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Abstract: In highly scalable networks, such as grid and cloud computing environ-
ments and the Internet itself, the implementation of centralized policies is not feasible.
Thus, nodes in such networks act according to their interests. One problem with these
networks is load balancing. This paper considers load balancing in networks with het-
erogeneous nodes, that is, nodes with different processing power, and asynchronous
actions, where there is no centralized clock and thus one or more nodes can perform
their actions simultaneously. We show that if the nodes want to balance the load with-
out complying with certain rules, then load balancing is never achieved. Thus, it is
necessary to implement some rules that need to be distributed (i.e., so that they run
locally on each node) due to the unfeasibility of centralized implementation. Due to the
game-theoretic nature of the nodes, the concept of solution is when all nodes are satis-
fied with the load assigned to them, a Nash equilibrium state. Moreover, we discuss how
the rules can be created and present three sets of rules for the nodes to reach a Nash
equilibrium. For each set of rules, we prove its correctness and, through simulations,
evaluate the number of steps needed to reach the network’s Nash equilibrium.
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1 Introduction

Distributed computing is widely used to process different kinds of jobs in differ-

ent scientific fields. The development of large, heterogeneous distributed systems

such as grids [Foster et al., 2001] and clouds [Hayes, 2008] has brought new chal-

lenges, including larger distributed systems and new variables to be tackled when

allocating jobs. To achieve high performance in such systems, job distribution

across resources (or nodes) is an important issue.

Distributed systems are powerful computing infrastructures that can be used

to solve computationally demanding problems. They are geographically dis-

tributed over different autonomous users and organizations, which make them

potentially large. As a central entity may not be able to handle all these re-

sources, a decentralized resource management is desired. In addition, system

resources that are owned by distinct users and organizations may exist for other

purposes, which can introduce conflicting interests when making them available

to the system. For example, a user may be concerned only with his jobs and

resources, and may thus want to get the best resources for executing his jobs
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and minimize the use of his own resources. Such behavior can be seen as a

game where each user is interested in running his jobs faster using other users’

resources.

The large scale of distributed systems in conjunction with the users’ game

theoretic behavior motivated the development of the load balancing algorithms

presented in this paper. Load balancing algorithms try to ensure that every node

in the system has the same amount of work. To achieve this, the algorithm assigns

or moves jobs (or job parts) between nodes, thus diminishing the amount of work

in one node to augment it in another one. A finite sequence of job movements is

expected to achieve fair sharing of jobs over the nodes, with each node having

an amount of work compatible with its processing capacity.

More specifically, this paper considers the problem of balancing the load on

the nodes of a network. The model is motivated by the unfeasibility of designing

centralized load balancing algorithms. This unfeasibility can be caused by several

reasons, such as high system scalability and heterogeneity. Due to this lack of

centralized control, our model assumes that each node is an independent entity

with its own goal. In addition, if a centralized control attempts to implement any

kind of rule, the entity can simply refuse to enter the network if these rules are

too complex or counter intuitive. Even if entities agree to obey certain rules, the

network’s high scalability renders the design of a centralized algorithm unfeasible

in practical situations. Therefore, throughout the text, we define rules that are

distributed and meet the goal of each entity.

From a global point of view, the system aims to balance its load. The users,

however, want to remain in a state where they are satisfied with the load as-

signed to them, otherwise they do not have incentive to enter the network. If all

users are satisfied, the load exchange between them stops and they can concen-

trate on processing of their loads. Thus, due to the lack of central control, user

satisfaction is more important than load balancing, which motivates the use of

a game theoretic approach. Therefore, we say that load balancing converges to

a solution where all users are satisfied, which we call a Nash equilibrium state.

We therefore present some sets of rules to be used by users such that each set

of rules takes the users to a Nash equilibrium state. As a comparison metric for

each set of rules we present, we use the number of steps required in simulations

to reach a Nash equilibrium.

A key concept in this work is the lack of central control, which is the main

motivation for using Nash equilibrium as the solution concept. If there is no

central control, the system becomes anarchic. In an anarchic system, the partic-

ipating agents cannot make predictions about the system’s behavior. Therefore,

it is expected that these agents accept to follow certain rules to obtain good

operation of the system. From one point of view, they are cooperating. But not

all types of cooperation are accepted in the system: The simpler the rule, the
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better the acceptance. I.e., in face of complex rules, the nodes do not cooperate:

They simple choose to not enter the network. In this paper, the nodes want a

low load. Without rules, however, the nodes cannot estimate the fluctuations of

the future load: A node can thus suddenly receive a very high load. In addition,

exchanging loads too frequently can delay the execution of all jobs, which is not

desirable for any node in the system. Thus, the nodes agree that equilibrium is

desirable. They do not fight against equilibrium, but not all the designed rules

are well accepted.

There are several motivations for the nodes not accepting some rules: Good

rules are not accepted because they are intuitively harmful (e.g., transferring

low load is intuitively worse than transferring high load), they are difficult to

follow (e.g., not all algorithms are easily designed for asynchronous systems), or

they are impossible to follow (e.g., the set of web services available to the agents

does not include a procedure to search for information about the neighbors of

neighbors). Therefore, from this point of view, the nodes resist to cooperate,

that is, they won’t accept any rule (a central authority could mandate that). In

addition, if a node does not accept to balance the load, it is bad for the node

itself, because a computation that concerns this node (e.g., triggered by the node

owner) may never be completed if nodes just want to get rid of their load (without

performing any computation). In this sense, a well designed load balancing rule

can speed up the computation of interest to that node. A more practical example

is the case of file sharing applications, such as BitTorrent [Golle et al., 2001,

Feldman et al., 2004, Cohen, 2003] and eMule [Heckmann et al., 2005]. In these

systems, all users want to download files without uploading files. Thus, over

the years, many rules were added to file sharing protocols so that the users not

only download but also upload files. There are many scientific papers that study

which rules need to be added to obtain a “fairer” file sharing system without

scaring users away.

To illustrate this, consider the following example, based on a BitTorrent

network penalty scheme. Suppose we have a wireless network to which users

can connect using their laptops. However, users must somehow “pay” to access

the Internet using this wireless network. Assume that “processing load” is a

valid currency to pay for Internet access in this network. Users can accept jobs

or simply forward all jobs to their neighbors. In this scenario, if the wireless

network owner wants to run jobs and if all users help, each user processes a

small part and then can access the Internet. The network owner makes each

task store where and for how long it was executed. This information tells the

network owner how much each laptop collaborated in comparison to the average.

If the collaboration of a certain node is below average, considering a standard

deviation, the owner can slow down the connection speed for that node as a

penalty. Therefore, each node wants to process the load balancing average to
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avoid unnecessary effort processing more than the average. On the other hand,

if a user refuses too much load (i.e., forwarding many jobs to neighbors) the

owner will know and will apply a penalty (as in the BitTorrent network), and

the user’s Internet access would incur prejudice. In such a scenario, each laptop

would try to process exactly the average.

