868 research outputs found

    MULTI-ROBOT COVERAGE WITH DYNAMIC COVERAGE INFORMATION COMPRESSION

    Get PDF
    This work considers the problem of coverage of an initially unknown environment by a set of autonomous robots. A crucial aspect in multi-robot coverage involves robots sharing information about the regions they have already covered at certain intervals, so that multiple robots can avoid repeated coverage of the same area. However, sharing the coverage information between robots imposes considerable communication and computation overhead on each robot, which increases the robots’ battery usage and overall coverage time. To address this problem, we explore a novel coverage technique where robots use an information compression algorithm before sharing their coverage maps with each other. Specifically, we use a polygonal approximation algorithm to represent any arbitrary region covered by a robot as a polygon with a fixed, small number of vertices. At certain intervals, each robot then sends this small set of vertices to other robots in its communication range as its covered area, and each receiving robot records this information in a local map of covered regions so that it can avoid repeat coverage. The coverage information in the map is then utilized by a technique called spanning tree coverage (STC) by each robot to perform area coverage. We have verified the performance of our algorithm on simulated Coroware Corobot robots within the Webots robot simulator with different sizes of environments and different types of obstacles in the environments, while modelling sensor noise from the robots’ sensors. Our results show that using the polygonal compression technique is an effective way to considerably reduce data transfer between robots in a multi-robot team without sacrificing the performance and efficiency gains that communication provides to such a system

    Coordination schemes for distributed boundary coverage with a swarm of miniature robots:synthesis, analysis and experimental validation

    Get PDF
    We provide a comparison of a series of original coordination mechanisms for the distributed boundary coverage problem with a swarm of miniature robots. Our analysis is based on real robot experimentation and models at different levels of abstraction. Distributed boundary coverage is an instance of the distributed coverage problem and has applications such as inspection of structures, de-mining, cleaning, and painting. Coverage is a particularly good example for the benefits of a multi-robot approach due to the potential for parallel task execution and additional robustness out of redundancy. The constraints imposed by a potential application, the autonomous inspection of a jet turbine engine, were our motivation for the algorithms considered in this thesis. Thus, there is particular emphasis on how algorithms perform under the influence of sensor and actuator noise, limited computational and communication capabilities, as well as on the policies about how to cope with such problems. The algorithms developed in this dissertation can be classified into reactive and deliberative algorithms, as well as non-collaborative and collaborative algorithms. The performance of these algorithms ranges from very low to very high, corresponding to highly redundant coverage to near-optimal partitioning of the environments, respectively. At the same time, requirements and assumptions on the robotic platform and the environment (from no communication to global communication, and from no localization to global localization) are incrementally raised. All the algorithms are robust to sensor and actuator noise and gracefully decay to the performance of a randomized algorithm as a function of an increased noise level and/or additional hardware constraints. Although the deliberative algorithms are fully deterministic, the actual performance is probabilistic due to inevitable sensor and actuator noise. For this reason, probabilistic models are used for predicting time to complete coverage and take into account sensor and actuator noise calibrated by using real hardware. For reactive systems with limited memory, the performance is captured using a compact representation based on rate equations that track the expected number of robots in a certain state. As the number of states explode for the deliberative algorithms that require a substantial use of memory, this approach becomes less tractable with the amount of deliberation performed, and we use Discrete Event System (DES) simulation in these cases. Our contribution to the domain of multi-robot systems is three-fold. First, we provide a methodology for system identification and optimal control of a robot swarm using probabilistic models. Second, we develop a series of algorithms for distributed coverage by a team of miniature robots that gracefully decay from a near-optimal performance to the performance of a randomized approach under the influence of sensor and actuator noise. Third, we design an implement a miniature inspection platform based on the miniature robot Alice with ZigBee ready communication capabilities and color vision on a foot-print smaller than 2 Ă— 2 Ă— 3 cm3

    Spatio-Temporal Patterns act as Computational Mechanisms governing Emergent behavior in Robotic Swarms

    Get PDF
    open access articleOur goal is to control a robotic swarm without removing its swarm-like nature. In other words, we aim to intrinsically control a robotic swarm emergent behavior. Past attempts at governing robotic swarms or their selfcoordinating emergent behavior, has proven ineffective, largely due to the swarm’s inherent randomness (making it difficult to predict) and utter simplicity (they lack a leader, any kind of centralized control, long-range communication, global knowledge, complex internal models and only operate on a couple of basic, reactive rules). The main problem is that emergent phenomena itself is not fully understood, despite being at the forefront of current research. Research into 1D and 2D Cellular Automata has uncovered a hidden computational layer which bridges the micromacro gap (i.e., how individual behaviors at the micro-level influence the global behaviors on the macro-level). We hypothesize that there also lie embedded computational mechanisms at the heart of a robotic swarm’s emergent behavior. To test this theory, we proceeded to simulate robotic swarms (represented as both particles and dynamic networks) and then designed local rules to induce various types of intelligent, emergent behaviors (as well as designing genetic algorithms to evolve robotic swarms with emergent behaviors). Finally, we analysed these robotic swarms and successfully confirmed our hypothesis; analyzing their developments and interactions over time revealed various forms of embedded spatiotemporal patterns which store, propagate and parallel process information across the swarm according to some internal, collision-based logic (solving the mystery of how simple robots are able to self-coordinate and allow global behaviors to emerge across the swarm)

