1,636 research outputs found

    Mental Imagery in the Regulation of Differential Fear Conditioning: A Multimodal Investigation Involving Self-Report, Psychophysiology, and Brain Imaging

    Get PDF
    Mental imagery is a common component in a range of emotion regulation techniques. However, the effectiveness and neural mechanisms of regulation via mental imagery are underexplored due to a lack of studies targeting mental imagery specifically. This discrepancy results in uncertainty regarding the mechanism of regulation in existing paradigms. Biased competition for attentional resources presents a plausible model by which a mental imagery-based distracter can downregulate response to an emotional stimulus. If visualizing an imagined distracter effectively regulates emotional response, the inclusion of mental imagery components in other techniques represents a potential confound. To address this discrepancy, this dissertation investigates the effectiveness and neural correlates of mental imagery in the regulation of differentially conditioned fear. Results of this investigation indicate that mental imagery-based regulation is comparably effective to object-based distraction, but requires a greater investment of cognitive resources to perform. Furthermore, while neural mechanisms of this regulation are consistent with biased competition, mental imagery-based distraction demonstrates notable differences in neural correlates from those identified in object-based distraction. In conclusion, mental imagery represents both a distinct and effective technique in emotion regulation

    Social re-orientation and brain development: An expanded and updated view.

    Get PDF
    Social development has been the focus of a great deal of neuroscience based research over the past decade. In this review, we focus on providing a framework for understanding how changes in facets of social development may correspond with changes in brain function. We argue that (1) distinct phases of social behavior emerge based on whether the organizing social force is the mother, peer play, peer integration, or romantic intimacy; (2) each phase is marked by a high degree of affect-driven motivation that elicits a distinct response in subcortical structures; (3) activity generated by these structures interacts with circuits in prefrontal cortex that guide executive functions, and occipital and temporal lobe circuits, which generate specific sensory and perceptual social representations. We propose that the direction, magnitude and duration of interaction among these affective, executive, and perceptual systems may relate to distinct sensitive periods across development that contribute to establishing long-term patterns of brain function and behavior

    Music models aberrant rule decoding and reward valuation in dementia.

    Get PDF
    Aberrant rule- and reward-based processes underpin abnormalities of socio-emotional behaviour in major dementias. However, these processes remain poorly characterized. Here we used music to probe rule decoding and reward valuation in patients with frontotemporal dementia (FTD) syndromes and Alzheimer's disease (AD) relative to healthy age-matched individuals. We created short melodies that were either harmonically resolved ('finished') or unresolved ('unfinished'); the task was to classify each melody as finished or unfinished (rule processing) and rate its subjective pleasantness (reward valuation). Results were adjusted for elementary pitch and executive processing; neuroanatomical correlates were assessed using voxel-based morphometry. Relative to healthy older controls, patients with behavioural variant FTD showed impairments of both musical rule decoding and reward valuation, while patients with semantic dementia showed impaired reward valuation but intact rule decoding, patients with AD showed impaired rule decoding but intact reward valuation and patients with progressive non-fluent aphasia performed comparably to healthy controls. Grey matter associations with task performance were identified in anterior temporal, medial and lateral orbitofrontal cortices, previously implicated in computing diverse biological and non-biological rules and rewards. The processing of musical rules and reward distils cognitive and neuroanatomical mechanisms relevant to complex socio-emotional dysfunction in major dementias

    Music models aberrant rule decoding and reward valuation in dementia.

    Get PDF
    Aberrant rule- and reward-based processes underpin abnormalities of socio-emotional behaviour in major dementias. However, these processes remain poorly characterized. Here we used music to probe rule decoding and reward valuation in patients with frontotemporal dementia (FTD) syndromes and Alzheimer's disease (AD) relative to healthy age-matched individuals. We created short melodies that were either harmonically resolved ('finished') or unresolved ('unfinished'); the task was to classify each melody as finished or unfinished (rule processing) and rate its subjective pleasantness (reward valuation). Results were adjusted for elementary pitch and executive processing; neuroanatomical correlates were assessed using voxel-based morphometry. Relative to healthy older controls, patients with behavioural variant FTD showed impairments of both musical rule decoding and reward valuation, while patients with semantic dementia showed impaired reward valuation but intact rule decoding, patients with AD showed impaired rule decoding but intact reward valuation and patients with progressive non-fluent aphasia performed comparably to healthy controls. Grey matter associations with task performance were identified in anterior temporal, medial and lateral orbitofrontal cortices, previously implicated in computing diverse biological and non-biological rules and rewards. The processing of musical rules and reward distils cognitive and neuroanatomical mechanisms relevant to complex socio-emotional dysfunction in major dementias

    Reduced Amygdala and Ventral Striatal Activity to Happy Faces in PTSD Is Associated with Emotional Numbing