1.1 Related Work

In their essence, load balancing algorithms can be centralized or decentralized,

and static or dynamic. A centralized load balancing algorithm has a central en-

tity that concentrates information about the system nodes and is responsible for

assigning jobs (load) to them [Lin and Raghavendra, 1992]. On the other hand,

a decentralized algorithm [Riska et al., 2000] runs on all nodes, and each node

has a partial view of the system and thus makes a local decision to achieve load

balancing. A static algorithm [Kim and Kameda, 1992] uses unmodified infor-

mation gathered before its execution to achieve load balancing, while a dynamic

algorithm [Lu et al., 2006] can use information updated during load balancing

and/or the execution of jobs to make its decisions. Hybrid (or semi-static) ap-

proaches exist as well [Subrata et al., 2008]. This paper proposes algorithms for

decentralized dynamic load balancing.

This work does not consider dependent tasks (such as those represented by

workflows or directed acyclic graphs) during load balancing. However, a meta-

scheduler such as Condor DAGMan [CondorTeam, 2010] could be used to select,

at a higher level, tasks that are ready to be executed independently (i.e., tasks

that have all their precedences already satisfied, with no dependencies between

them). Dependent tasks could thus be handled by a DAG/workflow manager

while the load balancing algorithm deals only with independent tasks.

Many papers deal with load balancing in a game-theoretical framework. For

non-distributed systems, Even-Dar et al. [Even-Dar et al., 2007] study conver-

gence time to reach a Nash equilibrium in load balancing problems in an ele-

mentary step system (ESS), and show lower and upper bound results for many

cases. Goldberg [Goldberg, 2004] considers a weakly distributed protocol that

simulates the ESS. In the author’s protocol, a task chooses machines at random

and migrates if the load in the chosen machine is lower. He uses a potential

function to show upper bounds in the number of steps to reach Nash equilib-

rium. Even-Dar and Mansour [Even-Dar and Mansour, 2005] consider the case

where all users choose to migrate at the same time in a real concurrent model. In

this model, tasks migrate from overloaded to underloaded machines according to

probabilities computed by considering that the load information of all machines

is known. Berenbrink et al. [Berenbrink et al., 2006] propose a strong distributed

protocol that needs very little global information, where a task needs to query

the load of only one other machine, migrating if that machine has a smaller load.
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All these works consider a complete network model where a node can send

load to any other network node; this work, however, considers a more general

model with arbitrary network topologies. As far as we know, this is the first work

that considers a non-cooperative game-theoretical load balancing model with

arbitrary network topologies. Another difference between this work and others

is that in our model the resources, instead of the jobs (loads), are the players.

This fact better represents real-world distributed systems, because a job owner

assigns tasks to any resource that can execute them, without worrying about

overloading the resource. In other words, resource overload is a problem to be

addressed by the resource itself, and not by the job owner.

1.2 Contributions

This work’s main contributions are the definition of a network model that is a

closer representation of real-world networks and three sets of rules the nodes must

follow to reach Nash equilibrium. We prove the correctness of each set of rules

presented. The sets of rules are evaluated through simulations that compare the

number of steps required for the nodes to reach a Nash equilibrium. In addition,

we discuss how node rules can be created.

In our model, each entity is represented by a node, and a node has the goal of

minimizing its load by sending part of it to its neighbors in the network. We as-

sume that a node is satisfied if its load is (approximately) equal to the minimum

load of its neighbors. The nodes will never be satisfied if this weak assumption is

not considered (more details about this are presented in Section 2). We aim to

achieve a state where all nodes are satisfied, thus the load exchanges stop, either

arriving at or leaving the node, and the load can be processed without interrup-

tion. If all nodes are satisfied, we are in a Nash equilibrium [Nash, 1951] state.

For technical reasons, which we discuss in Section 2, reaching an exact Nash

equilibrium is not always feasible, and therefore we consider an approximation

to the equilibrium.

We consider that the load can be divided into infinitesimal parts. Hence, if

the system is in approximate Nash equilibrium, then the loads of the nodes are

approximately equal to those in optimal load balancing. Therefore, questions

about the price of anarchy [Papadimitriou, 2001] and similar measures are not

interesting in this model. Moreover, by setting the load of the nodes equal to

those of optimal load balancing, the system remains in equilibrium because no

node has incentive to send load to other nodes. Therefore, computing the loads

of a Nash equilibrium is another trivial task. Real-world applications that can

be arbitrarily split into smaller parts are the main focus of our algorithms. For

example, image processing filters can usually be applied to arbitrarily small parts

of an image and then merged to compose the resulting image. Such applications

are common in physics, chemistry, computer science, and biology.
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As stated before, the rules must comply with the goal of the nodes and be

implemented in a distributed way, that is, implemented at each node. Complex

rules and/or rules that do not explicitly comply with the goal of a node can be

simply ignored by the node. Thus, this work seeks to create rules that are simple

enough that the nodes agree to follow them.

In heterogeneous systems, nodes have different kinds of hardware and soft-

ware. On the other hand, in homogeneous systems, all nodes are considered to

have the same computing capacities. The model described in this work con-

siders different processing speeds at each node to represent a heterogeneous

system. In highly scalable networks, the assumption of synchronous actions

is unrealistic. In this case, the node actions can be performed sequentially or

simultaneously. In practice, however, we cannot assume that all users act si-

multaneously or sequentially. What really happens is a mix between the ESS

[Even-Dar et al., 2007], where at a given time instant only one node performs

an action, and the parallel case, where all actions are performed simultane-

ously [Berenbrink et al., 2006, Even-Dar and Mansour, 2005]. The situation is

more problematic when the actions occur simultaneously, because the subse-

quent state of the system is harder to predict than when only one player decides

at a time instant. In the asynchronous case, some of the actions occur simulta-

neously, which, besides being a more realistic scenario, is a more general case

than the ESS or parallel case. This work demonstrates that the rules proposed

are also valid for the asynchronous case.

Some kinds of games assume that users communicate false information, that

is, they lie. We do not consider this case here, since it falls under the subject of

auctions. However, in our model, a way to avoid lies is if each node “estimates” a

neighbor’s load instead of directly asking it. This approach can be implemented,

for example, by sending a small load to see how the neighbor reacts to it. Another

way is to observe the load the neighbor sends, given that all the nodes follow

the same algorithm. In addition, considering the last example given in Section

1, the tasks themselves communicate to the network owner which node executes

a given task, avoiding lies.

