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Resumen

La idea de equipos de robots actuando con autonomía y de manera cooperativa está cada día más cerca de con-
vertirse en realidad. Los sistemas multi robot pueden ejecutar tareas de gran complejidad con mayor robustez y
en menos tiempo que un robot trabajando solo. Por otra parte, la coordinación de un equipo de robots introduce
complicaciones que los ingenieros encargados de diseñar estos sistemas deben afrontar.

Conseguir que la percepción del entorno sea consistente en todos los robots es uno de los aspectos más
importantes requeridos en cualquier tarea cooperativa, lo que implica que las observaciones de cada robot del
equipo deben ser transmitidas a todos los otros miembros. Cuando dos o más robots poseen información común
del entorno, el equipo debe alcanzar un consenso usando toda la información disponible. Esto se debe hacer
considerando las limitaciones de cada robot, teniendo en cuenta que no todos los robots se pueden comunicar
unos con otros.

Con este objetivo, se aborda la tarea de diseñar algoritmos distribuidos que consigan que un equipo de
robots llegue a un consenso acerca de la información percibida por todos los miembros. Específicamente, nos
centramos en resolver este problema cuando los robots usan la visión como sensor para percibir el entorno. Las
cámaras convencionales son muy útiles a la hora de ejecutar tareas como la navegación y la construcción de ma-
pas, esenciales en el ámbito de la robótica, gracias a la gran cantidad de información que contiene cada imagen.
Sin embargo, el uso de estos sensores en un marco distribuido introduce una gran cantidad de complicaciones
adicionales que deben ser abordadas si se quiere cumplir el objetivo propuesto.

En esta Tesis presentamos un estudio profundo de los algoritmos distribuidos de consenso y cómo estos
pueden ser usados por un equipo de robots equipados con cámaras convencionales, resolviendo los aspectos
más importantes relacionados con el uso de estos sensores. En la primera parte de la Tesis nos centramos en
encontrar correspondencias globales entre las observaciones de todos los robots. De esta manera, los robots son
capaces de detectar que observaciones deben ser combinadas para el cálculo del consenso. También lidiamos
con el problema de la robustez y la detección distribuida de espurios durante el cálculo del consenso. Para
contrarrestar el incremento del tamaño de los mensajes intercambiados por los robots en las etapas anteriores,
usamos las propiedades de los polinomios de Chebyshev, reduciendo el número de iteraciones que se requieren
para alcanzar el consenso.

En la segunda parte de la Tesis, centramos nuestra atención en los problemas de crear un mapa y controlar
el movimiento del equipo de robots. Presentamos soluciones para alcanzar un consenso en estos escenarios me-
diante el uso de técnicas de visión por computador ampliamente conocidas. El uso de algoritmos de estructura
y movimiento nos permite obviar restricciones tales como que los robots tengan que observarse unos a otros
directamente durante el control o la necesidad de especificar un marco de referencia común. Adicionalmente,
nuestros algoritmos tienen un comportamiento robusto cuando la calibración de las cámaras no se conoce. Fi-
nalmente, la evaluación de las propuestas se realiza utilizando un data set de un entorno urbano y robots reales
con restricciones de movimiento no holónomas.

Todos los algoritmos que se presentan en esta Tesis han sido diseñados para ser ejecutados de manera
distribuida. En la Tesis demostramos de manera teórica las principales propiedades de los algoritmos que
se proponen y evaluamos la calidad de los mismos con datos simulados e imágenes reales. En resumen, las
principales contribuciones de esta Tesis son:
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• Un conjunto de algoritmos distribuidos que permiten a un equipo de robots equipados con cámaras con-
vencionales alcanzar un consenso acerca de la información que perciben. En particular, proponemos tres
algoritmos distribuidos con el objetivo de resolver los problemas de encontrar correspondencias globales
entre la información de todos los robots, detectar y descartar información espuria, y reducir el número de
veces que los robots tienen que comunicarse entre ellos antes de alcanzar el consenso.

• La combinación de técnicas de consenso distribuido y estructura y movimiento en tareas de control y per-
cepción. Se ha diseñado un algoritmo para construir un mapa topológico de manera cooperativa usando
planos como características del mapa y restricciones de homografía como elementos para relacionar las
observaciones de los robots. También se ha propuesto una ley de control distribuida utilizando la ge-
ometría epipolar con el objetivo de hacer que el equipo de robots alcance una orientación común sin la
necesidad de observarse directamente unos a otros.



Abstract

The idea of a team of robots executing cooperative tasks in an autonomous manner is everyday closer to become
a reality. Multi-robot systems can perform complex tasks with more robustness or in less time than one robot
working alone. On the other hand, the coordination of a team of robots introduces new challenges that the
designers of these systems must face.

A globally consistent perception of the environment is a key component for the proper cooperation of the
team of robots, which requires for the robots to communicate their observations to all the other members.
When two or more robots have common observations the team needs to reach a consensus combining all of
them. This must be done considering the limitations that each robot has, taking into account that not all the
robots can communicate with each other.

To this end, we consider as the main objective of this work the development of distributed algorithms that
make a team of robots reach an agreement about the information they perceive. We focus our work in solving
this problem when the robots perceive the world using vision sensors. These sensors are very useful in many
essential robotic tasks like autonomous navigation and mapping, due to the big amount of information a single
image contains. However, in a distributed setup the use of these kind of sensors brings up many complications
that need to be addressed.

In this Thesis we present a deep study of distributed consensus algorithms and how they can be used by a
team of robots equipped with monocular cameras, solving the most important issues that appear because of the
use of these sensors. In the first part of the Thesis we address the problem of finding global correspondences
between the observations of the different robots. In this way, the robots know which observations must be
combined in the computation of the consensus. We also deal with the problem of robustness and distributed
outlier detection, giving a solution to discard erroneous measurements. To counteract the increase in the size
of the messages caused by the previous steps, we use the properties of Chebyshev polynomials, reducing the
number of iterations required to achieve the consensus.

In the second part of the Thesis, we focus on the problems of mapping the environment and controlling the
motion of the team of robots. We apply well known computer vision algorithms to reach the consensus in these
two scenarios. We show that using structure from motion, requirements such as the direct observation of the
other robots during the control loop or the knowledge of a common frame are avoided. In addition, the lack of
calibration information is not a major issue using our algorithms. The evaluation of the solutions is done using
a large urban data-set and real non-holonomic robots.

All the algorithms presented in this Thesis are well designed to be executed in a distributed fashion by a
team of robots with limited communication capabilities. We theoretically prove the main properties of all the
proposed algorithms and test their quality using simulated and real data. Specifically, the main contributions of
the Thesis are:

• A set of distributed algorithms that make possible for a team of robots equipped with cameras to reach
a consensus about the information they perceive. In particular, we propose three distributed algorithms
that solve the problem of finding global correspondences between the robots, detect possible outliers and
reduce the total number of communication rounds required by the network to achieve the consensus.
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• The combination of distributed consensus and structure from motion techniques in multi-robot perception
and control tasks. We design an algorithm to cooperatively build a topological map of the environment
considering planes as features and using homography constraints to relate the observations of different
robots. We also propose a distributed control law using the epipolar constraint to make the team of robots
to reach an agreement in their orientations without the necessity of directly observing each other.
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Chapter 1

Introduction

1.1 Multi-Robot Systems, Distributed Consensus and Vision Sensors

The idea of autonomous robots helping humans in the execution of different tasks is nowadays a reality. During
the last decade, there has been an enormous advance in technology that has made possible for individual robots
to perform hard tasks with high precision [135]. From “simple” repetitive tasks like cleaning a house to more
sophisticated operations such as mine clearance, or cleanup and recovery of oil spills, robots have become an
important element in our lives, see Figure 1.1. However, as happens with humans, cooperative work seems
more attractive and produces better results than individual work.

Figure 1.1: Robots have become an important element in our lives. A vacuum robot cleaning a house (left) and a robot
handling an explosive (right). Right figure reproduced with permission of the authors [119]

Let us consider for example a brigade of firemen entering a house on fire, Fig. 1.2. It is obvious that a team
of firemen will perform all the tasks faster and better than a single fireman. To success, the team requires a
common knowledge about the house, for example, where are the exits of the building, the state of the fire in the
different rooms or where are located possible survivors.

Figure 1.2: Brigade of firemen acting cooperatively. Figure reproduced with permission of the authors [119]
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If instead of a firemen brigade the team is integrated by robots (Fig. 1.3) the problem of cooperation remains
similar. Multi-robot approaches present several advantages over mono-robot solutions [18]. A team of mobile
robots, possibly combined with static agents such as surveillance cameras, even cooperating with humans, may
allow to perform complex tasks that for a single robot would be very difficult to complete, or not achievable
at all. Cooperative work allows to perform the tasks in less time or with the least cost. On the other hand, the
coordination of a team of robots (Fig. 1.3) introduces new challenges that designers of these systems must face.

Figure 1.3: Team of robots.

One way to deal with multiple robots is by using a central computer that receives and processes all the
information of all the robots. Centralized approaches use a specific computer, usually called server, which
optimally takes the decisions and coordinates the team. These approaches are easier to design and to implement,
however, they are hardly scalable and become unsuitable when the number of robots is large enough. Moreover,
if the server has a failure, the task will not be accomplished, which makes the system have too little reliability.

Distributed approaches [78], on the other hand, are harder to design but in general perform better. These
solutions assume that each robot has its own computer onboard and sends the information it has from the
scene to a subset of the robots, its neighbors. In this way, the team of robots is able to handle changes in
the communication network, usually caused by changes in their positions or failures in their systems. As a
consequence, the system is more reliable and independent of individual members, Figure 1.4.

Centralized Solution Distributed Solution

Figure 1.4: Centralized (left) versus distributed (right) solution. In a centralized setup, one robot gathers the information
of the whole network and makes the decision. In a distributed scenario all the robots play the same role and exchange
messages with all their neighbors. As a consequence, the system is more reliable and independent of individual members.
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Researchers of multi-robot systems have turn to nature in many occasions to find ideas to solve different
coordination problems in a distributed way. This occurs because nature contains perfect examples of distributed
cooperation that can be replicated by a team of robots. Each animal can be seen as an autonomous element
interacting with the environment. But at the same time, there is cooperation and interaction with other animals
of the same species. In some cases each member of the team is assigned a different role, like ant colonies and
swarms of bees, where explorers look for food, builders construct new passages in the colony and the queen is
in charge of breeding new offspring.

Other species do not distinguish between different members, every individual behaves equally to the others,
following a set of simple rules that lead to emergent behaviors. This is the case, for example, of a fish shoal or
a flock of birds moving in formation. There is no leader conducting everybody, each animal individually makes
decisions about the direction to move by just looking at near mates. However, the whole group of animals end
up moving in the same direction, forming a specific pattern, Figure 1.5.

Figure 1.5: A fish shoal (left) and a flock of birds (right) moving in formation. Each individual moves only considering
the motion of those animals close to it. However, the full group of animals presents an emergent behavior, moving all
in the same direction. Left figure reproduced with permission of the authors [82]. Right figure reproduced with Creative
Commons License, copyright of © Ian Britton [16].

This second scenario is very appealing in multi-robot systems [61], to begin with, because all the robots
play the same role in the task. This simplifies the task of designing the system because the same algorithm,
which is in general quite simple, is executed by all the robots without differences. Secondly, because the robots
do not require to have full knowledge about the information perceived by all the robots, it is just enough to
exchange information with the robots nearby. Finally, because a global behavior is still achieved. Even when
everything is done locally, the system is able to reach some global behavior, e.g., all the robots move in the
same direction.

In this framework, one of the most important emergent behaviors that can be asked in a multi-robot system is
the consensus between all the robots. The idea of reaching a consensus has a great interest in many cooperative
tasks. Generally speaking, we say that the team of robots has reached a consensus when all the robots agree
about some data value which is of interest for the team. The essence of these data will depend on the specific
application context. For example, the data can be the orientations or the positions of all the robots, and the
consensus can be used to make the team of robots move in the same direction, attitude consensus [61,107,125],
like in Figure 1.6, or gather together at a specific point, rendezvous [32].

Consensus is also of great interest in perception tasks. A fundamental aspect in any robotic system is how
to describe the environment it interacts with. The capacity of a multi-robot system to achieve any task depends
crucially on its ability to consistently perceive the world. Global perception of the environment is one of the key
components in these systems, which means that all the robots need to manage the same information in order to
show a good global behavior. However, each robot has limitations in what it sees and who it can communicate
with depending on its sensors. This implies that the robots must somehow communicate among themselves

Distributed Consensus in Multi-Robot Systems with Visual Perception
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Figure 1.6: Group of aeroplanes moving in the same direction.

their local observations in order to reach a consensus [106] on the information they have of the environment.
Continuing with the firemen example, if the robots want to find wether or not there is a fire going on in a

determined room, they could measure the temperature of that room. If the temperature is above some value,
then the robots can conclude that there is a fire happening in that room. However, the temperature measured by
each robot might not necessarily be the same. Moreover, there might be robots without a temperature sensor.
Therefore, proper mechanisms to fuse the information of all the robots in such a way that they reach a consensus
are required [155].

Finally, in perception tasks, a key aspect in developing a good consensus algorithm is the information the
robots need to exchange and therefore, the sensor used to measure this information. The use of vision sensors
in many robotic tasks presents several advantages over other existing sensors. The amount of information that a
single image contains is remarkable and current digital cameras have a very low price, specially if we compare
it with the price of other sensing devices. In addition, vision sensors have been proved to be very powerful in
some essential robotic tasks like exploration and mapping [70] or autonomous navigation and localization [128].
These reasons make vision sensors a really good candidate to be used by a multi-robot team.

From the research point of view, the design of distributed consensus algorithms for multi-robot systems
equipped with monocular cameras is very challenging. During the last years, there has been an increasing
interest in distributed vision systems [121]. However, there are few works that consider visual information and
distributed consensus together, e.g., [60, 99, 145]. This is probably caused by the complications that appear
when using these sensors. Communication and computation issues, data association problems and robustness
are some of the most important factors that probably caused this void. The amount of information available in
one image makes it hard to decide which are the best features to use in order to reach a consensus. Additionally,
calibration issues and the lack of depth information are other factors that may affect as well. In this Thesis we
will try to find solutions to some of these problems, developing a set of algorithms that allow a team of robots
to reach a consensus about their visual information.

1.2 Objectives of this Thesis

In the context of multi-robot systems for perception and control tasks we consider as the main objective of this
research the design of distributed consensus algorithms suitable for teams equipped with monocular cameras
and with limited communication capabilities.

This main objective can be separated into two related subgoals:

• Consensus with vision sensors: As we have mentioned, the use of vision sensors complicates the prob-
lem of reaching an agreement by a robotic network. A very important objective of this thesis is to identify
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and solve the complications that may appear by using these sensors. Issues like the observation of differ-
ent elements by the robots and the robustness to possible perception outliers and inconsistencies need to
be addressed, otherwise, the robots will not achieve the consensus. The goal is to propose distributed al-
gorithms well suited to reach a consensus about visual information. In addition, a priority of the proposed
methods will be to keep the good properties of linear iterations to reach the consensus.

• Visual consensus in perception and control tasks: A fundamental task in robotics is the construction
of a map of the environment where the robot is supposed to work. When this task is done simultaneously
by several robots, additional mechanisms are required to ensure that all of them perceive the environment
in the same way. Moreover, in many situations it is interesting for the robots to maintain some kind
of formation or moving as a flock. In these cases, the use of monocular cameras will constrain the
information they can perceive, forcing the robots either to see each other to keep the formation or to
perceive the environment, at the risk of losing their place in the pattern. The second objective of this
Thesis is to propose a distributed methods based on consensus to solve these problems.

1.3 Contributions of the Thesis and Publications

In this Thesis we present a deep study of the distributed consensus algorithms and how they can be used by
a team of robots equipped with monocular cameras. Specifically, the main contributions of the Thesis are the
following:

• A set of distributed algorithms that make possible for a team of robots equipped with cameras reach a
consensus about the information they perceive. The proposed algorithms follow the scheme of a dis-
tributed linear iteration [61]. However, they overcome significant problems that appear using similar
existing algorithms when the information to be exchanged comes from vision sensors.

– The first problem that our algorithms solve is the data association among the observations of all the
robots. So far, existing consensus algorithms only deal with the problem of exchanging information
about a single element of arbitrary size. However, in real scenarios with vision sensors, each robot
can observe many features of the environment. Without proper mechanisms that help the team of
robots to distinguish which observations of each member correspond with the observations of the
others there is no way of obtain a reliable consensus. In the Thesis we propose a distributed data
association algorithm that provides the team of robots with mechanisms to find global correspon-
dences. The algorithm is also able to detect and solve possible conflicts caused by local mistakes.

– Our data association solution, as any other existing matching algorithm, is not hundred per cent
reliable. A small mistake in the initial association can be disastrous for the team of robots in
posterior stages. For example, if the location of two different exit doors observed by two robots is
mixed, the resulting location of the exit door will be totally wrong and useless to the team. For that
reason we also propose a distributed algorithm able to detect outliers when executing the consensus
iteration. The algorithm is inspired by the RANSAC [43] algorithm. However, in our approach all
the steps are executed in a distributed fashion.

– Finally, the robustness in the system is achieved by increasing the size of the messages the robots
need to exchange. Even for small messages, a main limitation of existing consensus algorithms is
the number of iterations (communication rounds) they require before obtaining a good solution. The
research community, aware of this problem, has successfully reduced the convergence speed using
polynomial techniques [68, 138]. However, these solutions require the network topology to remain
fixed and well known. In the Thesis we present a new update rule using Chebyshev polynomials
that overcomes these limitations and significantly speeds up the convergence rate to the consensus.

Distributed Consensus in Multi-Robot Systems with Visual Perception
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• The use of the adequate visual information to achieve the consensus in perception and control tasks.

– Distributed consensus in perception tasks using homographies and planar regions. In this Thesis
we show that a representation of the scene using planar regions simplifies the problem of reaching
a consensus about the environment. The homography constraint between sets of coplanar points is
a robust mechanism to detect and match areas of interest in images. It also contains the necessary
information to transform the observations of different robots without the necessity of knowing the
geometry of the scene, the intrinsic parameters of their cameras or their relative position. We pro-
pose an algorithm to cooperatively build a topological map of the environment considering planes
as the features to represent it.

– Distributed consensus in control tasks using the epipolar constraint. We propose a distributed con-
trol law that makes use of the epipoles to reach a common attitude. In the Thesis we show that
from the cooperative control perspective, the use of epipoles to make the team of robots to reach an
agreement in their orientations is very interesting. They can be computed from common features
of the environment without the necessity of directly observe the other robots, they contain all the
necessary information to compute the misalignment in the orientation of neighboring robots and the
lack of calibration information is not a major issue. The proposed control law is robust to changes
in the topology of the network and does not require to know the calibration of the cameras in order
to achieve the desired configuration.

Despite the fact that most part of this research has been done in the Computer Science and Systems En-
gineering Department of the University of Zaragoza, some contributions of this Thesis have resulted from the
stays at the University of California San Diego in the United States and the Royal Institute of Technology in
Sweden.

In order to support the results and contributions obtained during this Thesis, most of the work has been
submitted for publication to prestigious journals [96] and international peer reviewed conferences [7, 87, 88,
90, 91, 93–95, 97] in the fields of robotics, automatic control and computer vision. In particular, the following
results have been obtained from this Thesis:

Journal Publications:

• Eduardo Montijano and Carlos Sagüés. “Distributed multi-camera visual mapping using topological
maps of planar regions”. Pattern Recognition. Vol 44(7):1528-1539, July 2011

• Eduardo Montijano, Sonia Martínez and Carlos Sagüés. “De-RANSAC: Robust Distributed Consensus
in Sensor Networks” European Journal of Control. Submitted.

• Eduardo Montijano, Rosario Aragüés and Carlos Sagüés “Distributed Multi-view Matching in Networks
with Limited Communications” IEEE Transactions on Robotics. Submitted.

• Eduardo Montijano, Juan Ignacio Montijano and Carlos Sagüés “Chebyshev Polynomials in Distributed
Consensus Applications” IEEE Transactions on Signal Processing. Submitted.

International Reviewed Conferences
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• Eduardo Montijano, Johan Thunberg, Xiaoming Hu and Carlos Sagüés “Multi-Robot Distributed Visual
Coordination using Epipoles” 50th IEEE Conference on Decision and Control and European Control
Conference 2011, pages 2750-2755, December 2011.

• Eduardo Montijano, Juan Ignacio Montijano and Carlos Sagüés “Adaptive Consensus and Algebraic
Connectivity Estimation in Sensor Networks with Chebyshev Polynomials”. 50th IEEE Conference on
Decision and Control and European Control Conference 2011, pages 4296-4301, December 2011.

• Eduardo Montijano, Juan Ignacio Montijano and Carlos Sagüés “Fast Distributed Consensus with Cheby-
shev Polynomials” American Control Conference 2011, pages 5450-5455, June 2011.

• Eduardo Montijano, Sonia Martínez and Carlos Sagüés “Distributed Robust Data Fusion Based on Dy-
namic Voting” IEEE International Conference on Robotics and Automation 2011, pages 5893-5898, May
2011.

• Rosario Aragüés, Eduardo Montijano and Carlos Sagüés “Consistent data association in multi-robot
systems with limited communications” Robotics: Science and Systems Conference 2010, June 2010.

• Eduardo Montijano, Sonia Martínez and Carlos Sagüés “De-RANSAC: Robust Consensus for Robot
Formations” Network Science and Systems Issues in Multi-Robot Autonomy at IEEE International Con-
ference on Robotics and Automation, May 2010.

• Eduardo Montijano and Carlos Sagüés “Topological maps based on graphs of planar regions” IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 1661-1666, October 2009.

• Eduardo Montijano and Carlos Sagüés “Fast Pose Estimation For Visual Navigation Using Homogra-
phies” IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2704-2709, October
2009.

• Eduardo Montijano and Carlos Sagüés “Position-Based Navigation Using Multiple Homographies” IEEE
Int. Conference on Emergent Technologies and Factory Automation, pages 994-1001, September 2008.

1.4 Thesis Outline

The contents of this Thesis are organized as commented in the following:

• In Chapter 2 we introduce the consensus problem for robotic networks and how it can be achieved in
a distributed manner using a linear iteration. We explain the main properties of this type of algorithms
and discuss the most important works in this research topic. The chapter also serves as background for
the rest of the Thesis, as most of the contributions make use of the different concepts explained in this
chapter.

• In Chapter 3 we present a distributed solution to the data association problem. In the chapter we give a
formal definition to the problem of finding global correspondences. We present a decentralized method
for the propagation of matches and two algorithms to solve the possible inconsistencies that may appear.
The chapter includes experiments with images considering different features. The contributions of this
chapter were partially presented in [7] and are currently submitted [86].

• Chapter 4 deals with the problem of detecting and discarding outlier information during the execution
of the linear iteration. The problem of outlier detection is introduced along with the tools to solve it in
a distributed way. In the chapter a new algorithm, De-RANSAC, which was initially presented in [87]
and improved in [88], is detailed. Additionally, in the chapter we propose a new distributed primitive to
compute the number of connected robots in the network.
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• The speed of convergence of the consensus method is treated in detail in Chapter 5. The chapter includes
some background about Chebyshev polynomials and existing algorithms using polynomial methods to
reach a distributed consensus. Then, a fast algorithm is proposed and studied in detail for different
topologies. This algorithm was presented to the scientific community in [90, 91] and has been submitted
for its publication in a journal [92].

• In Chapter 6 we make use of planar regions and homography constraints to build topological maps in a
distributed fashion. The chapter explains how the individual maps of each robot are built in a first stage
and how they are mixed using distributed consensus techniques. The experiments show how the whole
method works and compare the proposed approach with a topological map construction based on images.
Some of the contributions of this chapter were firstly published in [94, 95] and more recently in [96].

• The consensus from the control perspective is treated in Chapter 7. The chapter introduces the dynamics
of the robots and the assumptions we made in the vision system for this particular problem. After that,
a vision-based attitude consensus controller is proposed and discussed in detail. The chapter includes
experiments in a simulated environment and experiments with real robots to demonstrate the performance
of the controller. The controller was recently presented in [97].

• To finalize, in Chapter 8 we present the conclusions obtained during the development of this Thesis and
possible lines of future work that derive from this work.

In order to simplify the reading of the Thesis, the proofs of all the theoretical results have been moved to
the end of the chapters in which they appear.



Chapter 2

Robotic Networks and the Consensus
Problem

This chapter introduces the necessary concepts to understand the proposals of the Thesis. We provide with the
basic definitions to characterize a robotic network. First, we describe the robots we will use and their way to
interact with each other and with the world. Then, we define the communications of the network using fixed and
time-varying graphs and we give some definitions of interest. After that, in the chapter we review the distributed
algorithms based on linear iterations and the application of this kind of algorithms to achieve the consensus
using different weights. To conclude the chapter, we show some examples of different consensus applications
solved using a linear iteration.

2.1 Introduction

The emergence of new sensing, computation and communication technologies has stimulated an intense re-
search activity in multi-robot sensor systems. The integration of multiple robots in complex networks and
information systems will enable users to close the loop in new applications for remote observation and actua-
tion.

One of the first issues that need to be addressed in these systems is the configuration of the individual
robots of the network and the way they interact with the world and with each other. It is clear that the actions
of the team of robots will depend on the characteristics of each robot. For example, the behavior of the team
will not be the same if the robots have omnidirectional range sensors than if they have cameras with limited
field of view and no depth information. Similarly, the algorithms run by the network will be different if the
robots have powerful communication devices that allow them to communicate with everybody than if they have
limited communication capabilities. Therefore, the first step is to describe the main properties of the multi-robot
systems we will study along the Thesis.

Once the robotic network is well defined and characterized, the second issue of importance is to give a
good description of the problem we want to solve with the team of robots, that is, the consensus problem.
Within the control and robotics communities, the problem of achieving consensus is a canonical problem that
has received much attention. The goal is to devise a distributed algorithm that allows a group of robots to agree
upon some specific information. Distributed linear algorithms and in particular, averaging iterations have a long
and rich history, specially during the last decade. Several algorithms have been proposed to achieve consensus
under different situations. To name a few, discrete time communications are treated in [61], and continuous
time evolution of the system in [107]. Asynchronous communications are studied in [84] and time-varying
signals and dynamic consensus in [163]. The convergence time of linear iterations and a finite time solution are
proposed in [109, 138] respectively. Solutions to attitude synchronization and consensus on manifolds can be
found in [124, 146]. Readers interested in a more comprehensive state of the art in this topic are referred to the
books [18, 125], and the surveys [106, 126].
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In this chapter we address these two issues, explaining the configuration of the robotic network that we will
consider along the Thesis and formally describing the consensus problem and solutions to this problem using
linear iterations.

2.2 Model of the Robotic Network

In this section we introduce the main properties of the multi-robot system we are considering.

2.2.1 Definition of a Robot

We start by giving a description of the robots we will consider along the Thesis. We define one robot as an
autonomous machine with the following capacities:

• Capacity to make its own decisions: We consider that the robots have a computer onboard that allows
them to make computations to carry out the desired task. Although we do not impose any restriction on
the computation and storage capabilities of the robots, we will pay special attention to design algorithms
that do not require complex computations and we will try to use as less storage space as possible.

• Capacity to sense the world: In order to perceive the world, we consider that each robot is equipped
with a conventional camera. Along the Thesis we consider monocular cameras with limited field of view.
In general, we assume that the cameras equipped by all the robots are the same but we do not require an
exact knowledge about the intrinsic parameters of the cameras. Moreover, we will see that most of our
algorithms are robust to the use of different cameras.

• Capacity to move autonomously: We assume that the robots are able to move freely within the environ-
ment in order to explore it. Leaving aside Chapter 7, that considers non holonomic motion constraints,
in the rest of the thesis we do not impose any particular dynamics on the robots.

• Capacity to communicate with other robots: We assume that all the robots are equipped with a commu-
nication device that allows them to send and receive messages. As happens with any real communication
device, the robots will have limitations to which they can communicate. We do not enter into the details
about the specific causes why two robots cannot communicate, they can be, for example, the distance
between the robots or interferences in the signal. A more specific definition of the communications is
given later in the chapter.

An example of a robot is given in Figure 2.1. Since for our purposes there are not significant differences, we
will use interchangeably the terms robot, agent and node.

2.2.2 Communication Model

We assume that the multi-robot system is composed by N robots, each one of them satisfying the properties
above mentioned. The robots are labeled by i ∈ V = {1, . . . , N}.

Assumption 2.2.1 (Identification of the robots). Each robot in the team i ∈ V can be univocally identified.
This can be satisfied, for example, considering the IP addresses the robots use to communicate.

The limited communication capabilities imply that not all the robots will be able to directly exchange
information with each other. These limitations can be modeled using a graph G = {V, E}, where E ⊂ V × V
contains the pairs of robots that can directly communicate. We say that there is a communication link between
i and j when they can directly exchange messages, which happens if and only if (i, j) ∈ E .
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Figure 2.1: Example of a robot

Definition 2.2.2 (Neighbors of a robot). We define the neighbors of a robot i ∈ V as the set of robots that can
directly communicate with i,

Ni = {j ∈ V | (i, j) ∈ E}. (2.1)

Unless otherwise specified, in the Thesis we will consider undirected communications. That is, (i, j) ∈
E ⇔ (j, i) ∈ E and j ∈ Ni ⇔ i ∈ Nj . Initially, let us assume that the graph G is fixed over the time. When
this is the case, we also require the graph to be connected.

Assumption 2.2.3 (Connectedness of the communication graph). The communication graph, G, is connected,
i.e., for every pair of robots i and j, there exists a path of communication links starting in i and ending in j.

The length of these paths is another important concept in the Thesis.

Definition 2.2.4 (Diameter of a graph). Given a fixed communication graph, G, we define its diameter as the
maximum length of a path, in communication links, between any two robots in the graph. The diameter of G is
denoted by dv and for a fixed communication topology is always smaller than N .

Time-Varying Communication Topology

As the robots move in the environment, their relative positions with the other robots change. As a consequence,
it can happen that two robots that initially were able to communicate with each other lose their communication
link. In this situation the communications between the robots are modeled with with a time-varying undirected
graph G(t) = {V, E(t)}. Now the edge set is time dependent and robots i and j can communicate at time t if
and only if (i, j) ∈ E(t). The set of neighbors is also time-varying and denoted by Ni(t).

Under these circumstances, we make two assumptions about the communications between the robots.

Assumption 2.2.5 (Existence of a dwell time). There exists a lower bound, δ > 0, on the time between two
consecutive changes in the topology. Denoting tk, k ∈ N, the discrete time instants when the topology changes,
then tk+1 − tk ≥ δ, ∀k.

Assumption 2.2.6 (Periodic joint connectivity). There exists a positive time period T such that, for any instant
of time, t, the collection of communication topologies in the time interval (t, t+T ) is jointly connected. That is,
the resulting graph from combining all the communication links that are available in the time interval (t, t+T )
is connected.
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Note that these assumptions do not impose any specific communication between two particular robots or
the assumption of a central computer that manages all the information. The first assumption implies that the
changes in the communication topology do not occur infinitely fast, which is reasonable to assume in a real
robotic communication network. The second assumption is used to guarantee that the information of each
robot is going to reach at some point, upper bounded in time, all the other robots directly or indirectly.

2.3 Distributed Consensus and Linear Iterations

We formally define the consensus problem and present solutions to solve it using a distributed linear iteration.
Let us consider that the robots are perceiving some quantity of interest with their sensors. The nature of this

quantity can be, for example the position of the robot, its velocity or the descriptor of some feature of interest of
the environment. For simplicity, to describe the problem we will consider that this quantity is a scalar number.
Assume that each robot has some initial value of the quantity of interest, xi(0). Due to sensor noise or different
initial configurations, the observations of each robot are most likely going to be different at the beginning. The
consensus problem is formally defined as follows:

Definition 2.3.1 (The consensus problem). Given initial conditions xi(0), i = 1, . . . , N, we define the con-
sensus problem as the problem of making the state of all the robots regarding the quantity of interest reach the
same value, computed as a function, f , of the initial observations: xi = xj = f(xk(0)), k = 1, . . . , N, for all
i and j in V.

This problem has a great importance in many robotic tasks such as sensor fusion and formation control. In
the first case it is required for a proper representation of the environment whereas in the second is relevant to
achieve a desired configuration, e.g., to make all the robots move in the same direction or meet at a fixed point.

The solutions we are interested in correspond with distributed algorithms that follow a linear iteration
scheme. Linear iterations are very easy to implement, as they only require to compute linear combinations of
different quantities. This simplicity makes them very interesting to be used in a distributed setup. In addition,
they represent an important class of iterative algorithms that find applications in optimization, in the solution
of systems of equations and in distributed decision making, see for instance [15, 18, 78].

A linear iteration computes weighted sums of the different values to achieve this objective. Specifically,
each robot updates its value of the quantity of interest computing a weighted sum of its previous value and that
of its direct neighbors,

xi(t+ 1) = wii(t)xi(t) +
∑

j∈Ni(t)

wij(t)xj(t). (2.2)

In the previous equation wij is the weight associated to the information given by the neighbor j. In the Thesis
we will refer to iteration (2.2) as the standard discrete time distributed consensus algorithm. The extension
to quantities of any dimension is straightforward, applying the same iteration rule for each one of the scalar
components of the state vector independently.

If we consider the update rule of all the robots simultaneously, we can model the update as aN -dimensional
discrete-time linear dynamical system with dynamics inherently related to the network structure,

x(t+ 1) = W(t)x(t), (2.3)

with x(t) = (x1(t), . . . , xN (t))T the values of the state of the different robots in vectorial form and W(t) =
[wij(t)] ∈ RN×N , the weight matrix generated using all the individual weights.

The advantages of using a distributed linear iteration like (2.2) are the following:

• The algorithm is fully distributed because each robot is only using the information provided by its neigh-
bors in the communication graph.
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• The robots do not need to know the topology of the whole network to execute these algorithms, they only
require the information about their direct neighbors. Moreover, the algorithm is robust to changes in the
communication topology.

• The computational requirements of the robots are very low. Each robot is only computing sums and
products of the available information. Additionally, the robots only require to store one datum in their
computers, instead of as many data as robots in the network. This implies small storage space require-
ments as well.

• Finally, the communication requirements are also small. The robots only send messages containing their
local value of the variable of interest.

All these reasons make the use of these algorithms very appealing in robotic networks.
On the other hand, the use of this kind of iterations assume that the communications between the robots

are synchronous and uncorrupted. Nevertheless, some of the most standard issues in communication can be
handled by a proper modeling of the communication graph. For example, packet drops and communication
failures can be seen as regular changes in the communication topology and asynchronous communications can
be modeled by considering a directed communication graph. Therefore, if we design our algorithms in such a
way that they can handle these topologies, we can expect them to be robust to these communication issues.

In the following we deal with the problems of assigning the appropriate weights to the different elements
so that different consensus objectives are achieved and we show examples of different applications where these
algorithms can be used.

2.3.1 Max-Consensus and Average Consensus

In the Thesis we are mainly interested in two important consensus functions, the maximum (or minimum) and
the average of the initial conditions.

Max-Consensus

The first consensus function we study is the maximum (or minimum) of the initial conditions. In this situation,
the consensus is achieved when all the robots information is equal to the largest initial value,

xi = max
j∈V

(xj(0)), ∀i ∈ V. (2.4)

The max-consensus objective has a great importance in leader-election routines. The following distributed
iteration can be executed by all the robots to achieve this objective.

xi(t+ 1) = max(xi(t), xj(t)),∀j ∈ Ni(t). (2.5)

Although this is not strictly a weighted combination of the states, it follows the principles of a linear iteration,
where each robot assigns wij = 1 to the largest element of those it has access to and wij = 0 to all the rest.
The update rule (2.5) is well known to converge in a finite number of rounds to the maximum of all the initial
conditions [78].

Distributed Averaging

The second consensus function we study is the average of the initial conditions. This a good consensus function
for situations in which the observations of all the robots have the same importance because the average weights
all of them equally,

x̄ =
1

N

∑
i∈V

xi(0). (2.6)
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The average of the initial information of the robots can be achieved very easily using a linear iteration.
Let us consider that the communication graph remains fixed during the execution of the whole iteration,

i.e., W(t) = W for all t in equation (2.3). Then we impose following assumption on the weight matrix:

Assumption 2.3.2 (Fixed doubly stochastic weights). W is symmetric, row stochastic and compatible with the
underlying graph, G, i.e., it is such that wii > 0, wij = 0 if (i, j) 6∈ E , wij > 0 only if (i, j) ∈ E and W1 = 1.

Since the communication graph is connected, any matrix W that fulfills assumption 2.3.2, will have one
eigenvalue λ1 = 1, with associated right eigenvector 1, and algebraic multiplicity equal to one. The rest of the
eigenvalues, sorted in decreasing order, satisfy 1 > λ2 ≥ . . . ≥ λN > −1.

Without loss of generality, let us suppose that all the eigenvalues are simple. Any initial conditions x(0)
can be expressed as a sum of eigenvectors of W,

x(0) = γ1v1 + . . .+ γNvN , (2.7)

where vi is the right eigenvector associated to the eigenvalue λi and γi a real coefficient, with the special case
of γ1, which in this case is equal to the average of the initial conditions, γ1 = x̄. It is clear that

x(t) = Wtx(0) = γ1v1 + λt2γ2v2 + . . .+ λtNγNvN , (2.8)

and since |λi| < 1, i 6= 1, then
lim
t→∞

x(t) = γ1v1 = x̄1, (2.9)

and the average consensus is asymptotically reached by all the robots in the network.
The asymptotic convergence implies that the exact consensus value will not be achieved in a finite number

of iterations. In practice, the consensus is said to be achieved when |xi(t) − xj(t) < tol| for all i and j, and
a prefixed error tolerance tol. The convergence speed of (2.3) depends on max(|λ2|, |λN |). This parameter is
usually denoted as the algebraic connectivity of the network because it contains relevant information about the
connectivity of the network. Without loss of generality, in the Thesis we assume that the algebraic connectivity
of the network is characterized by λ2, i.e., |λ2| ≥ |λN |.

When the communication topology varies at different iterations, we need to restrict a bit more the assump-
tion on the weights.

Assumption 2.3.3 (Time varying non degenerate weights). W(t) has the property of being double stochastic
and non degenerate ∀t. In other words:

wij(t) ∈ {0} ∪ [α, 1] ∀j, t
wii(t) = 1−

∑
j 6=iwij(t) ≥ α,

1TW(t) = 1T , W(t)1 = 1,

being α a positive constant and 1 = [1, . . . , 1]T ∈ RN .

Although this case is more tricky, convergence to the average can also be proved. For brevity, we refer the
reader to [18] for the proof of convergence in this case.

2.3.2 Definition of the Matrix Weights

The only problem that remains to be solved is the specific selection of the weights that makes the matrix doubly
stochastic and non degenerated. Both the convergence to the desired value and the speed which the consensus
is achieved depend on these weights, which makes the selection of the weights one of the most important tasks
to define a good linear iteration.
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There are several to assign the weights in order to satisfy Assumption 2.3.3. A simple way to address this
issue is by assigning the same weight, ε, to all the elements,

wij = ε, and wii = 1− |Ni|ε. (2.10)

In this case, the parameter α in Assumption 2.3.3 is equal to ε. For a fixed communication topology, the range
of values that this parameter can take is directly related with the largest eigenvalue of the Laplacian matrix, L,
associated to the communication graph. The Laplacian matrix, L, is defined in such a way that the diagonal
elements are equal to the number of neighbors of each robot, lii = |Ni| and the rest of the elements, lij , are
equal to 1 if robots i and j are direct neighbors and zero otherwise. The values that ε can take are in the interval
(0, 2/λ1(L)) [153], being λ1(L) the largest eigenvalue of the Laplacian matrix. Among all these values, the
fastest one to achieve the consensus is [153]

wij(t) =
2

λ1(L) + λN−1(L)
. (2.11)

In the Thesis we will denote this weights by the Best Constant Weights.
Unfortunately, as we can see, assigning a constant value implicitly requires for the robots to have some

global knowledge of the network. An easy way of satisfying Assumption 2.3.3 using only local information are
the Metropolis Weights, where the different weights are computed as a function of information provided only
by direct neighbors in the communication graph,

wij(t) =


1

max(|Ni(t)|,|Nj(t)|)+1 , if (i, j) ∈ E(t)

1−
∑

j∈Ni(t)

wij(t), if i = j

0, otherwise

. (2.12)

In this definition, the parameter α in Assumption 2.3.3 is in the worst case equal to 1/N and the rest of
conditions are satisfied as well because the same of the weights in one row is always equal to one and the
matrix is symmetric. We will also refer to these weights as the Local Degree Weights [153]. Note that in this
case, in order to compute the weights, the robots only need to attach to their messages the information about
the number of neighbors they have.

