 0 conditional on Θs−1, it means path ρj is preferred rather than the other paths at the

s-th episode. Then, we integrate the above trust-based preference equations into the trajectory exploration
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strategy of active RL as

ρ∗ = argmax
ρj∈Hρ,s

Pr
(
fs(ρj) > 0 | Θs−1

)
(5.17)

This function describes the probability of path ρj being preferred rather than others under the current belief

of human trust model parameters. We take the most likely preferable path ρ∗ ∈ Hρ,s for the human-MRS at

each episode of the active RL.

The trajectory exploration strategy explore the state space of the product-MDP. Initially, the trust

model is less certain due to the limited human-MRS collaboration experience. The trajectory exploration

strategy can hardly distinguish the human’s preference to different paths and can only identify the more

obviously advantageous paths. After a period of collaboration, more data is obtained and hence the trust

evaluation becomes more determined and consistent. As a result, the trajectory exploration strategy is capable

of comparing among the less obviously advantageous paths and finds the preferable one.

5.5.2.4 Situational Awareness-based Query

In each episode of the active RL, it is essential for human to recognize the environment attributes that

the MRS are subjecting to and allocate appropriate amount of attention to label the trust value. Situational

awareness describes the human’s perception of the offroad environment, understanding of the situation, as

well as prediction of the future status [28]. It influences the demand and supply of human attention in the

collaborative task. Therefore, it is also significant for the query strategy to consider the utility of human

situational awareness along a trajectory during the active RL.

Approximate entropy (ApEn) describes the amount of regularity and the unpredictability of fluc-

tuations over time-series data. A higher regularity of the trajectory is more favorable for human-MRS to

recognize the environment and build the situational awareness. Hence, we can use the ApEn to identify the

trajectory that has repetitive pattern regarding the environment attributes [24]. Denote vector z1:Ki,m as an

inclusion of all the K values of the m-th environment attribute that robot ri is going to subject to along a

trajectory ρ. We can extract u ∈ N+ vectors z1:K−u+1
i,m , · · · , zu:Ki,m and arrange them to be a matrix Z1:K

i,m (u)

with the shape (K − u+ 1)× u. Then, we can define

distκ,k = max |Zki,m(u)−Zκi,m(u)|

to quantify the distance between any two (e.g., the k-th and κ-th) columns’ elements of the matrix Z1:K
i,m (u).

We claim that the k-th element Zki,m(u) and κ-th element Zκi,m(u) are similar if distκ,k < ζ, where ζ is a
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threshold. Next, we can calculate the ratio of column vectors Zκi,m(u), κ = 1, · · · ,K that is similar to the

column vector Zki,m(u) with

C(Zki,m, u, ζ) =
1

K − u+ 1

K−u+1∑
κ=1

I(distk,κ < ζ),

where I(·) is an indicator function which equals to 1 if the condition is true and 0 otherwise. As a result, we

can obtain the regularity of the K values of the vector z1:Ki,m by referring to the similarity ratio C(Zki,m, u, ζ)

of every column vector Zki,m(u). The regularity can be formally defined as

ϕ(z1:Ki,m , u, ζ) =
1

K − u+ 1

K−u+1∑
k=1

log C(Zki,m, u, ζ). (5.18)

Finally, we can quantify the situational awareness level of a trajectory ρ with the ApEn

ApEn
(
Z1:K
1:I | ρ

)
=

I∑
i=1

M∑
m=1

(
ϕ(z1:Ki,m , u, ζ)− ϕ(z1:Ki,m , u+ 1, ζ)

)
. (5.19)

The function ApEn
(
Z1:K
1:I | ρ

)
works as a quantification of the rate of regularity in the robot perceived

environment attribute values of a trajectory ρ. The environment attribute of a trajectory ρ will have a high

regularity if ApEn
(
Z1:K
1:I | ρ

)
has a low value; and a low regularity if the ApEn is large.

Each candidate trajectory in the poolHρ has a corresponding ApEn. In an episode of active RL that

is guided by the situational awareness based query strategy, we assign the trajectory ρ∗ that has the minimum

ApEn for human to label the data in the subsequent human-MRS collaboration.