1.3 Paper Structure

The paper is organized as follows. Section 2 defines the system model and the

problem, as well as explains why players need to follow rules for the system to

converge to a Nash equilibrium. Section 3 discusses how the rules (algorithms)

can be designed to meet the players’ objectives. Section 4 presents three dis-

tributed algorithms and proves that they reach a Nash equilibrium. Section 5

shows the results of an empirical comparison between the three proposed algo-

rithms. The conclusion and avenues for future work are presented in Section 6.
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2 The Model

The model is composed of a network represented by a connected graph G =

(V,E), where each node i ∈ V has a processing weight pi > 0 and a processing

speed si > 0. Let �i = pi/si be the load of node i. If two nodes are connected by

an edge, we say that they are neighbors of each other, and they can send an un-

limited amount of processing weight through that edge. Throughout this study,

when a node sends processing weight to another node, by abuse of language,

we simply say that this node sends load to another node. Each network node

is controlled by a player who wants to minimize his load as well as complete

his jobs. To do this, the player can transfer an amount of load to his neighbors.

In practical situations, it is not feasible for a node to know the information of

all the other nodes in the network. Therefore, our model assumes that a node

(player) has only the load information of its neighbors and the load of the other

nodes is unknown.

We refer to a network or system as homogeneous when all si are equal;

otherwise we refer to it as heterogeneous. In homogeneous systems, we consider

without loss of generality that si = 1, and therefore �i = pi.

The players could simply send all of their loads to their neighbors, but this

would not be a good strategy, as we show in the following example. Assume

a homogeneous network with two nodes i and j connected by an edge, with

�i = 200 and �j = 100. Thus, if both players simultaneously send all their load

to their neighbors, we have �i = 100 and �j = 200; if only one node sends its

load, the other node load will be equal to 300. Therefore, regardless whether

or not the players perform their actions simultaneously, unstable load exchange

occurs indefinitely, which leads to an unpredictable delay in the execution of the

players’ own jobs. Thus, the players are willing to send their loads to available

neighbors, and do so with a minimal number of messages. Therefore, each player

needs to follow some rules.

The first rule says that a player is satisfied (i.e., has no incentive to send load

to his neighbors) if his load in the corresponding node is equal to the minimum

load of its neighbors. Let N(i) be the set of neighbors of node i. In other words,

we say a player i is satisfied if �i ≤ �j , ∀j ∈ N(i). We say that the system is in

Nash equilibrium if all players are satisfied in that state.

In practice, the continuous divisions of the load can cause infinitesimal trans-

fers between nodes, and an exact Nash equilibrium cannot be reached in a finite

number of steps. Thus, we use a relaxed definition of the equilibrium, called

ε-Nash equilibrium, that is best suited to our model.

Definition 1 Fundamental rule. A player i is ε-satisfied if �i ≤ (1 + ε)�j for

all j ∈ N(i).
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Definition 1 is called the fundamental rule because without it a player would

only be satisfied with a load equal to zero and, consequently, the system would al-

ways be unstable, without performing any useful computations. Using the above

definition, we can define the ε-Nash equilibrium.

Definition 2 ε-Nash equilibrium. The network is in ε-Nash equilibrium if all

players are ε-satisfied.

The ε value is chosen according to which values the nodes consider to be

small, that is, the load amount that does not significantly affect a node’s pro-

cessing time. For example, if 1 KB is considered to be small and the nodes have

a load of at most 1,000,000 KB = 1 GB, then, in our model, considering that

the load in each node does not exceed 1,000, we can set ε = 0.001. Section 5

uses these values in the simulations.

What really interests us, and the reason we established the fundamental

rule, is defining the rules that will be built into the system so that, given an

arbitrary initial allocation of loads on the nodes, the nodes act in a way that

the system reaches a Nash equilibrium. Using only the fundamental rule is not

sufficient to achieve system equilibrium. For example, using the same two-node

example presented above, we fall back on the erratic behavior of load exchanges,

independent of the load amount sent by the player until he becomes satisfied

and whether or not the actions are performed simultaneously. Thus, we need to

create other rules for the system to reach and remain in a Nash equilibrium.

3 Designing the System Rules

As argued in Section 2, the fundamental rule of Definition 1 is not a sufficient

rule to ensure that players reach a Nash equilibrium. In this case, we must create

new rules for the players, and these rules must be simple and distributed. To

guide the creation of these rules, we focus on the answer to three key questions:

– Who receives load?

– How much load should be sent?

– How should load be sent?

The first question concerns which nodes to select to send the load. As stated

in Section 2, we know that a node can only obtain information and send load to

its neighbors. We would therefore like to know which neighbors can be selected to

receive load. The second question tries to define the load amount that is removed

from the node in question to send to the selected neighbors. This amount depends

on the extent to which the node is overloaded with respect to its neighbors. Given
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that we have a candidate set to receive a load amount available to be sent, we

can answer the third question in several ways. For example, we can divide the

load between the neighbors that will receive load or we can simply send it to a

single node.

To better focus on the ideas, throughout this section we deal with homoge-

neous networks, that is, when �i = pi. Section 4 concretizes the ideas of this

section and then considers the heterogeneous case.

3.1 Who receives load?

A node i must select a subset of nodes N(i) to send load. To perform this

selection, i is restricted to only the information of nodes in N(i). Since the goal

is to balance the load, obviously heavier nodes should send load to lighter nodes.

Since the rules (algorithms) must be the same for all nodes, from the local point

of view of a node i, if the rule does not select neighbors j such that �j < �i to

send load to, the system load will not get balanced. Therefore, the rules must

necessarily consider load transfer to lighter nodes.

A counter intuitive approach is the case when node i selects a neighbor j to

send load to when �j ≥ �i. This is a valid approach if j can receive load if we

visualize the network globally. For instance, consider a network with the path

topology formed by three nodes a, b, and c, where a is connected with b and b is

connected with c. A Nash equilibrium is obtained when all the loads are equal

to ν = (�a + �b + �c)/3 (for the purposes of the example, we consider an exact

equilibrium). If �a > ν, �b > �a, and �c < ν, then we know that some load in a

must go to c. In this case, it is valid to send load from a to b, even with �b > �a.

On the other hand, if �a < ν, �b > �a, and �c < ν, then we know that if a sends

load to b, at some point that same load amount will return to a, making the

convergence to equilibrium slower. In other words, a node’s local view makes it

impossible to determine whether or not it is a good strategy to send load to a

more loaded node.

We can further improve the use of neighborhood information to estimate the

load of the equilibrium. The idea is to calculate the value of a “local equilibrium”

and use it to select nodes. For this, a node i calculates the local mean of the

loads, which is given by x = (�i +
∑

j∈N(i) �j)/(|N(i) + 1|). Thus, i selects only
nodes j such that �j < x to send the load to. This strategy is justified by the fact

that if we send load to nodes with load above the “local equilibrium”, then much

of that load may return to the node later. Therefore, we use a larger amount of

local information to achieve faster global load balancing, but the load may or

may not return to the node, depending entirely on the network configuration.