    GUARDIANS final report

    Get PDF
    Emergencies in industrial warehouses are a major concern for firefghters. The large dimensions together with the development of dense smoke that drastically reduces visibility, represent major challenges. The Guardians robot swarm is designed to assist fire fighters in searching a large warehouse. In this report we discuss the technology developed for a swarm of robots searching and assisting fire fighters. We explain the swarming algorithms which provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also one of the means to locate the robots and humans. Thus the robot swarm is able to locate itself and provide guidance information to the humans. Together with the re ghters we explored how the robot swarm should feed information back to the human fire fighter. We have designed and experimented with interfaces for presenting swarm based information to human beings

    Trading Safety Versus Performance: Rapid Deployment of Robotic Swarms with Robust Performance Constraints

    Full text link
    In this paper we consider a stochastic deployment problem, where a robotic swarm is tasked with the objective of positioning at least one robot at each of a set of pre-assigned targets while meeting a temporal deadline. Travel times and failure rates are stochastic but related, inasmuch as failure rates increase with speed. To maximize chances of success while meeting the deadline, a control strategy has therefore to balance safety and performance. Our approach is to cast the problem within the theory of constrained Markov Decision Processes, whereby we seek to compute policies that maximize the probability of successful deployment while ensuring that the expected duration of the task is bounded by a given deadline. To account for uncertainties in the problem parameters, we consider a robust formulation and we propose efficient solution algorithms, which are of independent interest. Numerical experiments confirming our theoretical results are presented and discussed

    Ultrasonic sensor platforms for non-destructive evaluation

    Get PDF
    Robotic vehicles are receiving increasing attention for use in Non-Destructive Evaluation (NDE), due to their attractiveness in terms of cost, safety and their accessibility to areas where manual inspection is not practical. A reconfigurable Lamb wave scanner, using autonomous robotic platforms is presented. The scanner is built from a fleet of wireless miniature robotic vehicles, each with a non-contact ultrasonic payload capable of generating the A0 Lamb wave mode in plate specimens. An embedded Kalman filter gives the robots a positional accuracy of 10mm. A computer simulator, to facilitate the design and assessment of the reconfigurable scanner, is also presented. Transducer behaviour has been simulated using a Linear Systems approximation (LS), with wave propagation in the structure modelled using the Local Interaction Simulation Approach (LISA). Integration of the LS and LISA approaches were validated for use in Lamb wave scanning by comparison with both analytical techniques and more computationally intensive commercial finite element/diference codes. Starting with fundamental dispersion data, the work goes on to describe the simulation of wave propagation and the subsequent interaction with artificial defects and plate boundaries. The computer simulator was used to evaluate several imaging techniques, including local inspection of the area under the robot and an extended method that emits an ultrasonic wave and listens for echos (B-Scan). These algorithms were implemented in the robotic platform and experimental results are presented. The Synthetic Aperture Focusing Technique (SAFT) was evaluated as a means of improving the fidelity of B-Scan data. It was found that a SAFT is only effective for transducers with reasonably wide beam divergence, necessitating small transducers with a width of approximately 5mm. Finally, an algorithm for robot localisation relative to plate sections was proposed and experimentally validated

    Embodied Evolution in Collective Robotics: A Review

    Full text link
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl

    Military airborne and maritime application for cooperative behaviors.

    Full text link

    Modelling interaction patterns and group behaviour in a three-robot team

    Get PDF
    The research reported in this paper is part of a project investigating distributed control architec- tures for groups of autonomous robots. The focus of this paper is on modelling interaction patterns occurring in robot group behaviour. As such, we do not focus on defining control architectures for individual robots, instead, we focus on individual behaviour patterns to develop a formal theory of group behaviour resulting from multiple robot in- teraction. The problem underlying the research is that concepts relating to group behaviour have to be imposed upon the robots and the understand- ing of these patterns will lead to more efficient control and the realisation of cooperative tasks that would not be possible otherwise. The paper considers a balanced conflict in a system of three robots where action comes to a halt and a slightly deviating conflict in which action is continued in a predictable pattern. We prove how the group behaves in both types of conflicts. We introduce practical constraints of robot design such as limitations of a sensory system and discuss simulations of both types of conflicts incorporating these constraints. Having proved the behaviour of the group starting from these conflicts, the conflicts might be used to test and calibrate robots; we discuss the constraints to meet
    • …
    corecore