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governing Emergent behavior in Robotic Swarms

Mohammed Dery Alim b. Terry b. Jack - Arjab Singh Khuman -

Owa

Received: date / Accepted: date

Abstract Our goal is to control a robotic swarm with-
out removing its swarm-like nature. In other words, we
aim to intrinsically control a robotic swarms emergent
behavior. Past attempts at governing robotic swarms or
their self-coordinating emergent behavior, has proven
ineffective, largely due to the swarms inherent random-
ness (making it difficult to predict) and utter simplic-
ity (they lack a leader, any kind of centralized control,
long-range communication, global knowledge, complex
internal models and only operate on a couple of ba-
sic, reactive rules). The main problem is that emergent
phenomena itself is not fully understood, despite be-
ing at the forefront of current research. Research into
1D and 2D Cellular Automata has uncovered a hidden
computational layer which bridges the micro-macro gap
(i.e. how individual behaviors at the micro-level influ-
ence the global behaviors on the macro-level). We hy-
pothesize that there also lies embedded computational
mechanisms at the heart of a robotic swarms emergent
behavior. To test this theory, we proceeded to simu-
late robotic swarms (represented as both particles and
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dynamic networks) and then designed local rules to in-
duce various types of intelligent, emergent behaviors (as
well as designing genetic algorithms to evolve robotic
swarms with emergent behaviors). Finally we analyzed
these robotic swarms and successfully confirmed our hy-
pothesis; analyzing their developments and interactions
over time revealed various forms of embedded spatio-
temporal patterns which store, propagate and paral-
lel process information across the swarm according to
some internal, collision-based logic(solving the mystery
of how simple robots are able to self-coordinate and
allow global behaviors to emerge across the swarm).

Keywords Robotic Swarms - Swarm Intelligence -
Dynamic Networks - Complexity Science - Complex
Adaptive Systems - Emergence - Genetic Algorithm

1 Introduction
1.1 Main Aims and Challenges

The overall goal of this project is to intrinsically control
the emergent behavior of a robotic swarm.

1st Challenge: Conventional methods fail to control de-
centralized systems like swarms At first, controlling a
swarms behavior sounds straightforward enough, how-
ever, upon closer inspection it becomes apparent that
this is a complex and nonlinear problem. Robotics warms
are entirely distributed systems [1-5] with a distributed
group intelligence [6]. This means that, rather than be-
ing focused within any one robot, the intelligence and
control of a robotic swarm is equally distributed across
all individuals [7] (a large reason why it is so hard to
control a swarm). Furthermore, robots only have access
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to localized information gained through directly inter-
acting with their neighbors (i.e. via contact or short-
range communication) and occasionally via indirect in-
teractions (i.e. stigmergic signals left in the environ-
ment - like pheromone trails left by ants). Therefore,
a swarms individuals may even interact in a haphaz-
ard, disorderly manner, giving rise to the turbulent or
chaotic characteristics of a swarm. Viewed at an indi-
vidualistic level, robots can be seen busying themselves
with their own, individual jobs; without a future vision
and unaware of any larger picture [6]; they remain obliv-
ious to the positive contribution their work and inter-
actions are having on the global behavior of the swarm.
Decentralized systems (like swarms [2, 8]) coordinate in
a manner completely alien to the norms of centralized
control [2, 6, 9, 10-12]. This means that robotic swarms
are void of common control structures(like hierarchies,
chains of command [1-2] or leaders - contrary to the
misconception that the behavior of a swarm is some-
how governed by the telepathic powers of a queen [13]
- etc). Unfortunately, centralized control strategies are
highly dependent upon these infrastructures [12] and
will fail when applied to decentralized systems which
lack them. Ordinary control methods hold little influ-
ence over the governance of a robotic swarms behavior

[1-6, 8, 14].

2nd Challenge: Extrinsic vs Intrinsic control There have
been attempts at controlling robotic swarms by enhanc-
ing its individuals [6]. Under normal circumstances, a
swarms individuals are unintelligent and operate under
very rudimentary conditions (i.e. have minimal process-
ing power and are ignorant of global conditions per-
taining to the swarm - such as their absolute posi-
tion within the swarm [11]). If the robots were modi-
fied to have a more sophisticated processing power and
enough memory to store an internal map or model of
the environment,they could be programmed with the
intelligence to estimate their own pose and location
within the swarm (i.e. via Simultaneous Localization
And Mapping - SLAM - techniques), and the swarm
could essentially be controlled at the level of its individ-
uals. This approach has been tested and produced ac-
curate robotic behaviors (despite suffering minor diffi-
culties when faced with very symmetrical environments
such as corridors [11]), however, it is computationally
expensive and ultimately requires the robots to be en-
hanced with more powerful, on-board processing [11].
To avoid increasing the robots computational power,
which in-turn increases their complexity, expense and
energy consumption (removing some key advantages of
a robotic swarm), individuals have been modified to use
off-board processing [11] (maps or models of the envi-

ronment are stored externally and are accessed wire-
lessly by the robots during run-time). Therefore robots
need only be equipped with enhanced, long-range com-
munication (something regular robotic swarms lack),
which enables robots to access centralized, global infor-
mation (i.e. GPS data [11], knowledge of the swarms
overall goals or plans [15], the current state or behav-
ior of the entire swarm [3, 11-12], etc) and thus forces
a form of centralized control structure onto the robotic

swarm. Unfortunately, this modification reduces the swarms

adaptability (removing yet another advantage of a robotic
swarm) since the limitations imposed by wireless trans-
mission times and feedback delays [11] severely slow
down the robots reaction times, making the swarm less
adaptive in dynamic terrains with rapidly changing fea-
tures [16]. Although a modified robotic swarm is able
to perform feats such as splitting itself up into het-
erogeneous teams of robots which can then simultane-
ously solve sub-tasks which contribute to a larger, ex-
ternally set goal, the resulting swarm behavior is very
rigid (a piece-wise, step-by-step behavior), compared
to the turbulent, organic, subtly self-organizing behav-
ior which emerges in unmodified robotic swarms (con-
sisting of purely homogeneous, unintelligent individu-
als [6]). By attempting to tame a wild swarm (i.e. by
imposing restraints upon it to control its behavior), it
seems to cease behaving like a swarm. This suggests
that enhancing a swarms individuals in order to im-
pose a centralized control structure on the swarm is
not the secret to controlling its emergent behavior [3].
Controlling a swarm demands an alternative approach;
one which avoids imposing any external influences and
artificial structures onto the swarm [6, 17]; the control
must come naturally, from within!

3rd Challenge: Emergent Phenomena Currently, design-
ing emergent behaviors in robotic swarms is like work-
ing in the dark and relatively limited progress has be
made. Swarm robotic designers have resorted to two
main approaches which try to bypass the micro-macro
gap problem (i.e. how localized, individual behavior on
the microscopic level lead to globally coordinated, in-
telligent behavior emerging at the macroscopic level):
a bottom-up behavior-based approach (which is timely
and unsystematic) and a top-down evolutionary-based
approach (which is a black-box). If we are to ever, truly
control a robotic swarms emergent behavior, an investi-
gation into its Emergent Phenomena is inevitable. Re-
searchers investigating Emergent Phenomena in Cellu-
lar Automata have discovered a hidden, computational
layer which seems to bridge the the mysterious micro-
macro gap. There is a lot left to explore in order to
understand how computation emerges in many natu-
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ral systems [18], however, we hypothesize that emer-
gent computation is the secret to understanding the
emergent behavior in robotic swarms (and likely all
types of complex adaptive systems). Therefore, control-
ling the behavior of a robotic swarm (while retaining
the high levels of independence demanded by the in-
dividuals within the swarm [3]) requires more insight
into a robotic swarms rich, spatio-temporal informa-
tion [19]. Swarms can be viewed as a form of paral-
lel processing system, complete with inputs, outputs
and an asynchronous spatial logic[2, 20] which stores,
propagates and modifies information across the swarm
over time. The secret to unveiling (and eventually ma-
nipulating) the swarms mysterious self-managing be-
havior lies in better understanding this intrinsic logic
and inherent parallelism [10, 12]. What are the mys-
terious mechanisms which link the micro-level compo-
nents (which execute rules based on purely local infor-
mation) to the subsequent structures and interactions
that appear at the macro-level [17]7 If the information
processing mechanisms which drive emergence and self-
organization in robotic swarms can be uncovered, the
understanding and insight gained would allow us to con-
trol artificial swarms [21] and perhaps even engineering
new forms of parallel computing systems [10].

Sub-Aims There are several proposed tasks; each pro-
gressively more challenging than the last. Tasks are also
accumulative; building upon prior tasks (hence the ac-
complishment of most tasks rest upon the completion
of tasks preceding it); 1. Design a rule-set that produces
intelligent, emergent behavior in a (simulated) robotic
swarm 2 . Design a genetic algorithm that evolves a
robotic swarm with emergent behavior 3. Discover the
(hypothesized) computational mechanisms which un-
derlie a swarms emergent behavior 4 . Understand the
computational mechanics discovered by: a. identifying
all spatio-temporal patterns b. modelling the character-
istic behaviors of each spatio-temporal pattern c. map-
ping the interactions between each spatio-temporal pat-
tern 5 . Predict the swarms emergent behavior by simu-
lating its underlying computational mechanics 6 . Inves-
tigate methods to manipulate the underlying computa-
tional mechanisms, including; (i) Injecting, (ii) Remov-
ing, (iii) Reflecting, (iv) Attracting and (v) Repelling
spatio-temporal patterns 7 . Intrinsically control the
swarms emergent behavior by reprogramming its un-
derlying computational mechanics

1.2 Advantages to controlling a swarm

Not only is it beautiful to witness large numbers of
individuals - preoccupied with their own, self-serving

objectives [3] - effortlessly cohere and self-organize |1,
6, 8, 14] into various emergent-behaviors[6,8], without
realizing that their actions and interactions are inad-
vertently contributing toward a greater, global behavior
[3,12], but robotic swarms also carry a number of advan-
tages [10]. Complex problems are solved relatively eas-
ily with swarm-like strategies based on self-organization
and emergent behavior [3], while conventional meth-
ods struggle [2]. Distributed control is also cost-effective
[22] because any burden(i.e. power consumption, sens-
ing and processing requirements [11], physical strength,
etc) is shared equally across every individual. This is
an especially attractive concept for aerospace systems
since they must be limited in size, weight, and power
consumption [3]. Yet despite individuals being small,
limited and exhibiting very simplistic behaviors (like
insects), a large number of them can culminate their
abilities to form highly complex, intelligent group be-
haviors that are able to accomplish a wide range of sig-
nificant tasks (e.g. robotic swarms inspired by ants can
cross ditches by connecting together to form a bridge

[12]).