Summarizing the above discussion, we must always design rules that select

lighter nodes to send load to, but we can also select heavier nodes. Additionally,

the selection can use information from the local mean in an attempt to send less
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load than necessary, since the load may later have to return to the node and

thus slow down the convergence. Moreover, we can try specific combinations of

these strategies, for example, sending load only to lighter nodes that are below

the local mean.

In Section 4.1, the proposed method uses information from all neighbors

to calculate a local mean and to decide which neighbors will receive load. In

Sections 4.2 and 4.3, the load is sent to the lighter nodes, without using the

mean information.

3.2 How much load should be sent?

Since the nodes only have neighborhood information, we are never sure about

the ideal amount to be sent to neighbors. As a rule, when designing algorithms

that send small amounts of load, the convergence can be very slow but with

small load fluctuations. On the other hand, if large amounts of load are sent, the

convergence may be faster but the system may be less stable, in the sense that

the system does not even reach a Nash equilibrium or has high load fluctuations,

which, in turn, can have a negative effect on convergence speed. To illustrate this,

we present an example in Figure 1.
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100 0 1
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2
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98

(b)

100

1000

0 1

1

99

99

2

2

98

98

(c)

1000

100 0 100

100

0

0

(a)

Figure 1: Example

In Figure 1, we consider simultaneous actions. Case (a) occurs when the

nodes are extremely aggressive and in every step send all their loads to their

neighbors; in this case, a Nash equilibrium is not reached. Case (b) occurs when

each node sends almost all of its load (≈ 99%) to its neighbors. In this case, there

are high load fluctuations; however, a Nash equilibrium is slowly reached. In case

(c), the nodes act conservatively by sending low amounts of load (≈ 1%); in this

case load fluctuations do not occur and a Nash equilibrium is slowly reached. If
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we send a medium amount of load, we avoid load fluctuations and achieve faster

convergence. However, a high amount of load sent on one network can prove to

be very bad for another (see Figure 2).

100

100

0

0

50 50

5050

100 100 100 100 100

0

50 50 505050

(a)

(b)

k k

50k

Figure 2: Example

The initial network, presented in Figure 2(a), is identical to the initial net-

work of Figure 1, but in this case, the nodes send 50% of the load to neighbors in

an attempt to speed up the convergence and avoid high fluctuations. As Figure

2(a) shows, after one step, a Nash equilibrium is obtained. However, if 50% of

the load in each node is sent to neighbors in the network of Figure 2(b), the

result is very poor, because the node that originally had a load equal to 0 will

now have a load equal to 50k. Since k = O(n), when we use the same strategy,

we can get a balance that is O(n) times worse than that achieved in the previous

step.

In the examples presented, it is clear that we have a tradeoff between the

amount of load sent and the convergence time to a Nash equilibrium. Moreover,

the high load fluctuations (Figure 1(b)) and the accumulation of load at the

nodes (Figure 2(b)) pose serious problems in convergence speed and make it

difficult to determine the amount of load a node needs to send.

3.3 How should load be sent?

If the subset of neighbors that will receive load and the amount of load to be sent

are already defined, the next step is to define how the load will be sent. Let i be

a player, S the subset of neighbors of i that were selected to receive load, and Δ

the amount of load that i will send. An example of a strategy is to send Δ/|S| to
each node in S. This strategy has the advantage of being simple and “fair”, since

all nodes in S receive the same amount of load and no nodes are privileged. On

the other hand, since we seek a rapid convergence to a Nash equilibrium, we can

send Δ only to the node whose load is minimal (possibly more than one node).
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In this case, the least loaded nodes are quickly filled, therefore speeding up the

convergence. Furthermore, a low-loaded node may receive much more load than

necessary because it has become a “target” for its neighbors to send their loads

to. This can lead to problems of load accumulation, as seen in the example of

Figure 2(b).

Both of the discussed strategies have problems. In the egalitarian division

strategy, lighter nodes have no priority in receiving load, and therefore the con-

vergence may be slow. In the “best response” strategy, the lighter nodes have

priority in receiving load, causing load to accumulate at these nodes, possibly

unbalancing the network even further. In an attempt to bypass these problems,

we describe the water-filling strategy, a mix of the two previous strategies.

input: Δ, S.

begin
Sort S = {i1, . . . , im} such that �i1 ≤ �i2 ≤ . . . ≤ �im
L = 0, k = 0, �im+1 =∞, ts = 0

while Δ > 0 do
k = k + 1

ts = ts+ sik
h = min{Δ/

ts , �ik+1
− �ik}

L = L+ h

Δ = Δ− h · ts
for j = 1 to k do

send sij (L − �ij ) to node j

end

Algorithm 1: Water filling

Algorithm 1 describes the water-filling technique, executed by each node i,

which receives Δ and S as input. The idea behind this technique is to equally

distribute the load at the lightest nodes in S. At the end of each step of the

while loop, the load of the k nodes with lowest loads are increased until the load

of the k + 1-th node, or all the load in Δ is totally distributed. The name of

this technique is due to the fact that it resembles the situation in which a liquid

is poured to fill a container and the lowest levels of the container get equally

filled. Figure 3 shows an example of Algorithm 1’s execution. Initially, in Figure

3(a), we have Δ = 100; after executing the water-filling algorithm, we have the

configuration in (b).

Note that Algorithm 1, can be implemented to execute in O(N logN) time

(due to the sorting step) and O(N) message complexity.

In short, there are three options for sending load. Egalitarian division is

simple and “fair”; however, by not setting priorities to nodes, it may have a slow

convergence rate. This strategy is used in Section 4.1. The best response method

gives preference to the least loaded nodes but can lead to load accumulation. The
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Figure 3: Example

best response strategy is used in Section 4.2. The water-filling technique is a mix

of the other two strategies, with the load equally and progressively distributed

between the least loaded nodes; this strategy is used in Section 4.3.

4 Distributed Algorithms for Load Balancing

Section 3 discusses how to design simple and distributed rules that can be used

by nodes to reach a Nash equilibrium. The discussion focused on three key ques-

tions and presented some ideas and strategies. Much of the discussion purposely

did not formalize or concretize these ideas, because we believe that simply pre-

senting the algorithms can avoid the rich discussion of Section 3 about the many

possibilities on how to design system rules. Furthermore, the contents of Section

3 explain“how to think” when designing such rules, which can help and guide in

future works on this subject.

This section aims to concretize the discussion of Section 3 by presenting three

distributed and asynchronous methods to be used by the nodes in heterogeneous

systems. In each method, we present proof of convergence to a Nash equilibrium.

Later, in Section 5, we perform empirical tests to compare the convergence speeds

of these methods.

