
TIME CONSTRAINT AGENTS’ COORDINATION AND

LEARNING IN COOPERATIVE MULTI-AGENT SYSTEM

WU XUE

(B.Eng. (Hons.), UNIVERSITY OF SCIENCE AND

TECHNOLOGY OF CHINA)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF INDUSTRIAL AND SYSTEMS

ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48657467?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I

Declaration

I hereby declare that this thesis is my original work and it has been written by me in its

entirely. I have duly acknowledged all the sources of information which have been used

in the thesis.

This thesis has also not been submitted for any degree in any university in any university

previously.

Wu Xue

20 Jan 2013

II

Acknowledgements

I would like to thank all people who have helped and inspired me during my doctoral

study.

I would like to show my gratitude to my advisor, Prof. Poh Kim Leng, for his guidance

during my study and research years at National University of Singapore. His perpetual

energy and enthusiasm in research had motivated all his advisees, including me. And his

encouragement, guidance and support have enabled me to overcome all the obstacles in

the completion of the Ph. D. research work. As a result, research life became smooth and

rewarding for me.

I was delighted to interact with Prof. Leong Tze Yun by attending the Biomedical

Decision Engineering (BiDE) group seminars and having her as my research qualification

examiner. Her insights to artificial intelligence and machine learning positively

influenced my research work. And she has given many valuable advices for my

dissertation.

My seniors, including Zeng Yifeng, Xiang Yanping, Wang Yang, Cao Yi, have helped

me in finding my research topic and commenting my research work. I would like to

especially thank Zeng Yifeng. I got his help and advice even when he graduated and

became an assistant professor in Denmark.

III

My colleagues at the BiDE group, including Li Guoliang, Jiang Changan, Chen Qiongyu,

Rohit, Yin Hongli, Ong Chenghui, Zhou Peng, Zhu Ailing, Nguyen Thanh Trung and

Guo WenYuan , have asked interesting and challenging questions in my presentation and

offered helpful comments on my research. I enjoyed the four years BiDE group seminar

discussion with them.

All my lab buddies at the systems modeling and analysis laboratory of NUS made it a

convivial place to work. They are Fan Liwei, Wang Xiaoying, Guo Lei, Han Yongbin,

Liu Na, Luo Yi, Long Yin, Wang Guanli, Cui Wenjuan, Hu Junfei, Jiang Yixin and Didi.

We have all got along very well. With their company, I more enjoy my stay in Singapore.

I also would like to thank Tan Swee Lan, the lab technician, who has provided a

convenient working environment for us.

My deepest gratitude goes to my parents for their unflagging love and support throughout

my life. This dissertation is simply impossible without them.

Lastly, I offer my regards and blessings to all of those who supported me in any respect

during the completion of the thesis.

Wu Xue

IV

Table of Contents

Declaration ... I
Acknowledgements ... II
Table of Contents .. IV

Summary ... VI
List of Figures .. VIII
List of Abbreviations... XI
Chapter 1 Introduction ... 1

1.1 The Adaptive Multi-agent System ... 1

1.2 Background Information .. 5

1.2.1 Agent Theories .. 5

1.2.2 Agent Software Development ... 8

1.2.3 Multi-agent System ... 10

1.3 Problem Statement ... 14

1.3.1 Scope of research .. 15

1.3.2 Objectives ... 15

1.3.3 Assumptions .. 16

1.3.4 Approach ... 17

1.4 Organization of the Thesis ... 18

Chapter 2 Literature Review.. 19

2.1 Agent Architectures.. 19

2.1.1 Belief-desire-intention Agent.. 22

2.1.2 Bayesian Network ... 23

2.1.3 Bayesian Learning .. 24

2.2 Cooperation and Coordination ... 25

2.2.1 Coordination Category .. 32

2.2.2 Coordinate through Negotiation ... 33

2.2.3 Coordination using Contract net ... 36

2.3 Summary .. 37

Chapter 3 A BN-BDI Agent-based Cooperative Multi-agent System 38

3.1 Proposed Agent Model ... 38

3.1.1 Influence Diagram .. 50

V

3.1.2 Learning Process ... 52

3.2 Proposed Multi-agent System Architecture ... 56

3.2.1 Cooperative MAS ... 56

3.3 Summary .. 60

Chapter 4 The Coordination Mechanism for Cooperative BN-BDI MAS 62

4.1 Mechanisms to facilitate coordination ... 63

4.2 Time Constraint Task-based Model ... 63

4.2.1 Time Constraint Contract Net Protocol .. 68

4.3 Coordination Formation: Multi-agent action selection problem 70

4.4 Coordination Scalability ... 76

4.5 Summary .. 79

Chapter 5 A Simulation Case Study of the Adaptive MAS .. 81

5.1 The Foraging Problem .. 81

5.2 Cooperative BN-BDI Multiagent System for Foraging Problems 85

5.3 Result Sharing of the BN-BDI agents in Foraging .. 88

5.4 Basic Model.. 90

5.5 Results and Analysis of Basic Model Performance ... 92

5.6 Adaptive Models .. 95

5.7 Coordination Complexity ... 97

5.8 Results and Analysis of Adaptive Model Performance 99

5.9 Summary .. 103

Chapter 6 Conclusion and Future Work .. 104

6.1 Contribution ... 104

6.2 Future work .. 105

Bibliography ... 107
Appendix A Graphical Models of MAS .. 115

VI

Summary

Multi-agent System (MAS) is a system composed of multiple interacting autonomous

intelligent agents. Since it is impossible for the designers to determine the behavioral

repertoire and concrete activities of a MAS at the time of its design and prior to its use,

agents should to be adaptive to meet the changing environment. The thesis proposes that

in order to be adaptive, agents in the MAS need to learn from and coordinate with other

agents. The learning ability enables agents to evolve with the changing environment.

Furthermore, the coordination of the agents let MAS solve complex and dynamic

problems adaptively.

To efficiently learn from and coordinate with other agents, the first and fundamental

problem of MAS is to have a suitable agent model and a supporting MAS framework. A

Bayesian-Networked – Believe, Desire, and Intention Model (BN-BDI) agent model is

proposed to build the adaptive MAS. It is a hybrid architecture that has the merits of both

the deliberative and reactive architecture. The BDI part maintains an explicit

representation of the agents’ world. The BN part measures the uncertainty that an agent

faces and the dependent relationship it has with other agents. The BN-BDI agent can

learn other agent’s model, their preferences, their beliefs and their capacities. A

hierarchical MAS architecture consisting of the BN-BDI agents is formed. Agents with

the similar characteristics or capacities constitute a group, and some agents act as

coordinators.

VII

For the coordination of the MAS, a time constraint task-based model is proposed. This

model borrows the task sharing idea from the distributed problem solving domain and

adds in a time-critical component. The communication and coordination complexity of

the model is (log) O n n and it significantly reduces the amount of information

exchanged and scales well with the number of agents. The BN-BDI agent model makes

the MAS framework ready for cooperation and coordination.

To verify the proposals, simulations are carried out using a foraging problem scenario.

Two heuristic algorithms have been tested and the simulation results support these

hypothesis.

Key words: Multi-agent systems, Coordination, Foraging, Contract Net, Multi-agent

Learning, BDI

VIII

List of Figures

Figure 3-1Autonomous Agent .. 39

Figure 3-2 Abstract architecture of BDI agents .. 40

Figure 3-3 Decision Tree .. 46

Figure 3-4 A full decision tree .. 48

Figure 3-5 Resulting possible-worlds model .. 48

Figure 3-6 Simple Bayesian Network ... 52

Figure 3-7 Agent Cooperation versus Autonomy ... 57

Figure 3-8 MAS Layered Architecture ... 58

Figure 3-9 The dynamic hierarchical MAS architecture .. 59

Figure 4-1 Task sharing procedure ... 64

Figure 4-2 TCTM agent components .. 66

Figure 4-3 Stages of Time Constraint Task-based Model .. 68

Figure 4-4 Contract net protocol ... 69

Figure 4-5 Time Constraint Contract Net Protocol ... 70

Figure 4-6 Proof of MAASP is NP-hard... 75

IX

Figure 5-1 The virtual world with 4 agents and several rocks .. 83

Figure 5-2 The mailing system in the Multi-agent Architecture 89

Figure 5-3 Belief augmentation process ... 90

Figure 5-4 Basic algorithm ... 91

Figure 5-5 Simulation results of basic model for 5 by 5 grid sizes 93

Figure 5-6 Simulation results of basic model for 10 by 10 grid size 93

Figure 5-7 Simulation results of basic model for 50 by 50 grid size 93

Figure 5-8 Energy consumed to pick up each rock in basic model 94

Figure 5-9 Adaptive algorithm.. 96

Figure 5-10 Energy needed to pick up each rock: comparison between basic and adaptive

model... 99

Figure 5-11 Total energy consumption for agents in 5 by 5 grid size 100

Figure 5-12 Total energy consumption for agents in 10 by 10 grid size 100

Figure 5-13 Total energy consumption for agents in 50 by 50 grid size 101

Figure 5-14 Basic model results with different agents’ initial positions 102

Figure 5-15 Adaptive model results with different agents’ initial positions 102

X

Figure A-1 Hypertree organization of subnets.. 117

Figure A-2 Example of a multi-agent causal model with two agents. 122

Figure A-3:The left is Hierarchical Bayesian Model, and the right is a plate model for HB.

The large plate indicates that M samples from)(hP  are generated; the smaller plate

indicates that, repeatedly, data points are generated for each  124

Figure A-4 Praxeic network for a three-agent system .. 125

Figure A-5 A MAID for the Tree Killer example; Alice’s decision and utility variables

are in dark gray and Bob’s in light gray. .. 127

Figure A-6: A DMAID model of indirectly financing game. G(t1) denotes deposit game,

G(t2) denotes fetch money game. .. 129

XI

List of Abbreviations

ACE: Action Estimation

AGE: Action Group Estimation

AOS: Agent Oriented Software

BDI: Believe, Desire, Intention

BN: Bayesian Network

BN-BDI: Bayesian-Networked Believe, Desire, Intention Model

CBN: Casual Bayesian Network

C-component: Confounded Component

CDPS: Cooperative Distributed Problem Solving

CNP: Contract Net Protocol

CPT: Conditional Probability Table

DAG: Directed Acyclic Graph

DAI: Distributed Artificial Intelligence

DMAID: Dynamic Multi-agent Influence Diagram

DMC: Distance Modulated Communication

EBL: Explanation-based Learning

FIPA: Intelligent Physical Agent

HBM: Hierarchical Bayesian Model

ID: Influence Diagram

ILP: Inductive Logic Programming

JADE: Java Agent Development Framework

MAASP: Multi-agent Action Selection Problem

MACM: Multi-agent Causal Model

MAID: Multi-agent Influence Diagram

MAIDF: Multi-agent Influence Diagram Fragments

MAL: Multi-agent Learning

MAS: Multi-agent System

ML: Maximum Likelihood

MSBN: Multiply-sectioned Bayesian Network

LRTA*: Learning Real-time A* Algorithm

PRS: Procedural Reasoning System

PN: Praxeic Network

RTA*: Real-time A* Algorithm

TCTM: Time Constraint Task-based Model

1

Chapter 1 Introduction

1.1 The Adaptive Multi-agent System

With the advances in computer science – multi-tasking, communicating process,

distributed computing, modern interpreted languages, real-time systems, communication

networks, and networked environment, Intelligent Agents has become the most vibrant

and fastest growing research area in both Artificial Intelligence and Computer Science,.

New agent-based products, application and services arise on an almost daily basis, as it is

a promising new paradigm for conceptualizing, designing and implementing software

system. From funs games such as robot soccer to mission critical applications such as

targeting and monitoring enemy movements, and to smart home systems, the number of

applications for MAS is endless.

Although agents have been under study for almost 20 years, many research fields are still

unsolved and are on the emerging stage, especially in the agent theories, models and

architectures part. Let’s look at the following problems:

Personal Information Assistants

The traditional approach to assist the personal information is through direct manipulation,

which requires the user to tediously initiate and execute each action even in cases where

sequences of actions are better automated, e.g., locating, retrieving, and extracting

relevant information from distributed data collections. The direct approach is practical

and possible for tens of items and it becomes unwieldy and impractical for thousands of

2

them. This approach does not offer support for initiating actions on behalf of user in

response to situations that might arise and does not facilitate easy composition of basic

actions and objects in complex action structures. As a result, users have to grapple with

the complexity and heterogeneity of distributed, heterogeneous information sources and

computing devices. However, agent-based approach can solve these difficulties easily

through indirect manipulation. Agents can automate routine tasks of locating, retrieving,

and processing information from heterogeneous distributed information sources and can

hide the heterogeneity and complexity of the underlying information sources. Moreover,

adaptive agents allow customization of generic software to the needs and interests of

specific users. Agents can learn by observing users and interacting with them, and

thereby improve their behaviour. Agents can potentially work around unforeseen

problems and exploit unforeseen opportunities as they go about doing their tasks.

Collect Collective Satellites Information

To better respond to transient Earth phenomenon that can cause loss of life or damage to

economic assets (tornadoes, mudslides, flash floods, etc.) an increase in the amount and

timeliness of information collected on phenomenon is needed. One method for collecting

this information is by using groups of Earth observing satellites with the ability to

perform autonomous orbital maneuvers and view phenomenon on demand. However, as

satellites are very costly, creating a group of satellites large enough to perform this task is

currently beyond the abilities of any one organization. One method of gathering a group

of satellites that is large enough is by several organizations “pooling” their satellite

resources together temporarily. In order to pool autonomous maneuverable satellites,

3

several technical problems must be overcome. These include for example how to

schedule large numbers of satellites to effectively collect critical information on

phenomenon, even in the face of unexpected events, like satellite failures that can

prohibit the collection of this information in (McConnell 2003).

Robot Search Team

One space shuttle lands on Mars. Several robots are sent out to collect as many useful

material samples as possible. These robots are autonomous and self-interested. However,

they are required to cooperate with each other to finish the discovery job as a team. How

robots adjust their behavior to achieve a good system performance and at the same time

keep their integrity and self-interest is a tough problem that researchers have to deal with.

These three examples mentioned above can be represented in MAS. MAS has many

interesting yet unique abilities that make it outperform single agent system. No single

agent has sufficient competence (e.g., in medical diagnosis, knowledge about heart

disease, blood disorders and respiratory problems may need to be combined to diagnose a

patient’s illness), resource (power, memory, communication, that belong to different

agents are to be harnessed), and information (in concurrent engineering systems, the same

product may be viewed from a design, manufacturing and marketing perspective). For

example, MAS can solve problems that are too large for a centralized agent; it can

interconnect and interoperate with the multiple existing legacy systems; it can provide

solutions to problems that can naturally be regarded as a society of autonomous

interacting agents; it can provide solutions that efficiently use information sources that

4

are spatially distributed; it can provide solutions in situations where expertise is

distributed.

Although MAS provides many potential advantages, it also presents many challenges.

The difficulties of the examples mentioned above represent the typical challenges in

MAS. In the example of “Personal Information Assistants”, the challenges include how

agents grapple with the complexity and heterogeneity of distributed, heterogeneous

information sources and computing devices; how autonomous agents in the system which

represent the users behave adaptively to meet the uncertainty and to achieve a good

global performance of all the personal information and meanwhile keep their integrity of

each information item and increase its local utility value.

Typically MAS is of considerable complexity with respect to both its structure and its

functionality. For most application tasks, and even in environments that appear to be

more or less simple, it is extremely difficult or even impossible to correctly determine the

behavioral repertoire and concrete activities of a MAS system at the time of its design

and prior to its use. This would require, for instance, that it is known a priori which

environmental requirements will emerge in the future, which agents will be available at

the time of emergence, and how the available agents will have to interact in response to

these requirements. This problem is even more complex when the agent is situated in an

environment that contains other agents with potentially different capabilities and goals.

This kind of problems results from the complexity of MAS and can be avoided or at least

reduced by endowing the agents with the ability to adapt to and to learn from the

environment and their fellow agents.

5

1.2 Background Information

1.2.1 Agent Theories

The term agent is used by many people working in different areas, and it can be used to

describe several very different kinds of systems. However, there is no precise definition

about it. Generally, an agent is supposed to have four basic components, which are the

sensor component, the motor component, the information base, and the reasoning engine.

The sensor and motor components let an agent to interact with its environment. The

information base contains the information an agent has about its environment. The

reasoning engine enables an agent to perform processes like inferring, planning and

learning. Although this basic conception is widely accepted, people have controversial

views on the agent characteristic properties. In (Wooldridge and Jennings 1995) an agent

is a computer system, situated in some environment that is capable of flexible

autonomous action in order to meet its design objectives. In their mind, there exist a weak

and a strong notion of agency. According to the weak notion, an agent must have

autonomy, reactivity and pro-activeness. As for the strong notion, more specified

properties are included in an agent. It enjoys the properties of belief, knowledge,

intention, commitment, desire, goal, etc.

(Wooldridge and Jennings 1995) describes the characteristics of agents’ modules when

applied to software entities.

Autonomy: an agent operates without direct intervention of other agents or humans and

has control over its actions and its internal state.

6

Responsiveness: an agent perceives its environment and responds in a timely fashion to

changes that occur in it.

Pro-activeness and deliberation: an agent does not simply react to changes in the

environment, but exhibits goal-directed behaviors and takes the initiative when it

considers them to be appropriate.

Social-ability: an agent interacts with other agents and possibly humans via some kind of

agent-communication language. If it is needed to complete its tasks and help others to

achieve their goals, agents can cooperate with each other.

Mobility: the ability to change the physical position

Benevolence: the property of always doing what it is asked to do

The main point about agents is that they are autonomous: capable of acting independently,

exhibiting control over their internal state. Thus an agent is a computer system capable of

flexible autonomous action in some environment. The flexible action means reactive,

pro-active, and social.

The unique characteristic properties of an agent distinguish it from other terminologies,

like object or expert system.

Agent-based system’ vs. ‘object-oriented system’

Objects are defined as computational entities that encapsulate some state, are able to

perform actions, or methods on this state, and communicate by message passing. While

7

there are obvious similarities, there are also significant differences between agents and

objects.

Firstly agents are autonomous. Agents embody stronger notion of autonomy than objects,

and in particular, they decide for themselves whether or not to perform an action on

request from another agent. Secondly agents are smart. They are able to have flexible

behavior like being reactive, pro-active, and social, while the standard object model has

nothing to say about such types of behavior. Thirdly agents are active. A MAS is

inherently multi-threaded, in that each agent is assumed to have at least one thread of

active control. Moreover, agents carry out the task to maximize its utility value.

An agent-based system is a system in which the key abstraction used is that of an agent.

In principle, an agent-based system might be conceptualized in terms of agents, but

implemented without any software structures corresponding to agents at all. Object-

oriented software, on the other hand, allows the possibility to design a system in terms of

objects, but to implement it without the use of an object-oriented software environment.

However, this would be at best unusual, and at worst, counter-productive. A similar

situation exists with agent technology. Therefore an agent-based system is expected to be

both designed and implemented in terms of agents.

‘Agent-based system’ vs. ‘expert system’

Expert systems typically disembodied expertise about some domain of discourse. Take

for example MYCIN in (Spiegelhalter, Dawid et al. 1993), which knows about blood

diseases in humans. It has a wealth of knowledge about blood disease, in the form of

8

rules. A doctor can obtain expert advice about blood diseases by giving MYCIN facts,

answering questions, and posing queries.

The main differences between the agent and expert system are as follows. Agents are

situated in an environment while expert system is not, like MYCIN is not aware of the

world. Agents act while expert system does not, like MYCIN does not operate on patients.

However, it has to be noticed that some real-time, typically process control, expert

systems are agents.

1.2.2 Agent Software Development

The agent-based approach to software systems development views these autonomous

software agents as components of a much larger business function in (Faltings 2000). The

main benefit of viewing them from this perspective is that the software components can

be integrated into a coherent and consistent software system in which they work together

to better meet the needs of the entire application.

In the software development history, agent oriented programming is an innovation of the

last decade, with specific techniques for specification, implementation and verification in

(Jennings, Faratin et al. 2001), which help the programmer to analyze and design a

complex software for distributed problem domains. Originally, as described in (Parunak

2000), the basic unit of software was the complete program, where, the algorithm, the

programming code, and data were responsibilities of the programmer. At the next stage

of software evolution programs could be designed in smaller packages, like loops and

subroutines, and although the code was somehow encapsulated in subroutines, it had to

9

be called externally to be executed. Within object-oriented programming, there are

localized objectives with abilities like inheritance. Software agents take the next step of

giving each object the ability to be autonomous, reactive, proactive and social. The

software components are communicative and have their own thread of control and

internal goals.

