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Abstract

We provide a comparison of a series of original coordination mechanisms for the dis-

tributed boundary coverage problem with a swarm of miniature robots. Our analysis is

based on real robot experimentation and models at different levels of abstraction. Dis-

tributed boundary coverage is an instance of the distributed coverage problem and has

applications such as inspection of structures, de-mining, cleaning, and painting. Cov-

erage is a particularly good example for the benefits of a multi-robot approach due to

the potential for parallel task execution and additional robustness out of redundancy.

The constraints imposed by a potential application, the autonomous inspection of a jet

turbine engine, were our motivation for the algorithms considered in this thesis. Thus,

there is particular emphasis on how algorithms perform under the influence of sensor

and actuator noise, limited computational and communication capabilities, as well as on

the policies about how to cope with such problems.

The algorithms developed in this dissertation can be classified into reactive and de-

liberative algorithms, as well as non-collaborative and collaborative algorithms. The

performance of these algorithms ranges from very low to very high, corresponding to

highly redundant coverage to near-optimal partitioning of the environments, respec-

tively. At the same time, requirements and assumptions on the robotic platform and the

environment (from no communication to global communication, and from no localization

to global localization) are incrementally raised. All the algorithms are robust to sensor

and actuator noise and gracefully decay to the performance of a randomized algorithm

as a function of an increased noise level and/or additional hardware constraints.

Although the deliberative algorithms are fully deterministic, the actual performance

is probabilistic due to inevitable sensor and actuator noise. For this reason, probabilistic

models are used for predicting time to complete coverage and take into account sensor

and actuator noise calibrated by using real hardware. For reactive systems with limited

memory, the performance is captured using a compact representation based on rate

equations that track the expected number of robots in a certain state. As the number of

states explode for the deliberative algorithms that require a substantial use of memory,
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this approach becomes less tractable with the amount of deliberation performed, and we

use Discrete Event System (DES) simulation in these cases.

Our contribution to the domain of multi-robot systems is three-fold. First, we pro-

vide a methodology for system identification and optimal control of a robot swarm using

probabilistic models. Second, we develop a series of algorithms for distributed coverage

by a team of miniature robots that gracefully decay from a near-optimal performance to

the performance of a randomized approach under the influence of sensor and actuator

noise. Third, we design an implement a miniature inspection platform based on the

miniature robot Alice with ZigBee ready communication capabilities and color vision on

a foot-print smaller than 2 x 2 x 3 cm3.

Keywords: Swarm Robotics, Distributed Coverage, Multi-Robot Systems



Résumé

Cette dissertation étudie et compare des mécanismes de coordination pour le problème

de couverture distribuée de contours (distributed boundary coverage problem) avec

un essaim de robots miniatures. La comparaison se fonde sur l’expérimentation et la

modélisation de robots à différents niveaux d’abstraction. La couverture distribuée de

contours est un exemple du problème de couverture distribuée et elle trouve des appli-

cations dans l’inspection de structures, la détection de mines, le nettoyage ou encore la

peinture. Les problèmes de couverture tirent un grand bénéfice des systèmes multi-robots

grâce à leur parallèlisme et leur redondance qui leur donne une robustesse addition-

nelle. Les contraintes imposées par une application potentielle, l’inspection autonome

d’une turbine de jet, servent de motivation pour les algorithmes présentés dans cette

thèse. Ainsi, un accent tout particulier a été mis sur la performance des algorithmes

sous l’influence du bruit des capteurs et des actuateurs, et de ressources de calcul et de

mémoire limitées, mais également sur les diverses solutions permettant d’améliorer les

performances dans de telles conditions.

La description formelle de la dynamique d’un système multi-robots est nécessaire

pour la prévision et l’optimisation de l’exécution. Les algorithmes sont classifiés en

diverses catégories: réactifs et délibératifs, ainsi que collaboratifs et non-collaboratifs. La

performance de ces algorithmes va d’une couverture fortement redondante á une division

proche de l’optimum du domaine, avec une croissance incrémentale des hypothèses et

des exigences sur la plateforme robotique et l’environnement (d’aucune communication

à une communication globale, et d’aucune localisation à une localisation globale). Tous

les algorithmes sont robustes au bruit des senseurs et des actuateurs et se réduisent

élégamment à l’exécution d’un algorithme randomisé lorsque le niveau de bruit et le

nombre de contraintes matérielles augmente.

Bien que les algorithmes délibératifs soient entièrement déterministes, leur exécution

réelle devient probabiliste en raison du bruit inévitable des senseurs et des actuateurs.

Pour cette raison, des modèles probabilistes sont employés pour prévoir le temps de

couverture tout en tenant compte du bruit des senseurs et des actuateurs calibré à l’aide
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de vrais robots. Pour les systèmes réactifs dont la mémoire est limitée, la performance est

évaluée en utilisant une représentation compacte basée sur des équations différentielles

qui modélise le nombre moyen de robots dans un certain état. Cette approche devient

moins appropriée lorsque la quantité de mémoire utilisé pour une délibération devient

substantielle. Dans de tels cas, on doit recourir à la simulation de systèmes d’événements

discrets (DES).

La contribution de cette dissertation au domaine des systèmes multi-robots porte

ainsi sur trois plans. Premièrement, elle fournit une méthodologie pour l’identification

de systèmes et le contrôle optimal d’un essaim de robots en utilisant des modèles prob-

abilistes. Deuxièmement, elle développe une série d’algorithmes pour la couverture dis-

tribuée par une équipe de robots miniatures qui se réduisent avec élégance d’une perfor-

mance proche de l’optimum à celle d’une approche randomisée sous l’influence du bruit

des senseurs et des actuateurs ainsi que des contraintes matérielles. Troisièmement, une

plateforme miniature d’inspection basée sur le robot miniature Alice avec des possibilités

de communication via ZigBee et de vision couleur, le tout integré dans un volume de

moins de 2cm x 2cm x 3cm est conçue et mise en application.

Mot clés: essaim de robots, couverture distribuée, systèmes multi-robots
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Foreword

The modeling of multi-agent systems is of considerable interest for understanding chem-

ical or biological processes, ranging from molecular self-assembly to self-organization in

social insects. Despite some purely academical endeavors, this research finds immediate

application in the design of drugs, communication systems, and inspired various compu-

tational methods for solving real world problems. The modeling of miniature multi-robot

systems, although cross-fertilizing other domains, has only found a few immediate ap-

plications. From this perspective, I am very happy to have had the opportunity to

further develop the methodological aspects of modeling miniature multi-robot systems

using case studies, which might indeed lead to real-world applications, such as distributed

inspection of engineered structures (this thesis) or low-stress animal control by robots in-

tegrated into the animal society. Although everyday use of these technologies lies still in

the future, these case studies emphasize a general tendency: Miniature agents show only

limited capabilities that support rather a reactive, distributed coordination approach

instead of deliberative, centralized control. Although further miniaturization will soon

replace current miniature robots with much more capable and reliable successors, we will

also see much smaller robots with capabilities comparable to those of the robots consid-

ered in this thesis. This in turn will open new terrain for autonomous robotic operation,

e.g., in the human body or inside micro-machinery. An intriguing direction is given by

the ability of robotic platforms to successfully integrate into natural societies and alter

their behavior, as it was demonstrated within the European project LEURRE. Here,

miniature robots impregnated with cockroach pheromones were accepted by a swarm

of natural cockroaches as congeners and were used to induce non-natural behaviors in

the swarm. It is imaginable that this very simple concept of communication — luring

natural agents by camouflage and mimicking their communication channels — will be

soon available on even smaller scales. Then, self-locomoting nano agents might play

the role of the Pied Piper of Hamelin by removing unwanted guests (such as virusses or

cholesterol) from our bodies.

Keeping this outlook in mind, this thesis is focused on a single case study: the au-
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tonomous inspection of jet turbines by a swarm of miniature robots. This case study

was boot-strapped by initial funding from the NASA Glenn Research Center at the

California Institute of Technology. The tough constraints of such a scenario (miniatur-

ization and local communication) motivated us to explore what is feasible with miniature

robotic platforms. As technology developed during the last four years, adding new ca-

pabilities such as radio communication and color vision became feasible within the size

constraints of the turbine scenario and with that the opportunity to also consider delib-

erative approaches for inspection. This development lead us to encompass a large variety

of coordination approaches from reactive to fully planned. By highlighting the general

aspects of the experiments conducted and the modeling techniques being used, insights

gained in this thesis are not limited to the inspection scenario, but might be applicable

to nano robotic swarms on the one hand, and large scale (considering both number of

agents and the size of the individual) multi-robot systems on the other hand.
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CHAPTER 1

Introduction

Multi-robot systems can be a competitive alternative to a single robot solution, as they

offer a higher level of robustness due to redundancy and the potential for individual

simplicity. The possibility of conducting work in parallel potentially allows for faster task

execution, e.g., in a coverage or an exploration task. This property is even more striking

when size constraints on the robotic platform do not allow for task completion with a

single robot in acceptable time. Besides physical constraints such as miniaturization

and locomotion that are specific to the environment, such a scenario poses numerous

design challenges such as limited inter-robot communication, limited computation, and

a limited energy budget. Also, noise on crude sensors and actuators makes the design

of deterministic control systems difficult because the performance of the system as a

whole is essentially probabilistic. Thus, algorithmic design should aim at optimizing the

overall performance of the swarm, rather than an optimal sequence of (inter-)actions.

Such an approach is particularly reasonable when the number of robots is large and

requires algorithms to be statistically predictable.

Coverage has a variety of industrial, humanitarian, and military applications such

as inspection, cleaning, painting, plowing, mowing, and de-mining. Coverage algorithms

can be employed on various platforms ranging from ground vehicles to underwater and

unmanned aerial vehicles. Besides applications in coverage itself, coverage algorithms

might also be required for search and exploration applications.

The benefits and challenges of employing a multi-robot solution are well-illustrated by
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Figure 1.1: The compressor section of a jet turbine. The internal dimensions are within

the same order of magnitude as those of the miniature robotic systems used in this

dissertation.

the automatic inspection of (jet) turbines (Figure 1.1), which is a promising commercial

application (Wong & Litt 2004) and imposes severe constraints on the individual robotic

platform. Due to these constraints, which can be considered extreme conditions for

multi-robot coverage, lessons learned on such a case study might well be applicable for

applications that require larger robotic platforms.

In order to minimize failures, jet turbine engines have to be inspected at regular

intervals for evidence of internal distress such as cracking or erosion. This is usually

performed visually using borescopes, as well as using ultra-sound and eddy current sen-

sors (Federal Aviation Administration 1998), a process which is time-consuming and

cost-intensive, in particular if it involves dismantling the turbine. One possible solution

for accelerating and automating the inspection process is to rely on a swarm of au-

tonomous, miniature robots that could be released into the turbine while still attached

to the wing (Litt, Wong, Krasowski & Greer 2003). With the immediate prospect of

reducing the down-time during regular inspection intervals, the final goal of such an

approach is a distributed embedded system that allows for a shift from a schedule-based

maintenance procedure to a condition-based procedure based on smart sensors and ac-

tuators (Garg 2004). Here the deployment of mobile sensors, rather than the installation

of permanent sensors (Hunter 2003), is a compromise between increased system cost and
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the benefits from an in-situ inspection.

The focus of this work is on the analysis and synthesis of algorithms that coordinate

a robot swarm, rather than developing specific solutions for locomotion or inspection for

an individual robot in a turbine environment (see for instance Tâche, Fischer, Siegwart,

Moser & Mondada (2007) or Fischer, Tâche & Siegwart (2007), and Friedrich, Galbraith

& Hayward (2006), respectively, and references therein). Nevertheless, experimenta-

tion with real hardware (Figure 1.2) is undertaken and it serves both as validation and

motivation for algorithm development. Consequently, emphasis is on robustness with

respect to sensor and actuator noise of the minimalist platforms in use. Overcoming the

challenges imposed by the turbine inspection scenario that dramatically limits possible

designs of robotic sensors, can pave the way for other similar applications in the inspec-

tion of engineered or natural structures such as tanks, pipes, networks of galleries or

airplane surfaces.

In the remainder of this chapter, we summarize the design challenges that require the

development of algorithms and models considered in this thesis. We then briefly describe

the experimental setup used and the algorithms developed. The chapter is concluded

with a summary of objectives and contributions of this thesis.

1.1 Design Challenges for Miniature Inspection Systems

The narrow environment of a turbine imposes a series of constraints that drastically in-

fluence the design choices for the robotic platform and potential coordination algorithms:

- Miniaturization can be considered as the toughest constraint. Miniaturization

significantly limits the choice of potential actuators, sensors, and available energy.

While the trend goes towards further miniaturization of sensors and actuators, it

seems that available energy will become more and more a bottleneck on miniature

embedded systems. This will in turn limit not only the overall movement autonomy

but also on-board computational power and communication.

- Energy limitations might be overcome by providing the robots with tethers, which

would be also useful for easily removing broken or stuck robots from the turbine.

Tethers, however, have the disadvantage of requiring stronger actuators because

the robot has not only to self-locomote but also to pull the — potentially entangled

— tether that might quickly outweigh the robotic platform, in particular if it is to

be robust enough for manual removal of the robots. In a distributed system, the

entangling of tether cables is even more likely and imposes additional constraints

on path-planning algorithms.
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Figure 1.2: A simplified mock-up of a jet turbine being inspected by a swarm of minia-

ture robots show-cased during the Swiss-wide Festival ”Science-et-Cité” in Spring 2005.

Photo c©Alain Herzog.

- Due to the shielded and narrow structure of the turbine, which might act as a

Faraday cage, communication is limited to short range. For the same reason,

closed-loop control of the system by an outside supervisor (agent) is essentially

unfeasible.

- Reliable locomotion in a highly structured, 3-dimensional, upside-down environ-

ment poses tremendous mechanical challenges.

The algorithms and analysis presented in this dissertation experimentally tackle

miniaturization, energy limitations, and limited range communication, although no lo-

comotion principles other than wheeled differential-drive robots are explored. Besides

physical constraints, the inspection task also presents various algorithmic challenges

(Correll, Cianci, Raemy & Martinoli 2006), which are not the subject of this disserta-

tion:

- Potentially redundant sensory information provided by the robot swarm needs to

be fused and correlated to the location within the turbine where it was recorded.

- The (three-dimensional) data recorded within the environment needs to be ana-

lyzed, e.g., for detecting flaws (potentially using an expert system).
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2cm

Figure 1.3: Coordination schemes developed in this thesis have drastically different as-

sumptions on the individual robotic platform and the system as a whole. From left to

right: the basic Alice robot, the basic Alice with a radio-module and additional com-

putational power, the basic Alice with radio and camera module. Background: a Telos

mote that can serve as a base station and repeater.

- Appropriate control commands need to be synthesized and send to the robot swarm

in order to achieve a desired collective behavior: for instance, for inspecting more

closely a certain region of the structure.

1.2 Experimental Setup

Our robotic inspection nodes (Chapter 3) are based on the Alice miniature robot (Caprari

& Siegwart 2005), which we extended by a communication module and a camera module,

each with a dedicated micro-controller (see Figure 1.3). The communication module

allows robots to share coverage progress among each other and to transmit sensory data

to a base station. The camera module allows for a visual inspection of the environment,

and an identification of bar-codes in the environment, which is required by some of the

algorithms considered in this dissertation.

The robots operate in a 2D mock-up of a turbine with the blades as vertical extru-

sions. This setup allows us to model a series of real-world constraints such as unreliable

communication (due to the absorption of the signal by the metal structure of the envi-

ronment), miniaturization constraints, and sensor and actuator noise.
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1.3 Modeling Multi-Robot Systems

The various algorithms studied in this thesis have in common that the robot and envi-

ronmental states can never be estimated with certainty. Thus, a deterministic algorithm

with provable performance guarantees is reduced to the performance of a probabilistic

algorithm. In chapter 4 we show how models capture the probability of being in a cer-

tain state of the system; this probability can be derived for reactive controllers and for

controllers with a limited amount of memory. We also show that for controllers with

memory, the state space becomes quickly untractable and is unfeasible to enumerate and

to analyze with closed-form equations. In this case simulating the system equations using

probabilities that are carefully calibrated from the real robotic system yields valuable

predictions.

1.4 Distributed Coordination Schemes for Multi-Robot Inspec-

tion

We consider three classes of coordination approaches that are drastically different in the

control paradigm used and in their requirements on the individual robotic platform.

In Chapter 5, we consider a purely reactive approach that has minimal requirements

on the robotic platform (low-bandwidth, local communication, no localization). It uses

self-organization as a coordination paradigm and simple reactive heuristics for coverage

(Correll & Martinoli 2004a). Local infrared-communication is used for increasing disper-

sion of the robots in the environments (Correll, Rutishauser & Martinoli 2006). In this

scenario, the camera can potentially be used for inspection, but off-line processing for

mapping sensory and image data to the location where they were recorded is required.

In Chapter 6 we consider deliberative approaches: In Section 6.2 robots create topo-

logical maps of the environment (Correll, Rutishauser & Martinoli 2006) but do not

collaborate or have a global coordinate frame. We extend this approach by implicit

collaboration in Section 6.3. The algorithm requires sufficient bandwidth for sharing

maps among the robots (Rutishauser, Correll & Martinoli 2007), which are then used

by individual planning.

Finally the algorithms presented in section 6.4 require the environment to be known

in advance, which allows for nearly-optimal partitioning the environment among the

robots in a distributed fashion. This partitioning is achieved by market-based algorithms

(Lagoudakis, Markakis, Kempe, Keskinocak, Koenig, Kleywegt, Tovey, Meyerson & Jain

2005) where robots “bid” on parts of the environment they are willing to cover. By

continuous re-auctioning, robots can make up for slower or failed robots.
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In Chapter 7 the three approaches are compared with respect to their performance,

hardware requirements and the modeling techniques used for assessing the system per-

formance.

1.5 Objectives of this Dissertation

The performance of a multi-robot inspection system is a trade-off between available capa-

bilities of the individual robotic node (e.g., communication, localization), the reliability

of the individual robotic node (e.g., sensor and actuator noise), and the reliability of the

inspection sensor (e.g., probability of false-positives). This dissertation aims to quanti-

tatively and qualitatively address this trade-off with experimenting with real robots and

modeling the system at various levels of abstraction.

By highlighting the general properties of the algorithms and models used, the lessons

learned on a particular case study aim to contribute to a general methodology for syn-

thesis and analysis of multi-robot systems, possibly consisting of a large number of units

and characterized by severe limitations at the individual robot level.

1.6 Contribution of this Dissertation

Using a case study concerned with distributed boundary coverage by a swarm of minia-

ture robots, we show that an optimal configuration of hardware and software of a multi-

robot system is dependent on constraints such as the available size, energy, computation

and available time. This optimal configuration can be evaluated by modeling the system

at a higher abstraction level and carefully taking into account its probabilistic aspects

(sensor and actuator noise, robot controller) and calibrating model parameters on ex-

perimental data from a (sub-)set of the robotic system.

Moreover, we provide a modeling framework for probabilistic modeling of reactive and

deliberative coordination mechanisms. A suite of non-collaborative and collaborative

algorithms for distributed coverage is used as example. Close agreement among different

model abstraction levels is achieved by identifying probabilistic elements in the various

algorithms considered in this thesis, by calibrating their parameters and importing them

into the model.

Finally, the experimental work presented provides a first-of-its-kind implementation

of a team of 40 miniature robots endowed with wireless radio communication, and a

color camera on a foot-print smaller than 2cm x 2cm x 3cm.
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Chapter Summary

� Multi-Robot Coverage has a variety of commercial and humanitarian applications

such as the inspection of engineered structures, de-mining, and environmental mon-

itoring. As coverage can be conducted in parallel, it is well suited for implementa-

tion on a multi-robot system.

� A series of algorithms with increasing requirements on the individual robotic plat-

form is compared for distributed coverage of environments with arbitrary cellular

decompositions. The presented algorithms have been developed for coping with

real-world constraints such as sensor and actuator noise and limited communica-

tion. They are validated on teams of real miniature robots and using realistic

simulation.

� This dissertation contributes to a general methodology for modeling self-organized

robotic systems. Using numerous selected self-organized boundary coverage exper-

iments, it is shown how to systematically identify key parameters governing the

interactions of the swarm members among themselves and the environment, and

how to derive an abstract and compact mathematical representation for macro-

scopic properties of a robot swarm.

� We have developed and implemented a team of 40 miniature robotic inspection

robots, able to self-localize, to communicate via a wireless link, and record color

images, with an overall footprint less than 2cm x 2cm x 3cm, as well as an experi-

mental setup that carefully models aspects of the turbine scenario.



CHAPTER 2

Background

This chapter reviews the current state of the art in distributed coverage and modeling of

large-scale distributed robotic systems, which are the main research thrusts addressed in

this dissertation. The chapter concludes with a brief review of related work that situates

the contribution of this thesis at a system level, i.e. a distributed autonomous inspection

system, which involves research on human-swarm interaction and sensor-fusion, devel-

opment of suitable sensors for inspection and locomotion schemes that are appropriate

for navigation in target environments.

2.1 Distributed Dispersion, Exploration and Coverage

This section reviews work on distributed coverage and related disciplines, such as disper-

sion and exploration. Unlike dispersion (Section 2.1.1) and exploration (Section 2.1.2),

which have their origins mainly in applications for autonomous robots, coverage (Section

2.1.3) path planning is a classic robotic application, which aims at calculating trajec-

tories that lead to complete coverage of a manifold by an end-effector with specific

kinematics, e.g. as required by a paint job in a factory. Immobile robots with rigid links

used in manufacturing, however, provide a much higher reliability for predicting their

end-effector’s position than does an autonomous, mobile robot operating in a dynamic

and potentially unknown environment. For these reasons, research that aims at applying

path planning theory to autonomous robots has been mostly of theoretical nature and/or
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is based on simulation in order to fulfill the requirements on robot capabilities (perfect

sensors and actuators, global localization), and few studies consider coverage using the

swarm robotics paradigm. On the contrary, if high-level planning and reactive behavior

are well separated, i.e. a robot can detect and autonomously recover from failure, area

coverage can indeed be abstracted as some sort of graph exploration or coverage prob-

lem, which allows for leveraging algorithms from graph theory and for corresponding

analytical insight.

2.1.1 Dispersion

A statically dispersed swarm can serve as a communication backbone (McLurkin &

Smith 2006), distributed sensor (Schwager, McLurkin & Rus 2006), or guiding facility

(Payton, Estkowski & Howard 2003, Kumar, Rus & Singh 2004) for higher level agents

(robots or humans). Depending on the scenario, dispersion might thus be a prerequisite

for coverage.

McLurkin & Smith (2006) report an experiment where 108 Swarmbot1 robots are

dispersed in an indoor environment of around 280m2 by solely relying on local range and

bearing information (update rate 4Hz) and local communication. The fully scalable,

distributed algorithm is able to maintain the connectivity of the swarm, and allows

the deployed swarm to be used for navigation by using information about the network

topology. In contrast to the experiment of McLurkin & Smith (2006), Howard, Parker

& Sukhatme (2006) use approximately 80 robots in a mapping/dispersion experiment.

A small team of larger robots (around 6) with extensive navigation capabilities was used

to map an indoor environment using an off-line SLAM algorithm. The resulting map

was then used by a centralized controller to determine optimal deployment positions for

a swarm of smaller robots, which were guided in teams of three to six robots to their

deployment positions. Local range and bearing was achieved using on-board vision and

a bar-coded beacon mounted on the robots. The experiment shows that hierarchical

control might be an effective solution for dealing with large number of robots.

From the perspective of provable properties of the dispersion algorithm, Chaimowicz,

Michael & Kumar’s (2005) contribution is noteworthy. Chaimowicz et al. present a

distributed control scheme that is based on implicit functions for deploying a system

in the environment. The controller is provably convergent, and has been validated by

a team of four robots, albeit relying on global localization in the experiment. More

recently, Schwager et al. (2006) presented experimental results with 50 Swarmbots that

are dispersed in the environment by moving towards the centroid of an online Voronoi

partitioning of the environment, which is constructed using local range and bearing

1http://www.irobot.com
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between robots. Schwager et al. then show that the proposed distributed algorithm

achieves a dispersion that is optimal with respect to sampling a specific probability

density function (a light source and photo-sensors are used in the experiments for creating

and sampling the probability density function, respectively). The completeness of this

analysis is dependent upon the accuracy of robotic sensors and actuators, however, which

may prevent convergence in some scenarios.

2.1.2 Exploration

Exploration is closely related to dispersion, as robots must distribute themselves to

maximize the rate at which the environment is explored. However, unlike in dispersion,

robots do not remain stationary at their deployment positions, and additional behavioral

components such as collective movement might be required to maintain coordination.

Exploration is typically used in unknown environments where robots are not pre-endowed

with a map.

Zlot, Stentz, Dias & Thayer (2002) have experimentally studied a market-based co-

ordination scheme for exploration using a team of ten robots exploring an indoor envi-

ronment and dividing the task using an auction algorithm (see also Zlot & Stentz 2006).

Although the system takes advantage of a centralized unit, it is not necessary for suc-

cessful exploration as auctions can be held locally by each robot (at cost of potential

redundancy). A key challenge in auction-based approaches is to find the right trade-off

between solution quality and computational and communication burden: in order to

find optimal allocations among a robot team, the robots would need to negotiate all

possible permutations of task-robot allocations (Berhault, Huang, Keskinocak, Koenig,

Elmaghraby, Griffin & Kleywegt 2003), requiring an exponential number of messages

passed among the team. In practice however, near-optimal results can be achieved by

sequentially auctioning tasks to the robots (Dias & Stentz 2000).

Burgard, Moors, Stachniss & Schneider (2005) presents a centralized architecture

for explicit collaboration by trading off travel cost and information gain in order to

distribute the robots in the environment. In particular, Burgard et al. (2005) study

the influence of limited communication range. Finally, researchers from other research

communities (e.g. Albers & Henzinger 2000) abstract the robotic exploration problem as

exploration of unknown graphs, which allows for calculation of upper and lower bounds

on the performance of a series of exploration strategies.