Most artificial systems are too rigid to operate under
high levels of uncertainty and incomplete knowledge
[6], commonplace conditions in natural environments.
However, a robotic swarms ability to spontaneously re-
organize itself makes it extremely flexible [1, 12, 14, 23]
and adaptable [3, 6, 22-24] to cope with a broad spec-
trum of situations, problems and tasks[12, 25]. Robotic
swarms can even respond to unforeseen events [1, 6],
even if the environment itself is dynamic (i.e. has con-
tinually changing features or conditions[6, 23]). Even
though the individual behavior of the robots are too
basic to adapt or change, the resultant global behav-
iors which emerge across the swarm can flexibly adapt
(e.g.a robotic swarm may spontaneously split into new
group formations [6]). Adaptive systems also possess
the potential to learn [6, 14] (i.e. robot swarms may
learn to favor a particular response when faced with a
specific set of environmental changes [2]).

A swarms computational power is dynamic and can
be increased (to solve more difficult problems) via the
rapid deployment [22] of additional individuals injected
into the swarm [20] (similar to increasing the number of
neurons in a neural network to find better solutions to
more complex problems). Likewise, for efficiency, only
a fraction of the swarm need be used to solve simpler
problems [20]. Since swarms are scalable to different
group sizes [8, 12, 16, 22-23], its global behavior is al-
most completely unaffected by the number of individ-
uals within the swarm [22]. Hence, even if the swarm
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size changes mid-task (via the introduction or removal
of individuals) its overall behavior does not drastically
change [12] (other than a slight improvement toward
larger set sizes [22]). Networks of distributed individu-
als [22] like robotic swarms have the advantage of being
robust [6, 8, 12, 24-25] to individual losses[12], failures
[16, 23] and physical damage [1, 14, 20] and thus, even if
individuals are added, removed or destroyed, the swarm
is minimally affected [22]. Because communication in
decentralized systems can occur between any neighbor
[6] (rather than needing to communicating with a cen-
tral entity and await new commands from them), the
remaining individuals quickly re-adjust to compensate
for any loss avoiding any significant effect on the final
result [15] (which is why it is so difficult to extermi-
nate social pests [12]). Robustness makes swarms very
well suited to military applications. If space missions
were conducted using swarms of miniature spacecraft
[1] (as opposed to single spacecrafts), some members of
the swarm could potentially sacrifice themselves for the
greater good [1]. This natural fault tolerance [20, 22] is
largely promoted by redundancy [12], the absence of a
leader [12] (in most systems, if the central coordinator
is injured or lost, the entire system collapses [10]) and
the strange fact that swarms (and other distributed sys-
tems) are only weakly sensitive to any one, individual
influence [26] (a reminder that controlling an individual
is not the key to controlling the swarm).

Finally, swarms can handle multiple inputs [4, 5] and
easily digest large amounts of information [1] by parallel
processing it in an asynchronous manner across its large
collection of individuals. By dispersing the informa-
tion across the entire system [1], as opposed to bottle-
necking the data (as is done during linear (centralized)
information processing[10, 24]), higher information ex-
change rates[27] can be achieved at great speeds and
efficiency.

1.3 Applications of controlled swarms

It is a wonder how swarms ever synchronize their de-
centralized information to come to a common decision
[12] or make group decisions and think as a whole. Yet
they can and do. Examples of such collective decision-
making behaviors include: task allocation, consensus,

such as gallons of water or chemicals to pollinate a field
of crops [1].

A simple lattice formation [22] can be very useful to
quickly establish a distributed computer grid (also known
as a distributed sensing grid [22]). Applications include:
i. a dynamic, emergency communication network [3]
ideal for situations where traditional, stable network
infrastructures (i.e. satellite communication) have bro-
ken down [1-2] or become inaccessible due to extremely
long-distances or barriers [3]. Emergency communica-
tion channels is a primary security requirement in dis-
aster relief scenarios. multiple tiny robots quickly dis-
perse into the open spaces. Upon detection of a sur-
vivor, a robot emits a ...message signaling the discov-
ery. This message is propagated locally between robots
only ...(and) makes its way back to the entrance where
rescue team members can now follow (it)... to the sur-
vivor. [16]). ii. Surveillance [1, 12, 16, 22] - an obvi-
ous application due to its wide use in reconnaissance
[16], traffic monitoring [1], image processing [28-29] and
weather and climate mapping [1]. iii. There are various
other safety, security and environmental applications
[1-2] including: intrusion tracking [12, 16], hazardous
environment exploration [1] (e.g. NASA is investigating
swarm-based spacecraft to explore deep space without
risking human lives [3]) or hazard detection [16] and
removal (e.g. removing old landmines [12]. swarms of
tiny (robots)... explore the ocean floor and clean up
the marine bays [3]. Equally by detecting and cleaning
up harmful chemicals, pollutants and oil spillages [1-2,
12]) as well as its future maintenance. iv. A distributed
display (each robot serving as a pixel in the display)
embedded in the environment and actively annotating
it (e.g. terrain features may be highlighted or added,
such as synchronized blinking lights to form a route
toward a particular site or person, etc) [16].

Swarms are probably most known for their mystically
self-organizing computational geometries [28]. Randomly
distributed individuals will automatically and sponta-
neously organize themselves and their surrounding ob-
jects [12] into orderly formations. Spatially-organizing
behaviors [22] that manipulate the environment can be
useful for assembling physical constructions [12, 25, 30]
such as those built by bees, termites and other social
insects [17] or alternatively for the assembly of complex,

collective counting [28], collective memory [28], etc. Swarms large-scale, virtual systems [6]. Spatially-organizing be-

can perform incredible feats, otherwise over-burdensome
for a single individual, due to their pooled resources.
Collective transportation (wherein individuals cooper-

ate by connecting together to increase their overall pulling

power) is useful for carrying large, heavy objects [9, 12],

haviors that focus on manipulating the swarm itself
can be used for morphogenesis [12] (self-assembly [20])
which includes self-management, self-optimization, self-
protection, self-healing or self-repair [3, 20, 22], self-
configuration [3] and self-construction [6]. The most
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common spatially-organizing behaviors include (a) ag-
gregation [9, 17, 25] (often seen when social animals
flock [12] or swarm [25] together), (b) dispersion or
splitting up (a form of predator avoidance [14, 25] of-
ten utilized in schools of fish or motorcycle gangs be-
ing chased by the police), (c) segregation [17, 30] which
can be used to sort, group and cluster together different
classes of objects [17] into patches, bands (as with an-
nular sorting) or any other geometrically-organized for-
mations. For this reason, this is sometimes referred to
as shape or pattern formation which can be extended to
chain formations and bulk alignments [25], all of which
have numerous applications for civil defence (i.e. au-
tomatic perimeter defences [22]) and offensive military
operations (i.e. battlefront formations [30], convergent
attacks on targets from multiple sides [3], etc).

A swarms ability to self-organize can produce many
beautifully unified swarm behaviors such as coordinated
motion [9] (to increase stability when travelling through
rough terrain [12]), and foraging [9, 14], collective ex-
ploration [1], path-planning and other navigation be-
haviors [12, 28-29] which have inspired efficient search
methods and optimization algorithms [3, 28-29] (e.g.
ant colony optimization, bird swarm algorithm, etc) due
to their rapid terrain coverage across expansive envi-
ronments (or virtual search-spaces) via their inherent
pluralization and redundancy [11]. Thus swarms would
serve well in search and rescue operations required in
the aftermath of a natural disaster [1, 12].

Eventually, as the field of nanotechnology advances,
swarms of nanobots could be used in health care [1-
2] (like an artificial immune system - just as virtual
swarms are already being utilized to defend and op-
timize computer networks, by automatically rerouting
and repairing nodes, discovering and attacking mali-
cious viruses, etc [6]) . As well as targeting natural ail-
ments and foreign viruses, they could improve or en-
hance our own bodily functions. They could even po-
tentially discover and kill cancer tumors [3].

1.4 Dangers of uncontrolled swarms

Despite the ability swarms have to scale, if the num-
ber of individuals in the swarm become too little, the
intelligent group behavior of the swarm disappears and
only the simple, unintelligent behaviors of the individu-
als remain (this is why it is impossible to understand a
swarms emergent behavior by studying the individuals
in isolation). Large numbers are required for intelligent
swarm behaviors, such as self-organization, to emerge
[30].

There are two large disadvantages which discourage
a more wide acceptance of swarm usage, both due to
the unpredictable nature of a swarm. Firstly, the time
taken to converge to the desired, global behavior varies
greatly for each run; it can sometimes converge very
quickly and sometimes very slowly. This is because the
convergence speed is dependent on the combined feed-
back times between neighboring individuals communi-
cating within the swarm and any subsequent spatio-
temporal pattern propagation transporting, converting
and combining local behaviors across the swarm [7]
(which can be significantly slow depending on the spa-
tial medium - for instance it took several days for slime
mold in a petri dish to produce a voronoi diagram
[20]). Secondly, the flexible, adaptive nature of swarms
mean that their global, collective behaviors are diffi-
cult to predict. They often vary with different envi-
ronmental conditions, despite individual-level behaviors
within the swarm remaining the same [13]. This unpre-
dictable adaptability poses sophisticated management
challenges to controlling a swarm [2] and it is widely ac-
cepted that controlling a swarm (i.e. changing its global
goal [6], stopping it if it is behaving too dangerously
[12], etc) once it has started operating is not yet possi-
ble [12]. Thus far, most control features of true swarms
have been to design global behaviors and features into
the swarm during its design phase, prior to its deploy-
ment and execution within the environment [6]. Never-
theless, it remains the ultimate goal of this project.

Until a method to properly control swarms during run-
time has been developed, it is far too risky to deploy
them among humans [12] due to the potential threats
they pose over safety, security and confidentiality [2].
Furthermore, a swarm can be viewed as a mobile dy-
namic network, and thus faces the many risks associ-
ated with networks (e.g. Cyber attacks to the physi-
cal, software or network layer of the swarm could eas-
ily disrupt communication links between mobile-robot-
nodes). The emergent behavior of the swarm could po-
tentially dissipate if its network were significantly dis-
rupted.

2 Background
2.1 Robotic Swarms

A single robot is an autonomous system in itself [3, 6,
12] requiring minimal manual intervention during run-
time[12]. Robots are thus well suited for remote ex-
ploration missions in hazardous locations with harsh
conditions (i.e. deep space [3]) or other jobs that are
considerably risky and dangerous for human beings. A
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robotic swarm is a multi-robot system [1] and is thus
comprised of multiple autonomous individuals [2] (often
large numbers [2-3, 12]; in the thousands [3]). Whereby
a single robot can only carry out a linear sequence of
tasks, a robotic swarm can break up the list of tasks and
distribute it across the swarm to be completed in par-
allel [17], completing the job more quickly, easily and
efficiently.