ρ∗ = argmin
ρj∈Hρ,s

ApEn(Z1:K
1:I | ρj) (5.20)

5.6 Case Study: Bayesian Active Reinforcement Learning for Human

Multi-Robot Bounding Overwatch

In this chapter, we extend the case study of Chapter 4.6 on human multi-robot collaborative bounding

overwatch tasks in offroad environment. We select different local scenarios of the offroad environment to

evaluate the effectiveness of our proposed trust-based active RL framework.
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5.6.1 Task Specification of Multi-robot in Offroad Environments

In general, a real-time perception and replanning strategy may not be sufficient to solve the safe

planning problem in offroad scenarios. It is necessary to encode a traversability-based requirement into a task

specification and prescribe the safe robot behaviors before the real-time perception and replanning. We use

the geological height information of an offroad area to create the traversability-related (including obstacle

avoidance) robot motion specifications. We can identify the obstacle areas with trees and buildings in the

surface map. We label them with “obs” and require that “robots always avoid the areas labeled with obs”,

where LTLf formula is □¬obs. Then, we consider the situation that robot cannot travel to the high elevation

due to the over steep ramps. We label the high elevation areas with “peak” and give the requirement that

“robots always avoid the motion to a peak, which can be encoded with LTLf formula □¬peak. Finally, we

synthesize a complex LTLf formula □¬peak ∧ □¬obs to include all the concerned situations in an uneven

terrain.

Besides the traversability, the robots can be subject to the environmental invisibility issues in the

area with dense vegetation. We can derive a map about the surface objects’ height information from the DSM

of an area. Then, we label the low visibility areas with “veg” and require that “robots always avoid these

veg regions”, which has the LTLf □¬veg. In the bounding overwatch, the robots need to protect themselves

from being discovered by the opponents. To enable the robots to have the capability of avoiding the detection

of opponent, we can label the interest areas, such as every neighbor of the vegetation, or gully area, with

“int” and give the reachability requirement for the robots “robots reach the int area besides a specification

φ”. Then, we can use an LTLf □¬veg ∧ (♢int ∧⃝φ) to include all the concerned situations in a vegetation

dense terrain.

More specifications can be encoded into the task specification, such as surveillance or sequentially

visit a set of labeled regions, avoid moving obstacles, etc. These motion specifications can reduce the risks of

being trapped in to the unfavorable regions though does not directly improve the capability of robot hardware

in performing the motion task.

5.6.2 Experiment Procedure

We deploy the human-MRS to navigate with the proposed active RL framework under the above

experimental setup. The experiment will involve both the simulated human agent and the real human subject.

Every episode of the active RL follows the six following steps: (1) A discrete path for the human-MRS is
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generated according to a query strategy; (2) the three-robot formed subteam autonomously navigates from

the current cell to a temporary destination in the neighboring cell along the selected discrete path. The

team then stops and waits for the human-operated robot to catch up; (3) the human operator manipulates the

manned ground robot to get close to the autonomous robots along the same discrete path; (4) meanwhile, the

autonomous robots overwatch the surrounding environment; (5) the human operator provides trust change in

each autonomous robots by referring to the recorded traversability and visibility information of autonomous

robots (see Fig. 4.7); (6) the operator repeats steps (2) - (4) until all the ground robots reach the ultimate

destination.

5.6.3 Simulated Human Agent

We select a local scenario of the offroad environment as an example, see Figs. 5.5. In this scenario,

we require the human-MRS to avoid the “peak” (high elevation) regions as obstacles and utilize the gully

regions (int) as a shield while reaching a “dest” labeled cell. Therefore, we assign an LTLf φ = □¬peak ∧

(♢int ∧⃝♢dest) for the human-MRS to satisfy. We assume a simulated human has the known ground truth

value of the trust model parameters βββtrue = [β−1,true, β0,true, β1,true, β2,true, btrue]
⊤, δ2w,true and δ2v,true.

We rely on this simulated human agent to provide trust change value in every autonomous robot.

(a) (b) (c)

Figure 5.5: Scenario 1: (a) Top view of scenario. (b) Traversability map of the scenario. (c) Visibility map of
the scenario.

