334 research outputs found

    Discriminator varieties and symbolic computation

    Get PDF
    AbstractWe look at two aspects of discriminator varieties which could be of considerable interest in symbolic computation:1.discriminator varieties are unitary (i.e., there is always a most general unifier of two unifiable terms), and2.every mathematical problem can be routinely cast in the form†p1 ≈ q1, …, pk ≈ qk implies the equation x ≈ y.Item (l) offers possibilities for implementations in computational logic, and (2) shows that Birkhoff's five rules of inference for equational logic are all one needs to prove theorems in mathematics

    Unifiability and Structural Completeness in Relation Algebras and in Products of Modal Logic S5

    Get PDF
    Unifiability of terms (and formulas) and structural completeness in the variety of relation algebras RA and in the products of modal logic S5 is investigated. Nonunifiable terms (formulas) which are satisfiable in varieties (in logics) are exhibited. Consequently, RA and products of S5 as well as representable diagonal-free n-dimensional cylindric algebras, RDfn, are almost structurally complete but not structurally complete. In case of S5ⁿ a basis for admissible rules and the form of all passive rules are provided

    Almost structural completeness; an algebraic approach

    Full text link
    A deductive system is structurally complete if its admissible inference rules are derivable. For several important systems, like modal logic S5, failure of structural completeness is caused only by the underivability of passive rules, i.e. rules that can not be applied to theorems of the system. Neglecting passive rules leads to the notion of almost structural completeness, that means, derivablity of admissible non-passive rules. Almost structural completeness for quasivarieties and varieties of general algebras is investigated here by purely algebraic means. The results apply to all algebraizable deductive systems. Firstly, various characterizations of almost structurally complete quasivarieties are presented. Two of them are general: expressed with finitely presented algebras, and with subdirectly irreducible algebras. One is restricted to quasivarieties with finite model property and equationally definable principal relative congruences, where the condition is verifiable on finite subdirectly irreducible algebras. Secondly, examples of almost structurally complete varieties are provided Particular emphasis is put on varieties of closure algebras, that are known to constitute adequate semantics for normal extensions of S4 modal logic. A certain infinite family of such almost structurally complete, but not structurally complete, varieties is constructed. Every variety from this family has a finitely presented unifiable algebra which does not embed into any free algebra for this variety. Hence unification in it is not unitary. This shows that almost structural completeness is strictly weaker than projective unification for varieties of closure algebras

    Discriminator logics (Research announcement)

    Get PDF
    A discriminator logic is the 1-assertional logic of a discriminator variety V having two constant terms 0 and 1 such that V ⊨ 0 1 iff every member of V is trivial. Examples of such logics abound in the literature. The main result of this research announcement asserts that a certain non-Fregean deductive system SBPC, which closely resembles the classical propositional calculus, is canonical for the class of discriminator logics in the sense that any discriminator logic S can be presented (up to definitional equivalence) as an axiomatic extension of SBPC by a set of extensional logical connectives taken from the language of S. The results outlined in this research announcement are extended to several generalisations of the class of discriminator logics in the main work

    Factor Varieties and Symbolic Computation

    Get PDF
    We propose an algebraization of classical and non-classical logics, based on factor varieties and decomposition operators. In particular, we provide a new method for determining whether a propositional formula is a tautology or a contradiction. This method can be autom-atized by defining a term rewriting system that enjoys confluence and strong normalization. This also suggests an original notion of logical gate and circuit, where propositional variables becomes logical gates and logical operations are implemented by substitution. Concerning formulas with quantifiers, we present a simple algorithm based on factor varieties for reducing first-order classical logic to equational logic. We achieve a completeness result for first-order classical logic without requiring any additional structure

    On structural completeness versus almost structural completeness problem : a discriminator varieties case study

    Get PDF
    We study the following problem: determine which almost structurally complete quasivarieties are structurally complete. We propose a general solution to this problem and then a solution in the semisimple case. As a consequence, we obtain a characterization of structurally complete discriminator varieties. An interesting corollary in logic follows: Let L be a propositional logic/deductive system in the language with formulas for verum, which is a theorem, and falsum, which is not a theorem. Assume also that L has an adequate semantics given by a discriminator variety. Then L is structurally complete if and only if it is maximal. All such logics/deductive systems are almost structurally complete.submittedVersionFil: Campercholi, Miguel Alejandro Carlos. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Stronkowski, Michal M. Warsaw University of Technology. Faculty of Mathematics and Information Sciences; Polonia.Fil: Vaggione, Diego José. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Matemática Pur
    corecore