2.2 Robotic Swarms Vs. Collective Robots

However, swarm robotics is not the same as other ap-
proaches to collective robotics [12]. The robots in a
robotic swarm are extremely basic, simple and reflexive
individuals [3, 12] that merely react to sensory stimuli
[12] (they do not direct their work, but are guided by
it [17]). They are extremely unintelligent robots [16];
they have no memory of past actions or previous state
information [16, 31] nor any internal models to map
their current environment or represent their present
states [11, 16]; and since they have no memory or mod-
els to plan and predict future actions [12], they are
incapable of sophisticated [14], goal-based behaviors;
unable to proactively plan ahead, make complex deci-
sions or solve problems individually [2]. Furthermore,
individuals in a robotic swarms do not have long-range
communication [11] (nor global information like global
positioning, by extension) and are limited to commu-
nicating locally (i.e. with nearby neighbors rather than
the whole swarm) via direct interactions [3, 6, 11-12,
15-16, 32] or via short-range sensors primarily used to
detect immediate surroundings (e.g. infrared [32], vir-
tual pheromones [16], etc).

2.3 Robotic Swarms Vs. Emergent Phenomena

The major advantage of such simple individuals [6] is
that each robot requires minimal on-board processing
[16] and only a basic processing power which is advan-
tageous for miniaturization [3] (robots can potentially
be the size of dust particles [16] if coupled with ad-
vances in nanotechnology). Whats-more, a society of
low-level individuals cooperating re-actively behaves in-
telligently as a collective, and complex tasks are solved
in ways superior to solutions planned in advance via
conventional, proactive, high-level methods[1, 14]. This
artificial swarm intelligence [3, 14] emerges without any
active push for it at the individual level [3] nor via prop-
erties from any single individual [14] and gives a whole
new meaning to the age-old cliche the whole is more
than the sum of its parts [6]. The emergent behavior

[1-2, 8, 12, 33] of swarm robotics destroys the assump-
tion that individuals obeying simple rules can only ever
produce simple behaviors [34]. Complex global behav-
iors need not result from complex rules[34] as they can
also emerge from very simple rules [3, 12, 15, 33] as
demonstrated by the many natural systems from which
swarm robotics draws inspiration (e.g. birds do not plan
or knowingly cooperate to collectively fly in a v-shape,
rather each bird focuses on simple rules like flying at a
certain speed and proximity relative to adjacent birds
34)).

2.4 Emergent Phenomena

The ability for natural systems to create order from
chaos has gained the attention of a large body of aca-

demic researchers and spawned a whole new cross-disciplinary

science, called complexity science or complex (adap-
tive) systems, devoted to understanding this phenom-
ena. Yet emergent phenomena is still not fully under-
stood, despite being at the forefront of current research.
It is not well understood how such apparent complex
global coordination emerges from simple individual ac-
tions in natural systems or how such systems are pro-
duced by biological evolution [10] and thus understand-
ing and harnessing the fundamental organizing princi-
ples of emergence remains one of the grand challenges
of science [35].

What makes emergent behavior so difficult to under-
stand is that, unlike resultant behavior, the systems
global behavior is counter-intuitive since it is not a
property of any of the components of that system [34]
and thus shows no correlation to the individual be-
havior of the individuals making up the system [34]
(e.g. analyzing the behavior of an ant will reveal noth-
ing about how ant swarms are suddenly able to self-
organize into an ant bridge). When analyzing the local
behavior of any one individual, the emergent phenom-
ena disappears. If emergent phenomena is to be studied,
it must be done by analyzing the distributed individuals
in parallel. This may be hard to comprehend because
people have a centralized and deterministic mindset -
they expect their to be a centralized leader (a bird lead-
ing the flock, a queen bee controlling the hive, etc) and
are uncomfortable believing that randomness can some-
times give rise to orderliness or patterns [36].

2.5 Examples of Emergent Phenomena in Nature

Emergent behavior is a mysterious, natural phenomenon
which allows a group of randomly distributed individu-



Spatio-Temporal Patterns act as Computational Mechanisms governing Emergent behavior in Robotic Swarms 7

als lacking any global information, intelligence, or global

communication (via a central controller) to spontaneously

self-coordinate into an organized collective group, ca-
pable of a coherent, intelligent behavior (e.g. emergent
phenomenon transforms a collection of simple neurons
into a complex, intelligent brain that can produce ab-
stract thoughts). It is believed that emergent phenom-
ena, like group learning, artificial evolution [9], global
organization and self-coordination, are all side-effects of
individuals communicating with one another, explicitly
and implicitly, in a decentralized, swarm-like manner.

Self-organizing, group behaviors emerge across phys-
ical [26, 30], biological [3, 30] (insect [1-2, 8, 13, 25,
30] or animal [2, 8, 12, 30]) and sociological settings.
Physical systems may include stable magnetic orienta-
tions and domains [26] or vortex problems in fluids [26],
etc. Biological systems include single-celled organisms
[25] which exhibit emergent behaviors when in large
groups (such as the spontaneous aggregation of bacte-
rial colonies [10, 12], or the subtle adjustment of tum-
bling rates due to the perceived chemical concentrations
which allows bacteria to move toward regions rich in nu-
trients [15]). Larger living organisms (like humans) are
but a collection of cells, self-assembling and interact-
ing locally [19] to form tissues, [12], organelles [7], or-
gans [12], organ systems and other necessary body sys-
tems (such as the immune system - which has inspired
many network intrusion detection algorithms [6]). The
brain (which has inspired the creation of Artificial Neu-
ral Networks) is nothing more than a large collection of
specialized cells called neurons [10] that interact locally
(by exchanging electro-chemical signals [37]) to parallel
process external sensory information [10] via emergent
computations [38], resulting in our internal thoughts
and emergent mental images [38].

Emergent phenomena is also rife in social systems like
insect colonies, such as flies [39], fireflies (which are
able to flash together, synchronously), spiders [6], cock-
roaches [12], termites [12, 16-17] wasps [14], bees [6, 12,
14-15] and ants [3, 6, 12, 14-17, 40] (which are by far the
most commonly studied social insects). In particular,
the way ants forage (which has inspired network rout-
ing optimization), build nests, sort their brood (eggs
are sorted and grouped by developmental stage [17]),
manage their dead (experiments involving the random
distribution of dead ants will result in workers form-
ing clusters within a few hours [40]), divide their la-
bor (inspiring task allocation solutions), self-assemble
(physically connecting to build bridges, rafts, walls and
bivouacs [12, 18]), make collective decisions, come to a
consensus (deciding between the shortest of two paths

[12]) and implicitly cooperate (i.e. to carry heavy food).
Similarly, emergent phenomenon readily occurs in ani-
mal societies, such as schooling fish [12, 14-15, 25, 40-
41], flocking penguins [12], migrating birds [3, 12, 25,
40-41], herding gazelles [41] and many other social an-
imals [25]. Crowds [15, 25] and mob mentalities 7] are
some examples of emergent phenomena which often oc-
cur in human societies [6, 36].

According to Physicist David Bohm (in his theory of
implicate and explicate order [42] which elegantly re-
solves long unanswered questions in the field of Physics
-such as how is quantum physics and general relativ-
ity unified? How does quantum entanglement allow for
faster-than-light communication? etc), reality itself is
nothing more than an emergent phenomenon! The ex-
plicate order (each temporal moment in our spatial re-
ality) is a surface phenomena - an emergent projection -
that temporarily unfolds out of an underlying implicate
order [43]. This idea concurs with earlier revolutionary
ideas supported by Physicists Stephen Wolfram [44] and
Richard Feynman, which state that the entire Universe
is parallel processing information via emergent, spatio-
temporal computational structures, like those found driv-
ing emergent phenomena in cellular automata.

2.6 Important Conditions to establish Emergence

Sociology is not just applied psychology, just as psy-
chology is not applied biology, nor is biology applied
chemistry, neither is chemistry applied physics, nor is
physics merely applied quantum mechanics [34]; The
whole is greater than the sum of its parts ...The extra
bit is the consequence of how the parts interact [34].
At the ground level, the action of one individual acti-
vates another individual, like a chaotic chain-reaction
(which is why this process is sometimes referred to
as chaining). In this manner, a system of individuals
(who only require rudimentary reasoning [40] them-
selves; enough to react to external stimuli) is able to
behave intelligently as a collective by executing sophis-
ticated rule-chains constructed via the complex, parallel
chaining of numerous such individuals. However, chains
of interactions wont necessarily produce emergent phe-
nomena [34]. Or if it does, it may not necessarily be
emergent behavior which is intelligent and useful. Some
systems only exhibit globally emerging patterns which
seem to be no more than aesthetically intriguing rather
than more advanced emergent behaviors like the type
whereby individuals can self-organize to solve complex
task, perhaps only producing patterns as a side-effect
(e.g. ants foraging, termites constructing nests, etc).
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If a systems behavior can re-influence the original sys-
tem (i.e.there is feedback [6, 13, 21, 34]), then the sys-
tems behavior begins to modify itself dynamically, be-
coming nonlinear in the process [34]. Positive feedback
reinforces and amplifies certain behaviors [13] (promot-
ing the creation of structures via a snowball effect [21])
whereas negative feedback is like like a regulatory mech-
anism [21] which stabilizes patterns and counterbal-
ances positive feedback [13]. Nonlinear [23, 26, 34] inter-
actions[23, 34] are a key element to establishing intelli-
gent, emergent, self-organizing behaviors. This (coupled
by an element of randomness [13]) is why emergent be-
havior is near impossible to predict [6] at the level of
the individual. Thus the secret to unveiling emergent
phenomena does not lie within the swarms individuals,
but within their (spatio-temporal) interactions [6, 12,
15, 26, 34].

2.7 Understanding Emergent behavior using Cellular
Automata

Similar lines of research into understanding, control-
ling and predicting Emergent behavior have been con-
ducted using a number of distributed systems other
than robotic swarms. The most popular distributed sys-
tems used (due to its relatively simple nature) are Cellu-
lar Automata (a group of virtual cells - with a discrete
size, conserved number and fixed position. They can
only really change their states, and the simplest CAs
only have binary states; dead or alive; black or white;
etc). The majority of these studies is focused only in the
one-dimensional (binary) CA [45] which is just a 1D row
of virtual cells (as opposed to a 2D lattice) since it is im-
portant to study how this phenomenon emerges in even
the most basic complex system [46]. Using a simplistic
representation that maintains the most important fea-
tures of the complex system being modeled [5] makes
the task of understanding a complex concept like emer-
gent computation easier and clearer [10, 31, 39]. The
general principles behind how complexity arises from
simple rules and many of the secrets behind emergent
computation have been revealed through studying 1D
CAs [5-6, 47]. A lot of progress was made when study-
ing 1D binary CAs evolved via a Genetic Algorithm
(GA) [10, 48-49] to perform intelligent emergent com-
putations such as calculating its own global density (the
classification task); i.e. the CA must decide which state
are the majority of the cells at the start (the density
of its initial configuration) and then slowly make the
CAs final configuration (output) into that state glob-
ally (e.g. if the majority of cells in the initial config-
uration were alive, then the final configuration should
transform all cells to become alive, and vice versa) [49].