We provide a non-informative initial prior distribution for the model parameter βββ, which has a large

variance value Σ(0) associated with the randomly assigned mean value βββ(0). We rely on the Bayesian ac-

tive RL to concurrently plan the optimal trajectory for human agent and learn the human trust-based re-

ward function. Four query strategies (Thompson sampling, workload-based, decision field theory, situational

awareness-based) are applied in the Bayesian active RL. Fig. 5.6 show the generated optimal trajectory pool

and selected trajectory in the key episodes.
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Figure 5.6: The optimal trajectory pool of Bayesian active RL and the selected optimal trajectory (red) of
each query strategy. The right most is the ground truth reward function under the simulated human agent.
The arrows depict the optimal policy after 20 episodes.
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The experiment results with simulated human agents demonstrate that the Bayesian active RL can

condense the optimal trajectory pool for human-MRS collaborative offroad motion task. In each episode of

Bayesian active RL, different query strategy will select different optimal trajectory based on its own utility

function for human to annotate the trust data.

In addition, we also show the scalability of the Bayesian active RL for different scenarios. Scenarios

of Fig. 5.7 and Fig. 5.8 are selected and have different geological information from the scenario of Fig. 5.5.

The corresponding traversability and visibility map are also associated.

(a) (b) (c)

Figure 5.7: Scenario 2: (a) Top view of scenario. (b) Traversability map of the scenario. (c) Visibility map of
the scenario.

(a) (b) (c)

Figure 5.8: Scenario 3: (a) Top view of scenario. (b) Traversability map of the scenario. (c) Visibility map of
the scenario.

We use the same simulated human agent to simulate the Bayesian active RL algorithm for the two

new scenarios. The optimal trajectory pool results are shown in Figs. 5.9 (bottom) and 5.10 (bottom). We

can observe that different amount of optimal trajectories are obtained based on the specific scenario. Scenario

2 with the assigned LTLf is more sensitive to the reward function change. Hence, the Bayesian active RL

can find the ultimate optimal trajectory at episode 6. In comparison, the algorithm cannot find a unique

optimal trajectory at the end of episode 20 for the scenario 3 (Fig. 5.10 (bottom)). Therefore, the efficiency

of Bayesian active RL is related to the sensitivity of the environment in producing the optimal trajectory.
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Figure 5.9: Trust-based Bayesian active RL results in scenario 2: (top) update of optimal trajectory pool under
LTLf “♢dest”. (bottom) update of optimal trajectory pool under LTLf □¬peak ∧ (♢gully ∧⃝♢dest).
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Figure 5.10: Trust-based Bayesian active RL results in scenario 3: (top) update of optimal trajectory pool
under LTLf “♢dest”. (bottom) update of optimal trajectory pool under LTLf □¬peak ∧ (♢int ∧⃝♢dest).

126



Furthermore, we provide a benchmark task specification for each scenario by simply assigning the

human-MRS to reach a “dest” labeled cell region with an LTLf “♢dest”. The optimal trajectory pool results

are shown in Figs. 5.9 (top) and 5.10 (top). We can observe that different optimal trajectories from the

“bottom” are obtained based on the benchmark LTLf specification. The results show that more complex

task specifications encoding humans’ safety requirements can change the optimal trajectory for human-MRS

collaborative offroad motion task.

5.7 Conclusion

In this chapter, we developed a trust-based Bayesian active RL framework for a human multi-robot

collaborative system to accomplish an offroad motion task. We first capture the human trust dynamics evo-

lution in the motion task with a computational human-MRS trust model, which can encode the human’s trust

in the robots as a reward function of the labeled MDP of human-MRS. Then, we utilized LTLf formulae

to encode the human’s task requirements for MRS, such as the motion reachability and safety, in the of-

froad environment. The LTLf formulae plus the labeled MDP of the robots’ motion behaviors synthesize a

product-MDP for the human-MRS, which guarantees the provably safe behaviors of human-MRS in the task

performing. Next, Thompson sampling based query, workload-based query, decision-field theory, and situa-

tional awareness-based query, are developed for human-MRS to simultaneously learn the trust-based reward

function and find the optimal trajectory. In the experiment, we present a case study on human-MRS bound-

ing overwatch, a complex multi-robot offroad motion task, to illustrate the effectiveness of our proposed

framework.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

The task and motion planning of MRS is extremely complicated and computationally expensive,

especially for temporal logic tasks. This dissertation first developed a task decomposition framework to

break a global temporal logic task into smaller task pieces, which can significantly reduce the computational

space. Then it integrates human trust in a robot with the autonomous motion of MRS, which can improve

the human-MRS collaboration performance. Trust-based task allocation and planning are also discussed to

demonstrate the usability of trust in a human-MRS collaborated task. The detailed contributions of each

chapter are as follows.