Some details about the asynchronous environment are worth discussing. For

example, to obtain neighbors’ load information, a user sends parallel requests to

them for the information. A reliable protocol (i.e., one that guarantees message

delivery) is used in the communication between nodes, and parallel requests are

repeated if any of the responses are not received before a timeout.

Due to the system’s asynchrony, the responses arrive with different delays.

Thus, if a neighbor updates its load, its response may contain obsolete informa-

tion. In this case, a node needs to synchronize its neighbors’ responses. However,

such an implementation is complicated and, therefore, it is a deciding factor for

users in sticking with the proposed protocols. Therefore, it is possible to receive

obsolete information, but it only interferes with the algorithm’s correctness if it
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occurs very often. Experiments show that the presented algorithms converge to

a solution even if the information used in the computation of neighbors’ loads is

obsolete.

Some proofs need a chronological time notion. A time instant is the point

in time when one or more actions are performed simultaneously. Given a time

instant t, the time instant t+ 1 is the time instant following t.

In each of the following methods, the algorithm presented is used by a given

node i. We use S to denote the subset of neighbors to which i sends its load,

Δ to denote the amount of load i will send, and x to denote the mean over a

specific subset of neighbors. Each method redefines S,Δ, and x. In addition, by

simplicity, we consider an ε-satisfied player i, one who satisfies li ≤ (1 + ε)3lj ,

since we can use ε′ = ε/7 instead of ε. In this case, an ε′-satisfied player with this

condition is also an ε-satisfied player with the original condition. We note that

there is no other intuition in redefining the ε-satisfied player; this is done only

to directly fit in Definitions 5 and 6 of the bounded step method of Section 4.2,

which are based on the definitions used in [Awerbuch et al., 2008].

4.1 Egalitarian Method

This section describes the egalitarian method, presented in Algorithm 2. The

design of Algorithm 2 is motivated by simplicity and the use of all available

information to calculate a “local equilibrium”, as explained in more detail in

Section 3.1. The reason to use the “local equilibrium” to define Δ is to prevent

the load from returning to the original node. Thus, if we use a more “aggressive”

division of the load rather than an egalitarian one, it could cause load accumula-

tion at the nodes, and hence the goal of preventing the load from returning to its

origin would not be achieved. In short, the egalitarian method distributes load

in a conservative way, trying to prevent the load from returning and possibly

speeding up the convergence process.

In the egalitarian method, the set S is composed of only nodes that make i

unsatisfied, that is, S = {j ∈ N(i) : (1 + ε)3�j < �i}.
Since we consider the heterogeneous case, x is a local mean given by the sum

of the processing weights pj divided by the total processing speeds sj , but since

we consider an ε-approximation of the equilibrium, the definition of x needs to

express this approximation as well. Let S= = {j ∈ N(i) : �i/(1+ ε)3 ≤ �j ≤ (1+

ε)3�i} and S �= = N(i) \ S=. Therefore, x is given by x =
pi+

∑
j∈S=

pi+
∑

j∈S �= pj

si+
∑

j∈S=
si+

∑
j∈S �= sj

.

In other words, the nodes in S= are considered to have their load equal to �i,

since they can neither send nor receive load from i (due to the definition of S).

Moreover, Δ is defined as the “excess” of the processing weights of node i

regarding the mean, that is, (�i− x)si. The method is called egalitarian because

Δ is proportionally divided (considering the speeds sj) between the nodes in S
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such that all the neighbors receive the same amount of load.

begin
Let S= = {j ∈ N(i) : �i/(1 + ε)3 ≤ �j ≤ (1 + ε)3�i}
Let S �= = N(i) \ S=

Let x =
pi+

∑
j∈S=

pi+
∑

j∈S �= pj

si+
∑

j∈S=
si+

∑
j∈S �= sj

Let Δ = (�i − x)si
if Δ > 0 then

Let S = {j ∈ N(i) : (1 + ε)3�j < �i}
for j ∈ S do

Send Δ
sj∑

k∈S sk
from i to j /* decreases Δ */

end

Algorithm 2: Algorithm for player i

In Algorithm 2, note that each node j receives the same amount

Δsj∑
k∈S sk
sj

=

Δ/(
∑

k∈S sk) of load; this justifies the name egalitarian.

As an example, consider two nodes in a heterogeneous network, where pi =

200, si = 2, pj = 100, sj = 3, and ε is very small. Thus, x = (200+100)/(2+3) =

60 and Δ = (100− 60) · 2 = 80. Therefore, if i sends 80 to j, the system reaches

a Nash equilibrium.

We must show that Algorithm 2 reaches equilibrium. A technique often used

to show the convergence to equilibrium is the potential function that sums

the squares of the loads [Even-Dar et al., 2007]. However, this technique cannot

be used in our case, as shown in the following example. Consider a homoge-

neous network with a star-like topology with nodes a, b, c, d, and e and edges

(a, b), (a, c), (a, d), and (a, e). Initially �a = 0 and �b = �c = �d = �e = 10. Thus,

the sum of the squares of the loads is 0+100+100+100+100 = 400. We assume

that all nodes act simultaneously; thus after one step of Algorithm 2, we have

�a = 20 and �b = �c = �d = �e = 5, and the sum of the squares of the loads is

equal to 400+ 25+ 25+ 25+ 25 = 500. Using the same idea, after another step,

a Nash equilibrium is reached and the sum of the squares of the loads is equal to

320. In other words, this function can increase or decrease after a step, making

it unsuitable for measuring the progress to a Nash equilibrium.

Lemma3. Let �ti be the load of node i at time t. Let Lt = (�tv1 , �
t
v2 , . . . , �

t
vn) be

the array of the loads at time t sorted in non-decreasing order. If at time t there

is at least one node with Δ > 0, then Lt+1 is lexicographically greater than Lt.

Proof. The nodes that send load can have their load decreased at time t + 1;

therefore these are the nodes that hinder the demonstration. This proof considers

the case where all �i are distinct but, using the same idea, a similar proof can

be carried out for the case where not all �i are distinct.

2785Bittencourt L.F., Miyazawa F.K., Vignatti A.L.: Distributed Load ...



Let Q be the set of nodes that send load (i.e., those nodes with Δ > 0) in

time t. By hypothesis, Q �= ∅. Note that a node in Q can also receive load at

time t. Let q = argmini{�t+1
i : i ∈ Q}. That is, among the nodes that sent load

at time t, q is the node that ends up with the lowest load at time t+ 1.

Suppose that q is in the k-th position of the array Lt+1. Let At = (�tv1 , �
t
v2 ,

. . . , �tvk−1
) be the subvector of the k− 1 first positions of Lt. We say that a node

i belongs to At if its load is among the loads of the array At. In the way that

q is chosen, the nodes belonging to At+1 only receive load (without sending) or

remained unchanged at time t. Thus, all the values in At+1 are greater than or

equal to the corresponding values of At.

