2,694 research outputs found

    Distributed Load Balancing Algorithms for Heterogeneous Players in Asynchronous Networks

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)In highly scalable networks, such as grid and cloud computing environments and the Internet itself, the implementation of centralized policies is not feasible. Thus, nodes in such networks act according to their interests. One problem with these networks is load balancing. This paper considers load balancing in networks with heterogeneous nodes, that is, nodes with different processing power, and asynchronous actions, where there is no centralized clock and thus one or more nodes can perform their actions simultaneously. We show that if the nodes want to balance the load without complying with certain rules, then load balancing is never achieved. Thus, it is necessary to implement some rules that need to be distributed (i.e., so that they run locally on each node) due to the unfeasibility of centralized implementation. Due to the game-theoretic nature of the nodes, the concept of solution is when all nodes are satisfied with the load assigned to them, a Nash equilibrium state. Moreover, we discuss how the rules can be created and present three sets of rules for the nodes to reach a Nash equilibrium. For each set of rules, we prove its correctness and, through simulations, evaluate the number of steps needed to reach the network's Nash equilibrium.182027712797Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)CNPq [306860/2010-4, 473867/2010-9, 477692/2012-5]FAPESP [2009/15008-1

    Traffic Optimization in Data Center and Software-Defined Programmable Networks

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Distributed Game Theoretic Optimization and Management of Multichannel ALOHA Networks

    Full text link
    The problem of distributed rate maximization in multi-channel ALOHA networks is considered. First, we study the problem of constrained distributed rate maximization, where user rates are subject to total transmission probability constraints. We propose a best-response algorithm, where each user updates its strategy to increase its rate according to the channel state information and the current channel utilization. We prove the convergence of the algorithm to a Nash equilibrium in both homogeneous and heterogeneous networks using the theory of potential games. The performance of the best-response dynamic is analyzed and compared to a simple transmission scheme, where users transmit over the channel with the highest collision-free utility. Then, we consider the case where users are not restricted by transmission probability constraints. Distributed rate maximization under uncertainty is considered to achieve both efficiency and fairness among users. We propose a distributed scheme where users adjust their transmission probability to maximize their rates according to the current network state, while maintaining the desired load on the channels. We show that our approach plays an important role in achieving the Nash bargaining solution among users. Sequential and parallel algorithms are proposed to achieve the target solution in a distributed manner. The efficiencies of the algorithms are demonstrated through both theoretical and simulation results.Comment: 34 pages, 6 figures, accepted for publication in the IEEE/ACM Transactions on Networking, part of this work was presented at IEEE CAMSAP 201

    Distributed evolutionary algorithms and their models: A survey of the state-of-the-art

    Get PDF
    The increasing complexity of real-world optimization problems raises new challenges to evolutionary computation. Responding to these challenges, distributed evolutionary computation has received considerable attention over the past decade. This article provides a comprehensive survey of the state-of-the-art distributed evolutionary algorithms and models, which have been classified into two groups according to their task division mechanism. Population-distributed models are presented with master-slave, island, cellular, hierarchical, and pool architectures, which parallelize an evolution task at population, individual, or operation levels. Dimension-distributed models include coevolution and multi-agent models, which focus on dimension reduction. Insights into the models, such as synchronization, homogeneity, communication, topology, speedup, advantages and disadvantages are also presented and discussed. The study of these models helps guide future development of different and/or improved algorithms. Also highlighted are recent hotspots in this area, including the cloud and MapReduce-based implementations, GPU and CUDA-based implementations, distributed evolutionary multiobjective optimization, and real-world applications. Further, a number of future research directions have been discussed, with a conclusion that the development of distributed evolutionary computation will continue to flourish
    corecore