Bare in mind that this is no trivial task for a 1D line of
fixed cells which can only communicate its binary state
to its nearest neighbors. Nevertheless, researchers have
also extended their studies of emergent phenomena to
2D CAs [24] (an example of an emergent phenomena
in 2D CAs is object boundary detection in images. A
2D CA can achieves this fairly easily using the majority
rule - i.e. a cell adopts the same state as the majority
of its neighbors [24]).

CAs update their cells states based on predefined up-
date rules (i.e. a look-up table which defines which state
a cell should change to based on its current state and
the states of its neighboring cells [37]). Some update
rules have been noted to produce Emergent behavior,
while others do not. Thus, different update rules have
been classified into four distinct classes [44] based on
the global CA behaviors they produce. Class I: fixed-
point-attractors and class II: periodic-attractors both
have short-lived transient times and converge too soon
to produce dynamic behavior; quickly collapsing into
orderly homogeneous (class I) or heterogeneous (class
IT) states. Class IV: strange-attractors (a.k.a. the edge
of chaos [50]) has a long, indefinite transient time and
eventually converge into complex states; although it is
globally disordered, embedded sites of order emerge.
Class III: chaotic-attractors have infinite transient times
and never converge because it diverges into random,
aperiodic states of chaos. Only classes III IV are ca-
pable of creating the correct conditions for emergent
behavior because emergence can only occur in the fluid
transient time before the system solidifies into a con-
verged state [50-54]).

2.8 Collision-based computing

Collision-based computations [28] (a.k.a. computational
mechanics) offer a convincing theoretical explanation to
explain intelligent, self-organizing, global behaviors (i.e.
make decisions, remember, classify, categorize, general-
ize, recognize, problem-solve, correct-errors, etc [26]) in
cellular automata [10]). The theory views complex sys-
tems (including robotic swarms) as decentralized net-

works of emergent information processors [26]; architecture-
less computers (as opposed to conventional, von-Neumann-

type, central-processing computers). Individuals within
the complex system indirectly (and unknowingly) com-
municate with one another via an embedded compu-
tational layer composed of dynamic, spatio-temporal
structures that serve to parallel process information
across the entire complex system [10, 24]. This means
that even in the absence of a central controller and ac-
cess to global information, individuals within the dis-
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tributed system can still communicate globally via this
embedded, computational layer.

The essence of collision-based computations are non-
linear logical operations [26] performed by emergent
information-processing elements; spatio-temporal pat-
terns which parallel process information [10]. Without
these emergent spatio-temporal patterns, information
processing could not occur, since the alternatives would
either be too ordered and unchanging to transport or
modify information [18], or too dynamic and changing
to store information long enough to modify or trans-
port it. So what exactly are these fundamental spatio-
temporal patterns and from whence do they emerge?

2.9 Embedded Spatio-Temporal Structures

During investigations into the emergent behavior of 1D
CAs, solid, long and narrow structures [47] (termed par-
ticles) were seen emerging from localized dynamic re-
gions of chaos (chaotic regions seem to be favored over
static, orderly regions due to their random perturba-
tions which act as nucleation sites [47] from which the
embedded, particle structures grow via smaller proto-
particle structures [47]). Similar discoveries were soon
made in 2D CAs too (Conways Game of Life is a fa-
mous example of a 2D CA with a rich variety of spatio-
temporal patterns. More commonly known as gliders -
the 2D CAs equivalent of a 1D CAs particle).

These emergent patterns (also referred to by various
names across the vast yet scattered body of research lit-
erature - attractors / stable points [26], distributed em-
bedded devices [6], vehicles [47], embedded structures
[28], momentary wires[29], signals [19, 29, 39, 47], com-
munication blocks [19], virtual particles [22], gliders [28,
37, 47, 55], gestalts [26], domain boundaries / walls
[10], mobile self-localizations [28], wave fronts / frag-
ments [28-29, 55], travelling localizations [55], compact
configurations of non-resting states [55], active zones
[20], dynamic computational mechanisms [17] etc) are
in actual fact boundaries between adjacent, localized,
homogeneous regions [24]. The types of regions which
border one another determine the pattern of the spatio-
temporal structure produced. The space-time condi-
tions of the system must be complex and chaotic enough
to encourage multiple regions to exist (as is the case
with Class III and IV CAs). If the entire system is too
static and ordered (as with Class I and IT CAs) there
can be no bordering of localized regions of order, and
thus no spatio-temporal structures or emergent behav-
ior. Over time, as the dynamics of the complex system
change, so too do these local regions (changing shape,

expanding or shrinking, merging with other local re-
gions like two bubbles suddenly combining, etc) thus
causing their boundaries to shift (appearing as if it the
spatio-temporal structures are propagating, colliding,
transforming, etc).

These spatio-temporal structures (regional boundaries)
are not explicitly represented in the system [24] since
they are embedded within the nonlinear interactions
of individuals and are only revealed via analyzing the
spatial interactions over time. We could even say that
these spatio-temporal patterns are the underlying dy-
namics of emergent behaviors [10, 15] and the funda-
mental processors [10] of emergent collision-based com-
putations and the driving force behind global emergent
phenomena (the interactions are merely the carriers or
media in which they exist and the links themselves only
existing as a result of the physical individuals interact-
ing, making it a 3rd order entity, or 2nd order emergent
phenomenon).

Representing and Storing Information Spatio-temporal
structures (e.g. virtual particles in 1D CAs, or gliders
in 2D CAs) come in different, unique patterns, each
representing specific pieces of information [10, 19]. The
data is stored in the system so long as these structures
persist (like a memory [10, 19, 39]). Researchers study-
ing the computational mechanisms of 1D CAs managed
to identify five unique stable particles (spatio-temporal
patterns), which they labelled as , , , , [10], and curi-
ously, one unstable particle() [10], which suggests some
spatio-temporal structures spontaneously change (i.e.
their patterns or velocities) without any external influ-
ences. However, the majority of spatio-temporal struc-
tures are stable and require an external event to drive
a change.

Transferring Information Information is transferred across

the system via the spatio-temporal pattern propagat-
ing over time [10, 19, 24]. These spatio-temporal struc-
tures are essentially emergent signals used to process,
store and communicate information across the system,
with its medium of travel being the system itself [19].
Therefore almost any part of the mediums space can be
used as a (momentary) wire - a trajectory of (a) trav-
elling (spatio-temporal) pattern [28-29]. Each spatio-
temporal structure will have a set velocity (speed and
direction) at which it propagates through the system
[10, 19, 24].

Modifying Information Information is modified if the
spatio-temporal pattern representing it becomes mod-
ified and so to changing a pattern is how to change
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data [10, 19]. Spatio-temporal patterns (as well as their
velocities) are most commonly changed via collisions
between two or more spatio-temporal structures [5, 18,
51]. Collisions change the structures velocity and pat-
tern according to an intrinsic logic specific to that sys-
tem [5, 18, 51]). Interestingly, collisions always follow a
deterministic logic (e.g. spatio-temporal patterns and
always produce spatio-temporal pattern upon colli-
sion). This means that spatio-temporal structures trav-
elling and interacting (i.e. colliding) in space form the
basic logical operators of (dynamic, massively-parallel,
architecture-less, collision-based) computation [10, 28-
29, 47]. Logical collisions correspond to computations
that transform the data. Logical operations occur at the
place where the spatio-temporal structures collide, an-
nihilate, fuse, split or change direction (these sites cor-
respond to the logical gates) [29] and various forms of
logical gates are realizable [28-29] (including xor gates
and diodes [29]). The presence (or absence) of spatio-
temporal structures represent the Boolean truth values
of logic gates [28-29]. Collision-based logic-gates typi-
cally have inputs corresponding to the presence of the
colliding spatio-temporal structures. Its outputs corre-
spond to all the possible outcomes of their interaction,
including and output resulting from non-collisions (i.e.
the output will be the same as the input) [29]. To gen-
erate dynamics representing basic logical operators (is)
the foundation of computation [47]

The research into emergent phenomena in CAs have
inspired the theoretical foundations of our investigation
into the underlying mechanics of emergence of robotic
swarms. It is not unreasonable to hypothesize a parallel
system of embedded spatio-temporal structures under-
lie the emergent behaviors of robotic swarms since there
have been odd reports to suggest that such computa-
tional mechanisms exist for complex systems other than
CAs. For example, structures that propagate in a coher-
ent direction and speed [55] have been experimentally
manifested in a chaotic 2D chemical media (BZ medi-
ums [28]) and its behavior and computational dynamics
are comparable to those of 2D cellular automaton. As
wave-fronts in the chemical media expand, their colli-
sions produce new wave-fragments in a deterministic
manner [55]. Thus even physical media are capable of
collision-based computing, since the collision of spatio-
temporal structures emerging in their space-time evo-
lution are represented by interacting wave fragments
geometrically constrained to the chemical medium [28].
Unlike simulated 2D CAs, however, the emergent struc-
tures in the chemical media disintegrate after some time.
Stable spatio-temporal entities (more popularly referred
to as gestalts [26]) have also been observed emerging in

the flow of (discrete or continuous) phase spaces in ar-
tificial neural networks. Gestalts store information in
their locally stable structural configurations and act as
a form of memory [26]. Various classes of flow patterns
are possible [26] and likewise, if these local stable points
can be induced (or manipulated) the neural network
could be controlled and a specific memory could be as-
signed [26].

3 Test Methodologies
3.1 Computer Simulations

The swarm’s emergent behavior eventually needs to be
analyzed for spatio-temporal structures and early anal-
ysis favors computer simulations [6] because the sim-
plicity offered by computer simulated models can be ad-
vantageous; realism is not necessarily needed or helpful
[56]. Simplification allows us to focus on features which
truly concern us and can lead to greater insights. Fur-
thermore, the cost of scaling up the number of robots
is not a main concern for multi-robot simulators [12]
and since a swarm can behave very differently at differ-
ent sizes, having the freedom to increase the number of
robots in a swarm is quite important during initial ex-
perimentation. Lastly, the exact same experiment can
be repeated very easily in simulations and temporal el-
ements can be manipulated if needed (i.e. paused, sped
up, etc) to allow for quick overviews of a swarms devel-
opmental patterns or more careful observation of piv-
otal points during experimentation [30, 36].