Agent theorists have developed different kinds of theories in order to conceptualize the

properties that the autonomous software components should embody and the way they

should reason based on their representations. These specifications can assist the software

engineer to formally develop the software system in a structured and efficient way.

Agents as Intentional Systems: An agent can be described by an intentional instance. The

attitudes that are required in order to represent agents can be grouped into information

attitudes and pro-attitudes. The first involves the beliefs or knowledge that the agents

hold and the second involves the desires, intention, obligations, commitments, choices etc.

of the agents. Software components that embody information within these terms are

called the Belief, Desire, and Intention agents (BDI) in (Rao and Georgeff 1995) and

(Georgeff, Pell et al. 1999), and the combination of these attitudes has been an issue of

debate over the last few years.

Possible world semantics: This specification uses possible worlds from the semantics of

model logic, and linked together via accessibility relations (facts and/or rules that specify

the connection between two different worlds) (Moreira, Vieira et al. 2004) (Steels and

10

Hanappe 2006); researchers have overcome many problems by seeing agents’ belief

characterized as a set of possible worlds.

Alternatives to possible worlds: In order to solve difficulties that arise from the previous

theories, Levesque has attempted to develop an alternative theory (Levesque 1984),

where there is a distinction between explicit and implicit belief. Also, Konolige, with his

deduction model (Konolige 1986), tried to model the beliefs, by representing them in a

database and having a logical inference mechanism.

1.2.3 Multi-agent System

MAS is a system composed of multiply interacting intelligent agents. Computational

intelligence research originally focused on complicated, centralized intelligent systems

with expertise in particular domains. However, as researchers address increasingly

complex and distributed applications, single-agent system could not meet the

requirements and the needs for Multi-agent System (MAS) are becoming apparent

(Jennings, Sycara et al. 1999) (Ren and Williams 2003).

MAS can be used to solve problems that are difficult or impossible for an individual

agent to solve. The MAS systems are based on the idea that a cooperative working

environment comprising synergistic software components can cope with problems which

are hard to solve using the traditional centralized approach to computation. Smaller

software entities – software agents – with special capabilities (autonomous, reactive, pro-

active and social mentioned above) are used instead to interact in a flexible and dynamic

way to solve problems more efficiently (Weiss. 1999).

11

Research in MAS is concerned with study, behavior, and construction of collection of

possibly preexisting autonomous agents that interact with each other and their

environments. The target of MAS is to demonstrate how goal-directed, robust and

optimal behavior can arise from interactions between individual autonomous intelligent

software agents. Developing separate modules, where each one provides a solution, and

allowing them to co-operate and exchange information in order to solve the larger

problem makes the problems solving process easier to manage. This is something that

would not be feasible by merely integrating the knowledge and inference mechanisms

into a single software component.

The agents in MAS has several important characteristics which includes that agents are at

least partially autonomous; each agent has incomplete knowledge or capabilities for

solving the problem; there is no global control on problem-solving activities; data are

distributed; computation is asynchronous.

MAS has been developed and used for various applications ((Abraham, Franke et al.

2003) (Abraham, Köppen et al. 2003) (Blum and Merkle 2008) (Garcia 2003) (Moreno

and Nealon 2003)). MAS can be applied to proactive, reactive, and context sensitive

information retrieval; decision support using distributed, heterogeneous data and

knowledge sources (e.g. in health care, defense, collaborative scientific discovery, etc.);

distributed design and manufacturing in virtual enterprises; electronic commerce;

adaptive self-managing complex dynamic systems (e.g. large communication networks,

power systems, transportation systems); adaptive user interfaces; mobile and ubiquitous

computing; mail and message handling; collaborative work environments; system

12

monitoring, intrusion detection, and countermeasures; knowledge discovery from

heterogeneous distributed data and knowledge source (e.g., genome databases, protein

databanks, laboratories).

Over the last decade, a number of successful applications have appeared in the field of

business process, electricity management, control, transportation, logistics, networking,

and mobile technologies.

Based on the description of intelligent systems given in the previous paragraph and

moving to the next generation of MAS, researchers have followed the approach of

extending existing intelligent systems methodologies by including the aspects of agents

(Brazier, DuninKeplicz et al. 1997), (Iglesias, Garijo et al. 1999),(Weiss 1999). Although

there is not a formal framework for MAS development, due to the dependence on

application domains, it has been agreed that the construction of MAS requires a different

approach from that of conventional software system development (Maes 1990). Certain

issues like responsibilities and tasks assignment to agents need to be considered. These

form the links between the problem domain and the development of individual software

components and the MAS as a whole (Wooldridge, Jennings et al. 2000) and include:

Application domain functional analysis: identification of domain functions, task

decomposition and distribution.

Software components design: definition of goals, role assignment (description,

permissions, responsibilities, and commitments) and internal knowledge (explicit or

implicit).

13

MAS design: co-operation, communication, control, planning, commitments, conflicts,

and negotiation.

Following these three general stages and embodying abilities of communication and co-

operation between the software components, the MAS will be able to process the

functions depending on the goals to be accomplished within a certain problem domain.

An agent-based system may contain one or more agents. There are cases in which a

single agent solution is appropriate. However, the multi-agent case, which means the

system is designed and implemented as several interacting agents, is arguably more

general and more interesting from a software engineering standpoint. The MAS systems

are ideally suited to representing problems that have multiple problem solving methods,

multiple perspectives and multiple problem solving entities. Such systems not only have

the traditional advantages of distributed and concurrent problem solving, but also have

the additional advantage of sophisticated patterns of interactions. It is the flexibility and

high-level nature of these interactions which distinguishes MAS from other forms of

software and which provides the underlying power of the paradigm. Apart from the usual

benefits provided by distributed systems, MAS has the substantial benefit of containing

the spread of uncertainty, with each agent locally dealing with the problems created by an

uncertain and changing world.

To launch the agent technology successfully, researchers and business leaders need to

reduce the costs and risks associated with adopting the technology. The costs and benefits

that should be evaluated include (1) assessment of the technological and business issues

14

involved in the development and operation of agent technologies, (2) understand the

concerns and constraints of adopters, and (3) guide commercial development efforts by

technology providers, agent standards, efforts by suppliers and users, and research efforts

by agent computing researchers.

As the research in intelligent systems has progressed steadily over the past decade, it has

become increasingly clear that there are classes of complex problems which cannot be

solved by a single system in isolation and they require several systems to work together

interactively in a cooperative framework. Furthermore, there are heterogeneous

intelligent systems that were built in isolation, and their cooperation is necessary to

achieve a new common goal. In situations where multiple agents are acting on different

goals in the same environment, cooperation may be beneficial to all agents.

In cooperative MAS, some of the agents have the notion of global utility that they need to

maximize, while some others have no global notion of utility and autonomous agents in

them have to maximize their own utility functions. However, these two extreme cases

may violate either the global utility or the local utility. Most of the time, it is expected to

achieve a good system performance and at the same time protect the local agents’ self-

interest and integrity. As a result, how agents in MAS manage to do this is a challenging

task. One promising way is through agent learning and coordination.

1.3 Problem Statement

For agents in a cooperative MAS to behave adaptively, they need to learn from and

coordinate with other agents and their environment. To effectively and efficiently learn

15

and coordinate, there needs to be a corresponding agent model and MAS architecture.

Based on the hardware, advanced learning and coordination methods are proposed.

1.3.1 Scope of research

As the developments in MAS has been so rich and vast, encompassing the wide array of

research topics and problems in MAS such as learning, reasoning, model, architecture,

communication e.t.c is impossible. This thesis is focus on three axes on how to build an

adaptive MAS, namely agent model, system architecture, coordination mechanism.

To effectively and efficiently build an adaptive MAS, the agents’ model and the system’s

architecture are very important, for the framework of MAS setting the limits of the

system performance potentials. A Bayesian-Networked Believe, Desire, Intention (BN-

BDI) agent model and a corresponding hierarchical MAS architecture are presented in

this thesis. Based on the agent model and the system architecture, the time constraint

task-based model is proposed for coordination of the cooperative MAS. Through the

learning and coordination process, agents can therefore be adaptive.

In short, in this thesis the learning and coordination of adaptive agents are investigated in

a cooperative MAS system and proposed an advanced agent model as well as a

supporting MAS framework.

1.3.2 Objectives

There are four main objectives of this thesis.

16

1. Propose an agent model for the cooperative MAS

2. To compare the existing MAS architecture and propose an MAS architecture

3. Propose an alternative coordination mechanism for the specific MAS architecture

with the novel agent model

4. To verify the proposed framework. In the thesis, a foraging problem is used as the

context of simulation

1.3.3 Assumptions

The assumptions that are made about the nature of the problem are summarized below.

Each agent has limited knowledge about its environment

Agent skills and knowledge differ.

Agent behavior is tightly coupled with the environment

Cooperation is required to solve tasks. Agents want to coordinate with each other so that

they are conflict-free. That is, there should be no agent with contradictory goals that

compete with other agents.

Agents have a common language for describing aspects of the world they sit in, so that

they can know they are talking about the same thing. Otherwise, they would have no way

of coordinating with each other.

17

Agents are able to communicate freely with each other so as to implement various

synchronization decisions made at coordination time so that they can carry out their

coordinated plans at run-time

Plan coordination is an offline process that takes place after agents produce their

individual plans, but before agents execute their plans. This assumption is made to better

frame the coordination problem as a straightforward optimization problem.

The problem of finding the globally optimal Multi-agent coordination plan for a given set

of agents and goals is a fundamentally intractable problem, especially as the agents’

number scales. Multi-agent coordination which is not guaranteed to produce a globally

optimal utility but can be solved tractably under certain assumptions is design tradeoff

between the quantity of the resultant Multi-agent coordination plan and the required

computational overhead of producing such a plan.

1.3.4 Approach

Given this problem description, efficient agent models and system architecture are

developed to enable agents to coordinate and learn with each other quickly. Firstly, a BN-

BDI agent model is presented. It is a hybrid architecture that has the merits of both the

deliberative and reactive architecture. The BDI part maintains an explicit representation

of the agents’ world. The BN part measures the uncertainty that an agent is facing and the

dependent relationship it has with other agents. The BN-BDI agent can learn other

agent’s model, their preferences, their beliefs and their capacities. A hierarchical MAS

architecture consisting of the BN-BDI agents is formed. Agents with the similar

18

characteristics or capacities constitute a group in one layer and some agents act as

coordinators in the upper layer. Agents use time-constraint contract net to communicate

and coordinate with each other. Since there are a hierarchical MAS architecture and BN-

BDI agent model, these architectures greatly reduced the amount of information

exchanged among agents, and the information exchanged among agents grows not

exponentially to the number of the agents. This greatly reduces the complexity of

communication and coordination.

1.4 Organization of the Thesis

This thesis is organized as follows: In chapter 2 a literature survey of agent architecture

and coordination mechanisms are presented. Chapter 3 focuses on the agent model and

corresponding cooperative MAS architecture. The proposed BN-BDI agent model

hierarchical MAS frameworks are presented. Chapter 4 investigates the coordination in

the cooperative BN-BDI MAS and the proposed time constraint task-based coordination

mechanisms. Chapter 5 is the simulation of a foraging problem. The proposed model and

coordination mechanism are tested in the example. Results and analysis are given. It is

shown that the novel agent model and the novel coordination mechanism are effective

and efficiency. Final chapter is about the summary and conclusions.

19

Chapter 2 Literature Review

A distinguishing feature of MAS is the fact that the decision making of the agents can be

distributed. This means that there is no central controlling agent that decides what each

agent must do at each time step, and each agent is to a certain extent responsible for its

own decisions. The main advantages of such a decentralized approach over a centralized

one are efficiency, due to the asynchronous computation, and robustness in the sense that

the functionality of the whole system does not rely on a single agent. In order for the

agent to be able to take their actions in a distributed fashion, appropriate coordination

mechanisms must be developed. In this chapter, the agent model and architectures and

the cooperation and coordination mechanisms of MAS will be reviewed.

2.1 Agent Architectures

Intelligent agent has been a key concept in both AI and the main stream of computer

science. The agent-based technology plays an important role in software engineering. The

conception of multiple autonomous problem solvers interacting in various ways to

achieve individual and system goals is a useful software engineering abstraction. In the

past decades, the theory and application of agents have been well developed. Although

the abstraction is useful in that it enables software engineers to do more or to do things

more cheaply, to design and build the agent systems is difficult.

MAS has all the problems associated with building traditional distributed, concurrent

systems, and has the additional difficulties which arise from having flexible and

20

sophisticated interaction between autonomous problem solving components. For these

reasons, most extant agent system applications are built by, or in consultation with,

designers and developers who are themselves active in the agent research community. So

this situation lays two major technical impediments to the widespread adoption of agent

technology. One is the lack of a systematic methodology enabling designers to clearly

specify and structure their applications as MAS. The other is that the lack of widely

available industrial-strength MAS toolkits.

As for agent theory, many models and architectures for characterizing agents have been

proposed. To date, much architecture has been implemented in a rather ad hoc manner.

Since different environment types have various architectures, it is quite hard to evaluate

one agent’s architecture against another.

When classified in abstract agent architectures, there are purely reactive agents, Simple

reflex agents, Perception-limited agents, Model-based reflex agents, Agents with internal

state, Goal-based agents, Utility-based agents, and Learning agents, etc. When classified

by concrete agent architectures, there are logic-based architectures, reactive architectures,

BDI architectures, and layered architectures, etc.

Agent architectures represent the move from theoretical specification to the software

agents’ implementation:

Deliberative Architectures: the term ‘deliberative agent’ means a specific type of

symbolic architectures. This is based on the physical symbol hypothesis of Newell and

Simon, according to which intelligent activity in either humans or machines is achieved

21

through the use of patterns of symbols, operations on these patterns and search (Newell

and Simon 1976). This means that agents should maintain an explicit representation of

their world, which can be modified by some form of symbolic reasoning. Research has

explored the model of BDI agents. Although this approach is theoretically attractive, it is

very hard to achieve in practice in real time application.

Reactive Architectures: this kind of architecture is based on Brook’s approach

‘Reasoning without representation’(Brooks 1991). This architecture aims to build

autonomous mobile robots, which can adapt to changes in their environment and move in

it, without any internal representation. The agents make their decisions at run time,

usually based on very limited amount of information and simple situation –action rule.

Decisions are based directly on sensory input.

Hybrid Architectures: Many researchers suggested that a combination of classical and

alternative approaches would be more appropriate, as it would combine the advantages of

both approaches and avoid the disadvantages. Some successful examples are the

Procedural Reasoning System (PRS) (Georgeff 1989), TOURINGMACHINES (Ferguson

1992), COSY (Burmeister B. 1992) and INTERRAP (Muller J. P. 1995).

In logic-based architectures, decision making is realized through logical deduction. It is

the traditional AI approach that intelligent behavior can be created in a system that

manipulates symbols. In reactive architectures, decision making is implemented in some

form of direct mapping from situation to action. Intelligent behavior emerges from the

interaction of various simple behaviors, and intelligent behavior is not disembodied. It

22

has to be a product of the interaction that the agent maintains with its environments. In

BDI architectures, decision making depends upon the manipulation of data structures

representing the beliefs, desires, and intentions of the agent. In layered architectures,

decision making is realized via various software layers, each of which is more or less

explicit reasoning about the environment at different levels of abstraction.

2.1.1 Belief-desire-intention Agent

Of the various agent architectures which have been proposed, BDI(Georgeff, Pell et al.

1999) is probably the most mature and has been adopted by a few industrial applications.

In this thesis, beliefs represent the information an agent has about the state of the

environment being monitored, which is updated appropriately after each sensing action.

The desires denote the objectives to be accomplished, including what priorities or payoffs

are associated with the various objectives. The intentions represent the currently chosen

courses of action and commitments are the conditions the agent is committed to maintain.

The BDI agent model is developed based on the theory proposed by (Bratman 1987).

Unfortunately, the existing BDI systems have some shortcomings that prevent the

mobility of agents (Rao and Georgeff 1995). The architecture lacks a paradigm for

concurrency control among intentions performing conflicting operations, such as trying

to manipulate the same set of beliefs at the same time. In theory, this problem is

resolvable by writing context specific meta-level policies. However, in addition to being

impractical, writing meta-plans which discover and handle race conditions in real-time is

a very challenging task.

23

2.1.2 Bayesian Network

Bayesian network (BN) is a directed acyclic graph (DAG) of nodes representing variables,

arcs representing probabilistic dependency relations among the variables and local

probability distribution for each variable given values of its parent (Bacchus and Grove

1995).

A Bayesian network approach to self-organization and learning is introduced for use with

intelligent agents in (Sahin 2000). Bayesian networks, with the help of influence

diagrams, are employed to create a decision-theoretic intelligent agent. Influence

diagrams combine both Bayesian network and utility theory. In (Sahin 2000), an

intelligent agent is modeled by its belief, preference, and capabilities attributes. Each

agent is assumed to have its own belief about its environment. The belief aspect of the

intelligent agent is accomplished by a Bayesian network. The goal of an intelligent agent

is said to be the preference of the agent and is represented with a utility function in the

decision theoretic intelligent agent. Capabilities are represented with a set of possible

actions of the decision-theoretic intelligent agent. Influence diagrams have utility nodes

and decision nodes to handle the preference and capabilities of the decision-theoretic

intelligent agent, respectively.

Learning is accomplished by Bayesian networks in the decision-theoretic intelligent agent.

Because intelligent agents will explore and learn the environment, the learning algorithm

should be implemented online. In (Heckerman 2008), an online Bayesian network

learning method was proposed.

24

Self-organization of the intelligent agents is accomplished because each agent models

interaction with other agents by observing their behavior. Agents have belief, not only

about environment, but also about other agents. Therefore, an agent makes its decision

according to the model of the environment and the model of the other agents. Even

though each agent acts independently, they take the other agents’ behaviors into account

to make a decision(Zheng and Pavlou 2010). This permits the agents to organize

themselves for a common task.

2.1.3 Bayesian Learning

A Bayesian network is made up of structures and parameters. It can be built either

through domain knowledge or from data (Heckerman 2008). The first approach is called

Bayesian network construction from domain knowledge and the second one is called

Bayesian network learning from data. Constructing Bayesian networks from domain

knowledge is far too subjective to apply, because the experts’ judgment often leads to

inconsistent networks. Moreover, it is difficult to elicit dependence relationship and

variable probabilities from domain experts. Consequently, much effort has been made to

devise the engines of Bayesian network learning from data.

In general, approaches for learning Bayesian network are categorized according to two

ways: whether the structure is known and whether the data set is complete. When the

structure is known, the problem becomes a parameter learning problem. Otherwise, the

problem becomes a structure learning problem when the structure is unknown beforehand.

Of course, it is possible to learn structures and parameters together from data. However,

25

learning structure is much more difficult than learning parameters. An incomplete data

set complicates the learning problem while a complete data set alleviates the learning

challenge. The problem addressed leads toward the issue of learning Bayesian network

structures from complete data set, which is also called as learning Bayesian network

structures from data.

2.2 Cooperation and Coordination

A typical situation where coordination is needed is among cooperative agents that form a

team, and through this team they make joint plans and pursue common goals (Klavins

2004). Cooperation is a key MAS concept. (Edmund H. Durfee 1989) have proposed four

generic goals for agent cooperation: (1) increase the rate of task completion through

parallelism; (2) increase the number of concurrent tasks by sharing resources

(information, expertise, devices, etc.); (3) increase the chances for task completion by

duplication and possibly using different modes of realization (4) decrease the

interferences between tasks by avoiding the negative interactions.

Within MAS, cooperation is required to give robust global behavior, and is achieved

through software components’ communication. There are different methods for achieving

coordination and cooperation (Schumacher 2001) (Scerri, Vincent et al. 2005)

(Koulinitch and Sheremetov 1998) (Mataric 1998) (Ho and Kamel 1998) (Crowston

1991), which have formed three main approaches:

Cooperative interaction: This occurs when agents interact to assist each other in

achieving their goals more efficiently. This coordination has to be built by the developer

26

of the software, in terms of goals, roles and the relationship between them. The strategy

can be complex, with rewards assigned to agents (David Carmel 1996), or with

committed teams to achieve a goal by exchanging partial results (Norman Carver 1991),

which might raise the need for sharing resources either centrally or in a distributed

fashion (Zhongyan L. 1999).