2.4 Application of Linear Iterations to Different Consensus Problems

To end this chapter, we present different robotic problems where the average consensus can be used as a
distributed solution.

Sensor Fusion

One of the most interesting problems where the distributed averaging can be used is the sensor fusion of the
measurements of all the robots. The problem of how to fuse several observations in a centralized manner
has received considerable attention in the robotics literature. For example, [44], [53] study the integration of
different sensor measurements taken by a single robot. In multi-robot systems, [55] investigates how to perform
data fusion of several SLAM maps by a central unit.

Distributed averaging techniques allow to solve this problem in a distributed fashion in a simple way.
For example, let us consider that the robots are measuring the temperature of the environment, which has a
value around five Celsius degrees. Let us say that there are 25 robots deployed in the environment taking
measurements. Each robot is equipped with a thermometer that gives an estimation of the temperature between
4.5 and 5.5 degrees. The communication network is depicted in the left image of Figure 2.2 inside a room. The
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right image of Figure 2.2 shows the evolution of all the robots’ estates when executing (2.2). We can see that
all the robots eventually achieve the same temperature value, i.e., the consensus, which is exactly the average
of the initial values of all the robots.
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Figure 2.2: Example of distributed consensus for sensor fusion. The communication network is depicted on the left,
where each blue dot represents one robot of the network and each black line represents a direct communication between
a pair of robots. On the right we show the evolution of the consensus, with each line representing the different values of
the state of each robot. We can see that as the robots execute the linear iteration, the value of all the robots tends to the
same value, which is exactly the average of the initial conditions.

Sensor Fusion with Uncertainties

If the observations of the robots include a measure of their uncertainty, given by the covariance matrices Λi,
the problem changes from the computation of the average to the computation of the maximum likelihood (ML).
The ML is estimated using a weighted least-squares approximation from the robot measurements as

θML =

(
N∑
i=1

Λ−1
i

)−1 N∑
i=1

Λ−1
i xi(0). (2.13)

An averaging linear iteration can be used to compute the ML [155]. At the beginning, each robot initializes
two state variables, Pi(0) = Λ−1

i and qi(0) = Λ−1
i xi(0). If the averaging linear iteration is applied to these

variables, then

lim
t→∞

Pi(t) =
1

N

∑
j∈V

Pj(0), and lim
t→∞

qi(t) =
1

N

∑
j∈V

qj(0), (2.14)

and
lim
t→∞

P−1
i (t)qi(t) = θML, (2.15)

This distributed solution can be very helpful, for example, in the cooperative simultaneous localization and
mapping of the environment by a team of robots, the SLAM problem [5].

Rendezvous of a team of robots

Another problem of high interest in multi-robot systems is the rendezvous of the team [32,37]. The rendezvous
of a team of robots is achieved when all the robots gather at a fixed point in the environment. Solutions based
on distributed averaging can also be of high interest for this problem. Figure 2.3 shows the trajectories of a
team of 10 robots with linear dynamics and using averaging to control their motion. The individual control law
of each robot is computed by averaging the positions of the robots that are neighbors in the communication
graph. At the end, all the robots come together at the same point, which is the centroid of the initial positions
of the ten robots.
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Figure 2.3: Example of a team of robots using a linear iteration to rendezvous in the centroid of their initial positions.

Flocking of a team of robots

Finally, a very important problem in cooperative control and formation control is the flocking of the team of
robots [105]. This problem consists on making all the robots to move in the same direction and with the same
velocity. The name comes from the analogy with the behavior of flocks of birds moving in formation (Fig. 1.5).
As in the previous motivating examples, distributed averaging and linear iterations represent a powerful tool to
achieve this behavior.

A simple example of this phenomenon is shown in Figure 2.4. This example assumes a team of robots
moving on the plane with non holonomic motion constraints. At each step, the robots turn in the average
direction of the headings of their neighbors. As a consequence, all the robots end up moving in the same
direction. If the initial velocities of the robots were different, the same solution could be used to make them
converge to the same value.
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Figure 2.4: Example of a distributed control law that makes the team of robots move in the same direction by averaging
their orientations.
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2.5 Discussion

This chapter has introduced the robotic network that will be the focus of study along the Thesis. We have defined
the main properties of the individual robots and their sensing and communication capabilities to interact with
the environment. Graph theory presents itself as a very useful tool to formalize the interactions between the
robots. Modeling the network with graphs we can describe the important concepts.

The chapter has also served to present the main problem we are interested in studying, the consensus prob-
lem. We have reviewed the solutions of this problem based on linear iterations and their interest in distributed
systems with limited communication capabilities. Finally, we have introduced some of the most interesting
multi-robot problems that can be solved using linear iterations and distributed averaging. We have presented
some basic simulations to show how these problems find a simple solution with distributed averaging.

In the examples we have presented the most basic version of these problems, omitting important aspects of
real life that should be taken into account. For example, in the sensor fusion scenario we have assumed that the
robots were only measuring a good value of a single data, the temperature. However, in perception tasks with
vision sensors each robot will observe many features, and some of them erroneously. Therefore, additional
mechanisms are required to achieve a proper consensus. In the flocking scenario we have not considered
visibility issues, what happens if the robots do not see each other or do not know how to measure their relative
positions. In the rest of the Thesis we present our contributions in this field, considering more realistic versions
of some of these problems.



Chapter 3

The Data Association Problem

“It is said that one image is worth a thousand words.” In order to reach a consensus, the first task that is
required for the team of robots is to globally identify these “words”. In this chapter we address the problem
of finding global correspondences between the observations of all the robots in a distributed manner. At the
beginning, each robot finds correspondences only with the robots that can directly communicate with it. This is
done using existing matching techniques for pairs of images. After that, we propose a distributed algorithm that
propagates the local correspondences through the network. We formally demonstrate the main properties of
the algorithm and prove that after executing our method, the team of robots finishes with a globally consistent
data association. The performance of the algorithm is tested with extensive simulations and real images at the
end of the chapter.

3.1 Introduction

An important issue involving a team of robots in perception tasks consists of establishing correspondences
between the features perceived by all the robots. The standard consensus linear iteration, eq. (2.2), does not
consider this problem, because it assumes the existence of a single feature (of arbitrary dimension) that all the
robots observe and share. When the perception system is composed by cameras, the number of features that
each robot sees can be considerably big. An example of this is given in Figure 3.1, where there are many
faces in the same picture. Before a consensus on the people’s position is possible [145], the robots require to
know which faces detected by the different robots correspond to the same person. Therefore, the first step in
the consensus process is the identification of common features observed by different robots so that they can
combine them.

Figure 3.1: Multiple features observed in the same image. Before the consensus can be achieved, the robots require to
identify which of the observed features have also been seen by other members of the team.
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We assume that the pairs of robots with a communication link can establish local correspondences of the
features in their images using existing matching methods, e.g., [29, 57]. However, distant robots may have
observed common features as well. Therefore, additional mechanisms are required to obtain higher level in-
formation than pair to pair matches. This information can be obtained by the proper propagation of the local
matches through the network. Additionally, due to the presence of spurious local matches, there may appear
inconsistent global correspondences, which are detected when chains of local matches create a path between
two features from the same robot (see Fig. 3.2). These situations must also be correctly identified and solved,
otherwise, the consensus achieved in the following steps will be wrong.

Camera A

Camera B

Camera D

Camera C
Inconsistency!

Local 
correspondence

Limited 
communications

Spurious 
correspondence

Figure 3.2: Example of one inconsistency. The network is composed by four robots A, B, C and D. The chain of local
matches between direct neighbors leads to a situation in which two features observed by the robotA are associated, which
is not possible. In this chapter we propose a method to distributively detect and solve these situations.

The problem of finding correspondences between two images has been deeply studied from different per-
spectives, depending on the features used. Point or line features and geometric constraints are used [57, 103].
Three dimensional points with uncertainties are matched using the Nearest Neighbor, and the Maximum Like-
lihood, in terms of the Euclidean or the Mahalanobis distance [55, 65]. Another popular method is the Joint
Compatibility Branch and Bound [102], which considers the compatibility of many associations simultane-
ously. And there are many combinations of all the previous techniques with RANSAC [43] or any of its
variations [26] for higher robustness. There also exists a vast literature dealing with the problem of matching
image templates [112] representing, e.g., faces [38], people [52] or objects [29].

Centralized solutions are common in order to manage the correspondence problem of multiple views.
Triplets of matches are considered in [157] and they are characterized as consistent when the three matches
are reliable. Correspondences between features observed in two different sequences are found in [22] where
spatial and temporal parameters define the matching between the sequences. Multiple views and rigid con-
straints are considered in [50, 108, 160]. The work in [36], from the target tracking literature, simultaneously
considers the association of all local sets of features. A multi-view matching is presented in [41] where every
pair of views are compared among them. Then, their results are arranged in a graph where associations are
propagated and conflicts are solved. The k-dimensional matching problem tries to find the maximal matching
in a k-partite k-uniform balanced hyper-graph [58]. Since the optimal solution for this problem for three or
more dimensions (views) is an NP-hard problem [114], a greedy algorithm is used in [133] to find the corre-
spondences along a sequence. The algorithm is also used in [134] to associate trajectories observed by several
moving cameras.

There are also different works that propose distributed solutions to this problem. An early approach of dis-
tributed matching using range views can be found in [14]. With vision cameras, the problem of surveillance has
given different distributed solutions [122, 152]. In this case the cameras are fixed and usually they have been
previously calibrated, so there is some knowledge about the relations between the cameras. In [8] a consider-
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ably large set of images is considered. Initially a subset of the 2-by-2 associations is performed guarantying
connectedness of the correspondences using the theory of random graphs. The rest of the matches are found by
propagation of the initial correspondences. Finally, local conflicts are solved by performing additional 2-by-2
associations. However, the resolution method provided requires any image to be able to be associated with any
other, which is not always possible in networks with limited communications.

In this chapter, we address the problem of discovering the global correspondences between the set of images
in a distributed way, solving also the possible inconsistencies that may appear. We contribute to existing state
of the art algorithms by proposing a fully distributed solution to these problems. Given the local matches
established between neighbors, our propagation algorithm allows each robot to find correspondences with all
the other robots in the network, even if they cannot directly communicate. We show how the inconsistencies are
detected and propose two different resolution algorithms to break them. The first one considers the quality of
the local matches, using a variant of a max-consensus algorithm to find the link with the largest error that breaks
the inconsistency. The second one builds different independent spanning trees that ensure that the alternative
data association is free of inconsistencies.

More in detail, the contributions of this chapter are:

• A distributed algorithm to propagate the local matches, providing all the robots with the global corre-
spondences with the other robots, even if they cannot directly communicate;

• A mechanism to detect inconsistent associations and two distributed algorithms to resolve these incon-
sistencies through the deletion of local matches, in function of their quality;

• A rigorous study of the properties of the whole procedure which proves that is fully distributed, requires
low communication and finishes in finite time. In addition, the method makes mild assumptions on the
local matching functions, and thus can be combined with a wide variety of features and local matchers.

This chapter has been partially published in [7, 86].

3.2 Problem Description

3.2.1 Matching between two robots

As previously stated, our method consists of correctly propagating the local matches of neighboring robots
through the network in a distributed fashion. For a better understanding of the algorithms presented in the
chapter, we introduce the notation and describe the properties the local matcher must satisfy. The rth feature
observed by the ith robot is denoted as f ir. Given a matrix A, the notation Aij denotes the block (i, j) of the
matrix whereas [A]r,s corresponds to the component (r, s) of the matrix. Other parts of the chapter require the
use of rows, in this cases air represents a row with the information corresponding to feature f ir, and [air]s the sth

component of the row.
Consider two robots i and j, that observe two sets Si and Sj of mi and mj features respectively,

Si = {f i1, . . . , f imi}, Sj = {f j1 , . . . , f
j
mj}. (3.1)

We let F be the local matching function, such that for any two sets of features, Si and Sj , F (Si,Sj) returns
an association matrix Aij ∈ Nmi×mj where

[Aij ]r,s =

{
1 if f ir and f js are associated,
0 otherwise,

for r = 1, . . . ,mi and s = 1, . . . ,mj . The function F must satisfy the following conditions.
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Assumption 3.2.1 (Self Association). When F is applied to the same set Si, it returns the identity, F (Si,Si) =
I.

Assumption 3.2.2 (Unique Association). The association Aij has the property that the features are matched
in a one-to-one way,

mi∑
r=1

[Aij ]r,s ≤ 1 and
mj∑
s=1

[Aij ]r,s ≤ 1,

for all r = 1, . . . ,mi and s = 1, . . . ,mj .

Assumption 3.2.3 (Symmetric Association). For any two sets Si and Sj it holds that F (Si,Sj) = Aij =
ATji = (F (Sj ,Si))T .

Additionally, the local matching function may give information about the quality of each association. The
management of this information about quality is discussed later in the chapter, in section 3.4.

We do not make any assumptions about the sets of features. However, we point out that the better the initial
matching is, the better the results of the global matching will be. Examples of features and matching functions
that can be used in our method are:

• Lines or invariant descriptors matched with epipolar or homography constraints, [57], [103],

• 3D points computed using mapping techniques matched with the Joint Compatibility Branch and Bound
(JCBB) [102],

• Image templates of people, faces, objects, etc. matched with sums of absolute differences of the pixels
or correlation methods [112].

• . . .

3.2.2 Centralized matching between N robots

Let us consider now the situation in which there are N robots and a central unit with the N sets of features
available. In this case F can be applied to all the pairs of sets of features, Si, Sj , for i, j ∈ {1, . . . , N}. The
results of all the associations can be represented by an undirected matching graph Gcen = (Fcen, Ecen). Each
node in Fcen is a feature f ir, for i = 1, . . . , N , r = 1, . . . ,mi. There is an edge between two features f ir, f

j
s if

and only if [Aij ]r,s = 1.
For a perfect matching function, the matching graph, Gcen, exclusively contains disjoint cliques, identifying

features observed by multiple robots (Fig. 3.3 (a)). However, in real situations, the matching function will
miss some matches and will consider as good correspondences some spurious matches (Fig. 3.3 (b)). As a
consequence, inconsistent associations relating different features from the same set Si may appear.

Definition 3.2.4 (Association Sets and Inconsistencies). Given a matching graph, Gcen, an association set is a
set of features such that they form a connected component in Gcen. Such set is a conflictive set or an inconsistent
association if there exists a path in Gcen between two or more features observed by the same robot. A feature is
inconsistent or conflictive if it belongs to an inconsistent association.

Centralized solutions to overcome this problem are found in [41], [8]. The latter one is also well suited for
a distributed implementation but yet requires that any pair of images can be matched. In robotic networks this
implies global communications, which are not always possible.
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Camera A Camera B

Camera D Camera C

Camera A Camera B

Camera D Camera C

Camera A Camera B

Camera D Camera C

(a) (b) (c)

Figure 3.3: Different association graphs. (a) Centralized matching with perfect association function. The graph is formed
by disjoint cliques. (b) Centralized matching with imperfect association. Some edges are missed, (fA1 , f

B
1 ) and (fA2 , f

B
2 ),

and spurious matches appear, (fA2 , f
B
1 ). As a consequence, a subset of the features form a conflictive set. (c) Matching

with limited communications. Now, the matches between A and C, and B and D, cannot be computed because they are
not neighbors in G. Moreover, the information available to each robot is just the one provided by its neighbors.

3.2.3 Matching between N robots with limited communications

Let us consider now that there is no central unit with all the information and there are N robots, with limited
communication capabilities following the model described in the previous chapter, section 2.2.2. In this case,
local matches can only be found within direct neighbors in the communication graph. As a consequence, the
matching graph computed in this situation will be a subgraph of the centralized one, Gdis = (Fdis, Edis) ⊆ Gcen,
(Fig. 3.3 (c)). It has the same set of nodes, Fdis = Fcen, but it has an edge between two features f ir, f

j
s only if

the edge exists in Gcen and the robots i and j are neighbors in the communication graph,

Edis = {(f ir, f js ) | (f ir, f js ) ∈ Ecen ∧ (i, j) ∈ E}. (3.2)

In the thesis, we namemsum the number of features, |Fdis| =
∑N

i=1mi = msum. We name df the diameter
of Gdis, the length of the longest path between any two nodes in Gdis, This diameter satisfies df ≤ msum. We
name A ∈ Nmsum×msum the adjacency matrix of Gdis,

A =

 A11 . . . A1N
...

. . .
...

AN1 . . . ANN

 , (3.3)

where

Aij =

{
F (Si,Sj) if j ∈ {Ni ∪ i},
0 otherwise.

(3.4)

Let us note that in this case none of the robots has the information of the whole matrix. Robot i has only
available the sub-matrix corresponding to its own local matches Aij , j = 1, . . . , N. Under these circumstances
the first problem studied in the thesis is formulated as follows:

Definition 3.2.5 (The data association problem). Given a network with limited communications and an as-
sociation matrix A scattered over the network find the global matches and the possible inconsistencies in a
decentralized way. In case there are conflicts, find alternative associations free of them.

3.3 Propagation of Matches and Detection of Inconsistencies

Considering Definition 3.2.4 we observe that in order to match features of robots that are not neighbors and to
detect any inconsistency between features, the paths that exist among the elements in Gdis should be computed.
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As the following lemma states [18], given a graph G, the powers of its adjacency matrix contains the information
about the number of paths existing between the nodes of G:

Lemma 3.3.1 (Lemma 1.32 [18]). Let G be a weighted graph of order |V| with un-weighted adjacency matrix
A ∈ {0, 1}|V|×|V|, and possibly with self loops. For all r, s ∈ {1, . . . , |V|} and t ∈ N the (r, s) entry of the tth

power of A, [At]r,s, equals the number of paths of length t (including paths with self loops) from node r to node
s.

The powers of the adjacency matrix in (3.3) can be computed in a distributed way. Let each robot i ∈ V
have a set of variables Xij(t) ∈ Nmi×mj , j = 1, . . . , N, t ≥ 0, initialized as

Xij(0) =

{
I, j = i,
0, j 6= i,

(3.5)

and updated, at each time step, with the following rule

Xij(t) =
∑

k∈{Ni∪i}

AikXkj(t− 1), (3.6)

with Aik as defined in (3.4). It is observed that the algorithm is fully distributed because the robots only use
information about its direct neighbors in the communication graph. The equivalency with the powers of A is
true because Aik = 0 for k /∈ {Ni ∪ i}. Therefore eq. (3.6) is equivalent to X(t + 1) = AX(t) executed
by blocks and, since X(0) = I, then X(t) = At. The advantages are that the robots only manage the rows
corresponding to their features, the computation is done distributively and computation finishes in at most df
iterations.

The robots are able to detect all the features associated with its own set from their own blocks Xij(t). If
there is a conflictive feature, they can also detect it and know the rest of features that belong to the conflictive
set, independently of who observed such features. Inconsistency detection is done using two rules. A feature
f ir is conflictive if and only if one of the following conditions is satisfied:

• There exists another feature f ir′ , with r 6= r′, such that

[Xii(t)]r,r′ > 0; (3.7)

• There exist features f js and f js′ , s 6= s′, such that

[Xij(t)]r,s > 0 and [Xij(t)]r,s′ > 0. (3.8)

However, this way to detect the inconsistencies has several drawbacks. The powers of A may contain large
values, but in practice we do not require to compute all the paths of length t between the features. In this case
it is just required to know if there is a path between two elements in Gdis. Moreover, the method does not
exploit the local information of features belonging to the same robot. For that reason, we propose a propagation
algorithm that overcomes these limitations reducing the complexity of the operations, the number of execution
steps and the amount of transmitted information.

Algorithm 1 shows the proposed method. Let yir(0) = {[Ai1]r,1, . . . , [Ain]r,mn} ∈ {0, 1}msum be the
row associated with feature f ir and [yir(0)]u, u = 1, . . . ,msum, the uth component in the row. The algorithm
computes the logical “or” operation of rows of neighbor robots and common matches. Lines 5-7 are equivalent
to compute the powers of A using logical values instead of integers. The second part of the update, lines 8-10,
speeds up the process by also considering that, when two or more of the features observed by the same robot
share a common third feature observed by a different robot, then eventually they will be associated with each
other.
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Algorithm 1 Inconsistency Detection - Robot i
Ensure: All the inconsistencies are found

1: repeat
2: Send yir(t), r ∈ Si to all j ∈ Ni
3: Receive all yjs(t), j ∈ Ni, s ∈ Sj
4: for all r ∈ Si do
5: for all j ∈ Ni, s ∈ Sj | [Aij ]r,s = 1 do
6: yir(t+ 1) = yir(t) ∨ yjs(t)
7: end for
8: for all r′ ∈ Si satisfying that ∃ u ∈ {1, . . . ,msum} such that [yir(t)]u = [yir′(t)]u = 1 do
9: yir(t+ 1) = yir(t) ∨ yir′(t)

10: end for
11: end for
12: until yir(t+ 1) = yir(t), ∀r ∈ Si

When one robot j at time t does not receive the information yir(t), r = 1, . . . ,mi from robot i then it can
simply avoid the execution of line 6 because it already has all the information from yir(t− 1), which is exactly
equal to yir(t).

The modified algorithm reduces the complexity of the operations with respect to the powers of the adjacency
matrix by replacing the products of matrices by logical operations between rows. This reduction allows to avoid
the large numbers that may appear when computing powers of the adjacency matrix and also allows us to reduce
the amount of transmitted data. In the following we describe the main properties of the algorithm.

Proposition 3.3.2 (Limited Communications). The amount of information exchanged by the network during
the whole execution of Algorithm 1 can be upper bounded by 2m2

sum.

Proposition 3.3.3 (Correctness). After execution of Algorithm 1 all the paths between features have been
found and they are available to all the robots with features involved in them.

Theorem 3.3.4 (Limited Iterations). All the robots end the execution of the Algorithm 1 in at most min(df , 2N)
iterations.

Before illustrating the behavior of the algorithm with an example, we discuss some aspects of the decen-
tralized inconsistency detection algorithm.

Remark 3.3.5 (Conservative Bounds). The bounds provided in Proposition 3.3.2 and Theorem 3.3.4 are
conservative. In practice we should expect a better performance of the algorithm. In order to send 2m2

sum

data, it is required for the association graph to be strongly connected, i.e., for any pair of features there is a
path of arbitrary length connecting them. This situation is unlikely to happen, since it would mean that all
the features are associated with each other. Regarding the number of iterations, the bound does not take into
account the simultaneous exchange of data by the robots. In practice we have observed that in less than N
iterations the algorithm always finishes.

Remark 3.3.6 (Higher Level Matches). With the presence of additional images, it is possible to find better
matches using higher level constraints, e.g., the trifocal tensor with triplets of images. Our algorithms are
compatible with other multi-camera matches, as long as the communications allow the computation of these
matches and the Assumptions 3.2.1 to 3.2.3 are satisfied between pairs of cameras. However, in order to keep
the communication graph free of constraints, we have only considered matching functions using pairs of images.

Remark 3.3.7 (Multiple Matches). In the literature, when dealing with two images, it is common to consider
multiple hypotheses when associating the features [102]. Although this possibility would be of high interest
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here, this is not affordable by now. By considering multiple associations, the problem grows exponentially
with the number of cameras and features, whereas with a one-to-one association grows linearly. Moreover, the
match of one feature with two or more features observed by other camera is directly an inconsistency, which
requires further processing to solve it in a second step.

Remark 3.3.8 (Detectable Spurious). The existence of one inconsistency implies the existence of at least one
spurious match in the local matching process. However, the opposite is not necessarily true. There might
be local matches which are spurious but that do not lead to one inconsistency, e.g., one match between only
two robots. These spurious matches cannot be detected with our algorithm, and therefore cannot be corrected
during the data association. A more detailed treatment of spurious and outliers is given in the next chapter.

Example of execution

Figure 3.4 shows an example of how the algorithm is applied. The example shows the execution of the algorithm
for the associations shown in Fig. 3.3 (c). Each robot has only the information about the rows corresponding
to the features it has observed. In Fig. 3.4 (a) the matrix with the local matches found by all the cameras can
be seen. The zeros have been omitted in the figure for a better representation. For simplicity here we will only
explain the process for the robot A. After the first round of communications and the execution of lines 5-7 of
Algorithm 1 the rows have the form of Fig. 3.4 (b). The components with green background are the new paths
found by the algorithm. For the case of the camera A, the first feature, fA1 , is matched with the first feature of
robot D, which is a direct neighbor of A, thus, yA1 (2) = yA1 (1) ∨ yD1 (1). The second feature, fA2 , is matched
with fB1 and fD2 so yA2 (2) = yA2 (1) ∨ yB1 (1) ∨ yD2 (1). Finally yA3 (2) = yA3 (1) ∨ yB3 (1). After that, robot A
detects that fA1 and fA2 share a common match with fC1 . Therefore it executes lines 8-10 of the algorithm with
these two features, as shown in Fig. 3.4 (c). Now the process is repeated, obtaining the matrix in Fig. 3.4 (d).
The algorithm has found all associations using only 3 < df = 7 iterations. At this point the robot A knows that
fA1 and fA2 belong to one inconsistent association with features fB1 , f
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Figure 3.4: Example of execution of the propagation algorithm and the detection of inconsistencies. Figures (a)-(d) show
the four steps that the algorithm requires to propagate all the correspondences.
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3.4 Decentralized Resolution of Inconsistent Associations

The existence of one inconsistency implies the existence of at least one spurious match in the local matching
process. Therefore, the resolution of inconsistent associations is carried out by deleting edges from Gdis, ideally
the spurious matches, so that the resulting graph is conflict-free.

Definition 3.4.1 (Conflict Free Graph). Let C denote the number of conflictive sets in Gdis. The robots that
detect a conflictive set C is Vinc ⊆ V . The number of features from each robot i ∈ Vinc involved in C is m̃i and
the number of total features involved in C is denoted as c. We say Gdis is conflict-free if C = 0.

All the edges whose deletion transforms Gdis into a conflict-free graph, belong to any of the C conflictive
sets of Gdis. Since the conflictive sets are disjoint, they can be considered separately. From now on, we focus
on the resolution of one of the conflictive sets C. The other conflictive sets are managed in the same way. The
resolution problem consists of partitioning C into a set of disjoint conflict-free components Cq such that

∪
q
Cq = C, and Cq ∩Cq′ = ∅, q 6= q′.

Note that, even with the full knowledge of the association graph that generates C, finding the optimal partition
that solves the inconsistency is an NP-Hard problem. If there were only two inconsistent features f ir, f

i
r′ , it

could be approached as a max-flow min-cut problem [115]. However, in general there will be more incon-
sistent features, m̃i ≥ 2, within C associated to each robot. The application of [115] separately to any pair
of inconsistent features does not necessarily produce an optimal partition. It may happen that a single edge
deletion simultaneously resolves more than one inconsistent association. Therefore, an optimal solution should
consider multiple combinations of edge deletions, what makes the problem computationally intractable, and
imposes a centralized scheme. For that reason we focus on proposing heuristic methods such that the com-
munication constraints are respected. The number of conflict-free components is a priori unknown but can be
lower bounded with the following proposition:

Proposition 3.4.2 (Number of Partitions). Let Vinc be the set of robots that detect C and i? be the robot with
the most features in C,

i? = arg max
i∈Vinc

m̃i. (3.9)

The number of conflict-free components in which C can be decomposed is lower bounded by m̃i? .

In the rest of the section we provide two different distributed algorithms to solve the inconsistencies in Gdis.
The first one, the Maximum Error Cut, considers the weights in the association graph in order to find the edge
with the largest error that breaks a given inconsistency. The second method is based on a greedy deletion of
edges to construct different Spanning Trees free of inconsistencies.

3.4.1 Resolution using the Maximum Error Cut

Most of the matching functions in the literature are based on errors between the matched features, e.g., the
Sampson distance for the epipolar constraint, or the sum of the absolute differences for template matching.
These errors can be used to find a partition of C. Let E be the weighted symmetric association matrix

[E]r,s =

{
ers if [A]r,s = 1,
−1 otherwise,

(3.10)

with ers the error of the match between r and s.

Assumption 3.4.3 (Properties of the Errors). The error between matches satisfies:
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• err = 0,∀r;

• Errors are non negative, ers ≥ 0,∀r, s;

• Errors are symmetric, ers = esr, ∀r, s;

• Errors of different matches are different, ers = er′s′ ⇔ [r = r′ ∧ s = s′] ∨ [r = s′ ∧ s = r′].

Since the inconsistency is already known there is no need to use the whole matrix but just the sub-matrix
related with the inconsistency, EC . Although all the errors in EC are small enough to pass the matching between
pairs of images, we can assume that the largest error in the path between two conflictive features is, with most
probability, related to the spurious match.

Definition 3.4.4 (Bridges and Cuts). Given a conflictive set, a bridge is an edge whose deletion divides the set
in two connected components, i.e., it does not belong to a cycle. Given two conflictive features, we define a cut
as a bridge that, if it is deleted, then the conflict between the features is solved.

Note that not all the bridges in one inconsistency are cuts. There are bridges that, if deleted, will not break
the inconsistency because they do not belong to the path between the features to separate. Our goal is, for each
pair of conflictive features, find and delete the cut with the maximum error.

Algorithm 2 shows the solution we propose to find the cuts using local interactions. We explain in detail
how it works. As we did in the detection algorithm, let each robot initialize its own m̃i rows of elements as

Algorithm 2 Maximum Error Cut - Robot i
Require: Set of C different conflictive sets
Ensure: Gdis is conflict free

1: for all C do
2: – Error transmission
3: zr(0) = {[EC ]r,1, . . . , [EC ]r,c}, r = 1, . . . , m̃i

4: repeat
5: zr(t+ 1) = maxs∈C, [EC ]r,s≥0(zr(t), zs(t)Prs)
6: until zr(t+ 1) = zr(t), ∀r ∈ m̃i

7: – Edge Deletion
8: while robot i has conflictive features r and r′ do
9: Find the cuts (s, s′) :

10: (a) [zr]s = [zr′ ]s′ , s 6= s′,
11: (b) For all s′′ 6= s, [zr]s 6= [zr]s′′ ,
12: (c) For all s′′ 6= s′, [zr′ ]s′ 6= [zr′ ]s′′
13: Select the cut with largest error
14: Send message to break it
15: end while
16: end for

zr(0) = {[EC ]r,1, . . . , [EC ]r,c}. The update rule executed by every robot and every feature is

zr(t+ 1) = max
s∈C, [EC ]r,s≥0

(zr(t), zs(t)Prs), (3.11)

where the maximum is done element-wise and Prs is the permutation matrix of the columns r and s. We have
dropped the super indices corresponding to robots because the limited communications are implicit in the error
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caused by direct associations, eq. (3.10). Equivalently, for a given feature r, we can put eq. (3.11) as a function
of its elements. The uth component, [zr(t+ 1)]u, is updated as follows:

[zr(t+ 1)]u =


max([zr(t)]u, [zs(t)]s) if [EC ]r,s ≥ 0 ∧ u = r

max([zr(t)]u, [zs(t)]r) if [EC ]r,s ≥ 0 ∧ u = s

max([zr(t)]u, [zs(t)]u) if [EC ]r,s ≥ 0 ∧ r 6= u 6= s.

(3.12)

As the following results state, the presented method converges in finite time. We also show the convergence
values of the different elements. For clarity, we separate the analysis in two parts: the first result gives the
values reached by the components that belong to bridges in the graph; the second result consider the features
that form part of a cycle in the association graph.

Proposition 3.4.5 (Convergence). The dynamic system defined in (3.11) converges in a finite number of itera-
tions and for any r, s ∈ C such that [EC ]r,s ≥ 0 the final value of zr is the same than zsPrs. In addition, for any
r ∈ C, [zr(t)]r = 0,∀t ≥ 0.

Theorem 3.4.6 (Values for Bridges). Let us consider one bridge, (s, u). Let d(r, s) be the minimal distance in
edges to reach node s starting from node r, then for all r such that d(r, s) < d(r, u)

[zr(t)]u → [EC ]s,u = esu. (3.13)

Equivalently, for all r such that d(r, s) > d(r, u)

[zr(t)]s → [EC ]u,s = eus = esu. (3.14)

Theorem 3.4.7 (Values for Cycles). Let us suppose the inconsistency has a cycle involving ` features. Let C`
be the subset of features that belong to the cycle. For a given feature r

[zr(t)]s → max
u,u′∈C`

euu′ , ∀s ∈ C` \ arg min
s′∈C`

d(r, s′). (3.15)

Corollary 3.4.8. If there is a cycle C` in the association graph, after the execution of Algorithm 2, for every
feature r there exist at least two features s, s′ in C` as in (3.15) for which the elements [zr]s, [zr]s′ reach the
same value.

At this point we are ready to define the cuts in terms of the variables zr and to propose a criterion to select
the best cut to delete. The cuts, (s, s′), for any pair of conflictive features r and r′ satisfy

(a) [zr]s = [zr′ ]s′ , s 6= s′,

(b) for all u 6= s, [zr]s 6= [zr]u,

(c) for all u 6= s′, [zr′ ]s′ 6= [zr′ ]u.

The first condition comes from Theorem 3.4.6 and the other two come from Theorem 3.4.7. For any cut, the
error of the cut is the same as the value of [zr]s, [zr]s = [zr′ ]s′ = ess′ . Therefore, each robot can look in a
local way at its own rows and choose the best cut that breaks the conflict, the one with the largest error. Let
us note that, by the definition of a cut, the algorithm considers single-edge deletions, attempting to minimize
the number of broken links. Also with this approach, cycles in the association graph are not broken, which is
another good property. These cycles are sets of features strongly associated, and therefore, it is better not to
delete edges there.

In case one robot has more than two features in the same conflict, the algorithm chooses two of the m̃i

inconsistent features and selects the best cut for them. The cut separates all the m̃i features in two disconnected
subsets. The process is repeated with each of the subsets until the inconsistencies are solved. This is a simple
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way to proceed that satisfies the resolution of complex inconsistencies, with the payoff of the probable deletion
of more edges than necessary. It is possible that two robots decide to delete two different links, when breaking
only one of them would be enough to break both inconsistencies, as happens in the example in Fig. 3.5 (b).
Nevertheless, recall that finding the optimal partition is NP-Hard and requires the full knowledge of the graph,
which implies expensive communications and computations, whereas this approach is fully distributed and easy
to compute.

The main limitation of the algorithm appears when two conflictive features belong to one cycle in the
association graph. In this case there are no cuts and the proposed algorithm cannot solve the inconsistency.
However, since the algorithm is able to detect this situation, a different approach can be used to solve it.

3.4.2 Resolution based on Spanning Trees

We propose an alternative algorithm to deal with the situations that the Maximum Error Cut does not solve. The
method is based on the computation of different spanning trees in each conflictive set and, although the cuts
done in the association graph are arbitrary, it has the property that it is able to solve all the inconsistencies. The
algorithm constructs m̃i? spanning trees free of inconsistencies. Initially, each robot i detects the conflictive
sets for which it is the root using its local information yir, r = 1, . . . ,mi. The root robot for a conflictive set
is the one with the most inconsistent features involved, eq. (3.9). In case two robots have the same number of
inconsistent features, the one with the lowest identifier is selected.

The root robot creates m̃i? components and initializes each component Cq with one of its features f i? ∈ C.
Then, it tries to add to each component Cq the features directly associated to f i? ∈ Cq. Let us consider that f js
has been assigned to Cq. For all f ir such that [Aji]s,r = 1, robot j sends a component request message to robot
i. When robot i receives it, it may happen that

(a) f ir is already assigned to Cq;

(b) f ir is assigned to a different component;

(c) other feature f ir′ is already assigned to Cq;

(d) f ir is unassigned and no feature in i is assigned to Cq.
In case (a), f ir already belongs to the component Cq and robot i does nothing. In cases (b) and (c), f ir cannot be
added to Cq; robot i deletes the edge [Aij ]r,s and replies with a reject message to robot j; when j receives the
reject message, it deletes the equivalent edge [Aji]s,r. In case (d), robot i assigns its feature f ir to the component
Cq and the process is repeated. The process is summarized in Algorithm 3.

Theorem 3.4.9 (Properties of the Spanning Trees resolution). Let us consider that each robot executes Al-
gorithm 3 on one conflict C,

(i) after N iterations no new features are added to any component Cq and the algorithm finishes;

(ii) each obtained Cq is a connected component;

(iii) Cq is conflict free;

(iv) Cq contains at least two features;

for all q ∈ {1, . . . , m̃i?}.
The algorithm ends its execution after no more than N communication rounds. When the algorithm fin-

ishes, each original conflictive set C has been partitioned into m̃i? disjoint, conflict-free components. It may
happen that a subset of features remains unassigned. These features may still be conflictive. The detection and
resolution algorithms can be executed on the subgraph defined by this smaller subset of features obtaining in
the end an association graph free of all the inconsistencies. Empirical comparisons between the two methods
are provided in section 3.5.
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Algorithm 3 Spanning Trees - Robot i
Require: Set of C different conflictive sets
Ensure: Gdis is conflict free

1: – Initialization
2: for all C such that i is root (i = i?) do
3: create m̃i? components
4: assign each inconsistent feature f i?r ∈ C to a different component Cq
5: send component request to all its neighboring features
6: end for
7: – Algorithm
8: for each component request from f js to f ir do
9: if (b) or (c) then

10: [Aij ]r,s = 0
11: send reject message to j
12: else if (d) then
13: assign f ir to the component
14: send component request to all its neighboring features
15: end if
16: end for
17: for each component reject from f js to f ir do
18: [Aij ]r,s = 0
19: end for

Example of execution

Let us consider one inconsistency as the one depicted in Fig. 3.5 (a) where the communication graph is a ring
with an additional edge between robots C and E.

Camera A Camera F

Camera C Camera D

Camera B Camera E
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Camera C Camera D

Camera B Camera E
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Camera A Camera F

Camera C Camera D

Camera B Camera E

(a) Inconsistency (b) Maximum Error Cut (c) Spanning Trees

Figure 3.5: Example of execution of the resolution of one inconsistency using the two approaches. (a) Inconsistency. (b)
Solution obtained using the Maximum Error Cut approach. (c) Solution obtained using the Spanning Trees algorithm. A
detailed explanation can be found in section 4.3.

Figure 3.5 (b) shows the solution obtained using the Maximum Error Cut algorithm. The evolution of the
zr vectors is shown in Figure 3.6. Each one of the figures 3.6 (a)-(f) represents a new iteration of the algorithm
in (3.11). The -1 values are omitted for clarity. As an example of how it works, the third row in figure 3.6 (b),
corresponding to fB1 is obtained as follows. fB1 executes (3.11) and updates its row in Fig. 3.6 (a) with the 1st
and 5th rows in Fig. 3.6 (a), sent by robots A and C because of features fA1 and fC1 . Robot B permutes the
first and third element of the vector sent by robot A and the third and fifth element of vector sent by robot C
and chooses the maximum (element to element) of the three vectors. As a result the sixth and seventh position
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in Fig. 3.6 (b) (features fD1 and fE1 ) change their values. It is interesting to observe how for the cycle all the
elements in the different vectors are receiving the value “8”, corresponding to the largest value within the cycle.
Once rule (3.11) has finished, robots A and B look for the cuts to break their inconsistencies (Fig. 3.7). For
robot B the best cut is the one matching features fA2 and fB2 . For the robot A the largest error is in the column
associated to fB2 . However, this is not a cut because both features have the same value in the same element.
The next largest value is also discarded because it belongs to a cycle. Finally, the bridge with error 7 is selected
because it is a cut and the match between fB1 and fC1 is deleted.
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Figure 3.6: Example of execution of (3.11) for the inconsistency in Fig. 3.5 (a). Each subfigure (a)-(f) represents a new
step of the algorithm. In 6 steps the robots with inconsistent features are able to decide which edges should be deleted to
solve them. For more details see Section 4.3.
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Figure 3.7: Decision about which edges should be deleted to solve the inconsistency. Robot B chooses the edge (fA2 , f
B
2 ).