2.1.3 Coverage

Robotic coverage shares many aspects with robotic exploration; both involve robots

dispersing to the peripheries of the environment. However, exploration usually requires
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only remote sensing of all the boundaries of the environment, while coverage may be

required over the entire area. In coverage, robots are typically equipped (in theory) with

some kind of end-effector (e.g., mowing or vacuum cleaning) or low-range inspection

device (e.g., for land-mine detection) and perform some sort of cellular decomposition

of the environment that is used to plan coverage trajectories, see (Choset 2001) for an

overview. The cellular decomposition can either be established off-line, which requires

knowledge of the environment, as in (Jäger & Nebel 2002), or on-line using on-board

sensors. Butler, Rizzi & Hollis (2001) presents a coverage algorithm requiring only

bumper sensors and is therefore limited to rectangular environments, whereas (Acar,

Choset, Zhang & Schervish 2003) uses long range sensors. Also, literature distinguishes

between approaches that plan the robot’s trajectories off-line (Zheng, Jain, Koenig &

Kempe 2005), and those that plan trajectories on-line, in which case the environment

needs not to be known in advance (Butler et al. 2001, Acar et al. 2003). There exist hybrid

approaches that require initial knowledge of the environment but perform dynamic (re)-

planning (Williams & Burdick 2006, Jäger & Nebel 2002). Another important axis is

also, whether robots will make up for potential failures of other robots as in e.g. (Hazon,

Mieli & Kaminka 2006) or (Rekleitis, New & Choset 2005) where the environment does

not need to be known in advance, or (Hazon & Kaminka 2005) in known environments.

In (Rekleitis et al. 2005), an auction-based algorithm is used for arbitrating cover-

age among the robots. Hazon et al. (2006) presents a multi-robot coverage algorithm

that builds upon the provably complete and optimal STC algorithm for covering grid-

like environments from Gabriely & Rimon (2001). In Hazon et al.’s (2006) work, each

robot constructs parts of a minimal spanning tree of the environment and keep track

of the status of robots that have crossed their path, assuming global communication

and localization. Spanning trees are shared such that no redundancy occurs if none of

the robots fail. This policy is non-optimal as robots might “cut-off” each other and

lead to a non-uniform distribution of work (see also Hazon & Kaminka 2005). Hazon &

Kaminka consider optimal spanning trees of known environments that are divided among

the robots based upon their initial position on the spanning tree. Finally, Svennebring

& Koenig (2004) presents an ant-inspired multi-robot coverage algorithm where robots

leave traces in the environment, which can then be used by other robots for implicit

collaboration.

Notice that all of the above work concerning multi-robot coverage, except (Jäger &

Nebel 2002), has been conducted in simulation.



2.1 Distributed Dispersion, Exploration and Coverage 13

a) b)

Figure 2.1: Complete coverage of the boundary of all objects requires traversing all edges

of the graph to the left, or traversing all vertices of the graph to the right.

2.1.4 Multi-Robot Boundary Coverage

The boundary coverage problem is an instance of a graph coverage problem, where the

graph is constructed so that its vertices cover only areas close to the boundary of objects

in an enclosed space (Figure 2.1, a). In a dual representation (as in this dissertation),

objects themselves can be considered as vertices of a graph and circumnavigation of the

objects, i.e. boundary coverage, corresponds to covering a vertex (Figure 2.1, b). The dis-

tributed boundary coverage problem has applications in various potential robotic tasks,

such as inspection or maintenance of structures, and has been first formulated by Easton

& Burdick (2005). Easton & Burdick’s (2005) work is mostly focussing on appropriate

cellular decompositions for the boundary coverage problem, but also discusses near-

optimal heuristics for distributing tasks among agents. In (Williams & Burdick 2006)

these algorithms are extended by re-planning for increased robustness.

Chaimowicz et al. (2005) develops decentralized controllers for robot swarms to gener-

ate specific two-dimensional patterns defined by smooth functions generating a potential

field. The controllers are provably stable for a class of boundaries (Hsieh & Kumar 2006).

Hsieh, Loizou & Kumar (2007) then develop a methodology for generating potential

functions that lead the robot swarm to orbit, i.e. circumnavigate the boundaries of the

potential functions. As the work of Williams & Burdick, Hsieh & Kumar’s algorithm

require global localization for navigation.
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2.2 Models for Swarm-Robotic Systems

For guiding the design process of self-organized robotic systems, a formal understanding

of the relation between individual and collective behavior is desirable. Abstract models

that capture this relation could help avoiding costly and time-consuming experiments,

and might yield a priori insight into a specific system design.

2.2.1 Deterministic Models

A large amount of literature concerning large-scale, distributed, multi-robot systems

originates from a system dynamics and control perspective. Results include algorithms

and proofs of convergence of distributed controllers for flocking (Jadbabaie, Lin & Morse

2003), consensus (Olfati-Saber & Murray 2004, Ren, Beard & Atkins 2005), and optimal

sensor distribution for sampling a given probability density function (Cortés, Mart́ınez,

Karatas & Bullo 2004).

The bases for these analyses are usually simplified motion models for the individual

robots, artificial potential fields (Reif & Wang 1999), and graph structures that model

neighborhood relations of the multi-robot system. Tight assumptions are made on the

sensorial capabilities and the motion models of the robots in order to fit into the chosen

mathematical framework (holonomic point robots with perfect sensors and actuators),

but analysis methods have significantly improved in recent years, and the tendency

is going from unrealistic synchronous swarms to asynchronous ones (Liu, Passino &

Polycarpou 2003), from holonomic to non-holonmic point robots (Tanner, Jadbabaie &

Pappas 2005), and towards accounting for sensor and actuator noise (Gazi & Fidan 2005).

Another perspective on modeling of multi-robot systems stems from classical robotic

motion planning for addressing coverage tasks. Here, the environment is segmented using

cellular decomposition (Choset 2001) and then partitioned among the robots. Compu-

tational geometry and graph theory provide the basis for algorithmic analysis (see for

instance (Choset 2000) and (Rekleitis, Lee-Shue, New & Choset 2004) for the single and

multi-robot cases, respectively).

Finally, operational research opens a perspective for addressing the multi-robot task

allocation problem (which can be cast into a multi-robot coverage problem when con-

sidering partitions of the environment as tasks) and a valuable taxonomy and overview

is provided by Gerkey & Matarić (2004). For distributed coverage Williams & Burdick

(2006) and Zheng et al. (2005) both propose a centralized, near-optimal solution for

partitioning an environment among a team of robots using constructive heuristics for

the k-rural postman problem or the n-binpacking problem, respectively.
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2.2.2 Probabilistic Models

Analysis using artificial potential fields or similar methods currently allows for analysis

of only a subset of behavior-based control approaches in which the behavior of a robot

does not change (i.e. the artificial potential field is the same for all robots). Models that

keep track of the population dynamics of the swarm, i.e. the average number of robots

in a certain state at some time, instead usually do not take into account the spatial

distribution of the robots. Nevertheless, such models have shown strong quantitative

agreement with a series of real-world robotic case studies where the performance metric

is non-spatial (or can be formulated as such): object clustering (Martinoli, Ijspeert &

Mondada 1999), collaborative manipulation (Martinoli, Easton & Agassounon 2004),

and inspection (Correll, Rutishauser & Martinoli 2006). For foraging (Lerman, Jones,

Galstyan & Matarić 2006), object aggregation (Agassounon, Martinoli & Easton 2004),

and robot aggregation (Correll & Martinoli 2007a) good agreement has been obtained

for model prediction and realistic simulation.

Probabilistic population dynamics models are derived by describing the individual

robots behavior and environmental states with Markov chains (i.e. probabilistic finite

state machines). State transition probabilities are calibrated with simple heuristics (see

for instance Martinoli et al. 2004) or found using system identification based on exper-

imental data (Section 4.4). The Markov chains can then be transcribed into a system

of difference (Martinoli et al. 2004) or differential (Lerman, Martinoli & Galystan 2005)

equations (one for each state) that summarize the average state transitions and thus

track the average number of robots in each state. In many cases, interactions among

the robots lead to state transition probabilities that are a function of the number of

robots in other states, and thus yield a system of difference/differential equations that

are non-linear.

Probabilistic modeling has also been used to address the robot task allocation prob-

lem by Agassounon et al. (2004) and Lerman et al. (2005). Here, the contribution from

Agassounon et al. is of particular interest for swarm robotic coordination as task alloca-

tion in their work is based on threshold-based algorithms, which are inspired by division

of labor in ant colonies (Bonabeau, Dorigo & Theraulaz 1999), and can be a competitive

alternative to market-based solutions (Kalra & Martinoli 2006).

Although even simple systems become quickly analytically untractable, steady state

analysis can be performed numerically, and stability and convergence can be determined

using simple heuristics, e.g. phase diagrams (Strogatz 2000), or a reachability analysis

of the state space can be performed using numerical computation toolboxes (Berman,

Halasz, Kumar & Pratt 2006).



16 Background

2.2.3 Hybrid Models

Hybrid systems are composed of both continuous and discrete components. The former

are typically associated with physical first principles, whereas the latter are associated

with logic switches, such as a Finite State Machine of a robot controller (see Balluchi,

Benvenuti, Engell, Geyer, Johansson, Lamnabhi-Lagarrigue, Lygeros, Morari, Papafo-

tiou, Sangiovanni-Vincentelli, Santucci & Stursberg’s (2005) survey of the topic).

A robotic system becomes hybrid as soon as the behavior of an individual robot fol-

lows some rule based logic that switches between different behaviors whereas its physical

state (e.g., position) is described by continuous values. Other instances of hybrid sys-

tems are the combination of continuous probability density functions (e.g., for modeling

the position and discrete logic on individual level) or the combination of deterministic

and probabilistic models (e.g., deterministic models for describing the kinematics of a

system and probabilistic models for describing the behavioral state distribution of the

system).

Indeed, deterministic models (Section 2.2.1) have classically modeled the spatial as-

pect, i.e. the distribution of the robots in the environment, whereas probabilistic models

usually model the behavioral aspect of the system, i.e. the proportion of robots in a

certain state. Both times, modeling needs to make assumptions such as either uniform

distribution of robots and objects in the environment as commonly used by population

dynamics models, or extremely simple behavior and perfect sensors/actuators for the

individual robots as it is the case for deterministic models.

So far, only few hybrid modeling approaches for modeling multi-robot systems exist.

Milutinovic & Lima (2006) show how an agent population can be controlled to move to a

particular location using a centralized controller; this is accomplished by formulating the

system as an optimal control problem on partial differential equations that describe the

density function of the robots in the environment and the proportion of robots moving

in one out of three different directions.

Berman et al. (2006) use a similar approach as Martinoli et al. (2004) and Lerman

et al. (2005), and describe the population dynamics of a swarm of agents which is collec-

tively looking for a resting site using differential equations (rate equations). The model

is hybrid, as the swarm switches between different behavior sets with different dynamics

at the macroscopic level and specific continuous control laws at the microscopic level.

Hybrid probabilistic models seem to be among the most promising for combining

population dynamics with spatial dynamics of the swarm.
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2.2.4 Multi-Level Modeling and Simulation Techniques

Given a distributed robotic system embedded in a dynamic environment, which has

an almost infinite parameter space, ranging from the individual robot’s controller and

its morphology to features of the environment, key parameters need to be identified

for describing a particular metric of interest with sufficient accuracy. Following the

principle of parsimony (Occam’s razor), the level of detail of a model can be gradually

decreased. This yields drastically reduced experimental/simulation time and a more

compact representation.

At the lowest abstraction level the system can be represented by realistic, embodied

simulation, which faithfully reproduces body morphology, sensor features and placement,

as well as physical constraints of the robots and the environment. Instances of such

simulators are Player/Stage/Gazebo (Vaughan & Gerkey 2007) or Webots (Michel 2004),

which has been used in this thesis.

Raising the level of abstraction, algorithmic properties of a system can be maintained

by multi-agent simulation, where the deliberative parts of an individual robot controller

are faithfully represented and have access to a common world model. Emphasis is on

high-level interaction among the agents, rather than accurately modeling physics, kine-

matics, sensor and actuators. Instances of such simulators are Swarm (Minar, Burkhart,

Langton & Askenazi 1996), TeamBots (Balch 1998) or SPADES (Riley & Riley 2003).

At a higher level, some properties of a real system are intentionally replaced by aver-

age quantities. For instance, the robot speed together with its sensor range and the

morphology of an object are abstracted by a constant probability for encountering this

object at every time step which allows for simulating the system as a series of interact-

ing, stochastic automata (Martinoli et al. 1999, Martinoli et al. 2004). Martinoli et al.’s

(2004) implementation requires the metric of interest to be non-spatial, the distribu-

tion of the robots to be uniform in the environment, and synchronous simulation of the

robot swarm. It reaches its limitations, however, when time scales in the system are

very different (some events happen several orders of magnitude more often than others,

e.g.) or when asynchronicity has a key impact on system performance. In these cases,

the simulation can be more efficiently implemented as non-spatial discrete-event system

(DES) simulation. The advantage of DES simulation is that the time of the next event

in the system is computed beforehand and the simulator can skip simulation time in

which no event happen. DES simulations have found wide-spread use for simulation

of communication networks, and a large body of work on efficient implementation as

well as open-source frameworks (see for instance the network simulator NS-22) exist.

In communication networks, however, computational units are classically non-mobile.

2http://www.isi.edu/nsnam/ns/
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Available DES simulation frameworks are thus not directly applicable for implementing

agent-based representations where agents follow the “perceive-plan-act” paradigm, see

also Hybinette, Kraemer, Xiong, Matthews & Ahmed’s (2006) discussion on the subject.

At the highest abstraction level, the macroscopic level, a robotic swarm can be de-

scribed using difference equations (Martinoli et al. 2004) that keep track of the ratio of

individuals in a certain state or the fraction of time the system as a whole spends in

a certain state (Section 4.1). This approach is similar to population models commonly

used in biology (Camazine, Deneubourg, Franks, Sneyd, Theraulaz & Bonabeau 2001),

and has its origin in physical master equations that describe the probability of a system

to occupy each one of a discrete set of states.

Martinoli et al. (2004) experimentally investigate the relation and potential mismatch

between macroscopic analysis by difference equations and microscopic simulation for a

swarm-robotic case study (the stick-pulling experiment). Microscopic simulation tends

to yield better matching with macroscopic equations when the number of interactions in

the system or the number of agents are large.

The approach of Martinoli et al., which explicitly simulates every individual agent and

thus allows also studying heterogeneous swarms with no additional computational effort

(Li, Martinoli & Abu-Mostafa 2004), reaches its limitations when the number of agents is

large. A computational efficient, exact representation, although for differential equations,

is the Gillespie algorithm (Gillespie 1977) which randomly generates possible trajectories

for the underlying Master equations (see also Rathinam, Petzold, Cao & Gillespie (2003)

and Gibson & Bruck (2000) for computational more efficient implementations of the

original algorithm).

As the dynamics of the macroscopic model are exactly reproduced — but for low

number of interactions or small number of agents — the Gillespie approach does not

allow for lowering the abstraction level of the model in the microscopic representation or

studying heterogenous teams, which is a strength of Martinoli et al.’s (2004) approach.

Indeed, the microscopic level allows for studying additional details, e.g. communica-

tion loss, which are not captured by the macroscopic model, without requiring realistic

simulation.

In practice results obtained from one or the other abstraction level / model should be

treated with care, and the choice of a particular model has to be decided on a case-by-case

basis and with respect to the aspect of the system one is interested in.
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2.3 Robotic Inspection Systems

This section briefly reviews the system aspect of multi-robot systems for inspection or

environmental monitoring and key technologies that might eventually enable the turbine

inspection application, which is the motivating case study of this thesis.

The use of multiple robots for inspection and monitoring for the sake of safety, ex-

ecution speed and robustness has been recurrently promoted in the literature. Petriu,

Whalen, Abielmona & Stewart (2004) for instance present a series of heterogenous, net-

worked robotic units for complex environmental monitoring tasks, and discusses issues

in human-swarm interaction (see also Hinic, Petriu & Whalen (2007) for a study on

human-computer symbiotic control of a robot swarm using a brain-computer interface),

sensor fusion, and distributed coordination. Kumar et al. (2004) develops a scenario in

which a team of autonomous agents penetrates a hazardous scenario and provide sensory

information (such as temperature or air quality) as well as physical guidance through

obstructed view (e.g., due to smoke) to a human team. Interestingly, navigation dead-

locks are explicitly taken into account and immobile units are foreseen to serve as static

sensor nodes and information relay.

2.3.1 Turbine Inspection

Using a team of robots specifically for the turbine inspection scenario was first articulated

by Litt et al. (2003). Turbines currently used in large-scale commercial aircrafts have

a length up to 7.5 meters (e.g., Pratt & Whitney PW4000, Rolls Royce Trent, General

Electric GE90). The air-flow into the turbine is pre-compressed by a fan and directed

into the compressor turbine. The compressed air is then enriched with fuel and burned in

the combustion chamber, providing forward thrust. The resulting high-pressurized, hot

gas is directed then through a further turbine, absorbing part of the thrust for driving

the turbo fan, and the compressor turbine. Due to the extreme operation conditions im-

posed by a wide range of throttle requirements (take-off and landing vs. cruise) together

with extreme variations in temperature and pressure in different operating altitudes and

climatic regions, jet turbine engines are subject to extreme tear-and-wear ranging from

burn-out of turbine blades due to hot gas from the combustion chamber (Garg 2004),

and damage of the blade tips in compressor or turbine section due to rub with the outer

shell, arising from thermal expansion of the materials that leads to reduction of the clear-

ance between blade tips and turbine body, which is kept to a minimum for performance

reasons (Melcher & Kypuros 2003), to foreign object damage (FOD) by objects from

outside being sucked into the compressor or loose parts from within the turbine. There

already exist different methods for assessing the engine health-state (Federal Aviation
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Administration 1998), without actually taking measurements from within the turbine

and hence increase on-wing time. For instance, analyzing the exhaust gas yields to-

gether with performance data such as the shaft-speed collected during flight, evidence of

blade failures, compressor failure, foreign object ingestion damage, or seal erosion. Also,

the analysis of oil condition by means of infra-red spectroscopy that can be performed

within the engine itself, can indicate engine conditions by measurements of concentra-

tion of thermal and oxidative degradation products, water content, or fuel dilution. The

above mentioned processes are associated with tremendous cost for the airline industry

due to the down-time of equipment, and hence every possibility to enhance on-wing in-

spection leading to longer intervals for engine tear-down is highly sought after by the

commercial airline industry (Garg 2004). Multi-robot systems are thus an interesting

option for inspection of various sub-systems of the turbine, e.g. for inspection of blade

mount-holes by navigating on the bore, inspection of tip clearance by navigating on the

inside of the outer hull, or inspection of the combustion chamber.

2.3.2 Nondestructive Evaluation

A large body of work exists on Nondestructive Evaluation (NDE), often also referred to

as Nondestructive Inspection (NDI) or Nondestructive Testing (NDT) using hand-held

devices or tele-operated mobile robots. An interesting observation that is common to

NDE sensors is the fact that sensors are not reliable and might produce false-positives

and false-negatives test results, which advocates a multi-robot solution with a healthy

amount of redundancy in coverage.

The most common sensors3 for NDE base on the eddy current or on ultra-sound

transducers, which require, however, application of contact gel as the difference in signal

speed between air and matter make analysis of the obtained measurements difficult.

Eddy current transducer are made of coils of around 3mm diameter, which allows to

detect cracks down to a length of 0.1mm. For increasing spatial resolution of the sensor,

coils can also be used in an array.

Siegel & Gunatilake (1997) developed a robotic platform for semi-autonomous inspec-

tion of aircraft skins using eddy-current sensors and visual inspection. Siegel & Gunati-

lake also discuss aspects of acceptance of new technology for inspection in safety critical

domains. Sánchez, Vázquez & Paz (2005) present a robotic unit for semi-autonomous

visual inspection of welding seams on the outer hull of large ships. Song, Wu & Kang

(2004) presents a semi-autonomous inspection system for boiler tubes based on mag-

netic flux leakage and ultra-sound measurements, and Cruz & Ribeiro (2005) developed

a robot for inspection of the bottom and walls of large oil tanks. Interestingly, NDE sen-

3according to a personal communication from Fernando Silverio, ALSTOM Power Service
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sor technology allows for being used also on rather small miniature robots. Friedrich et al.

(2006) presents a mobile robotic unit with magnetic wheels that allows for ultra-sound

inspection of ferro-magnetic structures with a footprint of about 9cm x 9cm, whereas

eddy-current sensors are available as hand-held units of the dimension of a pen (Siegel

& Gunatilake 1997).

All of the above mentioned applications (including the turbine inspection scenario)

have in common that the inspection unit usually needs to be multiple orders of magnitude

smaller than the inspection domain, which further motivates the use of a multi-robot

system.

Chapter Summary

� The field of multi-robot coverage has received considerable attention from the re-

search community. However, only a few systems have been implemented on a

physical team of robots, and they usually make strong assumptions on the robotic

platform such as communication, localization, rich sensory information, and negli-

gible sensor and actuator noise.

� Swarm robotics is emerging as sub-discipline of multi-robot systems. Among the

most challenging problems in swarm robotics is the development of appropriate

modeling methodologies that allow for the design of the individual platform for

achieving a desired collective behavior of the swarm.

� Inspection of jet turbines is a challenging application for multi-robot coverage.

The shielded and narrow structure of the turbine imposes drastic constraints on

the size and the communication abilities of a potential robotic platform. Real-world

systems for the inspection of engineered structures, so far, are semi-autonomous

single-unit systems. The nature of the task, however, strongly advocates using

multi-robot systems.
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CHAPTER 3

Case Study and Experimental Setup

This chapter describes the experimental setup, which aims at modeling part of the chal-

lenges that would arise in a turbine inspection task using a miniature robotic swarm

(Krasowski, Greer & Oberle 2002). The challenges that need to be overcome for enabling

such a scenario are among others miniaturization, coordination despite limited commu-

nication and localization, locomotion, and human-swarm interfaces with appropriate

expert systems. The experimental setup in this dissertation focuses on the miniatur-

ization and multi-robot coordination aspect. As the motivating case study is concerned

with turbine inspection, experiments are conducted in an environment with regularly

spaced objects that mimic the blades of the compressor section in a jet turbine. As all

algorithms considered in this dissertation require every element to be covered at least

once, the experimental setup can also be interpreted as an instance of a graph coverage

problem.

Particular emphasis of our experiments is put on sensor and actuator noise and

limited/unreliable communication. The chosen platform Alice (Caprari & Siegwart 2005)

provides only a limited amount of computational power and memory, rather crude sensors

and high wheel-slip (Section 3.1.1). The basic Alice robot without extensions fulfills the

assumptions of the reactive coverage algorithms presented in Chapter 5. Improved by

a secondary micro-controller (Section 3.1.2) the Alice can execute basic deliberative

coverage algorithms without explicit collaboration (Section 6.2). Finally, a radio device

allows for the sharing of coverage progress (Section 6.3) and near-optimal partitioning
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Module Energy Consumption

Drive-train on 15mW

Drive-train off < 3mW

Radio active 60mW

Radio sleep < 1mW

Camera active 60mW

Camera sleep 15mW

Table 3.1: Energy consumption of selected sub-systems of the inspection platform.

of the environment among the robots (Section 6.4). To provide a common reference for

collaboration, a camera module (Section 3.1.3) allows the robots to uniquely identify

each blade.

3.1 A Miniature Robotic Platform for Autonomous Inspection

Our inspection system (Figure 3.1, left) is based on the Alice miniature robot, developed

by Caprari & Siegwart (2005) at the Autonomous System Lab at EPFL, which we ex-

tended by networking and color imaging capabilities. The robotic platform, the camera,

and the radio module can communicate via an I2C bus. A flow-chart of the whole system

is shown in Figure 3.1, right. The energy consumption of selected sub-systems of the

inspection platform are summarized in Table 3.1.

3.1.1 Basic Platform

The Alice has a size of 21mm x 21mm x 20mm, and is operated by a PIC 16LF877

microprocessor (4Mhz, 384 byte of RAM, 8kB ROM). It is endowed with 4 IR modules

which can serve as very crude proximity sensors (up to 3cm) and local communication

devices (up to 6 cm in range), providing communication at around 20 nibbles (data

sets of 4bit length) per second, and can also be used for detecting the presence and

approximate direction of other robots. Its autonomy with a 40mAh (at 3.6V) NiMH

rechargeable battery ranges from 10min1 to 10h, depending on the actuators and sensors

used (refer to Table 3.1 for detailed energy consumption of selected components). The

Alice is driven by two watch (stepper) motors in a differential-wheels configuration,

allowing for a top-speed of 4cm/s.

1Although the capacity of the battery would allow for more experimental time, in practice the voltage
quickly drops below the operational range under high load
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Figure 3.1: The inspection platform (left) measuring around 2cm x 2cm x 3cm, endowed

with 2 watch motors for differential drive, a 2.4GHz ZigBee- compliant wireless radio,

a VGA camera, and three micro-controllers connected by an I2C two-wire bus. Block-

Diagram (right).

3.1.2 Communication Module

To improve computational and communication capabilities for ad-hoc networking among

the robotic swarm and eventually transmission of recorded data to a base station, we

developed a 21x21mm2 extension board that implements functionality identical with

the Telos MoteIV mote (Polastre, Szewczyk & Culler 2005), see also Figure 1.3, but

has been extended by I2C connectivity (Cianci, Raemy, Pugh & Martinoli 2006). The

extension module is operated by a Texas Instruments MSP430 micro-controller (8MHz,

2kB RAM, 60kB ROM), and is endowed with a TI (former ChipCon) CC2420 radio

(ZigBee-ready) and 4MByte Flash-Memory. Conveniently, the extension module can be

programmed in TinyOS2 which provides a growing number of ready-to-use libraries for

different purposes. The power consumption of the TI micro-controller is extremely small

(around 5mW) when compared to that of the radio chip (around 55mW). Although the

effective transmission power can be adjusted down by a factor two, the power required

for reception is constant.

2http://www.tinyos.net
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Figure 3.2: Pictures (30x30 pixels) taken by the on-board camera and transmitted over

the radio. Vertical black stripes (bottom right) are due to packet loss. The arena

boundary (painted in black) can be seen in the top left picture, in the bottom row the

experimenter’s upper part of the body is visible in the background.

3.1.3 Camera Module

For inspection and localization, we have developed a camera module endowed with a

PixelPlus Po3030k VGA miniature camera that is down-sampled at 30x30 pixels in RGB

color (RGB-565 coding scheme, 2 bytes per pixel). Using a PIC18LF4620 at 16MHz with

4kB RAM (operational at voltage as low as 2.8V), the Alice is able to uniquely identify

color markers in the environment.

Also, the camera module allows the robot to take pictures at a rate of around 2Hz.