Contract-based cooperation: This approach uses one of the common auction strategies,

when there is some conflict between the agents. The common auction strategies include

sealed-bid auction, English auction and Dutch auction. Sealed-bid auction: each agent

submits a bid without knowing the bids of the other agents. The contract is awarded to

the cheapest bidder. English auction: bids are accepted sequentially. Each new bid must

be cheaper than the currently cheapest bid. The contract is awarded to the final bidder

who offered the cheapest bid. Dutch auction: the initiator invites potential contractors to

bid at a given price, which is systematically increased until a bid is received. The contract

is awarded to the first bidder.

The approach that has most commonly been used within MAS is the contract-net protocol

(Davis and Smith 2003) (He, Leung et al. 2003) which is based on a sealed –bid auction

and has been proven to be more appropriate than blackboard architectures (Parunak,

Ward et al. 1999). The agent cooperates by committing to a goal, which makes it able to

predict the actions of the other agents contracted to it.

Negotiated cooperation: During cooperation conflicts might arise if resources are limited,

in order for all the agents in MAS to carry out their actions (Sycara 1990). These

27

conflicts can be solved with negotiation between the software components or the

development of a software management mechanism. Using the latter means behavior

rules have to be defined, while negotiation can contribute to the system’s equilibrium in a

dynamic fashion (Gilad Zlotkin 1993)

Weiss describes a learning system of how agents can learn to coordinate their actions

(Weiss. 1999). Weiss makes a number of assumptions, including (1) each agent has

limited knowledge about its environment (2) cooperation is required to solve tasks, (3)

agent actions can conflict with each other (4) agent skills and knowledge differ, and (5)

agent behavior is tightly coupled with the environment. Weiss’ approach involves the use

of two algorithms for collective learning, which are called ACE and AGE (these

acronyms stand for “Action Estimation” and “Action Group Estimation”). In the ACE

algorithm, the MAS learning consist of a repeated execution of three steps, which is

called action determination, competition, and credit assignment. The application domain

that Weiss addresses is the learning sequences of applicable actions that accomplish a

given mission. Parker describes a similar learning system and his application domain is

having agents select actions that allow them to robustly accomplish a set of independent

subtasks in a minimal amount of time.

Cooperative MAS and cooperative mobile robotics share similar methods to coordinate

the agents and robotics. The amount of research in the field of cooperative mobile

robotics has grown substantially in recent years (J Deneubourg 1990). This work can be

broadly categorized into two groups: swarm-type cooperation and “intentional”

cooperation. A number of researchers have studied the issues of swarm robotics. (Blum

28

and Merkle 2008) describes simulation results of a distributed sorting algorithm.

(Theraulaz, Gervet et al. 1991) extracts the cooperative control strategies, such as

foraging, from a study of Polistes wasp colonies. (Steels and Tokoro 1995) presents the

simulation studies of the use of several dynamical systems to achieve emergent

functionality as applied to the problem of collecting rock samples on a distant planet.

(Drogoul and Ferber 1992) describe simulation studies of foraging and chain-making

robots. In (Mataric 1998), describes the results of implementing group behaviors such as

dispersion, aggregation, and flocking on a group of physical robots. (Beni and Wang

1989) describe methods of generating arbitrary patterns in cyclic cellular robotics. (Kube

and Zhang 1996) present the results of implementing an emergent control strategy on a

group of five physical robots performing the task of locating and pushing a brightly lit

box. (Stilwell and Bay 1993) present a method for controlling a swarm of robots using

local force sensors to solve the problem of the collective transport of a palletized load.

(Arkin 1998) presents research concerned with sensing, communication, and social

organization for tasks such as foraging. The CEBOT work of (Beni and Wang 1989),

which stands for Cellular Robotic System, described in and many related papers, has

many similar goals to other swarm-type multi-robotic systems; however, the CEBOT

robots can be one of a number of robot classes, rather than purely homogeneous.

The above mentioned approaches are designed strictly for homogeneous robot teams, in

which each robot has the same capabilities and control algorithm. Additionally, issues of

efficiency are largely ignored. However, in heterogeneous robot teams, not all tasks can

be performed by all team members, and even if more than one robot can perform a given

task, they may perform that task quite differently, thus the proper mapping of subtasks to

29

robots is dependent upon the capabilities and performance of each robot team members.

This additional constraint brings many complications to a workable architecture for robot

cooperation, and must be addressed explicitly to achieve the desirable level of

cooperation.

The second primary area of research in cooperative control deals with achieving

“intentional” cooperation among a limited number of typically heterogeneous robots

performing several distinct tasks. In this type of cooperative system, the robots often have

to deal with some sort of efficiency constraint that requires a more directed type of

cooperation that is found in the swarm approach described above. Furthermore, this

second type of mobile robotic mission usually requires that several distinct tasks be

performed. These missions thus usually required a smaller number of possibly

heterogeneous mobile robots involved in more purposeful cooperation. Although

individual robots in this approach are typically able to perform some useful task on their

own, groups of such robots are often able to accomplish missions that no individual robot

can accomplish on its own. Key issues in these systems include robustly determining

which robot should perform which task so as to maximize the efficiency of the team and

ensuring the proper coordination among team members to allow them to successfully

complete their mission.

In most of the existing work, heterogeneous physical robots use a traditional artificial

intelligence approach, which breaks the robot controller into modules for sensing, world

modeling, planning, and acting (hence, the sense-model-plan-act paradigm), rather than

the functional decomposition of behavior-based approaches. (Kweon, Kuno et al. 1992)

30

describes one such sense-model-plan-act control architecture which includes three layers

of control: the planner level, which manages coordinated protocols, decomposition tasks

into smaller subunits, and assigns the subtasks to a network of robots; the control level,

which organizes and executes a robot’s tasks, and the function level, which provides

controlled activity. The paper reports on the implementation of this architecture on two

physical mobile robots performing convoying and box pushing. In both of these examples,

one of the robots acts as a leader, and the other acts as a follower.

(Parker 1998) describe another sense-model-plan-act architecture which includes a task

planner, a task allocator, a motion planner, and an execution monitor. Each robot obtains

goals to achieve either based on its own current situation or via a request by another team

member. They use Petri Nets for interpretation of the plan decomposition and execution

monitoring.

(Asama, Ishida et al. 1989) describe a decentralized robot system called ACTRESS,

addressing the issues of communication, task assignment, and path planning among

heterogeneous robotic agents. Their approach revolves primarily around a negotiation

framework which allows robots to recruit help when needed. They have demonstrated

their architecture on mobile robots performing a box pushing task.

Wang addresses a similar issue to that addressed in this thesis- namely, dynamic,

distributed task allocation when more than one robot can perform a given task (Wang

1994). The paper proposes the use of several distributed mutual exclusion algorithms that

use a “sign-board” for inter-robot communication. These algorithms are used to solve

31

problems including distributed leader finding, the N-way intersection problem, and robot

ordering. However, their research does not address issues of dynamic reallocation due to

robot failure and efficiency issues due to robot heterogeneity.

(Parker 1998) proposes a hierarchical subdivision of authority to address the problem of

cooperative fire-fighting. They describe their Phoenix system, which includes a generic

simulation environment and a real-time, adaptive planner. The main controller in this

architecture is called the Fireboss, which maintains a global view of the environment,

forms global plans, and sends instructions to agents to activate their own local planning.

Ohko et al. describe a learning system, called LEMMING, which learns knowledge quite

similar to that learned in L-ALLIANCE(Parker 1998). In their system, however, this

knowledge is used by a case-based reasoner for reducing the communication flow

between distributed agents. These distributed agents can often use point-to-point

communication rather than broadcast communication to recruit help directly from those

agents known to have the capabilities to perform a given task, thus reducing the overall

communication traffic. They present results from a simulation application involving the

movement of objects from one location to another by a team of distributed agents.

Bing Liu describes a heuristic, centralized method for coming up with a good job shop

schedule (Liu 2003). The centralized scheduler has complete information of the tasks to

be done and the capabilities of the “agents” (which in this case are machines). The system

strives to deal with many constraints imposed by the organization, by precedence

requirements, by resource requirements, or by preferences. It is assumed that the

32

scheduler will always be operational and is not itself an agent, and that it fully knows the

state of each agents and the state of the tasks to be performed. Sensory and effector

uncertainty is not an issue. This type of system is not designed for real mobile robotic

systems, since sensing and action are quite noisy, and since no single agent can be

expected to know the full state of the environment (which includes the task states and the

agent states) at all times(Parker 2000).

Learning Real-Time A* (LRTA*), introduced by Korf, is a generic heuristic search

algorithm(Korf 1990), which is applicable to real-time path search for fixed goals.

LRTA* builds and updates a table containing admissible heuristic estimates of the

distance from each state in the problem space to the fixed goal state, which are learned in

exploration time(Undeger and Polat 2010). In the early runs, the algorithm does not

guarantee optimality, but when the heuristic table has converged, the solutions generated

become optimal. Although LRTA* is convergent and optimal, the algorithm may find

poor solutions in the first run. To solve the problem, Korf also proposed a variation of

LRTA*, called real-time A* (RTA*), which gives better performance in the first run, but

is lack of learning optimal table values.

2.2.1 Coordination Category

Several works have been proposed, covering different aspects of the problems of

coordinating the plans of several agents operating in the same environment. These

include scenarios where plan generation is distributed, where planning is centralized and

plan execution is distributed, or where both planning and execution are distributed.

33

Coordinating the activities of multiple agents is widely regarded as the central problem of

MAS research. The successful mechanisms contain three facets (Durfee, Lesser et al.

1989). (1) a structure within which agents can interact in predictable ways; (2) agents can

flexibly operate in dynamic environments and can cope with their inherently partial and

imprecise view of the community; (3) agents have appropriate knowledge and reasoning

capabilities to intelligently use the structure and flexibility.

Since the performance of the system can be affected by the way of coordination, there is

a need to evaluate proposed algorithms by a measure of coordination complexity. For the

scalability of multi-agent algorithms, it is assumes that the less coordination a MAS

requires, the better it should scale to large numbers of agents (Klavins 2002).

For agents in MAS to achieve a given task, the agents need to coordinate to share some

information. Because more sharing requires more resources, like time and

communication bandwidth, the amount of information that must be shared determines

how coordinated a task is.

Agents need to cooperate with other agents to finish the problem that they could not do

themselves. During the cooperation, coordination and negotiation are needed.

2.2.2 Coordinate through Negotiation

The word negotiation in general refers to communication processes that further

coordination and cooperation. The process of negotiation may be of many different forms,

such as auctions, protocols in the style of the contract net, and argumentation.

34

The research works on negotiation can be divided into three broad topics: negotiation

protocols, negotiation objects and agents’ reasoning models. Negotiation protocols are

the set of rules that govern the interaction. This covers the permissible types of

participants, the negotiation states, the events that cause state transitions and the valid

actions of the participants in particular states. Negotiation objects are the range of issues

over which agreement must be reached. These may be single issues, such as price, or

multiple issues relating to price, quality, timing, etc. The agents’ reasoning models

provide the decision making apparatus by which participants attempt to achieve their

objectives. The sophistication of the model is determined by the protocol used, the nature

of the negotiation object, and the range of operations that can be performed on it.

Much theoretical work has been accomplished for intentional agent control by the

Distributed Artificial Intelligence (DAI) community ((Weiss. 1999) contains many

examples). In most of such work, the issue of task allocation has been the driving

influence that dictates the design of the architecture for cooperation, since the selected

approach to task allocation invariably restricts the potential solutions to other issues of

cooperation, such as conflict resolution.

Typically, the DAI approaches use a distributed, negotiation-base mechanism to

determine the allocation of tasks to agents, using a variety of proposed protocols. Under

these negotiation schemes, no centralized agent has full control over which tasks

individual team members should perform. Instead, many agents know which subtasks are

required for various portions of the mission to be performed, along with the skills

required to achieve those subtasks. These agents then broadcast a request for bids to

35

perform these subtasks, which other agents may respond to if they are available and want

to perform these tasks. The broadcasting agent then selects an agent from those that

respond and awards the task to the winning agent, who then goes on to perform that task,

recruiting yet other agents to help if required.

Although DAI work has demonstrated success in a number of domains (e.g. distributed

vehicle monitoring and distributed air traffic control), the proposed solutions have rarely

been demonstrated as directly applicable to situated agent teams (i.e. robotic), which have

to live in and react to a dynamic and uncertain environment using noisy sensor and

effectors, and a limited bandwidth, noisy communication mechanism. They typically rely

on unrealistic “black boxes” to provide high-level, perfect sensing and action capabilities.

Furthermore, in the approaches of the previous subsection, these DAI approaches

typically ignore or only give brief treatment to the issues of agent performance of those

tasks after the agents have been allocated. Such approaches usually assume the agents

will eventually accomplish the task they have been assigned, or that some external

monitor will provide information to the agents on dynamic changes in the environment or

in agent performance. However, to realistically design cooperative approaches for agents,

mechanisms within the software control of each agent that allow the team members to

recover from dynamic changes in their environment or in the agent system should be

included.

36

2.2.3 Coordination using Contract net

Contract net protocol (CNP) provides a flexible way for agent interaction (Smith 1980).

Agents all have their own goals, are self-interested, and have limited reasoning resource.

In contract net protocol for distributed problems solving, there are managers and

contractors. Managers announce tasks, evaluate bids, make contracts, and monitor results.

Contractors make bids, commit to contracts, and execute contracts. The same agent can

be a manager as well as a contractor in different negotiations (Peng, Gao et al. 2008).

Although CNP was considered by Smith and Davis and many DAI researchers to be a

negotiation principle, it is a coordination method for task allocation. CNP enables

dynamic task allocation, allows agents to bid for multiple tasks at a time, and provides

natural load balancing, since busy agents need not bid. Its limitations are that it does not

detect or esolve conflicts: The manager does not inform nodes whose bids have been

refused; agents cannot refuse bids; there is no pre-emption in task execution, so time-

critical tasks may not be attended to; it is communication intensive.

Extensions to CNP have been made by Sandholm and Lesser(Sandholm 1993), where de-

commitment penalties were introduced, and by Sycara (Sycara 1997), where the theory of

financial option pricing has been used to achieve flexible contracting schemes in

uncertain environment.

37

2.3 Summary

In the first half of the chapter, agent model and architecture have been reviewed. In the

other half of the chapter, the literature of Multi-agent coordination has been reviewed.

There are many methods available and can be classified according to different standards.

For the coordination of agents in cooperative MAS, a hybrid approaches based on

Bayesian network and BDI agent has been proposed in the thesis. The novel agent model

combines the advantages of model-based and model-free approaches. Details of the BN-

BDI agent model will be discussed in chapter 3.

38

Chapter 3 A BN-BDI Agent-based Cooperative Multi-

agent System

 Agents in MAS need to coordinate with their fellow agents to improve the system

performance. The agent model and corresponding system architecture are very important

for system coordination. Compared to the long-established areas of interaction protocol

and agent communication language research, the development of agent architectures has

received fairly little attention. In this chapter the agent models and the system

architecture are the focus and a BN-BDI agent model for cooperative MAS is proposed.

This chapter is organized as following: the BN-BDI agent model will be introduced and

the learning process for cooperation is illustrated. Then a hierarchical MAS architecture

consisting of the BN-BDI agents is proposed. In the MAS architecture, agents with the

similar characteristics or capacities will constitute a group and some agents will act as

coordinators.

3.1 Proposed Agent Model

The term agent is used by many people working in different areas, and it can be used to

describe several very different kinds of systems. Figure 3-1 illustrates the types of agents’

systems from (Nwana 1996).

39

.

Figure 3-1Autonomous Agent

As the name indicates, BDI agents are characterized by a “mental state’ with three

components (Rao and Georgeff 1991; Rao and Georgeff 1995). Intuitively, beliefs

correspond to information that the agent has about its environment. Desires represent

options available to the agent, which means different possible states of affairs that the

agent may choose to commit to. Intentions represent states of affairs that the agent has

chosen and has committed resources to. An agent’s practical reasoning involves

repeatedly updating beliefs from information in the environment, deciding what options

are available, filtering these options to determine new intentions, and acting on the basis

of these intentions. A number of BDI agent systems have been implemented, the best-

known of which is probably the Procedural Reasoning Systems (PRS).

 Figure 3-2 illustrates the abstract architecture of BDI agents. The BDI architecture has

been used in some products and a number of applications ranging from air traffic control

Autonomous Agent

Biological Robotics Software Agents Artificial Life

Task specific Entertainment Viruses

40

to air combat simulations, and from telephone call centers to the handling of malfunctions

on NASA’s Space shuttle.

 BDI-interpreter

1 initialize-state();

2 repeat

3 options :=option-generator(event-queue);

4 selected-options :=deliberate(options);

5 update-intentions(selected-options);

6 execute();

7 get-new-external-events();

8 get-successful-attitudes();

9 drop-impossible-attitudes();

10 end repeat

Figure 3-2 Abstract architecture of BDI agents

Compared with other models of agents, BDI agents provide the essential component

necessary to cope with the real world, which is complex and dynamic, and is a place

where chaos is the norm, not the exception. However conventional software systems are

designed for static worlds with perfect knowledge. What would be of interest are

environments that are dynamic and uncertain (or chaotic), and where the computational

system only has a local view of the world (i.e., has limited access to information) and is

resource bounded (i.e., has finite computational resources). In this situation, BDI agents

have all the essential parts to model the MAS.

41

For BDI agents, Beliefs are essential because the world is dynamic (past events need

therefore need to be remembered), and the system only has a local view of the world

(events outside its sphere of perception need to be remembered). Moreover, as the system

is resource bounded, it is desirable to cache important information rather than to re-

compute it from base perceptual data. As Beliefs represent imperfect information about

the world, the underlying semantics of the Belief component should conform to belief

logics, even though the computational representation need not be symbolic or logical at

all.

Desires or goals form another essential component of system state. In computational

terms, a Goal may simply be the value of a variable, a record structure, or a symbolic

expression in some logic. The important point is that a Goal represents some desired end

state. Conventional computer software is “task oriented” rather than “goal oriented”; that

is, each task (or subroutine) is executed without any memory of why it is being executed.

This means that the system cannot automatically recover from failures, unless this is

explicitly coded by the programmer, and cannot discover and make use of opportunities

as they unexpectedly present themselves. For example, the reason that recovers from a

missed train or unexpected flat tyre is that people know where they are (through their

Beliefs) and people can remember to where they want to get (through their Goals). The

underlying semantics for Goals, irrespective of how they are represented computationally,

should reflect some logic of desire.

Only beliefs and goals are not enough for a system state. The system needs to commit to

the plans and sub goals it adopts and must also be capable of reconsidering these at

42

appropriate moments. These committed plans or procedures are called, in the AI literature,

‘Intention’, and represent the third necessary component of system state. Computationally,

Intentions may simply be a set of executing threads in a process that can be appropriately

interrupted upon receiving feedback from the possibly changing world.

Finally, for the same reasons the system needs to store its current Intentions, because it is

resource-bounded, it should also cache generic, parameterized Plans for use in future

situations rather than try to recreate every new plan from first principles. These plans,

semantically, can be viewed as a special kind of Belief, but because of their

computational importance, are sensibly separated out as another component of system

state.

In summary, the basic components of a system designed for a dynamic, uncertain world

should include some representation of Beliefs, Desires, Intentions and Plans, or what has

come to be called a BDI agent.

After a brief literature review in the areas of BDI agent and Bayesian network in

intelligent agent, the BDI agent and Bayesian network are found to complement each

other and it is worthwhile to study the possibility of applying Bayesian network under the

BDI agent framework to build a better learning system, which is named BN-BDI agent

model.

The adaptive multi-agent framework proposed in this thesis aims to adaptively balance

the global utility as well as the individual agent utility for MAS. The integration of BDI

agent model and Bayesian networks can lead to synergistic effects including the

43

capability of dealing with uncertain information in a BDI architecture and the

improvement of the agent’s cognitive processes. Each node in a Bayesian network

corresponds to exactly one random variable which has a finite set of mutually exclusive

states. A BDI agent, whose beliefs are represented through Bayesian networks, believes

that a state of a chance variable has a probability of occurrence given a set of conditions

imposed by the parent variables. Desires can be assumed to states of affairs that an agent

wishes to bring about. The BN-BDI model represents this mental state through states of

chance variables that the agent desires to observe. Intensions of agent can also be

represented in this way, since they are desires that an agent has committed to achieve.