Robot A discards the elements with values 8 and 9 because they belong to a cycle and to an edge that does not solve its
inconsistency respectively. The match between fB1 and fC1 solves the inconsistency and has the largest error.

The Spanning Trees solution is shown in Fig. 3.5 (c). In this case the root camera to manage the inconsis-
tency is the camera A. For each feature, camera A instantiates a different spanning tree. After 2 communications
rounds, robots C and E send a request to D and also among them. fD1 gets attached to fC1 and the other edges
are broken. After this point the algorithm has ended its execution and the new association graph is conflict
free.

3.5 Experiments

3.5.1 Simulations

We have designed a simulation environment using MatLab to evaluate the performance of the proposed algo-
rithms. The environment considers a set of N robots observing the same m features. To find the local matches,
we start from the perfect association graph. After that, we randomly remove a percentage of the perfect associ-
ations (pm Missing Edges) and add a percentage of spurious matches (ps Spurious Edges). The errors for the
good matches are randomly assigned between 0 and 10. For the spurious matches we use a parameter, ε, so that
the error is randomly generated between 0 and (1 + ε)10.

By varying the three parameters, pm, ps and ε, we can model different types of matching without committing
to a specific feature or function. For example, matching templates using the intensity of the pixels returns many
spurious associations, but the errors are quite discriminative. Therefore, this matching function is characterized
by a small value of pm and large values of ps and ε. Other example, the epipolar constraint returns a very robust
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match, at the price of missing many good matches. The threshold to filter the outliers makes all the errors very
similar. In this case we have a big value of pm and small values of ps and ε.

At each trial, we assume the local matching to be deterministic, i.e., for the same matching function and
pair of images, the local matching is always the same. In this way we can repeat the experiment considering
different network topologies. The networks are generated as random graphs, where each communication link
has independent probability of exist, δ. We call this parameter the network density, because values close to 1
create networks with many links whereas small values of δ imply very sparse networks.

Since all the robots are observing all the features, we can define a quantitative metric to measure the quality
of the global matching. We define a full match as an association set in which theN robots of the network match
the same feature. The optimal solution is found when the network finds the m full matches. In Fig. 3.8, 3.9
and 3.10 we show the percentage of full matches using two different matching functions, F1 = [pm, ps, ε] =
[0.1, 0.1, 0.2], and F2 = [pm, ps, ε] = [0.5, 0.05, 0.05], simulating the two examples above mentioned and
varying the number of features, of robots and the density of the network.

Influence of the number of features: Fig. 3.8 shows the percentage of full matches after the propagation
(P), and after executing the Maximum Error Cut (MEC) and the Spanning Trees (ST) resolution methods for
different values of m. The number of robots is fixed and equal to N = 8 and the density of the network is
δ = 0.5. For each number of features we have repeated the experiment 100 times with different initial con-
figurations. Independently of the matcher used, the number of features is a parameter without much influence
on the obtained results. This makes sense because each association set is treated independently, and in general,
with more features there are more sets, but not more complex inconsistencies. Therefore, the increase on the
number of features only implies the communication of larger messages and more computational demands. We
can also see that there is a difference in the values depending on the local matcher, but we leave this analysis
for later in the section.
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Figure 3.8: Number of matches against number of features.

Influence of the number of robots: In Fig. 3.9 we show the results for the same experiment fixing m to
15 features and varying the number of robots N . As the number of robots is increased, the percentage of full
matches after the propagation step is decreased because there are more outliers (and more inconsistencies). On
the other hand, using any of the resolution algorithms, the percentage is kept at good values.

Influence of the density of the network: In Fig. 3.10 we show the results considering different densities
of the network and fixed number of robots, N = 8, and features, m = 50. With more communication links
between robots our algorithms have a better performance. With few communication links it is more probable
for a spurious match to pass undetected, whereas with more links, it will be easier to detect inconsistencies.
This detection allows us to improve the results by deleting more spurious edges.

Influence of the local matching: The quality of the function used for the local matching is a parameter
that plays a fundamental role in our algorithm. In Figs. 3.8, 3.9 and 3.10 we can see that two different
matchers can return very different results. In Fig. 3.11 we have considered 9 different matchers and eval-
uate their performance with N = 8, m = 50, δ = 0.5 and ε = 0.2. The matchers have different values
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Figure 3.9: Number of matches against number of robots.
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Figure 3.10: Number of matches varying the network density.

of ps, [S1, S2, S3] = [0.05, 0.15, 0.25], and different values of pm, [M1,M2,M3] = [0.1, 0.25, 0.5]. As
expected, the performance is decreased when the number of missing links or the number of spurious links is
increased. This makes sense, because if the local matching is poor, so will be the global association. It is
interesting to note how the method is more sensitive to missing links than spurious links. This happens be-
cause with fewer links, and taking into account that we are only able to delete links, it is harder to obtain a
full match, whereas with more links, even if there are several spurious, cutting the appropriate links the full
matches are recovered. Nevertheless, in all the cases, using the resolution methods we obtain better results than
just considering the matching given by the propagation of the local matches.
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Figure 3.11: Performance of different matching functions.

In Fig. 3.12 we have repeated the same experiment but considering different values of ε, to see how the
MEC is affected by this parameter. In this case we only show the performance obtained using the MEC method,
because the propagation and the ST are not affected by this parameter. As expected, increasing ε the percentage
of full matches is increased, because it is easier to recognize the spurious matches. However, this increase is
very small, which introduces the question of why the MEC has a better performance than the ST, when the
quality of the links does not seem to be an important factor in the final result. The answer to this question is
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that by looking to individual links that break the inconsistencies, the MEC algorithm is implicitly considering
the topology of the associations, enforcing features strongly associated to remain that way.
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Figure 3.12: Quality of the Maximum Error Cut with different errors.

Finally, the graphic in Fig. 3.13 shows the percentage of spurious links (blue bars) and good links (red and
yellow bars) deleted by the two resolution algorithms and the percentage of inconsistencies that the MEC was
not able to solve (green bar), considering the same conditions as in Fig. 3.11. In this plot we can see that the
MEC is able to delete a bigger percentage of spurious links than the ST. On the other hand, both methods delete
more or less the same number of good links, which almost in all the cases represents a small percentage of the
total of good links. Finally, we observe in the green bar that the MEC is almost always able to manage the
inconsistencies.
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Figure 3.13: Percentage of links deleted.

In conclusion, our algorithms are able to improve the initial data association, in the sense that they are able
to identify and delete a great proportion of the spurious links introduced by errors in the local matching. As a
consequence, the global data association we obtain is better than the one obtained by just propagating the local
associations. In addition, the whole process is done in a distributed way.

3.5.2 Experiments with real images

We have also tested our proposal with real images considering different scenarios such as teams of mobile
robots with cameras, intelligent cell phones or surveillance camera networks. In each example we have used
different features and functions to find the local correspondences.

Data association using geometric constraints

Two examples are reported for this kind of constraints. In the first experiment there are 6 robots moving in
formation (around 5 m away from each other). Each robot acquires one image with its camera and extracts
SURF features [13] (Fig. 3.14). The epipolar constraint plus RANSAC [57] is used for the local matching. The
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detection and resolution of inconsistencies is analyzed for four different typical communication graphs (Fig.
3.15). The error function used for the Maximum Error Cut algorithm is the Sampson distance.

Figure 3.14: Images acquired by 6 robots moving in formation. We show an example of one inconsistency solved with
the Spanning Trees algorithm by deleting the black line. The blue lines show a full match and the green lines a partial
match. For clarity, we do not show the rest of the matches or inconsistencies.

(a) Pyramidal (b) Ring (c) Complete (d) Star-Ring

Figure 3.15: Formations used in the experiment.

The second example considers a set of images using one Iphone outside one building of the University of
Zaragoza. These pictures usually contain a GPS tag of where they were taken. We have used these tags to
define a proximity graph (Fig 3.16 (a)), with distances between the images of 10 to 20 meters. In this case we
have used the homography constraint to execute the local matches. The error of the matches has been computed
with ‖f1 −H12f2‖, normalizing with respect to the homogeneous coordinate.

We have chosen man made scenarios to be able to manually classify the matches, see Fig. 3.14 and Fig
3.16 (b). Although ground truth is not available in this examples, by looking at the correspondences we have
counted the amount of full matches. Since this number is very small or even zero due to missing matches and
occlusions caused by the trees in the images, For that reason we also define a partial match when a subset
larger than 50% of the robots (4 robots in the first example and 9 in the second) associates the feature without
spurious links. Finally, a wrong match is defined when there is at least one spurious link in the set but there is
no inconsistency. This last type of associations cannot be improved with the methods presented in this Chapter.

The results of the two experiments can be seen in Table 3.1. The number of direct matches and the number
of features involved increases with the number of edges in G. Having more local matches, the propagation
is able to find more associations and inconsistencies between robots that cannot communicate. Finding more
inconsistencies is something good because it means the detection of a spurious match, which can be corrected
in the global matching. In all the cases there are more full and partial matches after solving the conflicts, inde-
pendently on the method used. Since the resolution algorithms delete the links using only partial information,
it is also natural to have more wrong matches after the resolution. Nevertheless, the increase of partial and full
matches is in all the cases almost the same as the number of inconsistencies, which means that the resolution
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(a) Communication Network (b) Example of one inconsistency

Figure 3.16: 16 images of one building captured with one Iphone. (a) Communication network used in the experiment
and GPS positions of the images provided by the Iphone. (b) One inconsistency solved using the Maximum Error Cut.
The algorithm deletes the spurious association (black line): the macth between a feature in the fourth floor with another
feature in the third floor (zoomed region). Although the inconsistency only appears in one image it affects almost all the
captured images. The rest of the SURF points are in the images but for clarity we have removed the rest of the matches.

algorithms are in general able to obtain a good partition of the inconsistencies.
The number of inconsistencies also depends on the number of cycles in G because each cycle can generate

inconsistencies independently of the rest of the communication network. The size of the cycles also affect
the conflicts. Small cycles will cause more inconsistencies because the number of local matches required to
find a conflict is also small. On the other hand, the inconsistencies that appear because of small cycles in the
communication graph are usually easier to handle than inconsistencies caused by large cycles because they
contain a fewer number of features.

Data association using image templates

Another motivating example to test our algorithms is the association of people across multiple views in surveil-
lance tasks. We present an example to show the possibilities of our algorithm in this field of research.

In order to show in a clear way the behavior of the methods, in the experiment we have considered 6 pictures
with 6 people. The faces have been extracted using a Haar classifier and the implementation available in Open
CV. Each patch containing a face has been resized to a fixed dimension of 100x100 pixels. The premises for
the local matching are that the pictures are acquired in relatively close instants of time, therefore we can expect
similar conditions of lightning and appearance. However, we do not make any assumption about the geometry
of the environment or of the people visible in the images, i.e., there is no database to recognize the people and
geometric constraints to match cannot be used. With all these considerations, the local matching is carried out
computing the absolute differences between pairs of patches, weighted using an Epanichov kernel to give more
importance to the center of the patch than to the edges. We have used this matching function for simplicity but
more recent and robust functions can be used, see e.g., [52, 112].

In Fig. 3.17 (a) we show the matches found between neighbor robots after the propagation algorithm.
For a better interpretation we have manually classified the faces, assigning them identifiers. Each color in the
lines represent one association set. Robots without direct links between them, e.g., B and D, are robots that
cannot communicate. There are 4 different association sets and two unassigned features (D3 and E6). On of
the sets is a full match (feature 2), and the other 3 are inconsistencies, containing a total of 6 spurious links
(A1-D6, B1-C3, B3-C6, B5-C1, C1-D5 and E5-F4). In Fig. 3.17 (b) we show the final association after using
the Maximum Error Cut. In this case there are 7 association sets and 3 unassigned features. From the 7 sets
there are 2 full matches (features 2 and 4), 2 partial matches (features 1 and 3, being matched in 5 robots),
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Table 3.1: Associations for the different communication graphs
Comm. graph Fig. 3.15 (a) (b) (c) (d) Fig. 3.16 a

AFTER PROPAGATION
Total Features 1985 1704 2518 2144 4854

Total Links 1398 1017 2305 1582 3825
Inconsistencies 17 2 55 30 26
Incons. feats. 115 23 448 188 251
Incons. Links 106 20 518 175 266
Full Matches 11 5 11 14 0

Partial Matches 31 16 48 34 50
Wrong Matches 6 2 11 7 2

SPANNING TREES
Deleted Links 20 2 112 46 40
Full Matches 11 6 16 14 0

Partial Matches 40 17 88 50 58
Wrong Matches 12 2 36 15 4

MAXIMUM ERROR CUT
Incons. Not Solved 0 0 4 1 0

Deleted Links 24 2 103 38 36
Full Matches 13 6 18 15 0

Partial Matches 41 17 87 52 60
Wrong Matches 8 2 26 13 3

other 2 associations(feature 5 with 3 robots and feature 6 with 2 robots), and one wrong association (B5-C1).
The algorithm has been able to solve all the inconsistencies and has removed 5 of the 6 spurious links without
removing any inlier.
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(a) Data association after propagation (b) Data association after resolution

Figure 3.17: Matching faces across images.

In Fig. 3.18 we show one wrong association after the resolution. Note that in this inconsistency 2 links
should be removed in order to get the good association, whereas by removing only one we can break the
inconsistency. This shows the difficulty of the problem of solving inconsistencies, because even having the
knowledge of the whole graph (which we do not), every possible partition can be the right one, independently
on the number of removed edges.
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Figure 3.18: Inconsistency containing 2 spurious links. The inconsistency is solved by deleting only one of them.

Data association of stochastic maps

In this experiment each robot has explored a section of the environment and it has built a stochastic map
using a SLAM algorithm. When the exploration finishes, the local maps are merged into a global map of the
environment [5]. If the robots start the merging process using only its local associations, and there is any
inconsistency, at some point a robot will be forced to fuse two or more of its features into a single one. To
avoid this situation, they execute the presented algorithm solving any inconsistent association before merging
the maps.

We use a data set [49] with bearing information obtained with vision (Sony EVI-371DG). The landmarks
are vertical lines extracted from the images (Fig. 3.19). The measurements are labeled so that we can compare
our results with the ground-truth data association. We select 8 sections of the whole path for the operation of 8
different robots. A separate SLAM is executed on each section, producing the 8 local maps (Fig. 3.20). As in
many real scenarios, here the landmarks are close to each other, and the only information available for matching
them are their cartesian coordinates. The local data associations are computed using the Joint Compatibility
Branch and Bound (JCBB) [102] since it is very convenient for clutter situations like the considered scenario.
The JCBB is applied to the local maps of any pair of neighboring robots. We analyze the performance of the
algorithm under 3 communication graphs (Fig 3.21).

Figure 3.19: An example of the images used by the 8 robots during the navigation to test the proposed method [49]. We
test the algorithm using the lines extracted from natural landmarks (in yellow)

Table 3.2 shows the results for the different network topologies in Fig. 3.21. In Fig. 3.20 we can see the
local matches obtained under the communication graph in Fig. 3.21 (a). We assign to each edge an error that
depends on the number of matches between the local maps. Thus, we assume that an edge that belongs to a set
with many jointly compatible matches has many chances of being a good edge. Between the edges belonging
to the same set of jointly compatible associations, we use the individual Mahalanobis distance to differentiate
their errors. Then, we apply the two resolutions algorithms to solve the inconsistencies. The Spanning Trees
approach, which does not take into account the errors associated to the edges, produces good results. For the
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Figure 3.20: Local maps acquired by 8 robots (blue) during their exploration. We also display the features observed by
all the robots (gray crosses) to give an idea of the region explored by each robot. Each robot solves a local data association
with its neighbors in the communication graph in Fig. 3.21 (a). Although many of the local edges are good (green solid
lines), there are also some spurious matches (red dashed lines) that give rise to an inconsistency between 3 of the local
maps (inside the dark gray area).

(a) (b) (c)

Figure 3.21: Communication graphs between the 8 robots used for evaluating the data association of stochastic maps.

three communication schemes, it improves the amount of full and partial matches. However, the Maximum
Error Cut algorithm produces better results. The total number of edges deleted by this approach is lower,
whereas the number of full matches is higher than for the spanning trees method.

3.6 Discussion

Summing up, this chapter has made possible for a team of robots with multiple observations to distinguish
common features among the robots in a distributed fashion.

Using as input the local correspondences found between robots that can communicate, we have proposed
a fully decentralized method to compute all the paths between local associations. We have proven that the
algorithm is fully distributed, requires low communication and finishes in finite time. We have also dealt with
the problem of solving the inconsistencies that occur because of spurious local matches. In order to break
the inconsistencies, we have presented two different algorithms. One of them considers the quality of each
local match, when this information is available, finding and deleting the local match with the maximum error
that breaks the inconsistency. The other algorithm computes different spanning trees free of conflicts using a
breadth first search technique. Additionally, an extensive evaluation of the proposed algorithms has shown that
they can be applied with a wide variety of features and local matchers.

With the execution of these algorithms, the team of robots has the knowledge of the real number of features
observed and which observations should be mixed in the consensus process. On the other hand, robustness
issues have not been completely handled. It is true that our algorithms are able to detect and eliminate a large
percent of the spurious matches introduced by the local matching function. However, as stated in Remark
3.3.8, those spurious that do not belong to an inconsistency will pass undetected in the global data association.
Moreover, there still might be a small percentage of outliers that our resolution algorithms did not delete.
Therefore, additional mechanisms are required during the consensus computation, such that they make the
system robust to these kind of errors.
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Table 3.2: Results for the data association of stochastic maps
Comm. graph (a) (b) (c)

AFTER PROPAGATION
Total Features 194 194 194

Total Links 82 93 111
Inconsistencies 2 6 8
Incons. feats. 8 35 49
Incons. Links 6 33 53
Full Matches 55 49 46

Partial Matches 4 3 2
Wrong Matches 10 7 6

SPANNING TREES
Deleted Links 2 10 16
Full Matches 55 53 50

Partial Matches 6 5 6
Wrong Matches 12 13 15

MAXIMUM ERROR CUT
Incons. Not Solved 0 0 1

Deleted Links 2 7 14
Full Matches 55 55 52

Partial Matches 4 3 3
Wrong Matches 12 11 11

Proofs

Proof of Proposition 3.3.2 (Limited Communications)

By the definition of the operations in lines 6 and 9 of Algorithm 1 we can see that the components of yir change
their value at most once during the whole execution, for all i ∈ V, r ∈ Si. This means that it is not necessary
for the robots to send the whole blocks yir to their neighbors but just the indices of the components that have
changed their value from false to true. Each element can be identified by two data, the row and the column and
there are a total ofm2

sum elements. Therefore, in the worst case, the amount of transmitted information through
the network during the whole execution of the algorithm now is 2m2

sum.

Proof of Proposition 3.3.3 (Correctness)

Let yir(t) be the number of components in yir(t), such that [yir(t−1)]u = 0 and [yir(t)]u = 1, u = 1, . . . ,msum.
This number represents the number of new paths found in Gdis at time instant t that includes the features r.
These new paths come either from the execution of line 6, or the execution of line 9.

Let ti be the first time instant such that yir(ti) = yir(ti − 1) ∀r and yir(ti) = 0 because no component has
changed its value from zero to one for any of the features. This means that, for any feature in Si, there are no
new paths with other features. By the physical properties of a path, it is obvious that if there are no new features
at minimum distance ti, it will be impossible that a new feature is at minimum distance ti + 1. In addition, if
no new paths at distance ti + 1 can be found, line 9 of Algorithm 1 will not find new paths either. At this
point the condition of line 12 is true and the algorithm ends. Since the solution of the algorithm is equivalent to
the computation of the powers of the adjacency matrix, conditions (3.7)-(3.8) can be applied to [yir]u to detect
conflictive features.
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Proof of Theorem 3.3.4 (Limited Iterations)

We already know that the algorithm finishes in at most df iterations. In the case that the matching does not
contain any inconsistency df ≤ 2N and the result is valid.

Now let us suppose that there is one inconsistency. This implies that the communication graph, G, contains
one cycle of arbitrary length, `. We divide the number of iterations in three parts. First N − ` iterations are
required to ensure that the information of all the features belonging to the robots outside the cycle reaches at
least one robot in the cycle.

The second part requires 3
4` + 1 iterations. In the worst case, the diameter of the subgraph defined by the

cycle is `/2 and only ` + 1 features in the cycle form the inconsistency, which means that only one robot will
execute, at some point, lines 8-10 of Algorithm 1. It is clear that after `/2+1 iterations there will be at least two
robots in the cycle, at maximum distance from each other (`/2), with all the information. One of the robots, the
one with the inconsistency, will obtain the information from the execution of 8-10 in Algorithm 1. The other
robot is the one with the common feature, detected in lines 8-10 of the algorithm by the first one. After this
point `/4 iterations are required to share this information with the rest of the robots in the cycle and we can
ensure that all the robots in the cycle have all the information about the inconsistency. If there are more than
`+ 1 features inside the cycle forming the inconsistency the result is still valid.

With all the robots in the cycle knowing all the features that form the inconsistency, the number of additional
iterations required to transmit the information to the rest of the network is upper bounded again by N − `. If
we sum all the iterations we obtain 2N − 5

4`+ 1. Since the minimum length of a cycle is 3 the above quantity
is always lower than 2N.

Proof of Proposition 3.4.2 (Number of Partitions)

Each conflict-free component can contain, at most, one feature observed by each robot i ∈ Vinc. Then there
must be, at least, maxi∈Vinc m̃i = m̃i? components.

Proof of Proposition 3.4.5 (Convergence)

The features involved in the inconsistency form a strongly connected graph. For a given graph, the max con-
sensus update is proved to converge in a finite number of iterations [18]. For any r, s ∈ C such that [EC ]r,s ≥ 0,
by eq. (3.11) and the symmetry of EC , the final consensus values of zr and zs satisfy, element to element, that

zr ≥ zsPrs and zs ≥ zrPsr. (3.16)

Using the properties of the permutation matrices, Prs = Psr = P−1
sr , we see that zsPrs ≥ zr, which combined

with eq. (3.16) yields to zr = zsPrs.
For any feature, r, taking into account eq. (3.12), the update of the rth element of zr, [zr(t+ 1)]r, is

[zr(t+ 1)]r = max
s∈C, [EC ]r,s≥0

([zr(t)]r, [zs(t)]s). (3.17)

Recalling the first point in assumption 3.4.3, the initial value of [zr(0)]r = err = 0, for all r, then [zr(t)]r =
0,∀t ≥ 0.

Proof of Theorem 3.4.6 (Values for Bridges)

First note that (s, u) is a bridge, therefore it creates a partition of C in two strongly connected, disjoint subsets

Cs = {r ∈ C | d(r, s) < d(r, u)},
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Cu = {r ∈ C | d(r, u) < d(r, s)}. (3.18)

In the above equations it is clear that s ∈ Cs and u ∈ Cu.
We will focus now on the values of the sth element of the state vector for the nodes in Cu and the uth

element for the nodes in Cs,
[zr(t)]u, r ∈ Cs, and [zr(t)]s, r ∈ Cu.

In the first case, for any r ∈ Cs \ s, update rule (3.12) is equal to

[zr(t+ 1)]u = max
r′∈Cs, [EC ]r,r′≥0

([zr(t)]u, [zr′(t)]u), (3.19)

because r 6= u 6= r′. The nodes in Cu are not taken into account because that would mean that (u, s) belongs to
a cycle and it is not a bridge. The special case of feature s has an update rule equal to

[zs(t+ 1)]u = max
r′∈Cs,[EC ]s,r′≥0

([zs(t)]u, [zr′(t)]u, [zu(t)]s). (3.20)

In a similar way the updates for features in Cu are

[zr(t+ 1)]s = max
r′∈Cu, [EC ]r,r′≥0

([zr(t)]s, [zr′(t)]s),

[zu(t+ 1)]s = max
r′∈Cu,[EC ]u,r′≥0

([zu(t)]s, [zr′(t)]s, [zs(t)]u).

Considering together all the equations and the connectedness of Cu and Cs, all these elements form a con-
nected component and they will converge to

[zr(t)]u, [zr′(t)]s → max
r∈Cs, r′∈Cu

([zr(0)]u, [zr′(0)]s). (3.21)

Since all the features r ∈ Cs \ s are not associated with u, [zr(0)]u = −1. Analogously, for all the features
r ∈ Cu \ u, [zr(0)]s = −1. Finally, for the features u and s, by the second and third point of assumption 3.4.3,
[zu(0)]s = eus = esu = [zs(0)]u ≥ 0 > −1. Therefore this subset of elements of the state vectors converge to
the error of the edge (u, s), eus.

Proof of Theorem 3.4.7 (Values for Cycles)

We will use the following lemma to proof the result

Lemma 3.6.1. Let us consider a feature u, such that it is an articulation vertex, defined as a node in C whose
deletion increases the number of connected components of C. Denote Cu and Cu′ the two partitions generated
by its deletion. For any r ∈ Cu, s ∈ Cu′ , [zr(t)]s will converge to the same value as [zu(t)]s and [zs(t)]r will
converge to the same value as [zu(t)]r. Moreover [zr(t)]u will converge to a different value than [zs(t)]u.

Proof. Considering the fact that u is the only feature that connects Cu and Cu′ , the permutations in (3.12)
for elements in Cu matched with u will not change the value of the components related to elements in Cu′ and
viceversa. On the other hand the permutations will affect the value of the [zr(t)]u and [zs(t)]u for features
matched to u, shifting it to different positions in the two partitions. Then using Proposition 3.4.5 the result
holds.
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Proof of Theorem 3.4.7
Let C̄` = C \ C` be the rest of the features in the inconsistency. Given a feature r ∈ C̄` there exists a unique

s ∈ C` such that there is at least one path of features in C̄` that ends in s. The uniqueness of s comes from the
fact that if there were another feature s′ ∈ C`, reachable from r without passing through s, that would mean
that r is also part of the cycle. Note that this does not discard the possibility that r and s belong to another cycle
different than C`. Also note that s = arg mins′∈C` d(r, s′).

Since s is the only connection with C`, then it is an articulation vertex and, by Lemma 3.6.1, for any
s′ ∈ C` \ s, [zr]s′ will have final value equal to [zs]s′ . Therefore, if we show that (3.15) is true for the features
belonging to the cycle then the theorem is proved.

Let us see what happens to features inside the cycle. First note that r = arg mins∈C` d(r, s), ∀r ∈ C`,
and therefore, by Proposition 3.4.5, this element is always zero. Now, for any r ∈ C`, if we consider another
element s ∈ C`, such that r is not directly matched to it, the update rule (3.12) is

[zr(t+ 1)]s = max
u∈C`,[EC ]r,u≥0

([zr(t)]s, [zu(t)]s). (3.22)

We have omitted other possible features that are directly matched to r and that do not belong to C` because they
cannot be matched to s, otherwise they would belong to C`, and then, because of Lemma 3.6.1, they do not
affect to the final value of [zr]s.

The special case of features in the cycle, s′, directly matched to s has update rule equal to

[zs′(t+ 1)]s =

max
u∈C`\s,[EC ]s′,u≥0

([zs′(t)]s, [zs(t)]s′ , [zu(t)]s).

Due to the permutation, [zs′ ]s depends on the value of [zs]s′ . Then, by Proposition 3.4.5 and the connectedness
of the cycle, in the end [zr]s will have the same value for all r ∈ C` \ s, and equal to the final value of
[zs]s′ , for any s′ in the cycle directly associated to s. By applying the same argument for any other element
corresponding to a feature in C` we conclude that after the execution of enough iterations of (3.12), for any
r ∈ C`, [zr]s = [zr]s′ , ∀s, s′ ∈ C` \ r. Thus, each feature inside the cycle will end with ` − 1 elements in its
state vector with the same value, the maximum of all the considered edges, and (3.15) is true.

Proof of Theorem 3.4.9 (Properties of the Spanning Trees resolution)

(i) The maximal depth of a conflict-free component isN since, if there were more features, at least two of them
would belong to the same robot. Then, after at most N iterations of this algorithm, no more features are added
to any component Cq and the algorithm finishes.

(ii) There is a path between any two features belonging to a conflictive set C. Therefore, there is also a path
in Ga between any two features assigned to the same component Cq. Since the algorithm does not delete edges
from Ga within a component (case (a)), then Cq it is also connected in the new partition.

(iii) By construction, two features from the same robot are never assigned to the same component Cq (case
(c)). Therefore, each component is conflict-free.

(iv) Each conflictive set has more than one feature. Because of Assumption 3.2.1, each feature and its
neighbors are conflict free. Therefore, each component Cq contains, at least, its originating feature, and a
neighboring feature. Thus, it has at least two features.



Chapter 4

De-RANSAC: Distributed Robust Consensus

“Robustness is the ability of a system to cope with errors during the execution.” This property is essential in
any robotic system. A reliable robotic network must be able to fuse its perception of the world in a robust way.
Data association mistakes and measurement errors are some of the factors that can contribute to an incorrect
consensus value. In this chapter, we present a distributed scheme for robust consensus in autonomous robotic
networks. The method is inspired by the RANSAC (RANdom SAmple Consensus) algorithm. We propose a
distributed version of this algorithm that enables the robots to detect and discard the outlier observations
during the computation of the consensus. The basic idea is to generate different hypotheses and vote for them
using a dynamic consensus algorithm. Assuming that at least one hypothesis is initialized with only inliers, we
show theoretically and with simulations that our method converges to the consensus of the inlier observations.

4.1 Introduction

In the previous chapter we provided the network with an algorithm able to find correspondences between all the
observations of the robots. In a perfect setup, this would be enough to compute the consensus. Unfortunately,
in a real scenario there is still the possibility that the given data association contains spurious correspondences.
This can be due to inconsistencies wrongly solved in our previous algorithm or by mistakes caused by the local
matcher and undetected by our method, as mentioned in Remark 3.3.8. One of the most important properties
that any robotic system requires is robustness against different types of failures. A major drawback of the
standard distributed averaging algorithm is the lack of robustness to erroneous values. That is, the consensus
value can be severely affected by wrong sensor measurements or outliers. Without proper mechanisms that
ensure the rejection of the spurious information while fusing the data, the final consensus estimate can be
highly unreliable. An example of this problem is illustrated in Fig. 4.1. Five robots are looking for an exit door

Door 1

Door 2

Window

Limited
communications

Spurious
Information

Good
Information

Figure 4.1: Five robots are looking for the exit door of a room. Two of the robots have wrong estimates that must be
discarded in the fusion algorithm. The proposed algorithm solves this problem in a decentralized way.
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of a room. Due to perception or data association mistakes, two of the robots have measurements of another
door and a window. If the information is fused together without additional control mechanisms, the identified
exit door location will be biased and unreliable. This chapter focuses precisely on this aspect and aims to find
a distributed algorithm that can solve this problem.

Different approaches have been proposed to cope with noisy information in distributed consensus algo-
rithms. The works in [59, 72, 118] are focused on the optimal mix of the measures minimizing some error
function, but do not consider situations in which some of the measurements are spurious and must be discarded
from the fusion. Similarly, channel noise is addressed in [73, 154]. These works assume that each message
introduces additive noise in the estimations of the nodes and propose solutions to guarantee convergence to the
desired result. Faulty nodes or malicious agents are treated in [45, 46, 116, 139, 140]. The main idea of these
approaches is that the faulty nodes’ actions depart from the expected behavior and the good nodes are able to
detect them.

Compared to all these approaches, we assume that the communication protocol used by the robots guaran-
tees the reception of the sent information without noise. The robots in the network are cooperative and behave
as expected; however, some of them have outlier information. We deal with the problem of identifying the
robots with outlier information and discarding their contributions to the final consensus value.

In computer vision, RANSAC (RANdom SAmple Consensus) [43] is a widely used algorithm for robust
matching between pairs of images. In the last few years, new variations to the basic algorithm have been
presented [26, 28, 104]. However, none of these algorithms are implementable over distributed networks. The
closest approach to a distributed scenario can be found in [156]. There, the information to be fitted is separated
in several non-overlapping subsets and the hypotheses are generated choosing data from them. However, the
whole process is still centralized.

The main contribution of this chapter is a new robust distributed consensus method, De-RANSAC, in which
the outlier observations are identified and the consensus is achieved discarding their information. Our approach
extends RANSAC to a distributed setup. Briefly, the RANSAC steps can be summarized as follows:

• Create random hypotheses with subsets of observations.

• Choose the best hypothesis using a voting process.

• Compute a better model considering only the observations that voted the best hypothesis as good.

Our algorithm executes the same three steps in a fully decentralized fashion, computing a robust consensus.
Moreover, in our approach robots are allowed to change their opinion, making the voting process dynamic and
executing the three steps simultaneously. The algorithm expands the utility of RANSAC by adding a new set
of applications where it can be used in the field of sensor networks, such as robust localization of events of
interest [131], face recognition [145], distributed labeling [69] or collaborative sensor-bias calibration [19]. As
such, our algorithm can be seen as a contribution to this body of literature.

Additionally, the chapter presents two other contributions:

• Two extensions of the averaging rule to allow robots without an observation to participate in the consen-
sus process and to guarantee convergence in finite time when the consensus value has finite precision.

• A distributed averaging primitive to compute the number of active robots in a network.

Since De-RANSAC makes use of these extensions, we start the chapter by explaining them in detail and then
focus on the outlier detection problem. The work presented here has been discussed in [87–89]

4.2 Distributed Averaging using homogeneous coordinates

As we have seen in the previous chapter, using our data association algorithm there might be elements for which
not all the robots have an observation. The general averaging algorithm requires all the robots to have some
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initial value to introduce in the algorithm. We propose a modification of the algorithm to obtain an average of
the measurements of a subset of the robots without excluding from the linear iteration any of the participating
robots. The modification makes use of another classic concept in computer vision, homogeneous coordinates.

The homogeneous coordinates of a d1-dimensional vector are defined as a (d1 + 1)-dimensional vector
where the additional coordinate is used as a scaling factor [57]. In this way all the vectors with the form
(x, 1) ≡ (ρx, ρ), are equivalent in the projective space for any ρ 6= 0. Let xhi (t) be the scale coordinate of
the robot i at time instant t. We will define the extended measurements of the robots, xei (t) = [xi(t), xhi (t)],
as the measurements expressed in homogeneous coordinates. Let Vh ∈ V be the set of robots that have some
initial information to fuse in the consensus process. Each robot initializes its extended measurement with the
following rule:

xei (0) =

{
[xi(0)T , 1]T if i ∈ Vh
0T otherwise

(4.1)

Since the robots know if they belong to Vh, there is no synchronization required for this.

Theorem 4.2.1 (Consensus with homogeneous coordinates). If Vh 6= ∅, then the iteration rule (2.2), applied
to xei (t) with the initial conditions defined in (4.1) converges, in normalized coordinates, to

xei (t)→ [
1

|Vh|
∑
j∈Vh

xj(0)T , 1]T as t→∞ ∀i ∈ V.

Let us note that this idea can also be used in situations in which one robot has lost its sensor due to any kind
of failure but its communication capabilities remain intact or, as we will see, when there is one or more robots
with information that we do not want to mix in the consensus.

4.2.1 Averaging in Finite-Time

For general graph-switching sequences, the asymptotic convergence of (2.2) does not achieve convergence in a
finite number of steps. However, when consensus involves integers or real numbers with a finite precision this
is possible.

Definition 4.2.2. We will say that Φ ⊆ Rd2 is a ϕ-set, ϕ ∈ R, d2 ∈ N if ∀ x, x′ ∈ Φ

|xk − x′k|
ϕ

∈ N, ∀k = 1, . . . , d2, (4.2)

with xk, x′k being the kth component of x, x′ respectively.

Considering the examples above mentioned, the set of integers, Z, is defined as a 1-set and the set of reals
with s decimal digits as a 10−s-set.

We introduce next a modification of the standard consensus algorithm when dealing with elements in a
ϕ-set. The idea of the new rule is to keep the distributed update in (2.2) and combine it with a rounding rule
that returns the closest element in Φ. If the average, or the value of some function evaluated in the average,
belongs to Φ, then the algorithm will reach the exact consensus value for all the robots in finite time.

Theorem 4.2.3 (Distributed Averaging in Finite-Time). Let g(x) be a continuous function, g : Rd1 → Rd2

and xi(0) ∈ Rd1 be initial conditions with x̄ = 1
N

∑
i∈V xi(0) their average. Given Φ as a known ϕ-set, if

g(x̄) ∈ Φ, then the iteration 
xi(t+ 1) = wii(t)xi(t) +

∑
j∈Ni(t)

wij(t)xj(t),

ˆ̄x(t+ 1) = arg min
x∈Φ
‖x− g(xi(t))‖2,

(4.3)
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leads to the finite-time convergence of the variables ˆ̄x to the consensus value g(x̄). That is,

∃t∗ > 0 | ∀t > t∗, ˆ̄x(t) = ˆ̄x(t∗) = g(x̄), ∀i ∈ V.

The proposed rule converges in finite time to the same value for all the robots. The additional required
information is the value of ϕ, which is easy to know before running the application. Examples of different
functions that can be used within this algorithm are provided ahead in the chapter.

4.2.2 A Distributed Primitive for Robot Counting

The number of robots participating in the consensus is another information that in many situations will be useful
for the team, but that may not always be available.

We propose a distributed algorithm that allows a network to compute the number of robots participating in
the consensus process. The algorithm is based on distributed averaging combined with a max-consensus rule.
The idea of the algorithm is to make the network evolve in such a way that the sum of the initial conditions is
equal to one. Since the average value is divided by the total number of robots involved in the computation, the
system will tend to 1/N and every robot will be able to know how many robots are participating.

LetNi(t), i ∈ V , be the estimated value ofN that robot i has at time instant t. In order to makeNi(t)→ N
the robot exchange a 2-dimensional vector, β, initialized as

βi(0) = (IDi, 1)T , (4.4)

where IDi is the identifier of robot i in the network, which by Assumption 2.2.1 is different to all the others
identifiers. At each time step the robots update their values

βi1(t+ 1) = max(βi1(t), βj1(t)), j ∈ Ni(t), (4.5)

βi2(t+ 1) = wii(t)βi2(t) +
∑

j∈Ni(t)

wij(t)βj2(t) + ui(t+ 1), (4.6)

denoting βi1(t) and βi2(t) as the first and second component of β(t) that robot i has at time instant t and wij(t)
as defined in Assumption 2.3.3. In eq. (4.6), the initial input is set to zero, ui(0) = 0, and for the rest of time
instants is defined as

ui(t+ 1) =

{
−1, if βi1(t) 6= IDi and

∑t
s=0 ui(s) = 0

0, otherwise
(4.7)

Theorem 4.2.4 (Distributed Robot Counting). If all the robots have initial values, β, defined in (4.4) and
update their states using (4.5) and (4.6), then, for all i ∈ V,

1. βi1(t)→ maxi∈V IDi, in finite time.

2. βi2(t)→ 1
N as t→∞.

3. The iteration rule

Ni(t) = arg min
n∈N
|n− 1

βi2(t)
|, (4.8)

converges to N in finite time.
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4.3 Outlier Detection with RANSAC

Before proposing our robust distributed algorithm, let us first consider the problem of robust estimation and
outlier detection in a centralized setup. In this case a central computer has access to the samples of all the
robots, X = {xi(0)}, i ∈ V. In centralized scenarios, a widely used algorithm for robust estimation and outlier
detection is the RANSAC algorithm [43]. This algorithm was proposed to estimate the parameters of a model
that can be used to explain a set of sampled data in the presence of spurious information.

The basic idea of RANSAC is to generate a limited number, K > 0, of hypothetical models, also called
hypotheses, using random subsets of samples, and then select one of the models using a voting system. The
algorithm makes the following assumption, which we keep in our distributed version of the method.

Assumption 4.3.1. RANSAC assumes that:

• Each sample has independent probability, 0 < pin ≤ 1, of being inlier information.

• There exists a procedure to estimate a hypothetical model to fit the data using at least c samples.

• If a model is generated using c inlier samples, then the model fits all the inliers.

In order to decide how many hypotheses generate, RANSAC uses a stochastic approach. Each hypotheses is
generated by randomly choosing c samples from X and computing the model that fits this subset. Considering
Assumption 4.3.1, the probability of one hypothesis to be composed only by inliers is (pin)c. Therefore, the
probability that one hypothesis contains at least one outlier is 1−(pin)c. Defining psuc as the desired probability
to generate one hypothesis using only inlier samples, then K must be

K =
log(1− psuc)

log(1− (pin)c)
. (4.9)

The larger psuc is chosen, the better the algorithm will work but at the cost of having a larger K, which will
imply more computations.