A series of sample images are depicted in Figure 3.2. Images (1800 byte each) are

transmitted over the radio in 72 packets of 25 bytes, where 24 bytes are image data and

1 byte is used for indexing a packet. This allows for partly reconstructing an image in

case of packet loss (vertical black stripes in Figure 3.2).

The camera is clocked directly by the micro-controller (division of 32) and its power
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Figure 3.3: Left : Overview of the turbine set-up in the realistic simulator. Right :

Overview of the real-robot set-up. The arena (60x65cm) is equipped with 25 blades

and up to 30 miniature robots, mimicking the inspection of a jet turbine’s interior.

consumption is independent from the operating frequency. As the power-consumption

of the micro-controller is small compared to that of the camera (around a factor three at

16MHz and around a factor of two at 32MHz), running the system at 32MHz might yield

considerable savings due to faster image acquisition. However, operation of the micro-

controller at 32MHz requires 3.5V supply voltage, which comes close to the nominal

voltage of the battery in use and leads to unpredictable results due to occasional brown-

out of the micro-controller after very little use of the freshly charged battery. Also, the

additional current being drawn leads to higher peak values, which again tend to lower

the effective available voltage from the battery.

3.2 Turbine Mock-Up Environment

The swarm of Alice II robots is operating in a bounded arena of 60cm x 65cm that is

equipped with 25 “blades” (Figure 3.3). The blades are arranged in a regular pattern

that is inspired by the compressor section of a turbine’s interior. The blades have a

length of 11cm, and the ends have a radius of 2mm and 10mm. In this dissertation, the

sharp end is referred to as the “blade’s tip”. The blades are arranged so that two robots

that follow the boundary of two different elements do not collide.

We distinguish two scenarios: without localization (Figure 3.3, Chapter 5) and with

localization (Figure 3.4, Chapter 6). In scenarios that allow for localization, the upper

part of the blades are equipped with a unique color marker that consists of three colored

horizontal bars. Presence or absence of the 3 color channels (red, green, and blue) is

used to encode 3 bits per color. Using the middle gray bar as reference (all channels at
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50%) allows us to encode 64 different codes of which we are using 25 to identify each

blade (see for details Rutishauser 2007).

When color markers are absent, robots distinguish between blades and the arena

boundaries, exploiting the fact that the outer walls of the arena are painted in black,

a color that hardly reflects the infrared light emitted by the robots’ distance sensors.

When color markers are available, walls simply do not provide an id, which distinguishes

them from blades.

In order to support the energy budget of the Alice robot, the environment is also

equipped with a static communication module with external power supply that serves as

repeater for intra-robot communication and as base station. By this, a robot can turn

its radio only on when it requires new information, e.g. prior to a planning step.

3.3 Realistic Simulation

The scenario described in Section 3.2 has been faithfully implemented in the realistic

simulator Webots (Michel 2004) using the CAD models used for manufacturing the Alice

robot and the turbine blades (Figure 3.3, left). Sensor characteristics (aperture, range,

and non-linear transfer functions) and the wheel-slip using measurements on the real

platform, have been carefully calibrated using real robots (Bronée 2005).

3.4 Performance Evaluation

The setup is monitored from above using a Unibrain Fire-I 400 IEEE1394 (Firewire)

camera. The camera provides monochrome images at 30Hz and a resolution of 640x480

pixels. Videos can be recorded to disk and post-processed using the open-source soft-

ware SwisTrack 3 that has been developed in the course of this thesis (Correll, Sempo,

de Meneses, Halloy, Deneubourg & Martinoli 2006).

The robot trajectories will eventually enclose each blade which indicates complete

circumnavigation by at least one robot. Using a flood-fill algorithm starting in the

center of each blade, it can be tested whether the area of the contour enclosing a blade

is below a certain minimal size and therefore assess whether a given blade has been

completely inspected. In Webots, trajectories are discretized using a 640 by 480 point

grid, which allows for using the same algorithm for measuring coverage progress.

For algorithms requiring communication, performance is also monitored by overhear-

ing intra-robot communication using a base station. Due to the potential failure of the

3http://swistrack.sourceforge.net
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Figure 3.4: The experimental setup endowed with colored markers that allow for unique

identification of a blade using the on-board camera.
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localization algorithm, only overhead vision can be considered as ground truth data,

however.

3.5 Discussion

Although the experimental setup of this thesis is limited to the turbine inspection sce-

nario, it has a series of properties that allow for extrapolating experimental results to

more general distributed coverage scenarios. For instance, the regular structure of the

environment allows for the study of the influence of environmental templates on the spa-

tial distribution of self-organized algorithms (Chapter 5). Also, the algorithms presented

in this thesis (Section 6.3 and 6.4), which rely on color markers for global localization,

do not take advantage of the regularity of the environment and thus are representative

for distributed coverage of arbitrary cellular decompositions in which global localization

is available.

Although the NiMH batteries in use have a capacity of 40mAh, effectively available

power is dependent on the battery’s age. New batteries allow for drawing current up to

120mA for a short time before voltage drops below 3V. These characteristics deplete fast,

and after a few charging cycles only a few batteries are able to provide enough current

for a parallel operation of the camera and communication module (current consumption

around 45mA at 3V), and only if they are fully charged. Although all algorithms consid-

ered in this thesis never use communication and camera at the same time, experiments

involving any of these devices become unreliable after around 10 to 20 min of operation,

due to the potential “brown-out” of the micro-controllers involved. Nevertheless, the re-

sulting heterogeneity of the swarm motivates us for further research on adaptive policies

for task decomposition and allocation.

Chapter Summary

� A miniature robotic platform based on the Alice platform and comprising ZigBee-

ready communication and 30x30 pixels color vision on a footprint smaller than 2cm

x 2cm x 2cm has been developed.

� The experiments are conducted in a 60 cm x 65 cm large arena that is a mock-

up of the compressor section of a jet turbine engine and consists of 25 “blades”.

For algorithms requiring localization, each blade is tagged with a unique colored

bar-code that can be decoded using on-board hardware.

� The experimental setup allows for studying multi-robot coordination, subject to
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extreme miniaturization constraints with sensor and actuator noise and unreliable

communication.

� The performance is evaluated using an overhead camera system and the open-

source tracking software SwisTrack.
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CHAPTER 4

Probabilistic Modeling and Identification of

Multi-Robot Systems

Models that capture aspects of a multi-robot system and its dynamics are an important

design tool. System identification (Johansson 1993, Ljung 1999) is the process of de-

riving a mathematical model that describes the behavior of a (dynamical) system, and

identifying its model parameters from observed data or from a priori available informa-

tion on the system. Such refined models are then able to provide not only qualitative

but also quantitative predictions of the system performance, which allows for exploring

different design choices. The design process is usually iterative, i.e. insight gained from

models with lower abstraction levels lead to models of improved quality and vice versa.

This process is illustrated in Figure 4.1.

This chapter addresses modeling at the macroscopic level and exact microscopic rep-

resentations of the macroscopic level, i.e. microscopic models that sample possible state

space trajectories by simulation without adding additional complexity to the model or

changing the modeling assumptions.

One possible way to model swarm-robotic systems is to look at the population dy-

namics of the swarm (the number of robots in a certain state). This approach (see

for instance Sugawara, Sano, Yoshihara & Abe 1998, Martinoli et al. 1999, Lerman &

Galstyan 2002) has lead to good quantitative agreements between reality and the pre-

diction of the models (Martinoli et al. 2004, Agassounon et al. 2004). Such models are
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Figure 4.1: The modeling and design process takes place at multiple abstraction levels:

the real system, the microscopic level (e.g., agent based models, DES simulation, realistic

simulation) and the macroscopic level (e.g., difference equations). The observations of

realizations of lower abstraction levels help improve the quality of model predictions at

higher abstraction levels. In turn the exploration of design choices at a higher abstraction

level motivates design choices (e.g., controllers, behavior).
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reasonable for fully reactive systems, where the amount of memory is limited and delib-

eration is essentially absent and thus leads to a tractable number of states for the robot

behavior and the environment.

For robotic systems whose state space consists of the internal representation of the

environment and the environment itself, e.g., due to extensive usage of memory for plan-

ning among the agents, the state space needs to be modeled by some suitable abstract

representation, e.g. a graph that represents the topology of the environment. The prob-

abilistic elements of the robotic sub-system and the environment can then be taken into

account by means of their average likelihood or their distribution and explicit simulation,

or by formally enumerating every possible constellation and possible state transitions of

the system.

This chapter introduces concepts that are important for modeling the distributed

boundary coverage case study in this thesis. Models are derived based on probabilistic

population dynamic models (Section 4.1) and concepts are illustrated using a series of

fully reactive systems and reactive systems with a limited amount of memory (Section

4.2). Section 4.3 then shows how this approach can be be extended for deliberative al-

gorithms subject to noise. Parameter identification based on experimental data (Section

4.4) then allows for improving quantitative prediction of the models.

4.1 Preliminaries

This section introduces the notion of state and proposes some rough guidelines for se-

lecting an appropriate state-space granularity. It then introduces the concept of Master

equations that track changes in the probability of a system being in a particular state,

and Rate equations that track the number of agents in a particular state.

4.1.1 State-space Granularity

The state X of a multi-robot system is uniquely defined by the Cartesian product of

the states Ri = ω for i ∈ {1, . . . , N0} of the robotic system described by N0 random

variables and the states of the environment Ej = ψ with j ∈ {1, . . . ,M0} described by

M0 random variables. Thus

X = R1 × . . .× RN0 × E1 × . . .×EM0 (4.1)

describes the state of a multi-robot system and the environment.

The random variables can take values out of a set ω ∈ Ω and ψ ∈ Ψ that correspond

to possible robot and environmental states, respectively.
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When describing and simulating a system, the system state definition (4.1) might be

unhandy and there are more suitable representations, e.g. graphs or Petri-nets.

In practice, the definition of the system state is depending on the metric of interest.

For the robotic system Ω can usually be derived directly from the Finite State Machine

(FSM) of the robot controller. For the environment, the choice of Ψ depends on the

metric of interest, e.g. a door can be open or closed, a light can be red, green, or orange.

Choosing the appropriate level of detail for a model has to be carefully evaluated and

potentially adapted during the modeling process (see also the discussion of Lerman

et al. 2005).

In this thesis Ω and Ψ are always discrete sets, leading to a non-infinitesimal state

space.

4.1.2 Master Equations, Rate Equations, and Markov chains

For the probability of a random variable to have the value ω, one can write the following

time-discrete Master equation

pω(kT + T ) = pω(k) +
∑

ω′∈Ω\ω
(pω′ω(kT + T )pω′(k) − pωω′(kT )pω(kT )) (4.2)

where pω′ω(kT + T ) is the conditional probability that the system will be in state ω

at time kT + T when in state ω′ at time kT . Notice, that pω′ω(kT + T ) can be also

understand as the transition probability of state ω to ω′ of a Markov chain with states

Ω (Cassandras 1993). T is the time discretization of the system and k is indexing the

time-steps. For brevity, T is omitted in the notation in the remainder of this dissertation.

Using px(k) and the total number of individuals N0, px(k) can also be interpreted as

the fraction of robots in state x and N0px(k) yields the the expected number of robots

in state x. For brevity, it is written

Nx(k) = N0px(k) (4.3)

Using this notation, (4.2) can be written as

Nx(k + 1) = Nx(k) +
∑

i

(pix(k + 1)Ni(k) − pxi(k)Nx(k)) (4.4)

which is a discrete-time Rate equation. The conditional probabilities can be either

constant, time-varying or a function of other states of the system. In the latter case,

(4.2) and (4.4) become non-linear. In this case, the system can be understood as a

Markov chain with time varying state transition probability matrix (time-heterogeneous

Markov chain).
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4.1.3 Continuous Time vs. Discrete Time Models

Both (4.2) and (4.4) can also be formulated in continuous time (see for instance Lerman

et al. 2005) leading to a set of differential equations.

In this thesis, time-discrete models are used whenever models are given by compact,

macroscopic representations. The time discretization of the model is chosen so that

T is reasonable small when compared with the time granularity of the state durations

observed in the real system. At the microscopic level, simulation of a series of syn-

chronous, stochastic automata then corresponds to an exact representation of such a

system1 (Martinoli et al. 2004).

Time-continuous models are applied in this thesis when the asynchronicity of the sys-

tem needs to be explicitly taken into account for calculating the performance metric. In

this case, analytical solutions are usually untractable but for special cases (see Example

5, Section 4.3.2), and performance is analyzed by DES simulation.

4.1.4 Modeling Assumptions

The models require that the environment and the multi-agent system can be described

as Probabilistic Finite State Machine (PFSM); the state granularity of the description is

established as a function of the metric of interest, and the desired level of detail (Section

4.1.1). Also, the models require the robotic system and the environment to be semi-

Markovian, i.e. the system’s future state is only a function of the current state and the

time spent in this state (Cassandras 1993) so that the probability for the system to be in a

certain state can be written as defined in Section 4.1.2). Finally, unless the robot position

is explicitly encoded in the state space, all models assume that the spatial distribution

of the agents in the environment is uniform (well-mixed), and that the environment is

bounded. In turn, only non-spatial metrics are considered. For example, a model tracks

the average number of inspected elements, but not whether a specific element is covered

or not.

4.1.5 Model Parameters

The number of required parameters depends on the abstraction level and usually de-

creases with an increasing abstraction level. Parameters for realistic simulation are

either a priori known from a robot’s data-sheet or can be easily measured using indi-

vidual robots (e.g., the non-linearity of a robot’s distance sensor, the robot’s speed, or

wheel-slip). In probabilistic models, however, all parameters need to be abstracted into

state durations and transition probabilities between states. In the formalism described

1For differential equations, the Gillespie algorithm is an exact representation
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here, state duration and transition probabilities are explicitly defined by the likelihood

of interaction between robots, and between robots and the environment; state durations

define the time an interaction lasts.

State durations and Time Discretization

State durations are either of probabilistic nature — for instance the time to avoid an

obstacle, or the time to manipulate an object — or deterministic and hard-coded into

the robot’s controller.

State durations are measured in time-steps, which correspond to the time-discretization

of the macroscopic model and its length T can be arbitrarily chosen. For facilitating com-

putation, it makes sense to choose the smallest common factor of all time delays that

are necessary to describe the metric of interest with sufficient precision (see for further

details Martinoli et al. 2004, Correll & Martinoli 2004b).

States with a fixed duration T > 1 are referred to as delay states and consist of a

series of T states, which are left with probability 1 after 1 time-step.

Encountering Probabilities

The encountering probability for an object is the probability that a robot encounters this

object within a time-step when moving through the environment. A constant encoun-

tering probability that is independent of the position of the robot requires (1) robots to

be uniformly distributed in the environment, and (2) that the objects have sufficient dis-

tance so that a robot can only detect one object at a time. While spatial uniformity can

be assumed when robots show trajectories that correspond to a random walk (Rudnick

& Gaspari 2004, Prorok 2006), linear super-position of encountering probabilities is not

always possible, especially when the density of objects and robots is high.

Sensor and Actuator Noise

Whereas encountering probabilities define the transition probabilities in reactive sys-

tems, in deliberative systems transition probabilities between two states are given by

the control policy. Transition probabilities are either 1 or 0 if the system would be de-

terministic and correspond to the likelihood to succeed or not succeed, respectively, a

desired action under the influence of randomness or sensor and actuator noise. Whereas

randomness at the controller level can be directly imported into the model, the proba-

bility of failure to execute a particular state transition due to sensor and actuator noise

needs to be calibrated on the real system or using realistic simulation.
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4.1.6 Transient, Recurrent, Periodic and Absorbing States

States can be classified in transient, recurrent, periodic and absorbing states, which

will be seen to be important for steady-state analysis. This classification is customary

in Markov chain analysis (see for instance Cassandras 1993) and are also useful for

describing non-linear models such as those used in this chapter.

A state is transient if there is a non-zero probability that the system never enters

this state again once it has been in it. Transient states are typically used for modeling

irreversible processes such as coverage progress or auxiliary states within delay states.

A state is recurrent if it is not transient, i.e. the system will reach it again with

probability 1 sooner or later. Recurrent states are typically used for modeling the default

state of a system, such as being idle or searching, e.g.

A state ω has period k if any return to state ω must occur in some multiple of k time

steps and k is the largest number with this property (it is k-periodic). If k = 1, then the

state is said to be aperiodic.

A state is absorbing if it is impossible to leave this state once it has been entered.

Absorbing states are typically used for modeling terminal conditions such as robot failure

or task completion.

4.1.7 Steady-State Analysis

Whether a system reaches a steady or stationary state or not is important when investi-

gating convergence, e.g. of a coverage problem. There are two important theorems that

will be provided without proof (see, e.g., Asmussen 1987) for irreducible and reducible

Markov chains that will be used in this thesis (see also Section 4.1.2). A Markov chain

is irreducible if all states can be reached from any other state. It is reducible if this is

not the case, e.g., when there exist absorbing states.

Theorem 4.1.1. In an irreducible Markov chain consisting with finite state space ω ∈ Ω

and no periodic states, a unique stationary state probability exists such that

lim
k→∞

pω(k) =
1

Mω
(4.5)

where Mω is the mean recurrence time of state ω and independent from the initial con-

ditions.

Theorem 4.1.2. In a reducible Markov chain, the chain eventually enters a set of irre-

ducible states with a stationary distribution according to Theorem 4.1.1. If the irreducible

sub-set of the chain contains an absorbing state this will be reached with probability 1.
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Numerical values for the steady-state are straightforward to obtain for linear systems

and are given by the Eigenvector with Eigenvalue 1 of the state transition probability

matrix of the system. Alternatively, difference equations can be explicitly solved in the

time or the frequency domain (Martinoli et al. 2004). Finally, for delay states with length

T , the stationary distribution can be obtained by integrating all transition probabilities

leading to this state from time-step 0 to T .

For non-linear systems only few instances can be solved analytically and numerical

values have to be obtained by numerically integrating the underlying difference equations.

Alternatively, the stationary distribution can be estimated by sampling realizations of

the system in simulation.

4.2 Probabilistic Models for Reactive Systems with Limited

Memory

This section illustrates concepts introduced in Section 4.1 by modeling a series of multi-

robot systems with reactive robot controllers. These examples have been selected as they

can be considered generic building blocks for modeling complex interactions among a

team of robots and the environment. For each controller, deterministic and probabilistic

state durations are considered.

4.2.1 Example 1: Collision Avoidance

As a first example, consider a scenario where a swarm of N0 robots is moving in an

empty, enclosed arena. The robots behavior is defined by a FSM having only two states,

Ω = {Search, Avoidance}. Assuming a uniform distribution for the robots in the envi-

ronment and linear super-position of encountering probabilities (see Sections 4.1.4 and

4.1.5), potential collisions with other robots are summarized by the encountering proba-

bility pR = pr(N0−1) and the time Ta that a collision takes, where pr is the encountering

probability of a single robot. For simplicity, collision with walls (an additional state) are

ignored. As the interaction of the robot with other robots is considered to be probabilis-

tic, the i-th robot’s state is given by the random variable Ri = ω ∈ Ω.

Probabilistic Delay

The time spent in a state is probabilistic, and the probability to enter Search from

Avoidance, i.e. finish avoidance, is given by P (Ri(k + 1) = {Search}|Ri(k) = {Avoidance}) =
1
Ta

. This assumption is reasonable for robots with proximal controllers that require an

average time of Ta for avoiding an obstacle. Proximal controllers are reactive, and the
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wheel-speeds are a direct function of some sensor measurements (see also Braitenberg

1986, Arkin 2000).

The PFSM for this system is depicted in Figure 4.4, a. Using (4.4) the number of

robots in states Search and Avoidance at time k is then given by

Ns(k + 1) = Ns(k) − pRNs(k) + 1
Ta
Na(k) (4.6)

Na(k + 1) = N0 −Ns(k + 1) (4.7)

and by the fact that the total number of robots is constant in the enclosed arena. Possible

initial conditions are Ns(0) = N0 and Na(0) = 0, i.e. all robots are in search mode at

the beginning.

Given a probability 1
Ta

to leave a state, the average time spent in Avoidance is

the expected value E[Ta] = Ta which is calculated by summing over all possible state

durations j = [0;∞] multiplied by its probability

E[Ta] =

∞∑
j=0

(
1 − 1

Ta

)j−1
1

Ta
j (4.8)

=
1

Ta − 1

∞∑
j=0

(
1 − 1

Ta

)j

j

=
1

Ta − 1

(1 − 1
Ta

)

(1 − (1 − 1
Ta

))2

= Ta

Thus, a robot will spend Ta time steps in Avoidance on average.

The system described above has been simulated on two different microscopic ab-

straction levels, Webots, and synchronous agent-based simulation. In Webots a robot

was randomly walking in a small quadratic arena with a static obstacle in the middle.

Obstacles were avoided using a proximal (reactive) controller. Agent-based simulation

was implemented in Matlab by simulating the PFSM from Figure 4.4a. Both times,

the state duration of the avoidance state has been measured from the perspective of

the agent (egocentric measurement) and of a supervisor (allocentric measurement). For

egocentric measurements, a robot measures the time it encounters an obstacle using its

on-board sensors. For allocentric measurements, a supervisor measures the time a robot

is less than the maximal range of its distance sensors apart from any obstacle.

Results are depicted in Figure 4.2. As desired, the average time spent in Avoidance

at the synchronous, agent-based level shows a geometric distribution (Figure 4.2, left).

Although providing the same average value (Ta = 0.75s) than egocentric measurements

obtained in Webots, its distribution (Figure 4.2, middle) is not quite geometric, yet not
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Figure 4.2: Relative likelihood of the time spend in avoidance in a collision avoidance

experiment using a proximal controller. Egocentric measurements in synchronous, agent-

based simulation (left), egocentric measurements in Webots (middle), and allocentric

measurements in Webots (right).

Gaussian. Finally, Figure 4.2, right, shows allocentric measurements for Ta obtained in

Webots and result in Ta ≈ 1.32s. This is due to the fact that when observing the robot

according to a specific criterion (here: distance to the obstacle less than the sensor range

of the robot), a supervisor cannot distinguish between a current or a resolved collision,

i.e. the robot is moving away from the obstacle.

These results illustrate well the approximative character of the proposed model and

the requirement for precise definition of a system’s performance metric.

Although the slight differences in the two different egocentric models will yield the

same result when integrated in a linear model (due to the identical mean), the underlying

distributions might become important in a non-linear model. In this case, more faithful

prediction might be achieved by using a suitable parameterization or to sample directly

from the observed distribution.

Whereas the probabilistic is a reasonable approximation of the egocentric measure-

ments on the robot, the allocentric measurements would have been better captured by

a deterministic, constant delay (compare Figure 4.2, right).

Deterministic Delay

The time spent in Avoidance is now deterministic and has length Ta time-steps, e.g.

because a robot always turns around 180 degree upon collision instead of reactively

avoiding the obstacle. A robot’s controller will then return into state Search with

probability P (Ri(k + 1) = {Search}|Ri(k) = {Avoidance}) = 1 after Ta steps, which

requires memory and a counter. As the system’s future state depends not only on its

current state but on the time spent in this state, the system is a generalized semi-Markov
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Figure 4.3: Relative likelihood of the time spend in avoidance in a collision avoidance

experiment using a distal controller. Egocentric measurements in synchronous, agent-

based simulation (left), egocentric measurements in Webots (middle), and allocentric

measurements in Webots.

process of order Ta.

The system dynamics are described by

Ns(k + 1) = Ns(k) − pRNs(k) + pRNs(k − Ta) (4.9)

Na(k + 1) = N0 −Ns(k + 1) (4.10)

In words, the number of robots in Search is decreased by those entering Avoidance with

probability pR, and increased by those that entered Avoidance before Ta time-steps. The

number of robots is zero for negative iterations, i.e.

Ns(k) = Na(k) = 0 ∀ k < 0 (4.11)

The PFSM for this system is given in Figure 4.4, b. Equation 4.9 can be derived by

reformulating the system as strictly Markovian process consisting of Ta transient states

of duration 1 and substituting the resulting equations into each other.

As for the probabilistic delay, the system was implemented at two different abstrac-

tion levels. This time, the simulated robot in Webots uses a distal controller and turns

180 degree upon encountering an obstacle. In Matlab, the PFSM from Figure 4.4b has

been simulated. The results are shown in Figure 4.3.

Due to the constant time required for doing a U-turn, the system is simulated using

constant delay for Avoidance (Figure 4.3, left). Egocentric measurements in Webots

reveal however, that the collision is only avoided in around 75% of the cases using

this strategy, and requires two or more U-turns otherwise (Figure 4.3, middle). Both

times, the average is Ta = 0.27s. Figure 4.3, right shows allocentric measurements

for the collision duration based on position measurements of the robot. As allocentric
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Figure 4.4: PFSM for a robot with two states. Probabilistic delay (a), and deterministic

delay (b).

measurements do not distinguish between robots before and after the U-turn, the average

avoidance duration is measured to Ta ≈ 1.07s.

The results show that the accuracy of model prediction depends on careful identifi-

cation of the system dynamics and exact definition of the performance metric. In this

example the egocentric perception of the Avoidance state might have been better mod-

eled using a two-state sub-chain consisting of one deterministic and one probabilistic

delay for modeling the U-turn and its success probability, respectively. Alternatively,

the empirical distribution of the egocentric measurements could be parameterized or

sampled from measurements. Similarly, using the distribution itself in the model would

allow for exact simulation of the allocentric perception of the Avoidance state.

Steady-State Analysis

Both (4.6) and (4.9) show the same behavior at steady state (Section 4.1.7), which is

given by

(
N∗

s

N∗
a

)
= lim

k→∞

(
Ns(k)

Na(k)

)
=

(
N0

1+pRTa
N0pRTa

1+pRTa

)
(4.12)

The steady-state solution for both systems assumes pR and Ta to be constant. Al-

though analytical solutions are also possible for linear systems where pR and Ta are

probabilistic with certain distributions, simulating the system and sampling from these

distributions is a valuable option, in particular when the distributions are not available

in parameterized form. The steady-state solutions only yield average values but not the

distribution of the performance, which can also be obtained using simulation.
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4.2.2 Example 2: A Basic Environmental Model

As second example, consider a simple inspection task where a number of S sites in the

environment needs to be visited by at least one robot. Every site has the encountering

probability ps to be visited by an individual robot every time step. Site Si can thus

be in two states, unvisited and visited, i.e. Ψ = {unvisited, visited} and pi,u, pi,v

the probability of site being unvisited or visited, respectively. As a visit is irreversible,

visited are absorbing states. For a large number of sites and Ns(k) searching robots,

the likelihood for a site i to be visited is then given by the following difference equation:

pi,u(k + 1) = pi,u(k) − psNs(k)pi,u(k) (4.13)

pi,v(k + 1) = 1 − pi,u(k + 1) (4.14)

with pi,u(0) = 1 and pi,v(0) = 0.