Next, we consider two cases. (i) A node i belongs to At+1 such that i receives

load at time t. In this case, i belongs to both At and At+1 and its load increases

at time t + 1. Therefore, at least one value in At+1 is strictly greater than one

value in At, and therefore Lt+1 is lexicographically greater than Lt.

In the complementary case, we have that (ii) all nodes belonging to At+1

neither receive nor send load at time t. Thus, all values of At and At+1 are equal.

In this case, we show that the k-th position of Lt+1 is strictly greater than the

same position in Lt. Let s be the less loaded node at time t that receives load

from q. Since s receives load, it cannot belong to At. Thus, at time t, s will be

at least in the k-th position. Therefore, the value of the k-th position of Lt is

at most �ts. Note that �t+1
q ≥ �tq −Δ = xt

q > �ts, where xt
q is the mean value for

node q at time t, and the last inequality is true because s receives load from q

at time t. Therefore, the value of the k-th position increases, and therefore Lt+1

is lexicographically greater than Lt.

Note that this proof is valid for any number of players who send at any given

time; therefore it is valid for the asynchronous case.

Theorem 4 Convergence. In asynchronous and heterogeneous networks, if the

nodes use the egalitarian method described in Algorithm 2, then the system con-

verges to an ε-Nash equilibrium.

Proof. If the system is not in Nash equilibrium, then at least one node is un-

satisfied. Among the unsatisfied nodes, let i be the most loaded. By the choice

of i, all j ∈ N(i) have �j ≤ (1 + ε)3�i. Moreover, since i is unsatisfied, then at

least one j ∈ N(i) has �j(1+ε)3 < �i. When xi is calculated, the nodes j ∈ N(i)

such that �i
(1+ε)3 ≤ �j ≤ (1 + ε)3�i have their load rounded to �i. Therefore,

�i > xi and, consequently, Δ = �i − xi > 0. Thus, we can use the result of

Lemma 3, which guarantees that the vector of loads sorted in non-decreasing

order in the next time moment is lexicographically greater than the vector of

the current step. Since such a vector has a maximum value, we know that the

process converges to an ε-Nash equilibrium.

2786 Bittencourt L.F., Miyazawa F.K., Vignatti A.L.: Distributed Load ...



4.2 Bounded Step Method

The aim behind the method presented in this section is to bound the load

amount that a player can send and receive at a given time. Thus the system

avoids high fluctuations and load accumulation, hoping to quickly converge to

an equilibrium. The method is inspired by the techniques used by Awerbuch

et al. [Awerbuch et al., 2008], who obtain a poly-logarithmic upper bound for

another load balancing problem. Although these authors assume some rules in

a general, they do not consider how these rules can be implemented in practice.

We note that although these rules are easy to state, their implementation is

more problematic, especially in the case of asynchronous systems. More specifi-

cally, we define two rules that users should follow, called the inertia and bounded

step rules [Awerbuch et al., 2008]. After that, we discuss how these rules can be

implemented and we present algorithms for their implementation.

Definition 5 Inertia rule. A node i can only send load to a neighbor j if

�i > (1 + ε)3�j .

In other words, the inertia rule ensures that we can only send load between

two nodes if their loads differ significantly.

Definition 6 Bounded step rule. Let �ti be the load of node i at time t. Then

– �ti/(1 + ε) ≤ �t+1
i ≤ (1 + ε)�ti, and

– �ti ≥ η, where η is a small number.

The bounded step rule consists of two constraints. The first ensures that a

node’s load does not vary too much, and the second one guarantees that we

have at least a small load amount at a node during execution. The second is a

technical constraint because if �ti = 0, then �t+k
i = 0 for all integer k ≥ 1. If the

nodes obey these two rules, then they converge to a Nash equilibrium, as shown

in Theorem 7.

Theorem 7 Convergence [Awerbuch et al., 2008]. If the load exchanges are

non-null and satisfy the inertia and bounded step rules, the system converges to

an ε-Nash equilibrium.

Next, we explain how the inertia and bounded step rules are implemented at

the nodes. We describe two algorithms, called SEND-RECEIVE and LISTENER.

To not violate the bounded step rule, a node cannot just send an arbitrary

load amount to another node. Thus, a sender node needs to communicate how

much it is willing to send, and the receiver node can then communicate to the

sender how much it can accept. In the SEND-RECEIVE algorithm, the SEND part

deals with “trying” to send the load, and the RECEIVE part deals with how much
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the node can accept. The real sending of load is performed by the LISTENER

algorithm.

As discussed above, in the SEND part of SEND-RECEIVE, the load is not im-

mediately sent; what happens is the transmission of an “announcement” from

a node i to a node j stating the load amount i is willing to send to j. When

i announces the load transfer to j, i moves an amount of load to a buffer bj
in order to “reserve” this amount for j. To not violate the bounded step rule,

the reserved load bj is an overestimation of the amount that i is willing to send

to j; this is discussed later, in Lemma 9. Since the reserved load is still at i,

�i does not change. The announced load is sent to j only when after j answers

the announcement of i, stating the load amount that j will accept from i. In

other words, i sends a message to j stating how much load it is willing to send,

j sends a reply message stating the fraction of load it is willing to receive, and

then i finally sends the load that j is willing to receive. This message exchange

is needed to ensure the correct working of the asynchronous protocol.

According to the inertia rule, node i can only send load to a node j ∈ N(i)

when (1 + ε)3�j < �i. In addition, i does not send load to j if the buffer bj is

not empty, since this means that i already tried to send load to j but j has not

yet answered. Therefore, the set S of the nodes that can receive load from i is

defined as S = {j ∈ N(i) : (1 + ε)3�j < �i, bj = 0}.
To define Δ, we must respect the bounded step rule, which says that pti −

Δ ≥ pti/(1 + ε) (actually, the bounded step rule is defined for �i, but using pi
produces an equivalent definition). Therefore, Δ ≤ pti(1 − 1

1+ε ), but
∑

j∈N(i) bj
is already reserved to be sent to other nodes. Let di = pi −

∑
j∈N(i) bj be the

available load amount that i can send to other nodes. Therefore, Δ is defined as

Δ = di(1− 1
1+ε ).

We also need to determine how Δ is divided among the nodes in S. In this

case, Δ is equally divided among the nodes in S. Thus, i announces the sending

of Δ/|S| to each node j ∈ S and reserves di/|S| in the buffer bj. This reserved

amount is needed to ensure that the bounded step rule is not violated in the

asynchronous case, as shown in the analysis below.