Assuming that agent’s beliefs are represented through Bayesian networks, the belief

updating process correspond to a probabilistic inference. Evidences perceived by the

agent play an important role in that process, since up to date beliefs express the current

state of world. Thus, agents can recognize circumstances where desires are considered

feasible and intentions are considered successful. Up to date beliefs provide support to

the deliberative process, responsible for deciding which states of affairs the agent will

intend to achieve. In order to improve that process, it takes into account the quantitative

and the qualitative aspects of the Bayesian networks to detect incompatible desires and to

decide between competing ones.

It specifies a high-dimensional joint probability distribution compactly by exploiting their

independence properties (Figure 3-6). Because of BN’s graphical model and relational

probabilities, it can easily make the use of incoming data as well as take the advantage of

the prior or expert domain knowledge (Heckerman 2008). These properties are very

44

useful in multi-agent environment where the agent needs to learn its environment as well

as other agents under the same environment.

If there is an arc from node A to another node B, then variable B depends directly on

variable A, and A is called a parent of B. If for each variable , the set of

parent variables is denoted by , then the joint distribution of the variables is

the product of the local distributions.

Pr 1 … 𝑛 ∏ Pr |
𝑛
 =1 3-1

If
i

X has no parents, its local probability distribution is said to be unconditional,

otherwise it is conditional. If the variable represented by a node is observed, then the

node is said to be an evidence node.

Conditional independence is represented in the graph by the graphical property of d-

separation: nodes X and Y are d-separated in the graph, given specific evidence nodes, if

and only if variables X and Y are independent given the corresponding evidence

variables. The set of all other nodes on which node X directly depends on is given by X’s

Markov blanket.

BN has its unique properties that make it appropriate for MAL. Firstly, BN can deal with

incomplete data sets without difficulty because it discovers dependencies among all

variables. When one of the inputs is not observed, most models will end up with

inaccurate prediction. That is because they do not calculate the correlation between the

input variables. BN naturally encodes such dependencies. Secondly, the causal

45

relationships by using BN are learnt. This is important because it will be helpful to

understand the problem domain and make some predictions based on the knowledge of

causal relationships. Thirdly, BN naturally combines the domain knowledge and data.

Prior of domain knowledge is crucially important if one performs a real-world analysis

when data is inadequate or expensive. The encoding of causal prior knowledge is

straightforward because BN has causal semantics. Also BN encodes the causal

relationships with probabilities. These are the reasons that prior knowledge and data can

be put together in BN. Finally, BN can avoid over-fitting of data. Models can be

“smoothed” in such a way that all available data can be used for training by using

Bayesian approach.

Decision Trees and BDI

Informally, a decision tree consists of decision nodes, chance nodes, and terminal nodes,

and includes a probability function that maps chance nodes to real-valued probabilities

and a payoff function that maps terminal nodes to real numbers. The decision nodes are

commonly represented by squares. The chance nodes are represented by circles and the

terminal nodes are represented by triangles. A deliberation function, such as maximum or

maximizing expected utility is the defined for choosing one or more best sequences

actions to perform at a given node.

46

Take Figure 3-3 for example, the decision tree has two choices: true choice will return

$10, and false choice will return $1. To choose the true choice, there is 80% opportunity

to get extra $5 and 20% opportunity to get nothing more.

Utility

Utility is a unifying, if sometimes implicit, concept in economics, game theory, and

operations research. The idea is that each individual can somehow internally estimate the

value (or the cost) of executing an action. It can also be called fitness, valuation, and cost.

Since the exact formulation varies from system to system.

A decision tree with appropriate deliberation functions is transformed to an equivalent

model that represents beliefs, desires, and intentions as separate accessibility relations

over sets of possible worlds (Hernandez, El Fallah-Seghrouchni et al. 2004). This

transformation provides an alternative basis for cases in which there is insufficient

Decision tree

1.1

2

1

1

1.2

True

False

$ 10

$ 1

80%

20%

$5

$0

Figure 3-3 Decision Tree

47

information on probabilities and payoffs and, perhaps more importantly, for handling the

dynamic aspects of the problem domain.

Firstly, considering a full decision tree, in which every possible path is represented.

Given such a decision tree, traverse from the root node to each arc. For each unique state

labeled on an arc emanating from a chance node, a new decision tree is created that is

identical to the original tree except that a chance node is removed and the arc incident on

the chance node is connected to the successor of the chance node. This process is carried

out recursively until there is no chance node left. This yields a set of decision trees, each

consisting of only decision nodes and terminal nodes, and each corresponding to a

different possible state of the environment. From a traditional possible-worlds

perspective, each of these decision trees represents a different possible world with

different probability of occurrence. Finally, the payoff function is assigned to paths in a

straightforward way. Figure 3-4 and Figure 3-5 illustrate the transform from decision tree

model to the possible-world model.

48

Figure 3-5 Resulting possible-worlds model

Decision tree

2

1.1

1

1.2

$ 15

$ 1

40% *20%

40% *80%

60%

$ 10

Possibility Payoff

Figure 3-4 A full decision tree

Decision tree

1.1

2

1

1

1.2

True

False

$ 10

$ 1

80%

20%

$5

$0

40%

60%

49

The resulting possible-worlds model contains two types of information, represented by

the probabilities across worlds and the payoffs assigned to paths. The model is spited out

into two accessibility relations, with the probabilities being represented in the belief-

accessibility relation and the payoffs being represented in the desire-accessibility relation.

At this point in the story, the sets of tree structures defined by these relations are identical,

although without loss of generality, it can be deleted from the desire-accessible worlds all

paths with zero payoffs.

Given a decision tree and the above transformation, an agent can now make use of the

chosen deliberation function to decide the best course of action. It can be formally

represented this selected path in the decision tree using a third accessibility relation on

possible worlds, corresponding to the intention of the agent. In essence, for each desire-

accessible world, there exists a corresponding intention-accessible world which contains

only the best course of action as determined by the appropriate deliberation function.

Thus, the possible-worlds model consists of a set of possible worlds where each possible

world is a tree structure. A particular index within a possible world is called a situation.

With each situation, a set of belief-accessible worlds, desire-accessible worlds, and

intention-accessible worlds is associated; intuitively, these are the worlds that the agent

believes to be possible, desires to bring about, and intends to bring about, respectively.

Limitations of BDI Agent Model

50

3.1.1 Influence Diagram

An influence diagram is a graphical modeling language that represents the probabilistic

inference and decision analysis model. It describes the dependencies in decision analysis

and specifies the states of information for which independencies can be assumed to exist.

Influence diagrams augment the Bayesian network framework with the notions of agents

that make decisions strategically, to maximize their utility. Influence diagrams were

introduced by (Ronald A. Howard 1989), and have been investigated almost entirely in a

single-agent setting. Formally, an influence diagram is defined as follows:

Definition 3-1: An influence diagram is a pair (,)I G P whose elements are defined as

follows:

(,)G N A is a DAG such that { }N C D v , where C and D are disjoint, and the

following conditions are satisfied:

a) The value node v is a sink node that has no successors;

b) A directed path only consisting of all the decision nodes D exists in G ;

c) Each decision node and its parents are parents to all of its subsequent

decision nodes;

{ }
i i C D

P P


 is a collection of families
i

p of conditional probability distributions

()
(|)

i
p x x


, with one distribution for each configuration of

()i
x


.

51

It can be seen that an influence diagram is a two-layer representation with a qualitative

level and a quantitative level. At the qualitative level, it is a directed acyclic graph G

with three types of nodes: chance nodes C , decision nodes D and a value node v . At the

quantitative level, a frame of numerical data
i

P is associated with each node. At the same

time, it is noticed that there are some constraints in the definition. Condition (b) implies a

single decision maker who should perform the decisions in a chronological order.

Condition (c) is referred to as the no-forgetting constraint that information available at

the time of one decision must be available at the time of all subsequent decisions. An

influence diagram is always termed as a regular one when it satisfies all of the above

constraints.

Influence diagrams involving only one decision maker is a symmetric decision problem

and it provides a standard representation to be extended to solve other types of decision

problems. However, those influence diagrams-type of model representations only orient

towards the single agent environment, which is not sufficient to deal with the Multi-agent

decision problems.

52

3.1.2 Learning Process

Learning other agents’ model. This will help an agent to predict other agents’ behavior

correctly which in turn leads the learning agent to arrive at the best decision in terms of

meeting the goal efficiently. The agent should already have a multi-agent reasoning

system and maintain models of other agents in its knowledge base (d'Inverno, Luck et al.).

Due to uncertainty, the agent assigns probabilities to the models, which are updated based

on the history of the other agents’ observed behavior. If a model is not accurate, its

probability will gradually decrease. This signals the need for a better model, which can be

obtained by learning.

Cloudy

Wet Grass

Sprinkler
Rain

C P(S = F) P(S=T)

F 0.4 0.6

T 0.8 0.2

C P(R = F) P(R=T)

F 0.5 0.5

T 0.8 0.2

P(C = F) P(C=T)

0.5 0.5

S R P(W =

F)

P(W=T)

F F 1 0

T F 0.8 0.2

F T 0.1 0.9

T T 0.01 0.99

Figure 3-6 Simple Bayesian Network

53

In most situations, information about other agents only comes from the observation of

their behavior. The history of an agent’s behavior can be defined as a set of its observed

actions during a particular time frame, in which the data of the world states are known.

Given only a history of behavior, the initial model is modified by refining parameters in

the BN-BDI model that are associated with capabilities, preferences and beliefs of the

other agent. The refinement can be done in stages with the order as above, according to

the increasing level of complexity. There can be a number of modified models that can be

generated. The modified models can compete with each other and other models

maintained by the learning agent. The probability of each model being correct can be

arrived based on how well the model predicts the history of behavior.

Learn capabilities. An agent’s capabilities in an BN-BDI model are represented as

possible value assignments to the agent’s decision node. These values need to be

exhaustive. For example, if an agent has possible value of SR_M1 and SR_M2, then the

value set should be {SR_M1, SR_M2, other}. Here “other” represents all the unknown or

unlikely actions not explicitly represented. When the agent observes an action that is not

explicitly present in the current model, the model is modified by specifying the action as

explicit possible value of the decision node, and by updating the conditional probability

table (CPT) of the nodes that are influenced by the decision node. Conversely, the other

agent’s capabilities may need to be collapsed and included as part of the “other” value

Learn preferences. The strategy in learning preferences of other agents is to modify the

model by refining the utility function so that every action in the history of behavior

always maximizes utilities of the resulting states.

54

𝑈 𝑆 𝐹 1 … 𝑁 3-2

Utility function U(S) denotes the utility of state S, X={X1,…,XN} is a set of features that

directly influence the agent’s preferences. The utility function f, is commonly postulated

in multi-attribute utility theory to be a weighted sum of factors of values of feature Xk, k=

1,…, N. For simplicity, assume that the weighted factors depend linearly on the features

Xk.

𝑈 𝑆 𝑤1𝑥1 + ⋯+ 𝑤𝑁𝑥𝑁 3-3

The method of learning the agent’s preferences is to modify the weights wk. Let A*

denote an action that maximizes expected utility.

𝐴∗ argmax𝑎𝑖
∑ 𝑃 𝑆𝑗| 𝐸 × 𝑈 𝑆𝑗

𝐽
𝑗=1 3-4

A={a1,…,aN} is a set of the agent’s alternative actions, Sj are the possible outcome states

given a, possibly non-deterministic, action ai, with j ranging over J different outcome. E

represents the known data of the world which are provided in the history of behavior.

When combining the above two equations, the equation becomes

𝐴∗ argmax𝑎𝑖
∑ 𝑃 𝑆𝑗| 𝐸 𝐽

𝑗=1 ∑ 𝑤𝑘𝑥𝑘
𝑗𝑁

𝑘=1 3-5

Define 



kr

l

ilkklk

i

k
EaxXPxX

1

,,
),|(, and then the above equation can be written as

𝐴∗ argmax𝑎𝑖
∑ 𝑤𝑘 𝑘

𝑗𝑁
𝑘=1 3-6

55

From the history of other agent’s behavior, a set of the agent’s observed actions can be

observed during a given time frame. Let D={D(1),…,D(T)}denote such a set, where T is

the total number of actions, and D(t)∈ A, t=1,…,T. The refinement of utility function is

accomplished by having an initial utility function derived from the initial model, and

subsequently adjusting the weights wk based on the set D, so that D(t) is equal to A* for

every situation t.

Weight adjustment is done by delta rule, which is to minimize a cost function based on

the error signal so that each weight adjustment brings the actual output value closer to the

desired one. The delta rule is similar to hill-climbing learning algorithm.

Learn beliefs. An agent’s beliefs are represented in BN-BDI model as the nature nodes

and the probabilistic relationship that exists among them. The learning method is similar

as in the previous subsection, except that they set the weights fixed and learn the

expected values of the features which influence the utility. The set φ of feature nodes

that are likely to be the source of inaccuracy in the model is to be found. Strategies to

modify the model are based on different reasons. For example, incorrect local probability

distributions of the features in φ is modified by refining CPTs on the feature nodes in φ;

incorrect dependence relationship involving the features in φ is modified by refining the

structure of BN-BDI model, removing or adding links from certain nodes; if it is the

parents of the feature in φ that cause the problem, perform strategies on the parents

nodes of φ.

56

As intelligent systems are being applied to larger, open, and more complex problem

domains, many applications are found to be more suitably addressed by MAS. More

specifically, an application system in such a problem domain cannot be effectively

constructed as a single intelligent agent due to the scale and complexity of the domain.

Instead, a set of cooperating agents can be more effectively developed, each of which is

embedded with a subset of knowledge and problem-solving abilities and pursues subtasks

autonomously.

In this section a novel agent model has been proposed. The next section describes a

hierarchical MAS architecture consisting of the BN-BDI agents.

3.2 Proposed Multi-agent System Architecture

3.2.1 Cooperative MAS

The MAS system can be grouped by the type of implemented cooperation which can

range from total cooperation to the total antagonism. Figure 3-7 illustrates the change

from cooperative agent to autonomous agent. Completely cooperative agents can change

their goals to meet the needs of other agents. Antagonistic agents, on the other hand, will

not cooperate and their respective goals may be blocked.

57

Figure 3-7 Agent Cooperation versus Autonomy

Researchers in (Bond 1990) describes the existence of two types of MAS architecture.

 (1) Horizontal Architecture: this structure is useful in some contexts, for example, a

situation where a group of agents having different (non-overlapping) capabilities and

hence can work towards the goal without needing any conflict resolution. Here, all the

agents are on the same level with equal importance without a Master/Slave relationship.

(2) Vertical Architecture: in a vertical architecture, the agents are structured in some

hierarchical order. Agents at the same sub-level may share the characteristics of a

horizontal structure. The ‘horizontally structured’ MAS model has several issues. One

critical issue is that it quickly becomes too complex and unwieldy for practical

applications, wherein agents in the MAS may share some common capabilities. Hence

most current frameworks have adopted a hierarchical MAS model (vertical) by

organizing the agents in some organizational structure.

Increased cooperation,

decreased autonomy

Equitable cooperation

and autonomy

Increased autonomy,

decreased cooperation

58

As shown in Figure 3-8 it is a layered MSA architecture: And it involves the different

decomposition within the agents to complete their tasks. The input is either processed

from each layer individually (horizontal), or from each layer after the other so that the

final one will form the output(vertical one pass) or from all the layers in a vertical two

pass control so that the output is received from the same layer that the input was

perceived.

In the previous section, a BN-BDI agent model is proposed. It is a hybrid architecture

that has the merits of both the deliberative and reactive architecture. The BDI part

maintains an explicit representation of the agents’ world. The BN part measures the

uncertainty that the agent is facing and the dependent relationship it has with other agents.

Figure 3-8 MAS Layered Architecture

Layer n

…

Layer 2

Layer 1

Perceptual
input

Action
output

Layer n

…

Layer 2

Layer 1

Layer n

…

Layer 2

Layer 1

Perceptual

input

Action
output

Perceptual

input

Action

output

c) Vertical two pass control

layers

b) Vertical one pass control

layers

Horizon layer

59

The BN-BDI agent can learn other agents’ model, their preferences, their beliefs and their

capacities.

To form an effective MAS consisting of BN-BDI agents, the architecture is very

important. The horizontal architecture, where all the agents are on the same level with

equal importance without a Master/Slave relationship, is useful when a group of agents

having different (non-overlapping) capabilities can work towards the goal without

needing any conflict resolution. However, as the number of agents increases in the

system, the communication and computation complexity increase exponentially. The

vertical architecture, where the agents are structured in some hierarchical order, can

greatly reduce the complexity of the communication and computation. However, the

fixed master/slave relationship is very rigid.

Considering the advantages and disadvantages of the horizontal and vertical architecture,

a hierarchical MAS architecture consisting of the BN-BDI agents is proposed (Figure

Coordinator

Coordinator

Coordinator

BN-BDI Agent

BN-BDI Agent

BN-BDI Agent

BN-BDI Agent

BN-BDI Agent

Figure 3-9 The dynamic hierarchical MAS architecture

60

3-9). Agents with the similar characteristics or capacities constitute a group and some

other agents in MAS act as coordinators. The role of the coordinators is not fixed to any

agents, which means in some situations, agent A1 will be the coordinator; in other

situations, when the agent A1 is not available (e.g. lack of time, resource, or capacity),

agent A1 does not need to be a coordinator. This dynamic nature gives flexibility to MAS.

So when each time agents are forming a system to perform some tasks, only capable

agents will take the role of coordinator.

3.3 Summary

At the beginning of this chapter, BN-BDI agent model to build the adaptive cooperative

MAS is proposed. It is a hybrid architecture that has the merits of both the deliberative

and reactive architecture. The BDI part maintains an explicit representation of the agents’

world. The BN part measures the uncertainty that the agent is facing and the dependent

relationship it has with other agents. The BN-BDI agent can learn other agent’s model,

their preferences, their beliefs and their capacities.

It is important to carefully examine the problem settings and choose the best suitable

modeling method. For the BN-BDI agent model, a hierarchical MAS architecture to form

the Multi-agent system is proposed. Agents can choose to be or not to be a coordinator

and this dynamic nature give the flexibility to agents. The role of coordinator helps to

decrease the communication and coordination overhead. Such structure will facilitate the

coordination of agents in cooperative MAS and give more adaptability to the MAS

61

performance. The details of the coordination mechanism for the novel MAS framework

will be presented in the next chapter.

62

Chapter 4 The Coordination Mechanism for

Cooperative BN-BDI MAS

For the cooperative MAS, agent coordination is very crucial. Coordination can be

regarded as the process by which the individual decisions of the agents result in good

joint decision for the group. The reasons and difficulties lie in the following facets. 1)

Inter-dependencies: this happens when individual agents take related goals. For example,

decision of one agent impacts on decision of other society members and the possibility of

harmful interactions distributes among agents. 2) Global constraints. These constraints

exist when the solution being developed by a group of agents must satisfy certain

conditions, if it is to be deemed successful. For example, a distributed monitoring system

may have to react to critical events within 30 seconds; a distributed air traffic control

system may have to control the planes with a fixed communication bandwidth.

In this chapter, how agent coordinates with each other based on the BN-BDI agent model

and hierarchical MAS architecture is studied. This chapter is organized as follows. Firstly,

the Time Constraint Task-based Model is proposed. Secondly, the corresponding

coordinate protocol is discussed. After that, the analysis on the computational,

communicational complexity and scalability are provided. Based on the theoretical

analysis, the coordination mechanism for the novel cooperative BN-BDI MAS is

effective.

63

4.1 Mechanisms to facilitate coordination

There are three common mechanisms to facilitate the coordination behavior in MAS.

They are organizational structuring, exchanging meta-level information and multi-agent

planning.

Our approach is based on meta-level information exchange. The procedure to solve a

problem / finish a task in MAS: Problem suggested by one agent or a group of agents;

Solve the problem or plan to get helpers; Decompose the problem; Team up a group of

interest related and capable agents; Allocate sub-problems; Finish the sub-problem on

time; Synthesize the result.

During the period of the problem or task execution, it is assumed that Self-interested

agents form a team with one goal; no confliction between agents; all the heterogeneous

agents follow or abide by the same norms and social laws. Under these assumptions, a

MAS problem can be easily converted to a Cooperative Distributed Problem Solving

Strategies (CDPS) problem. As a result, some ideas are deployed from CDPS to solve the

MAS problem.