3.2 NetLogo

The robotic swarms used in this project were all evolved,
modelled, simulated and analyzed using the multi-agent
programming language called NetLogo. NetLogo is the
language of choice for modelling complex adaptive sys-
tems and emergent phenomena [36] because it was de-
signed for the efficient computation and representation
of thousands of heterogeneous individuals running in
parallel [36].

3.3 Modelling the Robotic Swarm across Space

Particle Swarm Representation The most straightfor-
ward way of modelling a robot swarm in a computer
simulation is to represent each robot as a single point
(a particle) which can move around on a 2D landscape.
By representing the robots as simple point particles,
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we minimize the computational burden [36] to allow re-
sources to be directed to more important areas of the
simulation (i.e. the execution speed, etc) [30].

Dynamic Network Representation The great number
of interacting individuals in a robotic swarm can be
viewed as a dynamic communication network [11-12],
(each simple robot acts as a mobile node that become
spatially and/or temporally interconnected via short-
range communications) and thus it is not uncommon
to refer to robotic swarms as distributed, robotic sensor
networks [2, 11] or mobile, (parallel) computer networks
wherein robots act as embedded sensing and process-
ing elements in the environment [2, 11, 16]. Viewing the
swarm as a dynamic network (wherein each node repre-
sents a robot and each link represents the local robot in-
fluences on one another) can aid understanding of how
the swarm is interconnected. Explicit interactions refer
to direct actions or interactions between individuals [3,
12, 14] (i.e. robot-robot interactions [8, 14]) including
direct communication via close-range sensors within a
local neighborhood [16] (e.g. shining light [15], colored
LED displays, infrared, audio and acoustic signalling,
coil induction, radio-frequency broadcasted messages,
body-language, sign-language, colored patterns on robots
[2], robot recognition [32], and other indirect clues such
as the perceived density of the robot population or net
force of robots on an object [12], etc). Implicit interac-
tions, also known as robot-environment interactions |8,
12, 14] or stigmergic communications [2, 8, 40], refer to
indirect links formed after a short time delay from the
robots initial signal. Since the external environment can
also act as a stimulus to affect the behavior of individu-
als [47], the environment can be manipulated by struc-
turally modifying it [8] (i.e. changing its shape, temper-
ature gradient [12], etc) removing or adding material
[17] (i.e. ant-inspired chemical pheromone trails [6, 12,
15-16, 34], etc), anything to leave a trace of an individ-
uals event for communicating with other individuals at
a later time (an indirect interaction). For instance, ter-
mites create terrain configurations that stimulate other
termites who encounter it to add more building mate-
rial [17]. Interactions continually change along with the
neighbors encountered (i.e. network links are contin-
ually formed and broken) [9]. By environmentally en-
coding events in this way, communication signals can
be temporally frozen at that location to eventually in-
fluence other robots. Stigmergy cleverly converts tem-
poral data into spatial information (as the time delay
extends the spatial range of the link connecting mobile
nodes) and therefore also has the potential to compress
spatial information into temporal data [31]. Implicit in-
teractions (indirect nodal links) allow for a more com-
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Fig. 1 The robotic swarm modelled as a dynamic network.
The network nodes represent the position of the robot while
the connections represent their local influences on neighbor-
ing robots.

plex network structure, giving the swarm (dynamic net-
work) greater flexibility and greater potential to com-
pute more sophisticated emergent behaviors [8].

# NetLogos inbuilt agents (referred to as
turtles ) were used to represent the robots of
the swarm. The robotic swarm is populated with
robots which are randomly positioned
(random-xcor...) in the environment (an amount
specified by swarm-size - a user-defined
variable) . The triangular shape was used to
indicate the orientation of the robots.
to setup
create-robots swarm-size [set size 2 setxy
random-xcor random-ycor]

#The robots operate within an unbound 2D world
which wraps around vertically and horizontally.
The obstacles and goals are also modelled using
turtles, however, to differentiate them from
robots, they are given a different breed (breed
[obstacles...] ) and, unlike robots, remain
static (although by modelling them as turtles,
there is potential in future testing for the
obstacles to move around; creating a dynamic
environment) .

breed [robots robot]
breed [obstacles obstacle]
breed [goals goall
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3.4 Modelling the Robotic Swarm across Time

When the temporal element is added to the spatial
analysis (i.e. analyzing the development of the swarms
behavior over time) an extra dimension is required to
represent this change over time. In the case of 1D CAs,
the space-time diagram is a 2D surface. However, in the
case of 2D CAs, the space-time diagram is a 3D surface
[24]. Since a particle swarm representation or a net-
work representation are both 2D representations, the
added dimension required for the temporal element of
the spatio-temporal analysis will have to be represented
via a 3D representation.

3.5 Robotic Swarm Behavioral Design

Each robot runs on a simple set of rules which govern
how the individual reacts to localized changes or events
[32]; in other words, how to interact with nearby robots
and the environment. In swarm robotics, there are still
no formal or precise ways to design individual level
behaviors that produce the desired collective behavior
[12]. In general, however, emergent behavior in swarm
robotics can be modelled from two angles: the micro-
scopic level (a bottom-up, behavior-based approach)
and the macroscopic level (a top-down, evolutionary-
based approach) [12].

The Behavior-based Approach The designer will seek
out that the simplest, nonlinear behavior that produces
the desired complex global behavior [34] using their
personal intuition [12], trial and error and continual
tweaking. The bottom-up approach (a.k.a. exploratory-
based method [56]) is somewhat similar to the scientific
method [7]. The skill of identifying the root causes that
lead to desired global behaviors is still largely depen-
dent on the designers intuition, however, there are some
approaches that try to determine these root causes in
a principled way [8]. The Voronoi rule and the Virtual-
forces rule and are two example swarm behaviors de-
signed in this way.

#THE VORONOI RULE
#Initially, a number of obstacles (displayed as
circles) are randomly positioned around the
environment.
to setup-obstacles [
create-obstacles no-of-obstacles [ set shape
"circle" set size 2 setxy abs(random-xcor)
random-ycor ] ]
#The robots (displayed as triangles) are also
positioned randomly around the environment.
to setup-swarm
create-robots swarm-size [ set color grey setxy
abs(random-xcor) (random-ycor)]

#Each robot runs the same rule (the rule consists
of the robot measuring the distance to its
closest obstacle).

to-report nearby-obstacles

report obstacles with-min [ precision (distance
myself) 1 ]

#If there is only a single, closest obstacle, the
robot will move slightly forward toward it (fd
0.04) after which it turns at a random angle.

to swarm-rule
ask-concurrent robots [

if count nearby-obstacles = 1 [
if( xcor > 1 ) [fd 0.04 set color [color]
of one-of nearby-obstacles ] ]
rt 0.5 - random-float 1
]

#Robots will continue to execute this simple rule
until they end up at a location where there
will be more than one closest obstacle (i.e.
two or more obstacles which have the same
distance from the robot). At this point the
robot stops moving. This behavior causes the
swarm to equally segregate obstacles by
self-organizing into boundaries between all
obstacles (creating a pattern resembling a
voronoi map).

#THE VIRTUAL-FORCES RULE:

#0n each iteration, robots calculate all the
surrounding virtual forces coming from
neighboring robots as well as the repulsive
virtual forces from walls and other obstacles
and attractive virtual forces from goals and
chemical-heat trails left in the environment by
other robots.

to update-vfmodel

robot-forces
obstacle-forces
goal-forces
environmental-forces

#To calculate the virtual forces coming from other
robots, a robot will query all neighboring
robots, goals and obstacles within a certain
radius from itself.

#The robots local communication is limited to the
maximum range of its sensors (a user-defined
variable). Each neighboring obstacle will have
a negative force to repulse the robot (set
delta -1.0), whereas goals will have a positive
force to attract them (set delta 1.0).

#Neighboring robots have a positive (attractive)
virtual force by default to encorage the swarm
to cohere and stick together. However,
neighboring robots closer than a certain radius
(known as the robots personal-bubble) have a
negative (repulsive) force to avoid collisions.

to robot-forces

ask other robots in-radius sensor-range [
set delta 1.0
if (D < personal-bubble) [ set delta -1.0 ]

#The magnitude of the virtual force ( F ) is
calculated as the squared inverse of the
neighboring robots distance (F = 1 / D"2) so
that the closer the robot is, the stronger the
virtual force gets. This was found to provide
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Fig. 2 Right: the robotic swarm at a single instance in time (with robots represented by triangles). Left: A 3D view of
the swarm (whereby the additional dimension is used to display the swarms temporal changes and expose any underlying

spatio-temporal patterns)
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Fig. 3 An examples of the robotic swarms emergent behavior
when using the voronoi rule-set. Left: At the start, all robots
(represented by triangular particles) are randomly scattered
across an environment with obstacles (represented by circles).
Right: At the end, the swarm self-organizes itself to form
boundaries (resembling cell walls) which segregate each ob-
stacle (resembling nuclei).

more stable swarm behavior than a linear
inverse relationship (F = 1 / D).
let F (rbt-strength / (D * D))

#The virtual force is then used to update the
robots velocity which is used to update the
robots position. This process is applied to all
robots and repeated at each time step.

Turtles-own [Fx Fy deltal

ask myself [
set Fx (Fx + (cos(Th + delta * heading) * F))
set Fy (Fy + (sin(Th + delta * heading) * F))

to update-motion
facexy (xcor + Fx) (ycor + Fy)

setxy (xcor + Fx) (ycor + Fy)

#When first deployed, the robots move chaotically
and react to the virtual forces they experience
locally. The swarm is very dynamic at this
stage and able to easily flow around obstacles
(its state is analogous to a fluid).
Eventually, all the virtual forces on each
robot become balanced and when the net force on
each robot is zero and the swarm is in
equilibrium, the robots no longer move. As if
crystallizing, the swarm comes to a rest in
formations resembling straight lines (analogous
to a solid polymer) or regular lattices
(analogous to a solid crystal).

The Evolutionary-based Approach One of the main prob-
lems with designing robotic rules manually is that it of-
ten taking a long time to refine rules before yielding any
successful results. Automatic design methods (like Ge-
netic Algorithms) can be considered top-down methods
because, in theory, the process is driven by the global
goal [12] - i.e. the desired holistic-characteristics of the
entire swarm [12]. The perspective is shifted away from
the individual to the higher-level of the collective [12].
Unlike bottom-up approaches (i.e. Behavior-based ap-
proaches) which focus on designing at the level of the
local rule, incrementally refining it based on careful ob-
servations of the global effects they produce when thor-
oughly tested [12], top-down approaches (a.k.a. Phenomena-
based approaches [56]) focus only on the big picture, de-
signing at the global-level, some desired model of swarm
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Fig. 4 Three snapshots in time of the robotic swarms formation when running on the virtual-forces behavioral rule. Regardless
of the individual robots starting positions, the robots always self-organize into orderly lines as shown above.
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Fig. 5 A swarm rule being evolved to produce emergent
global behaviors

behavior, which is then used to guide and direct a quick,
automatic search through a sea of potential rules until
some are found which can produce the desired global
properties.