Chapter 2 presents a human-supervised task allocation and motion planning framework for MRS to

perform multiple parallel subtasks in a human-like decision-making manner. These subtasks are described by

automata and conjunction with MRS to synthesize a task allocation automaton. Transitions of task allocation

automaton are associated with the estimations of robot performance and human cognitive workload. They

are combined with a DBN human-robot trust model, and a maximal trust-encoded task allocation path can be

found. This path reflects the maximum trust of the human in the task assignment of MRS. Symbolic motion

planning (SMP) is implemented for each robot after the task allocation. The task reallocation is triggered

after an action is completed with human permission. The above process is demonstrated effective for MRS

task allocation by a simulation with five robots and three parallel subtasks.

Chapter 3 presented a top-down framework for the parallel task and motion planning of MRS to

achieve a global task specification with automaton theories. We first extracted a set of sub-automata from the
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global task specification and introduced an iterative parallel decomposition algorithm to decompose each of

the extracted sub-automata. The decomposition components were a unique set of smallest parallel subtask

automata. Each component was assigned a set of heterogeneous robots. A maximum amount of individual

and concurrent SPA was then synthesized from these subtask automata and the capability transition systems

of the assigned robots. Each SPA provided a minimal-cost task plan for the MRS, and all the task plans were

executed in parallel. The task planning process provided a higher level of parallelism in task plans for MRS

compared with the centralized approach that directly synthesizes task plans with the global task automaton

and robot transition systems. The parallel task planning process was also proved to be more computationally

efficient compared to the centralized approach. Furthermore, dynamic concurrent execution was performed

for the task plan from each parallel SPA in order to improve the concurrency of the task-performing process.

Chapter 4 developed two LSS models to capture the quantitative relationship between human trust

in MRS and offroad environmental characteristics, such as traversability and line of sight. One LSS model,

i.e., “CTM1”, quantifies the causality of trust by assuming that human’s trust in each leading robot does not

influence the trust in its succeeding robot in the line formation of MRS team; while the other LSS model, i.e.,

“CTM2”, assumes the existence of such a causality between robots. Bayesian inference and MCMC sampling

are used to derive the parameters of each computational trust model. In addition, Bayesian optimization-based

experimental design was applied to collect the data, update the trust model parameters and obtain the optimal

path for the MRS motion task.

Chapter 5 proposed a trust-based Bayesian active RL algorithm to deal with the human-MRS col-

laborated offroad motion task under LTLf specifications. The algorithm shaped the reward functions for

human-MRS collaborative offroad motion by referring to the human-to-multi-robot trust model and LTLf

specifications. The Bayesian-based online updating of the reward functions and active query for the opti-

mal trajectory went concurrently to find the stabilized optimal policies and trajectories for human-MRS. The

bonding overwatch experiments with the simulated human are conducted in different scenarios to validate the

usability of the proposed algorithm.

6.2 Limitations and Future Work

The current work has its limitations. We rely on human operators to report their trust change by

sliding the button on the HCI. It is economical but could bring uncertainties in the data collection. Some

participants tend to slide the button aggressively while others are more conservative, though both situations
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may actually have the same level of trust change. The different measurement scales from participants can

directly affect the estimation result of model parameters and the resultant preferable path. Therefore, a future

investigation with objective measurements, such as psychophysical signals, of the trust value can reduce the

bias [1].