4.2 Time Constraint Task-based Model

In the literature, researchers used game theory, logic theory, and contract net to model the

cooperation. In the thesis a contract net based model is provided and the novel

improvement made to facilitate better cooperative MAS performance.

64

There are two Distributed Problem Solving Strategies: Task Sharing and Task

Decomposition (Durfee, Lesser et al. 1989; Lesser 1999; Stone and Veloso 2000; Luck,

Mark et al. 2001). The motivation for Task Sharing in Heterogeneous Systems includes:

it is difficult to build agents that are competent in every possible task; if these agents

which can carry out every possible task exist, they will result in agents that are “Jacks of

all trades and masters of none”; Omni-capable agents would only use a small proportion

of their capabilities at any one time. They will waste most of their capacity and it is not

economically justifiable. Moreover, the master agent will be the bottleneck of the system

performance. To avoid waste into building mighty agents, specialist agents that can work

together to solve problems beyond their individual capabilities can be built.

Task sharing procedure

Task

Decomposition

Agents generate a set of tasks to be passed to others, it decompose

large tasks into subtasks that can be tackled by different agents

Task Allocation Agents assign subtasks to appropriate agents.

Task

Accomplishment

Agents accomplish task, either individually or through further

decomposition

Result Synthesis Combine the results to generate the final results

Figure 4-1 Task sharing procedure

To find an agent that is able to solve a problem, a Naïve Solution is to have a table that

identifies the capabilities of the agents. Agents can look up the table to select appropriate

candidates and give them the sub-problem. To select the best agent out if several

candidate agents exist, the solution can be to announce a sub-problem to specific agents

65

through contract net protocol. Request return bids describing acceptance/availability.

Then Assign sub-problem to the highest bidder

There are other forms of task allocation in MAS, such as, Decentralized Task Allocation

and Dynamic Task Allocation. In Decentralized Task Allocation, the problem is

decomposed into subtasks and divided among the agents. The tasks could either be

similar or different depending on the type of decomposition adopted. In some

decentralized systems, the local goals for agents could be different but they all still have

the same global goal. For Dynamic Task Allocation of MAS, it is highly useful in

applications where the environment is constantly changing and agents have to adapt to

the changing environment.

In this section the Time Constraint Task-based Model (TCTM) is discussed in detail.

A MAS has n agents.each agent has its own belief, desire and intention. It is assumed that

each agent can model other agents’ model and can improve its model from the actions

other agents take. In TCTM, agents have five components to interact with other agents

and environment, and to execute actions. They are problem solving module, task

generating module, communication module, repository and goal module (Figure 4-2).

Through the communication module, agents can communicate with each other and the

environment. When a task is given to an agent, this information will go to the repository

module first. If the repository module contains the solution, it will execute the plan. If no

predefined solution is available, the task will be passed to problem solving module where

agents try to solve it. This module will give the plan of actions. If the plan is too big or

66

too complex to execute, the task generating module will decompose the task into sub-

tasks and broadcast them to the fellow agents. A Task T has the following properties:

Task name, Task requirements, Task rewards, Task time constraint. Tasks are loosely

coupled. The task requirements and the task rewards are straight forwarding. The task

time defines a deadline when the announced tasks need to be finished. This extra

constraint protects the integrity of MAS but increases the complexity when learning and

coordinating with other agents. The goal module stores the preference of the agent. The

utility of agent’s action will be calculated there. When agent has any action plan, it will

execute the plan only if the execution of the plan will increase its utility level.

The TCTM’s pre-conditions include: the group of agents which carry out the task follow

the same norms and social laws; The group of agents share the same ultimate goal and

agents are cooperative with each other; When working together, agents are reliable and

trustful; When working together, there is no conflict of interest between agents; Agents

are committed to carry out the task on time and satisfy the task requirements

Figure 4-2 TCTM agent components

The Stages of Time Constraint Task-based Model are listed in the following (Figure 4-3):

67

Recognition stage: some agent in a Multi-agent community has a goal, and recognizes the

potential for cooperative action with respect to that goal. In this stage, Agent cannot

achieve the goal in isolation; Agent prefers not to work alone; Believe there is some

group of agents that can achieve the goal.

Task decomposition stage: Generate a set of tasks to be passed to others; decompose

large tasks into subtasks that can be tackled by different agents.

Team formation stage: Eligible candidates: can finish the task in the constraint time

period. Methods like Search and broadcast can be used. Candidate agent with the highest

bid gets the subtask. Agents accomplish task, either individually or through further

decomposition. Team structure includes: Hierarchy structure, Task decomposition

network, Result sharing in peer agents with the same roof agent.

Team action stage: Agents take over the task/subtask, Generate a plan, Execute the plan,

Share results with peer agents, Agents learn from results sharing and improve the

problem solving abilities, Father agent synthesizes the results, All actions need to be

finished in constraint time

68

Figure 4-3 Stages of Time Constraint Task-based Model

4.2.1 Time Constraint Contract Net Protocol

Given a task to perform, an agent first determines whether it can break the tasks into sub-

tasks that can be performed concurrently. It utilizes the protocol to announce the tasks

that could be transferred and request bids from agents that could perform any of these

tasks. An agent that receives a task-announcement message replies with a bid for the task,

indicating how well it thinks it can perform the task. The contractor collects the bids and

awards the task to the best bidder. The CNP allows nodes to broadcast bid requests to all

others. These procedures are illustrated in Figure 4-4.

Agents dynamically create relationships in response to current processing requirements

embodied in a contract. And a node with a task to be achieved forms a contract with other

agents who proceed to accomplish the task. The contracts involve commitments to

complete the agreed upon tasks among other agents. To make the award decision, it is

typically based on marginal utility calculations. The contract net has been applied in

many areas including: distributed delivery, information agents, distributed design and

manufacturing, electric power systems, electronic commerce.

Recognition

Task Decomposition

Team Formation

Team Action

69

Figure 4-4 Contract net protocol

In the time constraint task-based model, the task T has a time constraint property (Figure

4-5). In the contract net bidding process, to make sure the deadline is met, a countdown

time constraint should be included in the bid. Now the protocol becomes: 1) at time 0,

agent A1 has a problem. Agent A1 decomposes the problem into tasks T with time

constraints Tcd (deadline or countdown time). 2) At time t1, agent A1 announces the tasks

T to its fellow agents. 3) At time t2, those available agents that receive the announcement

bid for the tasks T. 4) at time tn, agent A1 evaluates the bid and awards the contract with

deadline Tcd to the suitable candidate agent. Candidate agent needs to finish the task and

send the results back to agent A1 before the deadline. Otherwise a heavy penalty will be

placed on the candidate agents.

70

Figure 4-5 Time Constraint Contract Net Protocol

The TCTM model has many advantages over other models for MAS coordination. For

example, TCTM simplifies MAS cooperation problem; TCTM includes time constraint

variable, which means learning and coordination need to be done in a time-critical

fashion. As a result, the MAS overall utilities increase in the same time period; in TCTM,

the agent’s role is not fixed. Agents can behave as a leader to sub-contract the task or as a

bidder to bid for a sub-task in different course of team formation; in TCTM, Agents can

learn from their team fellows and benefit from result sharing through communication and

coordination.

4.3 Coordination Formation: Multi-agent action selection

problem

In a multi-agent coordination scenario, a number of agents need to generate individual

plans that achieve their respective goals and are not in conflict with each other. A multi-

71

agent coordination scenario that is defined by two main characteristics is studied in this

section. The first is that each agent is able to achieve his goals by himself. The second is

that plan execution time is the criterion for evaluating the quality of both the individual

and the joint plans, with preference given to the joint plan execution time. Therefore,

agents seek to minimize the execution time of the joint plan, even in the case where this

leads to non-optimal individual plans.

The coordination problem is defined formally as follows.

Generating teams of agents that are able to perform their tasks over long periods of time

requires the agents to be responsive to continual changes in agent team member

capabilities and to change in the state of the environment and the task mission.

In the previous chapter, the multi-agent architecture, which enables teams of agents to

dynamically adapt their actions over time, is described. This architecture is a distributed,

behavior-based architecture aimed for use in applications consisting of a collection of

independent tasks. The key issue addressed here is the determination of which tasks

agents should select to perform during their mission. In this approach, agents monitor the

performance of their teammates forming common tasks, and evaluate their performance

based upon the time of task completion. Agents then use this information throughout the

lifetime of their mission to automatically update their belief parameters.

An important goal in the development of autonomous MAS is enabling agents to perform

their tasks over a long period of time without human supervision. This system must be

able to deal with dynamic changes that will occur over time, such as changes in the

72

environment or incremental variations in their own performance capabilities because of

their learning and evolving ability. The ability to adapt to these types of dynamic changes

is especially important in multi-agent applications, since the effects of individual agent

actions propagate across the entire team. In most real-world applications, a multi-agent

team with static capabilities will not be able to continually achieve its goals over time as

the system of agents and the environment drift further and further from the original state.

Instead, a successful MAS is adaptive to changes in the environment, agent members

capabilities, agent team compositions, mission requirements, and so on. One important

consequence of dynamic changes in MAS is that the continuing drift in individual agent

capabilities creates a team of heterogeneous agents, even if the original team is designed

to be homogeneous. This heterogeneity in MAS presents a particular challenge to

efficient autonomous control when overlapping in team member capabilities occurs.

Overlap in team member capabilities means that more than one agent can perform a given

task, but with different levels of efficiency. In these cases, the agent must continually

determine which individual agent on the team is currently the best suited for a given task

in the application. These types of decisions are usually not easy to make, especially when

the multi-agent team control is distributed across all the team members. Even in the case

of full global knowledge, however, the problem of optimally assigning tasks to agents

that have different, but overlapping capabilities can be easily shown to be NP-hard.

Proof of NP-Hardness of the heterogeneous agent action selection problem

Definition 4-1: Let
1 2

{ , , ..., }
n

A a a a represent the set of n agents on a cooperative team,

and the set
1 2

{ , , ..., }
m

T task task task represent the m independent tasks required in the

73

current mission. Each agent
i

a in A has a number of high-level task-achieving functions

that it can perform, represented by the set
1 2

{ , , ...}
i

F f f . Since different agents may

have different ways of performing the same task, the set of n functions is H where

𝐻:𝐹 → 𝑇 𝐻 {ℎ1 𝑓1𝑘 ℎ2 𝑓2𝑘 … ℎ𝑛 𝑓𝑛𝑘 }, and ()
i ik

h f returns
k

task that agent
i

a is

working on when it performs the high-level functions
ik

f .

Definition 4-2: the metric evaluation function is denoted as ()
ij

l f , which returns the

length of task execution time of agent i performing the action
ij

f to finish task
j
 .

Since agent team members usually perform their actions in parallel during a mission, the

total mission completion time is the time at which the last agent finishes its final task.

However, agents that are unfamiliar with their own abilities or the abilities of their

teammates could not have access to this ()
ij

l f function. Thus, an additional aspect to the

agent’s learning problem is actually obtaining the performance quality information

required to make an “intelligent” action selection choice.

Definition 4-3: Define the tasks an agent
i

a selects to perform during a mission as the

set { | agent perform s task ()during the current m ission }
i ij i i ij

U f a h f .

In the most general form of this problem, distinct agents may have different collections of

capabilities. Thus, it is not assumed that . .()
i j

i j F F   . Furthermore, if different agents

can perform the same task, they may perform that task with different qualities, i.e. with

different lengths of task execution time. Thus, it is not assumed that if () ()
i ix j jy

h f h f ,

74

then () ()
ix jy

l f l f . For the simplified case in this section, it assumes that these agent

performance measurements are known in advance.

The formal statement can be described as follows:

Multi-agent action selection problem (MAASP)

Given 𝐴 𝑇 𝐹 𝐻, determine the set of actions 𝑈 for all such that ∈ 𝐴 𝑈

𝐹 and (𝑗 ∈ 𝑇) 𝑗 ℎ 𝑓 𝑘 and 𝑓 𝑘 ∈ 𝑈 and the performance metric

is optimized, according to the desired performance metric; for example, in the case of the

time metric, the goal is to minimize: max ∑ 𝑓 𝑘 𝑖 ∈ 𝑖
 .

The first two constraints of the above problem definition ensure that each task in the

mission is assigned to some agent that can actually accomplish that task. The goal is to

minimize the maximum amount of time any agent will take to perform its set of actions.

For system robustness, fault tolerance, and flexibility, distributed decision making gives

better results than a centralized decision maker most of the time. Thus, while this

efficiency problem is formulated as a centralized decision problem, in real MAS

applications, the problem should often be solved by the distributed multi-agent team

using incomplete local information.

Nevertheless, even if complete global information is assumed, this efficiency problem

can be easily shown to be NP-hard by restriction to the well-known NP-complete

PARTITION problem.

75

Proof: MAASP problem is NP-hard

By restriction to PARTITION:

Allow only instances of MAASP where:

1 2

2, (i.e., (,))n A a a 

1 2

F F S 

,

())
i ij i

i ija A f F
T h f

 


 (). ().(())
i ij i i ij j

a A f F h f task    

1 2

().(() () ()), for
ij i j j j j

f F l f l f s w w W    

Then since PARTITION is a special case of MAASP, MAASP must be NP-hard.

Figure 4-6 Proof of MAASP is NP-hard

The PARTITION problem is to decide whether a given multiset of integers can be

partitioned into two “halves” that have the same sum. More precisely, given a finite set

W and a “size” ()s w


 Z for each w W , determine whether there is subset '
W W

such that ' '() ()
w W w W W

s w s w
  

  . Then it will be proved that the MAASP problem is

NP-hard in the number of tasks required by the mission (Figure 4-6).

Since the PARTITION problem is stated in terms of finding two equally-sized subsets of

tasks W and '
W , the proof of this theorem restricts MAASP to those instances involving

two agents with identical capabilities and qualities of capabilities, the lengths of

execution time. Furthermore, each agent has the same one-to-one mapping of behavior

sets to tasks, meaning that all agents use the same behavior set to accomplish the same

76

task, and all behavior sets are needed to accomplish the mission. These MAASP

instances are the instances of PARTITION, so that, if MAASP can be solved,

PARTITION can be solved too. In other words, even this simpler problem involving

homogeneous agents with equal costs is NP-hard. The real-world application involving

heterogeneous agents with unequal costs is certainly no easier, and thus this action

selection problem is shown to be NP-hard.

Since this efficiency problem is NP-hard, the MAS will not be able to derive an optimal

action selection policy in a reasonable length of time. Heuristic approximations to the

problem that work well in practice will be investigated.

4.4 Coordination Scalability

Scalability is a problem for many learning techniques, but especially so for multi-agent

learning. The dimensionality of the search space grows rapidly with the number and

complexity of agent behaviors, the number of agents involved, and the size of the

network of interactions between them. This search space grows so rapidly that it is

believed no one agent can learn the entire joint behavior of a large, heterogeneous,

strongly intercommunicating multi-agent system. Effective learning in an area of this

complexity requires some degree of sacrifice: either by isolating the learned behaviors

among individual agents, by reducing the heterogeneity of the agents, or by reducing the

complexity of the agents’ capabilities. Techniques such as learning hybrid teams,

decomposing behaviors, or partially restricting the locality of reinforcement provide

77

promising solutions in this direction, but it is not well understood under which constraints

and for which problem domains these restricted methods will work best.

The scalability of multi-agent algorithms lie in that the less coordination a MAS requires,

the better it should scale to large numbers of agents.

To evaluate the success of implementing MAS, there are two perspectives (Schumacher

2001). The first one is coherence. It describes how well the MAS behaves as a unit, along

some dimension of evaluation. Coherence may be measured in terms of solution quality,

efficiency of resource usage, conceptual clarity of operation, or system performance in

the presence of uncertainty or failure. The other one is coordination, which means the

degree to which agents can avoid extraneous activity such as synchronizing and aligning

their activities. The presence of conflict between agents is an indicator of poor

coordination, when agents destructively interact with one another which require time and

effort.

The adverse effects of coordination are well known to researchers in parallel processing:

often, increasing the number of processors results in a corresponding decrease in the

amount of time needed to perform a given computation only up to a point, after which the

time spent coordinating inter-process communication outweighs the benefits of having

more processors. MAS has problems similar to those of the parallel algorithm designers:

if the task charged to a MAS by necessity requires a great deal of coordination, then the

performance of the system will necessarily degrade as more agents are employed.

78

Thus a measure of coordination complexity is needed to evaluate proposed algorithms.

Ideally such a measure should be a function of the minimal information flow required to

perform a given task and be independent of how that flow is mediated. It should,

furthermore, account for how that information changes as a result of the dynamics of the

environment. The model is that each agent knows its own state and can communicate

directly with any other agent via some communication system. The cost of a

communication event, in terms of bandwidth used, latency or time spent waiting, is

summarized into a single, abstract cost.

The notion of communication complexity is based on the notions of communication

complexity defined in the analysis of parallel algorithms with the difference being that in

the coordinated systems some invariant maintains indefinitely as opposed to performs

some finite computation.

In multi-agent settings, deliberative decision-theoretic methods allow an agent to

compute its best action, i.e., one with the highest expected utility, given its available

knowledge. The agent’s knowledge may contain the information about the environment,

about the agent itself, about the other agents present, about what other agents know, and

so on. Therefore, when making coordinated decisions in complex scenarios with many

agents present, the agent may have to consider large and complex knowledge structure,

which may lead to it failing to decide on action in an acceptable time.

The communication schemes investigated range from full communication to no

communication. Two of the schemes are from cooperative mobile robotics. The first,

79

distance modulated communication (DMC), uses the idea that a robot might need a very

accurate estimate of the position of nearby robots (to avoid colliding with them, for

example) while needing only a coarse estimate of more distant robots. Thus, robots

communicate more often with robots that are closer. It is shown that DMC has

communication complexity
1.5

(log) or ()O n n O n depending on assumptions about the

dynamics of the robots (Klavins 2004). The second, the wandering communication

scheme (WCS), defines a protocol by which only a small constant number of wandering

robots are allowed to move and communicate, while others must remain immobile. A

wanderer may transfer its right to move, and its information about the world, to an

immobile robot in a short burst of communication. It is shown that WCS has

communication complexity () or (1)O n O depending on assumptions about how certain

higher level decisions are made by the robots (Klavins 2004).

For the coordination problem in this thesis, an approach similar to distance modulated

communication with a communication complexity of
1.5

(log) or ()O n n O n is chosen. The

simulation results in the next chapter which scales well with the growing number of

agents support the proposal.

4.5 Summary

In this chapter, different facets of coordination mechanism of the cooperative BN-BDI

Multiagent system have been discussed. The communication complexity and the

coordination complexity give a benchmark to measure the efficiency of the coordination

methods. These two metrics also measure the robustness and scalability of the

80

coordination mechanism. The proposed TCTM model, which includes a time-critical

component, coordinates the agents’ behavior based on contract net protocol. In the next

chapter, a foraging simulation will be used to test the proposal.

81

Chapter 5 A Simulation Case Study of the Adaptive

MAS

In the previous chapters, the BN-BDI agent model, the hierarchical MAS architecture and

the time-constraint contract net coordination mechanism are investigated. In this chapter,

a simulation which tries to solve a foraging problem to verify the proposals is carried out.

This chapter is organized as follows. Firstly the foraging problem will be introduced.

Then the simulation test base’s architecture will be presented. Next a basic model for

agents in the foraging problem is proposed. After that the “sparse world” problem in the

rock foraging is discussed. To solve this problem, an adaptive model which enables

agents to adaptively change their behaviors when the world gets dynamic is extended

based on the basic model. Finally, the simulation results that demonstrate the improved

performance of the adaptive agents over the basic agents and conclusions are given.

5.1 The Foraging Problem

 The foraging problem consists of a number of rocks that are scattered over a rectangular

grid. Autonomous agents that live in this virtual world have to cooperate to collect these

rocks.

The foraging problem solved in this chapter evolves from the swarm foraging. Artificial

swarm foraging often utilizes various forms of “indirect communication”, involving the

implicit transfer of information from agent to agent through modification of the world

environment. Examples of indirect communication include: leaving footsteps in snow,

82

leaving a trail of bread crumbs in order to find one’s way back home, and providing hints

through the placement of objects in the environment. Much of the indirect

communication literature has drawn inspiration from social insects’ use of pheromones to

mark trails or to recruit other agents for a task. Pheromones are chemical compounds

whose presence and concentration can be sensed by fellow insects, and like many other

media for indirect communication, pheromones can last a long time in the environment,

though they may diffuse or evaporate. Early models of ants have demonstrated that

pheromones make it possible for ants to optimize trails from the nest to a food source. It

has been suggested that this happened because larger amounts of pheromones can more

quickly accumulate on the shorter paths, rather than on the longer ones. Several

pheromone-based learning algorithms have been proposed for foraging problem domains.