Genetic Algorithms A Genetic Algorithm comprises of

an initial set of candidate solutions encoded into genomes.

At each generation the fitness of the solutions are de-
termined. Genomes are then paired off to reproduce
via crossover and mutation (the fitter candidates being
given higher preference in mating to drive the evolu-
tionary process toward the goal). The offspring, along
with a small percentage of the fittest parents from the
previous generation, survive onto the next generation
while the remaining die off. The process is iterated un-
til a generation evolves to meet an acceptable level of
fitness.

Fine-Tuning the hyper-parameters of a Genetic Algo-
rithm The genetic algorithm can find a desired solu-

tion fairly efficiently if suitable representational meth-
ods, selection pressures (fitness function) and hyper-
parameters (e.g. population size, probability of muta-
tion, etc) are fine-tuned. The automated search pro-
cess cannot be applied blindly and effortlessly [23]. De-
signing the artificially intelligent algorithm well and
fine-tuning its parameters determines how quickly, ef-
ficiently and optimally the solutions are evolved. It is
not sufficient to start somewhere completely random
and hope to evolve a solution somewhere in phase space
[30]. Factors to carefully consider when designing a Ge-
netic Algorithm include: (a) Representational methods
(Genotype and Phenotype), (b) Selection Pressures (Fit
ness functions), (c) Exploitation (Crossover) and Ex-
ploration (Mutation) of the search space, (d) Memory
to allow the influence of past solutions (inheritance).

Representational methods (Genotype Phenotype) A chro-
mosome or genotype refers to the encoded solution which
the genetic algorithm can search and evolve [8]. The
phenotype refers to the coding method which dictates
how the chosen representation (directly or indirectly)
maps to the real solution (i.e. the rule set used by the
robot) [57]. It is used by the genetic algorithm during
its search to translate encoded solutions into their cor-
responding behaviors so that evolving solutions can be
evaluated (i.e. to know if the solutions are getting closer
to the desired emergent behavior). A common example
of a representational method is the bit string [24] or
binary string [31] (the candidate solution encoded in
binary - a single line of Os and 1s), the length of which
may vary depending on the size of the solution being
represented (e.g. 8 bits can represent a number in the
range -10 to +10. 128 bits can represent a single tran-
sition rule for a 1D binary state CA of radius 3 [31]).
Hexadecimal may be used instead of binary to allow
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for shorter string lengths [57]. Alternatively, the encod-
ing can be completely specified by the designer, such
that the genotype may consist of different letters of the
alphabet (e.g. A,B,C,D) [57]. The template representa-
tion [31] is an example of a user-defined representation
to suit the solution being encoded. A unique feature is
the inclusion of a special character to represent any
option (i.e. if the string is binary, then would mean 0
or 1). This is a makes the representational method far
more expressive by cleverly allowing for generalizations
(e.g. the string [0,,] could mean any of the following:
[0,0,0], [0,0,1], [0,1,0] or [0,1,1]). The template repre-
sentation was found to produce superior performance
to the bit string traditionally used for representing Cel-
lular Automata [31].

Selection pressures (Fitness Functions) Along with se-
lecting a good representation, selecting an appropri-
ate fitness function (the evaluation method to calcu-
late how a candidate solution ranks against the others
[24]) greatly influences the success of the evolutionary
process [57]. An example fitness function explored was
based on snap (the 4th order derivative of position, i.e.
the rate of change of acceleration). Snap is often used
to measure how much an object is shaking (the higher
the snap, the higher its shakiness). Therefore, if robots
have lower snaps, smoother swarm behaviors emerge,
whereas higher snaps produce incoherent, erratic swarm
behaviors since each robot is changing their motion very
suddenly and violently.

Exploitation (Crossover) and Exploration (Mutation) of
the search space The initial generation consists of ran-
domly sampled solutions which the genetic algorithm
modifies (using specific evolutionary search techniques
such as crossover and mutation [24, 57]) as a way of ex-
ploiting the current best solutions to intelligently nav-
igate through the search space [24].

#CROSSOVER

# Once all individuals in the population have been
evaluated (and ranked), their fitnesses are
used as a basis for selection [57]. Crossover
involves a pair of (parent) candidate solutions
exchanging genetic material (i.e. mating /
sexually reproducing) [57] by stitching
together pieces of their chromosomes to form a
new, unique (offspring [41]) candidate solution.

#A random number between 1 and the maximum length
of the genome (L) determines the location to
split each parent genome (split-point).
let split-point random L

#For every two parents who reproduce, both possible
combinations were explored. Thus two children
are always produced (e.g. A-A & B-B A-B & B-A).
to new-child [split-point strategy_dad

strategy_mum]

hatch 1 [
set strategy crossover split-point
strategy_dad strategy_mum
set th heading
set v O
set a 0
set fitness 1000
set color one-of base-colors
]
to-report crossover [split-point strat_1 strat_2]
set strat_1 sublist strat_1 O split-point
set strat_2 sublist strat_2 split-point
(length strat_2)
let strat_mix sentence strat_1 strat_2
report strat_mix
#0ccasionally they will combine the best genes of
both parents [30] and produce fitter candidate
solutions (thus driving the evolution).

#MUTATION
# Repeated reproduction with similar genetic
information increases genetic homogeneity [47]
which can lead to the algorithm getting stuck
at a local minima in the search space [30]. To
avoid this and encorage exploration of the
entire search space, a random element is
introduced to add some variety back into the
gene pool. Parts of the offsprings chromosome
are randomly changed to a different value in a
process known as mutation [24].
to respawn-and-mutate
let strategy_dad strategy
hatch 1 [
setxy random-xcor random-ycor
set heading random 360
set strategy mutate strategy_dad
set th heading
set v O
set a 0
set fitness 1000
]
die
#0ne of the elements in the genome is picked at
random and replaced (replace-item(random... )
with a random, new value (one-of command).
to-report mutate [strat]
set strat replace-item (random (L - 1))
strat one-of commands
report strat

Memory to allow the influence of past solutions (In-
heritance) There remains a small possibility that the
offspring will not be as good as their parents. Thus, eli-
tist inheritance allows the fittest candidates from the
previous generation to survive on to (be copied into)
the next generation along with all the offspring [24,
31, 57]. Inheritance can also be thought of as a way for
the genetic algorithm to remember best candidate solu-
tions searched in the past and thus acts like a memory
to help improve the efficiency of the search [31]. Us-
ing an excessive memory, however, can actually inhibit
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Fig. 1 Left: using only crossover, the swarm stops evolving prematurely as it gets stuck at a local maxima. Center: Using
only mutation, the swarm changes strategy randomly and fails to evolve. Right: using crossover with mutation (10 per cent)
allows the swarm to evolve far fitter solutions toward the global maxima

the evolutionary process and so selecting an appropri-
ate amount of memory is thus important for effective
problem solving [31].

to elite-replace-inheritance
let number-to-replace round ( ( 1.0 -
percentage-elite )* count turtles)
ask min-n-of number-to-replace turtles [ -1
* fitness ] [ die ]
let best-turtles turtle-set turtles

2 Analysis

Upon analyzing the spatial interactions of robotic swarms

over time, an intricate subsystem of spatio-temporal
patterns were revealed (emergent signals used to pro-
cess, store and communicate information across the de-
centralized system) embedded within the medium of
the system itself. Thus confirming our initial hypothe-
sis that there exist embedded computational mechan-
ics (i.e. the spatio-temporal patterns) which govern the
emergent behavior of robotic swarms. This section cate-
gorically presents examples of the various types of spatio-
temporal patterns discovered, as well as some of their
computational mechanics, with some commentaries to
explain how each feature is believed to contribute to-
ward the robotic swarms emergent behavior. The var-
ious findings are then compared against past research
(conducted in Cellular Automata - wherein the theory
of spatio-temporal structures and embedded computa-
tion was initially developed).

There were four distinct types of spatio-temporal pat-
terns discovered during our analysis (which seem to cor-
respond with the four classes of Cellular Automata):
1. Type I: Static Patterns (corresponding to Class I
CAs: Fixed Point Attractors) 2. Type II: Stable Pat-
terns (corresponding to Class IT CAs: Periodic Attrac-
tors). 3. Type III: Non-Patterns (corresponding to Class
ITI CAs: Chaotic Attractors). 4. Type IV: Semi-Stable

e

f
L

Fig. 2 A robotic swarm exhibiting Type I Spatio-Temporal
Patterns, visible as static lines over time (left). The robotic
swarm is locked in a crystallized lattice, analogous to being
in a solid state (right)

Patterns (corresponding to Class IV CAs: Strange At-
tractors).

2.1 Type I: Static Patterns (Class 1: Fixed-Point
Attractors)

The first type of spatio-temporal pattern is static by
nature; it remains unchanged over time (often shown
as a straight line on the 3d swarm representation - See
Figure 2). This is commonly formed when a single robot
becomes disconnected from the swarm and, having no
external influences to react to nor virtual forces acting
on it, it remains in the same position over time. There
were also examples of static patterns being formed via
pairs of robots (depicted as two parallel straight lines on
the 3d swarm). Sometimes they can even form via robot
trios, although it seems that static spatio-temporal pat-
terns become rarer to find as the number of robots com-
posing it increases. This may be because the positions
for robots that robots settle into require a perfect sym-
metry to balance each others influence (even a slight
perturbation is enough to shift a robot out of sync and
thus cause the others to become unbalanced).



Spatio-Temporal Patterns act as Computational Mechanisms governing Emergent behavior in Robotic Swarms 3

e

PR

1

f
L

Fig. 3 sometimes less stable patterns collapse into static,
type 1 spatio-temporal patterns. This may occur if there are
two or more robots affecting one another and their influences
balance and cancel each other out, causing them to collapse
into a state of equilibrium after an initial chaotic dance

'

Fig. 4 Two robots (red and purple) form a type II Spatio-
Temporal Pattern shown over time as a cyclical, periodic
twirl. The swarm in this state is dynamic yet moves in a repet-
itive, predictable manner unlike the nearby type IV pattern
produced by thee green and blue robots

2.2 Type II: Stable Patterns (Class 2: Periodic
Attractors)

The second type of spatio-temporal structure is a sta-
ble (or cyclical) pattern (repeating the same, stable
movements over time - See Figure 4) which corresponds
to periodic attractors in CAs. These patterns are most
commonly formed from robot pairs caught in a stable
dance around one another, reminiscent of binary stars
moving back and forth around one another. The exact
shape of the pattern produced may vary.