After that, the algorithm uses a voting system to rank all the hypotheses. Given a threshold τ > 0, and an
error function, we say that x ∈ X is an inlier with respect to one hypothesis, h, if e(x, h) ≤ τ, and then votes
for it

vote(x, h) =

{
1, e(x, h) ≤ τ,
0, e(x, h) > τ.

(4.10)

The selection of τ depends on X and the model to fit. Small values of τ will return more accurate results but
they might discard some possible inliers.

With all the hypotheses voted, RANSAC chooses the one with the most votes,

h∗ = arg max
k=1,...,K

(
∑
x∈X

vote(x, h`)) (4.11)

and determines a better model using the subset of inliers for h∗; i.e., Xh∗ = {x ∈ X | e(x, h∗) ≤ τ}.
Considering again the distributed scenario, note that, even if all the robots had access to all the samples,

RANSAC could not be used independently by each robot to detect the outliers because it is a non deterministic
algorithm. Two different executions of the algorithm can return different results and therefore, additional
mechanisms are required to ensure that all the robots achieve the same result.
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4.4 De-RANSAC: Robust Consensus Algorithm

In this section we provide a distributed solution to detect the outliers and compute the robust consensus. The
process is inspired by the RANSAC algorithm. In order to make it distributed, several issues need to be
addressed:

• The first problem is the generation of the hypotheses by the network.

• The second issue to consider is how these hypotheses are voted for by all the robots.

• The last problem, once the best hypothesis has already been selected, is the computation of the final
solution using only inlier information.

Along the section we explain how these issues are handled in our algorithm.

4.4.1 Distributed Generation of Random Hypotheses

The number of hypotheses required to have a probability of success equal to psuc is the same as in the centralized
case, eq. (4.9). However, each robot initially has only one sample, its own information, xi(0). We will denote
by Vin ⊂ V the subset of robots with inlier information.

Following the RANSAC principles, we assume that each observation has equal probability of being a good
observation pin independent from the probability of the rest of observations. Therefore, the number of hypothe-
ses, K, is exactly the same as in the centralized case, eq. (4.9). The value of K depends on the number of
samples required to generate one hypothesis. Since we are considering the average as our consensus objective
function, we define one hypothesis as the average of a subset of the observations. Then, the number of samples,
c, can be chosen arbitrarily. We discuss the selection of this parameter in the simulations.

For one hypothesis, h, let ∅ 6= Vh ⊆ V be the subset of c robots whose observations generate the hypoth-
esis. Given a fixed c, to build one hypothesis h we require c robots to belong to Vh, |Vh| = c. We use a max
consensus algorithm with random initial conditions to decide which c robots form the subset.

Initially, each robot generates a random number hi > 0 and the hypothesis set hi(0) = {hi}, which is
updated using

hi(t+ 1) = maxc(hi(t)
⋃

j∈Ni(t)

hj(t)), (4.12)

where maxc selects the c maximum elements of the set. After the execution of (4.12), hi will converge to the
c maximum values of the network for all i. Assuming that each robot generates a different random number the
subset Vh is established as

Vh = {i ∈ V | hi ∈ hi(dv)}. (4.13)

Let us note that each robot knows if it belongs to Vh in a local way. The process can also be executed for all
the hypotheses in parallel. Once the robots know if they should contribute with their observations to generate a
specific hypothesis, they can initialize their value for that hypothesis using eq. (4.1).

The hypotheses are computed by the whole network using distributed averaging. We denote by xh the
average of the observations of the robots in Vh. By Theorem 4.2.1, we can assure that all the robots will
eventually have the value of each hypothesis.

4.4.2 Distributed Voting of the hypotheses

With all the hypotheses created, the robots must vote for them in order to select the best one. We propose a
general procedure to vote the hypotheses based on distributed averaging.
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In order to vote for the set of hypotheses, each robot initializes a voting vector, υi ∈ RK , i = 1, . . . , N,
with as many elements as hypotheses to be voted for. Initially, for every h = 1, . . . ,K, the hth component of
υi, is specified as

υhi (0) = vote(xi, h) =

{
1, ‖xi − xh‖ ≤ τ,
0, ‖xi − xh‖ > τ,

(4.14)

where τ > 0 is the threshold in RANSAC to determine the votes. We are considering the Euclidean distance
as the error function to assign the votes but other functions depending on the context could be used, e.g., the
Mahalanobis distance.

After this, the vote vectors are updated using distributed averaging of the initial values of the υi.

Proposition 4.4.1 (Distributed Voting in Finite Time). Given initial conditions as in (4.14), the rule (4.3)
with g(υ) = Nυ converges to the sum of the initial conditions

arg min
υ∈N
‖υ −Nυi(t)‖2 →

∑
i∈V

υi(0),

which is the total number of votes for each hypothesis, in finite time.

Once the iteration has converged, the largest entry of υi will correspond to the hypothesis with the most
number of votes. Since the hypotheses are sorted in the vector, if there exists a tie between two or more
hypotheses every robot will keep the one with the smallest index,

h∗ = min(arg max
h=1,...,K

υhi ), (4.15)

4.4.3 Consensus of the Inliers

The last step in the RANSAC algorithm is a refinement of the solution considering the set of measurements
that voted the best hypothesis. This way the algorithm obtains a final consensus erasing the influence of the
spurious information.

Let Vin = {i ∈ V | ‖xi − xh∗‖ ≤ τ} ⊆ V be the set of inlier robots, which is the set that must contribute to
the final consensus value. The desired final value is

xi(t)→
1

|Vin|
∑
j∈V

xj(0), ∀i ∈ V. (4.16)

We can use again the averaging rule using homogeneous coordinates to compute the consensus of the inlier
robots. If each robot initializes its extended measurement with the following rule,

xei (0) =

{
[xi(0)T , 1]T if i ∈ Vin

0T otherwise
, (4.17)

then, applying the standard averaging, eq. (2.2), and normalizing by the homogeneous coordinate, by Theorem
4.2.1 we assure that the average of the inliers is obtained by the whole network.

4.4.4 Analysis of the Algorithm

De-RANSAC is summarized in Algorithm 4. We compare now our approach with the centralized version of
RANSAC and provide an analysis of the complexity of the algorithm in terms of computations and communi-
cations.

Distributed Consensus in Multi-Robot Systems with Visual Perception



72

Algorithm 4 De-RANSAC scheme - Robot i
Ensure: Computation of the average of the data fitting the most voted hypothesis

1: Compute K = log(1−psuc)
log(1−pcin)

2: – Do this process in parallel for the K hypotheses
3: Generate a random number hi
4: Compute Vh by hi(t+ 1) = maxc(hi(t)

⋃
j∈Ni(t)

hj(t))

5: Initialize the hypothesis using eq. (4.1)
6: Compute the hypothesis using distributed averaging
7: Initialize υhi (0),

υhi (0) = vote(xi, h) =

{
1, ‖xi − xh‖ ≤ τ,
0, ‖xi − xh‖ > τ,

8: Decentralized voting
υhi (t+ 1) = wii(t)υ

h
i (t) +

∑
j∈Ni(t)

wij(t)υ
h
i (t)

9: Select h∗ = min(arg max
h=1,...,K

υhi )

10: – At this point only one hypothesis remains
11: Initialize the final consensus value

xei (0) =

{
[xi(0)T , 1]T if ‖xi − xh∗‖ ≤ τ
0T otherwise

12: Compute the consensus value

xei (t+ 1) = wii(t)xei (t) +
∑
j∈Ni

wij(t)xej(t),

13: Normalize the consensus value dividing by xhi

If we compare De-RANSAC with the centralized RANSAC, the properties of both algorithms are the same.
For the same input parameters and number of hypotheses both algorithms have the same probability of com-
puting a good solution and detect all the outliers because they rely on the same assumptions and execute the
same steps.

Regarding the computational complexity of our approach, note that the distributed algorithm does not re-
quire heavy computational requirements. The three steps of the algorithm require standard averaging execu-
tions. Therefore, the algorithm is suitable for low computation capabilities.

In terms of communications the algorithm is more demanding than the standard averaging consensus be-
cause it requires 3 different computations of average values (hypotheses, votes and inliers). The size of the
messages is also bigger than for a general averaging procedure. The hypotheses generation computes K differ-
ent averages in parallel, then in this step the size of the messages is K times the size of the standard messages.
The voting procedure computes the average of a K dimensional vector and the consensus on the inliers re-
quires one additional component in the vectors, the homogeneous coordinate. Nevertheless, the amount of
extra communications of the algorithm is justified by the robustness provided by RANSAC, essential in robotic
applications.
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4.5 De-RANSAC using Dynamic Voting

The previous approach requires three different consensus steps, one for the generation of the hypotheses, an-
other one for the distributed voting process and a last one to compute the ML of the inlier observations. Using
dynamic consensus techniques [163] we can execute the three steps of De-RANSAC at the same time, reducing
the times distributed averaging needs to be executed from three to just one. We explain the process for the
problem of computing the maximum likelihood (ML) of a set of uncertain measurements. We will show that,
if one hypothesis is generated only using robots in Vin, then the ML of the inlier robots will be obtained by the
algorithm in only one consensus step.

We consider that each robot has a noisy initial measurement, xi ∈ Rd1 , with uncertainty contained in the
symmetric, semi-definite positive covariance matrix Λi ∈ Rd1×d1 . The maximum likelihood (ML), θML, is
estimated using a weighted least-squares approximation from the robot measurements as

θML =

(
N∑
i=1

Λ−1
i

)−1 N∑
i=1

Λ−1
i xi. (4.18)

Since there are some observations that are outliers, we need to discard them from the computation of the
ML. We follow again the steps of RANSAC to detect and discard the outliers, i.e., generate a set of hypotheses,
vote for them and pick the one with the most votes. However, we are going to execute the three steps at the
same time. The difference now is the use of a dynamic voting approach where the robots vote for (or not)
a hypothesis when their observations pass (or not) a distance test at each iteration t. In order to make the
presentation clearer, we describe the algorithm just for one hypothesis, omitting the superscript h.

The robots that initially configure the hypothesis are chosen as in the static version of De-RANSAC. In this
case, the hypothesis is defined as the ML of a subset of the observations,

θML =

∑
i∈Vh

Λ−1
i

−1 ∑
i∈Vh

Λ−1
i xi. (4.19)

Proposition 4.5.1 (Distributed Computation of a Partial ML). Let the variables [Pi(0), qi(0)] be initialized
by

[Pi(0), qi(0)] =

{
[Λ−1

i ,Λ−1
i xi] if i ∈ Vh

[0, 0] otherwise
. (4.20)

Then, the variable θi(t) = (Pi(t))−1qi(t), with updates of P and q using (2.2), asymptotically converges to
(4.19) for all i ∈ V .

This means that the network is able to compute partial maximum likelihoods of different subsets of the
robots in a decentralized way. The covariance associated to the partial ML will be ΛML = 1

N limt→∞(Pi(t))−1.

In contrast with the static voting approach, now the voting process starts at the same time as the hypotheses
generation, eq. (4.20). The initial votes are

υi(0) =

{
1, if i ∈ Vh,
0, otherwise.

(4.21)
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Instead of waiting until the computation of the partial ML, the new local updates for each robot are

Pi(t+ 1) = wii(t)Pi(t) +
∑

j∈Ni(t)

wij(t)Pj(t) + uP
i (t),

qi(t+ 1) = wii(t)qi(t) +
∑

j∈Ni(t)

wij(t)qj(t) + uq
i (t),

υi(t+ 1) = wii(t)υi(t) +
∑

j∈Ni(t)

wij(t)υj(t) + uυi (t),

(4.22)

where uP
i (t),uq

i (t) and uυi (t) are the dynamic inputs in the consensus rule.
In order to decide the inputs, each robot executes the Chi-square test with the current value of θi(t) =

P−1
i (t)qi(t). With a slightly abuse of notation, we denote this test by

χ(xi,θi(t),Λi) = χi(t) =

{
1, if

√
(xi − θi(t))T (Λi)−1(xi − θi(t)) ≤ χ2

d1,p
,

0, otherwise ,
(4.23)

where χ2
d,p is the value of the Chi square distribution for d1 degrees of freedom and confidence probability p.

There are two issues to comment about this test. Firstly, for the time instants t for which P−1
i (t) does

not exist, we cannot compute θi(t). At these instants we assign χi(t) = 0. Secondly, although this test
is very similar to compute the Mahalanobis distance, which defines how correlated two stochastic variables
are, it is not exactly the same. We are omitting in our distance function the covariance associated to θi(t),
Λi(t) = (Pi(t))−1, which implies that our distance is going to be larger than the Mahalanobis distance. We
have chosen this conservative solution because in the first iterations of the algorithm the estimation of Pi(t) is
highly unreliable. Usually, at these times Pi(t) is multiplied by weights very close to zero, resulting in large
covariances due to the inverse P−1

i (t). When this happens, the Mahalanobis distances are close to zero and
spurious votes can appear in the algorithm, whereas by omitting this term the problem is avoided.

Denote the set of time instants in which robot i changes its opinion as follows:

T +
i = {t ∈ N | χi(t) = 1 ∧ χi(t− 1) = 0},
T −i = {t ∈ N | χi(t) = 0 ∧ χi(t− 1) = 1}.

(4.24)

The control inputs of robot i are given by:

[uP
i (t),uq

i (t),u
υ
i (t)] =


[Λ−1

i ,Λ−1
i xi, 1] if t ∈ T +

i ,

−[Λ−1
i ,Λ−1

i xi, 1] if i ∈ T −i ,
[0, 0, 0] otherwise.

(4.25)

Proposition 4.5.2 (Convergence of the Dynamic Voting Consensus). If T +
i and T −i are finite for all i ∈ V

then the rule (4.22) with control inputs (4.25) converges to

lim
t→∞

θi(t) = (
∑
j∈Vcon

Λ−1
j )−1

∑
j∈Vcon

Λ−1
j xj , (4.26)

lim
t→∞

υi(t) =
|Vcon|
N

. (4.27)

where Vcon = {i ∈ V | χi(t) = 1, t > tmax} and tmax is a time instant such that tmax > t,∀t ∈ T +
i , T

−
i ,∀i ∈ V.

If the robots are not indefinitely changing their vote, then the algorithm will achieve convergence to the ML
of the subset of robots that have voted for it. At the end, the hypothesis with the larger value of υhi will be the
one selected by all the robots as the good one. Note that with this approach, once the hypothesis is selected
there is no need to compute additional ML estimates. What remains to be done now is to determine conditions
that guarantee the convergence to the ML of the inliers.
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Conditions to reach the Maximum Likelihood of the inliers

We derive a set of reasonable conditions such that, if Vh ⊆ Vin for one hypothesis, then the assumptions in
Proposition 4.5.2 are met and Vcon = Vin for that hypothesis.

First, we impose a condition on the inlier observations. Since they are different measurements of the same
vector, they have to be close to each other.

Condition 1. It holds that χ(xi, xj ,Λi) = 1 for any pair of robots, i, j ∈ Vin.

Lemma 4.5.3 (Bounded Distances in the Convex Hull). Let CH(Vin) be the convex hull of the inlier obser-
vations. If Condition 1 is satisfied, then, for any robot i ∈ Vin and any x ∈ CH(Vin), we have χ(xi, x,Λi) = 1.

This means that we have a set of points voted for by all the inliers, which leads to a second condition

Condition 2. For any Vh ⊆ Vin, θ
h
ML ∈ CH(Vin).

The lemma also suggests a restriction to impose to the outlier observations.

Condition 3. For all x ∈ CH(Vin) and k 6∈ Vin it holds that χ(xk, x,Λk) = 0.

However, let us note that because our algorithm is not convex, the above conditions are not enough to
ensure that one hypothesis instantiated with inliers will end up with all the inliers voting for it and all the
outliers rejecting it. It could be possible that some outliers vote for it at some intermediate estimation or that
one or more inliers constantly change their vote and convergence does not occur.

An additional condition to ensure convergence to the desired result is imposed. First let us notice that θi(t)
and the error distance, χi(t), can be written as functions of a vector w = (w1, . . . , wN ) ∈ [0, 1]N , which
represents the weights of the linear combination (not necessarily convex) of the different observations.

θi(w) = P−1
i (w)qi(w) = (

∑
i∈V

wiΛ
−1
i )−1(

∑
i∈V

wiΛ
−1
i xi),

χi(w) = χ(xi,θi(w),Λi) =

{
1, if

√
(xi − θi(w))TΛ−1

i (xi − θi(w)) ≤ χ2
d1,p

,

0, otherwise ,

Both functions are well defined for any w 6= 0. However, let us recall that if w = 0,we have defined χi(w) = 0.
The values of the different wi are hard to compute as a function of t because they depend on the weights wij(t)
in eq. (4.22) and the network topology at each time instant. However, we can analyze the behavior of χi(w)
over a compact subset of [0, 1]N . If the behavior in the set is the desired one, we will be able to ensure that for
any t the algorithm will return the desired results.

Without loss of generality, let us assume that the robots are ordered so that we can separate the different
elements of w in win ∈ [0, 1]|Vin|, the components corresponding to the inliers and wout the components of the
outliers, w = [win,wout].

Condition 4 (Local maxima of the derivative). For any i ∈ V, the partial derivatives of the square root in
χi(w),

∂
√

(xi − θi(w))TΛ−1
i (xi − θi(w))

∂wj
=

(xi − θi(w))TΛ−1
i P−1

i (w)Λ−1
j (xj − θi(w))

χi(w)
, (4.28)

satisfy, ∀j ∈ V and wout = 0, that

∂
√

(xi − θi(w))TΛ−1
i (xi − θi(w))

∂wj
= 0⇔


θi(w) = xi, xj , if i, j ∈ Vin,

θi(w) = xi, if i ∈ Vin, j 6∈ Vin,

θi(w) = xj , if i 6∈ Vin, j ∈ Vin.

(4.29)
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The derivation of (4.28) is included with the proofs of the theoretical results at the end of the chapter.

Theorem 4.5.4 (Convergence to the ML of the Inliers). Under Conditions 1-4, for any Vh ⊆ Vin, the follow-
ing holds:

• All the inliers eventually vote for the hypothesis

∃ t∗ | ∀t > t∗,∀i ∈ Vin, χi(t) = 1. (4.30)

• The outliers do not vote for the hypothesis at any time

χk(t) = 0, ∀t > 0, ∀k 6∈ Vin. (4.31)

This means, by Proposition 4.5.1 that (4.22) will converge and that Vcon = Vin.

Let us note that the conditions to know with certainty that the algorithm will converge to the desired result
are relatively easy to occur in real scenarios. The first condition requires that the inlier observations are close
to each other, which is easy to happen because they are good measurements of the same vector.

The second condition is that the maximum likelihood of partial sets of inliers falls in the convex hull of the
inliers. For a very small number of inliers (2 or 3) this will be hard to be true, but for a larger number of inliers
this condition is almost sure to happen because the ML is similar to a weighted average.

The third condition requires the outliers to be far away from the convex hull of the inliers. This makes
sense, otherwise one may argue that they are not real outliers as they would be posing a good observation of
the feature.

The last condition is that the derivatives of the Mahalanobis distance only vanish at the points that cor-
respond to the inlier observations. For the observation of any robot i, a global minimum is obtained when
θi(w) = xi, with distance equal to zero. For the inliers this is not a problem because they must vote the
hypotheses. For the outliers, it would be a problem that this happened, but it is almost impossible that a combi-
nation of inlier observations satisfying Conditions 1-3 returns the outlier. A global extreme can also appear if
there exists w such that (xk − θ(w)) is orthogonal to all (xi − θ(w)) with respect to Λ−1

k P−1
k (w)Λ−1

i . Never-
theless, we have not encountered this situation in any of the simulations we have carried out and, provided that
this extreme satisfies that χk(w) = 0, the algorithm would still converge.

Finally, let us remark that the algorithm may still converge to the desired result if some of these conditions
are not met. In the next section we analyze this situation.

4.6 Applications of DE-RANSAC

De-RANSAC can be used in different consensus scenarios. In this section we present some possible applications
of the algorithm using simulated data and real images.

4.6.1 Distributed Robust Event Localization

As an example of how De-RANSAC works, let us consider a sensor network composed by 40 nodes and de-
ployed in a square environment like the one in Fig. 4.2. The goal of the network is to detect and localize events
of interest that take place in the area, e.g., fires or intruders. In this example we consider that there are two
simultaneous events localized at coordinates (−40,−40) and (70, 30) respectively.

Each sensor is only able to measure one of the events with some noise in the localization of the event.
In addition, there might be some sensors that place the event in a totally random position due to failures in
their measurement. Moreover, there is no way for the nodes to know which of the events they are measuring.
In Figure 4.2 we show the measurement taken by each sensor. There are 20 sensors that measure the first
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Figure 4.2: Sensor network deployed in the environment to detect events of interest. There are 20 sensors that measure
the first event (black circles and black star), 16 sensors that measure the second event (white circles and white star) and 4
sensors that measure a random value (grey circles).

event (black circles and black star), 16 sensors that measure the second event (white circles and white star)
and 4 sensors that measure a random value (grey circles). If all the measurements are mixed using distributed
averaging, then the mean position of the event is placed at (3.72,−13.85), which is a wrong estimation. Next
we show how our algorithm can overcome this problem.

Initially the nodes do not know how many other sensors are active due to failures, initialization, etc. Figure
4.3 shows the evolution on the consensus about the number of active nodes using the finite-time rule. The final
value is 40, the exact number of active sensors, for all the nodes in the network.
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Figure 4.3: Finite-time consensus about the number of active sensors.

The hypotheses are defined as possible locations of the event of interest. We generate the hypotheses
computing the average location of sets of two samples, i.e., c = 2. We have run two simulations considering
two different values of the probability of a sensor having inlier information, pin. In the first one we have set
pin to 0.8 and in the second to 0.3. The probability chosen to decide the total number of hypotheses, eq. (4.9),
in order to be successful in creating one good hypothesis has been taken to be psuc = 0.99. The threshold for
voting one hypothesis considers the Euclidean distance between the location of the hypothetical event and the
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sensor observation of the event the hypothesis has been set to 2 meters.
The first column of Figure 4.4 shows the evolution of the number of votes of the best hypothesis using the

finite-time consensus rule and the achievement of the final consensus value (X and Y coordinates). The best
hypothesis gets a total of 20 positive votes, which is exactly the number of sensors perceiving the event located
in (−40, 40). Regarding the final consensus value, considering only the 20 inliers, we observe that using the
homogeneous coordinates all the 40 sensors reach the same value, the correct location of the event.
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Figure 4.4: Consensus in the different steps of De-RANSAC for the robust event localization. The first column (a)
shows, from top to bottom, the finite-time consensus on the number of votes of the best hypothesis (20 votes) and the
final consensus value (X and Y coordinates) mixing only the inlier measurements, using the normalized coordinates. The
second column (b) shows the same values for the next best hypothesis. In this case the number of votes is 16 and the final
consensus value is the location of the second event of interest.

More detailed results of the two simulations are in Table 4.1. The Avrg column shows the location of
the event mixing the information of all the sensors, which is equal and wrong in both cases because of the
influence of the outliers. Rob_Av represents the value of the most voted hypotheses. Since De-RANSAC is
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non deterministic, this value differs for different executions. Nevertheless, let us notice that in both cases
the distance with respect to the real value (−40,−40) is smaller than the tolerance fixed. Fin_Av shows the
consensus value considering only the inlier nodes. In this case both experiments return the same result (the
average of the inliers) because all the inliers have been identified and they are computing the average of the
same set of measurements. K is the number of hypotheses created. By choosing a bigger value of pin we can
reduce the total number of hypotheses, and therefore, of required communications.

Table 4.1: Results of the Event Localization using De-RANSAC
Case pin Avrg Rob_Av Fin_Av Votes K

1 0.8 (3.72, -13.85) (-40.36, -38.66) (-40.12, -40.3) 21 7
2 0.3 (3.72, -13.85) (-39.27, -39.91) (-40.12, -40.3) 21 74

Another advantage of the evaluation of multiple hypotheses with De-RANSAC is that without additional
computations we can identify the position of the second event of interest, located in (70,−30). Once the best
hypothesis has been identified, the sensors select the next most voted hypothesis such that:

• They did not vote for it if they were inliers.

• They voted for it if they were outliers.

The number of votes and the average of the positive votes for this hypothesis are shown in the second column
of Figure 4.4. We can see that in this case the number of votes is 16 and the average of the positive votes for
this hypothesis reaches the correct value.

4.6.2 People Identification in Camera Networks

We reintroduce the problem of face recognition in multiple images first discussed in the previous chapter. We
show how De-RANSAC can be applied as a second step in the procedure to improve the initial data association.

Figure 4.5 shows the initial correspondences of the network found using our data association distributed
algorithm. In this example there are no inconsistencies and all the cameras are able to assign one face to each
association set. However, there are some outlier matches, e.g., faces 2 and 4 have been wrongly matched in
cameras A and B. We can use De-RANSAC to discard mismatches and improve the data association.
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Figure 4.5: Initial People Association in Camera Networks.

Since De-RANSAC considers only one datum per node, the algorithm is executed in parallel for each of
the association sets given by the data association, represented with different colors in Fig. 4.5. We define one
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hypothesis as a weighted average of two patches. Assuming the initial data association is relatively good, we set
pin to 0.9, which implies that each camera only generates one hypothesis. The error function to detect outliers
is the same function used to match the faces (absolute differences between pairs of patches) and the threshold
has been empirically set considering the errors obtained comparing patches in the data association step.

The result of applying De-RANSAC is shown in Fig. 4.6. The algorithm has been able to detect that faces 2
and 4 were outliers in cameras A and B and has removed these matches. Also, in faces 1 and 3 the algorithm
has not removed any match. On the other hand, the algorithm has also considered as an outlier face 4 in camera
C, which was not. This happens because of choosing a restrictive threshold for the voting. A possible way to
improve this could be to use a smaller threshold in the error function to vote for the hypotheses. However, in a
real application the lack of spurious matches prevails over missing some good correspondences.
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Figure 4.6: Robust People Association in Camera Networks.

4.6.3 Maximum Likelihood Estimation using Dynamic Voting

We have also tested the dynamic version of the algorithm for the computation of the maximum likelihood in
a simulated environment. In this case we have considered a robotic network composed by ten robots with
communications as described in Fig. 4.7.

Figure 4.7: Communication network of the ten robots. Blue circles represent the robots with inlier information and red
squares the outliers.

In Fig. 4.8, we show the observations of a two-dimensional feature by the ten robots. We have chosen
a two-dimensional feature in order to have a good visualization of the results, however, the algorithm is not
restricted to this case and can be used with descriptors of any dimension. Seven robots have good observations
of the feature (blue crosses and solid ellipses) and 3 robots have outlier information (red crosses and dashed
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ellipses). If all the measurements are considered in the computation of the Maximum Likelihood, the obtained
result is the black cross and dash-dotted ellipse with the ML mark at value (−0.21, 4.60) while the ML of the
inlier robots is (3.08, 5.19) (MLin).
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Figure 4.8: Robust sensor fusion of a bi-dimensional feature observed by ten robots. (a) Observations of the ten robots.
Seven robots have a good observation of the feature (blue crosses and solid ellipses) whereas three robots have observed
another features (red crosses and dashed ellipses). If all the measurements are considered in the computation of the
Maximum Likelihood, the obtained result is the black cross and dash-dot ellipse with the ML mark. The good maximum
likelihood is the one in the middle of the inlier observations (MLin). (b) Zoom of the inlier observations and both ML.

In the first step, the robots generate the different subsets Vh that will initialize the hypotheses. In the
experiment we have set the probability of being an inlier to 0.6 and the probability of success in RANSAC to
0.99. As we mentioned in Section 4.4.1, the value of c can be arbitrarily chosen. Larger values of c make many
robots to plug their observations at the beginning, which is good if the number of inliers is large. However, the
larger the c, the more hypotheses will be required to succeed, and for each additional hypothesis the amount of
information to be communicated among robots grows linearly. For this reason we have set c = 1 resulting in a
total of 6 hypotheses generated by the algorithm. In this example, the conditions stated in section 4.5 are also
satisfied, ensuring convergence to the ML of the inliers if one hypothesis is instantiated by robots in Vin.

In Fig. 4.9, we show the evolution of the two coordinates of θi(t) for the most voted hypothesis. The values
of the different robots converge to the value of the ML of all the inliers (depicted in black dashed line in the
graphics). In Fig. 4.10, the evolution of υi(t) for the same hypothesis is depicted. Eventually all the robots
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Figure 4.9: Evolution of the Maximum Likelihood, θi(t), for the hypothesis that has obtained the most number of votes
in the end. The dashed black line is the value of the ML of the robots with inlier information. It is observed that in both
coordinates the values of θi(t) asymptotically converge to it.
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reach the value 0.7, which is exactly the fraction of robots with inlier information. It is also remarkable that the
number of iterations in which the robots change their opinion is considerably small. In less than 10 iterations,
the graphics do not have discontinuities due to the inputs (4.22). After that point, the algorithm behaves as a
static consensus algorithm.

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

Evolution of V (Most voted h)

Iterations

V

Figure 4.10: Evolution of υh
∗

i . It converges to 0.7 for all the robots, which is exactly the fraction of robots with inlier
information.

We have also run a Monte Carlo simulations considering more general situations where the conditions of
Section 4.5 do not always hold. We have compared the results of the new algorithm with the robust consensus
based on static voting and with the distributed consensus algorithm proposed in [155] to compute the ML of all
the observations. We have run 1000 trials in which 20 robots have been considered. The probability for each
robot to have inlier information has been set to 0.8, and only 3 hypotheses were generated in each trial. The
inlier robots have measurements of the feature with gaussian error of zero mean and standard deviation of 2 me-
ters. For the outlier robots we have assigned a deviation of 10 meters. The covariance matrices have also been
randomly generated with eigenvalues of mean 0.5 and standard deviation 0.5. Regarding the communication
topology we have changed it at each iteration of each trial.

The results obtained in the simulation can be seen in Table 4.2. The results using the non robust algo-
rithm [155] are in the first column. In this case all the outliers participate in the different trials (a total of 4015).
As a consequence, the average error in the estimation of the ML is large (2.06 meters). If the static voting
method is used, the results are clearly improved. Only 375 false positive votes appear and the average error is
reduced to 0.444 meters, with only 472 inliers thinking they have outlier information. Finally, if the proposed
algorithm is used, 355 false positive votes are counted and the average error is of 0.438 meters. Moreover, since
the robots are voting a dynamic observation which tends to the good ML, a fewer number of false negatives
is registered (192). Although the results are similar to those of the static voting, the dynamic algorithm is
much faster because it requires one third of communication rounds. The dynamic voting algorithm condenses
the three steps of RANSAC in only one, requiring 100 iterations per trial. The only drawback of the robust
algorithms with respect to [155] is that the size of the messages grows linearly with the number of hypotheses.
However, this limitation is also found in the centralized version of RANSAC, where for each hypothesis a
different solution must be computed and voted for.

4.7 Discussion

Throughout this chapter we have analyzed in detail the problem of robustness in the computation of the consen-
sus. We have proposed a new algorithm, De-RANSAC, able to detect and discard outlier measurements during
the computation of the average consensus. The algorithm follows the philosophy of the RANSAC algorithm, a
very common algorithm for robust matching between pairs of images. However, our algorithm is designed to
be fully distributed, and then suitable for teams of robots with limited communications.
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Table 4.2: Comparison of the different algorithms
Method ML [155] Static Voting Dynamic Voting
Trials 1000 1000 1000

False Positive Votes 4015 375 355
False Negative Votes 0 472 192
Avrg. norm of error 2.063 0.444 0.438

Std. deviation of error 2.502 1.275 1.256
Iterations per trial 100 300 100

Another good property of the proposed algorithm is its modularity. The use of distributed averaging tech-
niques to detect the outliers allows to introduce variations of the standard algorithm able to handle, e.g., asyn-
chronous communications [84] or robustness against malicious agents [45]. In this way, our method can handle
other communication problems. This is actually what we have done to using the finite-time averaging to count
the number of votes or the number of active robots. In addition, we have seen that homogeneous coordinates
can be very helpful to compute the average when some of the robots do not have information, or when we do
not want to introduce it in the fusion.

We have also used dynamic consensus techniques to allow the robots to change their opinion during the
voting. As a consequence, we have seen that the three steps of RANSAC can be executed in a single step with
our algorithm. This reduces the number of communication rounds the robots need to exchange information.

On the other hand, the robustness in the consensus implies the counterpart of communicating more infor-
mation. Each hypothesis that the network generates increases the size of the messages exchanged by the robots.
This can be a bit problematic when using visual information, since the amount of data required to exchange in
such cases is generally big. Then, the next issue to analyze in our system is the reduction of the number of mes-
sages exchanged required to compute the average and the choice of a good representation of the information,
so that it takes up a small amount of space.

Proofs

Proof of Theorem 4.2.1 (Consensus with homogeneous coordinates)

The scale coordinate converges to

xhi (t)→ 1

N

∑
j∈Vh

1 =
|Vh|
N

, (4.32)

and the regular coordinates converge to

xi(t)→
1

N

∑
j∈Vh

xj(0). (4.33)

The normalized coordinates of an homogeneous vector are its coordinates divided by the scale coordinate,
xei (t)/xhi (t), hence

xei (t)
xhi (t)

→ [
1

|Vh|
∑
j∈Vh

xj(0)T , 1]T ∀i ∈ V. (4.34)
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Proof of Theorem 4.2.3 (Distributed Averaging in Finite-Time)

Taking into account Assumptions 2.2.6 and 2.3.3, we know that xi(t) in (4.3) will asymptotically converge to x̄
for all the robots. Given ε > 0, the asymptotic convergence allows us to find t∗ such that

∀t > t∗ ‖x̄− xi(t)||2 < ε, ∀i ∈ V.

In addition, the continuity of g in x implies that

∀ψ > 0, ∃ ε > 0 | ‖x̄− xi(t)‖2 < ε⇒⇒ ‖g(x̄)− g(xi(t))‖2 < ψ.

Considering again the definition of the ϕ-set and that g(x̄) ∈ Φ, by choosing ψ < ϕ
2 , there exists t∗

depending on ε, and thus on ψ, such that for all t > t∗

‖g(x̄)− g(xi(t))‖2 <
ϕ

2
,

and therefore
arg min

x∈Φ
‖x− g(xi(t))‖2 <

ϕ

2
.

Now, let us suppose that there exists some x ∈ Φ, x 6= g(x̄), such that for some t > t∗

‖x− g(xi(t))‖2 < ‖g(x̄)− g(xi(t))‖2.

This would imply
‖x− g(x̄)‖2 ≤ ‖x− g(xi(t))‖2 + ‖g(xi(t))− g(x̄)‖2 < ϕ,

which by definition of Φ is not possible. Then

g(x̄) = arg min
x∈∆
‖x− g(xi(t))‖2.

Proof of Theorem 4.2.4 (Distributed Robot Counting)

1) The rule in (4.5) is a max consensus update rule. Under Assumption 2.2.6, the max consensus algorithm is
proved to converge in a finite number of iterations for all the robots in the network [78].

2) The sum of the initial conditions is
∑

i βi2(0) = N. In order to compute the sum of the inputs, taking into
account 1) and Assumption 2.2.1, we have that after some time instant t∗ < ∞, βi1 6= IDi,∀i \maxi∈V IDi.
Since the initial input is equal to zero for all the robots, then, by (4.7), every robot but the leader (the one with
ID equal to the max consensus) will have an input ui(t) = −1 for some t within the interval [2, t∗]. After that,
the sum of the previous inputs will be different from zero and, therefore, the future inputs will also be equal to
zero. Thus

t∗∑
t=0

∑
i∈V

ui(t) = −N + 1 (4.35)

Then,
∑

i βi2(t∗) = 1 and ui(t) = 0, ∀ i ∈ V, t > t∗, which means that (4.6) behaves like (2.2) and βi2(t)→
1
N as t→∞.

3) Choosing g(x) = 1
x , which is continuous for any x 6= 0 and satisfies that g(x̄) = N ∈ N, by direct

application of Theorem 4.2.3 the result is proved.
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Proof of Proposition 4.4.1 (Distributed Voting in Finite Time)

First let us notice that υhi (0) is in the 1-set, υhi (0) ∈ N,∀i ∈ V, ∀h. In this way,
∑

i∈V υ
h
i (0) ∈ N. We also

know that
∑

i∈V υi(0) = N ῡ = g(ῡ). The function satisfies all the conditions of Theorem 4.2.3 and then
convergence in finite time follows.

Proof of Proposition 4.5.1 (Distributed Computation of a Partial ML)

As stated in [155], Pi(t) and qi(t) converge to the average of the initial values of all the Pj(t) and qj(t), j ∈ V.
However, the initial values for any robot j 6∈ Vh are zero by eq. (4.20), therefore, for all i ∈ V , it holds that

lim
t→∞

θi(t) = lim
t→∞

(Pi(t))−1qi(t) =

= (
1

N

∑
j∈V

Λ−1
j )−1 1

N
(
∑
j∈V

Λ−1
j xi) =

= (
1

N

∑
j∈Vh

Λ−1
j )−1 1

N
(
∑
j∈Vh

Λ−1
j xi) = θhML

Proof of Proposition 4.5.2 (Convergence of the Dynamic Voting Consensus)

The sets T +
i and T −i are finite. This means that there is some time instant, tmax, that upper bounds T +

i and
T −i ,∀i ∈ V. Moreover, ∀t > tmax and i ∈ V, the value of χi(t) remains constant, which means that the robots
do not change their opinion after tmax.

Let us analyze the evolution of Pi(t).After tmax, the iteration rule (4.22) behaves like (2.2) because uP
i (t) =

0 for all i and t, and therefore, Pi(t) will converge to 1
N

∑
i∈V Pi(tmax). The sum of the values of Pi(tmax) can

be written as ∑
i∈V

Pi(tmax) =
∑
i∈Vh

Λ−1
i +

∑
i∈V

tmax∑
t=0

uP
i (t), (4.36)

where the sum of the inputs for each robot is

tmax∑
t=0

uP
i (t) =

∑
t∈T +

i

Λ−1i −
∑
t∈T −

i

Λ−1i = (|T +
i | − |T

−
i |)Λ

−1
i . (4.37)

By the eq. (4.24), for any robot i, −1 ≤ |T +
i | − |T

−
i | ≤ 1. At the beginning, for the robots in Vh, it holds

that χi(0) = 1, because θi(0) = xi. Therefore, for any i ∈ Vh,

tmax∑
t=0

uP
i (t) =

{
−Λ−1

i if χi(tmax) = 0,

0 otherwise,
(4.38)

The robots that do not belong to Vh cannot compute the distance because the inverse of Pi(0) is not defined;
but this situation in our algorithm is equivalent to χi(0) = 0. Then we have that for any i 6∈ Vh,

tmax∑
t=0

uP
i (t) =

{
Λ−1
i if χi(tmax) = 1,

0 otherwise,
(4.39)
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Putting together (4.36), (4.38) and (4.39), in the limit we have

lim
t→∞

Pi(t) =
1

N

∑
i∈V

Pi(tmax) =
1

N

∑
i∈Vcon

Λ−1
i , (4.40)

Applying the same argument to qi(t), we obtain

lim
t→∞

qi(t) =
1

N

∑
i∈V

qi(tmax) =
1

N

∑
i∈Vcon

Λ−1
i xi, (4.41)

and then eq. (4.26) holds. Finally, following the same reasoning with υi(t) eq. (4.27) is obtained and the proof
is complete.

Proof of Lemma 4.5.3 (Bounded Distances in the Convex Hull)

Let us note that xi ∈ CH(Vin) for all i. For any point in the convex hull, the maximum distance to points inside
the hull is achieved at one of the corner points. Since these points are observations that belong to Vin√

(xi − x)TΛ−1
i (xi − x) ≤ max

xj∈Vin

√
(xi − xj)TΛ−1

i (xi − xj) ≤ χ2
d1,p,

and then χ(xi, x,Λi) = 1.

Computation of the derivative in eq. (4.28) (Local maxima of the derivative)

Let

di(w) =

√
(xi − θi(w))TΛ−1

i (xi − θi(w)) (4.42)

The distance function can be rewritten as

di(w) =
√
d2(w),

d2(w) = (xi − θi(w))TΛ−1
i (xi − θi(w)),

θi(w) = P−1
i (w)qi(w).