The expected number of unvisited sites is given by

U(k) =

S−1∑
i=0

pi,u(k) (4.15)

Substituting (4.13) into (4.15) yields

U(k + 1) =

S−1∑
i=0

pi,u(k) − psNs(k)

S−1∑
i=0

pi,u(k)

⇔ U(k + 1) =U(k) − psNs(k)U(k) (4.16)

and thus summarize S states by a single difference equation. Assuming the number of

searching robots being at steady-state N∗
s , we can solve (4.16) to

U(k) = S(1 − psN
∗
s )k (4.17)

and limk→∞U(k) = 0 and limk→∞ V (k) = S.

4.2.3 Example 3: Collaboration

Consider a system where every robot of a team of N0 can be in two states Ω =

{Search, Wait}. Also there are M0 sites where robots can collaborate. When in Search,

a robot encounters a site with probability ps. If the site is empty, i.e. no other robot

around, a robot enters Wait and waits for another robot to collaborate or until a time-out

expires. If the site is occupied by a waiting robot, robots collaborate and both return to

Search. For simplicity, we assume collaboration to take place within the current time

step, i.e. both robots involved return into Search in the next time-step.
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Figure 4.5: PFSM for a collaboration model with two states. Probabilistic delay (a),

and deterministic delay (b).

Probabilistic Delay

Robots leave Wait with probability P (Ri(k + 1) = {Search}|Ri(k) = {Wait}) = 1
Tw

+

psNs(k), leading to an average waiting time of Tw time-steps for robots that do not

collaborate. The PFSM of this system is shown in Figure 4.5, a, and the system dynamics

are given by

Ns(k + 1) = Ns(k) − psNs(k)(M0 −Nw(k)) (4.18)

+
1

Tw

Nw(k) + psNs(k)Nw(k)

Nw(k + 1) = N0 −Ns(k + 1) (4.19)

with Ns(0) = N0 and Nw(0) = 0.

Deterministic Delay

The model with deterministic delay has originally been introduced for modeling the

collaborative aspect of the stick-pulling experiment (Martinoli et al. 2004, Lerman, Gal-

styan, Martinoli & Ijspeert 2001) where robots wait for a fixed amount of time for

collaboration. This model has been proven useful also for modeling collaboration among
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robots in the inspection case study (Section 5.2). Although the deterministic delay in-

volves memory, the model from Martinoli et al. (2004) can be developed based on an

equivalent, strictly Markovian system.

After encountering a site, a robot waits at a site (Wait) until one of the two events

occur: (1) another robot joins the same site or (2) Tw time-steps pass without another

robot joining. The state Wait can thus be broken down into Tw states w0, w1, . . ., wTw−1,

where state wi corresponds to the i− th time interval a robot spends in Wait. It follows

Nw(k) =
∑n−1

j=0 Nwj
(k) for the total number of robots in Wait. The number of robots in

Search is then given by

Ns(k + 1) = Ns(k) −psNs(k)(M0 −Nw(k)) (4.20)

+psNs(k)
Tw−2∑
j=0

Nwj
(k) +NwTw−1

(k)

where the first term corresponds to the number of robots encountering an empty site.

The sum over Nw0 to NwTw−2
summarizes the robots that collaborate within the time

interval [0;Tw −2], and the last term corresponds to the robots that return after Tw time

steps either due to time-out or due to collaborating at time Tw − 1. Thus (4.20) can be

rewritten as

Ns(k + 1) = Ns(k) −psNs(k)(M0 −Nw(k)) (4.21)

+psNs(k)Nw(k) +NwTw−1
(k)(1 − psNs(k)))

The number of robots waiting is given by

Nw0(k + 1) = psNs(k)(M0 −Nw(k)) (4.22)

...

Nwi
(k + 1) = (1 − psNs(k))Nwi−1

(k) (4.23)

...

NwTw−1
(k + 1) = (1 − psNs(k))NwTw−2

(k) (4.24)

By inserting (4.23) for i = 1 . . . Tw − 2 into (4.24), we obtain

NwTw−1
(k + 1) = Nw0(k − (Tw − 1))

Tw−2∏
j=0

(1 − psNs(k − j)) (4.25)

and using (4.22)

NwTw−1
(k) = psNs(k − Tw)(M0 −Nw(k − Tw))

Tw−1∏
j=1

(1 − psNs(k − j)) (4.26)
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By substituting (4.26) in (4.20) we can calculate the number of robots in Search to

Ns(k + 1) = Ns(k) − psNs(k)(M0 −Nw(k)) (4.27)

+psNs(k)Nw(k)

+psNs(k − Tw)(M0 −Nw(k − Tw))

Tw−1∏
j=0

(1 − psNs(k − j))

where Nw(k) = N0 − Ns(k). As argued by Lerman et al. (2001) and Martinoli et al.

(2004)
∏Tw−1

j=0 (1− psNs(k− j)) can be understand as the fraction of robots that did not

collaborate during the time interval Tw. The PFSM summarizing this system is shown

in Figure 4.5, b.

4.3 Probabilistic Modeling of Deliberative Systems

Deliberative systems are usually well represented by deterministic models. Depending

on the domain, analytical insight can be obtained by reformulating the problem into an

equivalent one which has been well studied, e.g., from the class of NP-hard problems in

Operational Research or multi-player (collaborative) games in Game Theory. Under the

influence of sensor and actuator noise, including noisy communication and localization, a

theoretical optimal policy might well lead to a sub-optimal outcome, however. In Game

Theory this effect is known as “trembling hand perfect equilibrium” (Selten 1975), and

takes the possibility into account that the players may choose unintended strategies

through a “slip of the hand”. Under the influence of noise, a pure strategy (every move

of the strategy is played with probability 1) becomes totally mixed strategy (every possible

pure strategy is played with a non-zero, positive probability).

This section develops probabilistic models for basic deliberative algorithms without

and with collaboration among agents that are representative for the deliberative coverage

algorithms developed in Chapter 6.

4.3.1 Example 4: A Basic Task Allocation Problem

Consider a system with two agents and two tasks A and B. Both tasks are executed

within one time-step. However, A is more “attractive” for both agents and will be

executed preferably. The information which tasks need to be done and what benefits

they yield are available to the robots at any time.
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Figure 4.6: PFSM for a deliberative task allocation problem with two robots and two

tasks A and B. The states represent the permutations of all possible allocations. Tran-

sition probabilities reflect deliberative actions subject to error with probability p. Once

both tasks have been accomplished (states AB and BA), both robots stop.

A Basic Task Allocation Problem without Collaboration

A non-collaborative, deterministic, greedy algorithm would now yield the sequence AB

for both robots, and thus complete both tasks after two time-steps. Consider now that

choosing the task is subject to noise, and an agent would choose the less beneficial

task with probability p. In a real system, this can be either due to explicit randomized

behavior or due to sensor or actuator noise. In this example, randomness is beneficial,

as it allows completing both tasks in one time-step with probability pp + pp, i.e. one

of the two robots fails to perform the preferred task A. The system can then be in 4

different states Ψ = {AA,BB,AB,BA}, i.e. both robots performing task A, both robots

performing task B, or one robot task A and the other robot task B (see Figure 4.6).

The time-varying probability for being in any of these states is denoted pAA, pBB, pAB,

and pBA, and the master equations are

pAA(k + 1) = pAA(k) − pAA(k)pp− pAA(k)pp− pAA(k)pp+ pBB(k)pp (4.28)

pBB(k + 1) = pBB(k) − pBB(k)pp− pBB(k)pp− pBB(k)pp+ pAA(k)pp

pAB(k + 1) = pAB(k) + pBB(k)pp + pAA(k)pp

pBA(k + 1) = pBA(k) + pAA(k)pp+ pBB(k)pp

with initial conditions pAA(0) = pp (both robots pick the right task), pBB(0) = pp (both

robots pick the wrong task) and pAB(0) = pBA(0) = pp (one of the robots picks the

wrong task).

All possible completion times and their probabilities can then be enumerated as
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follows

T = 1 :pp+ pp (4.29)

T = 2 :(pp+ pp)(1 − pp) (4.30)

T = 3 :(pp+ pp)pp(1 − pp) (4.31)

...

T = k :(pp+ pp)(pp)k−2(1 − pp) (4.32)

Similar as for (4.8) we can calculate the expected value for the completion time T by

E[T ] = pp+ pp+
1

(pp)2

∞∑
k=0

(pp+ pp)(pp)k(1 − pp)k − (pp+ pp)(1 − pp)

pp

= pp+ pp+
(pp+ pp)

1 − pp
− (pp+ pp)(1 − pp)

pp

=
(pp+ pp)(pp− 2) + 2pp(pp− 1)

pp− 1
(4.33)

The above example uses two important assumptions: first, identification of available

tasks and their benefit is deterministic, and second, task execution takes exactly one

time-step. The problem becomes increasingly difficult when the evaluation of benefits of

a task or whether a task needs to be done or not is noisy, or when time needed for a task

is also probabilistic. If noise models and execution times are available as average values

or distributions, simulation of the above system allows for quick insight.

The expected value for the non-collaborative policy for various values of p is shown

in Figure 4.8.

A Basic Task Allocation Problem with Collaboration

In this example robots can collaborate and will optimally distribute the tasks among

them using a deterministic algorithm. Under absence of noise, the first agent will perform

task A and the second agent task B. We again assume that an agent will pick the wrong

task with probability p. The benefit of collaboration becomes immediately clear as the

chance of completing both tasks within the first time-step is given by pp+ pp, i.e. both

agents achieve to follow the optimal policy or both agents execute the wrong task at the

same time, which is higher than pp+ pp for p < 0.5. In case of failure, both agents will

be aware of the missing task (again assuming this perception is deterministic), and both

plan to execute it. This system can again be represented by four states and associated

master equations with initial conditions pAA(0) = pp, pBB(0) = pp, pAB(0) = pp, and

pBA(0) = pp. The system dynamics are again given by (4.28).
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For calculating the expected value of the time to completion, we can enumerate all

possible outcomes of an experiment and their probabilities as follows

T = 1 :pp+ pp (4.34)

T = 2 :(pp+ pp)(1 − pp) (4.35)

T = 3 :(pp+ pp)pp(1 − pp) (4.36)

...

T = k :(pp+ pp)(pp)k−2(1 − pp) (4.37)

and calculate the expected value for the completion time T by

E[T ] = pp + pp+
1

(pp)2

∞∑
k=0

(pp+ pp)(pp)k(1 − pp)k − (pp+ pp)(1 − pp)

pp

= pp + pp+
1

pp

(pp+ pp)

1 − pp
− (pp+ pp)(1 − pp)

pp

= pp + pp+
2pp(pp− 2)

pp− 1
= 1.6144 (4.38)

As expected, the collaborative policy has a lower expected value for completion time

and is thus more robust to failure. Again, analytical solutions as those obtained here are

unfeasible in practice as the state-space becomes quickly intractable with the number of

states (see also Figure 4.7 for an example with four tasks and 2 robots) and the level of

additional uncertainty, e.g. the likelihood of successful communication, successful task

evaluation, or successful task completion. Simulating such a system using microscopic

models as described in (Martinoli et al. 2004) or DES simulators are then as exact

representations as for less complex Markov chains like those for the reactive controllers

above.

The expected value for the collaborative policy for various values of p is shown in

Figure 4.8. For p = 50% both policies are equivalent. Although the non-collaborative

policy benefits from noise up to the critical level of 50%, the collaborative policy decays

more gracefully for large noise levels and is always better.

4.3.2 Example 5: A Basic Coverage Problem

Consider a Hamiltonian cycle H of length S, which covers S vertices denoted si that

correspond to a cellular decomposition of an environment. For some grids, such a Hamil-

tonian cycle can be constructed in linear time using Gabriely & Rimon’s (2001) STC

algorithm, see Figure 4.9 for an example. Assuming N robots, and S to be a multiple of

N , the Hamiltonian cycle can be equally partitioned into N parts, which can be covered

independently by a team of robots (Hazon & Kaminka 2005).
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Figure 4.7: A 2x2 grid needs to be covered by two robots. The state space is shown to

the left with state 1–6 being possible initial conditions. The state transition probability

matrix is shown to the right.
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Figure 4.8: Expected value for time to completing two tasks by two robots using a non-

collaborative, greedy policy (–·–) and a collaborative policy (–∗–). Both policies are

subject to noise, i.e. an agent will pick the wrong task with probability p. For p = 50%

both policies are equivalent.
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�

�

Figure 4.9: A 14x14 grid with an (arbitrary) Hamiltonian cycle constructed by the STC

algorithm (Gabriely & Rimon, 2001). An optimal partitioning divides the cycle equally

among all robots.

The following algorithm is defined. Initially, robots are distributed at

xi(0) = i
S

N
, i = 0, . . . , N − 1 (4.39)

where xi(k) = j denotes robot i being at vertex sj. A robot’s motion at xi(k) ∈ H is

now given by the update rule

xi(k + 1) = (xi(k) + 1)%S (4.40)

where ’%’ is the modulo, and thus robot i moves along H in cycles. Assuming that

the time for navigating and covering a vertex is τ s, time passed after passing k nodes

calculates to kτ s.

If the system is fully deterministic, the expected value for the time to completion T

thus calculates to E[T ] = S
N
τ s with variance V [T ] = 0 as there is no redundant coverage.

In practice, however, τ s is subject to sensor and actuator noise. Assuming τ s to

be distributed according to a truncated normal distribution with expectation E[τ s] and

variance V [τ s], the expected time to completion T is given by

E[T ] = E[τ s]
S

N
, V [T ] = V [τ s]

(
S

N

)2

(4.41)

using E(aX) = aE(X) and V ar(aX) = a2V ar(X) (linear transformation).

In reality τ s or similar cumulated noise measures are seldom normally distributed,

but rather follow long-tail distributions (Gat 1995), see also Figure 6.6, page 108. In this

case, and in particular if the distribution is non-parametric or if the robot controller is
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more complex, quantitative insight can be obtained by simulating the system by iterating

(4.39) for each robot in a discrete event system simulator and sampling τ s from its real

or realistically simulated distribution.

4.4 Calibration of Model Parameters

For parameter calibration, two complementary approaches are used. Parameters (en-

countering probabilities and interaction times) are estimated based on the geometry of

the environment and objects therein as well as a robot’s sensorial configuration. As this

approach is very coarse and has its limitations in particular for estimating the encounter-

ing probability in overcrowded scenarios, parameters are also estimated from systematic

experiments involving either a subset of robots (one or two, e.g.) or a subset of behaviors

(only collision avoidance, e.g.).

4.4.1 Parametric Calibration

Following the taxonomy from (Correll & Martinoli 2004b), we use an object’s geometric

detection probability, which is given by the ratio of its detection area and the total area

of the arena, to estimate the encountering probability. The detection area Ai of object i

is the area in which the object can be detected by a robot. For example, the detection

area of objects from the case study considered in this thesis can be estimated from

data as given in Figure 5.10, page 78. The data has been collected using a series of

experiments (in the order of thousands of collisions, depending on the size of the object)

in the realistic simulator Webots (Michel 2004). In each experiment, an Alice robot was

programmed with the same collision avoidance routine that was used in the inspection

experiments.

Given the detection area of object i, the geometric detection probability gi calculates

to

gi =
Ai

Atotal

(4.42)

In order for calculating the rate of encountering an object from its geometric detection

probability, the robot’s mean speed v, the detection area of the smallest object As, and

the average robot’s detection width wd is used as developed in (Martinoli et al. 2004)

pi = riT ≈ vwd

As
giT (4.43)

Here, As is the area of the smallest object in the arena, and wd is the robot’s detection

width. Thus vwd corresponds to the area that a robot is covering with its sensors per

second. The robot’s detection width is a function of the robot’s sensorial configuration,



4.4 Calibration of Model Parameters 55

and represents twice the average distance between robot’s and object’s center where de-

tection takes place. Although one could estimate wd given the sensor range and geometry

of the objects, it can be also calibrated by an experiment like the one depicted in Figure

5.10.

In (4.43), the encountering probability is independent of the object’s shape, which

we validated experimentally in (Correll & Martinoli 2004b) for simple geometric shapes

(rectangles and circles). In scenarios endowed with multiple obstacles, however, spatial

uniformity can not always be assured. If the obstacles impose a preferential direction

on the robots as was observed for the inspection experiments presented in (Correll &

Martinoli 2004a), the time and location independent encountering probability becomes

spatial and time-dependent.

4.4.2 Optimization of Model Parameters

Given an observation of some states of the system N(k), and a model N̂(k, Θ̂) with

parameters Θ̂, identification of the system parameters Θ∗ can be formulated as the

following optimization problem (Correll & Martinoli 2006a):

Θ∗ = arg min
Θ̂

K∑
k=0

(
N(k) − N̂(k, Θ̂)

)2

(4.44)

with K the duration of the longest experiment. That is, we are interested in the set

of parameters Θ̂ that minimizes the error between model prediction and observation.

Equation (4.44) can be solved numerically using experimental data, which are not neces-

sarily gathered from the full system (e.g., only a few robots), and parameters calibrated

using the method from Section 4.4.1 can provide a good initial guess θ̂0.

Analytical Optimization

Consider the following, linear model. A swarm of robots is moving on a bounded arena,

performing collision avoidance with other robots and the boundary walls using a reac-

tive controller, and a model for the average number of robots in the search and collision

avoidance states shall be derived from experimental data. The system is modeled in

discrete time, as the observed data for system identification is collected by sampling.

An Identification Experiment: An experiment is characterized over a time interval 0 ≤
k ≤ n by its state vector N(k) and parameters that are set by the experimenter (e.g.,

the number of robots N0). The state variables are measurements of an arbitrary metric

of interest, for instance, the average number of robots searching at time k, Ns(k).



56 Probabilistic Modeling and Identification of Multi-Robot Systems

A Candidate Model: Following the methodology outlined in Section 4.2, the system

is modeled by a PFSM with three states: search, avoidance of walls, and avoidance

of robots. This approach involves the following assumptions. Every time step, any of

N0 robots can encounter another robot with probability pr (and any other robot with

probability pR = pr(N0 − 1)), and a wall with probability pw. Also, a collision can be

sufficiently characterized by its mean duration (Tr and Tw). This leads to the following

set of difference equations:⎛
⎜⎝ Nar(k + 1)

Naw(k + 1)
Ns(k + 1)

⎞
⎟⎠

︸ ︷︷ ︸
N(k+1)

=

⎛
⎜⎝ 1 − 1

Tr
0 pR

0 1 − 1
Tw

pw
1
Tr

1
Tw

1 − pr − pw

⎞
⎟⎠

︸ ︷︷ ︸
θ

⎛
⎜⎝ Nar(k)

Naw(k)
Ns(k)

⎞
⎟⎠

︸ ︷︷ ︸
N(k)

(4.45)

and the initial conditions(
Nar(0) Naw(0) Ns(0)

)T
= (0 0 N0)

T (4.46)

with Ns(k) being the number of robots searching at time k, Nr(k) the number of robots

avoiding a robot, Nw(k) the number of robots avoiding a wall, and N0 the total number

of robots. The first row of (4.45) can be interpreted as follows. The number of robots

avoiding another robot is decreased by those that return from a collision ( 1
Tr
Nr(k)), and

increased by searching robots colliding with another robot (pRNs(k)). The other rows of

(4.45) can be interpreted in a similar fashion. Equation (4.45) can be reformulated as

N̂(k + 1)T = N(k)T θT , (4.47)

where N̂(k+ 1) is the estimate based on the measurements of the real system N(k) and

the parameters θ.

Analytical Optimization: Provided the state vector measurements

N(k) = (Nr(k) Nw(k) Ns(k))
T (4.48)

in the interval 0 ≤ k ≤ n, the prediction error of the model estimate N̂(k) can be

estimated. Optimal parameters (θ) can then be found using the least-squares method

min
θ

1

n

n∑
k=1

(N(k)T − N̂(k)T )2 = min
θ

1

n

n∑
k=1

(N(k)T −N(k − 1)TθT )2 (4.49)

With θ̂n the vector that minimizes (4.49)

θ̂n = arg min
θ

1

n

n∑
k=1

(N(k)T −N(k − 1)T θT )2 (4.50)
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As (4.49) is quadratic in θ, the minimum value of (4.49) can be found by setting its

derivative to zero:

0 =
2

n

n∑
k=1

N(k − 1)(N(k)T −N(k − 1)T θ̂T
n ), (4.51)

yielding

θ̂n =

[
n∑

k=1

N(k − 1)N(k − 1)T

]−1 n∑
k=1

N(k − 1)N(k)T , (4.52)

which is straightforward to compute given the availability of the measured state variables

N(k).

Initial Parameter Estimation: In the above experiment, measurements for all state vari-

ables (Nr, Nw, and Ns) are available. Imagine now that it is not possible to measure Nr

and Nw independently from each other (this is reasonable for collisions with robots close

to the wall for instance). Then, pR and pw cannot be estimated (4.45), but only the sum

1 − pR − pw. As a work-around, additional experimental data need to be gathered by

varying other parameters, for instance changing the number of robots. Such a procedure

leads to an identification problem with a smaller number of degrees of freedom, but it

might not be feasible to conduct it for every single parameter; in particular for systems

where the ratio of parameters to the number of observed state variables is high. Then,

an initial estimate using the calibration heuristic from Section 4.4 is extremely helpful.

Numerical Optimization

The system dynamics of the system under study in the previous section is linear in θ

(4.51), which allows to formulate an analytic solution for θ (4.52). In a system where

this is not the case, analytical solutions to (4.44) are most likely unfeasible. Numerical

solutions then can be obtained by a suitable optimization algorithm (fmincon from the

MatlabTM optimization toolbox, e.g.).

In order to improve the quality of the numerical solution, the admissible parameter

space (probabilities within 0 and 1, e.g.) should be appropriately reduced. Here, values

obtained by parametric calibration (Section 4.4.1) provide a good initial estimate.

4.5 Discussion

The basic systems presented in this chapter are recurrent for modeling the various al-

gorithms for distributed coverage in this thesis. The sub-chains for modeling reactive
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swarm-robotic systems will be combined in order to model a reactive algorithm for dis-

tributed boundary coverage. The circumstances under which the modeling assumptions

of spatial uniformity and linear super-position will hold is then illustrated experimen-

tally. The basic deliberative decision problems are extended to a suite of algorithms

where robots calculate the next task, i.e. cell to cover, by various non-collaborative and

collaborative deliberative policies. Here, choosing another task than that which was

planned is the result of inaccurate navigation, whereas the ability to identify tasks still

to do, i.e. uncovered cells in a coverage problem, has its reason in imperfect localization.

Also, the potential delay of execution of the reactive behaviors, as considered in Section

4.3.2, will be illustrated on the real robot case study. Quantitative insight into the per-

formance of the algorithms used is then obtained by using a combination of probabilistic

and deterministic models and careful calibration of model parameters on the real-robotic

platform.

Using optimization procedures to complement parameter calibration allows for a good

match between prediction and experimental data (see for instance Correll & Martinoli

2006a) in cases where the system is at the limit of the modeling assumptions, e.g., in

over-crowded scenarios or for non-uniform spatial distributions. The results obtained

from such an approach have to be treated with care as the optimization procedure could

well over-fit the data with potentially too simple models. In (Correll & Martinoli 2006a)

optimization averages out more complex effects, e.g., a drift phenomenon observed in

(Correll & Martinoli 2004a), which lead to a non-uniform distribution of the robots in

the environment. In order to reach differently this level of accuracy, the level of detail

in a model would need to be increased at the cost of analytical tractability, e.g., by

explicitly capturing the non-uniform spatial distribution in the coverage example (see

also Prorok 2006).

4.6 Conclusion

This chapter has shown how probabilistic models can be systematically developed from

a deterministic robot controller’s description. Abstracting events in the environment to

constant encountering probabilities can lead under the assumption of spatial uniform

distribution and fully reactive robot controllers to extremely compact representations

of the system by means of difference equations. Instead for deliberative systems, all

possible system states have to be enumerated and their probabilities calculated.

When models become analytically intractable, which is the particular case for de-

liberative systems with memory and an explosion of the state space, simulation is an

appropriate tool. Here, the basic idea is to average over a statistically significant amount
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of randomly generated trajectories through the state space. Obtaining analytical solu-

tions also becomes difficult when the interest is not only in the average performance, but

also in its distribution, or when the probabilities and state durations of the system are

not constant. Also in this case, average values and their distribution can be obtained by

an appropriate number of simulations, where event probabilities and their durations are

drawn from their distributions.

Event probabilities and event durations can be measured using parts of the real sys-

tem, e.g., by measuring sensor noise on an individual robot. Alternatively, it is possible

to estimate parameters, and potentially their distributions, by solving an optimization

problem defined by the mismatch between model prediction and observation for a par-

ticular set of parameters. It was exemplarily shown that such an optimization problem

is likely to be under-determined if the number of degrees of freedom in parameter space

are not varied separately by appropriate experiments.

Chapter Summary

� Multi-robot systems with fully reactive controllers and non-spatial performance

metrics can be modeled with macroscopic difference equations that keep track of

the number of robots in a certain state.

� Multi-robot systems with deliberative controllers subject to noise can be modeled

by explicitly enumerating the state space.

� The memory in the robot controllers (reactive or deliberative) may lead to an un-

tractable large state space. In this case, valuable insight into the system dynamics

can be obtained by simulating the system using discrete-event simulation, possi-

bly by sampling from the probability density function of noise present in the real

system.
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CHAPTER 5

Reactive Algorithms for Distributed

Boundary Coverage

This chapter investigates various heuristics for distributed boundary coverage, which

pose only minimal requirements on the robotic platform. The size of the environment

is unknown to the robots, coordination algorithms use only minimal computation, and

robots communicate locally at low bandwidth.

Starting from a behavior-based controller that moves essentially randomly from blade

to blade and circumnavigates a blade until a time-out expires (Section 5.1), local com-

munication is used at selective time intervals to temporarily “mark” the blades after

inspection (Section 5.2). Section 5.3 presents a controller that uses local communication

during all phases of the inspection process in order to increase dispersion in the envi-

ronment. The controllers are validated using systematic experiments with a swarm of

up to 30 real Alice robots (Section 3.1.1) that do not have any localization abilities and

provide only low-bandwidth, local communication.