In addition, human decision-making in an adversarial environment can be different from the situation

without adversaries. A human-in-the-loop RL algorithm for the multi-robot in the presence of adversaries is

worth investigating.
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Appendix A Equation Derivation

A.1 Derivation of computational trust model without inter-robot trust influence

In Sec. 4.4.1, the computational trust model does not consider the inter-robot trust influence. We

have model parametersβββ = [β0, β1, · · · , βM , b], and δ2w, δ
2
v to estimate. According to the Bayes’ theorem,

we can derive the full posterior distribution of model parameters θθθ = (βββ, δ2w, δ
2
v) as follows,

π(βββ, δ2w, δ
2
v | Y1:K

1:I ,X1:K
1:I ,Z1:K

1:I ) (1)

=
Pr(Y1:K

1:I ,X1:K
1:I | Z1:K

1:I ,βββ, δ2w, δ
2
v)π0(βββ, δ

2
w, δ

2
v)

Pr(Y1:K
1:I ,X1:K

1:I | Z1:K
1:I )

(2)

∝ Pr(Y1:K
1:I ,X1:K

1:I | Z1:K
1:I ,βββ, δ2w, δ

2
v)π0(βββ, δ

2
w, δ

2
v), (3)

where Eqn. (2) is proportional to Eqn. (3) since Pr(Y1:K
1:I ,X1:K

1:I | Z1:K
1:I ) is a constant. Then, we can use

conditional probability to decompose the likelihood function Pr(Y1:K
1:I ,X1:K

1:I | Z1:K
1:I ,βββ, δ2w, δ

2
v) in Eqn. (3)

to be

Pr(Y1:K
1:I ,X1:K

1:I | Z1:K
1:I ,βββ, δ2w, δ

2
v) (4)

= Pr(Y1:K
1:I | X1:K

1:I ,Z1:K
1:I ,βββ, δ2w, δ

2
v)

Pr(X1:K
1:I | Z1:K

1:I ,βββ, δ2w, δ
2
v)

(5)

= Pr(Y1:K
1:I | X1:K

1:I , δ2v) Pr(X
1:K
1:I | Z1:K

1:I ,βββ, δ2w), (6)

where Eqn. (5) is simplified to Eqn. (6) because Y1:K
1:I is independent of Z1:K

1:I ,βββ, δ2w, and X1:K
1:I is indepen-

dent of δ2v . Next, we can derive each component of Eqn. (6) as

Pr(Y1:K
1:I | X1:K

1:I , δ2v)

=

I∏
i=1

K∏
k=1

Pr(yki | xki , xk−1
i , δ2v)

= (2πδ2v)
− IK

2 exp

−
K∑
k=1

I∑
i=1

(yki − (xki − xk−1
i ))2

2δ2v


(7)
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and

Pr(X1:K
1:I | Z1:K

1:I ,βββ, δ2w)

=

I∏
i=1

K∏
k=1

Pr(xki | xk−1
i , zki ,βββ, δ

2
w)

= (2πδ2w)
− IK

2 exp

−
K∑
k=1

I∑
i=1

(xki − βββ⊤z̃ki )
2

2δ2w

 .

(8)

As a result, we can obtain the detailed probabilistic function for the posterior distribution of model

parameters as

π(βββ, δ2w, δ
2
v | Y1:K

1:I ,X1:K
1:I ,Z1:K

1:I )

= π0(θθθ)(2πδ
2
w)

− IK
2 exp

−
K∑
k=1

I∑
i=1

(xki − βββ⊤z̃ki )
2

2δ2w



(2πδ2v)
− IK

2 exp

−
K∑
k=1

I∑
i=1

(yki − (xki − xk−1
i ))2

2δ2v

 .

(9)

In this paper, we can assume the initial prior distribution π0(βββ), π0(δ
2
w), and π0(δ

2
v) are independent.

The reason is no information imposes the relevance between the prior distribution of βββ, δ2w, and δ2v . Then,

given a prior distribution π0(βββ), the posterior distribution of βββ can be obtained in the same approach of Eqns.
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(1)-(9)

π(βββ | Y1:K
1:I ,X1:K

1:I ,Z1:K
1:I , δ2w, δ

2
v)

=
Pr(Y1:K

1:I ,X1:K
1:I | Z1:K

1:I ,βββ, δ2w, δ
2
v)π0(βββ | δ2w, δ2v)

Pr(Y1:K
1:I ,X1:K

1:I | Z1:K
1:I , δ2w, δ

2
v)

∝ Pr(Y1:K
1:I ,X1:K

1:I | Z1:K
1:I ,βββ, δ2w, δ

2
v)π0(βββ | δ2w, δ2v)