(4.43)

We compute the partial derivative applying the chain rule.
The partial derivative of θi(w) with respect towj is a function of Pi(w) and qi(w),whose partial derivatives

are
∂Pi(w)

∂wj
= Λ−1

j ,
∂qi(w)

∂wj
= Λ−1

j xj . (4.44)

By passing the inverse matrix to the left member we have

∂Pi(w)

∂wj
θi(w) + Pi(w)

∂θi(w)

∂wj
=
∂qi(w)

∂wj
. (4.45)

Clearing ∂θi(w)/∂wj in (4.45) and plugging (4.44) yields

∂θi(w)

∂wj
= P−1

i (w)Λ−1
j (xj − θi(w)). (4.46)
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The partial derivative of d2(w) with respect to θi(w) is obtained as

∂(xi − θi(w))TΛ−1
i (xi − θi(w))

∂θi(w)
=

(xi − θi(w))TΛ−Ti + (xi − θi(w))TΛ−1
i =

2(xi − θi(w))TΛ−1
i .

(4.47)

Finally, computing the partial of di(w) with respect to d2(w) and applying the chain rule we get

∂di(w)

∂wj
=

(xi − θi(w))TΛ−1i P−1i (w)Λ−1j (xj − θi(w))

di(w)
. (4.48)

The derivative is well defined at any point but the set of points such that θi(w) = xi, because di(w) = 0.
However, at this points we already now that di(w) has a global minimum because the distance is always positive
(or zero). Therefore, they do not affect our analysis in Theorem 4.5.4.

Proof of Theorem 4.5.4 (Convergence to the ML of the Inliers)

Along this proof ei will denote the ith vector of the canonical basis of RN and we will make use of eq. (4.42)
and the property di(w) = di(λw), λ > 0. Observe also that θi(ei) = xi.

By the theory of analysis of multivariate functions [81], given a closed compact set C ⊂ RN and a contin-
uous function f : RN → R, f has local extremes in C only where the derivatives are zero or are not defined. If
f has no local extremes in C, then the maximum (minimum) values of f are in the frontier of C. In our case the
functions to analyze are the different distances di(w). The compact set, Cε, where we will analyze the function
is, wout = 0 and win ∈ [0, 1]|Vin| \ [0, ε)|Vin|, for ε ' 0 sufficiently small.

Due to the definition of Cε, its frontier is a set of surfaces inRN−1. By applying the same result recursively
to the different frontier surfaces to differentiable functions, if the partial derivatives of f do not vanish insideCε,
we obtain that the maximum (minimum) values of f are at the corners ofCε. For example, for two inliers,Cε has
6 different corners at positions {(0, 1), (1, 0), (1, 1), (0, ε), (ε, 0), (ε, ε)}. For a general number of dimensions,
the set of corners of Cε is characterized as

w∗ = {
∑
i∈S

ei,S ⊆ Vin}
⋃
{ε
∑
i∈S

ei,S ⊆ Vin}. (4.49)

Note that, by Condition 4, if ∂di(w)/∂wj = 0, then there exists a corner w∗ ∈ {ei, ej} where di(w∗) = di(w).
Let us start showing that the outliers do not vote for the hypothesis at any time. Let us consider any robot

k 6∈ Vin. At the beginning Pk(0) = 0 because Vh ⊆ Vin, and therefore k does not vote the hypothesis. Let us
denote now k the first outlier for which Pk(t) 6= 0. At this moment wout = 0 and win ∈ Cε for a small enough
ε. Let us see that for any win ∈ Cε, dk(win) > χ2

d1,p
, then χ(win) = 1. By Condition 4, the partial derivatives

do not vanish, or, if they do, is at points xi ∈ Vin, which correspond to corners of Cε. We have then to analyze
the value of dk(w∗). Condition 2 together with Condition 3 implies that

dk(
∑
i∈S

ei) = dk(ε
∑
i∈S

ei) > χ2
d,p, ∀S ⊆ Vin.

All the corner points of Cε are covered and for all of them the Mahalanobis distance is larger than χ2
d,p.

Therefore, the outlier will not vote for the hypotheses. As successive outliers have Pk(t) 6= 0, still wout = 0
and the same argument applies. This means that none of the outliers will vote the hypotheses and eq. (4.31) is
true.
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A similar argument can be applied for the inliers. We already know that wout = 0 for any time instant.
Looking at the corners of Cε, by Conditions 1 and 2, for any i ∈ Vin

di(
∑
j∈S

ej) = di(ε
∑
j∈S

ej) ≤ χ2
d,p, ∀S ⊆ Vin,

then for any win ∈ Cε, di(win) ≤ χ2
d,p. This means that once Pi(t) 6= 0, robot i will vote for the hypotheses and

will keep doing so. By taking t+ the first time instant for which for all i ∈ Vin Pi(t) 6= 0, eq. (4.30) is satisfied
and the result holds.



Chapter 5

Fast Consensus with Chebyshev Polynomials

“No matter how fast your computer system runs, you will eventually think of it as slow.” When the number
of robots in the network is large, distributed averaging methods usually have a slow convergence rate. In this
chapter we analyze the use of Chebyshev polynomials in the distributed consensus problem to reduce the num-
ber of iterations required to achieve a good consensus. We propose a distributed linear iteration using these
polynomials that compared to other approaches, is able to achieve the average of the initial conditions in a
small number of iterations. In the chapter we characterize the main properties of the algorithm for both, fixed
and switching communication topologies. Additionally, we provide a second algorithm for the adaptive selec-
tion of the parameters to maximize the convergence rate. We validate our results with extensive simulations.

5.1 Introduction

When the number of robots in the network is large, distributed averaging methods usually have a slow conver-
gence rate. This means that the number of iterations before obtaining a good approximation of the consensus is
considerably large. Moreover, because of the use of visual sensors, the size of the messages the robots exchange
is in general big and, as we have seen in the previous chapter, if we want the consensus to be robust we require
the sending of even more information. If we put everything together, we find that the standard linear iteration,
although in theory is very useful, in practice it is not so much. The goal of this chapter is to devise a distributed
linear iteration that requires a small number of iterations to reach the consensus.

The convergence rate of linear iterations has been studied under a variety of scenarios [4, 21, 42, 76, 109,
110,117,162,164]. All these papers point out the slow convergence rate of linear iterations for large or sparsely
connected networks. For that reason a lot of research has been devoted to provide solutions that reduce the
convergence time to achieve the consensus. Some works achieve consensus in finite time using continuous-
time non linear methods [30, 62, 151] or link scheduling [67]. The use of numerical integrators affects the
number of iterations in the non-linear approaches and there might also be situations in which not all the links
are feasible. Other approaches speed up convergence by sending additional information in the messages [63,
158]. Unfortunately, depending on the network topology it might be required to send big messages. The
design of the adjacency matrix has been the focus of several works [9, 64, 66, 153], improving the convergence
speed. Nevertheless, they can still be combined with additional techniques in order to accelerate even more the
consensus.

The distributed evaluation of polynomials speeds up the consensus, keeping the good properties found
in linear methods. The minimal polynomial of the adjacency matrix is used in [138] and [159]. Once this
polynomial is known, the network can achieve the consensus in a finite number of communication rounds.
Unfortunately, the use of the minimal polynomial presents several disadvantages: it only works for a fixed
communication topology, it requires a full and precise knowledge of the network and, for a large number of
robots or sparsely connected networks, it is unstable [91].

An algorithm using a polynomial of low degree, computed using optimization techniques, is proposed
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in [68]. However, the whole network is also required to solve the optimization problem and the algorithm has
to be executed in blocks of iterations of the size of the degree. If the topology changes during the execution of
the blocks there are no guarantees of convergence, which forces the degree of the polynomial to be small.

Polynomials described by recurrent relations overcome these limitations and considerably speed up the
consensus [111, 129]. In this chapter we propose a consensus algorithm using these kind of approaches that
increases the convergence rate with respect to existing approaches. To design the fast consensus algorithm we
consider Chebyshev polynomials of the first kind [83]. These polynomials are a powerful mathematical tool
that has proven to be very helpful in many different fields of science. For example, they are used to model
chemical reaction [101], in aeronautics [127], numerical methods [148] and computer vision [113].

The contributions of this chapter are:

• A distributed algorithm based on the second order difference equation that describes the Chebyshev
polynomials of first kind. The algorithm has no limitations on the degree of the polynomial and only
requires an approximated knowledge of the maximum and minimum eigenvalues of the weight matrix to
reach the consensus.

• A complete study of the properties of the algorithm. For the case of fixed topology, we find the parameters
to achieve the optimal convergence rate and we give bounds on the selection of these parameters to
achieve a faster convergence than using the standard consensus algorithm. For the case of switching
topologies, we theoretically show that there are always parameters that make the algorithm converge to
the consensus.

• An adaptive method to distributively compute the optimal parameters of our fast algorithm. The algo-
rithm is proved to converge to the algebraic connectivity of the network, which corresponds with the
parameter that speeds up the most the consensus algorithm.

• An empirical validation of the theoretical results with extensive simulations, where we compare our
algorithm with existing methods.

This chapter has been partially published in [90–92].

5.2 Background on Chebyshev Polynomials and Polynomial Filtering

5.2.1 Chebyshev Polynomials

We denote the Chebyshev polynomial of degree n by Tn(x). These polynomials satisfy

Tn(x) = cos(n arccosx), for all x ∈ [−1, 1], (5.1)

and |Tn(x)| > 1 when |x| > 1, for all n ∈ N. Moreover |Tn(x1)| > |Tn(x2)| for all |x1| > |x2| > 1. A more
general way to define these polynomials in the real domain is using a second order recurrence,

T0(x) = 1, T1(x) = x
Tn(x) = 2xTn−1(x)− Tn−2(x), n ≥ 2.

(5.2)

By the theory of difference equations [2], the direct expression of (5.2) is determined by the roots τ1 and τ2 of
the characteristic equation,

Tn(x) =
1

2
(τ1(x)n + τ2(x)n), (5.3)

where τ1(x) = x−
√
x2 − 1 and τ2(x) = x+

√
x2 − 1 = 1/τ1(x). In the Thesis we take

τ(x) =

{
x−
√
x2 − 1, if x ≥ 0

x+
√
x2 − 1, if x < 0

, (5.4)
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so that |τ(x)| < 1 and |τ(x)|−1 > 1 for all |x| > 1, and therefore,

Tn(x) =
1

2
(τ(x)n + τ(x)−n) =

1

2
τ(x)−n(1 + τ(x)2n). (5.5)

It is clear that if |x| > 1, then Tn(x) goes to infinity as n grows. If |x| < 1, then τ(x) is a complex number
with |τ(x)| = |x± (

√
1− x2)i| = 1 and |Tn(x)| ≤ 1, ∀n, as stated in eq. (5.1).

5.2.2 Polynomial Filtering

The distributed evaluation of polynomials provides an easy way to speed up the consensus, keeping the good
properties found in standard methods. The main idea consists in designing a distributed linear iteration such
that the execution of a fixed number of n steps is equivalent to the evaluation of some polynomial, Pn(x), in
the fixed matrix W and multiplied by the initial conditions, x(0), [68, 138]. This evaluation is defined as

Pn(W)x(0) = α0x(0) + α1Wx(0) + . . .+ αnWnx(0)

= α0x(0) + α1x(1) + . . .+ αnx(n)

= Pn(1)γ1v1 + Pn(λ2)γ2v2 + . . .+ Pn(λN )γNvN ,
(5.6)

with vi and γi the eigenvectors and their coefficients as in eq. (2.7) and αi the coefficients of the polynomial.
In order to achieve the consensus, the polynomial must satisfy that Pn(1) = 1 and |Pn(x)| < 1 if |x| < 1.

The convergence speed is given by maxλi |Pn(λi)|, with λi the eigenvalues of W. Let us note that the iteration
(2.3) is in fact a polynomial filter x(n) = Pn(W)x(0) 1 with Pn(x) = xn. With full knowledge of the
weight matrix (and assuming it does not change), the minimal polynomial of W is clearly the best choice
because PN (λi) = 0, ∀i 6= 1 [138]. Unfortunately, this solution fails when the topology changes or when N
is large [91]. This is shown in Figure 5.1, where the minimal polynomial fails to compute the average for a
network composed by 35 nodes.
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Figure 5.1: Numerical errors in the evaluation of the minimal polynomial lead to errors in the final estimation. (a)
Communication network of 35 nodes. (b) Estimations of the 35 nodes of the network evaluating the minimal polynomial
in a distributed way. The red dashed line shows the average of the initial conditions and the bars are the values of the final
estimations. The rounding errors make the algorithm fail.

This can be overcome by designing a polynomial of a lower degree, k � N , using optimization techniques
to minimizeQk(λi) [68]. However, the matrix W is still required and the algorithm has to be executed in blocks
of k iterations to get x(k) = Qk(W)x(0), x(2k) = Qk(W)x(k), . . . Moreover, if the topology changes during
the execution of one of the k iterations of one block, then the convergence is not guaranteed.

1In order to keep a consistent notation with Chebyshev polynomials of degree n, Tn(x), in this Chapter we replace the time
parameter, t, in the linear iterations for the degree of the polynomial, n.
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5.3 Consensus algorithm using Chebyshev Polynomials

Let us assume the eigenvalues of W are unknown. In this situation it seems natural to look for a polynomial
that minimizes the uniform norm in the interval that contains all the eigenvalues, i.e., find a polynomial, Pn(x),
that minimizes supx∈(−1,1) |Pn(x)|. However, this way of proceeding does not guarantee a good convergence
rate because for all Pn(x) such that Pn(1) = 1,

sup
x∈(−1,1)

|Pn(x)| = max
x∈[−1,1]

|Pn(x)| ≥ 1.

Instead of that, we can assume that the eigenvalues are located all along a closed interval [λm, λM ] ⊂ (−1, 1).
With this assumption we can look for the polynomial that minimizes the uniform norm in such an interval, i.e.,
find a polynomial, Pn(x), that minimizes maxx∈[λm,λM ] |Pn(x)|.

This polynomial is precisely the shifted-scaled Chebyshev polynomial of degree n. Given two real coeffi-
cients λm, λM , with −1 < λm < λM < 1, the shifted-scaled Chebyshev polynomial of degree n is defined by

Pn(x) =
Tn(cx− d)

Tn(c− d)
, with c =

2

λM − λm
, d =

λM + λm
λM − λm

. (5.7)

This polynomial satisfies that Pn(1) = 1, Pn(λM+λm−1) = (−1)n, |Pn(x)| < 1 for all x ∈ (λM+λm−1, 1)
and |Pn(x)| ≥ 1 otherwise, for all n.

Using (5.2) it is possible to evaluate (5.7) in a stable way by means of the recurrence

Pn(x) =
Tn(cx− d)

Tn(c− d)
=

2(cx− d)Tn−1(cx− d)− Tn−2(cx− d)

Tn(c− d)
=

= 2(cx− d)
Tn−1(c− d)

Tn(c− d)
Pn−1(x)− Tn−2(c− d)

Tn(c− d)
Pn−2(x).

(5.8)

Therefore, the value x(n) = Pn(W)x(0), can be computed as

x(1) = P1(W)x(0) =
T1(cW− dI)
T1(c− d)

x(0) =
(cW− dI)
c− d

x(0),

x(n) = Pn(W)x(0) =

(
2
Tn−1(c− d)

Tn(c− d)
(cW− dI)Pn−1(W)− Tn−2(c− d)

Tn(c− d)
Pn−2(W)

)
x(0)

= 2
Tn−1(c− d)

Tn(c− d)
(cW− dI)x(n− 1)− Tn−2(c− d)

Tn(c− d)
x(n− 2), n ≥ 2,

(5.9)

with I the identity matrix of dimension N . The individual update that each robot executes is

xi(1) =
1

T1(c− d)

w′iixi(n− 1) +
∑

j∈Ni(n)

w′ijxj(n− 1)

 ,

xi(n) = 2
Tn−1(c− d)

Tn(c− d)

w′iixi(n− 1) +
∑

j∈Ni(n)

w′ijxj(n− 1)

− Tn−2(c− d)

Tn(c− d)
xi(n− 2),

(5.10)

with w′ij = c wij , w
′
ii = (c wii − d) and wij are the elements of the weight matrix W.

Compared to other polynomial filters the algorithm presents some advantages. It is well known that the
evaluation of Chebyshev polynomials using (5.2) is stable [83]. Then, at each iteration we get the value of
Pn(W)x(0), i.e., there are no limitations on the degree of the polynomial and the algorithm is not required
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to be executed in blocks of k iterations, for some fixed k. In addition, when the topology of the network
changes, the recurrent evaluation of Chebyshev polynomials (5.10) can still be used. The time-varying version
of the algorithm is equivalent to (5.9) replacing the constant weight matrix W by the weight matrix at each
step W(n). Although this is no longer equivalent to the distributed evaluation of a Chebyshev polynomial, a
theoretical analysis about its convergence is still possible. In addition, compared to (2.2), we can see that the
iteration (5.10) transmits exactly the same information, xi(n − 1). In terms of space requirements the robots
only need to store one extra datum, xi(n − 2), and the computation demands are also very similar because
Tn(c− d) can be computed locally by each robot using (5.2).

To design the algorithm we have assumed that the eigenvalues of W were in the interval [λm, λM ]. However,
in practice we do not know if these assumption is going to be true. In the next two sections we analyze the main
properties of the algorithm as a function of the parameters and the eigenvalues of W, for fixed and switching
communication topologies.

Algorithm 5 Consensus algorithm using Chebyshev polynomials - Robot i
Require: xi(0), MaxIt ∈ N, λm, λM ,

1: – Initialization
2: c = 2/(λM − λm); d = (λM + λm)/(λM − λm);
3: T (0) = 1; T (1) = c− d;
4: – First Communication Round

xi(1) =
1

T (1)
(c

∑
j∈Ni(n)

wijxj(0) + (c wii − d)xi(0));

5: for n = 2, . . . ,MaxIt do
6: T (n) = 2(c− d)T (n− 1)− T (n− 2);
7: – Communication Between Neighbors

xi(n) = 2
T (n− 1)

T (n)
(c

∑
j∈Ni(n)

wijxj(n− 1) + (c wii − d)xi(n− 1))− T (n− 2)

T (n)
xi(n− 2);

8: end for

5.4 Analysis of the algorithm with Fixed Topologies

In this section we analyze the main properties of the proposed algorithm when the network topology is fixed.
In particular we first study the convergence conditions of the algorithm. Next, we find the parameters that max-
imize the convergence speed and we give bounds on the selection of these parameters to achieve the consensus
faster than (2.2). Finally, we analyze the convergence for directed graphs and the parameters to assign in regular
graphs and spanning trees.

Theorem 5.4.1 (Convergence of the algorithm). For any W fulfilling Assumption 2.3.2 and parameters λm
and λM such that 1 > λM > λm > −1 and λN > λm + λM − 1, the recurrence in eq. (5.9) converges
asymptotically to the average of the initial conditions, with convergence rate

‖x(n)− γ1v1‖2 ≤ max
λi 6=1

|Tn(cλi − d)|
Tn(c− d)

‖x(0)− γ1v1‖2. (5.11)

Note that the conditions in Theorem 5.4.1 are easy to fulfill without the necessity of knowing the eigenvalues
of the matrix W. A symmetric selection of the parameters, i.e., −λm = λM , 0 < λM < 1, always satisfies the
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condition in Theorem 5.4.1. However, it is interesting to know the optimal selection of λm and λM to maximize
the convergence speed. From Theorem 5.4.1 we know that the convergence rate is given by the factor

max
λi 6=1

|Tn(cλi − d)|
Tn(c− d)

≤ max

{
|Tn(cλN − d)|
Tn(c− d)

,
|Tn(cλ2 − d)|
Tn(c− d)

,
1

Tn(c− d)

}
. (5.12)

The first two terms consider the case when either λ2 or λN lay outside of the interval [λm, λM ], because in such
case |Tn(cλ − d)| is monotonically increasing with |λ|. When all the eigenvalues are contained in the interval
[λm, λM ], then |Tn(cλi − d)| ≤ 1 for all i 6= 1 and the convergence rate is given by the third term of (5.12). A
simple calculation using eq. (5.5) leads to

|Tn(cλ− d)|
Tn(c− d)

=

(
τ(c− d)

|τ(cλ− d)|

)n 1 + τ(cλ− d)2n

1 + τ(c− d)2n
, for all λ ∈ R. (5.13)

It is clear that when n → ∞, the second fraction in the right side of (5.13) goes to 1 for |λ| 6∈ [λm, λM ].
Therefore, the convergence rate is determined by

ν(c, d) =


τ(c− d), if [λN , λ2] ⊆ [λm, λM ]

max

{
τ(c− d)

|τ(cλN − d)|
,

τ(c− d)

|τ(cλ2 − d)|

}
, otherwise.

(5.14)

The optimum values of λm and λM will be those that lead to the minimum value of ν(c, d).

Theorem 5.4.2 (Optimal parameters). The convergence rate ν(c, d) attains its minimum value for the param-
eters c, d such that λM = λ2 and λm = λN

This implies that in order to achieve the maximum convergence speed, instead of requiring to know the
whole matrix, only the maximum and minimum eigenvalues, λ2 and λN , of the weight matrix are necessary.
Note that using the optimal parameters, the conditions of Theorem 5.4.1 are almost always satisfied. The only
situation where this does not hold is when λ2 = . . . = λN , because that would imply λm = λM . This happens
for example for a complete graph. However, in this case we can choose λm = λN + ε and λM = λ2 − ε with
ε ' 0 and achieve very good convergence rates.

Finally, we provide bounds for the symmetric assignation of parameters, λM = −λm, to achieve faster
convergence than (2.3).

Theorem 5.4.3 (Faster convergence than Wn). For any matrix W satisfying Assumption 2.3.2, let λ =
max(|λ2|, |λN |) be the convergence rate in (2.3). For any

0 < λM <
2λ

λ2 + 1
, and λm = −λM , (5.15)

Pn(λ) goes to zero faster than λn when n goes to infinity. Therefore the algorithm in eq. (5.9) converges to the
consensus faster than the one in eq. (2.3).

Remark 5.4.4 (Fast convergence with the optimal parameters). The above result shows that there always
exist parameters that make the proposed algorithm faster than (2.3). Therefore, if the algorithm is executed
using the optimal parameters, it will also converge to the average faster than (2.3).

Finally, a graphical comparison of xn, Tn(x) and Pn(x) using λm = −0.95 and λM = 0.95 is depicted
in Fig. 5.2 for n = 4, in the interval [−1, 1]. Note that Tn(x) cannot be used in the consensus process because
at some points it would not reduce the error. On the other hand, as we have shown along the section, Pn(x)
satisfies the conditions required to achieve consensus. Also notice that Pn(x) has closer values to zero than xn

in points close to −1 and 1, which supports the theory that the error associated to eigenvalues in that regions
will be reduced faster.
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Figure 5.2: Plot of the polynomials xn, Tn(x) and Pn(x). In the figure n = 4, λm = −0.95 and λM = 0.95.

5.4.1 Special Topologies

We consider an extension of the algorithm to directed communication graphs. We also analyze the selection of
the parameters λM and λm for some common topologies.

Directed graphs

If the communication graph is directed, then the weight matrix is not symmetric anymore. This implies that the
matrix might no longer be diagonalizable and its eigenvalues could be in the complex plane. We analyze the
implications of these facts in the convergence of the algorithm.

Chebyshev polynomials, Tn(z), z ∈ C, on the complex plane can also be expressed by (5.5), where τ(z) is
defined now by

τ(z) =

{
z −
√
z2 − 1, if |z −

√
z2 − 1| < 1

z +
√
z2 − 1, otherwise

. (5.16)

In this case |τ(z)| ≤ 1 and |τ(z)|−1 ≥ 1 for all z, which implies that Tn(z) go always to infinity with n for
z 6∈ R.

Proposition 5.4.5 (Convergence for directed graphs). Let W be diagonalizable and row stochastic, and
parameters λm and λM such that 1 > λM > λm > −1. If the minimum real eigenvalue of W satisfies
λN > λm+λM −1 and the complex eigenvalues, λz, of W satisfy |τ(cλz−d)| > τ(c−d), then the recurrence
in eq. (5.9) converges to the consensus state.

The condition on the complex eigenvalues has some geometrical meaning [83]. Imposing that |τ(cλz −
d)| > τ(c − d) is equivalent to require that λz is inside an ellipse in the complex plane centered at (d/c, 0),
or equivalently ((λM + λm)/2, 0), and with semi-axis e1 = (c − d)/c and e2 = (

√
(c− d)2 − 1)/c (see Fig

5.3). The condition of the weight matrix being diagonalizable is required to factorize W in the proof of the
Proposition. Although there is no direct way of knowing if W is diagonalizable without the knowledge of the
whole matrix, in our simulations we have not found any convergence trouble.

Spanning trees

In order to give bounds on the parameters λm and λM for topologies with a spanning tree configuration, we
will consider the best and the worst cases and study the eigenvalues of their weight matrices using the local
degree weights [153].

The topology with the best connectivity is the star topology, in which there is one robot connected to all the
others. For a star graph of N robots it can be proved that W has eigenvalues 1 = λ1 > (N − 1)/N = λ2 =
. . . = λN−1 > λN = 0.
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Figure 5.3: Ellipse where all the eigenvalues must be contained in order to achieve the consensus. In this particular
example we have chosen λM = 0.9 and λm = −0.5. Note that when the imaginary part of the eigenvalues is zero
convergence is achieved if λM + λm − 1 > λ > 1 as stated in Theorem 5.4.1.

The worst possible spanning tree configuration is a chain. For a chain graph of N robots, using the local
degree weights, the eigenvalues of W satisfy [18]

λi =
1− 2 cos( iπN )

3
, i = 1, . . . , N.

Combining the constraints on the two graphs we conclude that, for N ≥ 3, the eigenvalues λ2 and λN must
satisfy

N − 1

N
≤ λ2 ≤

1− 2 cos( (N−1)π
N )

3
< 1 and − 1

3
<

1− 2 cos( πN )

3
≤ λN ≤ 0.

And then by choosing λm = −1/3 and λM =
1−2 cos(

(N−1)π
N

)

3 convergence is ensured.

Regular graphs

A regular graph of degree r is a graph in which all the robots have exactly r neighbors. For this kind of graphs,
the worst connectivity appears when r = 2, which is only possible if the network forms a ring. For the ring
topology, the eigenvalues are [18]

λi =
1 + 2 cos(2iπ

N )

3
, i = 1, . . . , N.

The best topology occurs when r = N − 1, which implies a fully connected graph. In this case λ2 =
. . . = λN = 0. However, this is a trivial scenario in which the consensus is achieved in one iteration and only
serves us to find the upper bound of λm. Instead of considering the weight matrix, let us consider the adjacency
matrix. In [17] it is shown that, for r ≥ 3, the second largest eigenvalue of the adjacency matrix is contained
in the interval centered in r3/4 with radius r1/2. Then, a lower bound for this eigenvalue is r3/4 − r1/2. Using
the local degree weights we find the relation W = (I + A)/(r + 1). All this together yields to the bounds on
λ2 and λN for regular graphs,

1 + r3/4 − r1/2

d+ 1
≤ λ2 ≤ max

i

1 + 2 cos(2iπ
N )

3
< 1, and − 1

3
< min

i

1 + 2 cos(2iπ
N )

3
≤ λN ≤ 0,

which provides values for the parameters λm and λM .
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5.5 Analysis of the algorithm with Switching Topologies

We study now the recursive evaluation of (5.9) when the topology of the network, and therefore the matrix W,
changes at different iterations. Given initial conditions x(0), the distributed recurrence now is:

x(1) =
1

T1(c− d)
(cW(1)− dI)x(0),

x(n) = 2
Tn−1(c− d)

Tn(c− d)
(cW(n)− dI)x(n− 1)− Tn−2(c− d)

Tn(c− d)
x(n− 2), n ≥ 2.

(5.17)

Note that this recurrence is suitable for switching weight matrices. However, the evaluation of the recurrence
is no longer equivalent to Pn(W)x(0), for some matrix W. This means that we are not exactly evaluating the
transformed Chebyshev polynomials at the eigenvalues of some matrix anymore. Nevertheless, a theoretical
analysis is still possible.

Recall that the evaluation of Pn(W)x(0) can be separated into the evaluation of its eigenvalues and eigen-
vectors, eq. (5.6), Pn(λi)vi = Tn(cλi − d)/Tn(c− d)vi. In the switching case we must take into account that
both λi and vi change at each iteration. Moreover, since the eigenvectors of different matrices are related we
must also consider these relations. For the moment, as a first simplification of the problem, let us forget about
the changes in vi and the parameters c and d and let us study the scalar evaluation of the Chebyshev recurrence
(5.2) with different λi at each iteration. That is,

T0(L) = 1, T1(L) = λ(1), Tn(L) = 2λ(n)Tn−1(L)− Tn−2(L), (5.18)

where L = {λ(n)}, n ∈ N is a sequence of arbitrary real numbers, with λ(n) ∈ R the nth term in the sequence.
Specifically, we are interested in the behavior of |Tn(L)|.

Proposition 5.5.1 (Upper bound for the time-varying Chebyshev recurrence). Suppose there exists values
δmin and δmax such that λ(n) ∈ [δmin, δmax], ∀n ∈ N, δmin < 0 < δmax and |δmin| ≤ δmax. Then

|Tn(L)| ≤ |Tn(L∗)| (5.19)

where L∗ = {λ∗(n)} is a succession defined by

λ∗(n) =

{
δmax if n odd,
δmin if n even,

(5.20)

Corollary 5.5.2. If |δmin| > δmax then the bound in eq. (5.19) is true taking L∗ = {λ∗(n)} with

λ∗(n) =

{
δmax if n even,
δmin if n odd,

(5.21)

The previous proposition reveals that the Chebyshev recurrence evaluated in a succession of different real
numbers does not keep the behavior shown when it is evaluated with a constant value. The next Lemma provides
a bound for the direct expression of this behavior.

Lemma 5.5.3 (Direct expression for the bounded time-varying Chebyshev recurrence). Let us suppose
that the conditions of Proposition 5.5.1 are true. Then

|Tn(L∗)| ≤ κ1(δmax)n, where κ1(δmax) = δmax +
√
δ2

max + 1 (5.22)
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This direct expression (5.22) will be helpful in the development of the convergence analysis dealing with
changing matrices and the parameters c and d. We provide now the main result, showing the convergence of
the algorithm for the switching case.

Theorem 5.5.4 (Convergence with time-varying topologies). Allow the communication graph, G(n), to arbi-
trarily change in such a way that it is connected for all n, with the weight matrices, W(n), designed according
to Assumption 2.3.3. Let us denote λi(n), i = 1, . . . , N, the eigenvalues of W(n) and

λmax = max
n

max
i=2,...,N

λi(n), and λmin = min
n

min
i=2,...,N

λi(n). (5.23)

Given fixed parameters c and d, a sufficient condition to guarantee convergence to consensus of iteration (5.17)
is

κ1(max{|cλmax − d|, |cλmin − d|})τ(c− d) < 1. (5.24)

The next corollaries give more specific values of λM and λm, and therefore on c and d, that satisfy the
condition in the theorem to achieve convergence.

Corollary 5.5.5 (Convergence with symmetric parameters). Assume |cλmax − d| > |cλmin − d| and a
symmetric assignation, −λm = λM = λ, of the parameters. Then if

λ2 < (1− λ2
max), (5.25)

the algorithm converges.

If we prefer to assign non-symmetric values to the parameters, the following corollary provides a possible
assignation that satisfies Theorem 5.5.4.

Corollary 5.5.6 (Convergence with non symmetric parameters). Assume now that the values of λmax and
λmin, or some bounds, are known. If λM and λm satisfy that

λM + λm = λmax + λmin, (5.26)

and
λM − λm <

√
4(1− λmax)(1− λmin), (5.27)

then the algorithm achieves the consensus.

We discuss now in detail the meaning of the theorem and its implications.

Remark 5.5.7 (Sufficient condition). Note that the theorem provides just a sufficient condition to ensure
convergence. This means that although the given bounds seem very restrictive, in practice, even if we choose
large values of λM and λm, there can be convergence. Moreover, an important consequence of corollaries
5.5.5 and 5.5.6 is that, independently on the changes of the network topology, there are always parameters such
that the method converges to the consensus.

Remark 5.5.8 (Comparison with the fixed case). It is also interesting to note the different behavior of the
algorithm when the topology changes with respect to the fixed case. In the latter case, in general it is better to
select the parameters λM and λm with large modulus to ensure that all the eigenvalues of the weight matrix are
included in the interval [λm, λM ]. However, in the switching case, it is necessary to choose them small so that
c − d is large enough to guarantee convergence. This happens because the more variation on the eigenvalues
of the weight matrices, the larger κ1(max{|cλmax − d|, |cλmin − d|}) is. Therefore, the larger N , the smaller
(in modulus) λM and λm should be chosen.
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Remark 5.5.9 (Application to general recurrences). The analysis followed to prove convergence of our algo-
rithm is also interesting because it can be applied to more general consensus algorithms based on recurrences
of order greater than one. Given a recurrence similar to (5.17), if a scalar difference equation is found such
that its solution bounds the original one in the worst case, a convergence result using the behavior of this
recurrence can be obtained.

Finally, we provide a discussion about the assumptions we have made to proof convergence.

• Extension to directed graphs: If the weight matrices are not symmetric, then we cannot ensure that the
norm of the matrices used to change the base of eigenvectors is equal to 1. In such a case the convergence
condition in Theorem 5.5.4 would be ζκ1(max{|cλmax−d|, |cλmin−d|})τ(c−d) < 1,with ζ ≥ 1 some
positive constant. It is also important to remark that, in this situation, the left eigenvector associated to
λ1(n) is not constant anymore for different matrices. This makes the theoretical analysis of the behavior
more tedious because at each iteration it is affected by these eigenvectors.

• Connectivity of the graphs: The assumption about the connectivity of each graph is more restrictive than
in other approaches, e.g., [61], where only joint connectivity is imposed. In our analysis, if one graph
is disconnected, then λmax = 1 and the sufficient condition (5.24) is never satisfied. This, of course,
is caused because we are considering the worst case scenario, so that we can model the behavior of the
Chebyshev recurrence as the nth power of some quantity. However, even though we have not been able
to prove convergence when some graphs are disconnected, we show in section 5.7 through simulations
that in practice the algorithm turns out to be convergent.

5.6 Adaptive Parameters and Algebraic Connectivity Estimation

In this section we present the adaptive consensus algorithm using the Chebyshev Polynomials that leads to the
estimation of the algebraic connectivity. The proposed algorithm is based on the bisection method. We describe
the process considering a symmetric choice of the parameters, −λm = λM = λ, and therefore, c = 1/λ and
d = 0. The algorithm uses control data to adapt the parameter. For simplicity we explain the algorithm assuming
that x(0) are exactly these control data. The execution of the algorithm with regular initial conditions can be
executed in parallel. Each robot randomly initializes xi(0) ∈ {0, 1}. We require the following assumption:

Assumption 5.6.1 (Non-null Fiedler eigenvector). The initial conditions x(0) expressed as a sum of eigen-
vectors of W, x(0) =

∑
i=1,...,N γivi, satisfy v2 6= 0.

Let us suppose we run the algorithm (5.9) for a fixed number, n, of iterations choosing c = 1/λ, with
λ ∈ (0, 1). Let us define

κn(c) = Tn(c)
‖x(n)− v1‖∞
‖x(0)− v1‖∞

(5.28)

as an indicator of the position of the eigenvalues with respect to the parameter c. The vector v1 is the eigenvector
associated to λ1, i.e., the average of the initial values and ‖x(0) − v1‖∞ and ‖x(n) − v1‖∞ are the initial and
current error in the averaging process. The distributed computation of these data is explained later in the text.

Proposition 5.6.2 (Eigenvalues position indicator). Given λ and c = 1/λ as the parameter for the iteration
(5.9), if λi ∈ [−λ, λ], ∀i = 2, . . . , N, then κn(c) is bounded by

κn(c) ≤
∑N

i=2 ‖vi‖∞
‖
∑N

i=2 vi‖∞
, ∀n. (5.29)

Otherwise, at least λ2 6∈ [−λ, λ] and limn→∞ κn(c) =∞.
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Taking this into account, for a sufficiently large n we are able to discern when all the eigenvalues of W are
contained in the interval [−λ, λ] and when they are not.

We can now propose the adaptive algorithm to iteratively choose λ and c using κn(c) and a bisection
method. The algorithm starts with an interval defined by the two extremes, λmin and λmax, such that

λi ∈ [−λmax, λmax], ∀i = 2, . . . , N,

at least λ2 6∈ [−λmin, λmin].
(5.30)

If there is no knowledge about the network, the initial values of these parameters can be λmin = 0 and λmax = 1.
Following the bisection approach, the first parameter to run the consensus algorithm (5.9) is λ = (λmin +
λmax)/2 = 0.5, c = 1/λ.

At each consensus round, eq. (5.9) is run for n iterations using c. This number, n, must be chosen in such a
way that κn(c) has time to diverge when there is some eigenvalue outside the range [−λ, λ]. The bound in eq.
(5.29) is unknown so an estimation, κ is used in the algorithm. If κn(c) ≤ κ, we know that all the eigenvalues
are contained in the interval [−λ, λ]. On the other hand, if κn(c) > κ, it means that there is some eigenvalue
outside the range. Once we have detected which of the two situations is happening, the bisection parameters
are updated according to it,

λmax = λ, if κn(c) ≤ κ
λmin = λ, if κn(c) > κ.

(5.31)

After that the consensus process is repeated, computing at each round a new estimation of the parameter λ =
(λmin + λmax)/2.

Proposition 5.6.3 (Convergence of the bisection method). Assuming n is large enough, the algorithm (5.31)
is convergent to λ2, that is (λmax + λmin)/2→ λ2.

Therefore, the adaptive consensus algorithm updates the parameter c of eq. (5.9) to optimize the conver-
gence speed of the method. Moreover, as new values of λ are computed, a better estimation of the algebraic
connectivity is available.

Remark 5.6.4 (Computation of λN ). Once a good approximation of λ2 is available the same process can be
applied to estimate λN . We need to consider again the standard parametrization of (5.9) with two parameters.
The last estimation, λ, of λ2 such that λ > λ2 is assigned to λM and the new parameter to adaptively tune is
λm. The iterative use of (5.31) to update λm will eventually assign the value of λN to this parameter.

We have not discussed the problem of computing the initial, ‖x(0)−v1‖∞, and final, ‖x(n)−v1‖∞, errors
or the exact value of v1 yet. It is also convenient to discuss the selection of κ and n to have convergence
guarantee.

The use of control data, composed by integers, allows us to use the ideas presented in Chapter 4 to reach
the consensus in finite-time. Let us recall that each robot has initial value of xi(0) ∈ {0, 1}. Therefore the
average will be j/N, for some j = 0, 1, . . . , N, and v1 = j/N1. Let us assume the number of robots has been
computed as explained in Chapter 4.2.2. By using Theorem 4.2.3, the approximation

yi(n) =
1

N
[Nxi(n)] , (5.32)

with [·] a rounding operator to the closest integer, will provide us the exact value of v1, for all n such that
‖x(n)− v1‖∞ ≤ 1/N.

Since during the first iterations the exact value of v1 is not available, the errors cannot be computed either.
Nevertheless, we can get a good approximation of the infinity norm by

‖x(n)− v1‖∞ ' max
i
{|xi(n)− yi(n)|+ |yi(n)− yi(n− 1)|},

‖x(0)− v1‖∞ ' max
i
{|xi(0)− yi(n)|+ |yi(n)− yi(n− 1)|},
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which can be easily computed using a max consensus algorithm in a fixed number of iterations equal to the
diameter of G. Since |xi(n)− yi(n)| is upper bounded by 1/N for all n and i, during the first iterations it will
not provide a real estimation of the errors. For that reason the term |yi(n) − yi(n − 1)| is introduced in the
estimation. Also note that, after a finite number of iterations, y(n) = y(n− 1) = v1, and the above estimation
of the error will be exact whereas using |xi(n)− xi(n− 1)| it would never be.

The only parameter that cannot be exactly computed is κ, but we can give some more accurate bounds of
the value of κn(c) that can be used by the algorithm as values of κ.

Lemma 5.6.5 (Bound of the estimator). When cλi < 1, κn(c) is bounded by κn(c) ≤
√
N

Therefore, assigning κ =
√
N will assure that the algorithm will not overestimate the value of λ2. On

the other hand, by choosing a conservative value of κ will require to choose bigger values of n to make κn(c)
diverge. In this way the algorithm also has time to have a good estimation of yi(n), and therefore of the errors.