The collaborative algorithms described in this Chapter can be described by the

paradigm “self-organization”. As defined by Bonabeau et al. (1999) for natural sys-

tems, self-organization emerges from the interplay of four ingredients: Positive feedback

(e.g., amplification of behavior due to clues in the environment or provided by other indi-

viduals) and negative feedback (e.g., saturation, resource exhaustion), randomness, and

multiple interactions among individuals. Although self-organization might achieve less
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efficient coordination than other distributed control schemes, it can provide extremely

high levels of robustness on miniature robotic platforms such as those considered in this

chapter. This is particularly important when moving to environments where size is a

hard constraint such as inside micro machinery, which is the motivating case study in

this dissertation.

Due to the complexity arising from multiple interactions and a potentially high

amount of noise, it is difficult to predict the collective behavior (and performance) of a

miniature robotic swarm. This is, however, necessary to make coordination approaches,

based on more or less random interactions, a viable alternative for engineering such a

system. This problem can be tackled by modeling the system at multiple abstraction

levels, ranging from microscopic, realistic simulation to probabilistic rate equations that

are derived from the individual robot behavior (Chapter 4). We illustrate this approach

by incrementally developing heuristics and models for distributed coverage. Probabilistic

models are then used as design tool and help to select promising control strategies.

As the environment considered in this case study consists of regularly spaced objects,

algorithms developed in this chapter are also applicable to the coverage of environments

with grid-based cellular decompositions.

5.1 Reactive Coverage without Collaboration

This section describes a reactive controller that eventually covers the whole boundary

of every blade in the environment, without making use of explicit collaboration. The

performance of this controller serves as a baseline for further improvements. The metric

of interest shared among all abstraction levels is the time to completion, that is the time

until the boundaries of all blades are covered.

5.1.1 Individual Robot Behavior

The individual robot controllers are governed by rules that switch between reactive

schemes for collision avoidance, determining an objects type, and wall following. The

FSM of the robot controller is depicted in Figure 5.2 and Figure 5.1 schematically depicts

the behaviors.

Robots are searching through a bounded arena at random , and inspect objects

(turbine blades) that they encounter in the environment by circumnavigating them .

In order to identify an object’s type, a robot tries to approach its contour until a specific

distance is reached. The sensor reading that corresponds to this distance, however, is

unfeasible to obtain for black surfaces such as the arena boundary. If the robot detects

that it is unable to come close enough to an object within a certain time (0.5s in our
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TranslateInspectSearch Stationary Marker

Figure 5.1: Schematic representation of the behaviors for reactive coverage without

collaboration (Section 5.1) and reactive coverage using stationary markers (Section 5.2).

experiments), it abandons the object, and otherwise follows its contour clockwise or

counter-clockwise (depending on the angle the object was approached with). The robots’

controllers are endowed with a timeout that indicates when a blade should be left. After

the timeout has expired, the robot leaves the blade when encountering its tip . By

using a sufficiently long timeout, a robot circumnavigates the blade at least once. The

rationale behind leaving a blade only at its tip stems from the fact that the tip can be

easily distinguished from the rest of the blade using on-board sensors.

Using a controller that leaves blades only at their tips, will lead to a strong directional

bias. For an environment as considered here, robots will soon cluster in the bottom right

corner of the environment (Correll & Martinoli 2004a). This phenomenon leads to sub-

optimal performance of the inspection as some blades will be inspected more often than

others1. For this reason, the following additional behavior is implemented: robots will

leave a blade only with a probability of pt when at the tip (pt = 50% in our experiments),

and translate along the blade’s contour in order to leave a blade at its round end otherwise

.

For purely reactive behavior, robots stick to an action scheme as long as the ap-

propriate stimulus is provided. For this reason, whenever a robot abandons inspection,

avoids an obstacle, or another robot, collision avoidance is enforced for 2s.

5.1.2 Microscopic Models

The robot behavior described in Section 5.1.1 has been implemented in Webots. Webots

faithfully models not only the behavior but also individual sensors and actuators of each

robot. On a higher abstraction level, the individual robot can be described by the PFSM

depicted in Figure 5.3 (see Section 4.2, page 40 for an introduction to the concept). A

robot can be searching (Ns), avoiding a robot (Nr) or a wall (Nw), inspect a virgin

1In a real turbine, boundaries would be non-existent, and the combination of environmental template
and robot behavior could lead to improved exploration of the environment
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Search
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Blade pt

1-pt
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Figure 5.2: FSM of a reactive controller for randomized coverage. A robot is randomly

walking and avoids obstacles. Upon encountering a blade, the robot follows its contour

until a time-out expires.

(Nv) blade, inspect a partly inspected blade (Np), i.e. inspecting a blade concurrently

with another robot that considers this blade a virgin blade, inspect an already inspected

blade (Ni), or translate back along a blade after inspection (Nt). The three inspection

states are considered one state in the FSM of the individual robot (Figure 5.2) and are

required for the allocentric metric “time to completion”. The probability that a robot

encounters either a virgin, partly inspected, or inspected elements, is then a function of

their numbers. Distinguishing between virgin and partly inspected blades will become

important when considering mobile marker-based collaboration in Section 5.3.

The state transition probabilities are given by the encountering probabilities for a

blade pe, a wall pw, another robot pr, and the probability to translate along a blade

after inspection pt. The state durations are given by Te for inspecting a blade, Tw for

robot-wall collision, Tr for robot-robot collision and Tt for translating along a blade. The

encountering probabilities pe, pw, and pr as well as the interaction times Te, Tw and Tr

are model parameters that reflect physical properties of the system, whereas pt and Tt

are control parameters of the individual robot. Parameters are summarized in Table 5.1.

N0 instances of such an automaton (one for each robot) can now be simulated using

synchronous agent-based simulation; the behavior of the whole can then be observed

with respect to a certain metric, here the number of virgin blades at time k. Initially, all

M0 blades are virgin. As soon as a robot starts inspecting a virgin blade it is considered

“under inspection”, and ”inspected” after time Te. If two or more robots inspect the

same blade, only the first robot inspects a virgin blade and all others inspect a partly

inspected blade. For simplicity, robots maintain their status until they finish inspection,

even if the blade itself is considered fully inspected after the first robot leaves.
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System Parameters Description Section

pe, Te Encountering probability of a blade

and average time for inspection.

5.1.2

pr, Tr Encountering probability for a robot

and average time for resolving a robot-

robot collision.

5.1.2

pw, Tw Encountering probability for a wall and

average time for resolving a robot-wall

collision.

5.1.2

N0, M0 Total number of robots and total num-

ber of blades, respectively.

5.1.2

γ Coupling parameter for collaboration,

γ = 0 corresponds to no communica-

tion, γ = 1 corresponds to communica-

tion over the whole detection area of a

robot

5.3.2

Control Parameters

pt, Tt Probability to translate along a blade

after inspection, and time required to

do so.

5.1.2

Tm,init, km, Δkm, T̃m(k) Parameters defining the profile of

Tm(k), the time a robot acts as station-

ary marker

5.2.4.

Table 5.1: Summary of model parameters used in this Chapter
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5.1.3 Macroscopic Model

Ns(k) represents the number of searching robots. As the number of robotsN0 is constant,

the number of searching robots calculates to

Ns(k) = N0 −Nr(k) −Nw(k) (5.1)

−Nv(k) −Np(k) −Ni(k) −Nt(k)

where Nr(k), Nw(k), Nv(k), Np(k), Ni(k), and Nt(k) are the number of robots in avoid-

ance (robots and walls), inspecting a virgin, a partly inspected or a fully inspected blade,

and translating along a blade after inspection, respectively.

Nr(k), and Nw(k) are delay states and can hence be calculated according to (4.6) in

Section 4.2.1.

Nr(k + 1) = Nr(k) + pRNs(k) −
1

Tr

Nr(k) (5.2)

Nw(k + 1) = Nw(k) + pwNs(k) −
1

Tw

Nw(k) (5.3)

Here, pR = (N0 − 1)pr and pw are the encountering probabilities for any other robot and

the wall, respectively. Tr and Tw are the interaction times for robot-robot collision and

collisions with the arena boundaries, respectively. For instance, the number of robots

avoiding a robot are increased by searching robots encountering any other robot and

decreased by those that have spent an average time Tr in Nr.

The number of robots inspecting a blade can be calculated similarly as the number

of robots avoiding a collision, whereas the number of potential objects to interact with

(encountering probability pe) is not constant but time-varying:

Nv(k + 1) = Nv(k) + peMv(k)Ns(k) −
1

Te
Nv(k) (5.4)

Np(k + 1) = Np(k) + peMp(k)Ns(k) −
1

Te
Np(k) (5.5)

Ni(k + 1) = Ni(k) + peMi(k)Ns(k) −
1

Te

Ni(k) (5.6)

Mi(k) denotes the number of inspected blades, which are given by Mi(k) + Mp(k) +

Mv(k) = M0 (the number of blades is constant), and Mp(k) and Mv(k) at time k are

given by

Mv(k + 1) = Mv(k) − peMv(k)Ns(k), Mv(0) = M0 (5.7)

Mp(k + 1) = Mp(k) + peMv(k)Ns(k) −
1

Te
Nv(k) (5.8)

For instance, the number of virgin blades is reduced by the number of searching robots

encountering a virgin blade (with probability peMv(k)).
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The number of robots translating along a blade after inspection Nt(k) calculates

slightly differently. While the state duration for inspection is variable and is expressed

by its average Te, as it depends on the location of where the robot attached to a blade,

the time for translating back along a blade after inspection is a function of the length

between a blade’s tip and its round end. This information is then used to hand-code

a time-out (time Tt) in the controller. Thus, the transient dynamics of the system are

more faithfully represented by opting for a fixed delay:

Nt(k + 1) = Nt(k) + pt
1

Te

(Nv(k) +Np(k) +Ni(k)) (5.9)

−pt
1

Te
(Nv(k − Tt) +Np(k − Tt) +Ni(k − Tt))

The number of robots in Nt is increased by all robots leaving an inspection state after

time Te, and decreased by the number of robots that have entered Nt before Tb time

steps. The factor pt reflects the fact that only some of the robots need to translate back

along the blade after inspection in order to maintain an uniform distribution. As the

tips of the blades all point in the same direction in this case study, pt is set to 0.5.

Inspection is completed if all blades are inspected (Mi(n) = M0 − ε), with 0 < ε

a certain degree of confidence. To compute the time to completion nT , Mi(n) = M0

is an easy condition to apply in the experiment. However, in the macroscopic model,

this represents a limit condition as lim
k→∞Mi(k) = M0, and thus we solve the macroscopic

model for Mi(n) = M0 − ε, with ε a reasonable small value. Notice, that Mi(k) does not

represent the fraction of completed experiments at time interval k, which would allow

for calculating the expected value E[n] =
∑∞

k=0 Ṁi(k)/M0k. Instead, Mi(k) represents

the fraction of blades covered at time k.

Initial Conditions

The initial conditions are Ns(0) = N0 and Nr(0) = Nw(0) = Nv(0) = Ni(0) = Nt(0) = 0

for the robotic system (all robots in search mode) while those of the environmental

system are Mv(0) = M0 and Mp(0) = Mi(0) = 0 (all blades virgin). As customary for

time-delayed DE, we assume Nx(k) = Mx(k) = 0 for k < 0.

Analysis of Convergence

Convergence is shown by proving the existence of a stationary distribution for the robotic

system. The stationary distribution of the robotic system then allows for obtaining an

explicit solution for the environmental system, i.e. the number of covered blades.

Theorem 5.1.1. The Markov chain describing the state distribution (Section 4.1.7) of

the robotic system depicted in Figure 5.3a will reach a stationary distribution for limk→∞.
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Figure 5.3: a) Graphical representation of the rate equations that are derived from

the Markov chain modeling the individual robot’s state, b) rate equations modeling

the environmental state (the number of inspected elements). State transitions of the

environmental model are a function of the state variables of the robotic system.
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Proof. By inspection, the Markov chain is irreducible, aperiodic, and does not contain

transient states and is thus recurrent. As the average return time for each states is finite

(Tt <∞ can be safely assumed), the state space of Figure 5.3a is finite. Using Theorem

4.1.1, the Markov chain thus reaches a stationary distribution.

Given a stationary distribution for the number of searching robots N∗
s > 0 using

Theorem 5.1.1, (5.7) can be solved (see Section 4.2.2) to

Mv(k) = M0(1 − peN
∗
s )k (5.10)

which converges asymptotically to zero for k → ∞ as 0 < peN
∗
s < 1 by definition (linear

super-position of encountering probabilities, Section 4.1.5).

5.2 Reactive Coverage with Stationary Marker-Based Collab-

oration

Intuitively, coverage performance might be increased by “marking” covered areas (see

also the work of Svennebring & Koenig (2004) and references therein). As the Alice

platform has no possibility to do so, using the robot itself as a marker is an option.

Acting as a marker is then a trade-off between contributing to task progress by coverage

of potentially uncovered areas and preventing other robots from performing redundant

coverage.

Correll & Martinoli (2005) show for this case study that waiting for a constant amount

of time, never speeds-up coverage and it is always beneficial to continue coverage rather

than to collaborate. This is not the case, when using a dynamic marker policy, that is

changing the policy over time (Correll & Martinoli 2006b).

The remainder of this section will first describe the individual robot behavior for

marker-based collaboration (Section 5.2.1), and then extend the probabilistic models

developed for the basic robotic controller (Section 5.1.2 and 5.1.3) to model collaboration

using the generic collaboration model from (Martinoli et al. 2004), see also Section 4.2.3,

page 45. Finally, an optimal marker policy is found using optimal control techniques.

5.2.1 Individual Robot Behavior

The robot behavior for marker-based collaboration is summarized by the FSM depicted

in Figure 5.4 and the schematic representation of Figure 5.1. As in the non-collaborative

policy (Section 5.1), the robot searches for blades throughout the turbine, combining

schemes that drive the robot forward, avoid obstacles, and follow contours. For tem-

porarily marking blades, the following behavior is added: after inspecting a blade, a
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Figure 5.4: FSM of a robot controller for randomized coverage with marker-based col-

laboration. After inspecting a blade found by random walk, a robot rests as its tip for

a certain time and prevents following robots from finishing inspection.

robot marks a blade by resting at its tip for the time Tm(k) and signals to all robots

within its range possibly approaching this blade to avoid it, or abort its circumnaviga-

tion, in case the other robot has already attached to the blade at another point . The

time-out Tm(k) follows a profile that is hard-coded into the robot’s controller.

5.2.2 Microscopic Model

The Probabilistic Finite State Machine for the marker-based collaboration behavior is

depicted in Figure 5.5. An additional state compared with Figure 5.3 has been introduced

for robots marking blades after inspection. Robots remain in this state for time Tm(k).

Upon encountering a resting robot, an inspecting robot immediately leaves the current

blade. The probability for inspecting a blade that is marked by a robot is given by

the ratio of markers and inspected blades Nm(k)/Mi(k) (see below for the definition of

Nm(k)). If a robot inspects a marked blade, it will encounter the marker after Tf time

steps on average. The probability for leaving an already inspected blade is thus given

by Nm(k)
Tf Mi(k)

.

The time Tm(k) spent for marking a blade is given by

Tm(k + 1) = Tm(k) + T̃m(k), (5.11)

with Tm(0) = Tm,init, and T̃m(k) = 0 if the marker policy does not change, while T̃m(k) =

f(k) with f(k) a non-linear function with arbitrary parametrization in the dynamic case,

allowing to increase or decrease the time spent as a marker during the experiment.
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Figure 5.5: Graphical representation of the difference equation system for marker-based

collaboration. Notice the additional state Marker and the additional transition from

Circle inspected element back to search.

5.2.3 Macroscopic Model

The dynamics of the PFSM shown in Figure 5.5 at system level are given by the following

difference equations. For M0 blades and N0 robots, the number of robots in obstacle

avoidance Nr and Nw are given by (5.2) and (5.3). Also, equations modeling the inspec-

tion progress Mv, Mp and Mi are given by (5.7)–(5.8) with Mi(k) = M0−Mv(k)−Mp(k).

Instead, the number of robots covering virgin, partly and fully inspected blades Nv, Np

and Ni, the number of robots marking a blade Nm, the number of robots translating

back along the blade’s contour Nt, and the number of robots in search mode Ns are

modified due to the marker policy introduced in this section.

The number of robots covering an already inspected blade calculates to

Ni(k + 1) = Ni(k) + peMi(k)Ns(k) −
Nm(k)

TfMi(k)
Ni(k) (5.12)

−peMi(k − Te)Ns(k − Te)Γ(k − Te; k)

As opposed to (5.6), the inspection state can now additionally be quit when encountering

a marker. The probability for inspecting a marked blade given that the blade is already

inspected is Nm(k)
Mi(k)

, and the average time until a marker is reached is Tf . The Γ-function

(see also Section 4.2.3, page 45) represents the fraction of robots that unavailingly waited

for collaboration. In the “stick-pulling experiment” (Martinoli et al. 2004), Γ represents

the fraction of robots that did not find another robot to help with their task, pulling

sticks out of the ground. Here instead, Γ expresses the fraction of robots that did not
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encounter a beacon before leaving a blade after Te.

Γ(k − Te; k) =

k∏
j=k−Te

(1 − Nm(j)

Mi(j)Tf
) (5.13)

As Γ(k − Te; k) is defined for constant Te, the number of robots inspecting virgin

blades Nv(k) and partly inspected blades are now modeled accordingly as delay states

with constant duration Te, and write

Nv(k + 1) = Nv(k) + peMv(k)Ns(k) − peMv(k − Te)Ns(k − Te) (5.14)

Np(k + 1) = Np(k) + peMp(k)Ns(k) − peMp(k − Te)Ns(k − Te) (5.15)

The number of robots marking a blade is given by

Nm(k + 1) = Nm(k) + peMi(k − Te)Ns(k − Te)Γ(k − Te; k) (5.16)

+peMv(k − Te)Ns(k − Te)

−
−T̃m(k)∑

j=0

pe[Mv(k − Te − Tm(k)) +Mp(k − Te − Tm(k))]Ns(k − Te − Tm(k) + j)

−
−T̃m(k)∑

j=0

peMi(k − Te − Tm(k))Ns(k − Te − Tm(k) + j)Γ(k − Te − Tm(k) + j; k)

The summations introduced in (5.16) are necessary as Tm(k) is time variant. In short,

if Tm is decreased by T̃m, all robots that became a marker in the interval [k − Tm(k) −
T̃m(k); k − T̃m(k)] need to continue searching at once. For increasing Tm, no robot shall

leave the marker state for T̃m. Note, that using this notation, the model can only give

valid prediction for T̃m(k)ε] −∞; 1] as for T̃m(k) > 1, T̃m(k + 1) will be zero, and thus

renders the sum useless.

Finally, the number of searching robots is given by

Ns(k + 1) = N0 −Nv(k + 1) −Ni(k + 1) −Np(k + 1) (5.17)

−Nr(k + 1) −Nw(k + 1) −Nm(k + 1) −Nt(k + 1)

Initial Conditions

The initial conditions are the same as those in Section 5.1.3. Additionally, the profile

Tm(k) is initialized by Tm(0) = Tm,init, and Nm(0) = 0.

Analysis of Convergence

Convergence of the algorithm can be shown using the same reasoning as in Section 5.1.3

for Tm < ∞. Thus, for Tt < ∞ and Tm < ∞, the stationary marker-based algorithm

always converges to complete coverage.
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5.2.4 Dynamic Optimization

Coverage performance can be improved by finding an optimal marker-activation policy,

i.e. a profile for Tm(k) that minimizes time to completion nT . Then T̃m(k) is the time-

varying decision variable that defines the profile Tm(k). The optimization problem is

formulated as follows
min

T̃m(0)...T̃m(N−1)J = nT (5.18)

s.t. 0 = Mi(n) + ε−M0

where 0 = Mi(n)−M0+ε is a terminal constraint ensuring all blades have been inspected

and ε is a very small value.

For simplifying the dynamic optimization problem T̃m(k) is parameterized as follows:

T̃m(k) =

{
a when km ≤ k ≤ km + Δkm,

0 else.
(5.19)

The profile Tm(k) is hence (see equation 5.11) defined by three decision variables Tm,init, km

and Δkm, and a fixed parameter a (see below). Thus, Tm(k) has the value Tm,init until

time km where it increases until Tm(k) = Tm,init +aΔkm at km +Δkm. The optimization

problem can hence be reformulated to

min
Tm,init,km,ΔkmJ = nT (5.20)

s.t. 0 = Mi(n) −M0 + ε

with J the cost and u = [Tm,init, km,Δkm] the vector containing the decision variables

to optimize.

5.3 Reactive Coverage with Mobile Marker-based Collabora-

tion

The basic coordination approach (Section 5.1.1) benefits from parallel task execution,

whereas randomness and coupling among the robots are limited to physical interactions

between robots and the environment, and robots that repel each other physically, respec-

tively. In Section 5.2.1 coupling between robots has been introduced by robots acting as

markers. In this section, robots combine marking with translating behavior, leading to

a mobile marker-based policy.
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Figure 5.6: Local communication during the Translate and Inspect states yield im-

proved dispersion of the robots and reduced redundancy.
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Figure 5.7: FSM of a robot controller performing reactive, mobile marker-based col-

laborative coverage. Robots inspect blades encountered during random walk. Local

communication is used for abandoning blades currently inspected by other robots which

act as mobile markers and for promoting dispersion in the environment.

5.3.1 Individual Robot behavior

In order to further reduce redundant coverage, the following additional behaviors that

exploit communication among the robots are introduced (Figure 5.6): First, inspecting

robots that encounter a robot translating back along an already inspected blade will

abort inspection. Second, robots abandon an inspection if they follow or encounter

another inspecting robot (in this case only the robot having the blade to its right

hand side will leave). Third, searching robots will not attach to a blade if there is an

inspecting robot nearby (in whatever direction).
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with the PFSM without collaboration (Figure 5.3).

5.3.2 Microscopic Model

The PFSM including communication between robots is depicted in Figure 5.8. The

PFSM keeping track of the number of blades being inspected is identical to that from

Figure 5.3, b.

The PFSM in Figure 5.8 introduces the following changes: The detection probabil-

ities of blades that have already been visited by at least one robot are reduced by the

encountering probabilities of other robots already inspecting the blade or translating

along its contour after inspection. Also, robots can now leave a blade upon encountering

another robot on its contour. As the blade shields infra-red communication in one di-

rection, the encountering probability of a robot during inspection is reduced by a factor

γ = 0.5. Consequently, for γ = 0, i.e. no communication, the PFSM from Figure 5.8

reduces to that of Figure 5.3.

5.3.3 Macroscopic Model

The collaboration among robots does not affect robot-robot (5.2) and robot-wall col-

lisions (5.3). Also, equations that model the environmental states (5.7)–(5.8) and the

number of robots in search (5.17) can be maintained. The equation system for the num-

ber of inspecting robots (5.4)–(5.6), however, needs to take into account repulsion by
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other robots, and additional state transitions for quitting redundant inspection:

Nv(k + 1) = Nv(k) + peMv(k)Ns(k) −
1

Te
Nv(k) (5.21)

Np(k + 1) = Np(k) + (peMp(k) − γpr (Nv(k) +Np(k)))Ns(k)

− 1

Te
Np(k)

−γpr (Nv(k) +Np(k))Np(k) (5.22)

Ni(k + 1) = Ni(k) + (peMi(k) − γpr (NM(k) +Ni(k)))Ns(k)

− 1

Te
Ni(k)

−γpr (NM(k) +Ni(k))Ni(k) (5.23)

For modeling repulsion from blades, in (5.22) the detection area peMp(k) of elements

already under inspection is reduced by the detection area of robots currently covering

a virgin blade γpr(Nv(k) + Np(k)). Similarly, in (5.23) the detection area peMi(k) of

already inspected elements is reduced by the detection area γpr(NM(k)+Ni(k)) of robots

performing redundant inspection and translating back along the blade.

Analysis of Convergence

For γ > 0, convergence can be shown using the same reasoning as used in Section 5.1.3

(for γ = 0 both systems are equivalent). As Np(k)|γ>0 and Ni(k)|γ>0 will increase slower

and decrease faster than Np(k)|γ=0 and Ni(k)|γ=0 which can be seen by inspection of the

associated difference equations, and all other states are not affected from γ, one can see

that N∗
s |γ>0 > N∗

s |γ=0. Thus Mv(k)|γ>0 (5.10) will converge faster to zero thanMv(k)γ=0.

5.4 Results

A first series of experiments validates the modeling assumptions. Model parameters

are then determined by exploiting information about the geometry of the environment

and the robot’s speed and sensory configuration, as well as by numerical optimization.

Model prediction of the macroscopic model and Webots achieves good agreement with

real robot experiments. The calibrated parameters are then used to find an optimal

stationary marker policy. Finally, model prediction and experimental results for non-

collaborative and mobile marker-based coverage are compared. The time discretization

of all models is T = 1s.
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Figure 5.9: Estimated probability density function for the location within the arena for

20 robots over around 30 experiments when leaving the blade only at the tip (left), or

translating back along the blade in 50% of the cases for non-collaborative and mobile

marker-based inspection (middle and right, respectively). The two-dimensional proba-

bility density functions are discretized (100x100 grid) and low-pass filtered.

5.4.1 Validation of Modeling Assumptions

In order to validate the assumption of spatial uniform distribution of robots in the

environment, the trajectories of 20 robots in 30 coverage experiments are analyzed.

The position of each robot has been recorded and attributed to a two-dimensional grid

discretization of the environment (100 x 100 bins). The resulting 2D-histogram has

been normalized by the total number of measurements, leading to an estimate of the

probability density function of a robot’s location in the arena.

Figure 5.9a shows the spatial distribution that results from a controller where a blade

is only left at its tip (Correll & Martinoli 2004a). Figure 5.9b and Figure 5.9c show the

resulting spatial distribution if robots are leaving at either end with equal chance for a

system with and without communication.

5.4.2 Parameter Calibration

Encountering probabilities for obstacles, blades and walls used in the microscopic and

macroscopic model have been obtained by numerically solving the optimization problem

(4.44) for 100 experiments with non-collaborating swarms of 10, 20, and 30 robots, and

an initial estimate provided by (4.43), page 54, and data from Figure 5.10. The detection

width (twice the distance from center to center of a robot upon detection) has been set

to wd = 0.10m (compare Figure 5.10, bottom row, center) and v = 0.04m
s
, with As = Ar.
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Figure 5.10: Experimental setup for determining the detection area of a blade (left),

another robot (middle), and the outer walls (right) in a realistic simulator (top row).