Let rj be the announced load received from node j, that is, the amount

that j wants to send to i. In the RECEIVE part, the total announced load Ro =∑
j∈N(i) rj is used to calculate the amount of the load that i will refuse. Hence,

for each j ∈ N(i), i refuses max
(
0, rj

(
1− εdi

Ro

))
of the announced load of node

j. Note that if i receives more than ε�i, the bounded step rule is violated. Thus,

if we have an excess of announced load, that is, Ro − ε�i > 0, then the refused

amount is greater than zero in order to respect the bounded step rule.

Algorithm 3 formalizes the above discussion.
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begin

/* SEND part */

S ← {j ∈ N(i) : (1 + ε)3�j < �i, bj = 0}
di ← pi −

∑
j∈N(i) bj

Δ← ε
1+εdi

foreach j ∈ S do
Announces the sending of Δ/|S| to j

bj ← di/|S|
/* RECEIVE part */

Ro ←∑
j∈N(i) rj the total received announcements

foreach j ∈ N(i) do

Refuse max
(
0, rj

(
1− εdi

Ro

))
of the received announcement of node

j

rj ← 0

end

Algorithm 3: SEND-RECEIVE algorithm for player i

Algorithm 4 describes the procedure LISTENER, which has maximum execu-

tion priority. Here LISTENER is responsible for the real load transfer between

nodes, and it runs every time the node receives a message of a refused load, even

if the refused load is equal to zero. The procedure LISTENER has the highest

execution priority of the node’s tasks, and is thus immediately run when the

node receives a refused load message.

begin
Let c be the refused load received from node j:

– send bj − c to node j

– bj = 0 /* no load is now reserved to node j */

end

Algorithm 4: LISTENER algorithm for player i

When SEND-RECEIVE is running the RECEIVE part, messages of refused load

that are generated trigger the neighbors’ LISTENER procedures, which then start

sending load to this node. We assume that SEND-RECEIVE and LISTENER have

atomic execution, that is, once their execution starts on a node, it cannot be

interrupted by other tasks on the same node.

Lemma8. Algorithm SEND-RECEIVE respects the inertia and bounded step rules.

Proof. The inertia rule is clearly respected by the selection of the set S in the

first line of the SEND-RECEIVE algorithm. Since SEND-RECEIVE does not send
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load, we only need to show that load receiving does not violate the bounded

step rule. Let pti and pt
′
i be, respectively, the values of pi immediately before and

after the execution of the LISTENER algorithm. Therefore, we need to show that

pt
′
i ≤ (1 + ε)pti.

Note that if Ro < εdi, then the node refuses 0 of the announced load, and

therefore receives all loadRo. Otherwise, the node refuses
(
1− εdi

Ro

)∑
j∈N(i) rj =

Ro − εdi, and therefore receives load εdi. Thus, in both cases, the node receives

at most εdi ≤ εpi.

Lemma9. Algorithm LISTENER respects the inertia and bounded step rules.

Proof. Let pti and pt
′
i be, respectively, the values of pi immediately before and

after LISTENER is run. During the execution of LISTENER , node i does not receive

load; thus, trivially, pt
′
i ≤ (1 + ε)pti. In addition, LISTENER sends load to a node

chosen by SEND-RECEIVE, and hence, by Lemma 8, it respects the inertia rule.

Therefore, we need to show that 1
1+εp

t
i ≤ pt

′
i .

Note that the sent load is equal to at most the load that had been announced

for sending, and this announced load is at most ε/(1 + ε) of the load that was

reserved (see the two statements within the loop of the SEND part). Thus, after

sending, the node has at least 1/(1 + ε) of the reserved load. Since the reserved

load is part of the node’s load, after LISTENER is run, the node has at least

1/(1 + ε) of the previous load.

Theorem 10. In asynchronous and heterogeneous networks, if the nodes use the

bounded step method described in algorithms 3 and 4, the system converges to

an ε-Nash equilibrium.

Proof. We show that if the system is not in a Nash equilibrium, then the unsat-

isfied nodes send a non-null load amount to their neighbors. This fact, together

with Theorem 7 and lemmas 8 and 9, proves the result.

Consider a non-Nash equilibrium state and let i be an unsatisfied node. When

i executes SEND-RECEIVE, we have two cases. If Δ = 0, then
∑

j∈N(i) bj �= 0.

Therefore, i has a reserved load that will be sent to its neighbors. Otherwise, if

Δ �= 0, i reserves the load that will be sent to at least one neighbor. In both

cases, the neighbors never refuse all the announced load of node i; that is, i will

always send a portion of its load to the selected neighbors.

4.3 Aggressive Method

This section describes the aggressive method. It is thus named because it sends

load without worrying about high load fluctuations or accumulations, it does not

use much information about its neighborhood, and it prioritizes neighbors with

low load when sending load. Since we want to aggressively distribute the load,
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the load is sent using the water-fill algorithm because, among the techniques dis-

cussed, it is the most sophisticated: While it prioritizes less loaded nodes, it also

performs load balancing on participating nodes. In short, the aggressive method

sends large load amounts without worrying about the negative consequences,

hoping to quickly converge to a Nash equilibrium.

To reach a Nash equilibrium, the loads should be sent to lighter nodes. Thus,

in the aggressive method, neighbors with higher loads are not considered by

the algorithm, unlike the egalitarian method, where heavily loaded nodes are

considered to compute the load equilibrium value and hence avoid problems of

load returning, load accumulation, and high load fluctuations in the nodes. The

set S is defined as S = {j ∈ N(i) : (1+ ε)3�j < �i}, and Δ is equal to the excess

of processing weights in i regarding the mean of S ∪ {i}. Thus, unless S = ∅, Δ
is always positive, which demonstrates the aggressiveness in sending the load.

Algorithm 5 describes the method.

begin
Let S = {j ∈ N(i) : (1 + ε)3�j < �i}
Let x =

pi+
∑

j∈S pj

si+
∑

j∈S sj

Let Δ = (�i − x)si
water-fill(Δ,S)

end

Algorithm 5: Aggressive method algorithm for player i

The water-fill() algorithm used in Algorithm 5 is a straightforward gen-

eralization of Algorithm 1 for the case of heterogeneous players; therefore the

generalization details are omitted.

Claim 11. Let T , L, and L′ be finite sets of real numbers, where L and L′ have
the same cardinality. If the sorted vector of the values in L′ is lexicographically

greater than the sorted vector of the values in L, then the sorted vector of the

values in T ∪ L′ is lexicographically greater than the sorted vector of the values

in T ∪ L.

Theorem 12 Convergence. In asynchronous and heterogeneous networks, if

the nodes use the aggressive method described in Algorithm 5, then the system

converges to an ε-Nash equilibrium.

Proof. In the asynchronous case, only a subset of nodes execute the algorithm

at a given time instant. Let A ⊆ V be the set of players executing Algorithm 5

or have its load changed (by one of the players executing the algorithm) at time

t. Let Lt be the load vector of the nodes in A at time t sorted in non-decreasing

order of loads. We show that Lt+1 is lexicographically greater than Lt. Let

Amin ⊆ A be the set of nodes that have the lowest load among the nodes of A.