The whole process is synthesized in Algorithm 6.

Algorithm 6 Consensus Algorithm with Adaptive Parameters
Require: κ, n and x(0), s.t. xi(0) ∈ {0, 1}

1: Initialize λmin = 0, λmax = 1
2: while λmax − λmin > tolerance do
3: λ = (λmin + λmax)/2, c = 1/λ
4: for it= 1, . . . , n do
5: Compute x(it) using (5.9)
6: end for
7: Use max consensus to estimate the errors
8: Compute κn(c)
9: if κn(c) ≤ κ then λmin = λ

10: else λmax = λ
11: end if
12: end while

5.6.1 Variants of the Estimator

We also provide three different variants of the basic algorithm that can be used to improve its behavior. The
first two variants can be used to improve the convergence rate to the algebraic connectivity and the third one
can be used to detect changes in the communication topology, making the algorithm to converge at each step to
the current best parameter.

Direct estimation of λ2

The first variation we present makes use of κn(c) to provide a direct estimation of λ2 when cλ2 > 1. Let us
recall that in this situation, κn(c) → ∞ with speed determined by Tn(cλ2). The direct expression of Tn(cλ2)
is characterized [83] by

Tn(cλ2) =
1 + τ2n

2τn
, τ = cλ2 −

√
(cλ2)2 − 1. (5.33)

Therefore, the value of λ2 can be estimated as follows:

1. Compute κn(c) and assume κn(c) ' Tn(cλ2)
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2. Using (5.33) compute the value of τ from the second degree equation 2κn(c)τn = 1 + τ2n,

τ =
(
κn(c)−

√
κ2
n(c)− 1

)1/n
(5.34)

3. Finally, clear λ2 from (5.33) using (5.34)

λ2 ' λ
τ2 + 1

2τ
. (5.35)

Note that the value obtained is still an approximation of the real value of λ2. Therefore, the bisection iteration
still needs to be executed. Whenever a direct estimation of λ2 is available, the interval is updated by

λmax = λ2 + min(λmax − λ2, λ2 − λmin),

λmin = λ2 −min(λmax − λ2, λ2 − λmin),

λ = λ2,

(5.36)

where λ2 here is the estimation obtained in (5.35). In this way the interval to look for the algebraic connectivity
is significantly reduced and so is the number of iterations and consensus rounds.

In order to have a good direct estimation of λ2, it is desirable to have Tn(cλi)vi/Tn(c) ' 0, i = 3, . . . , N,
or at least |Tn(cλ2)v2| � |Tn(cλi)vi|. To make this happen, at each new consensus round we update the initial
conditions by x(0) = x(n). With this update the average, v1, is preserved, but the initial conditions are closer
to it, which is the same as to say that vi is closer to zero. In addition, the estimations of the errors are also
improved by the update because yi(n) will be closer to the average. Therefore, we are also obtaining a more
exact value of κn(c), improving even more the estimation.

However, we only do the update when cλ2 > 1. The reason is that the convergence to zero is faster for
the eigenvalues contained within [−λ, λ] than for those outside the interval. Since λ2 is not contained in the
interval, v2 is not reduced as much as the other eigenvectors and v2 � vi. If we update the initial conditions
when cλ2 < 1, it is possible that the component associated to v2 is reduced by a larger factor than for other
eigenvectors.

Speed up using k-section method

The bisection method has the property of reducing the estimation error, |λ − λ2|, by a constant factor of 0.5.
In robotic networks, the cost of sending several small messages is usually bigger than the cost of sending a
unique message with more information. Taking this into account our method can execute several copies of the
consensus algorithm in parallel with different parameters. In this way, the bounds of λ2 are delimited with more
accuracy and the optimal convergence rate is reached sooner. Specifically, given λmin and λmax, the k-section
method executes k − 1 consensus in parallel with parameters

λj = j(λmin + λmax)/k, cj = 1/λj , j = 1, . . . , k − 1. (5.37)

Once all the different estimations of κn(cj) have been computed, the interval to consider in the next con-
sensus iteration is defined by

λmin = max
j
λj s.t. κn(cj) ≤ κ,

λmax = min
j
λj s.t. κn(cj) > κ.

(5.38)

With this algorithm, the size of the messages exchanged by the nodes will increase in k − 1 additional
elements instead of the one sent by the bisection method. However, the error in the estimation of λ2 will be
reduced by a factor of 1/k after each update in the estimation.
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Detecting changes in the communication topology

Since the evaluation of the Chebyshev polynomial requires the topology to be fixed, we impose that during the
n iterations used to estimate κn(c) the topology remains fixed. However, let us assume that within different
consensus rounds the communication topology can change. If we consider a network of mobile sensors, this
situation could appear, for example, making the sensors remain static during the computation of x(n) and letting
them move during the computation of κn(c).

Whenever the eigenvalue λ2 is contained in the interval [λmin, λmax], the standard method will converge
to the right value, even if it changes between estimations of κn(c). However, as we approach to the algebraic
connectivity, the interval [λmin, λmax] will be small, and it will be very likely that a change of the topology
displaces λ2 outside of it. In such case, the standard method will not converge to λ2.

Using a similar approach to the k-section method we can detect when the eigenvalue we are looking for has
left the considered interval. Let us define cmin = 1/λmin and cmax = 1/λmax. If we run the consensus iteration
in parallel for the three parameters, cmin, c and cmax, and λ2 ∈ [λmin, λmax], it must hold that κn(cmin) > κ
and κn(cmax) ≤ κ. If one of these conditions does not hold we will know that the topology has changed and
the algebraic connectivity has left the interval.

In case κn(cmax) < κ that means that λ2 is above the interval and we can use (5.35) to obtain a direct
estimation of it. If κn(cmin) ≥ κ then the value of the algebraic connectivity is below the interval we are
analyzing. In this case we do not have any means to estimate an approximate value. The policy we follow is to
assign λmax = λmin and λmin = 0. Although it is a conservative policy, it ensures that the eigenvalue we are
looking for is again within the interval.

5.7 Simulations

We have analyzed our algorithm in a simulated environment. Monte Carlo experiments have been designed to
study the convergence of the algorithm using Chebyshev polynomials and the influence of the parameters λm
and λM in the convergence properties.

5.7.1 Evaluation with a fixed communication topology

In a first step we study the algorithm when the topology of the network is fixed. We analyze the convergence
speed for different weight matrices, comparing Chebyshev polynomials with other approaches.

In the experiments we have considered 100 random networks of 100 nodes. For each network the nodes
have been randomly positioned in a square of 200 × 200 meters. Two nodes communicate if they are at a
distance less than 20 meters. The networks are also forced to be connected so that the algorithms converge.
After that, 100 different random initial values have been generated in the interval (0, 1)N , giving a total of
10000 trials to test each of the algorithms.

Convergence speed

For each communication network we have computed 4 different weighted adjacency matrices. The first one,
Wld, uses the “local degree weights”, the second one, Wbc, uses the “best constant factor” and the third one,
Wos, computes the “optimal symmetric weights”. This computation is done running an optimizer on the second
largest eigenvalue with the “best constant factor” as the initial approximation to the solution of the problem. For
more information about these matrices we refer to [153]. These three matrices are symmetric, for that reason
we have included in the experiment a fourth non-symmetric matrix, Wns, computed by wij = 1/(Ni + 1) if
j ∈ Ni ∪ i and wij = 0 otherwise.

We have compared our method using Chebyshev polynomials (Chebyshev) with the standard method that
computes the powers of the matrices using (2.3) (Standard), the polynomial of degree 4 proposed in [68] using
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semi-definite programming optimization (SDP), and the second order recurrence with fixed weights proposed
in [129], Fn(x) = βxFn−1(x) + (1 − β)Fn−2(x) (SOFixed). In the last method we have used the value
β = 2/(1 +

√
1− λ2

2), which gives the best convergence rate. For the Chebyshev polynomials we have also
assigned the optimal parameters λM = λ2 and λm = λN . We have measured the average number of iterations
required to obtain an error smaller than a given tolerance.

Table 5.1 shows the results of the experiment. For any matrix our algorithm reaches the consensus faster
than all the other algorithms. Moreover, considering that the initial error is upper bounded by 1, note that
our algorithm is able to reduce the error by five orders of magnitude (10−5) in around N = 100 iterations
(103.0, 109.9, 103.4 and 94.1 iterations in the table), which is the size of the network.

Table 5.1: Number of iterations for different algorithms and tolerances
Method\Tolerance 10−2 10−3 10−4 10−5 Method\Tolerance 10−2 10−3 10−4 10−5

Standard(Wld) 396.1 899.0 1422.9 1902.9 SDP(Wld) 149.9 248.8 349.1 450.1
Standard(Wbc) 470.5 892.4 1307.4 1691.5 SDP(Wbc) 170.7 283.1 396.4 510.5
Standard(Wos) 390.8 735.1 1092.0 1446.0 SDP(Wos) 166.2 265.5 372.4 489.9
Standard(Wns) 308.9 698.4 1116.7 1521.2 SDP(Wns) 305.4 414.8 484.9 555.7
SOFixed(Wld) 45.7 71.9 98.0 124.2 Chebyshev(Wld) 41.8 62.2 82.6 103.0
SOFixed(Wbc) 45.2 67.4 91.2 114.6 Chebyshev(Wbc) 44.6 66.4 88.1 109.9
SOFixed(Wos) 42.2 62.9 83.3 103.6 Chebyshev(Wos) 42.1 62.6 83.0 103.4
SOFixed(Wns) 40.8 63.9 86.8 109.8 Chebyshev(Wns) 38.6 57.1 75.6 94.1

An interesting detail is that our algorithm converges faster using the “local degree weights”, Wld(103.0),
and the “non-symmetric weights”, Wns(94.1), than using the other two matrices (109.9 and 103.4), even
though the second largest eigenvalue of Wbc and Wos is smaller. This behavior happens because the eigenvalues
of Wbc and Wos are symmetrically placed with respect to zero whereas for Wld and Wns |λN | < λ2 (an
example can be found in [153]). As a consequence, c − d is larger and the algorithm converges faster. This
is indeed very convenient because the “local degree weights” and the “non-symmetric weights” can be easily
computed in a distributed way without global information, whereas the other two require the knowledge of the
whole topology.

Regarding the non-symmetric weights, we have observed that λ2 is, in general, small compared to the
second eigenvalue of the symmetric matrices. Since the eigenvalues of Wns also satisfy that |λN | < λ2, the
convergence for this matrix is the fastest. Also note that these matrices are the easiest to compute. On the other
hand, when using symmetric weight matrices the convergence value is known to be the average of the initial
conditions whereas when using non-symmetric weights the convergence value depends on the matrix.

Dependence on the parameters λM and λm

So far we have evaluated the convergence speed of our algorithm only considering the optimal parameters,
which implies the knowledge of the eigenvalues of the weight matrix. However, in most situations the nodes will
have no knowledge about these eigenvalues. We analyze now the convergence rates of Chebyshev polynomials
algorithm when it is run using sub-optimal parameters. In this case, for simplicity we have only considered
Wld in the experiment.

The results are in Table 5.2. The table shows the average number of iterations required to have an error
lower than 10−3. The number of iterations is in all the cases larger than in Table 5.1 (62.2 iterations) but the
results are in most cases still good because the number of iterations is smaller than using the powers of Wld

(899.0 iterations in Table 5.1). The results compared to SOFixed evaluated with the optimal parameter (71.9
it. in Table 5.1) seem to be poor. However, the optimal β requires the knowledge of λ2 which, right now,
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Table 5.2: Number of iterations using sub-optimal parameters and tolerance 10−3

λm\λM 0.5 0.8 0.9 0.95 0.999
-0.5 630.4 397.2 279.0 194.5 75.9
-0.8 690.6 435.2 305.6 213.1 83.1
-0.9 709.5 447.0 314.0 219.0 85.4
-0.95 718.8 453.0 318.1 221.8 86.5

-0.999 726.0 457.6 321.3 224.0 87.4

β 0.5 0.8 0.9 0.95 0.999
SOFixed 672.4 463.9 320.9 227.1 93.0

we are assuming it is unknown. For that reason, in the last row of Table 5.2 we have included the results

using Fn evaluated with β = 2/(1 +
√

1− λ2
M ), i.e., with the same estimation of λ2 used for the Chebyshev

polynomials. In this case we observe again that both methods present a similar performance when using the
same parameters. The degree of freedom given by λm is what differs in the algorithms. By adjusting this
parameter we can reduce the number of iterations in our algorithm.

Another advantage of using Chebyshev polynomials with the weight matrix Wld, besides the computation
using local information, is that usually its smallest eigenvalue, λN , is a negative value close to zero (in our
simulations it has never valued less than -0.5). The second largest eigenvalue depends on how many nodes
has the network and the number of links, but in general this eigenvalue is close to one. Therefore by choosing
λm = −0.5 and λM ' 1 there is a great chance to obtain a good convergence rate and almost no risk of
divergence, see for example the cell in the second row and sixth column of Table 5.2 (75.9). A safer choice of
parameters is λm = −λM , which we know that always converges. In this case we can see that the larger the
value of λM , the fastest the convergence rate.

5.7.2 Evaluation with a switching communication topology

We see now how the Chebyshev polynomials work when the topology of the network changes at different
iterations. We start by showing the convergence in an illustrative example where the conditions of Theorem
5.5.4 are satisfied. After that, we run again Monte Carlo experiments to analyze the algorithm in more realistic
situations.

Illustrative Example

We have considered a connected communication network composed by 20 nodes. In order to satisfy the con-
ditions of Theorem 5.5.4 at each iteration we have randomly added some links to the network. In this way all
the topologies remain connected and the parameters λmax and λmin correspond to the second maximum and
the smallest eigenvalues of the initial weight matrix. Using the local degree weights, which return a symmet-
ric matrix, these parameters are λmax = 0.9477 and λmin = −0.1922. In Figure 5.4 we show the evolution
of the state using different algorithms and Chebyshev polynomials with different parameters. In the first row
we can see that the finite-time consensus algorithm using the minimal polynomial [138] and the semi-definite
programming polynomial [68] do not reach the consensus when the topology changes. On the other hand,
the standard method and the second order fixed recurrence achieve the consensus. The vertical line represents
when the algorithms reach the consensus with a tolerance smaller than 10−3. In the second row of Fig. 5.4
we show the evolution of the state using Chebyshev polynomials with parameters defined, from left to right,
in Corollary 5.5.5, λM = −λm = 0.3190, Corollary 5.5.6, λM = 0.6274, λm = 0.1282, non-symmetric
with good convergence rate for fixed topology, λM = 0.9, λm = −0.5, and symmetric with large modulus,
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Figure 5.4: Convergence speed of different algorithms with a switching communication topology. The minimal polyno-
mial and the SDP polynomial do not reach the consensus when the topology changes. On the other hand, the standard
method and the second order fixed recurrence achieve the consensus. The vertical line represents when the algorithms
reach the consensus with a tolerance smaller than 10−3. The second row shows the use of Chebyshev polynomials with
the parameters of Corollaries 5.5.5 (λM = −λm = 0.3190) and 5.5.6 (λM = 0.6274, λm = 0.1282), and parameters
with good behavior in fixed topology (λM = 0.8, λm = −0.8 and λM = 0.9, λm = −0.5). Note that in these cases the
convergence to the consensus is also faster than using other methods.



5. Fast Consensus with Chebyshev Polynomials 107

λM = 0.8, λm = −0.8. The last two examples show that the condition of Theorem 5.5.4 is a sufficient condi-
tion and that the algorithm also converges to the consensus choosing parameters with large modulus. Moreover,
note that in these last cases the convergence is also faster than using the other tested methods.

Convergence depending on the evolution of the network and the parameters

We have generated again 100 random networks of 100 nodes like in the fixed topology case. To model the
changes in the communication topology we have considered three different scenarios in the experiment. The
first one assumes a fixed initial communication topology and, at each iteration the links can fail with constant
probability equal to 0.05 (Link Failures). This is a usual way to model networks with unreliable or noisy com-
munications. In the second scenario we consider a set of mobile agents that randomly move in the environment.
In this way, at each iteration the communication topology evolves with the proximity graph defined by the new
positions of the agents (Evolution with Motion). The last scenario assumes a new random network at each
iteration (Random Network). Although in real situations may be uncommon, it is interesting to analyze it in
order to study the properties of our algorithm. In the three scenarios we have used the local degree weights
to define the weight matrix at each iteration. We have not worried about the network connectivity, letting the
experiment to possibly have several iterations with disconnected networks. We have set a maximum of 3000
iterations per trial.

Table 5.3: Iterations for Link Failures (LF), Evolution with Motion (EWM) and Random Networks (RN)
λm\λM 0.5 0.75 0.9 0.95

LF EWM RN LF EWM RN LF EWM RN LF EWM RN
-0.5 ≥ 3000 1765.2 8.9 1328.6 665.6 11.6 418.9 461.9 22.3 293.5 306.5 42.1

-0.75 ≥ 3000 1793.5 9.6 1356.6 703.6 11.8 452.3 506.3 21.7 316.8 309.8 37.8
-0.9 ≥ 3000 1813.0 10.0 1321.0 708.5 12.0 470.9 564.9 21.7 330.0 311.0 36.8

-0.95 ≥ 3000 1818.0 10.1 1326.4 710.4 12.0 476.9 564.9 21.7 334.5 311.5 36.5
Standard LF = 1087.2 EWM = 1032.4 RN = 9.4

The number of iterations required to achieve the consensus with accuracy 10−3 using Chebyshev polyno-
mials with different parameters is shown in Table 5.3. In the last row of the Table we have included the number
of iterations the standard method requires to converge with the same precision. Similarly to the case with fixed
topology, an appropriate choice of the parameters leads to convergence rates faster than the standard method,
e.g., considering Link Failures (LF) and choosing λM = 0.95 and λm = −0.5 only 293.5 iterations are re-
quired, compared to the 1087.2 iterations required with the standard method (more than 4 times faster). On the
other hand, we can see that a wrong choice of the parameters may lead to a slow convergence rate. This is the
case, for example, of the cells with “≥ 3000” iterations (around 4 times slower). Nevertheless, even in these
cases the algorithm still is able to achieve the consensus, even when the conditions required in Theorem 5.5.4
are violated, whereas we already know that other polynomial approaches fail to converge.

It is also surprising which parameters achieve the fastest convergence in the different scenarios. For the Link
Failures and the Evolution with Motion, the best parameters are exactly the worst parameters for the Random
Networks scenario, i.e., λM = 0.95 and λm = −0.5. On the other hand, the best parameters for the Random
Networks are those who give the slowest convergence rate for the other two scenarios. The explanation for this
phenomenon appears in the variability of the eigenvectors of the weight matrices. When the topology changes
arbitrarily at each iteration, there is a great variability in the eigenvectors of the weight matrices, which turns
out in a great variability of x(n). This situation is closer to the worst case we have shown in section IV to
proof the convergence of the algorithm. Therefore, a good convergence rate requires a large value of c − d,
achieved when λM and λm have small modulus. When the topology changes smoothly, as in the Link Failures
and the Motion Evolution, the eigenvectors do not change much and the algorithm behaves similarly to the
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fixed case. For that reason, the parameters that achieve the best convergence rate are the same as in the fixed
case. However, we must be careful because for large values of λM the algorithm may diverge.

A final detail is that, in all the cases, the convergence seems to be more affected by λM than λm. This is
explained by the use of the local degree weights. As we have mentioned earlier, these matrices do not have
symmetric eigenvalues with respect to zero. In these matrices λmax dominates the convergence rate, so the
convergence is more sensible to the parameter λM .

In conclusion, when the topology of the network changes, the parameters should be chosen taking into
account the nature of these changes. For small changes similar parameters to the fixed case should be as-
signed whereas if the network is expected to change a lot we should pick small parameters for the algorithm to
guarantee convergence.

5.7.3 Evaluation of the adaptive parameter estimation

In the simulations to estimate the algebraic connectivity we have generated networks of different sizes. For
each different number of robots, we have tried a hundred random networks. In each network the robots have
been randomly positioned in a square of 200 × 200 meters. The communication radius has been set again to
20 meters. The networks have also been forced to be connected. Ten different random initial values have been
tested for each network, giving a total of 1000 trials for each number of robots. In all the experiments the matrix
W has been computed using the “local degree weights”.

The value of κ has been set to
√
N and we have used the value of c in order to decide the number of

iterations n executed at each round. We have chosen the minimum n such that Tn(c) > 100. In this way, the
algorithm always executes enough iterations to converge to the right value.

The results obtained using the bisection method are in Table 5.4. The second column (λ2) shows the mean
algebraic connectivity of all the networks analyzed and the third column (Diam) shows the mean diameter.
The column “Rounds” represents the number of estimations of λ before satisfying that λmax − λmin ≤ 10−2

Therefore, the method is expected to have a tolerance of 10−2 in the estimation of λ2. Since the error is reduced
by the same factor at each round, using this method the number of rounds is constant for any size of the
network. The total number of iterations (including the max consensus to estimate the errors) is written in the
column “Iter” whereas next column (n) shows only the iterations required for the consensus part. Finally, the
last column shows the mean of the estimations, λ.

Table 5.4: Results for the standard bisection method
N λ2 Diam Rounds Iter n λ

10 0.910 4.68 6 118.08 90.00 0.917
50 0.982 10.52 6 170.56 107.45 0.978

100 0.985 13.62 6 198.67 116.95 0.982
250 0.992 18.64 6 240.84 129.00 0.993
500 0.992 43.00 6 376.40 150.20 0.994

Looking at the results, we can extract some interesting conclusions. First of all, the large values of the mean
λ2 indicate that consensus algorithms evaluated in these networks will require a large number of iterations to
achieve consensus. Although our method uses several consensus rounds to estimate the algebraic connectivity,
each one of these rounds requires a considerably smaller number of iterations than a standard consensus method.
Since the algorithm is intended to be executed at the same time as the standard consensus with real data, we
conclude that within one consensus execution with real data we will have the algebraic connectivity.

It is also remarkable how well the method escalates with the size of the network. For large networks in less
than N iterations the algorithm reaches a good estimation of λ2. Another thing to remark is that the number of
iterations used in the max consensus represents a large fraction of the total, specially asN grows. This happens
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because the choice of n does not depend on the size of the network but on the connectivity. Therefore, for large
networks, the bottleneck of the algorithm, in terms of communications, is the diameter of G.

Figure 5.5 depicts three executions of the adaptive consensus in a network of 100 nodes using real initial
conditions. The three pictures consider the same initial conditions, the same number of iterations and different
input parameters, estimated using bisection. It can be seen that as new estimations of λ are computed, the
consensus is reached faster.
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Figure 5.5: Adaptive consensus with parameter estimation. Evolution of x(n) using the same initial conditions and
number of iterations but different parameters estimated using pure bisection. The algebraic connectivity of the network is
0.987. As new estimations of λ are computed, the consensus is reached faster.

Table 5.5: Results with direct estimation of λ2

N λ2 Diam Rounds Iter n λ

10 0.910 4.68 4.40 86.62 66.20 0.915
50 0.982 10.52 4.02 118.68 76.60 0.979

100 0.985 13.62 4.45 155.02 94.36 0.982
250 0.992 18.64 5.23 215.66 118.31 0.994
500 0.991 43.00 5.10 322.00 129.72 0.994

In Table 5.5 we show the results for the same experiment but using the direct estimation of λ2 presented in
section 5.6.1. In this case the number of rounds depends on the computed values of λ2. Note that this number
is smaller than the number of rounds required by the standard bisection to obtain the same tolerance error. As
a consequence the number of iterations is also reduced. Finally, it is worth noticing that the estimation of λ2 is
also very precise.

Estimation with a switching topology

To end, we show an experiment where we allow the communication graph to change, showing that our method
tracks the algebraic connectivity using the k-section method.

We have considered a random network composed by 50 nodes. Since during the computation of x(n) the
network must be static, we have only modified the network during the estimation of the errors. The evolution
of the estimations is depicted in Fig. 5.6. We can see that the algorithm detects the changes in the topology and
adjust the intervals in consequence. If the topology remains fixed for enough iterations, the method estimates the
value of the algebraic connectivity. When the algebraic connectivity is reduced, instead of assigning λmin = 0
we have used λmin = λmax−0.1. Although sometimes, e.g., just before iteration 200, more than one consensus
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round is required to adapt the interval, with this assignment, the convergence is in general faster to the real value
of λ2.
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Figure 5.6: Estimation of the algebraic connectivity under a switching communication network. The algorithm detects
the changes and adapts the interval to estimate at each round the algebraic connectivity.

5.8 Discussion

Summing up, we have proposed a linear iteration using Chebyshev polynomials of first kind that requires a
small number of iterations to reach the consensus. In this way, we can compensate the extra communication
load that visual information usually requires, or the voting for multiple hypotheses to reach a robust consensus
using De-RANSAC.

The proposed algorithm has the same characteristics of a standard linear iteration. The robots need to send
the same amount of data and only need to compute sums and products of the variables. The main difference
is the use of a second order recurrence iteration, which has small additional space requirements in the memory
of the robots but significantly accelerates the convergence rate compared to existing approaches. In the chapter
we have characterized the speed up with theoretical results and extensive simulations considering fixed and
switching communication topologies.

Our algorithm requires two additional input parameters that define the convergence speed of the method.
We have analyzed the influence of these parameters in the convergence speed, showing that the fastest version
of our algorithm is achieved when they correspond with the smallest and the second largest eigenvalues of
the weight matrix. For some specific topologies like trees or regular graphs we have given direct expressions
to assign these parameters. For general topologies, the exact value of the parameters requires the knowledge
of the whole network topology. For that reason we have also proposed a distributed solution to estimate the
parameters using a bisection technique. The result is an adaptive distributed linear iteration able to reach the
maximum convergence speed.

With this chapter we conclude the first part of the Thesis, where we have focused on modifying the standard
consensus algorithm so that it can be used with visual information of any type. It is clear that the choice of
the appropriate representation of the information is another important factor to achieve a good consensus.
For example, in perception tasks, the use of line descriptors extracted from the images will have different
implications in the computation of the consensus than the use of SURF descriptors. In the rest of the Thesis
we will study how the consensus computation can be simplified in perception and control tasks by using well
known computer vision methods.
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Proofs

Proof of Theorem 5.4.1 (Convergence of the Algorithm)

We introduce an auxiliary result to prove the convergence.

Lemma 5.8.1. Given x1 > 1, for any x2 such that |x2| < x1 it holds that

lim
n→∞

Tn(x2)

Tn(x1)
= 0. (5.39)

Proof. For |x2| ≤ 1, |Tn(x2)| ≤ 1, ∀n, and since Tn(x1) → ∞ with n, eq. (5.39) is true. Now, if
1 < |x2| < x1, then using (5.5) we have

Tn(x2)

Tn(x1)
=
τ(x1)n

τ(x2)n
1 + τ(x2)2n

1 + τ(x1)2n
. (5.40)

But in this case, 1 > |τ(x2)| > τ(x1) > 0 and the result holds immediately.
Proof of Theorem 5.4.1. Let Q = W− 1

N 11T , whose eigenvalues are λ1 = 0, with v1 = 1 its correspond-
ing eigenvector, and λ2, . . . , λN with the same eigenvectors as W. Considering that γ1 = 1/N1T x(0), then
1
N 11T (x(0)− γ1v1) = 0. Taking this into account it is easy to see that

Wk(x(0)− γ1v1) = Qk(x(0)− γ1v1), ∀k ∈ N, (5.41)

and thereforePn(W)(x(0)−γ1v1) =
∑n

k=0 αk Wk(x(0)−γ1v1) =
∑n

k=0 αk Qk(x(0)−γ1v1) = Pn(Q)(x(0)−
γ1v1), with αk the coefficients of Pn.

Also Wv1 = v1 and Pn(1) = 1, then Pn(W)v1 = v1 and

‖x(n)− γ1v1‖2 = ‖Pn(W)(x(0)− γ1v1)‖2 = ‖Pn(Q)(x(0)− γ1v1)‖2 ≤ ‖Pn(Q)‖2‖x(0)− γ1v1‖2. (5.42)

In addition, Q is symmetric, and so is Pn(Q), which implies that its spectral norm coincides with the spectral
radius,

‖Pn(Q)‖2 = ρ(Pn(Q)) = max
i 6=1
|Pn(λi)| = max

i 6=1

|Tn(cλi − d)|
Tn(c− d)

. (5.43)

For any x ∈ (λM + λm − 1, 1) we have that |cx − d| < c − d, then for all the eigenvalues of W but λ1,
|cλi − d| < c− d. Finally, noting that c− d is strictly larger than 1, by Lemma 5.8.1 Pn(λi)→ 0 for all i 6= 1,
which proves the convergence of the algorithm.

Proof of Theorem 5.4.2 (Optimal Parameters)

In order to prove Theorem 5.4.2 we will use the following auxiliary results.

Lemma 5.8.2. Let λm, λM such that [λN , λ2] 6⊆ [λm, λM ] and |cλN − d| < cλ2− d. Then, for fixed c, ν(c, d)
is a decreasing function of d.

Proof. Let us see that ∂ν(c, d)/∂d < 0.

ν(c, d) =
τ(c− d)

|τ(cλ2 − d)|
=

τ(c− d)

τ(cλ2 − d)
> 0

Then
∂ν

∂d
=
−τ ′(c− d)τ(cλ2 − d) + τ(c− d)τ ′(cλ2 − d)

τ(cλ2 − d)2
.
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But since for x > 0, τ ′(x) = −τ(x)/
√
x2 − 1, then

∂ν

∂d
=

τ(c− d)

τ(cλ2 − d)

[
1√

(c− d)2 − 1
− 1√

(cλ2 − d)2 − 1

]

which is negative because 1 < (cλ2 − d)2 < (c− d)2.

Lemma 5.8.3. Let λm, λM such that [λN , λ2] 6⊆ [λm, λM ] and |cλN − d| > |cλ2 − d| with cλN − d < 0.
Then, for fixed c, ν(c, d) is an increasing function of d.

Proof. The proof is very similar to that of Lemma 5.8.2 and is omitted.

Proposition 5.8.4. Let λm, λM such that λM − λm = 2/c is fixed and [λN , λ2] 6⊆ [λm, λM ]. Then

i) If λ2 − λN > λM − λm, ν(c, d) ≥ ν(c, d∗), d∗ being the value such that λM + λm = λ2 + λN , that is,
for a fixed c, ν(c, d) is minimum when λm, λM are symmetrically placed with respect to λN , λ2.

ii) If λ2 − λN ≤ λM − λm and λM < λ2 then ν(c, d) ≥ ν(c, d∗), d∗ being such that λM = λ2, and in this
case [λN , λ2] ⊆ [λm, λM ]

iii) If λ2 − λN ≤ λM − λm and λm > λN then ν(c, d) ≥ ν(c, d∗), d∗ being such that λm = λN , and in this
case [λN , λ2] ⊆ [λm, λM ]

Proof. i) The result follows from Lemmas 5.8.2 and 5.8.3. If λ2 > λM , then cλ2 − d > |cλN − d| and
ν(c, d) is a decreasing function of d = (λM + λm)c/2 which means that it decreases as λM increases. The
maximum value of λM for which these conditions hold is λM = 1/c + (λ2 + λN )/2 for which cλ2 − d =
|cλN − d|.

If λN < λm, then cλ2 − d < |cλN − d| and ν(c, d) is an increasing function of d = (λM + λm)c/2 which
means that it increases when λM increaseses. The minimum value of λM for which these conditions hold is
λM = 1/c+ (λ2 + λN )/2 for which cλ2 − d = |cλN − d|.

ii) In this case cλ2 − d > |cλN − d|, and ν(c, d) is a decreasing function of d = (λM + λm)c/2 which
means that it decreases when λM increases. The maximum value of λM for which these conditions hold is
λM = λ2.

iii) In this case cλ2 − d < |cλN − d|, and ν(c, d) is an increasing function of d = (λM + λm)c/2 which
means that it increases when λm increases. The minimum value of λm for which these conditions hold is
λm = λN .

Proof of Theorem 5.4.2. If [λ2, λN ] ⊆ [λm, λM ] the result was proved in [91]. Let us suppose then that
[λ2, λN ] 6⊆ [λm, λM ]. If λ2 − λN ≤ λM − λm, it has been shown in Proposition 1.1 that ν(c, d) has smaller
values for c, d such that [λN , λ2] ⊆ [λm, λM ], and in this case λ2 = λM and λN = λm yields to the minimum
ν(c, d).

If λ2 − λN > λM − λm, we have seen in Proposition 1.1 that ν(c, d) is smaller for c, d such that λm, λM
are symmetrically placed with respect to λN , λ2, that is, λM = λ2 − α and λm = λN + α, α ≥ 0. Let us see
that ν(c, d) is minimum for α = 0. First, note that

c =
2

λM − λm
=

2

λ2 − λN − 2α
, and d =

λM + λm
λM − λm

=
λ2 + λN

λ2 − λN − 2α
.

Thus

ν(c, d) =
τ(c− d)

τ(cλ2 − d)
=

τ(c− d)

−τ(cλN − d)

and taking into account that

∂

∂α
(cλ− d) = 2

2λ− λ2 − λN
(λ2 − λN − 2α)2

= 2
cλ− d

(λ2 − λN − 2α)
,
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∂ν(c, d)

∂α
=

−2τ(c− d)

τ(cλ2 − d)(λ2 − λN − 2α)

[
c− d√

(c− d)2 − 1
− cλ2 − d√

(cλ2 − d)2 − 1

]
> 0.

Then ν(c, d) is increasing with α and the minimum value is obtained for α = 0.

Proof of Theorem 5.4.3 (Faster convergence than Wn)

By eq. (5.7) we have that c − d = 1/λM , cλ − d = λ/λM . To prove the faster convergence of our algorithm
we show that the quotient between λn and Pn(λ) goes to infinity with n. That is

lim
n→∞

∣∣∣∣ λn

Pn(λ)

∣∣∣∣ = lim
n→∞

∣∣∣∣λnTn(c− d)

Tn(cλ− d)

∣∣∣∣ =∞. (5.44)

If λ ∈ [λm, λM ], then cλ− d ∈ (−1, 1) and |Tn(cλ− d)| ≤ 1. Using (5.5)∣∣∣∣λnTn(c− d)

Tn(cλ− d)

∣∣∣∣ ≥ |λnTn(c− d)| =
∣∣∣∣λn 1 + τ(c− d)2n

2τ(c− d)n

∣∣∣∣ , (5.45)

where τ is the function in eq. (5.5), which at c − d is smaller than one. Then, in order to fulfill (5.44) it must
hold that

lim
n→∞

(
λ

τ(c− d)

)n
=∞⇔ λ > τ(c− d)⇔ λMλ > 1−

√
1− λ2

M , (5.46)

which is satisfied if (5.15) holds.
On the other hand, if λ 6∈ [λm, λM ], using again (5.5) we substitute the value of Tn(c− d) and Tn(cλ− d)

λn

Pn(λ)
= λn

τ(cλ− d)n

τ(c− d)n
1 + τ(c− d)2n

1 + τ(cλ− d)2n
. (5.47)

The second term of (5.47) goes to one as n goes to infinity. This means that, in order to fulfill (5.44) it must
hold that

lim
n→∞

(
λτ(cλ− d)

τ(c− d)

)n
=∞⇔

∣∣∣∣λτ(cλ− d)

τ(c− d)

∣∣∣∣ > 1. (5.48)

Replacing τ for its value and doing some calculations using the radical conjugates we obtain

λτ(cλ− d)

τ(c− d)
= λ

1 +
√

1− λ2
M

λ+
√
λ2 − λ2

M

. (5.49)

Using (5.49) we obtain that (5.48) is equivalent to λM (−1−λ2) + 2λ > 0, which by (5.15) is always true, and
therefore, the proof is complete.

Proof of Proposition 5.4.5 (Convergence for directed graphs)

Lemma 5.8.5. Given x > 1, for any complex number z, such that |τ(z)| = min{|z +
√
z2 − 1|, |z −√

z2 − 1|} > τ(x), then limn→∞ Tn(z)/Tn(x) = 0.

Proof. It is a straightforward consequence of (5.40).
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Proof of Proposition 5.4.5. Let Q = W − 1wT
1 /wT

1 1, with w1 the left eigenvector associated to λ1.
Proceeding as in the Proof of Theorem 5.4.1, using γ1 = wT

1 x(0)/wT
1 1, we arrive at

‖x(n)− γ1v1‖2 ≤ ‖Pn(Q)‖2‖x(0)− γ1v1‖2. (5.50)

Since W is diagonalizable, so is Q,which implies that Q can be decomposed, Q = RDR−1,with D =diag(0, λ2, . . . , λN ).
Using that Qn = RDnR−1, we get that Pn(Q) = RPn(D)R−1, and then

‖Pn(Q)‖2 ≤ ‖R‖2 ρ(Pn(Q)) ‖R−1‖2 = K max
i 6=1
|Pn(λi)| = K max

i 6=1

|Tn(cλi − d)|
Tn(c− d)

, (5.51)

with K the condition number of P.
For any x ∈ (λM + λm − 1, 1) we have that |cx − d| < c − d, then for all the real eigenvalues of W but

λ1, |cλi − d| < c− d. Noting that c− d is strictly larger than 1 and τ(c− d) < τ(cλz − d), for any complex
eigenvalue λz , by Lemmas 5.8.1 and 5.8.5, Pn(λi) → 0 for all i 6= 1, which proves the convergence of the
algorithm.

Proof of Proposition 5.5.1 (Upper bound for the time-varying Chebyshev recurrence)

For abbreviation, in the proof we will denote the sign of Tn(Λ) by s(Tn).
Let us note that, if s(Tn−1) = s(Tn−2), by choosing λ(n) < 0, then

|Tn(Λ)| = |2λ(n)Tn−1(Λ)− Tn−2(Λ)| = |2λ(n)Tn−1(Λ)|+ |Tn−2(Λ)|, (5.52)

independently of n. The choice of λ(n) > 0 when s(Tn−1) = s(Tn−2) implies that

|Tn(Λ)| = |2λ(n)Tn−1(Λ)− Tn−2(Λ)| < |2λ(n)Tn−1(Λ)|+ |Tn−2(Λ)|. (5.53)

Taking these two facts into account we can see that

s(Tn−1) = s(Tn−2)⇒ arg max
λ(n)
|Tn(Λ)| = δmin. (5.54)

Besides, in this situation, choosing λ(n) < 0 yields s(Tn) 6= s(Tn−1).
Now, if s(Tn−1) 6= s(Tn−2) and λ(n) > 0, then eq. (5.52) is again true. On the other hand, choosing

λ(n) < 0 in this situation implies (5.53). Thus,

s(Tn−1) 6= s(Tn−2)⇒ arg max
λ(n)
|Tn(Λ)| = δmax. (5.55)

Also, if s(Tn−1) 6= s(Tn−2) and λ(n) > 0, then s(Tn) = s(Tn−1).
Finally, noting that inequality (5.19) holds for n = 0 and 1, and s(T0(Λ∗)) = s(T1(Λ∗)), then using (5.54)

and (5.55) the succession (5.20) is obtained and the result is proved.

Proof of Lemma 5.5.3 (Direct expression for the bounded time-varying Chebyshev recurrence)

Let us define the recurrence

T ∗0 (λ) = 1, T ∗1 (λ) = λ, T ∗n(λ) = 2λT ∗n−1(λ) + T ∗n−2(λ), (5.56)

which satisfies that
|Tn(Λ∗)| ≤ T ∗n(δmax). (5.57)
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According to recurrence (5.56), the succession {T ∗n(δmax), n = 0, 1, . . .} satisfies the homogeneous dif-
ference equation T ∗n(δmax)− 2δmaxT

∗
n−1(δmax)− T ∗n−2(δmax) = 0. By the theory of difference equations [2],

the solution to this equation is determined by the roots κ1 and κ2 of the characteristic polynomial. In this case

κ1(δmax) = δmax +
√
δ2

max + 1 > 1, and κ2(δmax) = δmax −
√
δ2

max + 1 = −1/κ1(δmax). (5.58)

Since κ1(δmax) 6= κ2(δmax), the direct expression of T ∗n(δmax) is

T ∗n(δmax) = Aκ1(δmax)n +Bκ2(δmax)n (5.59)

where A and B depend on the initial conditions T ∗0 (δmax) and T ∗1 (δmax). In our case A = B = 1/2 and

|Tn(Λ∗)| ≤ T ∗n(δmax) =
1

2
(κ1(δmax)n + (−1/κ1(δmax))n) ≤ κ1(δmax)n. (5.60)

Proof of Theorem 5.5.4 (Convergence with time-varying topologies)

First of all, let us state the notation we will follow along the proof. For any weight matrix W(n) we denote its
eigenvectors by vi(n), i = 1, . . . , N . Let us denote V(n) = [v1(n), . . . , vN (n)] the matrix with all the eigen-
vectors of W(n). Since W(n) is symmetric, it is diagonalizable and we can choose the base of eigenvectors in
such a way that V(n) is orthogonal. Therefore, v1(n)T vi(n) = 0, ∀i = 2, . . . , N, and v1(n) = 1/

√
N = v1,

for all n. We define x̄ as the vector containing the average of the initial conditions in all its components,
x̄ = 1T x(0)1/N.