The resulting detection area given by all points where the object has been detected by

a robot (bottom row).

The speed v = 0.04m
s

is the speed the robot reaches in obstacle free areas of the arena

and thus can be considered an upper bound.

Detection areas of all objects, the initial estimates and the encountering probabilities

actually used are summarized in Table 5.2. The interaction times are given in Table 5.3.

Values for the interaction times base on kinematic considerations (distance is equal to

speed times time, e.g.) and observations of the real system and are summarized in Table

5.3. Interaction times have been kept constant during optimization in order to reduce

the degrees of freedom of the optimization process. This is important as interaction

times are tightly related to encountering probabilities: short interaction times with high

encountering probabilities might lead to an identical prediction for the steady-state as

long interaction times with low encountering probabilities.
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Table 5.2: Encountering probabilities used for microscopic and macroscopic model. Ini-

tial estimate (middle column) are calculated based on the detection area of an object

(left column), and value after optimization (right column). Divergences between ini-

tial estimate and optimal parameters reflect violations of the modeling assumptions and

inaccuracies of the model.

Area θ̂0 θ∗

Ar 0.0044m2 pr 0.010 6 · 10−4

Ae 0.0095m2 pe 0.022 2 · 10−3

Aw 0.0396m2 pw 0.093 5 · 10−2

Table 5.3: Interaction times used for microscopic and macroscopic model. Initial esti-

mates base on trials with an individual robot or geometric considerations, and have been

kept constant during the parameter optimization process.

Tr 4s Te 15s Tw 4s

Tt 8s Tf 8s

Prediction of the macroscopic model using the calibrated parameters for the average

number of inspected blades over time are now compared with experimental data from

non-collaborating swarms of 10, 20, and 30 robots, and Webots in Figure 5.11 (100

experiments per team size both for real robots and Webots experiments).

5.4.3 Optimal Control of a Stationary Marker-Based Collaboration policy

For limiting the search space of the optimization problem, the parameter a (compare

Equation 5.19) is constrained to take discrete values in the interval [−1; +1], where

a = 0 corresponds to a time-constant marker policy. Also, the optimization considers

only two dynamic policies, first to relax a marker policy by decreasing Tm over time, and

second, to foster a marker policy by increasing Tm. The evolution of the state variables

for the latter case with km = 40s is depicted in Figure 5.12. Notice in particularly the

number of robots acting as markers Nm (middle).

Optimization using fmincon provided by the Matlab Optimization toolbox for various

initial conditions and model parameters from Table 5.2 yields T ∗
m,init = 0 and Δk∗m = 0

for a = −1, i.e. starting with a marker policy always decreases performance. On the

other hand, setting a = +1, yields an optimal policy T ∗
m,init = 0s, k∗m = 55s, Δk∗m =

1.8 for N0 = 45 robots. However, performance is improved only marginally by 0.7%

for the chosen model parameters. In fact, whether a marker-based policy can lead
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Figure 5.11: Average number of covered blades for 100 experiments with 10, 20, and 30

robots (—), realistic simulation (– –), and prediction of the macroscopic model for non-

collaborative inspection (· · · ) after parameter optimization. Error bars depict standard

deviation.

to an improvement or not appears to be a function of the time Te effectively needed

for inspection (Te = 15s in our case study). We therefore performed optimization for

10 ≤ N0 ≤ 40 robots with M0 = 25 for Te = 75s (Figure 5.13). Notice that the blades in

the experimental setup from (Correll & Martinoli 2004a) and (Correll & Martinoli 2006b)

are much larger (factor 2.5 in length) than those used in the experimental setup of this

dissertation. As the size of the robots did not change, inspection of a single blade takes

also considerably longer in (Correll & Martinoli 2004a), and therefore also the time a

marker-policy might save increases. This is also the case if the inspection sensor requires

the robots to move slow when circumnavigating a blade.

As the performance gain for the optimal marker policies in our experimental setup

is very small (around 5% compared with a system without collaboration in Correll &

Martinoli 2004a), it requires large number of experiments in order to show statistically

significant results (in the order of 50-100 runs), and we thus limit our experimental

validation to the mobile marker-based controller.

5.4.4 Mobile Marker-Based Inspection

Results from mobile-marker based inspection for 20, 25, and 30 robots are shown in

Figure 5.14. The actual improvement due to the mobile marker-based policy for real ex-

periments (Correll, Rutishauser & Martinoli 2006), and the prediction of the macroscopic



5.4 Results 81

Time [s]

N
u
m

b
er

of
ro

b
ot

s
(N

x
)

Ns

Ni

Time [s]

N
u
m

b
er

of
ro

b
ot

s
(N

x
)

Nm

Nt

Time [s]

N
u
m

b
er

of
b
la

d
es

Mv

Mp

Mi

0 200 4000 200 4000 200 400
0

5

10

15

20

25

0

2

4

6

8

0

5

10

15

20

25

30

35

Figure 5.12: Population dynamics of the robots searching and inspecting a blade (left)

and marking a blade and translating back along its contour (middle). Coverage progress
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model2 are shown in Figure 5.15. As the macroscopic model approaches completeness

only asymptotically, the time needed to cover M0 = 24.9999 blades serves as baseline

for comparison. The improvement of collaboration can also be seen by looking at the

performance histogram (Figure 5.16) for 100 real robot experiments (left) and 100 runs

of synchronous, agent-based simulation of the system’s PFSM (right).

5.5 Discussion

5.5.1 Modeling Assumptions

The inspection scenario touches the limits of the modeling assumptions (Section 4.1.4)

due to (1) a high density of robots and objects, (2) the structure of the environment that

influences the spatial distribution of the robots for some controllers, and (3) the geometry

of the blade objects which lead to an encountering probability that is dependent on the

angle of approach (a robot is unlikely to recognize a blade as such when approaching

from on its ends).

The high density of robots and blades in our experimental setup clearly violates our

assumption of linear super-position of encountering probabilities (see Section 4.1.5, page

38). In fact, this is the case as soon as detection areas of objects overlap, e.g. when a

robot follows the contour of a blade. In extreme cases of over-crowding, our modeling

assumption might lead to an overall encountering probability larger than one, which is

2the experimental results from mobile marker-based inspection have not been taken into account for
calibration of modeling parameters
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physically meaning-less. Thus, in over-crowded scenarios, the encountering probability

for an individual object needs to be adopted to a value usually lower than that given by

its detection area, which is well reflected by our results from Table 5.2.

After implementing the additional behavior for translating along the blades, results

show that the assumption of spatial uniformity is indeed reasonable (Figure 5.9). Nev-

ertheless, robots show a slight bias for being in the center of the arena. Such a bias

will lead to a lower probability of inspection for blades in the boundary of the arena.

Using the translating behavior for 50% of the inspected blades diminishes this effect

considerably.

Although robots in this experimental setup are uniformly distributed on the long run,

this is not the case in many potential swarm-robotic applications that involve environ-

mental gradients, such as in multi-robot search or when operating under the influence of

wind or current. In this case, the encountering probability of an object is a function of

the location in the environment, and it is necessary to not only model the average num-

ber of robots in a certain state, but also their spatial distribution (see also (Prorok 2006)

for an attempt in this direction.

5.5.2 Parameter Calibration

Due to reasons mentioned in Section 5.5.1, quantitative agreement between model predic-

tion and experimental data can only be achieved by parameter estimation (Section 5.4.2).

Without this step, which has not been necessary in the seed aggregation (Martinoli

et al. 1999, Agassounon et al. 2004) and stick-pulling (Martinoli et al. 2004) experi-

ments, models still allow for good qualitative predictions, which enables proofs of desired

properties in a probabilistic sense.

Using techniques from system identification for achieving good quantitative agree-

ment between model prediction and experimental data then allows for further analysis

and optimization of the system such as the design of stationary and mobile marker-

based collaboration algorithms (Sections 5.4.3 and 5.4.4). Also, quantitative correct

models allow for estimating the distribution of the performance (Figure 5.16), which is

important for providing confidence intervals of the performance and thus enables fully

reactive/randomized control architectures as a viable alternative for engineering multi-

robot systems.

The predictive power gained from models that have been calibrated using only a lim-

ited set of experimental data remains an open question (see also the discussion in Section

4.5). For this case study, estimation of encountering probabilities from experiments with

non-collaborating teams of 10, 20, and 30 robots have been sufficient for faithfully pre-

dicting performance gain of mobile marker-based collaboration policies (Figure 5.15).
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How many parameters of the system need to be excited (in this case only the number of

robots) and how many experiments need to be conducted for faithfully prediction of the

performance in a specific scenario needs currently to be decided on a case-by-case basis.

Also, the proposed modeling building blocks are only approximations of the individual

robot behavior (see also Section 4.2.1). Thus “optimal” policies such as the time-varying

marker policy (Figure 5.13) might be artifacts of the model. Indeed, an optimal policy

for the stationary marker-based algorithm of Section 5.2 could only be found using the

collaboration model with deterministic delay (Section 4.2.3) although the system might

be equally well represented with the collaboration model based on a probabilistic delay

(Section 4.2.3), a model of the inspection delay which would be more in line with those

proposed in Section 5.1.3 for the blade inspection duration.

5.5.3 Reactive Algorithms for Robotic Boundary Coverage

Self-organization by positive feedback between the robots showed to significantly improve

a non-collaborative, reactive approach for completely inspecting the boundaries of all

objects in an environment. This improvement could be shown analytically, numerically,

and by real robot experiments. The system is extremely robust despite the limited

capabilities of sensors and actuators, and all of the experiments (100 per team size)

eventually led to complete coverage. For quantifying this performance in a productive

environment, the proposed microscopic models allow for predicting this performance and

its distribution.

5.5.4 Multi-Level Modeling

The choice of the abstraction level is a trade-off between the level of detail that needs

to be modeled and the experimental time, which one is ready to invest. In practice,

initial realistic simulations yield the necessary insight for designing models on higher

abstraction levels. These models allow for exploring key parameters relatively easily

and yield insight into how to improve the control strategy at the realistic level (see also

Figure 4.1, which illustrates this process).

The prediction of macroscopic difference equations and exact microscopic simulation

is not always consistent. This is due to the fact that a difference equation integrates,

and potentially amplifies, even the smallest fluctuations (resulting for instance from low

encountering probabilities), whereas in microscopic simulation events with low probabil-

ities might never actually occur, and therefore do not serve as initial stimulus for other,

potentially more likely events. For this reason, results obtained by the macroscopic

model should be treated with care, if the average number of agents in a certain state is

low. This problem is also illustrated and extensively discussed in (Martinoli et al. 2004).



86 Reactive Algorithms for Distributed Boundary Coverage

Emphasis of this chapter is on showing that different modeling abstractions can lead

to consistent predictions. However, one abstraction level could be used for studying be-

havior which is difficult to capture at another level. In particular, the microscopic models

allow for exploring aspects of communication/coupling and heterogenities between robots

considerably fast, which are potentially not analytically tractable in a straightforward

way on the one hand, and unfeasible to implement on the available real robotic platform

on the other hand.

5.5.5 Model Complexity

Determining complexity of the model or its state granularity that is necessary for captur-

ing a system’s dynamic is a classical problem of System Identification (Johansson 1993).

Correll & Martinoli (2006a) show that the dynamics of the inspection can be accu-

rately captured by a model that requires one state less, namely the state Circle partly

inspected element. This state, however, has been necessary for extending the model

to the collaboration case presented in this chapter in order to take into account collab-

oration between robots that concurrently inspect a virgin blade.

As a rule of thumb, the minimum model complexity is reached, if the model is able to

qualitatively capture the dynamics of the system. If parameter tuning for quantitatively

matching an observation leads to counter-intuitive parameter sets in the sense of the

proposed parametric calibration method, it is likely that the model misses to capture

important properties of the real system, e.g. non-uniform spatial distributions.

5.6 Conclusion

Reactive approaches for coverage have showed to provide competitive performances for

distributed coverage, using extremely simple robots. This approach reaches its limita-

tions when the environment is large but the number of robots is small, and if localization

is required in order to reconstruct robot trajectories after coverage has been completed,

e.g. in an inspection scenario as opposed to a mowing or painting task. Also, reactive

coordination coverage is highly redundant, an effect that is not always desirable but can

be beneficial, e.g. in an inspection task where the inspection sensor is unreliable.

Using probabilistic population dynamics models is a viable approach for assessing the

performance of a reactive, multi-robot system. In particular when the number of robots

is large, the system reliably tracks the predicted average system behavior. Probabilistic

modeling is not limited to fully reactive systems, i.e. Markovian systems, but can also

be applied to semi-Markovian systems with memory as has been illustrated using the

marker-based coordination policy. Finally, probabilistic macroscopic models can be used
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to optimize individual parameters of a individual robot’s controller and the sequence of

the behaviors it executes using dynamic optimization techniques.

Chapter Summary

� A fully reactive policy can lead to robust coverage, which is probabilistically com-

plete and requires only minimialist sensors and actuators.

� Probabilistic, population-based modeling accurately captures the average perfor-

mance of such a system.

� System identification can be used to achieve quantitatively and qualitatively correct

predictions of the system dynamics.

� Optimal control allows for optimizing control parameters of the individual robotic

platform.
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CHAPTER 6

Deliberative Algorithms for Distributed

Boundary Coverage

This chapter considers deliberative algorithms on individual and collective robot level.

Algorithms are deliberative as a robot actively reasons about its actions based on its

sensory information and available knowledge about the environment.

The distributed boundary coverage problem is addressed by a suite of algorithms

that incrementally raise the assumptions on the robotic platform while increasing the

expected performance. In all algorithms in this chapter, boundary coverage is treated

as a graph coverage problem (Section 6.1) and algorithms can thus be well applied to

distributed coverage problems in general.

First, an algorithm is introduced in which every robot computes individual paths

that will lead to complete coverage of the environment in an on-line fashion (Section

6.2). The size and topology of the environment is unknown, and the robots do not

collaborate explicitly and their performances solely benefit from parallel task execution.

This algorithm is extended by sharing information about task progress among the robots

(Section 6.3). This requires communication and the capability to uniquely identify par-

titions of the environment that a robot has covered. Finally, this chapter introduces

a near-optimal partitioning algorithm for the coverage of environments that are known

beforehand (Section 6.4). Robots partition the environment using a fully distributed

market-based algorithm. In order to be robust against sensor and actuator noise, robots
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continuously re-plan their trajectories upon reception of new information using the same

market-based algorithm that was used for initial partitioning.

Although all algorithms are to a large part deterministic, the fact that they deal with

real miniature robotic systems still requires thinking in a probabilistic way. Sensor and

actuator noise might lead to the failure of potentially complete algorithms, and thus lead

to probabilistic completeness. Similar to the reactive algorithms from Chapter 5, prob-

abilistic microscopic, and where applicable macroscopic, models are used for capturing

the actual performance of the deliberative algorithms considered in this chapter. It is

then shown experimentally and using probabilistic models that the suite of algorithms

presented in this chapter will gracefully decay to the performance of a reactive algorithm.

6.1 Preliminaries

This section describes the environmental models used throughout this chapter, cost func-

tions and team objectives, as well as the reactive robot’s behavior, which is used to exe-

cute deliberative, high-level control. The individual robot’s behavior is also the source of

the non-deterministic behavior of the overall system. Model parameters used throughout

this Chapter are summarized in Table 6.1.

6.1.1 Environment Model

The cellular decomposition of the environment is described as a undirected graph G =

(V, E) with vertices V and edges E (Correll & Martinoli 2007b). Edges represent navigable

routes between vertices and can be traversed by a robot in either direction. An individual

vertex is denoted by v ⊆ V, and Ev = {ev
1, . . . , e

v
nv
} ⊆ E the set of nv edges incident to

v. Obstacles and borders are also represented in V with a vertex and are identified as

non-navigable upon exploring the edge leading to it. The neighborhood Ω(v) of v is given

by those vertices that are connected by an edge to v. When on v, a robot can determine

all edges incident in v. A sample environment with an arbitrary cellular decomposition

is depicted in Figure 6.1.

For each time t > 0, a robot i’s state is described by V i
t×E i

t ⊂ V×E . Thus one robot’s

knowledge about its environment at a certain point in time is the subgraph Gi
t = V i

t ×E i
t

of G. After reaching and covering vertex v, assuming the average time to do so is τ v ,

the robot’s state is updated with

V i
t+τv = V i

t ∪ {v} (6.1)

E i
t+τv = E i

t ∪ Ev.
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Figure 6.1: An arbitrary environment with a cellular decomposition V × E consisting of

a set of vertices V and a set of edges E . Dashed edges can only be partially navigated

and dashed cells are obstacles.

A partition of the environment for robot i is given by

Ai ∈ P(V) (6.2)

where P(V) is the power set of V, i.e. the set of all sub-sets of V. A complete partitioning

A ⊂ P(V) of the environment is given by

A = {A1, . . . ,AN0} = {A| ∪i∈{1...N0} Ai = V} (6.3)

with N0 the number of robots. Finally, an optimal partitioning A∗ ⊂ P(V) of the

environment is given by

A∗ = {A| ∪i∈{1...N0} Ai = V ∧ ∩i∈{1...N0}A
i = ∅} (6.4)

When working without explicit collaboration, it is possible that the environment is

effectively covered before the individual robots complete, which is given by⋃
i∈{1...N0}

V i
tcomplete

= V. (6.5)

Throughout this chapter, the definition of tcomplete from (6.5) is used when referring to

time to completion.

6.1.2 Cost Functions and Team Objective

The cost that is proportional to the time a robot needs to move from its current position

at vertex v to vertex x is defined by

C(v, x) (6.6)
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The cost of the shortest path that connects all vertices of an allocation Ai = {a1, . . . , an}
is denoted by

SP (Ai) = min
π(Ai)

n−1∑
j=1

C(ai, ai+1) (6.7)

where π(Ai) is a permutation of Ai. In words, the optimization problem finds the

ordering of visits that lead to the shortest overall path. Calculating SP (Ai) such that

every vertex in Ai is visited only once is an instance of the Traveling-Salesman-Problem1

(TSP).

The team objective can then be formulated as

min
A

max
i
SP (Ai) (6.8)

or in words, finding the partitioning A that minimizes the longest path a robot has to

travel. This team objective is also referred to as MINMAX (Lagoudakis et al. 2005)

and is NP-hard (Andersson & Sandholm 2000). Thus the challenge is to find a suit-

able trade-off between solution quality (efficiency), computation and communication cost

(tractability), and the capabilities of the individual robotic platform (feasibility).

Although an optimal partitioning A is not redundant, the resulting optimal coverage

path might well be as robots are free to choose the path between two vertices they want

to cover. If no redundancy is required, this would need to be encoded in C, but might

be unfeasible in some cases (e.g., in scenarios containing a vertex that has only one edge

leading to it).

6.1.3 Reactive Robot Behavior

Exploiting the regularity of the environment for navigation by counting every traversed

blade, the Alice can construct a graph with the blades as vertices, and possible routes

between a blade and its 4-neighborhood as edges (Figure 6.3, right, for an example

graph). Edge traversal is achieved by a combination of dead reckoning and navigation

along way points on a blade’s boundary, (Figure 6.3, left). At the same time, collisions

are avoided reactively.

The algorithms considered in this chapter require the following low-level behaviors:

obstacle avoidance, wall following, assessing an objects type (blade, arena boundary, or

another robot), determining the blade’s type (rotor or stator) at the drop-off location or

reading a blade’s identification number, navigating to one of two distinct way-points on

a blade’s boundary, traversing 8 possible edges (4 for rotor and 4 for stator blades), and

finally backing up non-navigable edges (i.e. those ending in a wall). The deliberative

1The exact definition of the TSP requires the traveler to return to the origin
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algorithms then sequentially activate the appropriate behavior for moving within the

environment. The flow-chart of the robot’s controllers is summarized in Figure 6.2. All

behavioral parameters are hand-tuned.

Obstacle Avoidance: Obstacles are avoided reactively by calculating the speeds of the

left and the right wheel as a weighted sum of the distance measurements (Braitenberg

1986). Additionally, if an obstacle cannot be avoided within a certain time, the robot

drives backward.

Wall following : Blades are always circumnavigated in clockwise direction in order to

distinguish between blade types, and to be able to use round and sharp tip as reference

points for navigation. Wall-following is implemented by a sliding-mode controller which

follows the blade’s contour using a PD-controller, and performs sharp turns at the tips.

Failure of this behavior, i.e. loosing the blade, can be detected if the PD-controller’s

output is saturated for a certain time.

Assessing an object’s type: For distinguishing between the arena border and a blade

without the camera, the robot exploits the fact that black surfaces hardly reflect infrared

light, which lets the robot appear to be farer away from the obstacle then it is. If

the obstacle cannot be reached within one second, it is classified as wall. Algorithms

using the camera distinguish between walls and blades based on a blade’s identification

number(walls do not provide an id).

Determining the blade’s type: For determining the type of a blade (rotor or stator)

without the camera, the curvature of the blade between its round and its sharp tip is

measured. This is necessary as the required behaviors for navigating to a neighboring

blade are a function of its shape. A distinction between the two types can be achieved by

counting the number of increments of the wheels’s stepper motors. The round and the

sharp tip can be distinguished by the amount of sharp turns necessary for surrounding

them. In order to reach a certain level of confidence, a robot might need to circumnavi-

gate a blade multiple times. For instance, for determining the blade’s type, the difference

of “votes” for either type needs to be equal to two, whereby a vote is based on a certain

threshold. Parameters determining the termination criteria (achieving a certain sequence

of sensor readings) for the behavioral algorithms have been determined experimentally,

and aim at a trade-off between accuracy and time needed. Using the camera, the blade

type is stored in a look-up table together with its identification number.

Way-point navigation: In order to reach blades in its 4-neighborhood, the robot relies

on two way-points that are detectable by the robot’s on-board sensors (Figure 6.3). The

robot follows the blade contour until it either passed the round tip (way-point ) or the

sharp tip (way-point ). It distinguishes between round and sharp tip by the number of

sharp turns needed by the sliding-mode controller for wall following. Unlike the behavior
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in Chapter 5 which let robots translate along a blade from sharp tip to round end in

open-loop control, in this Chapter robots actively try to estimate their location on the

blade by processing sensory information.

Edge Traversal : In order to translate to another blade, the robot first turns on the

spot in the right direction, and then executes a forward motion until an obstacle is

reached. Hereby, obstacles encountered until a certain time-out are disregarded, allow-

ing the robot to move close to the blade’s contour, which is necessary to reach some

configurations. Parameters such as the turn angle, the wheel speeds for the left and

right wheels, and the time-out are hard-coded in the extension module and send to the

Alice. Whether traversal failed can only be determined by the Assessing an object’s type

behavior and only if the topology of the environment is already known.

Backup: The robot moves backwards until it encounters an obstacle (open-loop con-

trol).

Navigation error

The reactive behaviors described above potentially fail due to sensor and actuator noise

(in particular wheel-slip on the Alice platform). While some closed-loop behaviors are

sufficiently stable (e.g., wall-following), open-loop behaviors such as navigating from

blade to blade might fail completely. Such a situation can be detected on the deliberative

level: for instance when the robot encounters a situation where its sensor readings do

not match what it expects, e.g. when it encounters a wall where there should be a blade.

Other reasons for failing are expiration of time-outs when trying to attaching to a blade

or determining an objects type. When no global reference is available the deliberative

controller is “lost” at this point and needs to start over. On the other hand, if a global

reference is available, such as global localization, here given by color codes on the blades,

the deliberative algorithm can use this information to recover.

Depending on the available hardware, the following additional behaviors upon a

detected failure are implemented. If no localization is available, a robot starts over at its

current location after performing a short random walk (2s). If localization is available,

the robot always uses the current position as basis for path-planning. Thus, if a robot

does not fail completely (battery failure, being mechanical stuck) it will eventually arrive

at a blade and plan its motion from there.

6.1.4 Microscopic Simulation

The environment and the robotic platform are simulated in the realistic, sensor-based

simulator Webots (Section 3.3). Webots allows for varying sensor and actuator noise
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Figure 6.2: Stateflow diagram of the robot controller implementing the behavioral layer

of the deliberative-reactive algorithm. Black dots denote initial states. Boxes denote the

encapsulation of behaviors.

����� �����������

(

�

)

*
�

)

�(+(�

Figure 6.3: Left: Way-points on a blade’s boundary that can be navigated to using

on-board sensors. Right: Possible trajectory for a single robot along a spanning-tree in

a 5x5 blade environment (bold line). Backtracking paths are not shown.
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parameters of the individual platform and for extracting probability distributions for

the reliability of an individual robotic platform.

These probability distributions can then be used to simulate the system. Unlike the

example given in Section 4.3.1 all possible system states are not explicitly enumerated

but the environmental state is given by the graph structure introduced for the particular

problem of this Chapter in Section 6.1.1 and the robot state given by the subgraphs

defined in (6.1). Possible trajectories through state space are then simulated by updating

the robot states with a combination of the microscopic control law or randomly moving

it according to the probability distribution describing the robot’s reliability.

As also the duration for different behaviors required by one step of the determin-

istic algorithm follow a distribution (see the Example in Section 4.3.2) and the time

required for inspecting one blade is long compared with the time-discretization that

would be needed for accurately modeling the rather wide distribution of inspection time,

all algorithms are simulated by discrete event system (DES) simulators which allows

considerable speed-up when compared with a synchronous simulation2.

In the DES simulator, unlike in realistic simulation, multiply point-robots can oc-

cupy one vertex, without penalty. One simulation step consists in moving to a vertex,

determining the vertex to visit next and potentially communicating/bidding for state

information. If applicable the direction of motion and duration of a specific state are

probabilistic.

6.2 Non-Collaborative Deliberative Coverage without Local-

ization

If no absolute localization mechanism is available, robots can only determine their rel-

ative position with respect to their drop-off position by tracking the traversed vertices

and create a topological map in an on-line fashion. As the topological maps created by

such a method are potentially ambiguous without a global reference frame, robots do

not exchange information when no localization is available.

The algorithm approximates the team objective (6.8) by constructing independent

partitions for each robot until the termination criterion (6.5) is reached. As robots do

not collaborate, individual robots are unaware of task completion.

2Non-collaborative and collaborative algorithms for unknown environments have been implemented
in MATLAB, whereas market-based algorithms have been implemented in Java for performance reasons
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Environmental states Description Section

G = (V, E) The environment is modeled as a graph

consisting of vertices V and edges E .