= Pr(Y1:K
1:I | X1:K

1:I ,Z1:K
1:I ,βββ, δ2w, δ

2
v) Pr(X

1:K
1:I |

Z1:K
1:I ,βββ, δ2w, δ

2
v)π0(βββ)

= Pr(Y1:K
1:I | X1:K

1:I , δ2v) Pr(X
1:K
1:I | Z1:K

1:I ,βββ, δ2w)π0(βββ)

∝ Pr(X1:K
1:I | Z1:K

1:I ,βββ, δ2w)π0(βββ)

=

I∏
i=1

K∏
k=1

Pr(xki | xk−1
i , zki ,βββ, δ

2
w)π0(βββ)

= (2πδ2w)
− IK

2 exp

(
−SSR

2δ2w

)
π0(βββ),

(10)

where the probability function Pr(Y1:K
1:I | X1:K

1:I , δ2v) is a constant term, and SSR = ([X1:K
1:I ] −

[Z̃1:K
1:I ]⊤βββ)⊤([X1:K

1:I ] − [Z̃1:K
1:I ]⊤βββ). Here, vector [X1:K

1:I ] =
[
x1
1, · · · , xK1 , · · · , x1

I , · · · , xKI
]⊤
IK

is the

flattened form of matrix X1:K
1:I along the row direction; the IK × (M + 2) dimensional matrix [Z̃1:K

1:I ] is the

flattened form of K × I × (M + 2) dimensional matrix Z̃1:K
1:I . Assume π0(βββ) is a conjugate prior, then we

can select the prior βββ ∼ N(βββ0, Σ0). As a result, we can have the posterior distribution

βββ | Y1:K
1:I ,X1:K

1:I ,Z1:K
1:I , δ2w, δ

2
v ∼ N(E, V) (11)

with the variance V = ((Σ0)−1 + [Z̃1:K
1:I ]⊤[Z̃1:K

1:I ]/δ2w)
−1, and the mean E = V((Σ0)−1βββ0 +

[Z̃1:K
1:I ]⊤[X1:K

1:I ]/δ2w).
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Let ηw = 1/δ2w. Given a prior distribution π0(ηw), the posterior distribution of ηw is

π(ηw | Y1:K
1:I ,X1:K

1:I ,Z1:K
1:I ,βββ, δ2v)

=
Pr(Y1:K

1:I ,X1:K
1:I | Z1:K

1:I ,βββ, ηw, δ
2
v)π0(ηw | βββ, δ2v)

Pr(Y1:K
1:I ,X1:K

1:I | Z1:K
1:I ,βββ, δ2v)

∝ Pr(Y1:K
1:I ,X1:K

1:I | Z1:K
1:I ,βββ, ηw, δ

2
v)π0(ηw | βββ, δ2v)

= Pr(Y1:K
1:I | X1:K

1:I ,Z1:K
1:I ,βββ, ηw, δ

2
v) Pr(X

1:K
1:I |

Z1:K
1:I ,βββ, ηw, δ

2
v)π0(ηw | βββ, δ2v)

= Pr(Y1:K
1:I | X1:K

1:I , δ2v) Pr(X
1:K
1:I | Z1:K

1:I ,βββ, δ2w)π0(ηw)

∝ Pr(X1:K
1:I | Z1:K

1:I ,βββ, ηw)π0(ηw)

=

I∏
i=1

K∏
k=1

Pr(xki | xk−1
i , zki ,βββ, δ

2
w)π0(ηw)

= (
ηw
2π

)
IK
2 exp

(
−ηw

SSR

2

)
π0(ηw),

(12)

where Pr(Y1:K
1:I | X1:K

1:I , δ2v) is also a constant in the above equations. Assume π0(ηw) is a conjugate prior,

then we can have the ηw follows a gamma distribution, i.e., ηw ∼ Gamma(a0, b0). As a result, the posterior

π(ηw | Y1:K
1:I ,X1:K

1:I , Z̃1:K
1:I ,βββ, δ2v) ∼ Gamma(aK , bK), (13)

where hyperparameters aK = a0+
IK
2 , and bK = b0+

SSR
2 . Finally, we can have the variance δ2w following

a inverse gamma distribution, i.e., δ2w ∼ IG(aK , bK).
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Let ηv = 1/δ2v . Given a prior distribution of π0(ηv), the posterior distribution of ηv is