Let Q(n) = W(n) − 1
N 11T , whose eigenvalues are 0, with v1(n) = 1/

√
N its corresponding eigen-

vector, and λ2(n), . . . , λN (n), with the same eigenvectors as W(n). Thus, Q(n)V(n) = V(n)D(n), with
D(n) = diag(0, λ2(n), . . . , λN (n)). Taking all of this into account it is easy to see that 11T (x(0) − x̄) = 0,
and W(n)(x(n)− x̄) = Q(n)(x(n)− x̄).

Given two consecutive matrices, Q(n) and Q(n−1), let P(n) be the matrix such that V(n−1) = V(n)P(n),
that is, the matrix that changes from the base of eigenvectors of Q(n−1) to the base of eigenvectors of Q(n). In a
similar way, R(n) will be such that V(n−2) = V(n)R(n). The orthogonality of V(n), implies that the matrices
P(n) = V(n)−1V(n− 1) and R(n) = V(n)−1V(n− 2) are also orthogonal, and ‖P(n)‖2 = ‖R(n)‖2 = 1.

We define the scaled error at the nth iteration by e(n) = Tn(c − d)(x(n) − x̄). Using the Chebyshev
recurrence (5.17), and the equivalence

x̄ = 2
Tn(c− d)

Tn+1(c− d)
(cW(n)− dI)x̄− Tn−1(c− d)

Tn+1(c− d)
x̄, (5.61)

e(n) satisfies the recurrence

e(0) = (x(0)− x̄), e(1) = (cQ(1)− dI)e(0), e(n) = 2(cQ(n)− dI)e(n− 1)− e(n− 2). (5.62)

Each vector e(n) can be expressed as a linear combination of the eigenvectors of Q(n),

e(n) =

N∑
i=1

αi(n)vi(n) = V(n)α(n). (5.63)

We will next prove that ‖α(n)‖2/Tn(c− d) goes to zero with n. Replacing e(n) by (5.63) in (5.62),

e(n) = 2(cQ(n)− dI)V(n− 1)α(n− 1)− V(n− 2)α(n− 1)

= 2(cQ(n)− dI)V(n)P(n)α(n− 1)− V(n)R(n)α(n− 2)

= 2V(n)(cD(n)− dI)P(n)α(n− 1)− V(n)R(n)α(n− 2)

= V(n)[2(cD(n)− dI)P(n)α(n− 1)− R(n)α(n− 2)] = V(n)α(n).

(5.64)
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Therefore, the vectors α(n) satisfy the recurrence

α(0) = α(1), α(n) = 2(cD(n)− dI)P(n)α(n− 1)− R(n)α(n− 2). (5.65)

Taking spectral norms,

‖α(n)‖2 = ‖2(cD(n)− dI)P(n)α(n− 1)− R(n)α(n− 2)‖2 ≤
≤ 2‖(cD(n)− dI)‖2‖P(n)‖2‖α(n− 1)‖2 + ‖R(n)‖2‖α(n− 2)‖2 ≤
≤ (2 max

i
|cλi(n)− d|‖α(n− 1)‖2 + ‖α(n− 2)‖2).

(5.66)

By Lemma 5.5.3 we can bound the norm of α(n) by κ1(xmax)n‖α(0)‖2, where the parameter xmax in this
case is

xmax = max
n

max
i=2,...,N

|cλi(n)− d| = max
n
{|cλ2(n)− d|, |cλN (n)− d|} =

= max{|cλmax − d|, |cλmin − d|}.
(5.67)

Therefore, in order to make the error go to zero we require that

lim
n→∞

κ1(xmax)n

Tn(c− d)
= 0. (5.68)

Using (5.5)
κ1(xmax)n

Tn(c− d)
=
κ1(xmax)nτ(c− d)n

1 + τ(c− d)2n
, (5.69)

which goes to zero if κ1(xmax)τ(c − d) < 1. When this happens limn→∞ x(n) = x̄, and the consensus is
achieved.

Proof of Corollary 5.5.5 (Convergence with symmetric parameters)

Recall that with this assignation c = 1/λ and d = 0. Substituting κ1 and τ by their values in eq. (5.24) and
doing some simplifications eq. (5.25) is obtained.

Proof of Corollary 5.5.6 (Convergence with non symmetric parameters)

If we know the values of λmax and λmin, the choice of λm and λM can be done in such a way that

|cλmin − d| = |cλmax − d|. (5.70)

With this assignation we are minimizing the value of max{|cλmax − d|, |cλmin − d|} and therefore, the con-
vergence condition is easier to fulfill. Clearing (5.70) yields (5.26). With this first condition, doing some
calculations in eq. (5.24) the second condition (5.27) is obtained.

Proof of Proposition 5.6.2 (Eigenvalues position indicator)

The initial error is

‖x(0)− v1‖∞ = ‖
N∑
i=2

vi‖∞. (5.71)
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The error after n iterations is equal to

‖x(n)− v1‖∞ = ‖
N∑
i=2

Tn(cλi)

Tn(c)
vi‖∞ (5.72)

Using these two expressions we get

κn(c) = Tn(c)
‖x(n)− v1‖∞
‖x(0)− v1‖∞

=
‖
∑N

i=2 Tn(cλi)vi‖∞
‖
∑N

i=2 vi‖∞
(5.73)

If λi ∈ [−λ, λ], it means that cλi ≤ 1. In this case, the evaluation of the Chebyshev polynomial is upper-
bounded (in norm) by 1, therefore,

κn(c) =
‖
∑N

i=2 Tn(cλi)vi‖∞
‖
∑N

i=2 vi‖∞
≤
∑N

i=2 ‖vi‖∞
‖
∑N

i=2 vi‖∞
, ∀n. (5.74)

On the other hand, when cλi > 1, for some λi, Tn(cλi) goes to infinity as n grows and

lim
n→∞

κn(c) = lim
n→∞

‖
∑N

i=2 Tn(cλi)vi‖∞
‖
∑N

i=2 vi‖∞
=∞ (5.75)

Proof of Proposition 5.6.3 (Convergence of the bisection method)

By Proposition 5.6.2, we know that for a sufficiently large n, κn(c) correctly discriminates if λi ∈ [λ, λ], ∀i =
2, . . . , N. The algorithm in (5.31) is based on bisection and is convergent because of the use of κn(c). The value
of convergence is the border between the two limit situations, and it is λ = (λmax + λmin)/2→ maxi 6=1 λi =
λ2.

Proof of Proposition 5.6.5 (Bound of the estimator)

The bound is obtained from the following inequality:

‖x(n)− v1‖∞ ≤ ‖x(n)− v1‖2 =

= ‖Tn(cW)/Tn(c)(x(0)− v1)‖2 ≤
≤ max

i 6=1
Tn(cλi)/Tn(c)‖x(0)− v1‖2 ≤

≤ max
i 6=1

Tn(cλi)/Tn(c)‖x(0)− v1‖∞
√
N.

Regrouping terms and considering that Tn(cλi) ≤ 1 yields κn(c) ≤
√
N.
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Chapter 6

Distributed Consensus in Perception using
Homographies

“A good map is both a useful tool and a magic carpet to far away places.” In the Thesis we have studied how to
modify the consensus iteration to handle different perception issues. In this chapter we present an application
of such algorithms in the problem of cooperative mapping with cameras. The approach builds topological maps
from the sequences of images acquired by each robot, grouping the features in planar regions and fusing them
using consensus. The use of planar regions to represent the map has many advantages both in the mapping task
and in the achievement of the consensus. First of all, using inter-image homographies, the individual maps are
easy to create and the data association between different maps is simple. The computation of a global reference
frame to represent the features, which is in general quite complicated, but necessary to reach a consensus, is
reduced to a simple max-consensus method multiplying different homographies. Finally, homographies between
images can be computed without knowing the internal parameters of the cameras, which makes the approach
robust to calibration issues. The result is a simple but very effective distributed algorithm that creates a global
map using the information of all the robots. Experiments with real images in complex scenarios show the good
performance of our distributed solution.

6.1 Introduction

In the previous chapters of the Thesis, we have seen that consensus methods can be used to efficiently fuse the
information of the different robots. We have also provided mechanisms to handle some important problems
to reach the agreement using vision sensors. In this chapter we focus on presenting an application in which
consensus algorithms can be of high interest. We present a solution to the problem of distributed map building
with vision sensors using consensus algorithms. The proper representation of the environment where the robot
is going to work is a fundamental issue in any robotic application. That is, the robots need a common map of
the environment to navigate and localize themselves.

The problem of mapping the environment considering a single robot has been deeply studied by the research
community. A common approach is to simultaneously localize the robot and map the environment (SLAM)
[27, 39]. In these approaches the map is usually represented by a set of 3D features, whose position is updated
every time they are observed in a new image. To make this process more robust, view-based maps [70] introduce
geometric constraints between pairs of images in the SLAM algorithm. Dealing with multiple robots, we also
find centralized [23,55,137] and distributed methods [6]. Computing the structure of the scene, usually defined
with the positions of the features and the cameras, requires the exact knowledge of the intrinsic parameters of
the cameras [1] and makes the errors and drift grow with the size of the map. Additionally, in a multi-robot
scenario, with these approaches the robots need to compute a global reference frame to represent their positions
and the positions of the observed features. On the other hand, topological approaches [71] overcome these
limitations because no explicit metric information for the global map is computed.
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Topological visual maps can be built from conventional [3, 47] or omnidirectional [100, 165] images. The
whole image can be stored but usually only the extracted features are saved. Most recent and successful works
use visual words [120] to represent the scene in a more compact way. Although topological maps based on
images give good results, the space required to manage these maps is considerably large. If we store all the
features, many of them will be seen in several images, so that the map will take up a lot of repeated data for
the same features. Additionally, from a distributed point of view, achieving a consensus about different sets of
images is unclear because the average of two or more images does not make sense.

A better approach in this context consists in grouping the information in planes. A plane is defined as a set
of features that belong to the same planar region in the scene. Plane detection in images is a common problem
in computer vision [48, 136, 160]. There are several advantages of using planes for individual robots and for
the whole team:

• Advantages for the consensus process:

– The data association between different maps is simple and robust using inter-image homography
constraints. The global data association can then be obtained using the algorithms presented in
Chapter 3.

– Instead of using complex procedures, the computation of a global reference frame to represent the
features, necessary to achieve a valid consensus, is done just by multiplying different homographies.

– Finally, homographies between images can be computed without knowing the internal parameters
of the cameras, which makes the approach robust to the use of different cameras by different robots.

• Advantages for individual robots:

– The errors in different planar regions are uncorrelated because the extraction of each one is inde-
pendent of the others.

– Features are stored only once independently of the number of images in which they are observed.

– The complexity of the graph that defines the map is also reduced. Graphs made from raw images are
usually dense because of the number of connections among close images whereas with the proposed
maps the number of connections between planes is considerably smaller.

– Planes also provide a good semantic information meaningful for humans. If the robots need to
cooperate with a human or simply receive orders from him, they will be able to understand some
basic human concepts such us walls or building facades.

In addition to the previous advantages, it is well known that the structure estimation is improved in terms
of accuracy and stability when considering the scene represented by planes [141]. Moreover, there are several
works in the literature that assume the presence of planes in the environment to solve different tasks such as
visual servoing [24], [40], [74], visual navigation with maps [123], [34], structure reconstruction [130], pose
estimation [20] or camera calibration [85]. In all these approaches the 3D structure of the scene is not required
and only sets of coplanar features in the image domain are used. Since the proposed solution based on planes
follows these guidelines it can also be useful in the above situations.

The main contributions of this chapter are:

• A proposal in the context of consensus for perception of scenes using a geometrical constraint as the
homography.

• A method for feature matching and homography computation using a triple set plane-image-image. the
planar regions are tracked along the sequence and new features are added to them once they are detected.
Homology constraints are used to detect new planes and also give a geometric criterion to relate them.
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• A new organization of visual information in a graph of planar regions where there exists a geometric
relation between the different planes of the scene.

• A solution for the multi-robot scenario, giving a technique to fuse several maps based on distributed con-
sensus without knowledge about the cameras, the positions of the robots or the data association between
the individual maps.

Part of this work has been previously published in [94–96].

6.2 Single robot topological map

Let I = {I1, I2, . . .} be the set of images acquired by a 6DOF camera mounted on a mobile robot. Let us
assume that several rigid planar regions appear in the scene. There is no knowledge about either the internal
parameters of the camera, represented by the calibration matrix K, nor about the motion between consecutive
frames, R and t. For an easy understanding of the section, subscript indices will correspond to images in I
whereas superscript indices will correspond to the planar regions, for example πmk will represent the features
of the mth planar region seen in the kth image.

The topological map is managed using a graph, Gπ = (P,Π,C), represented by a finite non empty set of
planes P with cardinality |P| = P, a vector Π containing the features observed in the planar regions and a
matrix of relations between the planes C ∈ {0, 1}P×P . If C(m,n) = 1 then there exists a relation between the
planes m and n, whereas for planes with no relation, C(m,n) = 0.

If one plane, m, is visible in two consecutive images of the sequence, Ik and Ik+1, it is possible to compute
a projective mapping (inter-image homography), Hm

k,k+1, that relates the features belonging to the plane, πmk =
Hm
k,k+1π

m
k+1. This homography is defined up to a scale factor and has the form

Hm
k,k+1 = K(Rk,k+1 −

tk,k+1(nmk+1)T

dmk+1

)K−1, (6.1)

with dmk+1 and nmk+1 the distance and normal of the mth plane in the (k + 1)th frame, respectively. The
homography can be estimated from four correspondences without prior knowledge about the scene or the
calibration [57].

The planes are extracted from the sequence with the following scheme:

1. The two initial frames of the sequence, I1 and I2, are picked up and all the planes seen in both images
(Fig. 6.1-a) are extracted using DLT+RANSAC [57]. In order to perform the matching between features
we have chosen SURF descriptors [13]. Nevertheless, the algorithm will work with any descriptor as
long as it is able to extract enough features to compute homographies.

2. For any plane, m, visible in the first two images:

(a) All the features from the plane, πm, are stored expressed in the coordinates of the first image where
they were detected. This first image is marked as the reference image of the plane, Irm . The
identifiers of the features in every image are also stored to make automatic the future search of
these features.

(b) The next image in the list is picked up, I3, and the correspondences with I2 are found. From the
whole set, only those matches that already belong to πm are chosen, searching a new homography
among this subset. By looking for the homography only among this subset, fewer hypotheses are
required in RANSAC, because the probability of a sample to be an inlier is larger than considering
the whole set of features.
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(c) The homography with respect to the points in the reference image, Hm
rm,3, is also computed so that

the voting procedure is more robust, enforcing every feature to support both homographies instead
of just one (Planes m and o in Fig. 6.1-b). With the two homographies new features are added to
the existing plane (Plane o in Fig 6.1-c).

3. Once all the matches belonging to existing planes have been processed, new planes between the remain-
ing matches are extracted (Plane p in Fig 6.1-c).

4. The next image is selected and the method is recursively repeated until all the images are processed.

a)

I1 I2Hm
1,2

Hn
1,2

Ho
1,2

b)

I2 I3Hm
2,3

Hm
rm,3

Ho
2,3

Ho
ro,3

πm

πo

c)

I2 I3

Ho
ro,3

Hp
2,3

πo

Figure 6.1: Scheme of the plane segmentation. a) Extraction of the initial planes, m,n, o. b) Triple match Plane-Image-
Image for homography computation with the previous and the reference image. c) Addition of new points to the existing
planes and detection of new planar regions within the remaining matches.

Every time a new plane is detected it is added to the topological map. One plane, m, is formally added to
the graph by 

C = [IP | 0P ]
T C [IP | 0P ] ,

Π = (ΠT ,πm)T ,

P = P ∪ {m},

(6.2)

with IP the identity matrix of P × P dimensions and 0P a null vector of dimension P .
The final information used to represent one plane is the set of features that belong to the plane with their

SURF descriptors. The coordinates of each feature are expressed in the reference image of the plane.
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6.2.1 Links between planes

Two planes m and n are defined as co-visible if there are at least two consecutive images in which both planes
are detected. This idea of co-visibility has a great interest for navigation and localization tasks in future uses of
the map. If a robot localizes one plane of the set it will know which other planes it might see when it moves.
Therefore, the space searched during the execution of the task will be reduced.

When two planar regions are visible together in two consecutive images it is possible to extract multi-plane
constraints between them. A homology matrix, also called “relative homography” captures the relative motion
between the images through two planes visible in the two images. Let us suppose that m and n are both visible
in Ik and Ik+1. The homology is obtained by multiplying one of the homographies by the inverse of the other
one,Hmnk,k+1 = (Hm

k,k+1)−1Hn
k,k+1. The homology is the chosen criterion to create a link between planes in the

topological map. When two planes have been detected together in two consecutive images the algorithm sets
the connecting edges to 1:

C(m,n) = C(n,m) = 1⇔ ∃ Ik, Ik+1 ∈ I | ∃ Hmnk,k+1. (6.3)

Let us note that although the link is created considering a geometric criterion between the planes, the map does
not include any metric information.

The homology has also some properties that can be useful for robust detection of new planes in the sequence.
Using the Sherman-Morrison formula [143], as in [160], the homology matrix can be decomposed inHmnk,k+1 =

I + vpT , where

v = (v1, v2, v3)T = K
R−1
k,k+1tk,k+1

1 +
(nmk+1)T

dmk+1
R−1
k,k+1tk,k+1

(6.4)

is a view dependent vector and

p = (p1, p2, p3)T = (
(nmk+1)T

dmk+1

−
(nnk+1)T

dnk+1

)K−1 (6.5)

is a plane dependent vector. The homology is used to separate real planes from false and repeated ones. This
is done using its eigenvalues, {λ1, λ2, λ3}, which for a correct homology must have the form (1, 1, 1 + v1p1 +
v2p2 + v3p3). Before adding a new plane to the map the eigenvalues of the homology must hold

|λ1 − 1| ≤ ε, |λ2 − 1| ≤ ε, |λ3 − 1| ≥ ε, (6.6)

for a sufficient small ε. If the three eigenvalues are close to the unity it means that the two planes are actually
the same one (the homology is an identity matrix), so instead of creating a new plane, the new features are
added to the existing one. On the other hand, if two of the three eigenvalues are not close enough to the unity
there is an homography that is not describing a real plane. In this second case the new plane is ignored. Let
us notice that the test is pure image-based and the method still does not need any information about neither the
camera calibration nor the motion between the images.

6.2.2 Loop closing

The last problem considered to build the individual maps is to detect when a plane appears in the sequence
because the robot is revisiting the same place (loop closing). To consider this situation every time a new plane
is detected, the algorithm matches the features of the new plane with the rest of existing planes and tries to
compute a robust homography between them. If for some plane the corresponding homography exists and it is
supported by most of the matches it means that both planes are the same and must be merged. The merging
process is performed by adding to the existing plane the new features and by updating C through eq. (6.3).

In the end, all the method can be summarized in the Algorithm 7
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Algorithm 7 Single robot topological map
1: Extract planes from I1 and I2

2: Create Gπ with the initial planes
3: C(m,n) = C(n,m) = 1, ∀m 6= n
4: for all Ik ∈ I do
5: Match features in Ik and Ik+1

6: for all visible m ∈ P do
7: Select the matches that belong to πm

8: Compute Hm
k,k+1 and Hm

rm,k+1 with DLT+Ransac
9: Add new features to πm using Hm

rm,k+1

10: end for
11: Search for new planes in the remaining matches
12: if new plane was already in the map then
13: Update Gπ
14: else
15: Add the new plane to Gπ (eq. (6.2))
16: end if
17: Modify C with the new homologies (eq. (6.3)-(6.6))
18: end for

6.3 Multi-Camera Distributed Topological map

Let us consider the full team ofN robots with communications defined by a fixed graph G as defined in Chapter
2.2.2. Each robot manages an individual topological map Gπi = {Pi,Πi,Ci}, i = 1, . . . , N . We want to make
all the robots compute an identical global map, Gπ∗ = (P∗,Π∗,C∗), containing the information acquired by
the whole set of robots. The computation of the global map can be divided in two parts. On one hand the
information about the graph of planes and their relations (P∗ and C∗), and on the other hand the reference
image of each planar region, how many features they contain and their coordinates (Π∗).

A distributed consensus approach is followed to compute the global map. A leader election (max-consensus)
approach is followed to obtain the consensus on the global graph and the SURF descriptors, whereas for the
feature coordinates a distributed averaging rule is used. In order to use these techniques several properties must
be ensured:

1. Information of the robots: it is required that all the robots have an initial value of the information.

2. Data association: in order to perform the fusion it is necessary to know which planes in the local maps
are associated. The data association between features belonging to the same plane in different maps is
also required.

3. Common reference frame: given two planes from two different maps which correspond to the same
planar region in the world, the corresponding sets of features must be expressed in the same reference
frame.

However, local maps composed by planes and image features do not satisfy the properties above mentioned.
Solutions to overcome these problems are proposed, obtaining a common global map equal for all the robots.

6.3.1 Information of the robots

It is supposed that none of the robots has the information of all the planes seen by the whole team. Therefore,
in the first step the local maps, Gπi , are augmented so that the size and the order of each of them is the same,
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P ∗i = P ∗j and |Π∗i | = |Π∗j |, ∀i, j ∈ V .
The ordering of the planes is done by univocal identification of both, the robots and the planes. By Assump-

tion 2.2.1 each robot has a unique identifier, whereas the planes are ordered as they were detected in the local
sequences. These two elements define a global order of the whole set of maps. The function O : P → N is
defined in such a way that it returns the order of a given plane in the map. For example, the first plane observed
by the third robot will have a smaller position in the map than the fourth plane observed by the same robot but
a larger value in the global order than any plane observed by the second or the first robot.

The different size of the initial maps is solved creating fictitious planes in the local maps so that all the
robots have a final map of the same size. A fictitious plane, m̃, is a plane with no relations in the graph and for
which all the coordinates of all its features, πm̃, are initialized to zero. Every robot creates as many fictitious
planes as the total number of planes observed by the other robots. This is done exchanging local messages so
that, every robot i eventually has a feature vector

Π∗i = (0T1 . . .Π
T
i . . . 0

T
N )T (6.7)

and an adjacency matrix Ci
∗ with the form

Ci
∗ =


011 . . . 01i . . . 01N

...
. . .

...
. . .

...
0i1 . . . Ci . . . 0iN
...

. . .
...

. . .
...

0N1 . . . 0Ni . . . 0NN

 , (6.8)

where 0j is a vector of zeros with dimension |Πj | and 0ij is a matrix of zeros with dimension Pi × Pj , j =
1, . . . , N, j 6= i. Let us note that in order to create a fictitious plane it is only necessary to know which robot
has seen it, the order in the local map and the number of features it contains. This reduces considerably the size
of the exchanged messages.

When new messages containing information from other robots are received, the fictitious planes are added
to the local maps,

P∗i = P∗i ∪ m̃. (6.9)

Regarding the adjacency matrices, C∗i , for any new fictitious plane a new row and column with zeros is created

C∗i = PO(m̃)Pi [IPi | 0]T C∗i [IPi | 0] PO(m̃)Pi , (6.10)

where the middle matrices augment the adjacency matrix as in eq. (6.2) and PO(m̃)Pi is a permutation matrix
that moves the last row, Pi, to the row O(m̃) and displaces all the rows in between one position down. Finally,
Π∗i is also updated by adding fictitious features, with coordinates equal to zero, in the corresponding position.
Since the communication graph is fixed, after dv rounds of exchanging information, all the robots will know
the size of the global map, and all the vectors Π∗i and matrices C∗i will have the same dimension and the form
of eqs. (6.7) and (6.8) respectively. This process is summarized in Algorithm 8.

6.3.2 Data association

Here two issues must be addressed. The first one is the data association between planes in different maps and
the data association of features between matched planes. Once the data association is known, the second issue is
to reduce the adjacency matrices (respectively feature vectors) so that they have the correct number of elements
and in the right order.

The data association is performed using the algorithm presented in Chapter 3. The function to locally
match the planes is the homography between the invariant features of the planes. That is, two planar regions are
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Algorithm 8 Augment local maps - Robot i
1: Send information about the local map to all j ∈ Ni
2: for it = 1 . . . dv do
3: Receive information from all j ∈ Ni
4: Create fictitious planes (eq. (6.9))
5: Augment C∗i (eq. (6.10))
6: Send the new information to all j ∈ Ni
7: end for

associated if a robust homography exists between them. The procedure to compute a homography is exactly the
same one applied to pairs of images (DLT+RANSAC) and, as a consequence, is robust to the use of different
cameras. Additionally, note that the same function serves to associate the features observed in the planes.

The next step is to reduce the size of the maps considering the correspondences found. Given a plane, m,
let B(m) be the set of planes associated to m and n̄(m) = arg minn∈B(m)O(n) be the plane with the lowest
value in the global order. For all the associations of the robot i, the adjacency matrix C∗i is updated to put
together all the associated planes

C∗i = In(C∗i ∨ Pn̄(m),nC∗i ∨ C∗iPn̄(m),n)ITn , (6.11)

∀ m ∈ Pi, n ∈ B(m), where Pn̄(m),n is a permutation matrix of the rows n̄(m) and n, and In is an identity
matrix where the nth row has been deleted. The symbol ∨ represents the or operation between the matrices,
which can be done taking into account that all the elements of the matrices are in the set {0, 1}. Let us note that
row n̄(m) will be the same for all the robots with planes in the set B(m). This means that all the robots will
move the information of each association to the same row and will delete the rest of the rows, maintaining the
size and the order of their maps.

The last problem is to combine the associations of planes in which there is no plane belonging to Pi. To
solve this problem a similar exchange of messages like the one to augment the local maps is carried out. In this
case the exchanged information are the sets of associated planes B(m). After dv iterations all the associations
are received by all the robots and using eq. (6.11) all the updates are done. Algorithm 9 schematizes the data
association step for planar regions.

Algorithm 9 Data association and map reduction for planes - Robot i
1: Exchange local maps with neighbors
2: –Distributed Data Association
3: Execute Algorithm 1
4: –Map Reduction
5: Update C∗i (eq. (6.11))
6: for it = 1 . . . dv do
7: Send block associations to j ∈ Ni
8: Receive block associations from j ∈ Ni
9: Update C∗i (eq. (6.11))

10: end for

Regarding the association of the features a similar process is performed for all the features belonging to the
same planar region. After such process all the vectors Π∗ are updated, having the same size and order.

6.3.3 Common reference

At this point, the local maps of planes have been associated and all of them have the same size and are equally
sorted. Although the adjacency matrices are ready to execute the consensus algorithm, the features still require
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a common reference image. Otherwise posterior consensus will give erroneous results. In order to solve this
problem a max consensus is used to decide, for each plane, which one of the local reference images is defined
as the common reference image. In the same process the homography that transforms the features from the
local references to the global one is also computed.

The number of observed features in the plane, |π|, is the criterion chosen to decide the reference. For
every plane, algorithm 10 is executed by every robot. In the algorithm, Hj,i represents the homography that
transforms the plane from the coordinates in the local reference to the coordinates of the neighbor’s reference.
This homography is the one computed in the local data association step. The variables featsj represent the
number of real features that each plane, j, has. For the global reference no subscript is used. After dv iterations
all the robots know the common reference (the one which contains more real features) and the homography to
transform their coordinates. Applying this transformation and normalizing the coordinates, all the robots have
their features in the same reference frame. The fictitious planes are not affected by changes of the reference.
Taking this into account the robots with a fictitious plane do not participate in the max consensus algorithm of
such plane.

Algorithm 10 Choice of a common reference - Robot i
1: RefPlane = i; feats = |πi|; Hr,i = I
2: for it = 1 . . . dv do
3: Send [RefPlane,feats,Hr,i] to all j ∈ Ni
4: Receive [RefPlanej ,featsj ,Hr,j] from all j ∈ Ni
5: if featsj > feats then
6: RefPlane = RefPlanej ; feats = featsj ; Hr,i = Hr,jHj,i

7: end if
8: end for
9: Transform the features’ coordinates of π using Hr,i

6.3.4 Consensus on the global map

From here on all the robots have the information needed to perform the consensus. The graphs G∗i satisfy now
all the requirements to apply distributed consensus algorithms.

The adjacency matrices of the local maps are updated with the following rule

C∗i (m,n) = C∗i (m,n) ∨ C∗j (m,n),∀ j ∈ Ni (6.12)

Theorem 6.3.1 (Convergence of C∗i ). The set of adjacency matrices C∗i , under iteration rule (6.12), converges
in dv iterations to a common matrix C∗ that includes all the links between planes.

Proof. Let us consider separately each element of the matrices C∗i . Considering that the initial value of
the elements is {0, 1}, then it holds that

C∗i (m,n) ∨ C∗j (m,n) = max(C∗i (m,n),C∗j (m,n)). (6.13)

Then eq. (6.12) can also be seen as an update of a max consensus algorithm, which is proved to converge in dv
iterations [78].

Since C∗i (m,n) = 1 implies that there is a link between planes m and n and max(0, 1) = 1 then all the
links of the adjacency matrices are preserved.

With respect to the features, since no observations are assumed to be better than others, a distributed averag-
ing of the matched observations is computed. Let us note that although the fictitious planes do not provide any
information to the final consensus, they affect it in the sense that the final value is divided by the total number
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of robots. The third coordinate of the features, which is the homogeneous coordinate, plays here a fundamental
role. Let us recall that for the fictitious features the third coordinate, usually related with the scale of the point,
was also set to zero. Recalling the consensus algorithm using homogeneous coordinates presented in Chapter
4.2, the real average of the feature coordinates will be achieved.

Let us note that the consensus is only carried out for the coordinates of the features and not for the whole
descriptor. For the SURF descriptors a leader election algorithm is used so that every robot has the same set of
SURF descriptors after dv steps.

6.4 Experimental Results

Several experiments have been carried out in order to evaluate the properties and the behavior of the whole
method. We have tested it using different real image data sets that correspond to different locations of man-
made environments with plenty of planar regions. The first data set has been recorded indoors (House data set).
It consists of 3600 frames from different rooms. The second data set is composed by nine different sequences
recorded outdoors in a downtown Zaragoza area (Downtown data set). Figure 6.2 shows a view of the map
where these sequences have been acquired and the topology used in the experiments.

Figure 6.2: Map of Zaragoza (Downtown data set), where the nine sequences have been acquired and the communication
graph among the agents. Each camera represents one robot with its local map and the black edges are the communication
links in the network.

The camera used in all the cases has been a Panasonic Lumix FX-500. In all the cases the camera has
moved with 6DOF. For all the images we have used SURF descriptors [13] for matching. The computation of
the homographies has been done using DLT+RANSAC algorithm. It is well known that under pure rotations
or small motions all the features can be fitted to the same homography. In video sequences with high frame
rates this is a common situation. To avoid this problem we have followed the idea of [128] to select key frames
among the sequence:

• There are as many images as possible between the key frames Ik and Ik+1.

• There are at least M matches between the key frames Ik and Ik+1.

• There are at least N matches between the key frames Ik and Ik+2.

The results are divided in three sections. In the first experiment (sec. 6.4.1) we analyze how the triple
matching step works and the properties of the extracted planes. In the second experiment (sec. 6.4.2) we analyze
the properties of the individual maps created using the sequences of images from each camera separately. We
have compared the resulting graphs obtained for both data sets with graphs made by images [165]. For the latter
approach we have stored the SURF descriptors of each image and we have imposed the homography constraint
between frames to observe the pros and cons of using images or planes. In the last experiment (sec. 6.4.3) we
have tested the multi-robot distributed approach for the Downtown data set.
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6.4.1 Extraction of the planar regions

The House data set has helped us to test the detection of planes since it has a lot of different planar regions.
In Fig. 6.3 some of the segmented regions are depicted. We observe that although the method detects several
planes which are the same in the ceiling, there are no wrong planes segmented.

a b

Figure 6.3: Planar regions extracted from the House data set. Each region is represented with a different color. In the
bottom figure we have added points corresponding to the ceiling transformed with the computed homography.

The nine sequences in the Downtown data set are more challenging because in this case the scene contains
dynamic elements such as people and cars. There are also a lot of trees that occlude the building facades and,
in some cases, there are also illumination changes when the camera points towards the sun. Figure 6.4 and
6.5 depict two examples of two different planes extracted using our method. Even when the extracted planes
contain some outlier features the results are still quite good and, what is more important, we observe that the
method maintains the planar regions correctly adding new features as they appear.

We have observed that sometimes in a real scenario many dynamic objects may generate planar regions.
These planar regions are undesirable in a practical situation. A lower bound on the number of features of a plane
after the map generation clears almost all the undesired planes. Other times the algorithm considers as a planar
region a set of features belonging to different planes but coplanar between them. Usually in the next steps the
algorithm grows this plane considering only the biggest number of real coplanar features. The last problem
observed comes from the homology test. The homology depends both on the motion between the images and
the parameters of the planes. If the motion is small, it is possible that 2 different planes are fused because
the three eigenvalues of the homology will be close to one. The algorithm used to select the key frames [128]
mitigates this problem. Since the algorithm tries to skip as many images as possible between two consecutive
key-frames, consecutive frames will be, in general, far away from each other in terms of distance. Therefore,
the homology will only be close to the identity when the planes must actually be fused.

6.4.2 Single camera topological map of planar regions

Using the planar regions extracted with our algorithm from the sequences of images, we have computed the
associated graphs of planes. We have compared the resulting graphs with the image graphs created following
the approach in [165]. Table 6.1 shows the comparison of the graphs generated using the House data set and
Table 6.2 shows the same comparison for the nine sequences of the Downtown data set.

In both cases the graph made of planes has less nodes and edges than the graph composed by images. The
amount of space for storing the information is drastically reduced using our approach (Tables 6.1 and 6.2).
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Figure 6.4: Planar region extracted from one sequence of the Downtown data set. The algorithm is able to track and
grow the plane over 63 different frames with dynamic elements and some illumination changes. The top figure represents
the plane with the 482 detected features. The plane has been observed in all the images depicted below.

Notice that in our approach the size of each plane is not bounded and there can be big differences between
nodes. In a visual memory made by images all the nodes will have similar size (the features per node can
be assumed to be bounded) whereas the graph made of planes may contain very small planar regions with
just a few features, and other nodes can represent large planar regions with hundreds of features and many
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Figure 6.5: Another planar region extracted from one sequence of the Downtown data set.

Table 6.1: Results for the house sequence
Map Nodes Edges Feats Feats/node Size (MB)

Images 140 1728 78124 558 29.0
Planes 30 78 10832 361 4.0

homographies.
If the camera moves too fast or if there is a sequence of images in which there are no planar regions the

topological map will be unconnected. To prevent these situations, we have also imposed consecutive planes to
be connected in the local maps.

6.4.3 Multi-Camera Distributed Topological map

The distributed building of a topological map has been done using the maps generated from the Downtown
data set. The limited communications between the robots are shown in Fig 6.2. The diameter of the graph is 4,
which means that most part of the algorithms will finish only in four steps.

As previously commented, the triple matching algorithm finds a lot of small planes which are a mix of
different outliers (trees, buses, people and noisy features). These planes do not apport real information and it
is better to discard them. In order to do so we have set a threshold of 50 features, so that planes containing
less features than the threshold are not considered for the distributed global map. As shown in Table 6.3, after
erasing the small planes, only 132 of the 287 planes take part in the distributed process. These planes amount
a total of 46981 features.

Initially the robots exchange the information about their maps to create fictitious planes. After four steps,
every robot has a map with 132 planes and 46981 features. Then the robots exchange their maps with their
neighbors and perform the local data association step. Figure 6.6 shows one plane seen by three different
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Table 6.2: Results for the downtown Zaragoza sequences
Agent Map Nodes Edges Feats Feats/node Size (MB)

1 Images 300 3966 315830 1052 117.4
Planes 104 340 15694 150 5.89

2 Images 78 796 58219 746 21.6
Planes 17 62 3958 232 2.28

3 Images 33 230 29777 902 11.1
Planes 8 28 1084 135 0.4

4 Images 465 7192 431607 928 160.6
Planes 92 288 18497 201 6.95

5 Images 86 820 74123 861 27.5
Planes 34 110 4104 120 1.54

6 Images 101 1434 79700 781 29.6
Planes 11 40 409 361 1.68

7 Images 32 304 29258 914 10.9
Planes 6 14 1611 268 0.61

8 Images 35 230 30434 869 11.3
Planes 9 18 2021 224 0.77

9 Images 32 318 29237 913 10.9
Planes 6 12 1162 193 0.44

Total Images 1162 15290 1078185 927 400.9
Planes 287 912 48540 169 20.20

Table 6.3: Evolution of the global map’s size
Step Nodes Feats
Initial global map 287 48540
After erasing small planes 132 46981
Data Association 121 46351

neighbor robots with the found matches. The local associations delete a total of 11 planes and 340 features,
remaining 121 planes and 46351 features (third row in Table 6.3). We have observed that the small number of
associations is mainly due to the different points of view of the trajectories and not because of mismatching.
Even so, in the multi-robot mapping it is advisable to use larger RANSAC thresholds.

After data association the robots execute the max consensus algorithm in order to fix the common references
for each plane. In the example of the Figure 6.6 the reference plane is the top one because is the one with the
most features.

Finally, the robots execute the consensus rule to reach an average on the features and a consensus on the
adjacency matrices of the topological maps. Figure 6.7 shows the consensus evolution of the three coordinates
by the nine robots; we can see that they do not reach the desired average in fx and fy because only three of the
nine robots have information about the feature but the average considers the value of the nine. However, the
normalized coordinates (Fig. 6.8) converge to the desired value.

A comparison with the maps made by images has been done in order to analyze the amount of informa-
tion transmitted through the network. This analysis has been carried out analytically considering the network
topology and the information exchanged. An upper bound on the number of messages required to transmit
some information to the considered network (flooding) is 14. That means that for the map made of images,
the 400.9 megabytes (Table 6.2) are transmitted 14 times, giving a total of 5612 transmitted megabytes. The
breakdown of the transmitted information using topological maps is in Table 6.4. The results show that the
total information transmitted through the network using processed planes is considerably smaller (20%). Also
the final global map is better using planar regions, since every match mixes the information reducing the total
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Figure 6.6: Multi-Robot Distributed Topological Map. Example of a planar region viewed in three different sequences.
Red lines are the matches among the planes. In this example the reference plane is the top one.
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Figure 6.7: Consensus process for feature coordinates. Initially each agent has a different value of the feature coordinates.
The nine agents exchange the information they have with their neighbors. It is observed that after 25 iterations consensus
has been achieved and all the agents have the same value of the coordinates.

amount of data, whereas with images the total size is the sum of the local maps.

6.5 Discussion

In this chapter we have studied the problem of distributed map building by a team of robots using planes
as the features to represent the map. The idea of storing planes as information in the top graph rather than
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Figure 6.8: Consensus process for normalized feature coordinates. Evolution in normalized coordinates of the
value of the same feature than in figure 6.7. Only three agents have a real observation of the feature, which are
(358.1072, 292.3148)T , (364.2285, 297.2203)T and (358.9520, 297.1431)T . The rest of the agents have fictitious fea-
tures with initial value equal to zero. At the beginning the agents with a fictitious coordinate have∞ values. We can see
that eventually the nine agents reach the same value, which corresponds to the average of the measurements of the three
agents that observed the feature.

Table 6.4: Amount of information transmitted (MB)
Total using images ' 5612

Augment maps < 1

Share maps 45.2

Data Association 13.2

Block Association < 1

Leader Election < 1

Consensus 1091.5

Total using planes ' 1150

whole images presents several advantages for the individual robots and for the whole team. We have presented
a fully distributed solution using distributed consensus methods and inter-image homographies to relate the
information in different images and different maps.