2.3 Type III: Non-Patterns (Class 3: Chaotic
Attractors)

The third class of spatio-temporal pattern is when the
swarm does not form any pattern at all; the robotic
movements and interactions are unstable and extremely
random such that no movements are exactly repeated
over time (See Figure 5). It is in a chaotic state which

Fig. 5 A type IlI Spatio-Temporal Pattern, showing a lack of
patterns (”chaos”) over time. The swarms are highly dynamic
and quickly change shape, similar to a turbulent fluid

changes unpredictably. When the swarm is in this state
its dynamics resemble a fluid, which is in direct con-
trast with the solid-like stillness of the first two types
of spatio-temporal patterns.

2.4 Type IV: Semi-Stable Patterns (Class 4: Strange
Attractors)

The fourth and final type of spatio-temporal pattern
discovered is the semi-stable pattern which corresponds
to 7strange attractors” See Figures 7 and 6). They are
not completely random (like type III) nor completely
orderly and repetitive (like types I and IT). They bal-
ance delicately on the border of stability; between sta-
ble and unstable; between order and chaos. This state is
one of the most interesting and is also referred to ”the
edge of chaos” because the swarm can easily drift in and
out of being borderline-stable (type I or IT) to wildly-
unstable (type III). To give an analogy in line with the
solid and fluid descriptions given for the first three types
of patterns, type IV patterns would most closely resem-
ble the turbulent vortex structures that sometimes ap-
pear within fluids (and then just as quickly disappear
again).

2.5 Stationary Patterns

Solid, stationary spatio-temporal patterns (which re-
semble a vertical line or pattern) represent robots that
remain at or around a particular x-y coordinate. Such
patterns give the swarm stability and fix it into a spe-
cific formation or shape (which can serve as a mem-
ory - assuming information has been encoded into the
specific patterns and formation of the swarm). It has
been found that pieces of information are represented
through the pattern of the spatio-temporal structure
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Fig. 6 Type IV spatio-temporal patterns. These patterns are
also known as ”Strange” Attractors. The pattern is complex;
somewhat collected, yet never repeating; resembling a local-
ized pocket of chaos.

-

Fig. 7 The exact shape and size of type IV patterns can
range from just one robot or large clusters of robots. The
swarm steadily moves and changes, yet in a fairly unpre-
dictable manner

(and thus when the pattern changes, so does the in-
formation it is representing). Therefore,information can
only be stored in the system if it remains unchanged as a
type I (fixed-point static) pattern or a type II (periodic
stable pattern). Non-patterns (type III) cannot possi-
bly represent information (since they have no recogniz-
able patterns to represent the information), yet they
still serve an important computational purpose. Firstly
their fluidity gives them the freedom to move across
space and time and influence other parts of the swarm,
changing nearby spatio-temporal patterns (and the in-
formation they represent) in their paths. Secondly, they
act as nucleation sites for random seeds form into pat-
terns (i.e. out of the chaos, spatio-temporal patterns
may suddenly form or transition from one form to an-
other) (See Figure 5).

2.6 Dynamic Patterns

Diagonal spatio-temporal patterns represent robots slowly

moving around the environment while maintaining a

Fig. 8 Two interlacing streams (type II spatio-temporal pat-
terns) travelling across the swarm over time. The patterns act
as temporal structures which store and propagate information
to other parts of the swarm

P,

Fig. 9 A type IV spatio-temporal pattern splitting into two
new type I spatio-temporal patterns. This split also causes
the information being carried to transform.

shared formation relative to one another. Dynamic pat-
terns serve to transfer information (stored in spatio-
temporal patterns and formations) across the swarm,
which may then influence a change in other patterns
(and their information) through various collision-based
computations (i.e. merging, etc) which shall be looked
at shortly. (See Figure 8)

2.7 Merging—Splitting Patterns

Occasionally, two or more spatio-temporal patterns will
collide and merge together to form a new, single pat-
tern. This can be viewed as a collision-based compu-
tation (i.e. a computational mechanism which allowed
information to be modified in a specific way). Informa-
tion stored as a single spatio-temporal pattern may also
split apart into two or more spatio-temporal patterns
(each representing new information) (See Figure 9)
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Fig. 10 An example robotic swarm with its spatio-temporal
patterns over time (left). Two nearby type IV spatio-temporal
patterns are influencing one another and slowly inducing
changes without colliding

2.8 Influencing Patterns at a distance

Sometimes a spatio-temporal pattern influences a nearby
pattern; changing its pattern type while remaining un-

changed itself. This type of change can occur if two or

more patterns come into direct contact or within close

proximity (in range of the robots virtual forces). The

patterns seem to conserve momentum as the larger of

the two patterns (i.e. the one consisting of more robots)

tends to remain unchanged while the smaller pattern is

more easily influenced (i.e. changed). (See Figure 10)

2.9 Decaying Patterns

The final type of change occurs when a type III or IV
pattern decays into another pattern type without any
external influences, either gradually or all of a sud-
den. This may occur because the type III (chaotic)
and type IV (semi-stable) patterns can easily fluctu-
ate due to their innate randomness, unlike more or-
derly patterns (type I or II). This is also why a type
I (static) or type II (stable) pattern never decays into
other patterns without an external influence. Decaying
is akin to a turbulent vortex structure (with a defi-
nite shape) but constantly changes in size and shape
over time(sometimes even disappearing or reappearing
momentarily). The exact time it takes for a pattern to
decay varies, although smaller cluster sizes tend to have
shorter lifespans than larger clusters, reminiscent of ra-
dioactive half-life decay times. (See Figure 11 and 12)

2.10 Assessment

Results which confirm previous research The discov-
ered patterns lend proof to the theory that computa-

Fig. 11 The red and purple robots form a type II periodi-
cally stable spatio-temporal pattern which is slowly decaying
as the robots widen apart. The pattern eventually decays into
a type IV semi-stable pattern like the blue and green robots
to its right

Fig. 12 Two type II stable spatio-temporal patterns can be
seen interweaving back and forth over time. They both slowly
decay and destabilize into type IV semi-stable patterns

emergent behaviors in swarms of simple, reactive robots
(similar to how they govern the emergent behavior in
Cellular Automata). The majority of our findings were
in line with previous research findings related to spatio-
temporal patterns (in Cellular Automata), including:
There are many different spatio-temporal patterns (i.e.
different spatial configurations perpetuating over time)
[10, 19] Each pattern represent a separate piece of in-
formation encoded into the system [10, 19] The perpet-
uation of spatio-temporal patterns allow for pieces of in-
formation to be stored, like a memory. Data is stored so
long as the patterns persist while remaining unchanged
[10, 19, 39] Moving spatio-temporal patterns (i.e. not
those remaining stationary but those which change spa-
tial coordinates over time) transfer pieces of informa-
tion across the system [10, 19, 24] Changing a spatio-
temporal pattern corresponds to changing the associ-
ated piece of information [10, 19] A number of Sta-
ble types of Spatio-Temporal Patterns were identified
[10] Some unstable (semi-stable) spatio-temporal pat-
terns also exist [10] Stable Spatio-Temporal Patterns

tional mechanisms govern the intelligent, self-coordinating, can change if influenced by an external event (i.e. col-
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lisions with other spatio-temporal patterns) [5, 10, 18,
51] Unstable (Semi-stable) Spatio-Temporal Patterns
can spontaneously change pattern or velocity without
any external influences [10].

Results not found in previous research However, some
findings did differ, and even contradict, the findings
of prior research (conducted into Spatio-Temporal Pat-
terns governing emergent behavior in Cellular Automata)
which have provided us with new insights and addi-
tional details about the computational mechanisms gov-
erning the emergent behavior of robot swarms. These
include: Rather than the two pattern types identified
(i.e. stable and unstable), our research identified four
distinct pattern types; static (fixed-point attractors),
stable (periodic-attractors), non-patterns (chaotic at-
tractors) and semi-stable (strange attractors). On top
of discovering unstable (semi-stable) patterns that could
spontaneously change without any external influence
(decay), our research suggested that the average de-
cay time (half-life) of semi-stable patterns is propor-
tional to the number of robots involved in forming the
semi-stable spatio-temporal pattern (i.e. the smaller the
pattern, the shorter the half-life). Our research found
that there were far more stable patterns types than
unstable (semi-stable) types when the swarm was in
the relatively rare solid state. However, when the robot
swarm is in its more common fluid state, the chaotic
and unstable (semi-stable) pattern types dominate the
scene, in direct contrast to the research findings in-
volved with Cellular Automata. As well as spatio-
temporal patterns being modified via collisions with
other spatio-temporal patterns [10, 19], our research
showed that spatio-temporal patterns did not require
direct collisions to change. Rather, patterns could in-
fluence one another at a distance proportional to the
range of the robots virtual forces. Our research identi-
fied at least seven distinct pattern changes (i.e. poten-
tial logic gates), including; merging (two patterns com-
bine to form a single, new pattern), splitting (one pat-
tern becomes two new patterns), absorbing (one pattern
disappears into another larger pattern which remains
almost completely unchanged), annihilating (patterns
dissolve into the chaos of a type III non-pattern), form-
ing (patterns form out of the chaos of a type III non-
pattern), overwhelming (the smaller of two patterns
change while the larger remains unchanged), decaying
(a pattern changes randomly without any external in-
fluence). Our research also seems to suggest that even
though chaotic type III non-patterns are unable to rep-
resent, store or transfer specific pieces of information,
they do contribute to the computational mechanics of
the emergent behavior in other ways; namely by keep-

ing the swarm fluid and thus able to change, having
an external influence on nearby patterns, and provid-
ing a chaotic environment for spatio-temporal patterns
to form from or annihilate into. While our research sup-
ports the finding that emergent behavior is not possible
if the swarm is fixed in a solid state (i.e. composed of
purely type I static or type II stable patterns), it does
not limit emergent computation to type IV semi-stable
patterns only. Rather, emergent computation is pos-
sible in any dynamic, fluid swarm state (i.e. at least
partially composed of type III non-patterns or type
IV semi-stable patterns), which includes chaotic (type
III) spatio-temporal non-patterns, which have previ-
ously been considered incapable of emergent compu-
tation.

3 Future Research

The first three sub-aims were successfully accomplished,
wherein robotic swarms were designed by hand, evolved
by a genetic algorithm and analyzed to uncover (for
the first time) the hypothesized computational mech-
anisms (spatio-temporal patterns) believed to under-
lie the emergent behavior of robotic swarms. In doing
so, we have made significant steps toward our ultimate
goal of intrinsically controlling the emergent behavior
of robotic swarms. In future, we hope to conduct a
more in-depth study of the discovered spatio-temporal
patterns (cataloguing each of their characteristics) and
their computational dynamics (mapping their interac-
tions and pattern changes) in order to accurately model
the swarms computational mechanics. Thereafter we
hope to conduct an investigation into possible meth-
ods of manipulating these individual spatio-temporal
patterns (i.e. using external stimuli, modifying the en-
vironment, manipulating key robots, their parameters,
the initial configurations, noise, communication delay,
etc). Using these manipulation methods with our pre-
dictive model, we could potentially control the robotic
swarms emergent behavior via reprogramming its inter-
nal spatio-temporal computations.