    Get PDF
    There has been a growing recognition of the importance of reward processing in PTSD, yet little is known of the underlying neural networks. This study tested the predictions that (1) individuals with PTSD would display reduced responses to happy facial expressions in ventral striatal reward networks, and (2) that this reduction would be associated with emotional numbing symptoms. 23 treatment-seeking patients with Posttraumatic Stress Disorder were recruited from the treatment clinic at the Centre for Traumatic Stress Studies, Westmead Hospital, and 20 trauma-exposed controls were recruited from a community sample. We examined functional magnetic resonance imaging responses during the presentation of happy and neutral facial expressions in a passive viewing task. PTSD participants rated happy facial expression as less intense than trauma-exposed controls. Relative to controls, PTSD participants revealed lower activation to happy (-neutral) faces in ventral striatum and and a trend for reduced activation in left amygdala. A significant negative correlation was found between emotional numbing symptoms in PTSD and right ventral striatal regions after controlling for depression, anxiety and PTSD severity. This study provides initial evidence that individuals with PTSD have lower reactivity to happy facial expressions, and that lower activation in ventral striatal-limbic reward networks may be associated with symptoms of emotional numbing

    Anticipatory feelings: Neural correlates and linguistic markers

    Get PDF
    This review introduces anticipatory feelings (AF) as a new construct related to the process of anticipation and prediction of future events. AF, defined as the state of awareness of physiological and neurocognitive changes that occur within an oganism in the form of a process of adapting to future events, are an important component of anticipation and expectancy. They encompass bodily-related interoceptive and affective components and are influenced by intrapersonal and dispositional factors, such as optimism, hope, pessimism, or worry. In the present review, we consider evidence from animal and human research, including neuroimaging studies, to characterize the brain structures and brain networks involved in AF. The majority of studies reviewed revealed three brain regions involved in future oriented feelings: 1) the insula; 2) the ventromedial prefrontal cortex (vmPFC); and 3) the amygdala. Moreover, these brain regions were confirmed by a meta-analysis, using a platform for large-scale, automated synthesis of fMRI data. Finally, by adopting a neurolinguistic and a big data approach, we illustrate how AF are expressed in language

    The modularity of aesthetic processing and perception in the human brain. Functional neuroimaging studies of neuroaesthetics.

    Get PDF
    By taking advantage of the advent of functional Magnetic Resonance Imaging (fMRI) this thesis argues that aesthetics belongs in the domain of neurobiology by investigating the different brain processes that are implicated in aesthetic perception from two perspectives. The first experiment explores a specific artistic style that has stressed the problem in the relationship between objects and context. This study investigates the neural responses associated with changes in visual perception, as when objects are placed in their normal context versus when the object-context relationship is violated. Indeed, an aim of this study was to cast a new light on this specific artistic style from a neuroscientific perspective. In contrast to basic rewards, which relate to the reproduction of the species, the evolution of abstract, cognitive representations facilitates the use of a different class of rewards related to hedonics. The second part investigates the hedonic processes involved in aesthetic judgments in order to explore if such higher order cognitive rewards use the same neural reward mechanism as basic rewards. In the first of these experiments we modulate the extent to which the neural correlates of aesthetic preference vary as a function of expertise in architecture. In the second experiment we aim to measure the more general effects of labelling works of art with cognitive semantic information in order to explore the neural modulation of aesthetic preference relative to this information. The main finding of this thesis is that stimulus affective value is represented separately in OFC, with positive reward (increasing aesthetic judgments) being represented in medial OFC and negative reward value is being represented in lateral OFC. Furthermore ventral striatum encode reward expectancy and the predictive value of a stimulus. These findings suggest a dissociation of reward processing with separate neural substrates in reward expectancy and stimulus affective value

    Parsing the effects of reward on cognitive control

    Get PDF

    High Field fMRI Reveals Thalamocortical Integration of Segregated Cognitive and Emotional Processing in Mediodorsal and Intralaminar Thalamic Nuclei

    Get PDF
    Thalamocortical loops, connecting functionally segregated, higher order cortical regions, and basal ganglia, have been proposed not only for well described motor and sensory regions, but also for limbic and prefrontal areas relevant for affective and cognitive processes. These functions are, however, more specific to humans, rendering most invasive neuroanatomical approaches impossible and interspecies translations difficult. In contrast, non-invasive imaging of functional neuroanatomy using fMRI allows for the development of elaborate task paradigms capable of testing the specific functionalities proposed for these circuits. Until recently, spatial resolution largely limited the anatomical definition of functional clusters at the level of distinct thalamic nuclei. Since their anatomical distinction seems crucial not only for the segregation of cognitive and limbic loops but also for the detection of their functional interaction during cognitive–emotional integration, we applied high resolution fMRI on 7 Tesla. Using an event-related design, we could isolate thalamic effects for preceding attention as well as experience of erotic stimuli. We could demonstrate specific thalamic effects of general emotional arousal in mediodorsal nucleus and effects specific to preceding attention and expectancy in intralaminar centromedian/parafascicular complex. These thalamic effects were paralleled by specific coactivations in the head of caudate nucleus as well as segregated portions of rostral or caudal cingulate cortex and anterior insula supporting distinct thalamo–striato–cortical loops. In addition to predescribed effects of sexual arousal in hypothalamus and ventral striatum, high resolution fMRI could extent this network to paraventricular thalamus encompassing laterodorsal and parataenial nuclei. We could lend evidence to segregated subcortical loops which integrate cognitive and emotional aspects of basic human behavior such as sexual processing
    • …
    corecore