At the beginning, each robot creates a local map from the sequence of images it acquires. The planar
regions are extracted considering the information from previous images using a triple set plane-image-image
for feature matching, tracking and growing the planar regions as new areas of the plane become visible. The
planes are organized in a graph, built simultaneously to the extraction, where homologies are used to detect
new planes when they appear and define a relation of co-visibility between the planes.

The second part of the chapter has dealt with the problem of fusing the individual maps of the robots using
distributed consensus. We have seen that the use of homographies also simplifies some of the most important
problems in this context. Homographies can be used to solve the data association problem, providing with
a robust mechanism to detect planes in different maps. The common reference frame, required to compute
the consensus, only requires a max-consensus and the multiplication of different homographies. Finally, since
homographies already use homogeneous coordinates, the final consensus can be achieved by all the robots,
even if most of them have not seen a specific plane. In the end, we show that the whole team of robots achieves
the consensus about the global map in a simple and efficient way.

To conclude, we can see that well known computer vision techniques can play a fundamental role in achiev-
ing a consensus about the visual information perceived by all the robots. An interesting question is if we can
use similar computer vision techniques, which have been very useful in perception tasks, to simultaneously
control to team of robots to achieve a specific configuration, e.g., flocking behavior (consensus in the attitude)
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of the robots. This will be the focus of the next chapter.
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Chapter 7

Distributed Consensus in Control using
Epipoles

“Fine art is knowledge made visible.” In this chapter we give a distributed solution to the problem of making
a team of non-holonomic robots achieve the same heading (attitude consensus problem) using monocular cam-
eras. The use of cameras with constrained field of view limits the information the robots perceive compared
to other omnidirectional sensors. This makes the coordination problem more complicated, because the robots
will not always be able to observe their neighbors, specially if they intend to observe the environment. By using
structure from motion computed from images, the robots can estimate their relative orientations from common
observations of the environment without the necessity of directly observe each other. In this way, the robots are
able to achieve the consensus in their heading while performing exploration tasks. In addition, the control is
robust to changes in the topology of the network and does not require to know the calibration of the cameras in
order to achieve the desired configuration. Finally, we have tested our controller in simulations using a virtual
environment and with real robots moving in indoors and outdoors scenarios.

7.1 Introduction

The algorithms we have proposed are mainly oriented to achieve a consensus on the visual information in
perception tasks. While this is the main interest of the Thesis, vision sensors can also be used to control
the motion of the robots while exploring the environment. The consensus problem is also of high interest
in coordination tasks, solving problems like rendezvous and flocking. In these cases, instead of considering
common observations, the consensus takes into account the relative positions between neighboring robots.
However, the use of conventional cameras limits the field of view of the robots, which means that the robots
may not be able to see each other, specially if their commanded task is to observe the environment rather than
to coordinate. Therefore, additional mechanisms are required in this setup so that the robots can estimate their
relative headings and achieve a common orientation, the consensus.

The coordination of teams of robots is a problem that has received a lot of attention in the last years.
Cooperative solutions to different coordination problems can be divided into leader-follower schemes [35, 54,
56,60,142,147] and nearest neighbor rules [11,33,51,61,98,132,144,161]. In the leader-follower approaches
each robot designs its control input considering only the information provided by a single neighbor robot, the
leader. In the approaches based on nearest-neighbors rules, all the robots play the same role in the formation
and each robot designs its control input using the available information provided by direct neighbors in the
communication graph. Within the multiple coordination problems that can be solved, we are interested in the
problem of making all the robots achieve a common heading, also known as the attitude consensus problem or
the problem of flocking,

Distributed solutions based on nearest neighbor rules dealing with this problem have only been focused on
the coordination aspects, setting aside the additional problems of perception. If the robots need to explore the
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environment, as we have considered along the Thesis, then depending on their sensors they will not be able to
observe each other. Solutions that consider omnidirectional range [61] or visual [99, 149] sensors do not suffer
of this limitation. However, when the used sensors have field of view constraints, as is the case of monocular
cameras, the observation of the neighbors may constrain the perception of the environment. If the robots are
required to observe each other to coordinate their motions, the perception of the environment will be restricted
to positions that satisfy this constraint.

As happened in the previous chapter with the problem of cooperative mapping, the attitude consensus prob-
lem can use computer vision methods to overcome this limitation. Specifically, the epipolar constraint [79]
between pairs of images represents a very useful tool in this scenario due to its natural robustness to mismatch-
ing. A first approach using the epipoles to control the motion of a robot appeared in [12]. Non-holonomic
constraints were introduced in [75, 80]. In all these approaches the goal is to control one robot and move it to
a fixed position, specified by some target image. In our approach there are no fixed images, as all the robots
move.

The solution presented in this Chapter assumes that each robot moves on the plane with non-holonomic
motion constraints. The rest of the capabilities of the robots follow the directrices explained in Section 2.2. In
order to make the robots achieve the same heading we propose a controller that computes the epipoles between
the images of neighboring robots. While we focus on solving this problem, the provided solution is well suited
for exploration and mapping purposes. Additionally, we have chosen to use the epipoles in the controller
because their computation does not require an explicit decomposition of the fundamental matrix or knowledge
about the internal parameters of the camera.

The contributions of the approach presented in the Chapter are:

• A distributed controller to align the orientations of all the robots using the visual information provided
by monocular cameras. We make use of the epipolar constraint to achieve this objective.

• With our controller, the robots do not need to directly observe each other but just common features of the
environment. This goes in synchrony with the rest of the algorithms presented in the Thesis, that intend
to give a solution for the cooperative perception of the environment. In addition, by making all the robots
to orient in the same direction, problems such as data association are simplified, reducing it to a linear
translation problem [31].

• Additionally, the controller does not require a precise knowledge of the calibration of the cameras. If all
the robots have the same camera we demonstrate convergence to the consensus. Otherwise we provide
with error bounds in the final configuration.

This work has been partially published in [97]

7.2 Description of the system

In this section we define the dynamics of the robots and briefly review the epipolar constraint.

7.2.1 Dynamics of the robots

We consider that the team of robots is moving on the plane. The dynamics of each robot is described by the
unicycle model:  ẋi

żi
θ̇i

 =

 sin(θi) 0
cos(θi) 0

0 1

[ vi
wi

]
, (7.1)

where [xi, zi, θi]
T ∈ R3 is the state of robot i (position and orientation) expressed in some world reference

frame and [vi, wi]
T ∈ R2 is the control input of the robot. Since the goal is to align the orientation of the
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robots, we will not pay much attention to their linear velocity and will assume that is constant for all the robots,
vi = v ≥ 0, ∀i.

Now, given two robots, i and j, we make use of the polar coordinates, distance, rij , bearing angle, ψij , and
relative orientation, θij , to describe their relative state

rij =
√
x2
ij + z2

ij ∈ R≥0,

ψij = arctan(xij/zij) ∈ (−π/2, π/2],

θij = θj − θi ∈ (−π, π],

(7.2)

where [xij , zij ]
T = [xj − xi, zj − zi]T are the cartesian coordinates of robot j expressed in the reference frame

whose origin coincides with robot i (Fig 7.1).

Figure 7.1: Coordinates of robot j in the reference frame of robot i.

7.2.2 Camera model and output of the system

Initially, we assume that the cameras of all the robots are the same. The calibration matrix of these cameras is
unknown for the robots and equal to K = diag(α, α, 1), with α > 0, the focal length of the camera measured
in pixels. This is equivalent to say that the camera has no skew and that the origin of the image coordinates is
fixed on the center of the image.

The use of monocular cameras implies that the depth of the scene will be unknown. This means that rij
will not be available to the robots. If the robots are intended to explore the environment, then there will also
be many situations in which they will not be able to observe each other in a direct way because of the limited
field of view. To overcome this limitation the robots can exchange their images and use structure from motion
techniques to estimate their neighbors positions (see Fig. 7.2). However, the lack of knowledge about the
calibration of the camera means that the robots will have no direct means to estimate the exact ψij and θij .

For any pair of neighbor robots, i and j, the output of the system will be defined by the epipoles of the
acquired images. Given a pair of images, it is possible to estimate the fundamental matrix, Fij , that relates them,
provided that there are at least 7 correspondences between them [79]. After that, the epipoles, eij = [eijx, eijy]

T

and eji = [ejix, ejiy]
T , can be computed in a linear way as the intersection of the epipolar lines defined by Fij

and the matched features. Due to the planar motion, the y-coordinate of all the epipoles will be equal and
constant for any pair of images. The x-coordinate of the epipoles satisfies

eijx = α tan(ψij), ejix = α tan(ψij − θij). (7.3)

Distributed Consensus in Multi-Robot Systems with Visual Perception
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Figure 7.2: Observation of the neighbor robot with the epipoles. Both robots observe the same features in the scene and
using structure from motion they can compute the epipoles without the necessity of observing each other.

Let us note that to compute the epipoles, the robots do not need to know the calibration matrix K. For simplicity
purposes, in the following we use eij and eji to refer the x-coordinate of the epipoles.

7.3 Consensus controller

In the attitude synchronization problem, all the robots in the network shall achieve the same orientation, i.e.,
θij → 0, ∀i, j ∈ V, as t→∞. We propose a control law for each robot that uses the epipoles as measurements
to achieve this objective.

Given a pair of neighbor robots, by eq. (7.3), a necessary condition for the attitude alignment is that their
epipoles must be equal, θij = 0 ⇒ eij = eji. However, note that eij = eji does not necessarily imply
consensus in the orientation because for θij = π the two epipoles are also equal. This imposes a constraint on
the initial orientations of the robots. We will require that initially θij < π/2, ∀i, j ∈ V, so that the controller is
able to align the robots properly.

We define the misalignment in the epipoles as

wij =

{
dij if |dij | ≤ π

2

−sign(dij)(π − |dij |) otherwise
, (7.4)

where
dij = arctan(

eij
β

)− arctan(
eji
β

) ∈ (−π, π], (7.5)

and 0 < β <∞ is some fixed positive constant to choose.
Several aspects justify this misalignment function. First of all, eq. (7.5) is a bijective mapping (−∞,∞)→

(−π, π) that reduces the misalignment in the epipoles to quantities that represent something more similar to
angular distances. This reduction also implies smaller control gains. Secondly, equation (7.4) introduces the
geodesic distance in the difference between the epipoles and is used to select the closest path (clockwise or
anti-clockwise) that makes both epipoles be the same. Finally, note that, if β = α, then the setup is calibrated,
dij = θij , and the relative orientation between the robots can be computed from the epipoles. However, for the
moment we assume that this is not the case and β 6= α.

The control input wi of each robot is defined as:

wi = K
∑

j∈Ni(t)

wij , (7.6)
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where K > 0 is the controller gain.
In order to prove the stability of the proposed controller, we will make use of the following lemma.

Lemma 7.3.1 (Properties of the controller). The following properties hold:

1. wij = −wji.

2.
∑

i∈V wi = 0.

3. sign(eij) = sign(eji)⇒ |dij | < π/2.

To analyze the stability of the controller, as well as the achievement of the desired configuration, we will
first assume that the communication topology is fixed.

Theorem 7.3.2 (Convergence to a common orientation). Consider a robotic network like the one defined in
section 7.2, with the robots initially oriented in such a way that |θij | ≤ θM < π/2, ∀i, j ∈ V. If the robots use
the control law (7.6) with β satisfying

α tan(
θM
2

) < β <
α

tan( θM2 )
, (7.7)

then limt→∞ θij = 0, ∀i, j ∈ V, i.e., the system will reach consensus.

Besides the stability of the system, the theorem provides a relation between the calibration parameter and
the relative orientation between the agents. Now we proceed to show the behavior of the controller when the
communication topology changes over the time.

7.4 Robustness of the controller to more realistic conditions

In this section we study how the controller is affected by changes in the communication topology and the use
of different cameras by the robots.

7.4.1 Changes in the communication topology

The controller presented in the previous section is only valid for a fixed communication topology. However,
under real conditions it is most likely that the communication topology will change as the robots move. There
are multiple reasons to study the robustness of the controller against changes in the communication topology.
The most usual comes from the motion of the robots but the use of visual sensors introduce other issues that
can also be modeled as changes in the topology.

• Changes in the topology due to the motion of the robots: The controller should take into account
that the motion in the robots may introduce some changes in the graph that defines the communication
topology.

• Changes in the topology due to perception issues: There are also perception issues that may affect the
neighborhood of each robot. It is possible that two neighboring robots cannot compute their epipoles
due to blurry images or temporal occlusions, which would be the same as to assume that they are not
neighbors in the communication graph.

• Changes in the topology for computational demands: Finally, computational issues should also be
considered to model the communications using a time-varying graph. The computation of the epipoles
using a robust algorithm, e.g., DLT+RANSAC [79], requires some time and, although one or two fun-
damental matrices can be computed in a reasonable amount of time, robots with a larger number of
neighbors may not be able to keep up with the rhythm of the continuous time controller.

Distributed Consensus in Multi-Robot Systems with Visual Perception
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For all these reasons it is interesting to analyze the controller in the presence of changes in the communica-
tion topology. The following result states that the proposed controller can handle changes in the communication
topology, reaching the desired agreement of the headings of the robots.

Proposition 7.4.1 (Convergence to a common orientation with topology changes). Consider a robotic net-
work like the one defined in section 7.2, which satisfies the conditions stated in Theorem 7.3.2 and Assumptions
2.2.5 and 2.2.6. If the robots use the control law

wi = K
∑

j∈Ni(t)

wij ,

then limt→∞ θij = 0, ∀i, j ∈ V.

7.4.2 Cameras with different calibrations

When modeling the team of robots in section 7.2.2 we assumed that all the robots wore the same camera with
the same intrinsic parameters, i.e., the parameter α was the same for all the robots.

Unfortunately, in a real scenario, even if all the robots are equipped with the same camera (same model,
same characteristics, etc.), it is nearly impossible that all the calibrations of the N cameras will be exactly the
same. Let us consider that each robot is wearing a different camera with a different calibration. We denote
by αi the calibration parameter of robot i. If the parameter β in (7.5) is kept at the same value for all the
robots, then the final configuration of the network will not be the desired consensus because equal epipoles do
not imply equal orientations anymore. The following proposition gives the direct expression of the final error
between the orientation of pairs of robots:

Proposition 7.4.2 (Error with different cameras). The error in the orientation is equal to

θ̃ij = arctan

(
(αi − αj) sinψij cosψij

αi sin2 ψij − αj cos2 ψij

)
(7.8)

Equation (7.8) shows that the final error in the orientation of the robots depends, not only on the difference
between their calibrations but also on their relative bearing angle. This is good news because we can make the
robots achieve the desired configuration, even if they do not have the same cameras.

Corollary 7.4.3. If the robots are in parallel or leader follower formations, i.e., ψij = π/2 or ψij = 0, then
the consensus is achieved.

The corollary is proved just by replacing these two values of ψij in eq. (7.8) and seeing that the error value
is always zero.

Nevertheless, in the experiments section we show the robustness of the controller to different cameras, even
if the bearing angle between pairs of robots is different to π/2 or zero.

7.5 Experiments

In this section we show the behavior of the proposed controller in two different simulated scenarios and with a
team of 3 robots moving in different environments.

7.5.1 Simulations

The properties of the proposed controller are shown in simulations. The experiments have been carried out using
Matlab. We have considered a robotic network composed by ten robots with initial positions and orientations
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depicted in Fig. 7.3 and communications defined by the dashed lines. To simulate the vision system we
have randomly generated a set of 3D features in the environment. The cameras have calibration matrix K =
diag(300, 300, 1), and a resolution of 640 × 480 pixels. This implies that the robots have a limited field of
view of 94 degrees. Under these conditions not all the robots can observe each other in their images. For
example, robot two can only communicate with robot four and there are no other robots visible in its field of
view. However, using the epipoles it can compute a control input to align its heading with the one of robot four.

The results of using the proposed controller with β = 250 are shown in Figs. 7.3 and 7.4. Since the
maximum relative orientation between a pair of robots is 1.23 the bounds on β required to converge are 212 <
β < 423 and in this case the controller reaches the consensus. The right figure in Fig. 7.3 shows the evolution
of the orientation of the robots, which converge to the same value for all of them. The left figure in Fig. 7.4
depicts the control inputs and the right figure the evolution of all the pairs of computed epipoles.
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Figure 7.3: Initial positions (left) and trajectories followed by the robots (middle). Dashed lines represent direct com-
munications between robots. In the right figure we can observe the values of the orientation of the robots, reaching the
consensus.
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Figure 7.4: Control inputs and evolution of the pairs of computed epipoles for the robotic network in Fig. 7.3.

We have also introduced in the simulation some constraints to make it more realistic. To consider the time
required for the computation of the epipoles we have discretized the controller with time step equal to 0.25
seconds. At each iteration, each robot randomly selects a subset of its neighbors to compute the epipoles. This
selection generates changes in the network topology, transforming the system into a switching one. Also this
selection reduces the number of fundamental matrices that the robots need to compute, improving the compu-
tational cost. The dwell time required in Assumption 2.2.5 comes from the discretization. Joint connectivity is
preserved because along the time all the links of the original graph (which is connected) are selected at some
point. The results of the evolution of the system are shown in Fig 7.5. We can see that the robots still achieve
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the attitude alignment.
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Figure 7.5: Evolution of the network with switching topologies. Orientation of the robots (left) and control inputs (right).

7.5.2 Simulations in a virtual scenario

In the second simulation we have consider a more realistic scenario. Using the virtual reality toolbox of MatLab
we have created a virtual world. In this way, the robots acquire virtual images of resolution 640 × 480 pixels
depending on their position and orientation. In this case the robots need to use real computer vision algorithms
to estimate the epipoles. We have extracted SIFT [77] features from the virtual images and the 8 point algorithm
with RANSAC [57] to match them in a robust way and to compute the epipoles between pairs of robots. An
example of the images acquired by the robots and the features extracted and matched can be found in Figure
7.6. The results of the simulation is in Figure 7.7. Again the robots reach the desired configuration

lmages                        Mat 

Figure 7.6: Images acquired in the virtual environment and matches between the SIFT descriptors.

7.5.3 Experiments with real robots

We have also tested our proposal in a real platform. In this section we briefly describe the whole setup, the
experiments carried out and we show the results obtained. Nevertheless, for a better visualization of the results
we refer the reader to the attached videos, where the whole motion of the robots can be seen.

The experiments have been carried out with three robots Pioneer 3Dx inc with non-holonomic motion
constraints like the ones described in eq. (7.1). Each robot has been equipped with a laptop and a wireless
antenna to communicate with the other two robots. Regarding the vision system of the robots, in most of the
experiments we have used a Kinect camera onboard of each robot. In order to analyze the robustness of the
controller when using different cameras in one of the experiments we have equipped one robot with a unibrain
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Figure 7.7: Results of the simulation in the virtual environment.

camera, which in addition to have different intrinsic parameters, it also has the disadvantage of acquiring images
with radial distortion. The two cameras can be see in Figure 7.8 and an example of the images acquired by each
camera is shown in Figure 7.9.

Figure 7.8: Cameras equipped by the robots in the experiments.

Figure 7.9: Example of images captured by the two cameras used in the experiments.

We have used SIFT features and the 8 point algorithm with RANSAC for matching and computing the
epipoles. Since in this environment the loop time is important, we have used images of resolution 320 × 240
pixels, reducing the time required to extract the SIFT descriptors. In addition, by using smaller images, the
number of features was also reduced, which implies less communications between the robots. The drawback
of this reduction is that there are some iterations in which the epipoles cannot be computed due to the lack of
enough good matches to obtain a robust estimation.

Distributed Consensus in Multi-Robot Systems with Visual Perception
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Since there are only three robots, in all the experiments we have considered a fixed communication topology
in which every robot can communicate with each other. In order to communicate, the robots have used a
real time communication protocol [142]. Let us recall that the proposed method assumes some synchronicity
between the robots, in the sense that the images acquired by all of them should be acquired at the same time. In
a real scenario this is difficult to achieve. For that reason we have used a barrier scheme in which the robots do
not acquire a new image until the previous one has been processed. The scheme followed by the robots at each
iteration is described next:

• Acquire an image and extract the SIFT descriptors.

• Communicate to the other robots the descriptors.

• Receive the SIFT extracted from the other two robots.

• Match the received features with the extracted ones and compute the epipoles.

• Compute the control velocity from the epipoles and send an ACK message to the other robots to acquire
a new image.

• Wait until the reception of the ACK of the other robots and begin with the whole process again.

Although with this approach there are still some time gaps between some of the frames of the robots, they are
negligible in the final results. The total time for each iteration is around 2 seconds, where most of the time is
used in communicating the approximately 300 SIFT descriptors extracted per image (around 300KB). We have
not dealt with packet drops, as this is handled by the communication protocol. In the following we describe the
experiments carried out:

Experiment outdoors

In the first experiment we have taken the robots to the parking lot of the Engineering school of the University
of Zaragoza. The robots move with constant linear velocity of 0.1m/s. The initial and final configuration of
the robots can be seen in Figure 7.10. Since there is no common frame to measure the global orientation of the
robots, we cannot offer ground truth results about the error in the initial and the final orientation. Nevertheless,
in the figure we can see that the robots end up in a configuration with the same orientation (up to an acceptable
error). Let us remark that although the robots that are behind can see the third robot in their images, this
information is not used by the control law. The robot that does not see other robots in its image is also turning
with the epipoles, as can be seen comparing its initial and final orientation in Figure 7.10.

Additionally, the experiment shows that the controller presents some robustness against the planar motion
assumption. When the robots left the lane, there is a bump that makes the image to be crooked (see Figure
7.11). The figure also serves as an example of the kind of images acquired by the robots in this experiments
and the number of final matches computed at each iteration (around twenty per image).

Experiment indoors

We have also tested the controller in an indoor environment. In this case the robots do not move forward and
only turn (vi = 0,∀i). The results of the experiment are shown in Figure 7.12. Again the robots end up in a
configuration with all the orientations aligned.

Experiment using different cameras

Finally, as we have mentioned above, we have also evaluated the distributed control law equipping the robots
with different cameras. In the last experiment two robots are still equipped with a Kinect sensor, but the third
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Figure 7.10: Experiment with three robots outdoors. The initial configuration of the robots is shown on the left figure
and the final configuration is shown on the right figure.

Figure 7.11: Images acquired by the robots in the parking lot with the computed matches. The top image is slightly
crooked due to the bump in the road (see the robot in the other two images). The controller seems to be robust to these
small inclinations in the images.

robot is equipped with a Unibrain camera. Figure 7.13 shows the initial and final configuration of the robots in
this experiment. The unibrain camera has a larger value of αi than the Kinect cameras, however, the value of
β has been set to 500 for the three robots. Looking at the positions of the robots we can see that the relative
bearing is neither zero nor π/2, which means that the final orientation should contain some error, as in eq.
(7.8). However, the error in the final configuration is of the same magnitude as in the previous experiments,
which means that in practice, the algorithm is more sensitive to the computation of the epipoles and the motion
constraints of the robots than to the use of different cameras.

7.6 Discussion

Summing up, we have dealt with the consensus problem of making a team of robots with non-holonomic
constraints move with the same direction, also known as the attitude consensus problem or flocking. We have
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Initial configuration 

Final configuration Matches between the robots 

Figure 7.12: Experiment in an indoors environment. In this case the robots have zero linear velocity, vi = 0, and only
turn using the proposed controller.

Initial configuration 

Final configuration Matches between the robots 

Figure 7.13: In this experiment one of the robots is equipped with a different camera (Unibrain) than the other two
(Kinect). On the left figure we show the matches between the three cameras. The right figures show the initial and the
final configuration of the robots, in which the three robots are aligned despite the different calibrations.

presented a new vision-based distributed controller to reach this objective that does not require the robots to
directly observe each other but common features of the environment. In this way the robots can reach the
consensus while focusing on the perception and mapping tasks explored in previous chapters of the Thesis.

Once again, the proposed method uses well known computer vision techniques to achieve the objective in a
simple but efficient manner. We make use of the epipoles computed between the images of neighboring robots
to estimate the misalignment in their orientations. The use of the epipoles presents several advantages: they do
not require explicit computation of the relative motion between the robots or knowledge about the calibration
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of the cameras and there are well known robust techniques for their computation. When all the robots are
equipped with the same camera, the controller is able to reach the exact consensus even if the calibration is
poorly estimated. In the more realistic scenario where different robots wear different cameras, we have given
the expression of the error in the final configuration.

In order to isolate the use of computer vision from communication and motion issues of the robots, we
have tested our algorithm in a simulated virtual environment with ten robots. Using SIFT features and robust
algorithms to estimate the epipoles, the robots achieve the consensus with very small errors.

We have also evaluated our proposal using real robots with cameras and limited communications using
a real-time protocol to exchange messages. We have seen that the controller works well both in indoor and
outdoor environments and the robots are able to reach the consensus, up to an acceptable final error. To see the
effect of using different cameras, we have considered a scenario where one robot was equipped with a different
camera, with the property of having a high radial distortion. We have shown that in practice the calibration of
the cameras is less of an issue than the amount of information the robots require to exchange. This brings up a
set of interesting questions that can lead to new lines of research in distributed robotic problems dealing with
vision sensors.

Proofs

Proof of Lemma 7.3.1 (Properties of the controller)

First note that dij = −dji. Therefore, if |dij | ≤ π/2, then wij = −wji. In eq. (7.4), when |dij | > π/2,
(π − |dij |) has the same sign that (π − |dji|) because |dij | ≤ π. But sign(dij) 6= sign(dji), which implies that
wij = −wji and 1) is proved.

The proof of 2) is done decomposing the sum of wi,∑
i∈V

wi = K
∑

(i,j)∈E

wij .

Taking into account that the communication graph is undirected and wij = −wji, then the sum is equal to zero.
To prove 3) let us consider that both epipoles have the same sign, without loss of generality, positive. The

arc tangents have values in the interval [0, π/2) and therefore, the difference in eq. (7.5) belongs to the interval
(−π/2, π/2).

Proof of Theorem 7.3.2 (Convergence to a common orientation)

Let θ(t) = (θ1(t), . . . , θN (t)). The proof is done using the following Lyapunov function

V (θ) =
∑
i∈V

∑
j∈V

1

2
(θj − θi)2 =

∑
i∈V

∑
j∈V

1

2
θ2
ij ≥ 0. (7.9)

Note that due to the connectivity assumption, (7.9) is positive definite in terms of, for example, θi − θ1, i =
2, . . . , N . If we compute the derivative of V we obtain

V̇ =
∑
i∈V

∑
j∈V

(θj − θi)(wj − wi). (7.10)

We proceed to show that the derivative is negative if θij 6= 0. First, by developing (7.10) we obtain

V̇ = 2N
∑
i∈V

θiwi −
∑
i∈V

θi
∑
j∈V

wj −
∑
i∈V

wi
∑
j∈V

θj ,
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which by the second point of Lemma 7.3.1 is simplified to

V̇ = 2N
∑
i∈V

θiwi.

Now, regrouping the terms yields∑
i∈V

θiwi = K
∑
i∈V

θi
∑
j∈Ni

wij =
K

2

∑
(i,j)∈E

(θi − θj)wij .

Therefore, the derivative of V can be expressed as

V̇ = −KN
∑

(i,j)∈E

θijwij . (7.11)

We show now that under the conditions stated in the theorem, the product θijwij is positive for all i, j. Let
us first suppose that θij > 0. We divide the analysis in four cases. The first two cases consider positive bearing
angles:

• Let ψij be positive and satisfying ψij ≥ θij . In this case eij > eji ≥ 0. Since both epipoles have the
same sign, using the third point of Lemma 7.3.1, 0 < dij < π/2 and then wij > 0. Note that this case
does not depend on the selection of β, provided that it has the same sign as α.

• If θij > ψij ≥ 0 then eji < 0 < eij , which implies that dij ≥ 0. However, if dij > π/2, then wij < 0
and the control may not be stable. In order to have wij > 0 it must hold that dij ≤ π/2, which is
equivalent as to say that tan(dij) > 0, therefore, using (7.3) and (7.5),

tan(dij) =

α
β (tan(ψij)− tan(ψij − θij))

1 + α2

β2 tan(ψij) tan(ψij − θij)
> 0. (7.12)

The numerator in (7.12) is always positive due to the conditions on θij and ψij . Then, to satisfy (7.12) it
is required that

1 +
α2

β2
tan(ψij) tan(ψij − θij) > 0,

thus
α

β
<

√
1

tan(ψij) tan(θij − ψij)
, (7.13)

which depends on the ratio α/β. A lower bound of the right side of eq. (7.13) is provided later in the
proof.

Let us now analyze the cases of negative bearing angles:

• Let us consider first ψij < 0 and θij − ψij < π/2. When this situation happens eji < eij < 0 and
wij > 0 because of the third point of Lemma 7.3.1. Again, when the robots are in this configuration, the
control does not depend on β.

• The last case to analyze appears when ψij < 0 and θij − ψij > π/2. In this situation the epipoles have
different sign, with eij < 0 < eji, which implies that, in order to have wij > 0, it must happen that
dij < −π/2. In other words, tan(dij) > 0. Now, the numerator in (7.12) is always negative, which
requires

1 +
α2

β2
tan(ψij) tan(ψij − θij) < 0,
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in order to fulfill (7.12), and then

α

β
>

√
1

tan(ψij) tan(θij − ψij)
. (7.14)

Note that (7.13) and (7.14) are not in conflict because they are evaluated in different ranges of ψij . An
upper bound of the right side of eq. (7.14) is provided later in the proof.

The analysis when θij < 0 can be done taking into account the first point of Lemma 7.3.1. Using eq. (7.2),
−θij = θji > 0, then wji > 0 and wij < 0. The system is in equilibrium when θij = 0,∀(i, j) ∈ E , but due to
the fact that the communication graph is connected, then the set of equilibrium points is θij = 0,∀i, j ∈ V.

We compute now the bounds that satisfy (7.13) and (7.14). Let

γ(θij , ψij) =

√
1

tan(ψij) tan(θij − ψij)
. (7.15)

We analyze (7.15) in the intervals I1 and I2

I1 = {(θij , ψij) | 0 < ψij < θij < θM},

I2 = {(θij , ψij) | ψij < 0 < θij < θM , ψij − θij < −
π

2
},

The partial derivative of (7.15) with respect to θij is equal to

∂γ

∂θij
=

−1

2γ tan(ψij) tan2(θij − ψij) cos2(ψij − θij)
. (7.16)

We can see that the sign of (7.16) depends only on the sign of tan(ψij), which is positive on I1 and negative
on I2. Therefore, the function is decreasing with θij on I1 and increasing on I2 and in both cases the bound
we are looking for will be achieved in θij = θM .

If we compute the derivative of (7.15) with respect to ψij , already considering θij = θM we obtain

∂γ

∂ψij
=

sin(θM − ψij) cos(θM − ψij)− sin(ψij) cos(ψij)

2γ sin2(θM − ψij) sin2(ψij)
. (7.17)

The only minimum of (7.17) on the interval I1 is in ψij = θM/2. The maximum on I2 is found on the value
ψij = −π/2 + θM/2. Using trigonometry equivalences we obtain that

γ(θM ,−π/2 + θM/2) =
1

γ(θM , θM/2)
. (7.18)

Finally, by noting that γ(θM , θM/2) = 1/ tan(θM/2), the condition in (7.7) is obtained.
The last point to check is the invariance of the set |θij | ≤ θM , ∀i, j. To show this, let us consider a fixed

reference frame F , and let θmax and θmin be the maximum and minimum orientation values in such frame.
This means that, initially, max θij = θmax − θmin ≤ θM and θi ∈ [θmin, θmax], for all i. Now, let us note that
θmax i = θi − θmax ≤ 0, and θmin i = θi − θmin ≥ 0 for all i and all t. Therefore, wmax ≤ 0 and wmin ≥ 0.
Since the orientations are in a manifold, it is possible that wmax ≤ −π and even when it has negative sign
the difference θmax − θmin is increased. By choosing K sufficiently small, e.g., such that wmax > −θM
and wmin < θM , we can guarantee that the extremes of the set are always pushed to the interior, proving its
invariance.

We do not consider in the proof the special cases ψij = 0, ψij = π/2, ψij = θij and ψij − θij = ±π/2 to
compute the bounds (7.13) and (7.14). However, it can be shown that the controller (7.6) is always well defined
in these situations independently of β.
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Proof of Proposition 7.4.1 (Convergence to a common orientation with topology changes)

We use again the Lyapunov function defined in (7.9). The new derivative of V is

V̇ = −KN
∑

(i,j)∈E(t)

θijwij ≤ 0, (7.19)

and the function is a weak common Lyapunov function for all E(t), and therefore, for any network topology.
Combining this with Assumption 2.2.5, we can assert that the system is stable [10].

Denote θ∗ as the set of points with all the orientations equal, i.e., θ∗ = {θ | θij = 0, ∀i, j ∈ V}. Let GN be
the set of graphs composed by N nodes ∑

G∈GN

V̇G(θ) < 0, (7.20)

for all θ 6∈ θ∗. Therefore V is a common joint Lyapunov function of the system [25, 150], and θ∗ are the only
equilibrium points that all the graphs have in common. The ergodicity requirement on the switching signal is
found in Assumption 2.2.6. Therefore, using [25], we conclude that the robots will converge to some θ ∈ θ∗

and the consensus will be reached.

Proof of Proposition 7.4.2 (Error with different cameras)

The consensus is achieved when eij = eji. This implies

arctan

(
αi
β

tanψij

)
= arctan

(
αj
β

tan(ψij − θij)
)
. (7.21)

Developing the equality yields

αi
sinψij
cosψij

= αj
sinψij cos θij − cosψij sin θij
cosψij cos θij − sinψij sin θij

.

Rearranging the terms we obtain

(αi − αj)(sinψij cosψij) cos θij =

(αi sin2 ψij − αj cos2 ψij) sin θij .

Thus
sin θij
cos θij

=
(αi − αj) sinψij cosψij

(αi sin2 ψij + αj cos2 ψij)
.

and taking the arc tangent (7.8) is obtained.



Chapter 8

Conclusions

“It’s all said and done, it’s real, and it’s been fun.” In this Thesis, we have contributed in different topics to
develop a set of distributed algorithms that allow a team of robots equipped with monocular cameras achieve
a consensus in different perception tasks. We have placed a great effort in two issues related with this problem,
the identification and solution of the additional complications that appear because of the use of cameras and
the proper representation of the visual information to simplify the achievement of the consensus. Contributions
and conclusions obtained throughout this work are finally summarized in this chapter.

8.1 Conclusions

In this work we have studied the problem of achieving consensus in a decentralized way by a team of robots
with limited communications and vision sensors. After a deep study of the different problems that appear in
this scenario, we can extract some interesting conclusions.

In a first step, we have proposed a variety of algorithms following a linear iteration scheme, taking into
account the problems derived from the use of visual information. In particular, the following contributions and
conclusions were obtained.

• Firstly, we successfully have addressed the data association problem in a distributed scenario. We have
proposed a distributed algorithm that makes possible for a team of robots with multiple observations to
distinguish common features of the environment. The algorithm starts using the local correspondences
found between direct neighbors in the communication graph and then executes two steps to find the
global matches. The first step consists on propagating the local matches all over the robotic network so
that every robot is aware of farther away correspondences. The second step deals with the problem of
breaking the inconsistencies (different features associated by the same robot) that appear due to spurious
local correspondences. After the execution of these two steps, the team of robots has the knowledge of
the real number of features observed and which observations should be mixed in the consensus process.
Additionally, an extensive evaluation of the proposed algorithms has shown that they can be applied with
a wide variety of features and local matchers.

• Secondly, we have analyzed in detail the problem of robustness in the computation of the consensus.
We have exposed the lack of robustness to outlier measurements of existing consensus methods and we
have proposed a new algorithm, De-RANSAC, able to detect and discard outlier measurements during
the computation of the average consensus. In this way, the robots are aware if they have good or bad
information and can compute the real consensus value discarding the erroneous information. Following
the principles of RANSAC, the proposed method generates a set of hypotheses and votes for them using
distributed averaging. As the hypotheses take form, the robots are allowed to dynamically change their
opinion, achieving the optimal solution in just one consensus step. For the development of the algorithm
we have used homogeneous coordinates, in order to compute the average of different subsets of robots
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and we have presented a distributed averaging primitive to compute the number of active robots in a
network.

• Thirdly, to compensate the extra communications that visual information requires, we have dealt with the
speed of convergence of the consensus linear iteration. We have seen that using Chebyshev polynomials
the number of iterations required to reach the consensus is considerably smaller than using existing
methods. The proposed algorithm has the same requirements of a standard linear iteration, which makes
it very appealing. We have characterized the main properties of the method such as the convergence
speed and the parameters that optimize it. Since the knowledge of the optimal parameters requires global
information of the communication topology, a distributed solution to estimate these parameters using a
bisection technique has been proposed. The result has been an adaptive distributed linear iteration able to
reach the maximum convergence speed and achieve the desired consensus in a small number of iterations.
An empirical validation of the theoretical results with extensive simulations has shown the benefits of the
proposed methods.

Afterwards, we have focused our attention on specific consensus problems and we have provided solu-
tions to these problems exploiting well studied computer vision techniques. The use of the adequate visual
information has been proved to be essential to achieve the consensus in different perception and control tasks.
Specifically:

• We have studied the problem of distributed map building by a team of robots using planes as the features
to represent the map. We have seen that well known computer vision techniques play a fundamental
role in achieving a consensus about the visual information perceived by all the robots. The advantages
of using this representation for individual robots and for the team as a unit have been highlighted. The
use of homographies simplifies the data association problem, providing with a robust mechanism to
detect planes in different maps. The common reference frame only requires a max-consensus and the
multiplication of different homographies. The final consensus is achieved by all the robots, even if
most of them have not seen a specific plane because of the homogeneous coordinate contained in the
representation. In the end, all the robots manage the same global map. We have shown the performance
of the method with a large data set of real images recorded in Zaragoza downtown.

• Finally, the last contribution of this work was the development of a distributed controller to make a
team of robots with monocular cameras move in the consensus direction while focusing on the above
mentioned exploration tasks. With the proposed controller, the robots estimate the misalignment using
common features of the environment. To do so we have employed another well known computer vision
property between pairs of images, the epipolar constraint. Besides the ability to explore while coordinat-
ing, a very appealing consequence of the usage of epipoles is that the controller does not require a precise
knowledge of the calibration of the cameras. We have evaluated our proposal using real robots equipped
with different cameras, showing that the desired configuration is achieved in different environments.

8.2 Future Work

This Thesis has shown the potential benefits of using vision sensors by multi-robot systems in perception and
control tasks. However, we believe that there is still plenty of room for improvement and there is a long way to
walk before these systems can actually impact in our lives as is happening nowadays with individual robots.

One of the first issues that we believe should be studied is the robust dynamic association of the features.
The data association algorithm presented in the Thesis needs to be executed every time new observations are
sensed. At the same time the robust consensus we have proposed requires for each robot to handle just one
datum. We have the feeling that the dynamic voting version of De-RANSAC might be usable to allow the team
of robots not only to achieve the good consensus but also to associate their observations. Instead of assuming
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one datum per robot, at each iteration and for each hypothesis, the robots could test their observations and plug
(or unplug) into the process the suited ones. The benefits of making this possible would be of great interest.
On the other hand, considering multiple data in the hypotheses increases the complexity of the problem, which
will require further analysis of the properties of the algorithm.

The size of the messages is also a huge problem in the studied systems. We have been able to reduce the
number of iterations to reach the consensus modifying the linear iteration. However, the size of each message
has not been reduced in the Thesis, but increased in order to provide with robustness to the whole approach. In
this sense, further research is required so that these systems can be used in real time with appropriate loop times.
Streaming algorithms can be the solution to this problem because they are in a mature phase of development,
allowing people to watch movies and tv programs in real time. Unfortunately, we are not sure that in the
consensus process the variation between different iterations is enough to reduce the size of the messages using
streaming but the potential benefit is worth a shot.

To finalize, we have proposed a distributed controller to coordinate the robots while exploring the environ-
ment. The development of distributed controllers that allow a team of robots to improve their perception of the
environment has caught the attention of many researchers during the last decade. The use of vision sensors in
this context is just starting to pop up and there is still plenty of work to do in this research line.
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