At least one node u ∈ Amin is adjacent to a node v such that �tv > �tu. At time t,
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using Algorithm 5, u does not send load and v sends part of its load to u. Let x

be the mean load of node v, computed by Algorithm 5. At time t+ 1, we have

�t+1
v ≥ x > �tu. Therefore, the load of v (or any other node in A\Amin) decreases

but never becomes smaller than the load u had in the previous step. Thus, Lt+1

is lexicographically greater than Lt. Therefore, using Claim 11, the load vector

of the nodes in V at time t sorted in non-decreasing order is lexicographically

greater than the sorted load vector of the nodes in V at time t+ 1.

5 Empirical Analysis

Next, we empirically compare the algorithms proposed in Section 4. To do this,

we consider networks with properties similar to those of real-world networks.

The comparison metric is the number of steps to reach an ε-Nash equilibrium,

and we change important parameters of the simulation to analyze their effect on

the algorithms’ performance.

Unstructured network topologies, given by random networks are natural mod-

els to perform comparisons. In this context, the most commonly studied mod-

els are the Erdős-Renyi model G(n, p) [Erdös and Rényi, 1959] and the closely

related model G(n,M). Neither model is consistent with the properties ob-

served in unstructured real-world networks. An alternative, which we use in

the simulations, is the scale-free networks model [Barabási and Albert, 1999].

Scale-free networks are noteworthy because many empirically observed networks

appear to be scale free [Barabási and Albert, 1999], including computer net-

works, social networks, transportation networks, and citation networks. In the

case of structured networks (e.g., some P2P networks [Ratnasamy et al., 2001,

Rowstron and Druschel, 2001, Stoica et al., 2001]) or parallel systems, the hy-

percube network is a useful evaluation model. Through brute force simulations

in small networks, we observed that the worst case topology is the linear (or

path) network, which is a network with nodes V = {v1, v2, . . . , vn}, where the

edges are of the form (vi, vi+1) for i = 1, . . . , n− 1.

In the simulations, a network configuration consists of the network’s size,

topology, node loads, and node speeds and whether execution is asynchronous

or completely parallel. Thus, the results presented for a given network config-

uration are obtained from the arithmetic mean of 10 executions on the same

configuration. It is worth noting that if some parameters are randomly gener-

ated, then the number of steps needed in each run of the “same” configuration

can change (e.g., the simulation is performed 10 times in a scale-free network

with n nodes and taking the arithmetic mean, but in each single run the gener-

ated network may be different).

Let smax be the greatest speed among all the nodes of an instance. To simulate

the asynchronous system, at a given time a node i runs its algorithm with prob-

ability si/smax. This probability is justified by the fact that the fastest (slowest)
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nodes, that is, those with higher (lower) processing power, run their algorithms

more (less) often. In all simulations, we use ε = 0.001 and networks with size

2, 4, 6, . . . , 98, 100, except for the hypercube network, where the evaluated sizes

are 2, 4, 8, 16, 32, 64, and 128.

Figure 4 shows the results for the scale-free, hypercube, and path topologies.

The processing weights and speeds were chosen uniformly at random in the

ranges [1, 1000] and [1, 10], respectively, and the network is asynchronous. Due

to the great difference between the results of the bounded step and the other

two methods, we present the results in separate charts.
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Figure 4: Simulations on asynchronous networks
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In Figure 4, we note that the bounded step method has a convergence time

much greater than for the other methods. Simulation of the path network topol-

ogy using the bounded step method became unfeasible for some network sizes

due to long simulation times; thus, we choose not to present these results here.

Comparing the results of Figures 4(a), 4(b) and 4(c), we note that in all cases

the aggressive method reaches a Nash equilibrium more quickly. Moreover, in

all methods the number of steps is highly dependent on the network topology

used, with the path topology being the worst. Examining the path topology

more closely, we can see that a load at one end of the path must pass through

all the nodes to reach the other end. Thus, we can suspect that the number of

steps needed to reach a Nash equilibrium is highly influenced by the network di-

ameter. This does not, however, seem to be true in general, since most scale-free

networks have a diameter on the order of ln lnn [Cohen and Havlin, 2003] and

hypercubes have a diameter logn, but the simulations shows the hypercube has

faster convergence.

In Figure 5, we analyze the impact of asynchrony and heterogeneity. These

results can be compared with those of Figure 4. Figures 5(a) and 5(c) present

the simulation results for the case where all players perform in parallel, that is,

the system is synchronous. Figures 5(b) and 5(d) examine the synchronous and

homogeneous cases, that is, where all the nodes have the same speed. To make a

more accurate comparison, we set all nodes to have a speed equal to 5.5, which

is the average speed in the simulations of Figure 4.

We can see that in the synchronous case, the convergence becomes three to

five times faster for the aggressive and egalitarian methods, and about 10 times

faster for the bounded step method. The bounded step method is the method

that most benefits from synchronicity due to the exchange of messages, because

a node that executes its algorithm more often does not require waiting for a

reply message from a node that executes its algorithm less frequently, as in the

asynchronous case. When the synchronous and homogeneous case is considered,

the convergence becomes about 1.5 times faster in all methods, compared with

the synchronous and heterogeneous case.

In short, we conclude the aggressive method to be the most efficient, while

the bounded step method proves to be an unfeasible alternative due to the

complexity of its implementation and convergence time.

6 Conclusion and Future Work

This article discusses the problem of load balancing in a network where a central

monitoring system is impractical or impossible to implement, leading to nodes

(players) that act in a game-theorical fashion. We show that the network does not

stabilize if rules are not imposed. Thus, rules are created with the condition that
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Figure 5: Simulations on synchronous networks

they must be simple, distributed, and meet the players’ objectives. We discuss

how the rules can be created and we present three sets of rules: aggressive,

egalitarian, and bounded step. We present a formal proof of the correctness of

each set of rules . To evaluate the performance of each set of rules, we perform

simulations that empirically show that the aggressive method is the most efficient

one, while the bounded step method becomes unfeasible in practice.

From a theoretical point of view, it would be interesting for future work to

show lower and upper bounds for the number of steps in each method, possi-

bly considering specific topologies (e.g., the path topology). From a practical

standpoint, one can create more efficient methods, analyze the case of transient

populations, and examine whether these methods could be used in similar models

of network load balancing.

Another important future direction is to consider that the nodes can lie

about their loads. In this case, the nodes behave selfishly because they can,

for example, say that they are overloaded and then it is possible to cheat by

using the algorithms proposed in this paper. In this paradigm, mechanism design

techniques must be used to design rules that do not encourage users to lie about

their load.
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