6.1.1

v An individual vertex v ⊆ V 6.1.1

Ev The set of edges incident to v 6.1.1

Ω(v) The set of edges connected to v by not

more than one edge

6.1.1

Robot states

V i
t , E i

t The set of vertices and edges known to

robot i at time t

6.1.1

Ai Set of vertices (partitioning) assigned

to robot i

6.1.1

A Set of partitionings over all robots 6.1.1

System parameters

M0 Number of blades 5.1.2

N0 Number of robots 5.1.2

τ v Time to traverse an edge and cover a

vertex

6.1.1

πe Probability to successfully traverse an

edge

6.2.2

μ Average number of vertices covered be-

fore failure ( 1
1−πe )

6.2.2

πf Probability of erroneously localization 6.5.2

Table 6.1: Summary of model parameters used in this chapter with the section in which

they have been introduced.
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6.2.1 Individual Robot Behavior

The robot explores the environment by moving from vertex to vertex using the reactive

behaviors described in Section 6.1.3 using a greedy algorithm that moves towards the

closest unexplored edge. Exploiting the information that every vertex but the walls has

4 neighbors and vertices are aligned in a grid in this case study, the robot creates a

topological map of the environment with up to 3 unexplored edges per vertex. After all

vertices have been visited, the robot starts over. For calculating the cost function C,

Dijkstra’s algorithm with an uniform edge weight of 1 is used. If there is more than one

x which minimizes C, one of them is chosen at random.

If a behavior fails or if there is a mismatch between the coverage map and the actual

robot position (e.g., a robot arrives at a wall where should be a blade), the coverage map

is erased and the robot starts over from scratch (empty coverage map).

6.2.2 Microscopic Model

A robot picks the closest vertex from the set of discovered, reachable and not visited

vertices DRV by solving

min
x∈DRV i

t

C(v, x) (6.9)

The information obtained while calculating C(v, x) can then be used for determining

the best next vertex v′ ∈ Ω(v) to visit on the path towards x.

The set of discovered, reachable and not visited vertices is defined by the intersection

of the set of vertices RV that are reachable from the current robot’s location with the

set of discovered, but not visited vertices DV :

DRV i
t = RV i

t ∩DV i
t (6.10)

Setting C(v, x) = ∞ if x �∈ RV i
t , (6.10) can be simplified to DRV i

t = DV i
t . The sets

DV and RV can be calculated given the robot state V i
t × E i

t as follows. The discovered

but not yet visited vertices DV , are the vertices where one and only one vertex of a

known edge is a visited vertex, i.e.

DV i
t = {v ∈ V | (v∗, v) ∈ E i

t ∧ v∗ ∈ V i
t ∧ v �∈ V i

t } (6.11)

where (v∗, v) is the edge connecting v∗ and v. The reachable nodes with respect to vertex

v are given by the following recurrence relation:

(RV i
t )j = {v∗ ∈ V | (v, v∗) ∈ E i

t ∧ v ∈ (RV i
t )j−1} (6.12)

with (RV i
t )1 = {v}. In words, (RV i

t )j contains all vertices that are reachable from v by

at most j edges.
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Modeling Navigation Error

For accounting for potential robot failure, a probability is associated with every edge

traversal. With the probability πe to successfully traverse an edge e, the probability to

reach and cover vertex x can be calculated by the following recurrence equation

πi,x(t+ τx) = πi,x(t)π
e (6.13)

where e is given by (v, x) with x being the next vertex according to (6.9).

If πe is constant for all edges, and Markovian, that is only dependent on the robot’s

current state, the probability to fail after traversing n edges (i.e. it failed on the nth edge)

follows a geometric distribution

Pgeo(n) = (1 − πe)(πe)n−1 (6.14)

and the average number of vertices before failure μ calculates3 to μ ≈ 1
1−πe .

For microscopic simulation, navigation error occurs with probability 1 − πe when

moving from vertex to vertex. Then a robot is placed at a random location and its

coverage map is erased.

6.2.3 Macroscopic Model

An exact macroscopic model would require master equations for every possible partition-

ing of the environment (see Section 4.3.1), which becomes untractable already for small

environments. A possible approximation assumes that every distribution of robots in

the environment is equally likely and independent of coverage progress. With the same

probability to fail for each robot, the following recurrence equation for the average num-

ber of uncovered vertices after κ trials can be written (Correll & Martinoli 2007b). One

trial is considered to be the coverage of μ distinct vertices that are part of a spanning

tree constructed by a robot using (6.9) before it does a mistake.

Mv(κ+ 1) = Mv(κ)

(
1 − μ

‖V‖

)N0

(6.15)

The duration of one trial is given by μτ v, the average time needed for covering μ vertices.

Equation (6.15) has a similar form as the model in Chapter 5, equation (5.7), where a

probabilistic model for random coverage of the environment is proposed: the likelihood

of covering a virgin vertex decreases exponentially with the number of already covered

vertices.

3This is an approximation as the graphs usually have finite size.
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When μ = ‖V‖, that is the whole graph is covered in one trial, (6.15) predicts exactly

the same time to completion as the model for ideal robots (‖V‖τ e). On the other hand,

for μ = 1, that is robots are unable to enforce the deliberative control policy, a robot is

moving essentially randomly.

6.2.4 Completeness

The policy from (6.9) will lead to complete coverage of the environment as the robot will

always move towards remaining unvisited vertices. Sensor and actuator noise, however,

leads to asymptotic coverage and convergence towards complete coverage follows from

(6.15) as Mv(k) is monotonically decreasing for μ
‖V‖ ≤ 1.

6.3 Collaborative Deliberative Coverage with Localization

If localization and communication are available, robots can share information about cov-

erage progress using a wireless link. Using these additional assumptions, the algorithm

presented in this section leads to complete coverage of the environment with improved

time to completion when compared with the non-collaborative algorithm from Section

6.2. As before, errors that are typically encountered in real miniature robotic systems are

explicitly taken into account. In addition to navigation error introduced by wheel-slip

(Section 6.2.2), the effect of erroneous localization information on the coverage perfor-

mance is studied experimentally and analytically. The presented distributed coverage

algorithm is robust towards localization errors and to unreliable communication. Also,

it allows for calculating lower bounds for the probability to complete.

The algorithm approximates the team objective (6.8) by constructing partitions for

each robot until the termination criterion (6.5) is reached. Due to communication among

the robots, the resulting partitioning is optimal in the sense of (6.4), but does not

necessarily minimize (6.8) as the resulting trajectories are potentially sub-optimal as

robots race for uncovered vertices instead of arbitrating them among each other.

6.3.1 Individual Robot Behavior

A robot constructs a topological map of the environment as in Section 6.2.1. Every time

a robot extends its map, the map is broadcasted via the radio. As new information due

to topological maps received from team-mates potentially render the current goal of a

robot obsolete, the goal is re-computed every time an edge is traversed. This policy also

leads to robustness against navigation errors as the next direction to move is always

calculated with respect to the current position. A robot shares his complete state, which

minimizes the potential loss of information due to communication faults.
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As the localization mechanism might lead to an erroneous belief about the robot’s

position, robots perform multiple tours in order to increase the likelihood for complete

coverage. The number of times a vertex has been visited is stored together with the

topological map and is also broadcasted via the radio. Instead of moving to the closest

unvisited vertex as in Section 6.2.1, the robot moves now towards the closest vertex with

the lowest tour index. The algorithm terminates after all vertices have been visited for

a certain number of times.

6.3.2 Microscopic Model

After robot j visits a vertex, it will update its state Gj
t according to (6.1) and then

broadcast it. When robot i receives the coverage map Gj
t from robot j, it will update

its own state by merging the two maps, that is

Gi
t+ε = Gi

t ∪G
j
t (6.16)

where ε is the necessary time for communication and information processing. A robot

needs to evaluate (6.9) each time new information is available as the current goal vertex

might already have been visited by another robot.

A tour index T i(v) is associated with each vertex v ∈ V. Upon visit of a vertex v,

T i(v) is increased by 1. Initially, ∀v ∈ V, T i(v) = 0.

The set of vertices a robot should visit next is then given by

DV i
t = {v ∈ V | (v∗, v) ∈ E i

t ∧ (6.17)

v∗ ∈ V i
t ∧ (v �∈ V i

t ∨ T i(v) = Tmin)}

which will direct a robot to visit a vertex with the lowest tour index, given by T i
min =

minv∈Vi
t
T i(v). At the same time (6.17) ensures that robots will complete one tour before

beginning the next one. For all v ∈ Vj
t , T j(v) is broadcasted along the information

mentioned in Section 6.3.1. Upon receipt, robot i will additionally update its state as

follows.

T i(v) = max(T j(v), T i(v)) (6.18)

With probability 1 − πe a navigation error occurs, and the robot is positioned on

Ω(v′), i.e. in the neighborhood of the vertex it wants to reach. With probability πf the

belief on the robot’s position is chosen randomly from V.
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6.3.3 Macroscopic Model

An exact macroscopic model would require master equations for every possible partition-

ing of the environment (see Section 4.3.1), which becomes untractable already for small

environments. Available localization which provides a global reference frame enables the

robots to recover from navigation errors. Thus, unlike in Section 6.2.3, the likelihood for

a certain distribution of the robots in the environment is a function of coverage progress

(robots tend to move towards unexplored regions), and (6.15) becomes a lower bound

for performance.

The number of tours required for achieving a certain confidence in coverage can be

calculated as follows. Given a probability πf for incorrect localization,

m ≥ � lnα

ln πf
� (6.19)

tours are required to achieve an average coverage level of 1 − α. The probability of

erroneously localizing itself in m independent trials is given by πf
m, which leads to the

inequality πf
m ≥ α for the probability α to fail on an individual cell.

Assuming πf to be constant over the whole environment, α can also be understood as

the fraction of cells where localization failed. For example, in order to achieve coverage

of 95% given a sensor that provides correct localization with a probability of πf = 70%

requires m = 3 tours. m is an upper bound because (1) our analysis does not take into

account the cells which are visited at the place of the cell the robot believes it visits, and

(2) we do not take into account that the robot will redundantly visit cells while on the

way to an unvisited cell.

6.3.4 Completeness

Upon availability of global localization, navigation error as described in Section 6.2.2

only lead to a delay in algorithmic execution but not to complete failure. In this case,

the algorithm described in Section 6.2.2 leads to complete coverage if at least one robot

does not fail.

Theorem 6.3.1. Complete Coverage for a single robot: Coverage is completed, when

minx∈DRV i
t
C(v, x) = ∅ (6.9), that is there are no discovered, unvisited vertices (DRV i

t =

∅) and all vertices are reachable (RV i
t = V ).

Proof. Using (6.10), DRV i
t is an empty set, when all discovered vertices have been visited

(DV i
t = ∅). Using (6.11) this is the case if there exist no edge that connects an unvisited

to a visited vertex. When there are no edges with unvisited vertices, RV i
t = V .
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Completeness for a multi-robot team follows directly from the proof for a single robot.

Completeness for noise in localization is asymptotic. As increasing the number of tours

m in (6.19), α steadily decreases, and thus the algorithm converges to complete coverage.

6.4 Market-Based Distributed Coverage

This section considers distributed coordination policy for covering an environment that

is known in advance. In addition, every robot needs an unique identification number.

Knowing the environment before-hand has the advantage that potentially optimal tra-

jectories for every robot can be calculated off-line.

A promising approach for finding a near-optimal partitioning are so called market-

based algorithms (Dias, Zlot, Kalra & Stentz 2006). Market-based algorithms have been

specifically used for multi-robot coverage by (Rekleitis et al. 2005) and exploration (Zlot

& Stentz 2006). Formulated as distributed coverage problem, trading goods correspond

to cells of a cellular decomposition of the environment, and prices correspond to the cost

(energy consumption, e.g.) for an individual robot or the benefit to a particular team

objective. The algorithm presented in this section bases on a market-based solution

approach known as Free Market introduced by Dias & Stentz (2000). Free Market

represents a market in which trade is determined by unregulated interchange, i.e. not

under the control of a centralized auctioning entity. This market-based approach has

been chosen for two reasons. First, as no centralized control over auction is needed,

it allows for a decentralized implementation on real robots. Second, Lagoudakis et al.

(2005) provides upper and lower bounds on the performance of this approach.

The algorithm approximates the team objective (6.8) by constructing an optimal

partitioning. Unlike the algorithms from Sections 6.2 and 6.3, the bidding process aims

explicitly at minimizing (6.8) by solving the TSP for every partitioning under auction.

Even for an optimal solution to the TSP, this approach cannot guarantee an optimal

solution, as the partitioning is constructed iteratively, i.e. one vertex after the other is

assigned to the robot with the smallest cost (as opposed to combinatorial auctions, see

Berhault et al. 2003).

6.4.1 Individual Robot Behavior

Initially, all tasks are un-allocated and robots are randomly walking in the environment.

As soon as a robot encounters a blade it reads its position and waits until every other

robot has reached a blade, which is considered its initial position, or a time-out occurs

(in case some robots fail in this initial phase). Alternatively, robots can be positioned

at a central location. Bidding is then conducted round-wise. Each robot calculates bids
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on all unallocated vertices and send its “best” bid, i.e. the bid which is most likely to

succeed, to the other robots.

Bids are based on locally available information, i.e. a robot’s partial allocated set of

vertices Ai and its position. The robot with the winning bid for a vertex gets this vertex

assigned. As there is no central auctioneer, bid selection is performed locally on each

robot and each robot i updates Ai and the set of un-allocated vertices. Thus, every robot

itself plays the role of the auctioneer and associates vertices with robots and only the

computation of bids is distributed among the robots. This approach has the advantages

that there is no central auctioneer that could potentially fail but also that every robot

maintains its own view on the availability of other robots and assigns their tasks to itself

in worst case (e.g. due to communication failure).

Bids are calculated as follows. With Ai the current partition assigned to robot i,

xi its current position, and v an unallocated vertex, robot i bids the total cost for its

current allocation including the unallocated vertex SP (Ai ∪ xi ∪ v).
As all bids are known to all robots, each robot can locally determine the winning

bid. In order to yield the same outcome for each robot, determination of the winning

bid needs to be fully deterministic. First the vertex which can be associated with the

lowest cost is determined. This vertex is allocated to the robot providing the lowest total

cost for this vertex. If two or more robots offer the same lowest total cost, the vertex is

allocated to the robot providing the lowest marginal cost, i.e. SP (Ai ∪ v) − SP (Ai). If

two or more robots offer the same lowest total cost and lowest marginal cost, the vertex

is allocated to the robot with the lowest identification number. Thus, at each round of

the auction one vertex will be assigned to a particular robot.

Bidding is terminated after all vertices have been allocated, i.e. after M0 rounds. An

example (optimal) partitioning for the environment of the turbine inspection case study

is shown in Figure 6.4, left. Coverage is terminated after every robot has completed all

tasks it was assigned to.

SP (Ai) is calculated using a near-optimal constructive heuristic for the TSP (see

(Amstutz 2007) for details on the implementation).

Robustness towards sensor and actuator noise

Due to sensor and actuator noise it is likely that a navigation error occurs. Also, the

non-deterministic time for navigating from vertex to vertex (see Figure 6.6) might lead

to sub-optimal execution times, e.g., when finished robots could take over vertices from

a robot that has been slowed down. A scenario showing recovery from a navigation error

is depicted in Figure 6.4, right. The algorithm described in Section 6.4 is thus extended

by the following additional rules (Amstutz 2007):
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Figure 6.4: Left: An optimal partitioning for four robots at random drop-off locations.

Right: Robot four failed traversing the first edge and trajectories are re-auctioned, lead-

ing to a (less optimal) task allocation for robot 2 and 4 (dashed lines).

- After every successful coverage, the robot broadcasts this information to the team

and calls an auction using the same scheme as for the initial partitioning. This

time, however, the auction is limited to the current set of uncovered vertices.

- Whenever a robot crossed an edge on the shortest path spanning Ai, it verifies

whether navigation was successful. If this is not the case, it calls an auction as

above.

If a robot does not take part in an auction, e.g., due to packet loss or robot failure,

it is not considered in the partitioning, which potentially leads to redundant coverage

but retains the completeness properties of the algorithm. Also, if an auction ends but

a robot did not receive any bids for some vertices, the robot adds those vertices to its

partition.

6.4.2 Microscopic Model

With Ai
t = {ai

1, . . . , a
i
m} the set of remaining vertices of robot i at time t and ai

0 its current

position, a robot calculates the shortest path that connects all remaining vertices by

π(ai∗
1 , . . . , a

i∗
m) = arg min

π(Ai
t∪ai

0)

n−1∑
j=0

C(ai, ai+1) (6.20)
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Thus π(ai∗
1 , . . . , a

i∗
m) corresponds to the sequence of vertices that are connected by the

shortest possible path with respect to a robots current location ai
0.

A robot moves along π(ai∗
1 , . . . , a

i∗
m) where the next vertex v′ is calculated by solving

C(ai∗
0 , a

i∗
1 . With probability 1− πe a navigation error occurs, and the robot is positioned

on Ω(v′), i.e. in the neighborhood of the vertex it wants to reach. With probability πf

the belief on the robot’s position is chosen randomly from V.

Ai
t ⊆ At corresponds to the solution of (6.8) using the market-based algorithm de-

scribed in Section 6.4.1. At is recalculated every time a robot reaches a vertex. By

this, potential robot failures such as navigation error, communication loss and complete

failure are accommodated.

6.4.3 Completeness

The algorithm is complete as long as at least one robot stays alive. As every auction

consists of M0 rounds and in each round exactly one robot is assigned a vertex, the

partitioning of the environment is complete. This holds also for auctions hold for partly

covered environments and with incomplete teams. Upon communication failure, the

environment will be covered redundantly.

6.5 Results

For experiments requiring communication, a Telos (Polastre et al. 2005) mote serves as

repeater and periodically repeats received messages at 10Hz. This allowed for signifi-

cantly reducing the on-time of the radio-module, which is only turned on when a robot

moves to a new vertex or finishes coverage of a vertex. For experiments with market-

based algorithms that require extensive computation on the individual node, and as local

bid-computation and selection is unfeasible using the limited computational capabilities

on the extended Alice platform, bidding and task-allocation was performed off-line on

an external computer based on the actual positions of the robots that are communicated

by radio. The base-station then performs re-planning upon availability of new informa-

tion (e.g., robot failure, coverage progress) and periodically broadcasts A to the robots,

which are endowed with a map of the environment.

6.5.1 Non-Collaborative Deliberate Coverage without Localization

We will first validate our assumption that robot failures are Markovian and calibrate

model parameters πe, μ and τ v. We then use these results to compare the prediction of

the deterministic model and the probabilistic model with results from Webots.
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Wheel-slip πe μ τ v[s]

0% 1 25 12

10% 0.79 4.77 38.5±10.3

50% 0.67 3.03 44±20.5

real 0.64 2.79 52±19.7

Table 6.2: Calibrated model parameters for different amounts of wheel-slip in realistic

simulation and real robots.

Calibration of Model Parameters

For validating our assumption that sensor and actuator noise leads to a time-independent

(Markovian) probability to violate the completeness properties of a deliberative coverage

algorithm when moving from blade to blade when no global localization mechanism is

available, we measure the number of blades a single robot can traverse without mismatch

between its actual location on the spanning tree and its belief occurring in Webots for

random drop-off locations and wheel-slip of 10% and 50% (6000 experiments each), as

well as for a real robot (50 experiments). From this results (Figure 6.5), we calculate

the probability πe of successfully traversing an edge using (6.14), the average time τ v

an edge traversal takes (including coverage of a vertex), and the average number μ of

covered vertices before the completeness properties of the algorithm are violated (Table

6.2). Results for τ v are shown in Figure 6.6. The distribution his skewed and contains

values up to 117s for 10% wheel-slip and 630s for 50% wheel-slip (median 38s and 41s,

respectively).

Experimental results

The times it takes to completely circumnavigate every one of 25 blades in the arena

of Figure 3.3 for 10 robots and wheel-slip of 10% and 50% (100 experiments per team

size and wheel-slip) as well as with a team of 10 robots are shown in Table 6.3 (10

experiments). Table 6.3 also shows the average number of vertices visited by a single

robot before complete coverage was achieved.

Model Prediction vs. Realistic Simulation

The average number of covered blades is measured over 100 experiments in Webots vs.

time. Results for teams of 1 and 10 robots (lower and upper curve, respectively) for

wheel-slip of 10% and 50% are shown in Figure 6.7, left, and right. These results are

compared with predictions from the probabilistic model (6.15) for parameters μ from
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Figure 6.5: The relative likelihood for successfully traversing a certain number of edges

for wheel-slip of 10% (left) and 50% (right) matches a geometric distribution (superim-

posed).
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Figure 6.6: Histogram of blade-to-blade navigation and coverage time τ v for 6000 reactive

blade-to-blade transitions with wheel-slip of 10% (left) and 50% (right).
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Wheel-slip
Avg. nb. of

vertices visited to

completion

Time to completion for 10

robots [s]

0% 25–250 36–300

10% 63.21 541±252

50% 78.58 701±342

real n.a. 788±375

Table 6.3: Redundancy and time to completion for different amounts of wheel-slip in

realistic simulation and real robots.

Table 6.2.

6.5.2 Collaborative Deliberative Coverage with Localization

Localization requires an additional parameter for modeling localization error in the

discrete-event simulation that is calibrated based on real-robot experiments. Using this

parameter as well as πe and τ v, DES and Webots simulations show good agreement

among each other and with real robot experiments. Finally the impact of limited range

communication and localization error are studied using the probabilistic model. The

scaling behavior with respect to the environmental size and the relative improvement by

communication vs. non-collaboration are discussed in (Rutishauser et al. 2007).

Calibration of Model Parameters

For testing the visual localization algorithm (Section 3.1.3) the camera module was

manually placed in front of a blade and 100 pictures per code (25 codes) were taken.

Measurements lead to erroneous localization in pf = 5.03% of the cases (see Rutishauser

2007). Although misalignment of the camera with respect to the blade was simulated

manually, the measured pf can be considered as lower bound for the performance in the

real setup where changing lighting conditions or interrupt by other robots will lead to

even lower detection ratios. The effective pf is also dependent on the blade geometry as

the identification cannot be recorded when the blade is approached from its tip. Simple

geometric considerations (Rutishauser 2007) lead to an effective pf = 33%.

Experimental Results

Realistic simulation from Webots for 1 to 10 robots with and without collaboration,

i.e. with and without global communication, are compared to results obtained from
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Figure 6.7: Average ratio of covered blades for teams of 1 and 10 robots (coverage

progress with 10 robots is faster) and wheel-slip of 10% (left) and 50% (right). Predic-

tion of the probabilistic model (dashed) is superimposed. Error bars depict standard

deviation.

the discrete-event simulation (DES) by the median time to completion (Figure 6.8)

and sampling τv from Figure 6.6, left. We use the non-parametric Wilcoxon rank-sum

test at 95% to determine if the qualitative match in medians between the Webots and

Matlab data for different number of robots can be statistically verified. In other words,

the probability that data from realistic simulation and discrete-event simulation has a

different distribution is less than 5%. Using communication, in nine out of the ten cases

we can establish that match. When not using communication, almost half of the cases

do match, while still providing close qualitative agreement.

Modeling prediction from Webots and DES are also compared to experiments con-

ducted with 5 and 10 real robots in Figure 6.9 (left bars).

Collaborative vs. Non-Collaborative Coverage

As global communication is a strong assumption that can not always be guaranteed, four

representative communication ranges are evaluated using discrete event simulation: no

communication (range 0), robots communicate only when on the same vertex v, robots

communicate only with robots in their neighborhood Γ(v), and global communication, i.e.

over V. Time to completion for a 10x10 square lattice are depicted in Figure 6.10. There

is already considerable improvement in performance when communication is limited to
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Figure 6.8: Realistic simulation (∗) and prediction of the discrete-event simulation (·) for

1 to 10 robots in the 5x5 environment and 10% wheel-slip for global (—) and no commu-

nication (· · · ). Both model abstraction levels provide good qualitative and quantitative

agreement. 100 replications for both Webots an DES.
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simulation (�) for 50% wheel-slip and pf = 33%. 100, 100, and 9 replications for Webots,

DES, and real robots respectively.
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Figure 6.10: Influence of the communication range for 1-10 robots in a 5x5 grid without

noise for the collaborative algorithm with localization: no communication (· · · ), same

vertex (– –), neighborhood (–·–), and global (—). Performance is significantly improved

as soon as communication is available.

robots being on the same or neighboring vertices.

Imperfect Localization

Imperfect localization was tested on the discrete event simulator for the 5x5 square

lattice. On every vertex, a robot was provided with the position of a random vertex

with probability πf . Notice that error in localization not only leads to sub-optimal path

planning but also to wrong information shared with other robots. Results comparing

no-communication with global communication for different πf are shown in Fig 6.11.

One sees that when πf increases, the benefits of using communication get smaller. Up

to a certain number, which seems to be a function of the environment size, using more

robots which communicate obviously improves the results.

In order to validate the upper bound for the number of required tours coverage

progress is measured after every robot performed M = 2 tours (for πf = 10% and

πf = 20%), to M = 3 tours for πf = 30% and to M = 4 tours for πf = 40% error; the

number of tours were calculated using α = 0.05. In all simulations, the average coverage

is above 99% (α ≤ 0.01).
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Figure 6.11: Improvement of global communication vs. no communication (100%) for

1 to 10 robots and different level of localization error pf = 0% (—), pf = 10% (– –

), and pf = 40% (–·–) in a 5x5 environment. Communication is even beneficial when

localization is noisy and becomes increasingly beneficial with larger team sizes.

6.5.3 Market-Based Distributed Coverage

Results for 9 experiments with 5 real Alice robots are shown in Figure 6.9 (right bars).

Prediction of the DES simulator and Webots for wheel-slip of 10% and 50% provide close

match and performance gracefully decays with increasing amount of slip noise (Figure

6.12), 100 experiments per team-size/noise level in a 5x5 grid.

DES and Webots are also used to study the impact of the communication range.

Figure 6.13 shows results for global communication and no communication, i.e. zero range

communication. Performance gracefully decays for intermediate levels (Amstutz 2007).