A series of reinforcement learning algorithms have adopted a fixed pheromone depositing

procedure, and use current pheromone amounts as additional sensor information while

exploring the space or while updating the state-action utility estimates. Evolutionary

computation techniques have also been applied to learn exploration/exploitation

strategies using pheromones deposited by hardcoded mechanisms.

The task of the agents to collect all the rocks in the world is called a job. The idea is

derived from swarm robotics, which is a subset of MAS. Figure 5-1 shows an example of

a foraging problem in the grid world of size 6 * 9 with 4 agents.

When several robots are randomly sent to forage rocks in an open area, it is expected the

robots are able to collect as many rocks as possible in the shortest time (Panait and Luke

2004). It is assumed that the robots are autonomous agents and only have local

83

communication with each other and the environment, which means that no one agent

knows all about the entire system. It is also assumed that the robots are homogeneous

agents. This problem concerns how the agents communicate with each other, how they

divide the job among themselves, and how they cooperate to finish the job.

The way of swarm robotics to solve the problem is efficient. The whole population of the

robots is divided into sub-populations and different populations correspond to different

areas. When the robot finds a rock in some place, it gets some information about the

environment – the rocks distribution on that field. When more rocks are collected, more

information is found which can give some guidance to the robot’s following actions and

to other robots in the same sub-population which later turns information to other sub-

populations.

In the foraging problem, agents can interact with the environment in a number of ways.

An agent can make a step to one of the four neighbor fields around him. If an agent meets

any rocks in the field, the agent can pick it up. Some assumptions are needed. One

 Figure 5-1 The virtual world with 4 agents and several rocks

84

assumption is that the capacity of the agent is unlimited, the energy for carrying so many

rocks is the same and agents do not put down any of these collected rocks until the job is

done for the whole team. Another assumption is that there is no collision detections in the

foraging problems which means agents can be in the same position. It is also assumed

that all the agents work cooperatively and honestly, so that they exchange true

information with each other. Besides acting into the environment, agents can also send

messages which contain its own belief about the virtual world to each other. A mailing

system-like mechanism is used to assist the communication.

It is important to notice that each agent of the foraging problem has only a limited view

of the world. The view-size of the world expresses how far, i.e. how many squares, an

agent can observe around him. The red area in Figure 5-1 illustrates the limited view of

one agent. Other than what agents actually observe about the world, each agent has its

own belief of what the world should be. When each time an agent explores a new area, it

will update its belief of the world; when each time agents communicate with each other,

it will combine other’s belief of the world and use the part of what other agents really

observe or really explore.

The performance of the foraging problem is measured by a counter, the efficiency of the

agents in performing their job. This counter measures the energy invested by the agents.

When an agent moves one step, it consumes one unit of energy. According to the

problem assumptions, agents consume the same energy no matter whether they pick up

rocks or not.

85

5.2 Cooperative BN-BDI Multiagent System for Foraging

Problems

To solve the above mentioned foraging problems, the cooperative BN-BDI Multiagent

system proposed in chapter 3 with the corresponding coordination mechanism proposed

in chapter 4 are deployed.

To solve the foraging problem in an n*n grid world, one agent would take a long time to

finish the task. The task here means find out all the possible rocks in the n*n grid world.

Since the agent system has many other agents with same capabilities available, the task of

the specific agent can be solved by coordinating with other agents in the system. The

group of agents’ model is BN-BDI agent model. The BN-BDI agents which can learn

other agent’s model, their preferences, their beliefs and their capacities. In the foraging

problem context, the preference is the preference for task: which task to be preferred. The

belief is the agent’s belief about the rocks in the grid environment. The capacity is the

agent’s ability to solve a specific task. The BDI part maintains an explicit representation

of the agents’ world. The BN part measures the uncertainty that the agent is facing and

the dependent relationship it has with other agents.

The time Constraint Task-based Model proposed in chapter 4 for coordination is used.

Recognition stage: agent A with task T at the beginning of the process. Agent A

recognizes the task T of foraging the whole grid world takes too much time to finish itself

and it plan to solve the task cooperatively with other agents in the MAS system.

86

Task decomposition stage: agent A generate a set of sub-tasks ti from the task T. sub-task

ti is defined as a 1*1 grid size foraging problem. As a result, the total number of the sub-

task ti is n*n.

Notation: Sub-task Ti: { Task name, Task requirements, Task rewards, Task time

constraint }i=1 to n*n

 Task name: Task_i

 Task requirements: foraging grid area located in [x, y], i= x*y

 Task rewards: 1

 Task time constraint: Tmax= n*n (one movement require one unit of time)

Team formation stage: in the cooperative BN-BDI MAS, there are many other agents

with same capability available. Agent A coordinates with those agents through the Time

Constraint Contract Net Protocol. In this coordination protocol, there are 5 stages to form

the coordination.

 Recognizing the problem. Agent A has task T and divides task T into n*n sub-task ti.

 Announcing tasks. Agent A announces all the sub-tasks out.

 Bidding. Available agent receives and evaluates the sub-task announcements. The

eligible candidate agents bid for the sub-tasks. The agents evaluate the sub-task (i.e.,

the location of the foraging place) and compare it with their current locations. Since

it is assumed that the reward for any sub-task is identical, agents will bid for the sub-

task that near their current location in their belief world. The nearer location, the

higher bid.

87

 Awarding the contract. Agent A receives the bids from candidate agents and awards

each sub-task to the highest bidding agent. If more than one agent bids for the same

sub-task, agent A will randomly award the sub-task to one of the bidding agents. The

reason behind is that they are the homogenous agents in the simulation. In the

foraging context, the number of available agents is far less than the sub-tasks that

need to be done. After the first round of bidding, the other unassigned sub-tasks will

enter into the second round of bidding until all the sub-tasks have been assigned and

solved. Agents which are awarded with sub-tasks can choose to execute it their

selves or through further tasks decomposition.

Team action stage: Agents who win the biding through the Time Constraint Contract Net

Protocol own the sub-tasks in this stage. Agent A now acts as a coordinator agent and

manages the agents with sub-tasks. The agents with sub-tasks can divide their sub-tasks

and act as a sub-coordination in the team. All the agents in the team form a dynamic

hierarchical MAS architecture as in Figure 3-9. Agents with sub-tasks will move towards

the destination of the sub-task and pick up the rock to finish the sub-task. During the

execution period, agent is not available to bid for other unassigned sub-tasks.

Result Synthesis stage: agents share results with peer agents under the same coordinator

agent. Those BN-BDI agents learn from results sharing and improve the problem solving

abilities. Roof coordinator agent A synthesizes all the results. All the sub-tasks need to be

finished in required time Tmax.

88

The result sharing of the BN-BDI agents is through a mailing system in the foraging

simulation.

5.3 Result Sharing of the BN-BDI agents in Foraging

A multi-agent simulation system for the foraging problem has been built. The framework

of faster rock foraging is a system composed of several homogenous agents who works

cooperatively to forage the rock. The entire framework was created using java multi-

threading. The agent observation model has been simulated using a map window

observable interface, using which an agent can observe only a part of the map. Figure 5-2

illustrates a mail system-like communication model that has been implemented using the

java event objects, which raises an event on the mail box when a message is sent into it.

Agents use an offline mailbox system to share information.

89

Figure 5-2 The mailing system in the Multi-agent Architecture

Although each agent can only observe a small part of the real virtual world, it has a map

of the environment in its mind which is called agent’s belief. The initial belief of each

agent in the system is set to believe that there are rocks everywhere. The agent uses this

belief to make decisions and plan the job scheduling process. In a cooperative Multi-

agent environment, the agents can share their beliefs and help each other understand the

unknown environment better. Hence in the architecture the agents share their beliefs with

each other periodically. Before an agent can make a decision on the next job in hand, it

augments its belief by observing the environment around it and also based on what the

other agents believe about the environment. Figure 5-3 shows how an agent augments its

belief using another agent’s belief.

90

Figure 5-3 Belief augmentation process

5.4 Basic Model

This section introduces the agent behaviors in the basic model. The behavior of a basic

agent is simple: it first finds out what it and other agents perceive about the virtual world,

exchanges their information through the mailing system and updates its old belief of the

world with the incoming new information. According to its belief – the map in its head,

the agent moves to the nearest rock location in the belief map. If it perceives that there is

any rock, the agent picks the rock up and updates its belief of that part of the world. If

there is no rock, it does nothing and just updates its belief. After that, the agent exchanges

information with other agents and continues to find another rock according to the map in

its head ---its belief. The assumption is that the initial belief it has about the virtual world

is that rocks are all over the field and rocks in the virtual world of the simulation are also

everywhere. This process is repeated until the agent does not perceive any rock in its

belief. Then it supposes the job is finished and it stops moving.

91

step Process

1 Agent is created and placed on the global map

2 Observe the map

3 Send belief to all the other agents’ mail box

4 Augments belief based on the information received from the other agents

5 Greedily obtain the nearest job location based on its belief

6 Compute the next move along the path to the job location

7 Update the global map of its coordinates

8 Update its belief

9 If search complete is true, go to step 10; else go to step 2

10 Stop

Figure 5-4 Basic algorithm

The algorithm is fast and highly efficient as it has a built-in goal switching dynamic path

planning strategy. Using its observation model and the belief augmentation, the agents

can quickly adapt to the changing environment without incurring communication

overheads. The rock foraging algorithm steps that every agent runs are as shown in

Figure 5-4.

Several experiments about the basic model are conducted on the framework to test its

performance. The tests were conducted for different grid sizes and for each case the

number of agents was varied to test the scalability of the framework and the algorithm.

Agents in the grid are assigned random initial positions at the beginning of the simulation.

92

5.5 Results and Analysis of Basic Model Performance

The simulation results in Figure 5-5, Figure 5-6 and Figure 5-7 tell that the maximum and

average energy consumed for cooperative agents when they are in different virtual grid

worlds: 5 by 5 grid, 10 by 10 grid and 50 by 50 grid respectively. As mentioned in the

previous section, the energy consumed by agent is actually the number of steps it moves

until the rock collection job is finished. The maximum steps taken (energy consumptions)

can be seen as an indicator about the quality of the performance, which is how quickly

the job can be finished by the MAS. The average steps mean the average steps agents

move in the system. It is clear from the above three graphs that as the number of agents

increases the time to have the job done decreases accordingly. From the three graphs, the

maximum steps and the average steps taken by agents are close, which implies that all the

agents are autonomous. All these support the basic model that it can coordinate

autonomous multiple agents effectively and robustly to achieve a good system

performance. It is also clear from these three figures that both the average time steps

taken per agent and the maximum steps taken to complete the task scale well

93

Figure 5-5 Simulation results of basic model for 5 by 5 grid sizes

Figure 5-6 Simulation results of basic model for 10 by 10 grid size

Figure 5-7 Simulation results of basic model for 50 by 50 grid size

as the numbers of agents increases. This justifies the need for running the rock foraging

algorithm using cooperative MAS architecture. These figures also show that the decrease

of energy consumption for the system is not linear. As more agents are employed in the

system, the decreasing rate grows slower. The reason is that for cooperative systems,

agents need to communicate with each other and divide the job among themselves.

10 by 10 grid size

123

67

39

24

17

0

20

40

60

80

100

120

140

1 agent 2 agents 4 agents 10 agents 20 agetns

number of agents

e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n

Maximum steps

Average steps

50 by 50 grid size

3164

1668

907

452

285

0

500

1000

1500

2000

2500

3000

3500

1 agent 2 agents 4 agents 10 agents 20 agetns

number of agents

e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n

Maximum steps

Average steps

94

As a result, some conflict and compromise arise among agents which affect the system’s

efficiency. Besides that, the rate of reduction in the time steps between the 10 agents case

to the 20 agents case is the lowest in 5 by 5 grid size. This implies that the agents can

over crowd on the grid if too many of them are used.

Figure 5-8 Energy consumed to pick up each rock in basic model

The behavior of the basic agents in the foraging problem is studied and a particular

problem for the agents has been noticed. When the agents pick up more rocks, the

remaining rocks in the environment decrease. From Figure 5-8 of the energy consumed

by agent for picking up each rock, it can be observed that when the world becomes sparse

and less than 60% of grid is occupied, the performance of the agents becomes inefficient.

One round stands for one simulation process. At the beginning of the running, each rock

only needs one-step energy to be picked up by agents. However, from the middle of the

process until the end, a great part of the remaining rocks need much more step energies.

10 by 10 grid with 4 agents_ basic model

0

2

4

6

8

10

12

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

rocks

e
n

e
rg

y
 c

o
n

s
u

m
e
d

 p
e
r

ro
c
k

round 1

round 2

round 3

round 4

round 5

95

From the observations, one problem is identified for the agents when the world became

sparse: when several agents detect one of the few rocks, all of them run at it while in the

end only one agent is able to pick it up. This problem comes about under two conditions:

Agents aggregate in a relatively small area and they are chasing for the same target. This

is called repeat-chasing problem;

Agents are relatively far from each other and they are chasing for the same target.

However one agent is further from the target than the others, but it still waste its energy

to go after the rock that would definitely be picked up by other nearby agents. This is

called far-chasing problem.

5.6 Adaptive Models

To solve the problems with the sparse world, an adaptive agent is proposed. The roles of

the basic agent are reused in the adaptive agent and add two extra waiting roles: out-of-

limit wait and over-crowned wait. These two improvements employ some ideas from

Bayesian Theory. Agents have prior probability of what to do next. However, new

evidence comes and their post probability changes. As a consequence, what they choose

to do next changes. How agents can then achieve adaptive behavior is explained below.

At the beginning is how the agent adapts its behavior to cope with the repeat-chasing

problem. Then the far-chasing problem is studied.

Repeat-chasing problem. The process starts with the role of exchanging belief among

agents. As long as the agent perceives any rock in its belief, it moves to the nearest target.

However, if it finds out from those incoming information that the number of agents

96

around it in its perceiving range is more than the number of available rocks, it may switch

to randomly stop for a while in case that they are chasing for the same target to avoid

Step Process

1 Agent is created and placed on the global map

2 Observe the map

3 Observe the virtual world and check whether nearby agent number is more than

nearby available rocks. If yes, agent freezes for a moment

4 Send belief to all the other agents’ mail box

5 Augments belief based on the information received from the other agents

6 Greedily obtain the nearest job location based on its belief

7 Check whether search depth is out of a pre-defined limit. If yes, agent freezes for a

moment

8 Compute the next move along the path to the job location

9 Update the global map of its coordinates

10 Update its belief

11 If search complete is true, go to step 12; else go to step 2

12 Stop

Figure 5-9 Adaptive algorithm

energy wasting. The stopping period depends on the number of the agents nearby. The

more the nearby agents, the longer the random waiting time is. After the freezing period,

the agent rechecks the target rock and continues moving.

97

Far-chasing problem. The process is the same as the basic model at the beginning.

However, the agent here has a pre-defined belief limit range when it searches its belief

map. If an agent finds out that the available rocks for it to collect is beyond the limit

range according to its belief map in mind, the agent would suppose that it is not

worthwhile for it to begin to go to collect that particular rock immediately. It is highly

possible that there may be some other agents near the target rock. So the agent decides to

let other agents collect the rock instead and it would stop moving for a while. But if the

agent finds the target rock is still available, it would move to that direction. These two

components are both added into the adaptive model and the process for the adaptive

model changes to Figure 5-9.

5.7 Coordination Complexity

The scalability of multi-agent algorithms lie in that the less coordination a MAS requires,

the better it should scale to large numbers of agents.

With this definition, it turns out that the worst case complexity of any reasonable

algorithm is
2

()O n : all agents must communicate constantly with all other agents. With

2
()O n complexity, the bandwidth of the communication system must increase with the

square of the number of agents. For this reason, an
2

()O n complexity algorithm or task is

not considered scalable. In an ()O n complexity algorithm, on the other hand, bandwidth

needs only to scale linearly with the number of agents. In other words, for every 100

agents, if one new agent joins in the team, the MAS performance will not be suffered.

98

The communication schemes investigated range from full communication to no

communication. In chapter 4 the coordination complexity section, two of the schemes are

given. The first, distance modulated communication (DMC) has communication

complexity
1.5

(log) or ()O n n O n depending on assumptions about the dynamics of the

robots. The second, the wandering communication scheme (WCS) has communication

complexity () or (1)O n O depending on assumptions about how certain higher level

decisions are made by the robots (Klavins 2004).

In the adaptive models, the Repeat-chasing problem and Far-chasing problem use the

similar communication schemes to improve the coordination performance which result in

the scalability and robustness of the cooperative BN-BDI Multiagent system.

At every step of a multi-agent algorithm, the costs of the communication events that

occurred in that step are summed up and then take the average over all the steps in the

coordination algorithm. In other words, for each agent ∈ , the step taken by the agent is

 ∈ 𝑗, 𝑗=1
𝐽 𝑗 . is the dataset of steps taken by agent , and is the dataset of steps

that the agents system takes to finish their job. The cost of step taken by agent is

 . So agent costs ∑

 =1
 and the system’s performance is

∑ ∑

.

99

5.8 Results and Analysis of Adaptive Model Performance

The simulation results of the adaptive model tell that these two improvements really

increase the system’s efficiency. Figure 5-10 shows the comparison results between basic

model and adaptive model on the energy spent on collecting each available rock. This

figure is based on the average data values of 6 rounds of experiment results where agents

are put randomly in the virtual world full of rocks at the beginning of the simulation. It

can be seen from the figure that as the world becomes sparse, the inefficiency problem of

the basic model has been largely avoided in the adaptive model.

Figure 5-10 Energy needed to pick up each rock: comparison between basic and adaptive model

Besides the energy consumed to collect each rock, the total energy consumed in the

system by all the agents is another important index to measure the performance of the

MAS. This number shows how much the total cost of the system is, with a smaller

10 by 10 grid with 4 agents

0

1

2

3

4

5

6

7

8

9

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

rock number

e
n

e
rg

y
 c

o
n

s
u

m
e
d

 p
e
r

ro
c
k

basic model

adaptive model

100

number being better. Figure 5-11, Figure 5-12 and Figure 5-13 list this measurement in

both basic model and adaptive model with different number of running agents under 3

Figure 5-11 Total energy consumption for agents in 5 by 5 grid size

Figure 5-12 Total energy consumption for agents in 10 by 10 grid size

5 by 5 grid comparison

28

30

32
31

16

27

29 29

26

13

0

5

10

15

20

25

30

35

1 agent 2 agents 4 agents 10 agents 20 agetns

number of agents

e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n

basic model

adaptive model

10 by 10 grid comparison

123

132

143

170

177

123

128

137

154

172

100

110

120

130

140

150

160

170

180

190

1 agent 2 agents 4 agents 10 agents 20 agetns

number of agents

e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n

basic model

adaptive model

101

Figure 5-13 Total energy consumption for agents in 50 by 50 grid size

different grid sizes of environment. From these figures, it can be told that the adaptive

model improves the system efficiency significantly compared with the basic model. For

example, in the case of 10 by 10 grid size with 4 agents (Figure 5-12), MAS gets a 20%

improvement. (Total energy consumed in basic model is 170; in adaptive model, the total

energy consumed is 154. Number of rocks in the world is 90. The system performance

improvement is 20 %=(170-154)/ (170-90))

Comparison tests are also done by pre assigning the initial positions of the agents. This

helps to optimize the foraging of the environment. In the basic model, if the agents are

located far apart, they bring in more information, reduce collisions among agents and will

not bring about overlapping observations. All these can help in increasing the

performance of the system and optimize the number of steps they take in completing the

50 by 50 grid comparison

3164

3301

3476

3897

4408

3164
3242

3347

3703

4160

2500

3000

3500

4000

4500

5000

1 agent 2 agents 4 agents 10 agents 20 agetns

number of agents

e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n

basic model

adaptive model

102

Figure 5-14 Basic model results with different agents’ initial positions

Figure 5-15 Adaptive model results with different agents’ initial positions

job. From Figure 5-14, it is found that in the basic model, the agents did the best when

placed in the four corners of the map. In the adaptive model (Figure 5-15), since there are

two added opponents, agents placed together or near each other do not affect the results

much compared with the basic model.