π(ηv | Y1:K
1:I ,X1:K

1:I ,Z1:K
1:I ,βββ, δ2w)

=
Pr(Y1:K

1:I ,X1:K
1:I | Z1:K

1:I ,βββ, δ2w, ηv)π0(ηv | βββ, δ2w)
Pr(Y1:K

1:I ,X1:K
1:I | Z1:K

1:I ,βββ, δ2w)

∝ Pr(Y1:K
1:I ,X1:K

1:I | Z1:K
1:I ,βββ, δ2w, ηv)π0(ηv | βββ, δ2w)

= Pr(Y1:K
1:I | X1:K

1:I ,Z1:K
1:I ,βββ, δ2w, ηv) Pr(X

1:K
1:I |

Z1:K
1:I ,βββ, δ2w, ηv)π0(ηv | βββ, δ2w)

= Pr(Y1:K
1:I | X1:K

1:I , ηv) Pr(X
1:K
1:I | Z1:K

1:I ,βββ, δ2w)π0(ηv)

∝ Pr(Y1:K
1:I | X1:K

1:I , ηv)π0(ηv)

=

K∏
k=1

I∏
i=1

Pr(yki | xki , ηv)π0(ηv)

= (
ηv
2π

)
IK
2 exp

(
−SSR′

2
ηv

)
π0(ηv),

(14)

where the probability function Pr(X1:K
1:I | Z1:K

1:I ,βββ, δ2w) is the constant term and SSR′ = ([Y1:K
1:I ]−([X1:K

1:I ]−

[X0:K−1
1:I ]))⊤([Y1:K

1:I ]− ([X1:K
1:I ]− [X0:K−1

1:I ])). Here, vector [Y1:K
1:I ] is the flattened form of matrix Y1:K

1:I =[
y11 , · · · , yK1 , · · · , y1I , · · · , yKI

]⊤
IK

along the row direction. Assume π0(ηv) is a conjugate prior, then we

can have the prior ηv ∼ Gamma(c0, d0). As a result, the posterior

π(ηv | Y1:K
1:I ,X1:K

1:I , Z̃1:K
1:I ,βββ, δ2w) ∼ Gamma(cK , dK), (15)

where hyperparameters cK = c0 +
IK
2 , dK = d0 +

SSR′

2 . Finally, we can have the variance δ2v following a

inverse gamma distribution, i.e., δ2v ∼ IG(cK , dK)
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A.2 Kalman filter and smoother

In the Kalman filter of Eqns. (4.8) and (4.9), the one-step ahead prediction mean x̃
k+1|k
1:I , covariance

P
k+1|k
1:I and the filtering mean x̃

k|k
1:I , covariance P

k|k
1:I for every step’s trust x̃k1:I are as follows,

x̃
k+1|k
1:I = B̃0x̃

k|k
1:I + B̃1U

k,

P
k+1|k
1:I = B̃0P

k|k
1:I B̃

⊤
0 + diag(∆w,0I×I),

x̃
k+1|k+1
1:I = x̃

k+1|k
1:I +Kk(yk1:I −Hx̃

k+1|k
1:I ),

P
k+1|k+1
1:I = (12I×2I −KkH)P

k+1|k
1:I ,

Kk = P
k+1|k
1:I H⊤(HP

k+1|k
1:I H⊤ +∆v)

−1,

where Uk = [Zk1:I,1, · · · , Zk1:I,M ,1I×1]
⊤, H = [1I×I ,−1I×I ] and diag(∆w,0I×I) is the diagonal matrix

composed by ∆w and 0I×I .

The Kalman smoother of Eqns. (4.8) and (4.9) follows a normal distribution with mean µk and

covariance νk

µk = x̃
k|k
1:I + Jk(x̃k+1

1:I − x̃
k+1|k
1:I ),

νk = P
k|k
1:I − JkP

k+1|k
1:I (Jk)⊤,

where Jk = P
k|k
1:I B̃

⊤
1 (P

k+1|k
1:I )−1.