6.6 Discussion

6.6.1 Sensor and Actuator Noise

Varying amounts of wheel-slip in realistic simulation leads to a constant probability

for violating the completeness properties of the algorithm without localization. The

variance of the performance increases with the wheel-slip (compare Figure 6.7 left and

right). This can be explained by robots behaving less faithfully to their deliberative

control scheme with increasing amounts of noise, and thus behaving less predictable. As

soon as (perfect) localization is available, robots can recover from navigation error and
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Figure 6.12: Prediction of the DES (– –) simulator and Webots (–·–) for wheel-slip of

10% (·) and 50% (∗) using a market-based coordination approach with re-auctioning

provide close match and performance gracefully decays with increasing amount of slip

noise.
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Figure 6.13: Prediction of the DES (– –) simulator and Webots (–·–) for global commu-

nication (·) and no communication (∗) using a market-based coordination approach with
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re-plan based on the location at which they arrived.

The effect os sensor and actuator noise could be well captured using the distribution

of the time to inspect a blade and the probability to fail during navigation in the DES

simulator when compared with Webots (Figures 6.8, 6.12, and 6.13) and real robot

experiments (Figure 6.9).

The probability to fail is the same for all edges and all robots and the reliability of

a robot is summarized by the parameters πe and τ v. In reality, some edges are more

difficult to navigate than others, and navigation skills of robots might differ as well. In

the turbine inspection case study this is imposed by the geometry of the blades, which

require different behaviors for traversing an edge. In other scenarios and general cellular

decompositions, the probability of successful edge traversal might be given by the terrain,

robot capabilities, lighting conditions, or geometric constraints of the environment to

name a few. Then, optimal coverage paths are not necessarily the shortest ones but

those with the highest probability to lead to complete coverage.

6.6.2 Communication

Collaborative algorithms show improvement in time to completion even when the com-

munication range is limited (Figure 6.10). As robots keep on meeting, information prop-

agates slowly to all robots. This is an important finding (see also Jäger & Nebel 2002),

as in most environments global communication cannot be guaranteed, either due to

limitations on power consumption or due to environmental constraints that lead to com-

munication loss; incidentally this is also the case for the miniature robotic platform and

the case study being the motivation for the algorithms developed in this dissertation.

Using communication is still beneficial even with a large localization error, i.e. exchanged

information is wrong, albeit its benefit gets relatively smaller (Figure 6.11).

For large environments sharing the whole map obviously does not scale and robots

would need to communicate only a subset of information every time progress is made.

Here finding the right mix between communicating new and redundant information might

be another interesting research problem.

6.7 Conclusion

This chapter presented a suite of increasingly complex deliberative algorithms for approx-

imating an optimal partitioning of the environment, i.e. minimize time to completion.

First, a non-collaborative, greedy algorithm is developed in which each robot follows

provably complete trajectories by always moving towards the closest uncovered vertex

on a local map. This algorithm does not require communication, and localization is
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achieved by node counting. The performance of this algorithm gracefully decays to the

performance of a reactive version upon sensor and actuator noise (e.g., wheel-slip).

The performance can be drastically improved with communication and localization.

In an implicit collaboration scheme, robots broadcast their coverage progress to other

robots while using a global coordinate system as frame of reference. The experimental

results from a realistic simulation and a discrete-event simulation show that the algo-

rithms are robust with respect to unreliable communication and positional noise, and

they gracefully decay to the performances of the non-collaborative and reactive versions

of the algorithm, respectively.

Using explicit collaboration, a near-optimal partitioning of the environment is cal-

culated using a market-based algorithm. For increasing robustness, the partitioning is

continuously re-auctioned upon coverage progress. Upon loss of communication, this

algorithm gracefully decays to the performance of a near-optimal single robot algorithm,

and to that of a reactive approach on positional error.

The performance of all three algorithms is captured by probabilistic models that

are carefully calibrated using the sensor and actuator noise characteristics measured

from the real robotic platform. Due to the small state space, the performance of the

non-collaborative algorithm without localization could be captured well by an analytical

expression, whereas algorithms using communication and localization are modeled by

sampling using discrete event simulation a reasonable amount (100 experiments per

configuration in this chapter) of possible trajectories in the state space .

Chapter Summary

� Coverage performance can be significantly improved by sharing task progress among

the robots, which allows the robots to minimize redundant coverage. This approach

requires localization and radio communication.

� If the environment and robot positions are known beforehand, an optimal parti-

tioning of the environment can be calculated. This task is NP-hard and involves a

solution of the Shortest-Path-Problem for all possible permutations. Near-optimal

approximation can be achieved by a market-based algorithm, and continuous re-

planning increases robustness against sensor and actuator noise.

� Upon communication failure or with communication subject to limited range, the

coverage performance gradually decreases towards a non-collaborative version of

the algorithm and remains provably complete if at least one robot does not fail.

Upon an error of the localization mechanism, all algorithms gradually decay to a
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randomized algorithm. In this case, the environment needs to be covered redun-

dantly (patrolling), and upper bounds for the minimal number of tours can be

calculated based on the expected error in localization.

� The performance of the presented algorithms is captured well by sampling possible

trajectories in the state space of the system by using probabilities and delays

measured on a real robot or realistic simulation. These kind of models can then

be used for exploring different design parameters of the system.
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CHAPTER 7

Comparing Coordination Schemes for

Distributed Boundary Coverage

Designing coordination algorithms for distributed boundary coverage can be understood

as a constraint optimization problem subject to size constraints, energy limitations,

available sensors, and sensor and actuator noise present in the system. The system

performance is then a trade-off between algorithmic requirements, such as completeness

or a specific time to completion, and the available resources. Although this applies well

to any engineering problem, it is most pertinent in miniature multi-robot systems, where

all of the above constraints might be exceeded to their limits.

The preceding chapters focused on a series of reactive (Chapter 5) and deliberative

(Chapter 6) algorithms. This chapter provides a quantitative (Section 7.1) and quali-

tative comparison of the different algorithms and analysis tools used. The algorithms

are classified into hardware requirements and according to the benefits they provide to

the user (Section 7.2). Although partly deliberative, none of the control approaches con-

sidered in this thesis are deterministic. Therefore, the performance analysis is achieved

using probabilistic models, and Section 7.3 outlines similarities and differences in the

analysis tools. Furthermore, it extracts the general properties of the models used that

might well be useful for modeling other multi-robot systems.
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Figure 7.1: Median performance for 5 robots using reactive coverage without col-

laboration (RC), reactive coverage using mobile markers (RCMM), deliberative non-

collaborative coverage without localization (DCWL), deliberative collaborative coverage

with localization (DCL), and market-based coverage with re-auctioning (MCR) for 32,

34, 100, 9, 9 replications, respectively. Real robot experiments (♦) and realistic simula-

tion (∗).

7.1 Quantitative Performance Comparison

Experimental results for 5 and 10 robots are depicted in Figures 7.1 and 7.2. When the

experimental data for real robots is not available, results from Webots simulation are

shown instead.

For the teams of 5 and 10 robots, reactive algorithms with and without mobile

marker-based collaboration and the market-based algorithm achieve good absolute time-

to-completion. The market-based algorithm also shows the absolute best performance

for the 5 robot teams. The results of the reactive algorithms with and without collab-

oration are comparable, as the effects of local communication become only visible for

higher densities of robots (compare also Figure 5.15). Deliberative coverage without

localization showed the worst performance, due to the time-consuming navigation be-

haviors required by the deliberative algorithm, together with poor coordination due to

the lack of localization and communication.

7.1.1 Scalability

This section discusses the scalability of the algorithms with respect to adding robots,

removing robots, and to the environment size. All of the described algorithms allow

for the addition and removal of robots at run-time. The performances of all algorithms
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Figure 7.2: Median performance for 10 robots using reactive coverage without col-

laboration (RC), reactive coverage using mobile markers (RCMM), Deliberative Non-

Collaborative Coverage without Localization (DCWL), Deliberative Collaborative Cov-

erage with Localization (DCL), and Market based Coverage with Re-Auctioning (MCR)

for 32, 34, 100, 9, 9 replications, respectively. Real robot experiments (♦) and realistic

simulation (∗).

benefit from additional team-members, whereas reactive approaches benefit more from

a large number of robots. The performances of all algorithms suffer from the removal of

team-members, whereas the market-based approaches face an increased computational

load as local bid computation (involving solving the TSP) becomes exponentially harder

when the number of vertices per robot increases.

The effect of increasing the size of the environment for a fixed team size is investigated

using microscopic models. Figure 7.3, left, shows median time-to-completion for 10

robots in the environments of 5x5, 16x16, and 50x50 cells (25, 256, and 2500 total area,

respectively) and the 95% confidence interval (50 experiments each) for non-collaborative

reactive coverage and mobile marker-based coverage obtained by synchronous, agent-

based simulation. Figure 7.3, right, shows median time-to-completion for 10 robots in

the same environments, but using deliberative collaborative coverage with localization.

The results show a tendency of a super-linear performance for both the reactive

and the deliberative algorithm (time to completion is increased by around a factor of

5 whereas the area is increased by a factor of 10). This effect might have its roots in

reduced redundant coverage for lower densities of robots. One can also see that the purely

local communication in the reactive algorithms looses its effect in larger environments

as the probability that two robots meet decreases.

The effect of increasing the number of robots has been investigated for deliberative
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Figure 7.3: Median performance for 10 robots in environments spanning two orders of

magnitude (25, 256, and 2500 cells). Left : Results for reactive mobile marker-based

coverage (—) and non-collaborative reactive coverage (– –). Right : Results for delib-

erative collaborative coverage with localization (10% wheel-slip). Error bars depict the

95% confidence interval. 50 experiments using synchronous, agent-based simulation per

configuration.

coverage with localization. Figure 7.4 shows the median time-to-completion for teams

of 1 to 10 robots in the environments of 10x10, 16x16 and 25x25 cells. Increasing the

number of robots increases the performance, whether the robots collaborate or not. This

effect is maintained over two orders of magnitude of the environment. Figure 7.4 also

shows that adding just a few robots already drastically improves performance.

All the algorithm’s computational requirements scale well with the size of the en-

vironment, except for the market-based approaches. For large environments and small

teams, the computation of bids in market-based approaches might become unfeasible

due to the algorithmic complexity of bid computation. A remedy for this problem is to

use a more coarse partitioning of the environment at cost of optimality.

7.1.2 Robustness

The amount of noise present in the Alice platform has been sufficient for creating es-

sentially random patterns on collective level (except sweeping along a blade’s contour

with 50% chance) using the reactive algorithms presented in this dissertation. Thus, no

recovery policies, except closed-loop reactive behaviors, are required. All the delibera-
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Figure 7.4: Median performance for 1–10 robots in environments spanning two orders of

magnitude (25, 256 and 2500 cells). Results compare performance of deliberative collab-

orative coverage with localization for global communication (—) and no communication

(· · · ) for environments of 5x5 (–.–), 16x16 (–∗–) (left), and 16x16 (–∗–) and 50x50 (–♦–)

(right). 50 experiments using DES simulation per configuration.
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tive approaches instead require some sort of recovery mechanism for dealing with robot

failure. The deliberative algorithm without localization starts over from scratch after

failure. The deliberative algorithm for coverage of unknown environments with localiza-

tion plans on-line and thus automatically takes into account any updates to the robot’s

and the environmental state. Finally, the market-based algorithm requires constant

re-auctioning of the partitioning for maintaining robustness. This tendency indicates

a trade-off between algorithmic complexity and optimal performance as a function of

sensor and actuator noise: additional computational effort for achieving “better” co-

ordination might be counter-effected by necessary re-planning due to robot failure and

uncertainty of the environment.

Results from Chapter 6 show that for unreliable or no communication the deliberative

collaborative algorithms gracefully decay (see Figure 6.10 and Figure 6.13, respectively).

Under absence of communication all deliberative algorithms will construct a minimal

spanning tree of the environment by design, and will thus show comparable1 behavior

and performance as the non-collaborative deliberative algorithm presented in Section

6.2. Under the influence of sensor and actuator noise, all deliberative algorithms then

gracefully decay to that of a randomized algorithm.

7.2 Comparing Performance as a Function of Requirements

and Benefits

Algorithms can be compared as a function of the requirements on the individual robotic

platform and the system, as well as a function of the benefits provided to the user.

Requirements and benefits specific to the inspection case study are summarized in Tables

7.1 and 7.2, respectively. Requirements on the individual robotic platform usually also

pose requirements on the system as a whole. So might it be unfeasible to mark the interior

of the turbine or to provide some other signal for localization, or communication with the

outside is impossible due to shielding. Some benefits are a by-product of the requirements

posed by the algorithm. For instance, localization allows for mapping collected sensory

information to a specific location. It is also for such benefits of a particular solution

that a large number of simple robots cannot substitute a smaller team of more complex

robots only because it provides the same performance to a particular metric.

1Whereas the algorithms from Sections 6.2 and 6.3 use a greedy policy comparable to a depth-first-
search on the graph, the market-based algorithm calculates an optimal tour over the graph by solving
the TSP.
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Reactive

Non-collaborative coverage - - - - -

Stationary marker-based

coverage

- - - -

Mobile marker-based cover-

age

- - - -

Deliberative

Non-collaborative coverage

without localization

- - - - -

Collaborative coverage with

localization

- - -

Market-based coverage with

re-auctioning

-

Table 7.1: Requirements for the reactive and deliberative algorithms for distributed

coverage considered in this thesis. Requirements range from very limited sensors and

actuators to long-range communication, availability of a map of the environment and

global localization
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Stationary marker-based
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- - +

Mobile marker-based cover-

age

- - +

Deliberative

Non-collaborative coverage

without Localization

- - +

Collaborative coverage with

Localization

+ + -

Market-based coverage with

re-auctioning

+ + -

Table 7.2: Benefits of the reactive and deliberative algorithms. Some benefits come for

“free” with the chosen coordination algorithm, and are difficult to achieve without the

requirements of this algorithm. For instance, progress monitoring and mapping of flaws

are resulting from localization and energy efficiency results from individual simplicity

required by the random algorithms.
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7.3 Modeling Robotic Swarms

The algorithms discussed in Chapter 5 are essentially memory-less. This property signif-

icantly reduces the state space of the robotic system: the current robot state is given at

any time by the actual reactive control scheme uses (e.g., random walk, wall-following)

and by the value of timers (e.g., time-out for acting as a stationary marker). Section

4.2.1 shows how a probabilistic model for such a system can be formulated and how

delay states can be reduced to a single state. Similarly, the state of the environment

(whether an element is covered or not), can be summarized by a single difference equa-

tion, assuming that the identity of the covered elements does not matter.

Depending on the assumptions on the algorithm, it is possible to reduce also con-

trollers with memory to a tractable system. For instance, consider the following scenario.

Robots follow the individual, reactive behavior described in Section 5.1.1, but store the id

of every covered element (acquired by the camera). Upon encountering an element with

a known id, a robot will immediately abandon coverage. Assuming that the abandon-

ment behavior takes much less time than coverage, this policy might save considerable

inspection time. Although the state space is large if the coverage state of every element

in the environment would need to be maintained, the likelihood of encountering a covered

element is simply given by the ratio of covered vs. un-covered elements, and can thus be

captured by a single difference equation. Notice, that this would not be the case if the

robot would not be random walking but deliberative move towards uncovered areas.

Indeed, a deliberative policy for distributed coverage, e.g. that of Section 6.2, re-

quires a robot to keep track of its (relative) position with respect to its initial position

and of the coverage progress. Due to the large number of possible robot and environ-

mental states, a probabilistic model capturing the population dynamics is unsuitable.

Instead, the environment can be modeled as a graph, which allows to formally describe

the robot controller (e.g., as solution to a shortest path problem) and to gain analyt-

ical insight (e.g., length of a minimal Hamiltonian cycle). However, if the underlying

reactive control schemes that execute trajectories calculated according to a deliberate

control policy are unreliable (as it is in particular the case for miniature robots, and in

some extent also for large robotic platforms), even deliberative robot controllers exhibit

essentially probabilistic performance. This insight has already been formulated by Gat

(1995). Gat argues that distance is not as correlated to time as usually assumed and

that performance of a robot system is exponential distributed as opposed to following a

normal distribution. These observations are explained by the non-determinism of reac-

tive behavior that makes the time a robot travels for a particular distance unpredictable,

and might lead to execution times that are significantly longer than the average, which

explains the long-tailed distribution in robot performance.
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In order for modeling this phenomenon, we propose (Correll & Martinoli 2007b) to

measure the reliability of individual robot behaviors and the time they require for exe-

cution. By sampling from the distribution of these measurements, the robot controller,

e.g. defined by (6.9), can then be simulated using a discrete event simulator (Rutishauser

et al. 2007).

When recovery from a failed reactive behavior is impossible, the system can be mod-

eled as a series of successful deliberative sequences that each contribute to a particular

metric. In the coverage case study this is the case when either localization is not avail-

able (Section 6.2) or when localization is noisy (Section 6.3.3). For instance, considering

the three algorithms from Sections 5.1, 6.2, and 6.3 (reactive coverage without collab-

oration, non-collaborative deliberative coverage without localization, and collaborative

deliberative coverage with localization, respectively):

The algorithm described in Section 5.1 eventually achieves complete coverage by

repeating a simple deliberative behavior, which is circumnavigating a blade until a time-

out expires. The associated model, which achieves close agreement with experimental

data is given by (5.7):

Mv(k + 1) = Mv(k) (1 − peNs(k)) (7.1)

where peNs(k) are the average number of elements being covered during time interval k.

In contrast, the algorithm described in Section 6.2 achieves coverage by repeatedly

starting over after a deliberative policy failed due to sensor and actuator noise. We then

showed experimentally that coverage progress is well described by (6.15)

Mv(κ + 1) = Mv(κ)

(
1 − μ

‖V‖

)N0

(7.2)

where μ
‖V‖ is the average fraction of the environment a robot covers before failure and

N0 are the number of robots. The length of an iteration κ is given by the average time

before failure (κ = μτv).

Finally, when considering imperfect localization (Section 6.3), complete coverage can-

not be guaranteed, and the fraction of the environment being covered is given by the

lower bound 1− pf , where pf corresponds to the probability of localization failure. Cov-

erage progress is then well modeled by the lower bound

Mv(K + 1) = Mv(K)(1 − pf) (7.3)

The length of an iteration K is given by the time needed for the team to cover the

environment at least once, i.e. perform one tour.

Thus, in (7.1)–(7.3) coverage progress is described by the same asymptotic dynamics

although progressing at different speeds.
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7.4 Conclusion

Designing an inspection system based on a robotic swarm consists of solving various

trade-offs. The most pertinent being the option to replace a small team of highly ca-

pable robots by a larger team of simpler robots that provide the same or a similar

performance. However, while this can be necessary as the simpler robots might offer

longer autonomy due to less energy consumption, more capable robots often provide

benefits that are difficult to obtain otherwise, e.g., localization, which is difficult to re-

construct off-line. For the boundary coverage case study, reactive solutions seem to offer

a better performance with respect to time to completion, but there are no means for

mapping of flaws and monitoring progress. Adding localization and communication to

the robots yielded these benefits and enabled more deliberative algorithms. Comparing

two different algorithms with drastically different theoretical performances showed that

the performance is only marginally increased with near-optimal planning although this

requires extensive computation and an a priori knowledge of the environment. This

allows for deriving the following rules of thumb: more reasoning leads to a better perfor-

mance. However, depending on the level of sensor and actuator noise, the improvement

might be marginal and might not be worth the additionally required effort (additional

hardware, computation, or communication). The probabilistic models allow for explor-

ing these different scenarios and help in the design process by answering questions such

as “What is the upper bound on communication loss that the system has to provide so

that algorithm X provides an advantage over algorithm Y?”.

Despite the use of deterministic control schemes, the performance of a real-robot is

essentially probabilistic and completion asymptotic. This is due to the fact that reactive

behaviors are based on potentially noisy sensor information and thus have unpredictable

completion times. In systems where a deliberative policy can recover due to some sort

of global reference, an accurate prediction of the system performance can be achieved by

sampling from the distribution of execution time and the completion probability for each

reactive behavior used by the higher-level deterministic algorithm. In systems where a de-

liberative policy cannot recover once a reactive behavior fails (i.e. task progress achieved

so far cannot be reconstructed). An accurate prediction of the system performance can

be achieved by modeling the system as a sequence of independent trials and by sam-

pling from the distribution of the task contribution that a robot is expected to provide

before failure. This concept is illustrated by three algorithms within increasing complex

deliberative algorithms. The uncertainty due to a reactive policy (7.1), wheel-slip (7.2),

or erroneous localization (7.3), leads in each case to a equation of similar form, which

shows the same asymptotic behavior with a different expected time for convergence. We

conjecture that any kind of uncertainty will reduce any coverage policy, collaborative or
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non-collaborative, reactive or deterministic, to probabilistic completeness.

Chapter Summary

� Algorithms for a multi-robot inspection task need to be compared not only based

on time-to-completion, but also on the requirements on the individual robotic

platform and on the other benefits for the user that a certain platform provides.

� Deliberative approaches are preferable over reactive approaches as they generally

provide a higher degree of repeatability. The required accuracy in the navigation

requirements might lead to an effectively faster completion of a reactive approach,

however.

� The various design choices appearing in a multi-robot system can be addressed by

modeling the system at multiple levels of abstraction, but they require detailed

information on the system’s sensor and actuator noise characteristics.



CHAPTER 8

Conclusion

This dissertation compares a series of coordination algorithms for a distributed bound-

ary coverage case study. The algorithms range from reactive to deliberative solutions

and they incrementally raise the requirements on the robotic platform. The coverage

performance drastically benefits from reasoning, collaboration, and available a priori

information. These benefits become smaller, however, with the increasing amount of

sensor and actuator noise, which is inevitable even on larger robotic platforms. Thus,

all algorithms are designed such that their performance will gracefully decay to that of

a reactive algorithm with increasing sensor and actuator noise or the failure of some

robots. Choosing a particular family of algorithms is then not only a function of the

available robot capabilities and a priori information, but also a function of the reliability

of the robotic platform. Although providing by far the best theoretical performance in

terms of time to completion, a market-based approach comes with considerable cost to

communication and computation. Given the strong sensor and actuator noise of the

Alice platform, similar performance is achieved with a reactive solution, which requires

a slightly larger number of potentially less expensive robots, but does not allow for

proprioceptive monitoring of task progress.

Both reactive and deliberative algorithms are modeled by probabilistic models, which

carefully model sensor and actuator noise that are at the root of non-determinism in a

(multi-)robotic system. In a multi-robot system, it is likely that the overall system

behavior comes close to the “average” behavior predicted by a probabilistic model for
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a single agent. By providing concepts for modeling swarms of deliberative agents, this

thesis extends upon previous work on the probabilistic modeling of multi-robot systems,

which consist mainly on fully reactive systems. Deliberation and memory lead to an

explosion of the state space of the system, which in turn lead to an untractable number

of master equations that maintain a probability distribution over all possible system

states. In this case, the system can be analyzed by simulating the distributed system

and averaging over a reasonable number of sample trajectories through state space.

The simulation is implemented by carefully modeling the (deterministic) controller and

by introducing randomized transitions that correspond to carefully calibrated random

elements of the individual robotic platform or the environment. This can be achieved

for instance by a discrete event system simulator.

In order to field multi-robot inspection systems, however, a series of technological

and social hurdles still need to be overcome. The trend in industry is to enhance the

manual systems currently in use instead of substituting them. The level of autonomy

might then increase in small steps upon the acceptance of semi-autonomous solutions.

This would also require rethinking concepts such as safety and liveness from a proba-

bilistic perspective, as robotic systems embedded in the real world are — unlike software

agents — intrinsically probabilistic. From a technological perspective, more research

is necessary in sensor fusion, human-swarm interaction, and the synthesis of individual

robot controllers based on the input of a human or an expert system.

On the spectrum from reactive coordination to centralized near-optimal coordination,

small-scale multi-robot systems fielded in the near future will benefit most likely from

one or more centralized components that perform near-optimal planning, rather than

being fully distributed. Indeed, even for miniature robotic platforms of a cubic inch as

considered in this thesis, such approaches are feasible and yield the best performances

when compared with other, less coordinated approaches. Whenever the computational

capabilities of the individual platform and the team objective allow, centralized control

can also be distributed among the robot team (as illustrated with the market-based

algorithm considered in this thesis) and decrease the potential vulnerability of solutions

that rely on centralized entities.

On the contrary, reactive approaches — which have been shown to become analyti-

cally tractable using probabilistic models — have the potential for integration on even

smaller platforms on the nano-meter scale and they provide better scalability with re-

spect to the number of agents as no central control is required. However, the size of the

drive train and battery are major bottlenecks when down-scaling robotic systems, rather

than the implementation of small-scale computation and communication devices.
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nique Fédérale Lausanne.

Andersson, M. & Sandholm, T. (2000), Contract type sequencing for reallocative negoti-

ation, in ‘Proc. of the The 20th Int. Conference on Distributed Computing Systems

( ICDCS 2000)’, Washington, DC, USA, pp. 154–161.

Arkin, R. (2000), Behavior-Based Robotics, 2nd edn, The MIT press, Cambridge, MA,

USA.

Asmussen, S. (1987), Applied Probability and Queues, Wiley, New York.

Balch, T. (1998), Behavioral Diversity in Learning Robot Teams, PhD thesis, Georgia

Institute of Technology, Atlanta, Georgia, USA.

Balluchi, A., Benvenuti, L., Engell, S., Geyer, T., Johansson, K. H., Lamnabhi-

Lagarrigue, F., Lygeros, J., Morari, M., Papafotiou, G., Sangiovanni-Vincentelli,



134 BIBLIOGRAPHY

A. L., Santucci, F. & Stursberg, O. (2005), ‘Hybrid control of networked embedded

systems’, European Journal of Control 11, 1–31 (478–508).

Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P. &

Kleywegt, A. (2003), Robot exploration with combinatorial auctions, in ‘IEEE/RSJ

Int. Conf. on Intelligent Robots and Systems (IROS)’.

Berman, S., Halasz, A., Kumar, V. & Pratt, S. (2006), Algorithms for the analysis

and synthesis of a bio-inspired swarm robotic system, in ‘Proc. of the SAB 2006

Workshop on Swarm Robotics’, Rome, Italy.

Bonabeau, E., Dorigo, M. & Theraulaz, G. (1999), Swarm Intelligence: From Natural

to Artificial Systems, SFI Studies in the Science of Complexity, Oxford University

Press, New York, NY, USA.

Braitenberg, V. (1986), Vehicles: Experiments in Synthetic Psychology, The MIT Press.

Bronée, S. (2005), Collaborative, GPS-free techniques for localization in miniature
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