6,057 research outputs found

    Calibration of pipeline ADC with pruned Volterra kernels

    Get PDF
    A Volterra model is used to calibrate a pipeline ADC simulated in Cadence Virtuoso using the STMicroelectronics CMOS 45 nm process. The ADC was designed to work at 50 MSps, but it is simulated at up to 125 MSps, proving that calibration using a Volterra model can significantly increase sampling frequency. Equivalent number of bits (ENOB) improves by 1-2.5 bits (6-15 dB) with 37101 model parameters. The complexity of the calibration algorithm is reduced using different lengths for each Volterra kernels and performing iterative pruning. System identification is performed by least squares techniques with a set of sinusoids at different frequencies spanning the whole Nyquist band. A comparison with simplified Volterra models proposed in the literature shows better performance for the pruned Volterra model with comparable complexity, improving linearity by as much as 1.5 bits more than the other techniques

    Efficient DSP and Circuit Architectures for Massive MIMO: State-of-the-Art and Future Directions

    Full text link
    Massive MIMO is a compelling wireless access concept that relies on the use of an excess number of base-station antennas, relative to the number of active terminals. This technology is a main component of 5G New Radio (NR) and addresses all important requirements of future wireless standards: a great capacity increase, the support of many simultaneous users, and improvement in energy efficiency. Massive MIMO requires the simultaneous processing of signals from many antenna chains, and computational operations on large matrices. The complexity of the digital processing has been viewed as a fundamental obstacle to the feasibility of Massive MIMO in the past. Recent advances on system-algorithm-hardware co-design have led to extremely energy-efficient implementations. These exploit opportunities in deeply-scaled silicon technologies and perform partly distributed processing to cope with the bottlenecks encountered in the interconnection of many signals. For example, prototype ASIC implementations have demonstrated zero-forcing precoding in real time at a 55 mW power consumption (20 MHz bandwidth, 128 antennas, multiplexing of 8 terminals). Coarse and even error-prone digital processing in the antenna paths permits a reduction of consumption with a factor of 2 to 5. This article summarizes the fundamental technical contributions to efficient digital signal processing for Massive MIMO. The opportunities and constraints on operating on low-complexity RF and analog hardware chains are clarified. It illustrates how terminals can benefit from improved energy efficiency. The status of technology and real-life prototypes discussed. Open challenges and directions for future research are suggested.Comment: submitted to IEEE transactions on signal processin

    Proof of Principle of an On-Line Digitizer with +18 ppm Repeatability and 1.2 μs Real-Time Delay for Power Converters Control Loop

    Get PDF
    The proof of principle of an on-line digitizer designed to be integrated into the digital control loop of a high-voltage modulator for ultra-repeatable power converters is presented. The presented selective analogue zoom allows digitizing with 18 ppm repeatability the voltage around the nominal level (10V1 V) and, at the same time, the initial transients with relaxed performance. In addition, in order not to jeopardize the digital control loop stability, the whole digitizing system has to introduce a low real-time delay; this is assessed to be less than 1:2 s. Initially, the specifications of the real-time control are presented and translated into data acquisition requirements. Then, the main design choices of the digitizer are discussed and Pspice simulation results are reported to validate the concept design. Finally, experimental results of a validation case study developed for the power converter designed at ETH Zurich and University of Laval for the new linear particle accelerator under study at CERN, the Compact LInear Collider CLIC, are reported and compared with the simulation outcomes

    Hybrid receiver study

    Get PDF
    The results are presented of a 4 month study to design a hybrid analog/digital receiver for outer planet mission probe communication links. The scope of this study includes functional design of the receiver; comparisons between analog and digital processing; hardware tradeoffs for key components including frequency generators, A/D converters, and digital processors; development and simulation of the processing algorithms for acquisition, tracking, and demodulation; and detailed design of the receiver in order to determine its size, weight, power, reliability, and radiation hardness. In addition, an evaluation was made of the receiver's capabilities to perform accurate measurement of signal strength and frequency for radio science missions

    Capacitor Mismatch Calibration Technique to Improve the SFDR of 14-Bit SAR ADC

    Get PDF
    This paper presents mismatch calibration technique to improve the SFDR in a 14-bit successive approximation register (SAR) analog-to-digital converter (ADC) for wearable electronics application. Behavioral Monte-Carlo simulations are applied to demonstrate the effect of the proposed method where no complex digital calibration algorithm or auxiliary calibration DAC needed. Simulation results show that with a mismatch error typical of modern technology, the SFDR is enhanced by more than 20 dB with the proposed technique for a 14-bit SAR ADC

    A Fast Digital Integrator for magnetic measurements

    Get PDF
    In this work, the Fast Digital Integrator (FDI), conceived for characterizing dynamic features of superconducting magnets and measuring fast transients of magnetic fields at the European Organization for Nuclear Research (CERN) and other high-energy physics research centres, is presented. FDI development was carried out inside a framework of cooperation between the group of Magnet Tests and Measurements of CERN and the Department of Engineering of the University of Sannio. Drawbacks related to measurement time decrease of main high-performance analog-to-digital architectures, such as Sigma-Delta and integrators, are overcome by founding the design on (i) a new generation of successive-approximation converters, for high resolution (18-bit) at high rate (500 kS/s), (ii) a digital signal processor, for on-line down-sampling by integrating the input signal, (iii) a custom time base, based on a Universal Time Counter, for reducing time-domain uncertainty, and (iv) a PXI board, for high bus transfer rate, as well as noise and heat immunity. A metrological analysis, aimed at verifying the effect of main uncertainty sources, systematic errors, and design parameters on the instrument performance is presented. In particular, results of an analytical study, a preliminary numerical analysis, and a comprehensive multi-factor analysis carried out to confirm the instrument design, are reported. Then, the selection of physical components and the FDI implementation on a PXI board according to the above described conceptual architecture are highlighted. The on-line integration algorithm, developed on the DSP in order to achieve a real-time Nyquist bandwidth of 125 kHz on the flux, is described. C++ classes for remote control of FDI, developed as a part of a new software framework, the Flexible Framework for Magnetic Measurements, conceived for managing a wide spectrum of magnetic measurements techniques, are described. Experimental results of metrological and throughput characterization of FDI are reported. In particular, in metrological characterization, FDI working as a digitizer and as an integrator, was assessed by means of static, dynamic, and time base tests. Typical values of static integral nonlinearity of ±7 ppm, ±3 ppm of 24-h stability, and 108 dB of signal-to-noise-anddistortion ratio at 10 Hz on Nyquist bandwidth of 125 kHz, were surveyed during the integrator working. The actual throughput rate was measured by a specific procedure of PXI bus analysis, by highlighting typical values of 1 MB/s. Finally, the experimental campaign, carried out at CERN facilities of superconducting magnet testing for on-field qualification of FDI, is illustrated. In particular, the FDI was included in a measurement station using also the new generation of fast transducers. The performance of such a station was compared with the one of the previous standard station used in series tests for qualifying LHC magnets. All the results highlight the FDI full capability of acting as the new de-facto standard for high-performance magnetic measurements at CERN and in other high-energy physics research centres
    • …
    corecore