10 by 10 grid size with 4 agents

0

10

20

30

40

50

60

in the

center

in the

corner

in the

first

row

in the

firsts

col

in the

center

row

in the

center

col

agents initial position

ti
m

e
 s

te
p

s time steps for task

completion

average time steps per

agent

Adaptive model: 10 by 10 grid size with 4 agents

0

10

20

30

40

50

60

in the

center

in the

corner

in the

first

row

in the

first

col

in the

center

row

in the

center

col

agents initial position

e
n

e
rg

y
 t

a
k

e
n

Maximun steps

Average steps

103

5.9 Summary

In this chapter, a cooperative BN-BDI multi-agent simulation environment is built for the

foraging problems. Agents of the BN-BDI model forming a hierarchical MSA framework

are applied in the foraging problem. The task of foraging the whole grid world is

decomposed into n*n sub-task of foraging a specific location. The time constraint

contract net protocol is used for the coordination of the agents awarded with sub-tasks.

The results sharing and synthesis are communicated through the mailing system. Two

models based on the theory are simulated. The basic model scales well as the number of

foraging agents increasing. It gives a good system performance but it has some

inefficiency when the rocks become less in the environment. The reasons are explored

out and an improved model is proposed, and results in an adaptive model. The new model

employs two added opponents and simulation results show it significantly improves the

system’s performance. In these two models, autonomous agents work cooperatively with

each other to forage rocks in a virtual world. Information sharing among agents is

allowed and agents not only can see the working environment but also can have a

subjective perspective of it based on the belief component in their models. All these

characteristics make the architecture scalable, reusable and robust.

104

Chapter 6 Conclusion and Future Work

In this chapter, a summary of the merits and the limitations of the work conducted are

provided and areas for future research are suggested to conclude this dissertation.

6.1 Contribution

In this thesis, an adaptive Multi-agent system is built. Since it is impossible for designers

to determine the behavioral repertoire and concrete activities of a MAS at the time of its

design and prior to its use, agents need to be adaptive to the changes and new information

from the environment, its fellow team agents and itself. To be adaptive, it is suggested

that agents need to have the learning ability and can coordinate with one another to

handle the big and complex problems.

Firstly, the BN-BDI agent model is proposed. It is a hybrid architecture that has the

merits of both the deliberative and reactive architecture. The BDI part maintains an

explicit representation of the agents’ world. The BN part measures the uncertainty that

the agent is facing and the dependent relationship it has with other agents. The BN-BDI

agent can learn other agent’s model, their preferences, their beliefs and their capacities.

Secondly, a hierarchical MAS architecture based on the BN-BDI agent is proposed.

Agents can choose to be or not to be a coordinator and this dynamic nature give the

flexibility to agents. The role of coordinator helps to decrease the communication and

coordination overhead. Such structure will facilitate the coordination of agents in

cooperative MAS and give more adaptability to the MAS performance.

105

Thirdly, the time constrained task-based model (TCTM) is proposed. TCTM simplifies

MAS cooperation problem. In TCTM, the agent’s role is not fixed. Agents can behave as

a leader to sub-contract the task or as a bidder to bid for a sub-task in different course of

team formation; in TCTM, Agents can learn from their team fellows and benefit from

result sharing through communication through the proposed Time Constraint Contract

Net Protocol. The communication complexity of the model is (log) O n n and it

significantly reduces the amount of information being exchanged and scales well with the

growing agent numbers.

Finally, in the foraging simulation, the proposed model, system architecture and

coordination mechanism are tested using two heuristic algorithms with different sizes of

the virtual world, with different number of agents, and with different agents’ initial

positions. The simulation results support the proposed hypothesis.

6.2 Future work

This thesis has provided insights into the adaptive Multi-agent system and coordination in

MAS. New agent model, corresponding system architecture and coordination mechanism

are proposed and deployed in experiments.

At present, the research in the thesis has only investigated the homogenous agents in the

cooperative MAS without uncertainty. The possible extension could be in the following

two aspects.

106

The first one is to extend the TCTM model and relax its constraints and assumptions, for

example, to handle dynamic problems. The dynamic nature means that an agent may

dysfunction when it accepts the bid; or a new agent might suddenly join the system and

replace an old agent.

The second one is to improve the efficiency of the coordination method and at the same

time to reduce the communication complexity. The relentless desire to pursue efficiency

and effectiveness is applicable in adaptive MAS: How to deal with uncertainty, for

example in the foraging problem, the rocks distribution in the grid world can be un-

uniform and the status of rocks can be dynamic.

The third direction can be to extend the homogenous agents to heterogeneous agents. The

heterogeneous agents can be applied in a wider practical area, but the learning and

coordination mechanism are much more complex.

107

Bibliography

Abraham, A., K. Franke, et al. (2003). Intelligent systems design and applications. Berlin ;

New York, Springer.

Abraham, A., M. Köppen, et al. (2003). Design and application of hybrid intelligent

systems. Amsterdam ; Washington, DC.

Arkin, R. C. (1998). Social Behavior. Behavior-Based Robotics. Cambridge, MA, MIT

Press.

Asama, H., Y. Ishida, et al. (1989). Design of an autonomous and distributed robot

system: ACTRESS. IEEE/RSJ Inter- national Conference on Intelligent Robots

and Systems, Tsukuba, Japan.

Bacchus, F. and A. Grove (1995). Graphical models for preference and utility, Montreal,

Que., Canada, Morgan Kaufmann Publishers.

Beni, G. and J. Wang (1989). Swarm intelligence in cellular robotic systems. NATO

Advanced Workshop on Robots and Biological Systems.

Blum, C. and D. Merkle (2008). Swarm intelligence : introduction and applications.

Berlin, Springer.

Bond, A. H. (1990). Distributed decision making in organizations. IEEE International

Conference on Systems, Man and Cybernetics, Los Angeles, CA , USA

Bratman, M. (1987). Intention, plans, and practical reason. Cambridge, Mass., Harvard

University Press.

Brazier, F. M. T., B. M. DuninKeplicz, et al. (1997). "Desire: Modelling multi-agent

systems in a compositional formal framework." International Journal of

Cooperative Information Systems 6(1): 67-94.

Brooks, R. (1991). "Intelligence without representation." Artificial Intelligence 47(1-3):

20.

Burmeister B. , S. K. (1992). Cooperative problem solving guided by intentions and

perception. the Third European Workshop on Modeling Autonomous Agents and

Multi Agent Worlds, Amsterdam, The Netherlands, Elsevier Science Publishers.

Crowston, K. (1991). Towards a coordination cookbook : recipes for multi-agent action.

Cambridge, Mass., Alfred P. Sloan School of Management, Massachusetts

Institute of Technology.

108

d'Inverno, M., M. Luck, et al. "The dMARS architecture: a specification of the distributed

multi-agent reasoning system." Autonomous Agents and Multi-Agent Systems

9(1-2): 5-53.

David Carmel , S. M. (1996). Learning Models of Intelligent Agents. Proceedings of the

Thirteenth National Conference on Artificial Intelligence, Portland, Oregon.

Davis, R. and R. G. Smith (2003). "Negotiation as a metaphor for distributed problem

solving." Communication in Multiagent Systems 2650: 51-97.

Drogoul, A. and J. Ferber (1992). From Tom Thumb to the Dockers: Some Experiments

with Foraging Robots. International Conference on Simulation of Adaptive

Behavior, MIT Press.

Durfee, E., V. Lesser, et al. (1989). "Trends in cooperative distributed problem solving."

IEEE Transactions on Knowledge and Data Engineering 1(1): 20.

Edmund H. Durfee , V. R. L. (1989). Negotiating task decomposition and allocation

using partial global planning. Distributed Artificial Intelligence San Francisco,

CA, USA, Morgan Kaufmann Publishers Inc. . 2: 229-243.

Faltings, B. (2000). "Intelligent Agents: Software Technology for the new Millennium."

Informatik Informatique 1: 2-5.

Ferguson, I. A. (1992). TouringMachines: An Architecture for Dynamic, Rational,

Mobile Agents. Ph.D., University of Cambridge.

Garcia, A. (2003). Software engineering for large-scale multi-agent systems : research

issues and practical applications. Berlin ; New York, Springer.

Georgeff, M., B. Pell, et al. (1999). The belief-desire-intention model of agency, Paris,

France, Springer-Verlag.

Georgeff, M. P. (1989). Decision-making in an embedded reasoning system the Eleventh

International Joint Conference on Artificial Intelligence Morgan Kaufmann.

Gilad Zlotkin, J. S. R. (1993). A domain theory for task oriented negotiation. IJCAI'93

Proceedings of the 13th international joint conference on Artifical intelligence,

Morgan Kaufmann Publishers Inc. San Francisco, CA, USA

He, M. H., H. F. Leung, et al. (2003). "A fuzzy-logic based bidding strategy for

autonomous agents in continuous double auctions." IEEE Transactions on

Knowledge and Data Engineering 15(6): 1345-1363.

109

Heckerman, D. (2008). A tutorial on learning with Bayesian networks. Innovations in

Bayesian Networks. 156: 33-82.

Hernandez, A. G., A. El Fallah-Seghrouchni, et al. (2004). "Distributed learning in

intentional BDI multi-agent systems." Proceedings of the Fifth Mexican

International Conference in Computer Science: 7.

Ho, F. and M. Kamel (1998). "Learning coordination strategies for cooperative

multiagent systems." Machine Learning 33(2-3): 155-177.

Iglesias, C. A., M. Garijo, et al. (1999). "A survey of agent-oriented methodologies."

Intelligent Agents V 1555: 317-330.

J Deneubourg, S. G., G Sandini, F Ferrari (1990). Self-organizating collection and

tranport of objects in unpredictable environments. Janpan-U.S.A. Symposium on

Flexible Automation, Kyoto, Japan.

Jennings, N. R., P. Faratin, et al. (2001). "Automated negotiation: Prospects, methods and

challenges." Group Decision and Negotiation 10(2): 199-215.

Jennings, N. R., K. Sycara, et al. (1999). "A roadmap of agent research and

development." Autonomous Agents and Multi-Agent Systems 1(1): 7-38.

Keeney, R. L. and H. Raiffa (1976). Decisions with multiple objectives : preferences and

value tradeoffs. New York, Wiley.

Klavins, E. (2002). Communication complexity of multi robot systems. Algorithmic

Foundations of Robotics V, volume 7 of Springer Tracts in Advanced Robotics,

Springer: 275-292.

Klavins, E. (2004). Communication Complexity of Multi-robot Systems. Algorithmic

Foundations of Robotics V. J.-D. Boissonnat, J. Burdick, K. Goldberg and S.

Hutchinson, Springer Berlin Heidelberg. 7: 275-292.

Koller, D. and B. Milch (2003). "Multi-agent influence diagrams for representing and

solving games." Games and Economic Behavior 45(1): 181-221.

Konolige, K. (1986). A Deduction Model of Belief. San Mateo, CA, Pitman

Korf, R. E. (1990). "Real-time heuristic search." Artificial Intelligence 42(2-3): 189-211.

Koulinitch, A. S. and L. B. Sheremetov (1998). "Coordination and communication issues

in multi-agent expert system: concurrent configuration design advisor." Expert

Systems with Applications 15(3-4): 295-307.

110

Kube, C. R. and H. Zhang (1996). The use of perceptual cues in multi-robot box-pushing.

IEEE International Conference on Robotics and Automation, Minneapolis, MN ,

USA

Kweon, I. S., Y. Kuno, et al. (1992). Behavior-based Intelligent Robot In Dynamic

Indoor Environments. lEEE/RSJ International Conference on Intelligent Robots

and Systems.

Lesser, V. R. (1999). "Cooperative multiagent systems: A personal view of the state of

the art." IEEE Transactions on Knowledge and Data Engineering 11(1): 133-142.

Levesque, H. J. (1984). "A Logic of Implicit and Explicit Belief." Proceedings of the

Fourth National Conference on Artificial Intelligence: 5.

Liu, B. (2003). "Scheduling via reinforcement." Artificial Intelligence in Engineering

3(2): 9.

Luck, M., V. Mark, et al. (2001). Multi-agent systems and applications. New York,

Springer.

MacNab, Y. C. (2003). "A Bayesian hierarchical model for accident and injury

surveillance." Accident Analysis and Prevention 35(1): 91-102.

Maes, P., Ed. (1990). Designing Autonomous Agents -Theory and Practice from Biology

to Engineering and Back, MIT Press.

Maes, S. and P. Leray (2006). Multi-agent causal models for dependability analysis. First

International Conference on Availability, Reliability and Security.

Maes, S., J. Reumers, et al. (2003). Identifiability of causal effects in a multi-agent causal

model, Halifax, NS, Canada, IEEE Comput. Soc.

Mataric, M. (1998). Coordination and learning in multirobot systems. 13: 6-8.

Mataric, M. J. (1998). "Behavior-based robotics as a tool for synthesis of artificial

behavior and analysis of natural behavior." Trends in Cognitive Sciences 2(3): 82-

87.

McConnell, J. B. (2003). Technical and Policy Issues Surrounding the Use of

Autonomous Maneuverable Earth Observing Satellites. Master of Science,

Massachusetts Institute of Technology.

Meganck, S., S. Maes, et al. (2005). Distributed learning of multi-agent causal models,

Compiegne, France, IEEE Comput. Soc.

111

Moreira, A. F., R. Vieira, et al. (2004). "Extending the operational semantics of a BDI

agent-oriented programming language for introducing speech-act based

communication." Declarative Agent Languages and Technologies 2990: 135-154.

Moreno, A. and J. L. Nealon (2003). Applications of software agent technology in the

health care domain. Basel, Switzerland ; Boston, Birkhäuser Verlag.

Muller J. P., P. M., Thiel M. (1995). Modelling reactive behaviour in vertically layered

agent architectures. Intelligent Agents: Theories, Architectures and Languages,

Heidelberg, Germany, Springer-Verlag.

Newell, A. and H. A. Simon (1976). "Computer Science as Empirical Inquiry: Symbols

and Search." Communications of the ACM 19(3): 13.

Norman Carver, Z. C., Victor Lesser (1991). Sophisticated cooperation in FA/C

distributed problem solving systems. AAAI'91 Proceedings of the ninth National

conference on Artificial intelligence AAAI Press ©1991.

Nwana, H. S. (1996). "Software agents: An overview." Knowledge Engineering Review

11(3): 205-244.

Panait, L. and S. Luke (2004). A pheromone-based utility model for collaborative

foraging, New York, NY, United States, Association for Computing Machinery,

New York, NY 10036-5701, United States.

Parker, L. E. (1998). ALLIANCE: an architecture for fault tolerant multirobot

cooperation. IEEE Transactions on Robotics and Automation.

Parker, L. E. (2000). "Lifelong adaptation in heterogeneous multi-robot teams: Response

to continual variation in individual robot performance." Autonomous Robots 8(3):

239-267.

Parunak, H. V., A. C. Ward, et al. (1999). "The MarCon algorithm: A systematic market

approach to distributed constraint problems." Ai Edam-Artificial Intelligence for

Engineering Design Analysis and Manufacturing 13(3): 217-234.

Parunak, R. V. (2000). "Agents in overalls: Experiences and issues in the development

and deployment of industrial agent-based systems." International Journal of

Cooperative Information Systems 9(3): 209-227.

Peng, Y. B., J. Gao, et al. (2008). "An Extended Agent BDI Model with Norms, Policies

and Contracts." International Conference on Wireless Communications,

Networking and Mobile Computing 1(31): 5014-5017.

112

Rao, A. S. and M. P. Georgeff (1991). Modeling Rational Agents Within a BDI-

architecture, Australian Artificial Intelligence Institute.

Rao, A. S. and M. P. Georgeff (1995). BDI agents: from theory to practice, San Francisco,

CA, USA, AAAI Press.

Ren, Z. and A. B. Williams (2003). Lessons learned in single-agent and multiagent

learning with robot foraging, Washington, DC, United States, Institute of

Electrical and Electronics Engineers Inc.

Ronald A. Howard , J. E. M., Ed. (1989). Readings on the principles and applications of

decision analysis Menlo Park, Calif, Strategic Decisions Group

Sahin, F. (2000). A bayesian network approach to the self-organization and learning in

intelligent agents. P.h D., Rochester Institute of Technology.

Sandholm, T. (1993). An Implementation of the Contract Net Protocol Based on

Marginal Cost Calculations. . National Conference on Artificial Intelligence,

Menlo Park, Calif, American Association for Artificial Intelligence.

Scerri, P., R. Vincent, et al. (2005). Coordination of large-scale multiagent systems. New

York, Springer.

Schumacher, M. (2001). Objective coordination in multi-agent system engineering :

design and implementation. Berlin ; New York, Springer.

Smith, R. G. (1980). "The contract net protocol: High-level communication and control

in a distributed problem solver." IEEE Transactions on Computers 29(12): 9.

Spiegelhalter, D. J., A. P. Dawid, et al. (1993). Bayesian Analysis in Expert Systems,

JSTOR. 8: 219-247.

Steels, L. and P. Hanappe (2006). "Interoperability through emergent semantics - A

semiotic dynamics approach." Journal on Data Semantics Vi 4090: 143-167.

Steels, L. and M. Tokoro (1995). "Artificial life and real world computing." Computer

Science Today 1000: 15-28.

Stilwell, D. J. and J. S. Bay (1993). Toward the development of a material transport

system using swarms of ant-like robots. IEEE International Conference on

Robotics and Automation, Atlanta, GA , USA.

Stirling, W. C. and R. L. Frost (2005). "Social utility Functions-part II: applications."

IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and

Reviews) 35(4): 533-543.

113

Stone, P. and M. Veloso (2000). "Multiagent systems: A survey from a machine learning

perspective." Autonomous Robots 8(3): 345-383.

Sycara, K. (1997). Using Option Pricing to Value Commitment Flexibility in Multiagent

Systems, School of Computer Science, Carnegie Mellon University.

Sycara, K. P. (1990). "Negotiation Planning - an Ai Approach." European Journal of

Operational Research 46(2): 216-234.

Theraulaz, G., J. Gervet, et al. (1991). "Social Regulation of Foraging Activities in

Polistes Dominulus Christ - a Systemic Approach to Behavioral Organization."

Behaviour 116: 292-320.

Tian, F., H. Wang, et al. (2002). Inference and modeling of multiply sectioned Bayesian

networks, Beijing, China, IEEE.

Tian, J. and J. Pearl (2002). A new characterization of the experimental implications of

causal Bayesian networks. National Conference on Artificial Intelligence (Aaai-

02)/Fourteenth Innovative Applications of Artificial Intelligence Conference

(Iaai-02).

Tresp, V. and K. Yu (2005). An introduction to nonparametric hierarchical bayesian

modelling with a focus on multi-agent learning, Maynooth, Ireland, Springer

Verlag, Heidelberg, D-69121, Germany.

Undeger, C. and F. Polat (2010). "Multi-agent real-time pursuit." Autonomous Agents

and Multi-Agent Systems 21(1): 69-107.

Wang, J. (1994). On sign-board based inter-robot communication in distributed robotic

systems. IEEE International Conference on Robotics and Automation, San Diego,

CA.

Weiss, G., Ed. (1999). Multiagent Systems. Intelligent Agents, The MIT Press.

Weiss., G. (1999). Multiagent systems : a modern approach to distributed artificial

intelligence, MIT Press.

Wooldridge, M. and N. R. Jennings (1995). "Intelligent agents: theory and practice."

Knowledge Engineering Review 10(2): 115-152.

Wooldridge, M., N. R. Jennings, et al. (2000). "The Gaia methodology for agent-oriented

analysis and design." Autonomous Agents and Multi-Agent Systems 3(3): 285-

312.

114

Xiang, Y. (1996). "A probabilistic framework for cooperative multi-agent distributed

interpretation and optimization of communication." Artificial Intelligence 87(1-2):

295-342.

Xiang, Y., X. An, et al. (2003). "Simulation of Graphical Models for Multiagent

Probabilistic Inference." Simulation 79(10): 545-567.

Zhang, Z. Y., W. Y. Liu, et al. (2002). Dynamic multi-agent influence diagrams for

modeling multistage games. International Conference on Machine Learning and

Cybernetics.

Zheng, Z. Q. and P. A. Pavlou (2010). "Toward a Causal Interpretation from

Observational Data: A New Bayesian Networks Method for Structural Models

with Latent Variables." Information Systems Research 21(2): 365-391.

Zhongyan L., W. L. a. L. L. (1999). Agent-based Information Processing System

Architecture. Proceedings of FUSION’99, Sunnyvale, USA, Omnipres.