The fourth sub-aim ("understand the computational
mechanics ...”) involves studying the spatio-temporal
patterns and gathering enough information about them
to accurately model the underlying computational me-
chanics of the swarms emergent behavior. This includes
carefully cataloguing every spatio-temporal pattern and
their characteristic properties (i.e. class/type, shape,
velocity, etc) and mapping out each type of change it
undergoes upon interacting with other spatio-temporal
patterns (the collision-based logic). The analysis section
of this project has already shown sufficient evidence
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that differing types of spatio-temporal patterns exist.
It has also demonstrated some examples of the typical
behaviors and interactions noted. However, these find-
ings are too general and qualitative to answer the fourth
aim. For this aim, a far deeper analysis is required in
order to obtain the details required to model the in-
trinsic logic of the swarms underlying spatio-temporal
patterns. Aside from being a more systematic and in-
depth analysis of the spatio-temporal patterns them-

selves (the fundamental information-processing elements),

it would include numerous observations being made to
map out their computational dynamics [10], mechanics
and nonlinear logical operations (spatio-temporal pat-
tern collisions and interactions cause the pattern and
thus the information it represents, to change accord-
ing to a specific, intrinsic logic [10, 26]). Therefore, just
like an artificial particle physicist [18], we would care-
fully observe and catalogue each type of pattern and
interaction (or collision) in a look-up table that can
later be used to support sophisticated particle-based
information processing [10]. This approach is known
as computational mechanics (or alternatively collision-
based computations) and was first developed as the re-
sult of the research conducted into intrinsic computa-
tions embedded in CA space-time configurations [58-
59]. Spatio-temporal dynamics, representing basic log-
ical operators, (is) the foundation of (collision-based)
computation [47]

The findings obtained from the fourth aim are also
significant in confirming or contradicting previous re-
search findings (including but not limited to): Basic
Logical Operators (i.e. Spatio-Temporal Patterns) The
total number of static, stable and semi-stable spatio-
temporal patterns (the basic logical operators) which
exist [10, 28-29, 47]. The associated velocity (speed
and direction) of each spatio-temporal pattern which
determines how information is propagated throughout
the system [10, 19, 24] Collision-based Logic Gates
(i.e. Interactions / Pattern Changes) Collisions change
the spatio-temporal pattern and velocity according to
an intrinsic logic specific to that system (e.g. spatio-
temporal patterns and always change into spatio-
temporal pattern upon collision) [5, 10, 18, 51]. The in-
puts of the collision-based logic gates are represented by
the spatio-temporal patterns present before the inter-
action [29, 47] The outputs of the collision-based logic
gates are represented by the spatio-temporal patterns
present after the interaction. [29, 47] The Boolean truth
values of collision-based logic gates are represented by
the presence and absence of the spatio-temporal pat-
terns [28-29] The different types of collision-based logic
gates which can be realized via the interaction and

change of spatio-temporal patterns (i.e. not gates, xor
gates, diodes, etc) [29] The total number of collision-
based logic gates which occur at the sites where spatio-
temporal patterns change via various methods (i.e. Merg-
ing, Splitting, Absorption, Annihilation, Formation, Over-
whelming, Decay, etc) [10, 29].

The fifth sub-aim ("predict the swarms emergent be-
havior...”) involves simulating the swarms emergent be-
havior and predicting future developments [33] using a
model of its underlying computational mechanics (i.e.
the spatio-temporal patterns, their dynamics and in-
trinsic logic) constructed using the mappings, catego-
rizations and details gathered during the fourth aim
(e.g. spatio-temporal pattern types, velocities, collision-
based computational logic, etc) [10]. The predictive ac-
curacy obtained when modelling the computational me-
chanics of Cellular Automata in this way was as high
as 98.5% [51]. The models accuracy can be evaluated
by comparing its predictions against the swarms actual
developments. The task here is to try to get as low an
error as reasonably possible, since even small errors in
the particle (spatio-temporal pattern) velocities or in-
teractions are compounded over time [10].

The sixth sub-aim (”investigate methods to manipu-
late the underlying computational mechanisms...” ) may
be achieved through manipulating certain properties
related to key robots [27] (i.e. their positions, veloci-
ties, virtual forces, etc) or those related to the robot
swarm as a whole (i.e. configurations, etc), or the en-
vironment [2], or some external stimuli (i.e. light) or
other, less explicit factors (i.e. noise, wireless commu-
nication delay times, etc - which can directly influence
aggregation or dispersion in robotic swarms [15]). One
way in which the direction of computational mecha-
nisms (spatio-temporal structures) can be influenced is
via the addition of attractants or repellents in the com-
puting space (i.e. the swarms external environment) to
directly manipulate the systems medium, which would
subsequently influence the embedded spatio-temporal
structures [2]. For instance, chemical pheromones can
be used as attractors to spatio-temporal structures [20],
impurities can act as barriers or reflectors to them [28]
and the light intensity illuminating the medium (i.e.
protoplasmic networks [29], swarms of photo-avoidant
individuals [20],etc) can be used as a repellent to them.
A propagating plasmodium wave hits an obstacle (of
light - i.e. a suitably shaped domain of illumination)
that is small enough to divert [the emergent wave-front]
[20]. Repellents have even been shown to divert propa-
gating spatio-temporal structures by phase-shifting them
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[29] or splitting them into two independent signals (spatio- computations and ultimately, the driving force behind

temporal structures) [20, 29]. The signal-wave (spatio-
temporal structure) will split then into two signals, these
daughter waves shrink slightly down to stable size and
then travel with constant shape and the auxiliary wave
will annihilate [29]. By carefully timing and positioning
these external stimuli (i.e. chemicals, light, impurities,
etc), we can precisely control waves (spatio-temporal
structures) trajectory - e.g. realize U-turn of a signal
(spatio-temporal structure) [29] - and thus direct the
evolution of the systems emergent behavior [28].

The seventh and final sub-aim (”intrinsically control
the swarms emergent behavior by reprogramming its
underlying computational mechanics”) involves putting
all the pieces together; using the predictive model (de-
veloped in the fifth aim) along with the manipulative
methods (investigated in the sixth aim), to parallel pro-
gram the swarms collision-based computations by ma-
nipulating it at the level of its spatio-temporal pat-
terns (i.e. injecting, removing, reflecting, attracting or
repelling spatio-temporal patterns in order to manipu-
late the collision-based logical operations). For exam-
ple, manipulating the velocity of key spatio-temporal
structures can allow for prior planning of desired colli-
sions and avoidance of unwanted collisions, thus manip-
ulating when and how data is changed, and ultimately
controlling, or programming, collision-based computa-
tions. Rerouting a spatio-temporal structure (by chang-
ing its direction and/or velocity) can be used to de-
lay and better coordinate distributed pieces of infor-
mation [29]. Trying to control the swarms global be-
havior any other way (i.e. at the level of the local robot
rules), without first understanding its underlying com-
putational mechanisms (i.e. spatio-temporal patterns)
and collision-based logic, is limited and unpredictable.
For example, the robot rules react only to localized spa-
tial or temporal factors [12] (i.e. inter-robot distances)
are known to have a significant impact on the global
outcome of the entire swarm (i.e. how the rule reacts
to inter-robot distances can directly impact the swarms
aggregation [25]). Many of these factors, if fine-tuned,
can completely alter the global behavior of the swarm
by being modified ever so slightly and so such values
can be used as leverage points (tipping points) to di-
rectly control swarm behavior (i.e. cause a phase tran-
sitions) [36]. However, such control techniques are few
and rudimentary. Furthermore, the specifics of how the
global behavior will be affected are very general, and
thus trial and error is often required to to recognize and
fine-tune such influences. This aim (which is also our ul-
timate goal) assumes that spatio-temporal patterns are
the fundamental processors of emergent collision-based

global emergent phenomena in robot swarms.

4 Conclusion

This project has successfully uncovered the compu-
tational mechanisms (embedded spatio-temporal pat-
terns) hypothesized to govern the intelligent, self coor-
dinating, group behaviors emerging across swarms of
simple, reactive robots without the aid of any central
controller or leader nor global communication or global
knowledge. It provides proof that the theory of com-
putational mechanics (developed to explain the emer-
gent behavior in cellular automata) explains the emer-
gent behavior in robotic swarms. It also suggests that
this theory may potentially explain emergent behaviors
in all forms of complex adaptive system (i.e. biological
neural networks, ant colony behavior, bee hives, etc)
and may be the key that demystifies emergent phenom-
ena itself.

Most of our findings confirmed prior research into spatio-
temporal computations conducted in Cellular Automata
and supported their findings (i.e. pieces of information
are encoded in the spatio-temporal pattern and trans-
ferred across the system when the moves over time pat-
tern. Changing a pattern corresponds to changing the
information it represents. Stable spatio-temporal pat-
terns can be changed via collisions while semi-stable
patterns can change spontaneously without any exter-
nal influences). Some findings however,did differ. These
findings provided us with additional, unique insights
(i.e. the average decay time of semi-stable patterns is
proportional to the number of robots it consists of,
spatio-temporal patterns need not collide directly and
can sometimes influence one another from a distance,
pattern changes form the basis of the collision-based
logic gates and can occur via patterns merging, split-
ting, absorbing, annihilating, forming, overwhelming or
decaying. Chaotic non-patterns contribute to the com-
putational process by influencing nearby patterns, etc).

Following our discovery, we believe that the key to
understand a robotic swarms emergent behavior is by
understanding its underlying computational mechan-
ics (spatio-temporal patterns) and collision-based logic
(pattern changes and interactions). Therefore, the next
step would be to conduct a careful study into the intri-
cate dynamics of the swarms spatio-temporal patterns;
analyzing each individual pattern and its characteris-
tics in detail, as well as mapping out various interac-
tions and pattern changes, so as to create an accurate
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model which is able to predict future emergent behav-
iors before they occur in the real robotic swarm. Fur-
ther investigation into methods of manipulating (i.e.
injecting, removing, reflecting, attracting, repelling,etc)
spatio-temporal patterns is also needed, and this may
include researching the effects of noise and initial con-
figuration on the development of the swarms compu-
tational mechanisms. Thereafter, we could reach our
ultimate goal of controlling a robotic swarms emergent
behavior intrinsically by predicting and influencing its
underlying computational mechanics.
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