A.3 Derivation of computational trust model with inter-robot trust influence

In Subsec. 4.4.3, the computational trust model considers the inter-robot trust influence. We have

model parameters β̌ββ = [β−1, β0, β1, · · · , βM , b], and δ2w, δ
2
v to estimate. The full posterior distribution of

model parameters β̌ββ, δ2w, δ
2
v is

137



π(β̌ββ, δ2w, δ
2
v | Y1:K

1:I ,X1:K
1:I ,Z1:K

1:I )

∝ Pr(Y1:K
1:I | X1:K

1:I , δ2v) Pr(X
1:K
1:I | Z1:K

1:I , β̌ββ, δ2w)π0(θ̌θθ)

=

K∏
k=1

I∏
i=1

Pr(yki | xki , xk−1
i , δ2v)

K∏
k=1

I∏
i=1

Pr(xki | xki−1,

xk−1
i , zki , β̌ββ, δ

2
w)π0(θ̌θθ)

= (2πδ2v)
− IK

2 exp

−
K∑
k=1

I∑
i=1

(yki − (xki − xk−1
i ))2

2δ2v



(2πδ2w)
− IK

2 exp

−
K∑
k=1

I∑
i=1

(xki − β̌ββ
⊤
žki )

2

2δ2w

π0(θ̌θθ).

(16)

The estimation of individual model parameters in θ̌θθ is the same with that of θθθ in Appendix A.1.

Given a prior distribution of β̌ββ, the posterior distribution of β̌ββ can be obtained with the Bayes rule, i.e.,

π(β̌ββ | Y1:K
1:I ,X1:K

1:I ,Z1:K
1:I , δ2w, δ

2
v)

∝ Pr(X1:K
1:I | Z1:K

1:I , β̌ββ, δ2w)π0(β̌ββ)

=

K∏
k=1

I∏
i=1

Pr(xki | xki−1, x
k−1
i , zki , β̌ββ, δ

2
w)π0(β̌ββ)

=

K∏
k=1

I∏
i=1

(2πδ2w)
− 1

2 exp

− (xki − β̌ββ
⊤
žki )

2

2δ2w

π0(β̌ββ)

= (2πδ2w)
− IK

2 exp

(
−

ˇSSR

2δ2w

)
π0(β̌ββ),

(17)

where the sum square error ˇSSR = ([X1:K
1:I ] − [Ž1:K

1:I ]⊤β̌ββ)⊤([X1:K
1:I ] − [Ž1:K

1:I ]⊤β̌ββ). Note [Ž1:K
1:I ] =[

ž11, · · · , žK1 , ž12, · · · , ž1I , · · · , žKI
]⊤
IK×(M+3)

is the flattened form of matrix Ž1:K
1:I .

Assume π0(β̌ββ) is a conjugate prior, then we can set the prior distribution β̌ββ ∼ N(β̌ββ
0
, Σ̌0). As a

result, we obtain the posterior distribution

β̌ββ | Y1:K
1:I ,X1:K

1:I ,Z1:K
1:I , δ2w, δ

2
v ∼ N(Ě, V̌), (18)
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where the variance V̌ = ((Σ̌0)−1 + [Ž1:K
1:I ]⊤[Ž1:K

1:I ]/δ2w)
−1, and the mean Ě = V̌((Σ̌0)−1β̌ββ

0
+

[Ž1:K
1:I ]⊤[X1:K

1:I ]/δ2w).

Correspondingly, the posterior distribution of ηw is

π(ηw | y1:K ,X1:K
1:I ,Z1:K

1:I , β̌ββ, δ2v)

∝ Pr(X1:K
1:I | Z1:K

1:I , β̌ββ, ηw)π0(ηw)

= (
ηw
2π

)
IK
2 exp

(
−ηw

ˇSSR

2

)
π0(ηw).

(19)

Choose π0(ηw) to be a conjugate prior, then we can have the prior ηw ∼ Gamma(a0, b0). As a result, the

posterior distribution

π(ηw | Y1:K
1:I ,X1:K

1:I ,Z1:K
1:I , β̌ββ, δ2v) ∼ Gamma(ǎK , b̌K), (20)

where hyperparameters ǎK = a0+
IK
2 , and b̌K = b0+

ˇSSR
2 . Finally, we can have the variance δ2w following

a inverse gamma distribution, i.e., δ2w ∼ IG(ǎK , b̌K)
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