115

Appendix A Graphical Models of MAS

Since MAS are very complex systems with many uncertainties, it is important to find a

suitable architecture to build it. In this section, the literatures of probabilistic networks for

MAS architecture are reviewed. A probabilistic network, such as the Bayesian Network,

Influence Diagram and Markov network, is an ideal tool to model uncertainty.

Probabilistic network has become an established framework for representing and

reasoning with uncertain knowledge. A probabilistic network consists of a dependency

structure coupled with a corresponding set of probabilistic tables. The dependency

structure is a graphical representation of the conditional independencies that are known to

hold in the problem domain. These conditional independencies are needed to provide an

economical representation of a joint probabilistic distribution over the problem domain. It

may be interesting and challenging to investigate MAS with a probabilistic network

approach.

Multiply-sectioned Bayesian Networks

Multiply-sectioned Bayesian networks (MSBNs) were motivated by the development of a

medical diagnostic system under the single agent paradigm, and was then extended to the

multi-agent paradigm. An MSBN forms the core of a cooperative MAS for diagnosis of a

large system. Each agent is equipped with private knowledge about a subsystem and acts

autonomously and cooperatively with other agents.

MSBN is first developed by (Klavins 2004) for single-agent oriented and modular

knowledge representation and more efficient inference. It was then extended to

116

MAS(Xiang 1996). The MAS referred to consists of autonomous and cooperative agents

with self-interest. The MSBN provides a framework in which multiple agents can

estimate the state of a domain effectively with exact and distributed probabilistic

inference. It aims to tackle a large and complex knowledge domain by dividing the

domain into several subsets each of which is related with an intelligent agent. With a

distributed fashion, an MSBN allows the privacy protection of intelligent agents and the

active communication in a Multi-agent system.

The structure of an MSBN is defined to have the following properties: a hypertree

organization is used for the subnets; each subnet is a connected DAG; the union of all

subnets is also a connected DAG; nodes shared by adjacent subnets for d-sepset; the

adjacent agents in the hypertree are conditionally independent and consistent. Figure A-1

provides the hypertree organization of subnets.

An MSBN M is a collection of Bayesian subnets that together defines a BN(Tian, Wang

et al. 2002). M represents probabilistic dependence of a total universe of variables

partitioned into multiply sub domains. Variables in each sub domain model a subsystem,

which is represented by a subnet. Each subnet corresponds to an agent. For agents to

reason exactly through message passing, their communication pathways need to satisfy a

condition known as a hypertree, defined as follows (Xiang, An et al. 2003):

Definition A-1: Let)1,...,1,0)(,( niEVG
iii

be a set of graphs where
i

V is the set of

nodes and
i

E is the set of edges in graph
i

G . The graph),(
iiii

EVG  also denoted

by
i

G , is referred to as the union of
1-n10

G and ,...,G,G .

117

Figure A-1 Hypertree organization of subnets

Definition A-2: Let G = (V ,E) be a connected graph sectioned into subgraphs {Gi =

(Vi,Ei)}. Let the Gis be organized as a connected tree Ψ, where each node is labeled by a

Gi and each link between Gk and Gm is labeled by the interface Vk ∩ Vm such that for

each i and j , Vi ∩ Vj is contained in each subgraph on the path between Gi and Gj in Ψ.

Then Ψ is a hypertree over G. Each Gi is a hypernode, and each interface is a hyperlink.

The following definition of an MSBN specifies how the numerical distributions are

associated with the structure (Xiang 1996).

Definition A-3: An MSBN M is a triplet (V,G, P). V = ∪i Vi is the total universe, where

each Vi is a set of variables called a subdomain. G = ∪i Gi (a hypertree MSDAG) is the

structure where nodes of each subgraph Gi are labeled by elements of Vi . Let x be a

variable and π(x) be all parents of x in G. For each x, exactly one of its occurrences (in a

containing {x} π(x)) is assigned P (x|π(x)), and each occurrence in other subgraphs is

assigned a unit constant potential. P = ∪i Pi is the joint probability distribution (JPD),

where each Pi is the product of the potentials associated with nodes in Gi . Each triplet Si

D0

D2 D3 D4

D1

{f, g}

{k, l}

{g, k} {q, p}

118

= (Vi,Gi, Pi) is called a subnet of M. Two subnets Si and Sj are said to be adjacent if Gi

and Gj are adjacent in the hypertree.

It can be seen that an MSBN comprises a set of Bayesian networks that share some

common nodes. The common nodes compose an interface S between adjacent Bayesian

networks associated to individual agents. One important property of the interface in an

MSBN is stated as follows: the adjacent agents are independent conditioned on the

observation of states in the interface which is the only channel for all their

communication.

Ensuring the correctness of agent communication also includes that nodes shared by

agents should form a d-sepset.

Definition A-4: Let G be a directed graph such that a hypertree over G exists. A node x

contained in more than one subgraph with its parents π(x) in Gis is a d-sepnode if there

exists one subgraph that contains π(x). An interface I is a d-sepset if every x ∈ I is a d-

sepnode.

In an MSBN, the intersection between each pair of subnets must satisfy the d-sepset

condition because the semantics of joint probability distribution of a cooperative MAS is

defined based on this condition. With this condition, in order to bring two adjacent

subnets up-to-date, it is sufficient to pass the new probability distribution on the d-sepset

between them and nothing else.

119

Using an MSBN, multiple agents can perform probabilistic reasoning by local inference

and inter-agent message passing. To make the local inference efficient, each subnet must

be sparse. To make message passing efficient, the d-sepset between each pair of adjacent

agents should be small compared with the corresponding subdomains. The d-sepset

should also be sparsely connected so that an efficient run time representation can be

derived. That is to say probabilistic inference and reasoning in MSBN works better in a

sparse network environment.

There are several advantages to represent cooperative MAS with MSBN. It can measure

the exact probability of belief; it communicates by belief over small sets of shared

variables; its organization of agents is simpler; it uses DAG for domain structuring; its

joint belief admits agents’ belief on internal variables and combining their beliefs on

shared variables; its agents are cooperative and trustful to each other while the internal

know-how is protected, that is it protects agents privacy; it ensures disciplined

communication.

Methods to simulate an MSBN are available. Because of its special model requirements,

a back track simulation process is used. The procedure is as follows: firstly to simulate a

hypertree topology; then simulate hypernodes and hyperlinks as junction trees in a

breadth-first fashion; after that, convert the junction tree at each hypernode into a

connected DAG; finally simulate probability parameters.

With its distributed framework and efficient inference methods, an MSBN provides a

good solution for a Multi-agent reasoning problem. Since MSBN is built under strict

120

requirements, some extensions and relaxations of the MSBN framework can be made in

the future. Less fundamental constraints can be relaxed, such as, if subdomain structures

and observation patterns are less than general, the d-sepset restriction can be relaxed.

Multi-agent Causal Model

Multi-agent causal models (MACM) (Maes, Reumers et al. 2003; Meganck, Maes et al.

2005) are an extension of causal Bayesian Networks (CBN) (Tian and Pearl 2002)to a

distributed domain. In this setting, it is assumed that there is no single database

containing all the information of the domain. Instead, there are several sites holding non-

disjoint subsets of the domain variables. At each site, there is an agent capable of learning

a local causal model.

A causal model consists of 3 elements M =<V,G,P(vi|pai)>, where (i) V = {V1, . . . Vn} is

a set of variables, (ii) G is a directed acyclic graph (DAG) with nodes corresponding to

the elements of V , and (iii) P(vi|pai), i =1, . . . , n, is the conditional probability of

variable Vi given its parents in G.

The arrows in the graph G have a causal interpretation, which means that they are viewed

as representing autonomous causal relations among the variables they connect. P (vi|pai)

represents a stochastic process by which the values of Vi are chosen in response to the

values pai, which stays invariant under changes in processes governing other variables.

The presence of a bi-directed arrow between two variables represents the presence of a

confounding factor between the corresponding variables. The causal effect of a variable X

on a set of variables S is noted as Px(s). Px(s) is identifiable from a graph G if the quantity

121

Px(s) can be computed uniquely from any positive probability of the observed variables -

that is, if P
M1

x (s) = P
M2

x (s) for every pair of models M1 and M2 with P
M1

(v) = P
M2

 (v) >

0 and G (M1) = G (M2) = G.

Let a path composed entirely of bi-directed edges be called a bi-directed path. In a causal

model the set of variables can be partitioned into disjoint groups by assigning two

variables to the same group if and only if they are connected by a bi-directed path. Such a

group is called a confounded component (c-component).

In multi-agent causal models, there is no central controller having access to all the

observable variables, but instead there is a collection of agents each having access to non-

disjoint subsets of V = {V1, . . . , Vn}. A multi-agent causal model consists of 4 elements

Mi = <VMi,GMi, PMi (vj |paj),Ki>.

VMi is the subset of variables agent i has access to.

GMi is the causal diagram over variables VMi .

PMi (vj |paj) are the conditional probabilities over the VMi .

Ki stores the intersections with other agents j, {VMi ∩ VMj }.

122

Figure A-2 Example of a multi-agent causal model with two agents.

In , an example of a multi-agent causal model is depicted. The two models are:

M1 = <VM1,GM1, PM1 (vj |paj),K1>

M2 = <VM2,GM2, PM2 (vj |paj),K2>

where, VM1 = {X, Y,Z1, Z2}, VM2 = {Y,Z2, Z3}, and K1 = K2 = {Y,Z2}

The research work on MACM are mainly carried out by (Maes and Leray 2006),

beginning from around 2003. It consists of a collection of agents each having access to a

non-disjoint subset of the variables constituting the domain. In MACM, each agent

models its own subdomain with a semi-Markovian causal model, and each of the

individual agent models in an MACM has private variables that it keeps confidential and

public variables that it shares in an intersection with other agents. MACM supposes

X

Z1

Z2

Y

Z3

Model 1

Model 2

123

agents are cooperative, which means they will not deliberately provide each other with

false information.

MACM allows for multi-agent, privacy-preserving quantitative causal inference in

models with hidden variables. Algorithms for performing probabilistic inference in

MACM without hidden variables are well studied in theory, though applicable algorithms

are still under research. Techniques to learn part of the structure of MACM from data

have been developed while the completely directed structure of an MACM has not been

investigated.

Hierarchical Bayesian Model

Hierarchical Bayesian Model (HBM) is a powerful and principled solution to the

situation where agents need to learn from one another by exchanging learned knowledge

(MacNab 2003) (Tresp and Yu 2005) .

Assume that there are M data sets M

jj
D

1
}{


 for related but not identical settings and M

different models with parameters M

jj 1
}{


 are trained on those data sets. Each data set is

sufficiently large such that),(
priorjj

hDP  is sharply peaked at the maximum likelihood

(ML) estimate
ML

j
 . Let M

k

ML

k 1
}{


 denote the maximum likelihood estimates for the M

models. If a new model concerns a related problem, then it makes sense to select new

hyperparameters
hb

h such that)(
hb

hP  approximates the empirical distribution given by

the maximum likelihood parameter estimates instead of using the original uninformed

prior)(
prior

hP  In this way the new model can inherit knowledge acquired not only from

124

its own data set but also from the other models. Figure A-3 illustrates a Hierarchical

Bayesian Model.

Figure A-3:The left is Hierarchical Bayesian Model, and the right is a plate model for HB. The large plate indicates that

M samples from)(hP  are generated; the smaller plate indicates that, repeatedly, data points are generated for each



HBM is a powerful and principled solution to MAS where agents need to learn from one

another by exchanging learned knowledge. Parametric hierarchical Bayesian modeling

and non-parametric hierarchical Bayesian modeling are powerful tools to collaborative

filtering in MAS.

Praxeic Networks

Praxeic network (PN) is a 2N-dimensional Bayesian network which is used to represent

MAS. The praxeic network for an N-agent system consists of 2N nodes, with each

h

θ1 θM

θ2

D1

y|x

h

θ

D2

DM

Parameter of

uninformative prior

M

…

…

125

participant having two nodes associated with it: one for its selectability persona and one

for its rejectability persona (Stirling and Frost 2005).

The variables associated with these nodes are the options available to the decision maker

and the edges represent the influence that one persona has on another persona. These

linkages consist of conditional selectability or conditional rejectability functions.

Consider the graph displayed in Figure A-4, which corresponds to a three-agent system

whose interdependence function is given by

311232321321321 || RRRRSRSSSRRRSSS
PPPPP  A-1

Persona does not influence and is not influenced by any other personas because of the

structure of the interdependence function.

Praxeic network is a directed acyclic graph using graph theory to express a MAS. Praxeic

network employs social utilities which satisficing game theory is based on. Satisficing

game theory provides a mechanism by which cooperative social systems may be

R1

S2

S1 R2

R3

S3

Figure A-4 Praxeic network for a three-agent system

126

synthesized according to a systematic concept of rational behavior involving social

utilities that count for the interests of others as well as of the self. Compared with

conventional methods of multiple-agent decision making, it replaces individual

rationality with satisficing rationality, replace single utility functions with dual utility

functions that separate the desirable and undesirable attributes of the options, replaces

unconditional utilities with conditional utilities.

Praxeic Networks outperforms conventional methods of multi-agent decision making. It

permits explicit modeling of situational altruistic behavior, provides a natural framework

for negotiation, can be solved using standard Bayesian network techniques.

Multi-agent Influence Diagram

The Multi-agent Influence Diagrams (MAID) extend the influence diagram framework to

the multi-agent case to represent non-cooperative games (Koller and Milch 2003).

In a MAID, there is a set A of agents. The world in which the agents act is represented by

the set X of chance variables and a set Da of decision variables for each agent a ∈A.

Chance variables correspond to decisions of nature and they are represented in the

diagram as ovals. The decision variables for agent a are variables whose values a gets to

choose, and are represented as rectangles in the diagram. D is used to denote
aAa

D


 .

Edges into a decision variable are drawn as dotted lines. The agents’ utility functions are

specified using utility variables: each agent a ∈A has a set Ua of utility variables,

represented as diamonds in the diagram. The domain of a utility variable is always a

127

finite set of real numbers. U is used to denote
aAa

U


 and V is used to denote

UDX  .

Figure A-5 shows a tree killer example of MAID. Alice and Bob are neighbors and they

share the same garden. Alice would like to build a patio and she thinks the tree in the

garden blocks the view and decision to poison the tree. Poison the tree will lead it to sick.

Bob cares about the tree, and he need to decision whether to bring a tree doctor which

will cost some money or leave the tree there and let it die. If the tree dead Bob will grow

a new tree. On the other hand, the dead tree and patio will give Alice a better view of the

garden. Alice and Bob’s decision and utility variable combine to build a MAID model.

Poison
Tree

TreeDead View

Build
Patio

Tree
Doctor

Cost

Tree

TreeSick

Figure A-5 A MAID for the Tree Killer example; Alice’s decision and utility variables are in dark gray and Bob’s in
light gray.

128

Like a BN, a MAID defines a directed acyclic graph with its variables as the nodes,

where each variable X is associated with a set of parents DXXPa )(. The value of a

utility variable is required to be a deterministic function of the values of its parents. The

total utility that an agent derives from an instantiation of V is the sum of the values of Ua

in this instantiation. Thus, by breaking an agent’s utility function into several variables, it

is only needed to define an additive decomposition of the agent’s utility

function((Ronald A. Howard 1989) (Keeney and Raiffa 1976)).

MAID is considered as a milestone for the research work on Multi-agent decision making.

It focuses on the representation of games and tries to find Nash Equilibrium in the games

with some strategies. A MAID extends the formalisms of Bayesian networks and

influence diagrams to represent game problems involving multiple agents. To take

advantage of independence structures in a MAID, a qualitative notion of strategic

relevance is defined to find a global equilibrium through a series of relatively simple

local computations. However, since the goal of MAID is to represent and solve games, it

is predetermined that it lacks the ability to handle a general Multi-agent decision problem,

not to mention dealing with a more complex and large problem domain. Its solution

strategies specify only on game problem that is a subset of decision problem.

Dynamic Multi-agent Influence Diagrams

Dynamic multi-agent influence diagram (DMAID) is an extension of MAID, which helps

to represent multistage games in a dynamic way (Zhang, Liu et al. 2002). A multistage

game is one which players choose their actions sequentially. The framework of DMAID

129

consists of pieces of multi-agent influence diagram fragments (MAIDF), which is a

slightly form-changing of MAID. Figure A-6 shows the DMAID model of an indirectly

financing game: deposit and fetch money.

Figure A-6: A DMAID model of indirectly financing game. G(t1) denotes deposit game, G(t2) denotes fetch money

game.

Definition A-5: A MAIDF is a tuple <A,X,D,U,P>, where A: a set of all agents; X:

chance variables set; D=
aAa

D


 is decision variables set; U=
aAa

U


 is utility variables

set; P: a joint probability distribution. For each agent a:

aAaAaAaA
UUUUDXxPaXxDDDDAa


  ,,)(,,,,

Definition A-6: M (T) is a DMAID, if)()(TMtM
k
 is a MAIDF at a certain time point,

C1

loan

U1

C2

Succeed

U2

C1

Take back
loan

U1

C2

Succeed

U2

t1 t2

130

tk ∈ T (k=0,1,2,…,n); T is a set of discrete time points. The MAIDF of a DMAID at time

tk depends only on its immediate past: its MAIDF at tk-1.

MAID is a graphical representation for non-cooperative games. Unlike the previous two

methods that are more relevant under MAS, MAID is focused on game theory. MAID

can represent complex games in a natural way, whose size is no larger than that of the

extensive form, but which can be exponentially more compact in (Koller and Milch 2003).

Its relevance graph data structure provides a natural decomposition of a complex game

into interacting fragments and provides an algorithm that finds equilibrium for these sub-

games in a way that is guaranteed to produce a global equilibrium for the entire game.

The divide-and-conquer algorithm generalizes the standard backward induction algorithm

for game trees and it can be exponentially more efficient than an application of standard

game-theoretic solution algorithm in (Koller and Milch 2003).

MAID right now only handles one-stage games, which means one agent plays while

others do not, then the game stops. It is thus not suitable for multi-stage context. However

it is possible to extend MAID to dynamic setting and DMAID may be a good choice.

DMAID It extends MAID in a dynamic way such that it is more suitable to analyze

multi-stage games, represent them in semantics of time and compute its Nash equilibrium

efficiently. It simplifies the dependency relations between variables in MAID of multi-

agent context. Both DMAID and MAID can be converted into game tree. However, there

is no algorithm to compute global Nash equilibrium in dynamic games yet.

Analysis and Comparisons

131

In the previous sections, six important probabilistic models in MAS has been introduced.

They are multiply-sectioned Bayesian Networks (MSBN), Multi-agent Causal Models

(MACM), Praxeic Networks (PN) and Hierarchical Bayesian Models (HBM), Multi-

agent Influence Diagrams (MAID), Dynamic Multi-agent Influence Diagrams (DMAID).

When there are many tools available, it is important to know when it is suitable to use

which tool, what capabilities they have, what are their strengths and weaknesses, why

these tools come to life, whether they can be made to an even better one, and so on. In

this section, these issues will be discussed in detail and some comparisons and analysis

will be made.

The models considered in this chapter fall into two categories. One is focused on

probabilistic learning and reasoning, like MSBM, MACM, HBM and PN; the other is on

finding global Nash equilibrium, like MAID and DMAID. It is clear from the analysis

that each method has its own application environment, its strengths and its limitations. So

when applying these models into problem solving, it is important to carefully examine the

problem settings and choose the best suitable modeling method.

132

Table A-1 Comparisons of surveyed models

Models Extend from Basic settings Advantages Limitations

MSBN BN Sparse

cooperative MAS

Exact probabilistic measure,

efficient probabilistic

reasoning, communicate by

belief over small sets of shared

variables, DAG for domain

structures

More suitable for sparse

environment,

Strict requirements

MACM CBN Cooperative

MAS

privacy-preserving quantitative

causal inference, handle hidden

variables

Algorithms for probabilistic

inference and complete

structure learning not

available yet

HBM BN MAL Learning ability The learning ability greatly

affected by the correctness

of assumed model.

PN Nil Satisficing game

theory , multi-

agent decision

making

Model altruistic behavior,

framework for negotiation

Not appropriate when more

considerations on individual

rationality

MAID ID Static games Computational efficiency and

guarantee global equilibrium

Could not handle dynamic

environment

DMAID MAID Multistage games Model time and simplify

dependence relations in MAID

no algorithm to compute

global Nash equilibrium yet

